• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <emmintrin.h>  // SSE2
13 
14 #include "config/aom_dsp_rtcd.h"
15 
16 #include "aom_dsp/txfm_common.h"
17 #include "aom_dsp/x86/fwd_txfm_sse2.h"
18 #include "aom_dsp/x86/txfm_common_sse2.h"
19 #include "aom_ports/mem.h"
20 
21 // TODO(jingning) The high bit-depth functions need rework for performance.
22 // After we properly fix the high bit-depth function implementations, this
23 // file's dependency should be substantially simplified.
24 #if DCT_HIGH_BIT_DEPTH
25 #define ADD_EPI16 _mm_adds_epi16
26 #define SUB_EPI16 _mm_subs_epi16
27 
28 #else
29 #define ADD_EPI16 _mm_add_epi16
30 #define SUB_EPI16 _mm_sub_epi16
31 #endif
32 
FDCT4x4_2D_HELPER(const int16_t * input,int stride,__m128i * in0,__m128i * in1)33 static void FDCT4x4_2D_HELPER(const int16_t *input, int stride, __m128i *in0,
34                               __m128i *in1) {
35   // Constants
36   // These are the coefficients used for the multiplies.
37   // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64),
38   // where cospi_N_64 = cos(N pi /64)
39   const __m128i k__cospi_A =
40       octa_set_epi16(cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64,
41                      cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64);
42   const __m128i k__cospi_B =
43       octa_set_epi16(cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64,
44                      cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64);
45   const __m128i k__cospi_C =
46       octa_set_epi16(cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64,
47                      cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64);
48   const __m128i k__cospi_D =
49       octa_set_epi16(cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64,
50                      cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64);
51   const __m128i k__cospi_E =
52       octa_set_epi16(cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64,
53                      cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64);
54   const __m128i k__cospi_F =
55       octa_set_epi16(cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64,
56                      cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64);
57   const __m128i k__cospi_G =
58       octa_set_epi16(cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64,
59                      -cospi_8_64, -cospi_24_64, -cospi_8_64, -cospi_24_64);
60   const __m128i k__cospi_H =
61       octa_set_epi16(cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64,
62                      -cospi_24_64, cospi_8_64, -cospi_24_64, cospi_8_64);
63 
64   const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
65   // This second rounding constant saves doing some extra adds at the end
66   const __m128i k__DCT_CONST_ROUNDING2 =
67       _mm_set1_epi32(DCT_CONST_ROUNDING + (DCT_CONST_ROUNDING << 1));
68   const int DCT_CONST_BITS2 = DCT_CONST_BITS + 2;
69   const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
70   const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
71 
72   // Load inputs.
73   *in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
74   *in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
75   *in1 = _mm_unpacklo_epi64(
76       *in1, _mm_loadl_epi64((const __m128i *)(input + 2 * stride)));
77   *in0 = _mm_unpacklo_epi64(
78       *in0, _mm_loadl_epi64((const __m128i *)(input + 3 * stride)));
79   // in0 = [i0 i1 i2 i3 iC iD iE iF]
80   // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
81   // multiply by 16 to give some extra precision
82   *in0 = _mm_slli_epi16(*in0, 4);
83   *in1 = _mm_slli_epi16(*in1, 4);
84   // if (i == 0 && input[0]) input[0] += 1;
85   // add 1 to the upper left pixel if it is non-zero, which helps reduce
86   // the round-trip error
87   {
88     // The mask will only contain whether the first value is zero, all
89     // other comparison will fail as something shifted by 4 (above << 4)
90     // can never be equal to one. To increment in the non-zero case, we
91     // add the mask and one for the first element:
92     //   - if zero, mask = -1, v = v - 1 + 1 = v
93     //   - if non-zero, mask = 0, v = v + 0 + 1 = v + 1
94     __m128i mask = _mm_cmpeq_epi16(*in0, k__nonzero_bias_a);
95     *in0 = _mm_add_epi16(*in0, mask);
96     *in0 = _mm_add_epi16(*in0, k__nonzero_bias_b);
97   }
98   // There are 4 total stages, alternating between an add/subtract stage
99   // followed by an multiply-and-add stage.
100   {
101     // Stage 1: Add/subtract
102 
103     // in0 = [i0 i1 i2 i3 iC iD iE iF]
104     // in1 = [i4 i5 i6 i7 i8 i9 iA iB]
105     const __m128i r0 = _mm_unpacklo_epi16(*in0, *in1);
106     const __m128i r1 = _mm_unpackhi_epi16(*in0, *in1);
107     // r0 = [i0 i4 i1 i5 i2 i6 i3 i7]
108     // r1 = [iC i8 iD i9 iE iA iF iB]
109     const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4);
110     const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4);
111     // r2 = [i0 i4 i1 i5 i3 i7 i2 i6]
112     // r3 = [iC i8 iD i9 iF iB iE iA]
113 
114     const __m128i t0 = _mm_add_epi16(r2, r3);
115     const __m128i t1 = _mm_sub_epi16(r2, r3);
116     // t0 = [a0 a4 a1 a5 a3 a7 a2 a6]
117     // t1 = [aC a8 aD a9 aF aB aE aA]
118 
119     // Stage 2: multiply by constants (which gets us into 32 bits).
120     // The constants needed here are:
121     // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16]
122     // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16]
123     // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08]
124     // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24]
125     const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A);
126     const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B);
127     const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C);
128     const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D);
129     // Then add and right-shift to get back to 16-bit range
130     const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
131     const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
132     const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
133     const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
134     const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
135     const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
136     const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
137     const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
138     // w0 = [b0 b1 b7 b6]
139     // w1 = [b8 b9 bF bE]
140     // w2 = [b4 b5 b3 b2]
141     // w3 = [bC bD bB bA]
142     const __m128i x0 = _mm_packs_epi32(w0, w1);
143     const __m128i x1 = _mm_packs_epi32(w2, w3);
144 
145     // x0 = [b0 b1 b7 b6 b8 b9 bF bE]
146     // x1 = [b4 b5 b3 b2 bC bD bB bA]
147     *in0 = _mm_shuffle_epi32(x0, 0xD8);
148     *in1 = _mm_shuffle_epi32(x1, 0x8D);
149     // in0 = [b0 b1 b8 b9 b7 b6 bF bE]
150     // in1 = [b3 b2 bB bA b4 b5 bC bD]
151   }
152   {
153     // vertical DCTs finished. Now we do the horizontal DCTs.
154     // Stage 3: Add/subtract
155 
156     const __m128i t0 = ADD_EPI16(*in0, *in1);
157     const __m128i t1 = SUB_EPI16(*in0, *in1);
158 
159     // Stage 4: multiply by constants (which gets us into 32 bits).
160     {
161       // The constants needed here are:
162       // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16]
163       // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16]
164       // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24]
165       // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08]
166       const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E);
167       const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F);
168       const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G);
169       const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H);
170       // Then add and right-shift to get back to 16-bit range
171       // but this combines the final right-shift as well to save operations
172       // This unusual rounding operations is to maintain bit-accurate
173       // compatibility with the c version of this function which has two
174       // rounding steps in a row.
175       const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2);
176       const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2);
177       const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2);
178       const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2);
179       const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2);
180       const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2);
181       const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2);
182       const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2);
183       *in0 = _mm_packs_epi32(w0, w2);
184       *in1 = _mm_packs_epi32(w1, w3);
185     }
186   }
187 }
188 
FDCT4x4_2D(const int16_t * input,tran_low_t * output,int stride)189 void FDCT4x4_2D(const int16_t *input, tran_low_t *output, int stride) {
190   // This 2D transform implements 4 vertical 1D transforms followed
191   // by 4 horizontal 1D transforms.  The multiplies and adds are as given
192   // by Chen, Smith and Fralick ('77).  The commands for moving the data
193   // around have been minimized by hand.
194   // For the purposes of the comments, the 16 inputs are referred to at i0
195   // through iF (in raster order), intermediate variables are a0, b0, c0
196   // through f, and correspond to the in-place computations mapped to input
197   // locations.  The outputs, o0 through oF are labeled according to the
198   // output locations.
199   __m128i in0, in1;
200   FDCT4x4_2D_HELPER(input, stride, &in0, &in1);
201 
202   // Post-condition (v + 1) >> 2 is now incorporated into previous
203   // add and right-shift commands.  Only 2 store instructions needed
204   // because we are using the fact that 1/3 are stored just after 0/2.
205   storeu_output(&in0, output + 0 * 4);
206   storeu_output(&in1, output + 2 * 4);
207 }
208 
FDCT4x4_2D_LP(const int16_t * input,int16_t * output,int stride)209 void FDCT4x4_2D_LP(const int16_t *input, int16_t *output, int stride) {
210   __m128i in0, in1;
211   FDCT4x4_2D_HELPER(input, stride, &in0, &in1);
212   _mm_storeu_si128((__m128i *)(output + 0 * 4), in0);
213   _mm_storeu_si128((__m128i *)(output + 2 * 4), in1);
214 }
215 
216 #if CONFIG_INTERNAL_STATS
FDCT8x8_2D(const int16_t * input,tran_low_t * output,int stride)217 void FDCT8x8_2D(const int16_t *input, tran_low_t *output, int stride) {
218   int pass;
219   // Constants
220   //    When we use them, in one case, they are all the same. In all others
221   //    it's a pair of them that we need to repeat four times. This is done
222   //    by constructing the 32 bit constant corresponding to that pair.
223   const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
224   const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
225   const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
226   const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
227   const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
228   const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
229   const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
230   const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
231   const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
232 #if DCT_HIGH_BIT_DEPTH
233   int overflow;
234 #endif
235   // Load input
236   __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
237   __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
238   __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
239   __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
240   __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
241   __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
242   __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
243   __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
244   // Pre-condition input (shift by two)
245   in0 = _mm_slli_epi16(in0, 2);
246   in1 = _mm_slli_epi16(in1, 2);
247   in2 = _mm_slli_epi16(in2, 2);
248   in3 = _mm_slli_epi16(in3, 2);
249   in4 = _mm_slli_epi16(in4, 2);
250   in5 = _mm_slli_epi16(in5, 2);
251   in6 = _mm_slli_epi16(in6, 2);
252   in7 = _mm_slli_epi16(in7, 2);
253 
254   // We do two passes, first the columns, then the rows. The results of the
255   // first pass are transposed so that the same column code can be reused. The
256   // results of the second pass are also transposed so that the rows (processed
257   // as columns) are put back in row positions.
258   for (pass = 0; pass < 2; pass++) {
259     // To store results of each pass before the transpose.
260     __m128i res0, res1, res2, res3, res4, res5, res6, res7;
261     // Add/subtract
262     const __m128i q0 = ADD_EPI16(in0, in7);
263     const __m128i q1 = ADD_EPI16(in1, in6);
264     const __m128i q2 = ADD_EPI16(in2, in5);
265     const __m128i q3 = ADD_EPI16(in3, in4);
266     const __m128i q4 = SUB_EPI16(in3, in4);
267     const __m128i q5 = SUB_EPI16(in2, in5);
268     const __m128i q6 = SUB_EPI16(in1, in6);
269     const __m128i q7 = SUB_EPI16(in0, in7);
270 #if DCT_HIGH_BIT_DEPTH
271     if (pass == 1) {
272       overflow =
273           check_epi16_overflow_x8(&q0, &q1, &q2, &q3, &q4, &q5, &q6, &q7);
274       if (overflow) {
275         aom_highbd_fdct8x8_c(input, output, stride);
276         return;
277       }
278     }
279 #endif  // DCT_HIGH_BIT_DEPTH
280     // Work on first four results
281     {
282       // Add/subtract
283       const __m128i r0 = ADD_EPI16(q0, q3);
284       const __m128i r1 = ADD_EPI16(q1, q2);
285       const __m128i r2 = SUB_EPI16(q1, q2);
286       const __m128i r3 = SUB_EPI16(q0, q3);
287 #if DCT_HIGH_BIT_DEPTH
288       overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3);
289       if (overflow) {
290         aom_highbd_fdct8x8_c(input, output, stride);
291         return;
292       }
293 #endif  // DCT_HIGH_BIT_DEPTH
294       // Interleave to do the multiply by constants which gets us into 32bits
295       {
296         const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
297         const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
298         const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
299         const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
300         const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
301         const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
302         const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
303         const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
304         const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
305         const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
306         const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
307         const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
308         // dct_const_round_shift
309         const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
310         const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
311         const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
312         const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
313         const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
314         const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
315         const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
316         const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
317         const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
318         const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
319         const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
320         const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
321         const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
322         const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
323         const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
324         const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
325         // Combine
326         res0 = _mm_packs_epi32(w0, w1);
327         res4 = _mm_packs_epi32(w2, w3);
328         res2 = _mm_packs_epi32(w4, w5);
329         res6 = _mm_packs_epi32(w6, w7);
330 #if DCT_HIGH_BIT_DEPTH
331         overflow = check_epi16_overflow_x4(&res0, &res4, &res2, &res6);
332         if (overflow) {
333           aom_highbd_fdct8x8_c(input, output, stride);
334           return;
335         }
336 #endif  // DCT_HIGH_BIT_DEPTH
337       }
338     }
339     // Work on next four results
340     {
341       // Interleave to do the multiply by constants which gets us into 32bits
342       const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
343       const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
344       const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
345       const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
346       const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
347       const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
348       // dct_const_round_shift
349       const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
350       const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
351       const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
352       const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
353       const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
354       const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
355       const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
356       const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
357       // Combine
358       const __m128i r0 = _mm_packs_epi32(s0, s1);
359       const __m128i r1 = _mm_packs_epi32(s2, s3);
360 #if DCT_HIGH_BIT_DEPTH
361       overflow = check_epi16_overflow_x2(&r0, &r1);
362       if (overflow) {
363         aom_highbd_fdct8x8_c(input, output, stride);
364         return;
365       }
366 #endif  // DCT_HIGH_BIT_DEPTH
367       {
368         // Add/subtract
369         const __m128i x0 = ADD_EPI16(q4, r0);
370         const __m128i x1 = SUB_EPI16(q4, r0);
371         const __m128i x2 = SUB_EPI16(q7, r1);
372         const __m128i x3 = ADD_EPI16(q7, r1);
373 #if DCT_HIGH_BIT_DEPTH
374         overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3);
375         if (overflow) {
376           aom_highbd_fdct8x8_c(input, output, stride);
377           return;
378         }
379 #endif  // DCT_HIGH_BIT_DEPTH
380         // Interleave to do the multiply by constants which gets us into 32bits
381         {
382           const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
383           const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
384           const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
385           const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
386           const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
387           const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
388           const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
389           const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
390           const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
391           const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
392           const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
393           const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
394           // dct_const_round_shift
395           const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
396           const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
397           const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
398           const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
399           const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
400           const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
401           const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
402           const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
403           const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
404           const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
405           const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
406           const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
407           const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
408           const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
409           const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
410           const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
411           // Combine
412           res1 = _mm_packs_epi32(w0, w1);
413           res7 = _mm_packs_epi32(w2, w3);
414           res5 = _mm_packs_epi32(w4, w5);
415           res3 = _mm_packs_epi32(w6, w7);
416 #if DCT_HIGH_BIT_DEPTH
417           overflow = check_epi16_overflow_x4(&res1, &res7, &res5, &res3);
418           if (overflow) {
419             aom_highbd_fdct8x8_c(input, output, stride);
420             return;
421           }
422 #endif  // DCT_HIGH_BIT_DEPTH
423         }
424       }
425     }
426     // Transpose the 8x8.
427     {
428       // 00 01 02 03 04 05 06 07
429       // 10 11 12 13 14 15 16 17
430       // 20 21 22 23 24 25 26 27
431       // 30 31 32 33 34 35 36 37
432       // 40 41 42 43 44 45 46 47
433       // 50 51 52 53 54 55 56 57
434       // 60 61 62 63 64 65 66 67
435       // 70 71 72 73 74 75 76 77
436       const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
437       const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
438       const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
439       const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
440       const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
441       const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
442       const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
443       const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
444       // 00 10 01 11 02 12 03 13
445       // 20 30 21 31 22 32 23 33
446       // 04 14 05 15 06 16 07 17
447       // 24 34 25 35 26 36 27 37
448       // 40 50 41 51 42 52 43 53
449       // 60 70 61 71 62 72 63 73
450       // 54 54 55 55 56 56 57 57
451       // 64 74 65 75 66 76 67 77
452       const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
453       const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
454       const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
455       const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
456       const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
457       const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
458       const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
459       const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
460       // 00 10 20 30 01 11 21 31
461       // 40 50 60 70 41 51 61 71
462       // 02 12 22 32 03 13 23 33
463       // 42 52 62 72 43 53 63 73
464       // 04 14 24 34 05 15 21 36
465       // 44 54 64 74 45 55 61 76
466       // 06 16 26 36 07 17 27 37
467       // 46 56 66 76 47 57 67 77
468       in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
469       in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
470       in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
471       in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
472       in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
473       in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
474       in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
475       in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
476       // 00 10 20 30 40 50 60 70
477       // 01 11 21 31 41 51 61 71
478       // 02 12 22 32 42 52 62 72
479       // 03 13 23 33 43 53 63 73
480       // 04 14 24 34 44 54 64 74
481       // 05 15 25 35 45 55 65 75
482       // 06 16 26 36 46 56 66 76
483       // 07 17 27 37 47 57 67 77
484     }
485   }
486   // Post-condition output and store it
487   {
488     // Post-condition (division by two)
489     //    division of two 16 bits signed numbers using shifts
490     //    n / 2 = (n - (n >> 15)) >> 1
491     const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
492     const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
493     const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
494     const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
495     const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
496     const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
497     const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
498     const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
499     in0 = _mm_sub_epi16(in0, sign_in0);
500     in1 = _mm_sub_epi16(in1, sign_in1);
501     in2 = _mm_sub_epi16(in2, sign_in2);
502     in3 = _mm_sub_epi16(in3, sign_in3);
503     in4 = _mm_sub_epi16(in4, sign_in4);
504     in5 = _mm_sub_epi16(in5, sign_in5);
505     in6 = _mm_sub_epi16(in6, sign_in6);
506     in7 = _mm_sub_epi16(in7, sign_in7);
507     in0 = _mm_srai_epi16(in0, 1);
508     in1 = _mm_srai_epi16(in1, 1);
509     in2 = _mm_srai_epi16(in2, 1);
510     in3 = _mm_srai_epi16(in3, 1);
511     in4 = _mm_srai_epi16(in4, 1);
512     in5 = _mm_srai_epi16(in5, 1);
513     in6 = _mm_srai_epi16(in6, 1);
514     in7 = _mm_srai_epi16(in7, 1);
515     // store results
516     store_output(&in0, (output + 0 * 8));
517     store_output(&in1, (output + 1 * 8));
518     store_output(&in2, (output + 2 * 8));
519     store_output(&in3, (output + 3 * 8));
520     store_output(&in4, (output + 4 * 8));
521     store_output(&in5, (output + 5 * 8));
522     store_output(&in6, (output + 6 * 8));
523     store_output(&in7, (output + 7 * 8));
524   }
525 }
526 #endif  // CONFIG_INTERNAL_STATS
527 
528 #undef ADD_EPI16
529 #undef SUB_EPI16
530