• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2023, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 #ifndef AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_
12 #define AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_
13 
14 #include <arm_neon.h>
15 #include <assert.h>
16 #include <stdbool.h>
17 
18 #include "aom_dsp/aom_dsp_common.h"
19 #include "aom_dsp/arm/mem_neon.h"
20 #include "aom_dsp/arm/sum_neon.h"
21 #include "aom_ports/mem.h"
22 #include "av1/common/scale.h"
23 #include "av1/common/warped_motion.h"
24 #include "config/av1_rtcd.h"
25 
26 static AOM_FORCE_INLINE int16x8_t
27 highbd_horizontal_filter_4x1_f4(uint16x8x2_t in, int bd, int sx, int alpha);
28 
29 static AOM_FORCE_INLINE int16x8_t
30 highbd_horizontal_filter_8x1_f8(uint16x8x2_t in, int bd, int sx, int alpha);
31 
32 static AOM_FORCE_INLINE int16x8_t
33 highbd_horizontal_filter_4x1_f1(uint16x8x2_t in, int bd, int sx);
34 
35 static AOM_FORCE_INLINE int16x8_t
36 highbd_horizontal_filter_8x1_f1(uint16x8x2_t in, int bd, int sx);
37 
38 static AOM_FORCE_INLINE int32x4_t vertical_filter_4x1_f1(const int16x8_t *tmp,
39                                                          int sy);
40 
41 static AOM_FORCE_INLINE int32x4x2_t vertical_filter_8x1_f1(const int16x8_t *tmp,
42                                                            int sy);
43 
44 static AOM_FORCE_INLINE int32x4_t vertical_filter_4x1_f4(const int16x8_t *tmp,
45                                                          int sy, int gamma);
46 
47 static AOM_FORCE_INLINE int32x4x2_t vertical_filter_8x1_f8(const int16x8_t *tmp,
48                                                            int sy, int gamma);
49 
load_filters_1(int ofs)50 static AOM_FORCE_INLINE int16x8_t load_filters_1(int ofs) {
51   const int ofs0 = ROUND_POWER_OF_TWO(ofs, WARPEDDIFF_PREC_BITS);
52 
53   const int16_t *base =
54       (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8;
55   return vld1q_s16(base + ofs0 * 8);
56 }
57 
load_filters_4(int16x8_t out[],int ofs,int stride)58 static AOM_FORCE_INLINE void load_filters_4(int16x8_t out[], int ofs,
59                                             int stride) {
60   const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS);
61   const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS);
62   const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS);
63   const int ofs3 = ROUND_POWER_OF_TWO(ofs + stride * 3, WARPEDDIFF_PREC_BITS);
64 
65   const int16_t *base =
66       (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8;
67   out[0] = vld1q_s16(base + ofs0 * 8);
68   out[1] = vld1q_s16(base + ofs1 * 8);
69   out[2] = vld1q_s16(base + ofs2 * 8);
70   out[3] = vld1q_s16(base + ofs3 * 8);
71 }
72 
load_filters_8(int16x8_t out[],int ofs,int stride)73 static AOM_FORCE_INLINE void load_filters_8(int16x8_t out[], int ofs,
74                                             int stride) {
75   const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS);
76   const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS);
77   const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS);
78   const int ofs3 = ROUND_POWER_OF_TWO(ofs + stride * 3, WARPEDDIFF_PREC_BITS);
79   const int ofs4 = ROUND_POWER_OF_TWO(ofs + stride * 4, WARPEDDIFF_PREC_BITS);
80   const int ofs5 = ROUND_POWER_OF_TWO(ofs + stride * 5, WARPEDDIFF_PREC_BITS);
81   const int ofs6 = ROUND_POWER_OF_TWO(ofs + stride * 6, WARPEDDIFF_PREC_BITS);
82   const int ofs7 = ROUND_POWER_OF_TWO(ofs + stride * 7, WARPEDDIFF_PREC_BITS);
83 
84   const int16_t *base =
85       (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8;
86   out[0] = vld1q_s16(base + ofs0 * 8);
87   out[1] = vld1q_s16(base + ofs1 * 8);
88   out[2] = vld1q_s16(base + ofs2 * 8);
89   out[3] = vld1q_s16(base + ofs3 * 8);
90   out[4] = vld1q_s16(base + ofs4 * 8);
91   out[5] = vld1q_s16(base + ofs5 * 8);
92   out[6] = vld1q_s16(base + ofs6 * 8);
93   out[7] = vld1q_s16(base + ofs7 * 8);
94 }
95 
clip_pixel_highbd_vec(int32x4_t val,int bd)96 static AOM_FORCE_INLINE uint16x4_t clip_pixel_highbd_vec(int32x4_t val,
97                                                          int bd) {
98   const int limit = (1 << bd) - 1;
99   return vqmovun_s32(vminq_s32(val, vdupq_n_s32(limit)));
100 }
101 
warp_affine_horizontal(const uint16_t * ref,int width,int height,int stride,int p_width,int16_t alpha,int16_t beta,int iy4,int sx4,int ix4,int16x8_t tmp[],int bd)102 static AOM_FORCE_INLINE void warp_affine_horizontal(const uint16_t *ref,
103                                                     int width, int height,
104                                                     int stride, int p_width,
105                                                     int16_t alpha, int16_t beta,
106                                                     int iy4, int sx4, int ix4,
107                                                     int16x8_t tmp[], int bd) {
108   const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS;
109 
110   if (ix4 <= -7) {
111     for (int k = 0; k < 15; ++k) {
112       int iy = clamp(iy4 + k - 7, 0, height - 1);
113       int32_t dup_val = (1 << (bd + FILTER_BITS - round0 - 1)) +
114                         ref[iy * stride] * (1 << (FILTER_BITS - round0));
115       tmp[k] = vdupq_n_s16(dup_val);
116     }
117     return;
118   } else if (ix4 >= width + 6) {
119     for (int k = 0; k < 15; ++k) {
120       int iy = clamp(iy4 + k - 7, 0, height - 1);
121       int32_t dup_val =
122           (1 << (bd + FILTER_BITS - round0 - 1)) +
123           ref[iy * stride + (width - 1)] * (1 << (FILTER_BITS - round0));
124       tmp[k] = vdupq_n_s16(dup_val);
125     }
126     return;
127   }
128 
129   static const uint16_t kIotaArr[] = { 0, 1, 2,  3,  4,  5,  6,  7,
130                                        8, 9, 10, 11, 12, 13, 14, 15 };
131   const uint16x8_t indx0 = vld1q_u16(kIotaArr);
132   const uint16x8_t indx1 = vld1q_u16(kIotaArr + 8);
133 
134   const int out_of_boundary_left = -(ix4 - 6);
135   const int out_of_boundary_right = (ix4 + 8) - width;
136 
137 #define APPLY_HORIZONTAL_SHIFT(fn, ...)                                   \
138   do {                                                                    \
139     if (out_of_boundary_left >= 0 || out_of_boundary_right >= 0) {        \
140       for (int k = 0; k < 15; ++k) {                                      \
141         const int iy = clamp(iy4 + k - 7, 0, height - 1);                 \
142         uint16x8x2_t src_1 = vld1q_u16_x2(ref + iy * stride + ix4 - 7);   \
143                                                                           \
144         if (out_of_boundary_left >= 0) {                                  \
145           uint16x8_t cmp_vec = vdupq_n_u16(out_of_boundary_left);         \
146           uint16x8_t vec_dup = vdupq_n_u16(ref[iy * stride]);             \
147           uint16x8_t mask0 = vcleq_u16(indx0, cmp_vec);                   \
148           uint16x8_t mask1 = vcleq_u16(indx1, cmp_vec);                   \
149           src_1.val[0] = vbslq_u16(mask0, vec_dup, src_1.val[0]);         \
150           src_1.val[1] = vbslq_u16(mask1, vec_dup, src_1.val[1]);         \
151         }                                                                 \
152         if (out_of_boundary_right >= 0) {                                 \
153           uint16x8_t cmp_vec = vdupq_n_u16(15 - out_of_boundary_right);   \
154           uint16x8_t vec_dup = vdupq_n_u16(ref[iy * stride + width - 1]); \
155           uint16x8_t mask0 = vcgeq_u16(indx0, cmp_vec);                   \
156           uint16x8_t mask1 = vcgeq_u16(indx1, cmp_vec);                   \
157           src_1.val[0] = vbslq_u16(mask0, vec_dup, src_1.val[0]);         \
158           src_1.val[1] = vbslq_u16(mask1, vec_dup, src_1.val[1]);         \
159         }                                                                 \
160         tmp[k] = (fn)(src_1, __VA_ARGS__);                                \
161       }                                                                   \
162     } else {                                                              \
163       for (int k = 0; k < 15; ++k) {                                      \
164         const int iy = clamp(iy4 + k - 7, 0, height - 1);                 \
165         uint16x8x2_t src_1 = vld1q_u16_x2(ref + iy * stride + ix4 - 7);   \
166         tmp[k] = (fn)(src_1, __VA_ARGS__);                                \
167       }                                                                   \
168     }                                                                     \
169   } while (0)
170 
171   if (p_width == 4) {
172     if (beta == 0) {
173       if (alpha == 0) {
174         APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_4x1_f1, bd, sx4);
175       } else {
176         APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_4x1_f4, bd, sx4, alpha);
177       }
178     } else {
179       if (alpha == 0) {
180         APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_4x1_f1, bd,
181                                (sx4 + beta * (k - 3)));
182       } else {
183         APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_4x1_f4, bd,
184                                (sx4 + beta * (k - 3)), alpha);
185       }
186     }
187   } else {
188     if (beta == 0) {
189       if (alpha == 0) {
190         APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_8x1_f1, bd, sx4);
191       } else {
192         APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_8x1_f8, bd, sx4, alpha);
193       }
194     } else {
195       if (alpha == 0) {
196         APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_8x1_f1, bd,
197                                (sx4 + beta * (k - 3)));
198       } else {
199         APPLY_HORIZONTAL_SHIFT(highbd_horizontal_filter_8x1_f8, bd,
200                                (sx4 + beta * (k - 3)), alpha);
201       }
202     }
203   }
204 }
205 
highbd_vertical_filter_4x1_f4(uint16_t * pred,int p_stride,int bd,uint16_t * dst,int dst_stride,bool is_compound,bool do_average,bool use_dist_wtd_comp_avg,int fwd,int bwd,int16_t gamma,const int16x8_t * tmp,int i,int sy,int j)206 static AOM_FORCE_INLINE void highbd_vertical_filter_4x1_f4(
207     uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride,
208     bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd,
209     int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) {
210   int32x4_t sum0 = gamma == 0 ? vertical_filter_4x1_f1(tmp, sy)
211                               : vertical_filter_4x1_f4(tmp, sy, gamma);
212 
213   const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS;
214   const int offset_bits_vert = bd + 2 * FILTER_BITS - round0;
215 
216   sum0 = vaddq_s32(sum0, vdupq_n_s32(1 << offset_bits_vert));
217 
218   uint16_t *dst16 = &pred[i * p_stride + j];
219 
220   if (!is_compound) {
221     const int reduce_bits_vert = 2 * FILTER_BITS - round0;
222     sum0 = vrshlq_s32(sum0, vdupq_n_s32(-reduce_bits_vert));
223 
224     const int res_sub_const = (1 << (bd - 1)) + (1 << bd);
225     sum0 = vsubq_s32(sum0, vdupq_n_s32(res_sub_const));
226     uint16x4_t res0 = clip_pixel_highbd_vec(sum0, bd);
227     vst1_u16(dst16, res0);
228     return;
229   }
230 
231   sum0 = vrshrq_n_s32(sum0, COMPOUND_ROUND1_BITS);
232 
233   uint16_t *p = &dst[i * dst_stride + j];
234 
235   if (!do_average) {
236     vst1_u16(p, vqmovun_s32(sum0));
237     return;
238   }
239 
240   uint16x4_t p0 = vld1_u16(p);
241   int32x4_t p_vec0 = vreinterpretq_s32_u32(vmovl_u16(p0));
242   if (use_dist_wtd_comp_avg) {
243     p_vec0 = vmulq_n_s32(p_vec0, fwd);
244     p_vec0 = vmlaq_n_s32(p_vec0, sum0, bwd);
245     p_vec0 = vshrq_n_s32(p_vec0, DIST_PRECISION_BITS);
246   } else {
247     p_vec0 = vhaddq_s32(p_vec0, sum0);
248   }
249 
250   const int offset_bits = bd + 2 * FILTER_BITS - round0;
251   const int round1 = COMPOUND_ROUND1_BITS;
252   const int res_sub_const =
253       (1 << (offset_bits - round1)) + (1 << (offset_bits - round1 - 1));
254   const int round_bits = 2 * FILTER_BITS - round0 - round1;
255 
256   p_vec0 = vsubq_s32(p_vec0, vdupq_n_s32(res_sub_const));
257   p_vec0 = vrshlq_s32(p_vec0, vdupq_n_s32(-round_bits));
258   uint16x4_t res0 = clip_pixel_highbd_vec(p_vec0, bd);
259   vst1_u16(dst16, res0);
260 }
261 
highbd_vertical_filter_8x1_f8(uint16_t * pred,int p_stride,int bd,uint16_t * dst,int dst_stride,bool is_compound,bool do_average,bool use_dist_wtd_comp_avg,int fwd,int bwd,int16_t gamma,const int16x8_t * tmp,int i,int sy,int j)262 static AOM_FORCE_INLINE void highbd_vertical_filter_8x1_f8(
263     uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride,
264     bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd,
265     int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) {
266   int32x4x2_t sums = gamma == 0 ? vertical_filter_8x1_f1(tmp, sy)
267                                 : vertical_filter_8x1_f8(tmp, sy, gamma);
268   int32x4_t sum0 = sums.val[0];
269   int32x4_t sum1 = sums.val[1];
270 
271   const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS;
272   const int offset_bits_vert = bd + 2 * FILTER_BITS - round0;
273 
274   sum0 = vaddq_s32(sum0, vdupq_n_s32(1 << offset_bits_vert));
275   sum1 = vaddq_s32(sum1, vdupq_n_s32(1 << offset_bits_vert));
276 
277   uint16_t *dst16 = &pred[i * p_stride + j];
278 
279   if (!is_compound) {
280     const int reduce_bits_vert = 2 * FILTER_BITS - round0;
281     sum0 = vrshlq_s32(sum0, vdupq_n_s32(-reduce_bits_vert));
282     sum1 = vrshlq_s32(sum1, vdupq_n_s32(-reduce_bits_vert));
283 
284     const int res_sub_const = (1 << (bd - 1)) + (1 << bd);
285     sum0 = vsubq_s32(sum0, vdupq_n_s32(res_sub_const));
286     sum1 = vsubq_s32(sum1, vdupq_n_s32(res_sub_const));
287     uint16x4_t res0 = clip_pixel_highbd_vec(sum0, bd);
288     uint16x4_t res1 = clip_pixel_highbd_vec(sum1, bd);
289     vst1_u16(dst16, res0);
290     vst1_u16(dst16 + 4, res1);
291     return;
292   }
293 
294   sum0 = vrshrq_n_s32(sum0, COMPOUND_ROUND1_BITS);
295   sum1 = vrshrq_n_s32(sum1, COMPOUND_ROUND1_BITS);
296 
297   uint16_t *p = &dst[i * dst_stride + j];
298 
299   if (!do_average) {
300     vst1_u16(p, vqmovun_s32(sum0));
301     vst1_u16(p + 4, vqmovun_s32(sum1));
302     return;
303   }
304 
305   uint16x8_t p0 = vld1q_u16(p);
306   int32x4_t p_vec0 = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(p0)));
307   int32x4_t p_vec1 = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(p0)));
308   if (use_dist_wtd_comp_avg) {
309     p_vec0 = vmulq_n_s32(p_vec0, fwd);
310     p_vec1 = vmulq_n_s32(p_vec1, fwd);
311     p_vec0 = vmlaq_n_s32(p_vec0, sum0, bwd);
312     p_vec1 = vmlaq_n_s32(p_vec1, sum1, bwd);
313     p_vec0 = vshrq_n_s32(p_vec0, DIST_PRECISION_BITS);
314     p_vec1 = vshrq_n_s32(p_vec1, DIST_PRECISION_BITS);
315   } else {
316     p_vec0 = vhaddq_s32(p_vec0, sum0);
317     p_vec1 = vhaddq_s32(p_vec1, sum1);
318   }
319 
320   const int offset_bits = bd + 2 * FILTER_BITS - round0;
321   const int round1 = COMPOUND_ROUND1_BITS;
322   const int res_sub_const =
323       (1 << (offset_bits - round1)) + (1 << (offset_bits - round1 - 1));
324   const int round_bits = 2 * FILTER_BITS - round0 - round1;
325 
326   p_vec0 = vsubq_s32(p_vec0, vdupq_n_s32(res_sub_const));
327   p_vec1 = vsubq_s32(p_vec1, vdupq_n_s32(res_sub_const));
328 
329   p_vec0 = vrshlq_s32(p_vec0, vdupq_n_s32(-round_bits));
330   p_vec1 = vrshlq_s32(p_vec1, vdupq_n_s32(-round_bits));
331   uint16x4_t res0 = clip_pixel_highbd_vec(p_vec0, bd);
332   uint16x4_t res1 = clip_pixel_highbd_vec(p_vec1, bd);
333   vst1_u16(dst16, res0);
334   vst1_u16(dst16 + 4, res1);
335 }
336 
warp_affine_vertical(uint16_t * pred,int p_width,int p_height,int p_stride,int bd,uint16_t * dst,int dst_stride,bool is_compound,bool do_average,bool use_dist_wtd_comp_avg,int fwd,int bwd,int16_t gamma,int16_t delta,const int16x8_t * tmp,int i,int sy4,int j)337 static AOM_FORCE_INLINE void warp_affine_vertical(
338     uint16_t *pred, int p_width, int p_height, int p_stride, int bd,
339     uint16_t *dst, int dst_stride, bool is_compound, bool do_average,
340     bool use_dist_wtd_comp_avg, int fwd, int bwd, int16_t gamma, int16_t delta,
341     const int16x8_t *tmp, int i, int sy4, int j) {
342   int limit_height = p_height > 4 ? 8 : 4;
343 
344   if (p_width > 4) {
345     // p_width == 8
346     for (int k = 0; k < limit_height; ++k) {
347       int sy = sy4 + delta * k;
348       highbd_vertical_filter_8x1_f8(
349           pred, p_stride, bd, dst, dst_stride, is_compound, do_average,
350           use_dist_wtd_comp_avg, fwd, bwd, gamma, tmp + k, i + k, sy, j);
351     }
352   } else {
353     // p_width == 4
354     for (int k = 0; k < limit_height; ++k) {
355       int sy = sy4 + delta * k;
356       highbd_vertical_filter_4x1_f4(
357           pred, p_stride, bd, dst, dst_stride, is_compound, do_average,
358           use_dist_wtd_comp_avg, fwd, bwd, gamma, tmp + k, i + k, sy, j);
359     }
360   }
361 }
362 
highbd_warp_affine_common(const int32_t * mat,const uint16_t * ref,int width,int height,int stride,uint16_t * pred,int p_col,int p_row,int p_width,int p_height,int p_stride,int subsampling_x,int subsampling_y,int bd,ConvolveParams * conv_params,int16_t alpha,int16_t beta,int16_t gamma,int16_t delta)363 static AOM_FORCE_INLINE void highbd_warp_affine_common(
364     const int32_t *mat, const uint16_t *ref, int width, int height, int stride,
365     uint16_t *pred, int p_col, int p_row, int p_width, int p_height,
366     int p_stride, int subsampling_x, int subsampling_y, int bd,
367     ConvolveParams *conv_params, int16_t alpha, int16_t beta, int16_t gamma,
368     int16_t delta) {
369   uint16_t *const dst = conv_params->dst;
370   const int dst_stride = conv_params->dst_stride;
371   const bool is_compound = conv_params->is_compound;
372   const bool do_average = conv_params->do_average;
373   const bool use_dist_wtd_comp_avg = conv_params->use_dist_wtd_comp_avg;
374   const int fwd = conv_params->fwd_offset;
375   const int bwd = conv_params->bck_offset;
376 
377   assert(IMPLIES(is_compound, dst != NULL));
378 
379   for (int i = 0; i < p_height; i += 8) {
380     for (int j = 0; j < p_width; j += 8) {
381       // Calculate the center of this 8x8 block,
382       // project to luma coordinates (if in a subsampled chroma plane),
383       // apply the affine transformation,
384       // then convert back to the original coordinates (if necessary)
385       const int32_t src_x = (j + 4 + p_col) << subsampling_x;
386       const int32_t src_y = (i + 4 + p_row) << subsampling_y;
387       const int64_t dst_x =
388           (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0];
389       const int64_t dst_y =
390           (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1];
391       const int64_t x4 = dst_x >> subsampling_x;
392       const int64_t y4 = dst_y >> subsampling_y;
393 
394       const int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS);
395       int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
396       const int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS);
397       int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
398 
399       sx4 += alpha * (-4) + beta * (-4);
400       sy4 += gamma * (-4) + delta * (-4);
401 
402       sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
403       sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
404 
405       // Each horizontal filter result is formed by the sum of up to eight
406       // multiplications by filter values and then a shift. Although both the
407       // inputs and filters are loaded as int16, the input data is at most bd
408       // bits and the filters are at most 8 bits each. Additionally since we
409       // know all possible filter values we know that the sum of absolute
410       // filter values will fit in at most 9 bits. With this in mind we can
411       // conclude that the sum of each filter application will fit in bd + 9
412       // bits. The shift following the summation is ROUND0_BITS (which is 3),
413       // +2 for 12-bit, which gives us a final storage of:
414       // bd ==  8: ( 8 + 9) - 3 => 14 bits
415       // bd == 10: (10 + 9) - 3 => 16 bits
416       // bd == 12: (12 + 9) - 5 => 16 bits
417       // So it is safe to use int16x8_t as the intermediate storage type here.
418       int16x8_t tmp[15];
419 
420       warp_affine_horizontal(ref, width, height, stride, p_width, alpha, beta,
421                              iy4, sx4, ix4, tmp, bd);
422       warp_affine_vertical(pred, p_width, p_height, p_stride, bd, dst,
423                            dst_stride, is_compound, do_average,
424                            use_dist_wtd_comp_avg, fwd, bwd, gamma, delta, tmp,
425                            i, sy4, j);
426     }
427   }
428 }
429 
430 #endif  // AOM_AV1_COMMON_ARM_HIGHBD_WARP_PLANE_NEON_H_
431