• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <immintrin.h>
13 
14 #include "config/aom_dsp_rtcd.h"
15 
16 #include "aom_dsp/x86/masked_variance_intrin_ssse3.h"
17 #include "aom_dsp/x86/synonyms.h"
18 
mm256_add_hi_lo_epi16(const __m256i val)19 static INLINE __m128i mm256_add_hi_lo_epi16(const __m256i val) {
20   return _mm_add_epi16(_mm256_castsi256_si128(val),
21                        _mm256_extractf128_si256(val, 1));
22 }
23 
mm256_add_hi_lo_epi32(const __m256i val)24 static INLINE __m128i mm256_add_hi_lo_epi32(const __m256i val) {
25   return _mm_add_epi32(_mm256_castsi256_si128(val),
26                        _mm256_extractf128_si256(val, 1));
27 }
28 
variance_kernel_avx2(const __m256i src,const __m256i ref,__m256i * const sse,__m256i * const sum)29 static INLINE void variance_kernel_avx2(const __m256i src, const __m256i ref,
30                                         __m256i *const sse,
31                                         __m256i *const sum) {
32   const __m256i adj_sub = _mm256_set1_epi16((short)0xff01);  // (1,-1)
33 
34   // unpack into pairs of source and reference values
35   const __m256i src_ref0 = _mm256_unpacklo_epi8(src, ref);
36   const __m256i src_ref1 = _mm256_unpackhi_epi8(src, ref);
37 
38   // subtract adjacent elements using src*1 + ref*-1
39   const __m256i diff0 = _mm256_maddubs_epi16(src_ref0, adj_sub);
40   const __m256i diff1 = _mm256_maddubs_epi16(src_ref1, adj_sub);
41   const __m256i madd0 = _mm256_madd_epi16(diff0, diff0);
42   const __m256i madd1 = _mm256_madd_epi16(diff1, diff1);
43 
44   // add to the running totals
45   *sum = _mm256_add_epi16(*sum, _mm256_add_epi16(diff0, diff1));
46   *sse = _mm256_add_epi32(*sse, _mm256_add_epi32(madd0, madd1));
47 }
48 
variance_final_from_32bit_sum_avx2(__m256i vsse,__m128i vsum,unsigned int * const sse)49 static INLINE int variance_final_from_32bit_sum_avx2(__m256i vsse, __m128i vsum,
50                                                      unsigned int *const sse) {
51   // extract the low lane and add it to the high lane
52   const __m128i sse_reg_128 = mm256_add_hi_lo_epi32(vsse);
53 
54   // unpack sse and sum registers and add
55   const __m128i sse_sum_lo = _mm_unpacklo_epi32(sse_reg_128, vsum);
56   const __m128i sse_sum_hi = _mm_unpackhi_epi32(sse_reg_128, vsum);
57   const __m128i sse_sum = _mm_add_epi32(sse_sum_lo, sse_sum_hi);
58 
59   // perform the final summation and extract the results
60   const __m128i res = _mm_add_epi32(sse_sum, _mm_srli_si128(sse_sum, 8));
61   *((int *)sse) = _mm_cvtsi128_si32(res);
62   return _mm_extract_epi32(res, 1);
63 }
64 
65 // handle pixels (<= 512)
variance_final_512_avx2(__m256i vsse,__m256i vsum,unsigned int * const sse)66 static INLINE int variance_final_512_avx2(__m256i vsse, __m256i vsum,
67                                           unsigned int *const sse) {
68   // extract the low lane and add it to the high lane
69   const __m128i vsum_128 = mm256_add_hi_lo_epi16(vsum);
70   const __m128i vsum_64 = _mm_add_epi16(vsum_128, _mm_srli_si128(vsum_128, 8));
71   const __m128i sum_int32 = _mm_cvtepi16_epi32(vsum_64);
72   return variance_final_from_32bit_sum_avx2(vsse, sum_int32, sse);
73 }
74 
75 // handle 1024 pixels (32x32, 16x64, 64x16)
variance_final_1024_avx2(__m256i vsse,__m256i vsum,unsigned int * const sse)76 static INLINE int variance_final_1024_avx2(__m256i vsse, __m256i vsum,
77                                            unsigned int *const sse) {
78   // extract the low lane and add it to the high lane
79   const __m128i vsum_128 = mm256_add_hi_lo_epi16(vsum);
80   const __m128i vsum_64 =
81       _mm_add_epi32(_mm_cvtepi16_epi32(vsum_128),
82                     _mm_cvtepi16_epi32(_mm_srli_si128(vsum_128, 8)));
83   return variance_final_from_32bit_sum_avx2(vsse, vsum_64, sse);
84 }
85 
sum_to_32bit_avx2(const __m256i sum)86 static INLINE __m256i sum_to_32bit_avx2(const __m256i sum) {
87   const __m256i sum_lo = _mm256_cvtepi16_epi32(_mm256_castsi256_si128(sum));
88   const __m256i sum_hi =
89       _mm256_cvtepi16_epi32(_mm256_extractf128_si256(sum, 1));
90   return _mm256_add_epi32(sum_lo, sum_hi);
91 }
92 
93 // handle 2048 pixels (32x64, 64x32)
variance_final_2048_avx2(__m256i vsse,__m256i vsum,unsigned int * const sse)94 static INLINE int variance_final_2048_avx2(__m256i vsse, __m256i vsum,
95                                            unsigned int *const sse) {
96   vsum = sum_to_32bit_avx2(vsum);
97   const __m128i vsum_128 = mm256_add_hi_lo_epi32(vsum);
98   return variance_final_from_32bit_sum_avx2(vsse, vsum_128, sse);
99 }
100 
variance16_kernel_avx2(const uint8_t * const src,const int src_stride,const uint8_t * const ref,const int ref_stride,__m256i * const sse,__m256i * const sum)101 static INLINE void variance16_kernel_avx2(
102     const uint8_t *const src, const int src_stride, const uint8_t *const ref,
103     const int ref_stride, __m256i *const sse, __m256i *const sum) {
104   const __m128i s0 = _mm_loadu_si128((__m128i const *)(src + 0 * src_stride));
105   const __m128i s1 = _mm_loadu_si128((__m128i const *)(src + 1 * src_stride));
106   const __m128i r0 = _mm_loadu_si128((__m128i const *)(ref + 0 * ref_stride));
107   const __m128i r1 = _mm_loadu_si128((__m128i const *)(ref + 1 * ref_stride));
108   const __m256i s = _mm256_inserti128_si256(_mm256_castsi128_si256(s0), s1, 1);
109   const __m256i r = _mm256_inserti128_si256(_mm256_castsi128_si256(r0), r1, 1);
110   variance_kernel_avx2(s, r, sse, sum);
111 }
112 
variance32_kernel_avx2(const uint8_t * const src,const uint8_t * const ref,__m256i * const sse,__m256i * const sum)113 static INLINE void variance32_kernel_avx2(const uint8_t *const src,
114                                           const uint8_t *const ref,
115                                           __m256i *const sse,
116                                           __m256i *const sum) {
117   const __m256i s = _mm256_loadu_si256((__m256i const *)(src));
118   const __m256i r = _mm256_loadu_si256((__m256i const *)(ref));
119   variance_kernel_avx2(s, r, sse, sum);
120 }
121 
variance16_avx2(const uint8_t * src,const int src_stride,const uint8_t * ref,const int ref_stride,const int h,__m256i * const vsse,__m256i * const vsum)122 static INLINE void variance16_avx2(const uint8_t *src, const int src_stride,
123                                    const uint8_t *ref, const int ref_stride,
124                                    const int h, __m256i *const vsse,
125                                    __m256i *const vsum) {
126   *vsum = _mm256_setzero_si256();
127 
128   for (int i = 0; i < h; i += 2) {
129     variance16_kernel_avx2(src, src_stride, ref, ref_stride, vsse, vsum);
130     src += 2 * src_stride;
131     ref += 2 * ref_stride;
132   }
133 }
134 
variance32_avx2(const uint8_t * src,const int src_stride,const uint8_t * ref,const int ref_stride,const int h,__m256i * const vsse,__m256i * const vsum)135 static INLINE void variance32_avx2(const uint8_t *src, const int src_stride,
136                                    const uint8_t *ref, const int ref_stride,
137                                    const int h, __m256i *const vsse,
138                                    __m256i *const vsum) {
139   *vsum = _mm256_setzero_si256();
140 
141   for (int i = 0; i < h; i++) {
142     variance32_kernel_avx2(src, ref, vsse, vsum);
143     src += src_stride;
144     ref += ref_stride;
145   }
146 }
147 
variance64_avx2(const uint8_t * src,const int src_stride,const uint8_t * ref,const int ref_stride,const int h,__m256i * const vsse,__m256i * const vsum)148 static INLINE void variance64_avx2(const uint8_t *src, const int src_stride,
149                                    const uint8_t *ref, const int ref_stride,
150                                    const int h, __m256i *const vsse,
151                                    __m256i *const vsum) {
152   *vsum = _mm256_setzero_si256();
153 
154   for (int i = 0; i < h; i++) {
155     variance32_kernel_avx2(src + 0, ref + 0, vsse, vsum);
156     variance32_kernel_avx2(src + 32, ref + 32, vsse, vsum);
157     src += src_stride;
158     ref += ref_stride;
159   }
160 }
161 
variance128_avx2(const uint8_t * src,const int src_stride,const uint8_t * ref,const int ref_stride,const int h,__m256i * const vsse,__m256i * const vsum)162 static INLINE void variance128_avx2(const uint8_t *src, const int src_stride,
163                                     const uint8_t *ref, const int ref_stride,
164                                     const int h, __m256i *const vsse,
165                                     __m256i *const vsum) {
166   *vsum = _mm256_setzero_si256();
167 
168   for (int i = 0; i < h; i++) {
169     variance32_kernel_avx2(src + 0, ref + 0, vsse, vsum);
170     variance32_kernel_avx2(src + 32, ref + 32, vsse, vsum);
171     variance32_kernel_avx2(src + 64, ref + 64, vsse, vsum);
172     variance32_kernel_avx2(src + 96, ref + 96, vsse, vsum);
173     src += src_stride;
174     ref += ref_stride;
175   }
176 }
177 
178 #define AOM_VAR_NO_LOOP_AVX2(bw, bh, bits, max_pixel)                         \
179   unsigned int aom_variance##bw##x##bh##_avx2(                                \
180       const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
181       unsigned int *sse) {                                                    \
182     __m256i vsse = _mm256_setzero_si256();                                    \
183     __m256i vsum;                                                             \
184     variance##bw##_avx2(src, src_stride, ref, ref_stride, bh, &vsse, &vsum);  \
185     const int sum = variance_final_##max_pixel##_avx2(vsse, vsum, sse);       \
186     return *sse - (uint32_t)(((int64_t)sum * sum) >> bits);                   \
187   }
188 
189 AOM_VAR_NO_LOOP_AVX2(16, 8, 7, 512)
190 AOM_VAR_NO_LOOP_AVX2(16, 16, 8, 512)
191 AOM_VAR_NO_LOOP_AVX2(16, 32, 9, 512)
192 
193 AOM_VAR_NO_LOOP_AVX2(32, 16, 9, 512)
194 AOM_VAR_NO_LOOP_AVX2(32, 32, 10, 1024)
195 AOM_VAR_NO_LOOP_AVX2(32, 64, 11, 2048)
196 
197 AOM_VAR_NO_LOOP_AVX2(64, 32, 11, 2048)
198 
199 #if !CONFIG_REALTIME_ONLY
200 AOM_VAR_NO_LOOP_AVX2(64, 16, 10, 1024)
201 AOM_VAR_NO_LOOP_AVX2(32, 8, 8, 512)
202 AOM_VAR_NO_LOOP_AVX2(16, 64, 10, 1024)
203 AOM_VAR_NO_LOOP_AVX2(16, 4, 6, 512)
204 #endif
205 
206 #define AOM_VAR_LOOP_AVX2(bw, bh, bits, uh)                                   \
207   unsigned int aom_variance##bw##x##bh##_avx2(                                \
208       const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
209       unsigned int *sse) {                                                    \
210     __m256i vsse = _mm256_setzero_si256();                                    \
211     __m256i vsum = _mm256_setzero_si256();                                    \
212     for (int i = 0; i < (bh / uh); i++) {                                     \
213       __m256i vsum16;                                                         \
214       variance##bw##_avx2(src, src_stride, ref, ref_stride, uh, &vsse,        \
215                           &vsum16);                                           \
216       vsum = _mm256_add_epi32(vsum, sum_to_32bit_avx2(vsum16));               \
217       src += uh * src_stride;                                                 \
218       ref += uh * ref_stride;                                                 \
219     }                                                                         \
220     const __m128i vsum_128 = mm256_add_hi_lo_epi32(vsum);                     \
221     const int sum = variance_final_from_32bit_sum_avx2(vsse, vsum_128, sse);  \
222     return *sse - (unsigned int)(((int64_t)sum * sum) >> bits);               \
223   }
224 
225 AOM_VAR_LOOP_AVX2(64, 64, 12, 32)    // 64x32 * ( 64/32)
226 AOM_VAR_LOOP_AVX2(64, 128, 13, 32)   // 64x32 * (128/32)
227 AOM_VAR_LOOP_AVX2(128, 64, 13, 16)   // 128x16 * ( 64/16)
228 AOM_VAR_LOOP_AVX2(128, 128, 14, 16)  // 128x16 * (128/16)
229 
aom_mse16x16_avx2(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,unsigned int * sse)230 unsigned int aom_mse16x16_avx2(const uint8_t *src, int src_stride,
231                                const uint8_t *ref, int ref_stride,
232                                unsigned int *sse) {
233   aom_variance16x16_avx2(src, src_stride, ref, ref_stride, sse);
234   return *sse;
235 }
236 
mm256_loadu2(const uint8_t * p0,const uint8_t * p1)237 static INLINE __m256i mm256_loadu2(const uint8_t *p0, const uint8_t *p1) {
238   const __m256i d =
239       _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)p1));
240   return _mm256_insertf128_si256(d, _mm_loadu_si128((const __m128i *)p0), 1);
241 }
242 
mm256_loadu2_16(const uint16_t * p0,const uint16_t * p1)243 static INLINE __m256i mm256_loadu2_16(const uint16_t *p0, const uint16_t *p1) {
244   const __m256i d =
245       _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)p1));
246   return _mm256_insertf128_si256(d, _mm_loadu_si128((const __m128i *)p0), 1);
247 }
248 
comp_mask_pred_line_avx2(const __m256i s0,const __m256i s1,const __m256i a,uint8_t * comp_pred)249 static INLINE void comp_mask_pred_line_avx2(const __m256i s0, const __m256i s1,
250                                             const __m256i a,
251                                             uint8_t *comp_pred) {
252   const __m256i alpha_max = _mm256_set1_epi8(AOM_BLEND_A64_MAX_ALPHA);
253   const int16_t round_bits = 15 - AOM_BLEND_A64_ROUND_BITS;
254   const __m256i round_offset = _mm256_set1_epi16(1 << (round_bits));
255 
256   const __m256i ma = _mm256_sub_epi8(alpha_max, a);
257 
258   const __m256i ssAL = _mm256_unpacklo_epi8(s0, s1);
259   const __m256i aaAL = _mm256_unpacklo_epi8(a, ma);
260   const __m256i ssAH = _mm256_unpackhi_epi8(s0, s1);
261   const __m256i aaAH = _mm256_unpackhi_epi8(a, ma);
262 
263   const __m256i blendAL = _mm256_maddubs_epi16(ssAL, aaAL);
264   const __m256i blendAH = _mm256_maddubs_epi16(ssAH, aaAH);
265   const __m256i roundAL = _mm256_mulhrs_epi16(blendAL, round_offset);
266   const __m256i roundAH = _mm256_mulhrs_epi16(blendAH, round_offset);
267 
268   const __m256i roundA = _mm256_packus_epi16(roundAL, roundAH);
269   _mm256_storeu_si256((__m256i *)(comp_pred), roundA);
270 }
271 
aom_comp_avg_pred_avx2(uint8_t * comp_pred,const uint8_t * pred,int width,int height,const uint8_t * ref,int ref_stride)272 void aom_comp_avg_pred_avx2(uint8_t *comp_pred, const uint8_t *pred, int width,
273                             int height, const uint8_t *ref, int ref_stride) {
274   int row = 0;
275   if (width == 8) {
276     do {
277       const __m256i pred_0123 = _mm256_loadu_si256((const __m256i *)(pred));
278       const __m128i ref_0 = _mm_loadl_epi64((const __m128i *)(ref));
279       const __m128i ref_1 =
280           _mm_loadl_epi64((const __m128i *)(ref + ref_stride));
281       const __m128i ref_2 =
282           _mm_loadl_epi64((const __m128i *)(ref + 2 * ref_stride));
283       const __m128i ref_3 =
284           _mm_loadl_epi64((const __m128i *)(ref + 3 * ref_stride));
285       const __m128i ref_01 = _mm_unpacklo_epi64(ref_0, ref_1);
286       const __m128i ref_23 = _mm_unpacklo_epi64(ref_2, ref_3);
287 
288       const __m256i ref_0123 =
289           _mm256_inserti128_si256(_mm256_castsi128_si256(ref_01), ref_23, 1);
290       const __m256i average = _mm256_avg_epu8(pred_0123, ref_0123);
291       _mm256_storeu_si256((__m256i *)(comp_pred), average);
292 
293       row += 4;
294       pred += 32;
295       comp_pred += 32;
296       ref += 4 * ref_stride;
297     } while (row < height);
298   } else if (width == 16) {
299     do {
300       const __m256i pred_0 = _mm256_loadu_si256((const __m256i *)(pred));
301       const __m256i pred_1 = _mm256_loadu_si256((const __m256i *)(pred + 32));
302       const __m256i tmp0 =
303           _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(ref)));
304       const __m256i ref_0 = _mm256_inserti128_si256(
305           tmp0, _mm_loadu_si128((const __m128i *)(ref + ref_stride)), 1);
306       const __m256i tmp1 = _mm256_castsi128_si256(
307           _mm_loadu_si128((const __m128i *)(ref + 2 * ref_stride)));
308       const __m256i ref_1 = _mm256_inserti128_si256(
309           tmp1, _mm_loadu_si128((const __m128i *)(ref + 3 * ref_stride)), 1);
310       const __m256i average_0 = _mm256_avg_epu8(pred_0, ref_0);
311       const __m256i average_1 = _mm256_avg_epu8(pred_1, ref_1);
312       _mm256_storeu_si256((__m256i *)(comp_pred), average_0);
313       _mm256_storeu_si256((__m256i *)(comp_pred + 32), average_1);
314 
315       row += 4;
316       pred += 64;
317       comp_pred += 64;
318       ref += 4 * ref_stride;
319     } while (row < height);
320   } else if (width == 32) {
321     do {
322       const __m256i pred_0 = _mm256_loadu_si256((const __m256i *)(pred));
323       const __m256i pred_1 = _mm256_loadu_si256((const __m256i *)(pred + 32));
324       const __m256i ref_0 = _mm256_loadu_si256((const __m256i *)(ref));
325       const __m256i ref_1 =
326           _mm256_loadu_si256((const __m256i *)(ref + ref_stride));
327       const __m256i average_0 = _mm256_avg_epu8(pred_0, ref_0);
328       const __m256i average_1 = _mm256_avg_epu8(pred_1, ref_1);
329       _mm256_storeu_si256((__m256i *)(comp_pred), average_0);
330       _mm256_storeu_si256((__m256i *)(comp_pred + 32), average_1);
331 
332       row += 2;
333       pred += 64;
334       comp_pred += 64;
335       ref += 2 * ref_stride;
336     } while (row < height);
337   } else if (width % 64 == 0) {
338     do {
339       for (int x = 0; x < width; x += 64) {
340         const __m256i pred_0 = _mm256_loadu_si256((const __m256i *)(pred + x));
341         const __m256i pred_1 =
342             _mm256_loadu_si256((const __m256i *)(pred + x + 32));
343         const __m256i ref_0 = _mm256_loadu_si256((const __m256i *)(ref + x));
344         const __m256i ref_1 =
345             _mm256_loadu_si256((const __m256i *)(ref + x + 32));
346         const __m256i average_0 = _mm256_avg_epu8(pred_0, ref_0);
347         const __m256i average_1 = _mm256_avg_epu8(pred_1, ref_1);
348         _mm256_storeu_si256((__m256i *)(comp_pred + x), average_0);
349         _mm256_storeu_si256((__m256i *)(comp_pred + x + 32), average_1);
350       }
351       row++;
352       pred += width;
353       comp_pred += width;
354       ref += ref_stride;
355     } while (row < height);
356   } else {
357     aom_comp_avg_pred_c(comp_pred, pred, width, height, ref, ref_stride);
358   }
359 }
360 
aom_comp_mask_pred_avx2(uint8_t * comp_pred,const uint8_t * pred,int width,int height,const uint8_t * ref,int ref_stride,const uint8_t * mask,int mask_stride,int invert_mask)361 void aom_comp_mask_pred_avx2(uint8_t *comp_pred, const uint8_t *pred, int width,
362                              int height, const uint8_t *ref, int ref_stride,
363                              const uint8_t *mask, int mask_stride,
364                              int invert_mask) {
365   int i = 0;
366   const uint8_t *src0 = invert_mask ? pred : ref;
367   const uint8_t *src1 = invert_mask ? ref : pred;
368   const int stride0 = invert_mask ? width : ref_stride;
369   const int stride1 = invert_mask ? ref_stride : width;
370   if (width == 8) {
371     comp_mask_pred_8_ssse3(comp_pred, height, src0, stride0, src1, stride1,
372                            mask, mask_stride);
373   } else if (width == 16) {
374     do {
375       const __m256i sA0 = mm256_loadu2(src0 + stride0, src0);
376       const __m256i sA1 = mm256_loadu2(src1 + stride1, src1);
377       const __m256i aA = mm256_loadu2(mask + mask_stride, mask);
378       src0 += (stride0 << 1);
379       src1 += (stride1 << 1);
380       mask += (mask_stride << 1);
381       const __m256i sB0 = mm256_loadu2(src0 + stride0, src0);
382       const __m256i sB1 = mm256_loadu2(src1 + stride1, src1);
383       const __m256i aB = mm256_loadu2(mask + mask_stride, mask);
384       src0 += (stride0 << 1);
385       src1 += (stride1 << 1);
386       mask += (mask_stride << 1);
387       // comp_pred's stride == width == 16
388       comp_mask_pred_line_avx2(sA0, sA1, aA, comp_pred);
389       comp_mask_pred_line_avx2(sB0, sB1, aB, comp_pred + 32);
390       comp_pred += (16 << 2);
391       i += 4;
392     } while (i < height);
393   } else {
394     do {
395       for (int x = 0; x < width; x += 32) {
396         const __m256i sA0 = _mm256_lddqu_si256((const __m256i *)(src0 + x));
397         const __m256i sA1 = _mm256_lddqu_si256((const __m256i *)(src1 + x));
398         const __m256i aA = _mm256_lddqu_si256((const __m256i *)(mask + x));
399 
400         comp_mask_pred_line_avx2(sA0, sA1, aA, comp_pred);
401         comp_pred += 32;
402       }
403       src0 += stride0;
404       src1 += stride1;
405       mask += mask_stride;
406       i++;
407     } while (i < height);
408   }
409 }
410 
highbd_comp_mask_pred_line_avx2(const __m256i s0,const __m256i s1,const __m256i a)411 static INLINE __m256i highbd_comp_mask_pred_line_avx2(const __m256i s0,
412                                                       const __m256i s1,
413                                                       const __m256i a) {
414   const __m256i alpha_max = _mm256_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
415   const __m256i round_const =
416       _mm256_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
417   const __m256i a_inv = _mm256_sub_epi16(alpha_max, a);
418 
419   const __m256i s_lo = _mm256_unpacklo_epi16(s0, s1);
420   const __m256i a_lo = _mm256_unpacklo_epi16(a, a_inv);
421   const __m256i pred_lo = _mm256_madd_epi16(s_lo, a_lo);
422   const __m256i pred_l = _mm256_srai_epi32(
423       _mm256_add_epi32(pred_lo, round_const), AOM_BLEND_A64_ROUND_BITS);
424 
425   const __m256i s_hi = _mm256_unpackhi_epi16(s0, s1);
426   const __m256i a_hi = _mm256_unpackhi_epi16(a, a_inv);
427   const __m256i pred_hi = _mm256_madd_epi16(s_hi, a_hi);
428   const __m256i pred_h = _mm256_srai_epi32(
429       _mm256_add_epi32(pred_hi, round_const), AOM_BLEND_A64_ROUND_BITS);
430 
431   const __m256i comp = _mm256_packs_epi32(pred_l, pred_h);
432 
433   return comp;
434 }
435 
aom_highbd_comp_mask_pred_avx2(uint8_t * comp_pred8,const uint8_t * pred8,int width,int height,const uint8_t * ref8,int ref_stride,const uint8_t * mask,int mask_stride,int invert_mask)436 void aom_highbd_comp_mask_pred_avx2(uint8_t *comp_pred8, const uint8_t *pred8,
437                                     int width, int height, const uint8_t *ref8,
438                                     int ref_stride, const uint8_t *mask,
439                                     int mask_stride, int invert_mask) {
440   int i = 0;
441   uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
442   uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
443   uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8);
444   const uint16_t *src0 = invert_mask ? pred : ref;
445   const uint16_t *src1 = invert_mask ? ref : pred;
446   const int stride0 = invert_mask ? width : ref_stride;
447   const int stride1 = invert_mask ? ref_stride : width;
448   const __m256i zero = _mm256_setzero_si256();
449 
450   if (width == 8) {
451     do {
452       const __m256i s0 = mm256_loadu2_16(src0 + stride0, src0);
453       const __m256i s1 = mm256_loadu2_16(src1 + stride1, src1);
454 
455       const __m128i m_l = _mm_loadl_epi64((const __m128i *)mask);
456       const __m128i m_h = _mm_loadl_epi64((const __m128i *)(mask + 8));
457 
458       __m256i m = _mm256_castsi128_si256(m_l);
459       m = _mm256_insertf128_si256(m, m_h, 1);
460       const __m256i m_16 = _mm256_unpacklo_epi8(m, zero);
461 
462       const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m_16);
463 
464       _mm_storeu_si128((__m128i *)(comp_pred), _mm256_castsi256_si128(comp));
465 
466       _mm_storeu_si128((__m128i *)(comp_pred + width),
467                        _mm256_extractf128_si256(comp, 1));
468 
469       src0 += (stride0 << 1);
470       src1 += (stride1 << 1);
471       mask += (mask_stride << 1);
472       comp_pred += (width << 1);
473       i += 2;
474     } while (i < height);
475   } else if (width == 16) {
476     do {
477       const __m256i s0 = _mm256_loadu_si256((const __m256i *)(src0));
478       const __m256i s1 = _mm256_loadu_si256((const __m256i *)(src1));
479       const __m256i m_16 =
480           _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)mask));
481 
482       const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m_16);
483 
484       _mm256_storeu_si256((__m256i *)comp_pred, comp);
485 
486       src0 += stride0;
487       src1 += stride1;
488       mask += mask_stride;
489       comp_pred += width;
490       i += 1;
491     } while (i < height);
492   } else {
493     do {
494       for (int x = 0; x < width; x += 32) {
495         const __m256i s0 = _mm256_loadu_si256((const __m256i *)(src0 + x));
496         const __m256i s2 = _mm256_loadu_si256((const __m256i *)(src0 + x + 16));
497         const __m256i s1 = _mm256_loadu_si256((const __m256i *)(src1 + x));
498         const __m256i s3 = _mm256_loadu_si256((const __m256i *)(src1 + x + 16));
499 
500         const __m256i m01_16 =
501             _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)(mask + x)));
502         const __m256i m23_16 = _mm256_cvtepu8_epi16(
503             _mm_loadu_si128((const __m128i *)(mask + x + 16)));
504 
505         const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m01_16);
506         const __m256i comp1 = highbd_comp_mask_pred_line_avx2(s2, s3, m23_16);
507 
508         _mm256_storeu_si256((__m256i *)comp_pred, comp);
509         _mm256_storeu_si256((__m256i *)(comp_pred + 16), comp1);
510 
511         comp_pred += 32;
512       }
513       src0 += stride0;
514       src1 += stride1;
515       mask += mask_stride;
516       i += 1;
517     } while (i < height);
518   }
519 }
520 
mse_4xh_16bit_avx2(uint8_t * dst,int dstride,uint16_t * src,int sstride,int h)521 static uint64_t mse_4xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
522                                    int sstride, int h) {
523   uint64_t sum = 0;
524   __m128i dst0_4x8, dst1_4x8, dst2_4x8, dst3_4x8, dst_16x8;
525   __m128i src0_4x16, src1_4x16, src2_4x16, src3_4x16;
526   __m256i src0_8x16, src1_8x16, dst_16x16, src_16x16;
527   __m256i res0_4x64, res1_4x64;
528   __m256i sub_result;
529   const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128());
530   __m256i square_result = _mm256_broadcastsi128_si256(_mm_setzero_si128());
531   for (int i = 0; i < h; i += 4) {
532     dst0_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 0) * dstride]));
533     dst1_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 1) * dstride]));
534     dst2_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 2) * dstride]));
535     dst3_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 3) * dstride]));
536     dst_16x8 = _mm_unpacklo_epi64(_mm_unpacklo_epi32(dst0_4x8, dst1_4x8),
537                                   _mm_unpacklo_epi32(dst2_4x8, dst3_4x8));
538     dst_16x16 = _mm256_cvtepu8_epi16(dst_16x8);
539 
540     src0_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 0) * sstride]));
541     src1_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 1) * sstride]));
542     src2_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 2) * sstride]));
543     src3_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 3) * sstride]));
544     src0_8x16 =
545         _mm256_castsi128_si256(_mm_unpacklo_epi64(src0_4x16, src1_4x16));
546     src1_8x16 =
547         _mm256_castsi128_si256(_mm_unpacklo_epi64(src2_4x16, src3_4x16));
548     src_16x16 = _mm256_permute2x128_si256(src0_8x16, src1_8x16, 0x20);
549 
550     // r15 r14 r13------------r1 r0  - 16 bit
551     sub_result = _mm256_abs_epi16(_mm256_sub_epi16(src_16x16, dst_16x16));
552 
553     // s7 s6 s5 s4 s3 s2 s1 s0 - 32bit
554     src_16x16 = _mm256_madd_epi16(sub_result, sub_result);
555 
556     // accumulation of result
557     square_result = _mm256_add_epi32(square_result, src_16x16);
558   }
559 
560   // s5 s4 s1 s0  - 64bit
561   res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros);
562   // s7 s6 s3 s2 - 64bit
563   res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros);
564   // r3 r2 r1 r0 - 64bit
565   res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64);
566   // r1+r3 r2+r0 - 64bit
567   const __m128i sum_1x64 =
568       _mm_add_epi64(_mm256_castsi256_si128(res0_4x64),
569                     _mm256_extracti128_si256(res0_4x64, 1));
570   xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8)));
571   return sum;
572 }
573 
574 // Compute mse of four consecutive 4x4 blocks.
575 // In src buffer, each 4x4 block in a 32x32 filter block is stored sequentially.
576 // Hence src_blk_stride is same as block width. Whereas dst buffer is a frame
577 // buffer, thus dstride is a frame level stride.
mse_4xh_quad_16bit_avx2(uint8_t * dst,int dstride,uint16_t * src,int src_blk_stride,int h)578 static uint64_t mse_4xh_quad_16bit_avx2(uint8_t *dst, int dstride,
579                                         uint16_t *src, int src_blk_stride,
580                                         int h) {
581   uint64_t sum = 0;
582   __m128i dst0_16x8, dst1_16x8, dst2_16x8, dst3_16x8;
583   __m256i dst0_16x16, dst1_16x16, dst2_16x16, dst3_16x16;
584   __m256i res0_4x64, res1_4x64;
585   __m256i sub_result_0, sub_result_1, sub_result_2, sub_result_3;
586   const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128());
587   __m256i square_result = zeros;
588   uint16_t *src_temp = src;
589 
590   for (int i = 0; i < h; i += 4) {
591     dst0_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 0) * dstride]));
592     dst1_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 1) * dstride]));
593     dst2_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 2) * dstride]));
594     dst3_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 3) * dstride]));
595 
596     // row0 of 1st,2nd, 3rd and 4th 4x4 blocks- d00 d10 d20 d30
597     dst0_16x16 = _mm256_cvtepu8_epi16(dst0_16x8);
598     // row1 of 1st,2nd, 3rd and 4th 4x4 blocks - d01 d11 d21 d31
599     dst1_16x16 = _mm256_cvtepu8_epi16(dst1_16x8);
600     // row2 of 1st,2nd, 3rd and 4th 4x4 blocks - d02 d12 d22 d32
601     dst2_16x16 = _mm256_cvtepu8_epi16(dst2_16x8);
602     // row3 of 1st,2nd, 3rd and 4th 4x4 blocks - d03 d13 d23 d33
603     dst3_16x16 = _mm256_cvtepu8_epi16(dst3_16x8);
604 
605     // All rows of 1st 4x4 block - r00 r01 r02 r03
606     __m256i src0_16x16 = _mm256_loadu_si256((__m256i const *)(&src_temp[0]));
607     // All rows of 2nd 4x4 block - r10 r11 r12 r13
608     __m256i src1_16x16 =
609         _mm256_loadu_si256((__m256i const *)(&src_temp[src_blk_stride]));
610     // All rows of 3rd 4x4 block - r20 r21 r22 r23
611     __m256i src2_16x16 =
612         _mm256_loadu_si256((__m256i const *)(&src_temp[2 * src_blk_stride]));
613     // All rows of 4th 4x4 block - r30 r31 r32 r33
614     __m256i src3_16x16 =
615         _mm256_loadu_si256((__m256i const *)(&src_temp[3 * src_blk_stride]));
616 
617     // r00 r10 r02 r12
618     __m256i tmp0_16x16 = _mm256_unpacklo_epi64(src0_16x16, src1_16x16);
619     // r01 r11 r03 r13
620     __m256i tmp1_16x16 = _mm256_unpackhi_epi64(src0_16x16, src1_16x16);
621     // r20 r30 r22 r32
622     __m256i tmp2_16x16 = _mm256_unpacklo_epi64(src2_16x16, src3_16x16);
623     // r21 r31 r23 r33
624     __m256i tmp3_16x16 = _mm256_unpackhi_epi64(src2_16x16, src3_16x16);
625 
626     // r00 r10 r20 r30
627     src0_16x16 = _mm256_permute2f128_si256(tmp0_16x16, tmp2_16x16, 0x20);
628     // r01 r11 r21 r31
629     src1_16x16 = _mm256_permute2f128_si256(tmp1_16x16, tmp3_16x16, 0x20);
630     // r02 r12 r22 r32
631     src2_16x16 = _mm256_permute2f128_si256(tmp0_16x16, tmp2_16x16, 0x31);
632     // r03 r13 r23 r33
633     src3_16x16 = _mm256_permute2f128_si256(tmp1_16x16, tmp3_16x16, 0x31);
634 
635     // r15 r14 r13------------r1 r0  - 16 bit
636     sub_result_0 = _mm256_abs_epi16(_mm256_sub_epi16(src0_16x16, dst0_16x16));
637     sub_result_1 = _mm256_abs_epi16(_mm256_sub_epi16(src1_16x16, dst1_16x16));
638     sub_result_2 = _mm256_abs_epi16(_mm256_sub_epi16(src2_16x16, dst2_16x16));
639     sub_result_3 = _mm256_abs_epi16(_mm256_sub_epi16(src3_16x16, dst3_16x16));
640 
641     // s7 s6 s5 s4 s3 s2 s1 s0    - 32bit
642     src0_16x16 = _mm256_madd_epi16(sub_result_0, sub_result_0);
643     src1_16x16 = _mm256_madd_epi16(sub_result_1, sub_result_1);
644     src2_16x16 = _mm256_madd_epi16(sub_result_2, sub_result_2);
645     src3_16x16 = _mm256_madd_epi16(sub_result_3, sub_result_3);
646 
647     // accumulation of result
648     src0_16x16 = _mm256_add_epi32(src0_16x16, src1_16x16);
649     src2_16x16 = _mm256_add_epi32(src2_16x16, src3_16x16);
650     const __m256i square_result_0 = _mm256_add_epi32(src0_16x16, src2_16x16);
651     square_result = _mm256_add_epi32(square_result, square_result_0);
652     src_temp += 16;
653   }
654 
655   // s5 s4 s1 s0  - 64bit
656   res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros);
657   // s7  s6  s3  s2 - 64bit
658   res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros);
659   // r3 r2 r1 r0 - 64bit
660   res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64);
661   // r1+r3 r2+r0 - 64bit
662   const __m128i sum_1x64 =
663       _mm_add_epi64(_mm256_castsi256_si128(res0_4x64),
664                     _mm256_extracti128_si256(res0_4x64, 1));
665   xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8)));
666   return sum;
667 }
668 
mse_8xh_16bit_avx2(uint8_t * dst,int dstride,uint16_t * src,int sstride,int h)669 static uint64_t mse_8xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
670                                    int sstride, int h) {
671   uint64_t sum = 0;
672   __m128i dst0_8x8, dst1_8x8, dst3_16x8;
673   __m256i src0_8x16, src1_8x16, src_16x16, dst_16x16;
674   __m256i res0_4x64, res1_4x64;
675   __m256i sub_result;
676   const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128());
677   __m256i square_result = _mm256_broadcastsi128_si256(_mm_setzero_si128());
678 
679   for (int i = 0; i < h; i += 2) {
680     dst0_8x8 = _mm_loadl_epi64((__m128i const *)(&dst[(i + 0) * dstride]));
681     dst1_8x8 = _mm_loadl_epi64((__m128i const *)(&dst[(i + 1) * dstride]));
682     dst3_16x8 = _mm_unpacklo_epi64(dst0_8x8, dst1_8x8);
683     dst_16x16 = _mm256_cvtepu8_epi16(dst3_16x8);
684 
685     src0_8x16 =
686         _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)&src[i * sstride]));
687     src1_8x16 = _mm256_castsi128_si256(
688         _mm_loadu_si128((__m128i *)&src[(i + 1) * sstride]));
689     src_16x16 = _mm256_permute2x128_si256(src0_8x16, src1_8x16, 0x20);
690 
691     // r15 r14 r13 - - - r1 r0 - 16 bit
692     sub_result = _mm256_abs_epi16(_mm256_sub_epi16(src_16x16, dst_16x16));
693 
694     // s7 s6 s5 s4 s3 s2 s1 s0 - 32bit
695     src_16x16 = _mm256_madd_epi16(sub_result, sub_result);
696 
697     // accumulation of result
698     square_result = _mm256_add_epi32(square_result, src_16x16);
699   }
700 
701   // s5 s4 s1 s0  - 64bit
702   res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros);
703   // s7 s6 s3 s2 - 64bit
704   res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros);
705   // r3 r2 r1 r0 - 64bit
706   res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64);
707   // r1+r3 r2+r0 - 64bit
708   const __m128i sum_1x64 =
709       _mm_add_epi64(_mm256_castsi256_si128(res0_4x64),
710                     _mm256_extracti128_si256(res0_4x64, 1));
711   xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8)));
712   return sum;
713 }
714 
715 // Compute mse of two consecutive 8x8 blocks.
716 // In src buffer, each 8x8 block in a 64x64 filter block is stored sequentially.
717 // Hence src_blk_stride is same as block width. Whereas dst buffer is a frame
718 // buffer, thus dstride is a frame level stride.
mse_8xh_dual_16bit_avx2(uint8_t * dst,int dstride,uint16_t * src,int src_blk_stride,int h)719 static uint64_t mse_8xh_dual_16bit_avx2(uint8_t *dst, int dstride,
720                                         uint16_t *src, int src_blk_stride,
721                                         int h) {
722   uint64_t sum = 0;
723   __m128i dst0_16x8, dst1_16x8;
724   __m256i dst0_16x16, dst1_16x16;
725   __m256i res0_4x64, res1_4x64;
726   __m256i sub_result_0, sub_result_1;
727   const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128());
728   __m256i square_result = zeros;
729   uint16_t *src_temp = src;
730 
731   for (int i = 0; i < h; i += 2) {
732     dst0_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 0) * dstride]));
733     dst1_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 1) * dstride]));
734 
735     // row0 of 1st and 2nd 8x8 block - d00 d10
736     dst0_16x16 = _mm256_cvtepu8_epi16(dst0_16x8);
737     // row1 of 1st and 2nd 8x8 block - d01 d11
738     dst1_16x16 = _mm256_cvtepu8_epi16(dst1_16x8);
739 
740     // 2 rows of 1st 8x8 block - r00 r01
741     __m256i src0_16x16 = _mm256_loadu_si256((__m256i const *)(&src_temp[0]));
742     // 2 rows of 2nd 8x8 block - r10 r11
743     __m256i src1_16x16 =
744         _mm256_loadu_si256((__m256i const *)(&src_temp[src_blk_stride]));
745     // r00 r10 - 128bit
746     __m256i tmp0_16x16 =
747         _mm256_permute2f128_si256(src0_16x16, src1_16x16, 0x20);
748     // r01 r11 - 128bit
749     __m256i tmp1_16x16 =
750         _mm256_permute2f128_si256(src0_16x16, src1_16x16, 0x31);
751 
752     // r15 r14 r13------------r1 r0 - 16 bit
753     sub_result_0 = _mm256_abs_epi16(_mm256_sub_epi16(tmp0_16x16, dst0_16x16));
754     sub_result_1 = _mm256_abs_epi16(_mm256_sub_epi16(tmp1_16x16, dst1_16x16));
755 
756     // s7 s6 s5 s4 s3 s2 s1 s0 - 32bit each
757     src0_16x16 = _mm256_madd_epi16(sub_result_0, sub_result_0);
758     src1_16x16 = _mm256_madd_epi16(sub_result_1, sub_result_1);
759 
760     // accumulation of result
761     src0_16x16 = _mm256_add_epi32(src0_16x16, src1_16x16);
762     square_result = _mm256_add_epi32(square_result, src0_16x16);
763     src_temp += 16;
764   }
765 
766   // s5 s4 s1 s0  - 64bit
767   res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros);
768   // s7 s6 s3 s2 - 64bit
769   res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros);
770   // r3 r2 r1 r0 - 64bit
771   res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64);
772   // r1+r3 r2+r0 - 64bit
773   const __m128i sum_1x64 =
774       _mm_add_epi64(_mm256_castsi256_si128(res0_4x64),
775                     _mm256_extracti128_si256(res0_4x64, 1));
776   xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8)));
777   return sum;
778 }
779 
aom_mse_wxh_16bit_avx2(uint8_t * dst,int dstride,uint16_t * src,int sstride,int w,int h)780 uint64_t aom_mse_wxh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
781                                 int sstride, int w, int h) {
782   assert((w == 8 || w == 4) && (h == 8 || h == 4) &&
783          "w=8/4 and h=8/4 must be satisfied");
784   switch (w) {
785     case 4: return mse_4xh_16bit_avx2(dst, dstride, src, sstride, h);
786     case 8: return mse_8xh_16bit_avx2(dst, dstride, src, sstride, h);
787     default: assert(0 && "unsupported width"); return -1;
788   }
789 }
790 
791 // Computes mse of two 8x8 or four 4x4 consecutive blocks. Luma plane uses 8x8
792 // block and Chroma uses 4x4 block. In src buffer, each block in a filter block
793 // is stored sequentially. Hence src_blk_stride is same as block width. Whereas
794 // dst buffer is a frame buffer, thus dstride is a frame level stride.
aom_mse_16xh_16bit_avx2(uint8_t * dst,int dstride,uint16_t * src,int w,int h)795 uint64_t aom_mse_16xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
796                                  int w, int h) {
797   assert((w == 8 || w == 4) && (h == 8 || h == 4) &&
798          "w=8/4 and h=8/4 must be satisfied");
799   switch (w) {
800     case 4: return mse_4xh_quad_16bit_avx2(dst, dstride, src, w * h, h);
801     case 8: return mse_8xh_dual_16bit_avx2(dst, dstride, src, w * h, h);
802     default: assert(0 && "unsupported width"); return -1;
803   }
804 }
805 
calc_sum_sse_wd32_avx2(const uint8_t * src,const uint8_t * ref,__m256i set_one_minusone,__m256i sse_8x16[2],__m256i sum_8x16[2])806 static INLINE void calc_sum_sse_wd32_avx2(const uint8_t *src,
807                                           const uint8_t *ref,
808                                           __m256i set_one_minusone,
809                                           __m256i sse_8x16[2],
810                                           __m256i sum_8x16[2]) {
811   const __m256i s00_256 = _mm256_loadu_si256((__m256i const *)(src));
812   const __m256i r00_256 = _mm256_loadu_si256((__m256i const *)(ref));
813 
814   const __m256i u_low_256 = _mm256_unpacklo_epi8(s00_256, r00_256);
815   const __m256i u_high_256 = _mm256_unpackhi_epi8(s00_256, r00_256);
816 
817   const __m256i diff0 = _mm256_maddubs_epi16(u_low_256, set_one_minusone);
818   const __m256i diff1 = _mm256_maddubs_epi16(u_high_256, set_one_minusone);
819 
820   sse_8x16[0] = _mm256_add_epi32(sse_8x16[0], _mm256_madd_epi16(diff0, diff0));
821   sse_8x16[1] = _mm256_add_epi32(sse_8x16[1], _mm256_madd_epi16(diff1, diff1));
822   sum_8x16[0] = _mm256_add_epi16(sum_8x16[0], diff0);
823   sum_8x16[1] = _mm256_add_epi16(sum_8x16[1], diff1);
824 }
825 
calc_sum_sse_order(__m256i * sse_hx16,__m256i * sum_hx16,unsigned int * tot_sse,int * tot_sum)826 static INLINE __m256i calc_sum_sse_order(__m256i *sse_hx16, __m256i *sum_hx16,
827                                          unsigned int *tot_sse, int *tot_sum) {
828   // s00 s01 s10 s11 s20 s21 s30 s31
829   const __m256i sse_results = _mm256_hadd_epi32(sse_hx16[0], sse_hx16[1]);
830   // d00 d01 d02 d03 | d10 d11 d12 d13 | d20 d21 d22 d23 | d30 d31 d32 d33
831   const __m256i sum_result_r0 = _mm256_hadd_epi16(sum_hx16[0], sum_hx16[1]);
832   // d00 d01 d10 d11 | d00 d02 d10 d11 | d20 d21 d30 d31 | d20 d21 d30 d31
833   const __m256i sum_result_1 = _mm256_hadd_epi16(sum_result_r0, sum_result_r0);
834   // d00 d01 d10 d11 d20 d21 d30 d31 | X
835   const __m256i sum_result_3 = _mm256_permute4x64_epi64(sum_result_1, 0x08);
836   // d00 d01 d10 d11 d20 d21 d30 d31
837   const __m256i sum_results =
838       _mm256_cvtepi16_epi32(_mm256_castsi256_si128(sum_result_3));
839 
840   // Add sum & sse registers appropriately to get total sum & sse separately.
841   // s0 s1 d0 d1 s2 s3 d2 d3
842   const __m256i sum_sse_add = _mm256_hadd_epi32(sse_results, sum_results);
843   // s0 s1 s2 s3 d0 d1 d2 d3
844   const __m256i sum_sse_order_add = _mm256_permute4x64_epi64(sum_sse_add, 0xd8);
845   // s0+s1 s2+s3 s0+s1 s2+s3 d0+d1 d2+d3 d0+d1 d2+d3
846   const __m256i sum_sse_order_add_1 =
847       _mm256_hadd_epi32(sum_sse_order_add, sum_sse_order_add);
848   // s0 x x x | d0 x x x
849   const __m256i sum_sse_order_add_final =
850       _mm256_hadd_epi32(sum_sse_order_add_1, sum_sse_order_add_1);
851   // s0
852   const uint32_t first_value =
853       (uint32_t)_mm256_extract_epi32(sum_sse_order_add_final, 0);
854   *tot_sse += first_value;
855   // d0
856   const int second_value = _mm256_extract_epi32(sum_sse_order_add_final, 4);
857   *tot_sum += second_value;
858   return sum_sse_order_add;
859 }
860 
get_var_sse_sum_8x8_quad_avx2(const uint8_t * src,int src_stride,const uint8_t * ref,const int ref_stride,const int h,uint32_t * sse8x8,int * sum8x8,unsigned int * tot_sse,int * tot_sum,uint32_t * var8x8)861 static INLINE void get_var_sse_sum_8x8_quad_avx2(
862     const uint8_t *src, int src_stride, const uint8_t *ref,
863     const int ref_stride, const int h, uint32_t *sse8x8, int *sum8x8,
864     unsigned int *tot_sse, int *tot_sum, uint32_t *var8x8) {
865   assert(h <= 128);  // May overflow for larger height.
866   __m256i sse_8x16[2], sum_8x16[2];
867   sum_8x16[0] = _mm256_setzero_si256();
868   sse_8x16[0] = _mm256_setzero_si256();
869   sum_8x16[1] = sum_8x16[0];
870   sse_8x16[1] = sse_8x16[0];
871   const __m256i set_one_minusone = _mm256_set1_epi16((short)0xff01);
872 
873   for (int i = 0; i < h; i++) {
874     // Process 8x32 block of one row.
875     calc_sum_sse_wd32_avx2(src, ref, set_one_minusone, sse_8x16, sum_8x16);
876     src += src_stride;
877     ref += ref_stride;
878   }
879 
880   const __m256i sum_sse_order_add =
881       calc_sum_sse_order(sse_8x16, sum_8x16, tot_sse, tot_sum);
882 
883   // s0 s1 s2 s3
884   _mm_storeu_si128((__m128i *)sse8x8,
885                    _mm256_castsi256_si128(sum_sse_order_add));
886   // d0 d1 d2 d3
887   const __m128i sum_temp8x8 = _mm256_extractf128_si256(sum_sse_order_add, 1);
888   _mm_storeu_si128((__m128i *)sum8x8, sum_temp8x8);
889 
890   // (d0xd0 >> 6)=f0 (d1xd1 >> 6)=f1 (d2xd2 >> 6)=f2 (d3xd3 >> 6)=f3
891   const __m128i mull_results =
892       _mm_srli_epi32(_mm_mullo_epi32(sum_temp8x8, sum_temp8x8), 6);
893   // s0-f0=v0 s1-f1=v1 s2-f2=v2 s3-f3=v3
894   const __m128i variance_8x8 =
895       _mm_sub_epi32(_mm256_castsi256_si128(sum_sse_order_add), mull_results);
896   // v0 v1 v2 v3
897   _mm_storeu_si128((__m128i *)var8x8, variance_8x8);
898 }
899 
get_var_sse_sum_16x16_dual_avx2(const uint8_t * src,int src_stride,const uint8_t * ref,const int ref_stride,const int h,uint32_t * sse16x16,unsigned int * tot_sse,int * tot_sum,uint32_t * var16x16)900 static INLINE void get_var_sse_sum_16x16_dual_avx2(
901     const uint8_t *src, int src_stride, const uint8_t *ref,
902     const int ref_stride, const int h, uint32_t *sse16x16,
903     unsigned int *tot_sse, int *tot_sum, uint32_t *var16x16) {
904   assert(h <= 128);  // May overflow for larger height.
905   __m256i sse_16x16[2], sum_16x16[2];
906   sum_16x16[0] = _mm256_setzero_si256();
907   sse_16x16[0] = _mm256_setzero_si256();
908   sum_16x16[1] = sum_16x16[0];
909   sse_16x16[1] = sse_16x16[0];
910   const __m256i set_one_minusone = _mm256_set1_epi16((short)0xff01);
911 
912   for (int i = 0; i < h; i++) {
913     // Process 16x32 block of one row.
914     calc_sum_sse_wd32_avx2(src, ref, set_one_minusone, sse_16x16, sum_16x16);
915     src += src_stride;
916     ref += ref_stride;
917   }
918 
919   const __m256i sum_sse_order_add =
920       calc_sum_sse_order(sse_16x16, sum_16x16, tot_sse, tot_sum);
921 
922   const __m256i sum_sse_order_add_1 =
923       _mm256_hadd_epi32(sum_sse_order_add, sum_sse_order_add);
924 
925   // s0+s1 s2+s3 x x
926   _mm_storel_epi64((__m128i *)sse16x16,
927                    _mm256_castsi256_si128(sum_sse_order_add_1));
928 
929   // d0+d1 d2+d3 x x
930   const __m128i sum_temp16x16 =
931       _mm256_extractf128_si256(sum_sse_order_add_1, 1);
932 
933   // (d0xd0 >> 6)=f0 (d1xd1 >> 6)=f1 (d2xd2 >> 6)=f2 (d3xd3 >> 6)=f3
934   const __m128i mull_results =
935       _mm_srli_epi32(_mm_mullo_epi32(sum_temp16x16, sum_temp16x16), 8);
936 
937   // s0-f0=v0 s1-f1=v1 s2-f2=v2 s3-f3=v3
938   const __m128i variance_16x16 =
939       _mm_sub_epi32(_mm256_castsi256_si128(sum_sse_order_add_1), mull_results);
940 
941   // v0 v1 v2 v3
942   _mm_storel_epi64((__m128i *)var16x16, variance_16x16);
943 }
944 
aom_get_var_sse_sum_8x8_quad_avx2(const uint8_t * src_ptr,int source_stride,const uint8_t * ref_ptr,int ref_stride,uint32_t * sse8x8,int * sum8x8,unsigned int * tot_sse,int * tot_sum,uint32_t * var8x8)945 void aom_get_var_sse_sum_8x8_quad_avx2(const uint8_t *src_ptr,
946                                        int source_stride,
947                                        const uint8_t *ref_ptr, int ref_stride,
948                                        uint32_t *sse8x8, int *sum8x8,
949                                        unsigned int *tot_sse, int *tot_sum,
950                                        uint32_t *var8x8) {
951   get_var_sse_sum_8x8_quad_avx2(src_ptr, source_stride, ref_ptr, ref_stride, 8,
952                                 sse8x8, sum8x8, tot_sse, tot_sum, var8x8);
953 }
954 
aom_get_var_sse_sum_16x16_dual_avx2(const uint8_t * src_ptr,int source_stride,const uint8_t * ref_ptr,int ref_stride,uint32_t * sse16x16,unsigned int * tot_sse,int * tot_sum,uint32_t * var16x16)955 void aom_get_var_sse_sum_16x16_dual_avx2(const uint8_t *src_ptr,
956                                          int source_stride,
957                                          const uint8_t *ref_ptr, int ref_stride,
958                                          uint32_t *sse16x16,
959                                          unsigned int *tot_sse, int *tot_sum,
960                                          uint32_t *var16x16) {
961   get_var_sse_sum_16x16_dual_avx2(src_ptr, source_stride, ref_ptr, ref_stride,
962                                   16, sse16x16, tot_sse, tot_sum, var16x16);
963 }
964