1 /*
2 *
3 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
4 *
5 * This source code is subject to the terms of the BSD 2 Clause License and
6 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
7 * was not distributed with this source code in the LICENSE file, you can
8 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
9 * Media Patent License 1.0 was not distributed with this source code in the
10 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
11 */
12 #include <arm_neon.h>
13 #include <assert.h>
14
15 #include "aom_dsp/arm/mem_neon.h"
16 #include "aom_dsp/arm/transpose_neon.h"
17 #include "av1/common/resize.h"
18 #include "config/av1_rtcd.h"
19 #include "config/aom_scale_rtcd.h"
20
convolve8_4(const int16x4_t s0,const int16x4_t s1,const int16x4_t s2,const int16x4_t s3,const int16x4_t s4,const int16x4_t s5,const int16x4_t s6,const int16x4_t s7,const int16x8_t filter)21 static INLINE int16x4_t convolve8_4(const int16x4_t s0, const int16x4_t s1,
22 const int16x4_t s2, const int16x4_t s3,
23 const int16x4_t s4, const int16x4_t s5,
24 const int16x4_t s6, const int16x4_t s7,
25 const int16x8_t filter) {
26 const int16x4_t filter_lo = vget_low_s16(filter);
27 const int16x4_t filter_hi = vget_high_s16(filter);
28
29 int16x4_t sum = vmul_lane_s16(s0, filter_lo, 0);
30 sum = vmla_lane_s16(sum, s1, filter_lo, 1);
31 sum = vmla_lane_s16(sum, s2, filter_lo, 2);
32 sum = vmla_lane_s16(sum, s5, filter_hi, 1);
33 sum = vmla_lane_s16(sum, s6, filter_hi, 2);
34 sum = vmla_lane_s16(sum, s7, filter_hi, 3);
35 sum = vqadd_s16(sum, vmul_lane_s16(s3, filter_lo, 3));
36 sum = vqadd_s16(sum, vmul_lane_s16(s4, filter_hi, 0));
37 return sum;
38 }
39
convolve8_8(const int16x8_t s0,const int16x8_t s1,const int16x8_t s2,const int16x8_t s3,const int16x8_t s4,const int16x8_t s5,const int16x8_t s6,const int16x8_t s7,const int16x8_t filter)40 static INLINE uint8x8_t convolve8_8(const int16x8_t s0, const int16x8_t s1,
41 const int16x8_t s2, const int16x8_t s3,
42 const int16x8_t s4, const int16x8_t s5,
43 const int16x8_t s6, const int16x8_t s7,
44 const int16x8_t filter) {
45 const int16x4_t filter_lo = vget_low_s16(filter);
46 const int16x4_t filter_hi = vget_high_s16(filter);
47
48 int16x8_t sum = vmulq_lane_s16(s0, filter_lo, 0);
49 sum = vmlaq_lane_s16(sum, s1, filter_lo, 1);
50 sum = vmlaq_lane_s16(sum, s2, filter_lo, 2);
51 sum = vmlaq_lane_s16(sum, s5, filter_hi, 1);
52 sum = vmlaq_lane_s16(sum, s6, filter_hi, 2);
53 sum = vmlaq_lane_s16(sum, s7, filter_hi, 3);
54 sum = vqaddq_s16(sum, vmulq_lane_s16(s3, filter_lo, 3));
55 sum = vqaddq_s16(sum, vmulq_lane_s16(s4, filter_hi, 0));
56 return vqrshrun_n_s16(sum, 7);
57 }
58
scale_filter_8(const uint8x8_t * const s,const int16x8_t filter)59 static INLINE uint8x8_t scale_filter_8(const uint8x8_t *const s,
60 const int16x8_t filter) {
61 int16x8_t ss0 = vreinterpretq_s16_u16(vmovl_u8(s[0]));
62 int16x8_t ss1 = vreinterpretq_s16_u16(vmovl_u8(s[1]));
63 int16x8_t ss2 = vreinterpretq_s16_u16(vmovl_u8(s[2]));
64 int16x8_t ss3 = vreinterpretq_s16_u16(vmovl_u8(s[3]));
65 int16x8_t ss4 = vreinterpretq_s16_u16(vmovl_u8(s[4]));
66 int16x8_t ss5 = vreinterpretq_s16_u16(vmovl_u8(s[5]));
67 int16x8_t ss6 = vreinterpretq_s16_u16(vmovl_u8(s[6]));
68 int16x8_t ss7 = vreinterpretq_s16_u16(vmovl_u8(s[7]));
69
70 return convolve8_8(ss0, ss1, ss2, ss3, ss4, ss5, ss6, ss7, filter);
71 }
72
scale_plane_2_to_1_phase_0(const uint8_t * src,const int src_stride,uint8_t * dst,const int dst_stride,const int w,const int h)73 static INLINE void scale_plane_2_to_1_phase_0(const uint8_t *src,
74 const int src_stride,
75 uint8_t *dst,
76 const int dst_stride, const int w,
77 const int h) {
78 const int max_width = (w + 15) & ~15;
79 int y = h;
80
81 assert(w && h);
82
83 do {
84 int x = max_width;
85 do {
86 const uint8x16x2_t s = vld2q_u8(src);
87 vst1q_u8(dst, s.val[0]);
88 src += 32;
89 dst += 16;
90 x -= 16;
91 } while (x);
92 src += 2 * (src_stride - max_width);
93 dst += dst_stride - max_width;
94 } while (--y);
95 }
96
scale_plane_4_to_1_phase_0(const uint8_t * src,const int src_stride,uint8_t * dst,const int dst_stride,const int w,const int h)97 static INLINE void scale_plane_4_to_1_phase_0(const uint8_t *src,
98 const int src_stride,
99 uint8_t *dst,
100 const int dst_stride, const int w,
101 const int h) {
102 const int max_width = (w + 15) & ~15;
103 int y = h;
104
105 assert(w && h);
106
107 do {
108 int x = max_width;
109 do {
110 const uint8x16x4_t s = vld4q_u8(src);
111 vst1q_u8(dst, s.val[0]);
112 src += 64;
113 dst += 16;
114 x -= 16;
115 } while (x);
116 src += 4 * (src_stride - max_width);
117 dst += dst_stride - max_width;
118 } while (--y);
119 }
120
scale_plane_bilinear_kernel(const uint8x16_t in0,const uint8x16_t in1,const uint8x16_t in2,const uint8x16_t in3,const uint8x8_t coef0,const uint8x8_t coef1,uint8_t * const dst)121 static INLINE void scale_plane_bilinear_kernel(
122 const uint8x16_t in0, const uint8x16_t in1, const uint8x16_t in2,
123 const uint8x16_t in3, const uint8x8_t coef0, const uint8x8_t coef1,
124 uint8_t *const dst) {
125 const uint16x8_t h0 = vmull_u8(vget_low_u8(in0), coef0);
126 const uint16x8_t h1 = vmull_u8(vget_high_u8(in0), coef0);
127 const uint16x8_t h2 = vmull_u8(vget_low_u8(in2), coef0);
128 const uint16x8_t h3 = vmull_u8(vget_high_u8(in2), coef0);
129 const uint16x8_t h4 = vmlal_u8(h0, vget_low_u8(in1), coef1);
130 const uint16x8_t h5 = vmlal_u8(h1, vget_high_u8(in1), coef1);
131 const uint16x8_t h6 = vmlal_u8(h2, vget_low_u8(in3), coef1);
132 const uint16x8_t h7 = vmlal_u8(h3, vget_high_u8(in3), coef1);
133
134 const uint8x8_t hor0 = vrshrn_n_u16(h4, 7); // temp: 00 01 02 03 04 05 06 07
135 const uint8x8_t hor1 = vrshrn_n_u16(h5, 7); // temp: 08 09 0A 0B 0C 0D 0E 0F
136 const uint8x8_t hor2 = vrshrn_n_u16(h6, 7); // temp: 10 11 12 13 14 15 16 17
137 const uint8x8_t hor3 = vrshrn_n_u16(h7, 7); // temp: 18 19 1A 1B 1C 1D 1E 1F
138 const uint16x8_t v0 = vmull_u8(hor0, coef0);
139 const uint16x8_t v1 = vmull_u8(hor1, coef0);
140 const uint16x8_t v2 = vmlal_u8(v0, hor2, coef1);
141 const uint16x8_t v3 = vmlal_u8(v1, hor3, coef1);
142 // dst: 0 1 2 3 4 5 6 7 8 9 A B C D E F
143 const uint8x16_t d = vcombine_u8(vrshrn_n_u16(v2, 7), vrshrn_n_u16(v3, 7));
144 vst1q_u8(dst, d);
145 }
146
scale_plane_2_to_1_bilinear(const uint8_t * const src,const int src_stride,uint8_t * dst,const int dst_stride,const int w,const int h,const int16_t c0,const int16_t c1)147 static INLINE void scale_plane_2_to_1_bilinear(
148 const uint8_t *const src, const int src_stride, uint8_t *dst,
149 const int dst_stride, const int w, const int h, const int16_t c0,
150 const int16_t c1) {
151 const int max_width = (w + 15) & ~15;
152 const uint8_t *src0 = src;
153 const uint8_t *src1 = src + src_stride;
154 const uint8x8_t coef0 = vdup_n_u8(c0);
155 const uint8x8_t coef1 = vdup_n_u8(c1);
156 int y = h;
157
158 assert(w && h);
159
160 do {
161 int x = max_width;
162 do {
163 // 000 002 004 006 008 00A 00C 00E 010 012 014 016 018 01A 01C 01E
164 // 001 003 005 007 009 00B 00D 00F 011 013 015 017 019 01B 01D 01F
165 const uint8x16x2_t s0 = vld2q_u8(src0);
166 // 100 102 104 106 108 10A 10C 10E 110 112 114 116 118 11A 11C 11E
167 // 101 103 105 107 109 10B 10D 10F 111 113 115 117 119 11B 11D 11F
168 const uint8x16x2_t s1 = vld2q_u8(src1);
169 scale_plane_bilinear_kernel(s0.val[0], s0.val[1], s1.val[0], s1.val[1],
170 coef0, coef1, dst);
171 src0 += 32;
172 src1 += 32;
173 dst += 16;
174 x -= 16;
175 } while (x);
176 src0 += 2 * (src_stride - max_width);
177 src1 += 2 * (src_stride - max_width);
178 dst += dst_stride - max_width;
179 } while (--y);
180 }
181
scale_plane_4_to_1_bilinear(const uint8_t * const src,const int src_stride,uint8_t * dst,const int dst_stride,const int w,const int h,const int16_t c0,const int16_t c1)182 static INLINE void scale_plane_4_to_1_bilinear(
183 const uint8_t *const src, const int src_stride, uint8_t *dst,
184 const int dst_stride, const int w, const int h, const int16_t c0,
185 const int16_t c1) {
186 const int max_width = (w + 15) & ~15;
187 const uint8_t *src0 = src;
188 const uint8_t *src1 = src + src_stride;
189 const uint8x8_t coef0 = vdup_n_u8(c0);
190 const uint8x8_t coef1 = vdup_n_u8(c1);
191 int y = h;
192
193 assert(w && h);
194
195 do {
196 int x = max_width;
197 do {
198 // (*) -- useless
199 // 000 004 008 00C 010 014 018 01C 020 024 028 02C 030 034 038 03C
200 // 001 005 009 00D 011 015 019 01D 021 025 029 02D 031 035 039 03D
201 // 002 006 00A 00E 012 016 01A 01E 022 026 02A 02E 032 036 03A 03E (*)
202 // 003 007 00B 00F 013 017 01B 01F 023 027 02B 02F 033 037 03B 03F (*)
203 const uint8x16x4_t s0 = vld4q_u8(src0);
204 // 100 104 108 10C 110 114 118 11C 120 124 128 12C 130 134 138 13C
205 // 101 105 109 10D 111 115 119 11D 121 125 129 12D 131 135 139 13D
206 // 102 106 10A 10E 112 116 11A 11E 122 126 12A 12E 132 136 13A 13E (*)
207 // 103 107 10B 10F 113 117 11B 11F 123 127 12B 12F 133 137 13B 13F (*)
208 const uint8x16x4_t s1 = vld4q_u8(src1);
209 scale_plane_bilinear_kernel(s0.val[0], s0.val[1], s1.val[0], s1.val[1],
210 coef0, coef1, dst);
211 src0 += 64;
212 src1 += 64;
213 dst += 16;
214 x -= 16;
215 } while (x);
216 src0 += 4 * (src_stride - max_width);
217 src1 += 4 * (src_stride - max_width);
218 dst += dst_stride - max_width;
219 } while (--y);
220 }
221
scale_plane_2_to_1_general(const uint8_t * src,const int src_stride,uint8_t * dst,const int dst_stride,const int w,const int h,const int16_t * const coef,uint8_t * const temp_buffer)222 static void scale_plane_2_to_1_general(const uint8_t *src, const int src_stride,
223 uint8_t *dst, const int dst_stride,
224 const int w, const int h,
225 const int16_t *const coef,
226 uint8_t *const temp_buffer) {
227 const int width_hor = (w + 3) & ~3;
228 const int width_ver = (w + 7) & ~7;
229 const int height_hor = (2 * h + SUBPEL_TAPS - 2 + 7) & ~7;
230 const int height_ver = (h + 3) & ~3;
231 const int16x8_t filters = vld1q_s16(coef);
232 int x, y = height_hor;
233 uint8_t *t = temp_buffer;
234 uint8x8_t s[14], d[4];
235
236 assert(w && h);
237
238 src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 1;
239
240 // horizontal 4x8
241 // Note: processing 4x8 is about 20% faster than processing row by row using
242 // vld4_u8().
243 do {
244 load_u8_8x8(src + 2, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
245 &s[6], &s[7]);
246 transpose_elems_inplace_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
247 &s[6], &s[7]);
248 x = width_hor;
249
250 do {
251 src += 8;
252 load_u8_8x8(src, src_stride, &s[6], &s[7], &s[8], &s[9], &s[10], &s[11],
253 &s[12], &s[13]);
254 transpose_elems_inplace_u8_8x8(&s[6], &s[7], &s[8], &s[9], &s[10], &s[11],
255 &s[12], &s[13]);
256
257 d[0] = scale_filter_8(&s[0], filters); // 00 10 20 30 40 50 60 70
258 d[1] = scale_filter_8(&s[2], filters); // 01 11 21 31 41 51 61 71
259 d[2] = scale_filter_8(&s[4], filters); // 02 12 22 32 42 52 62 72
260 d[3] = scale_filter_8(&s[6], filters); // 03 13 23 33 43 53 63 73
261 // 00 01 02 03 40 41 42 43
262 // 10 11 12 13 50 51 52 53
263 // 20 21 22 23 60 61 62 63
264 // 30 31 32 33 70 71 72 73
265 transpose_elems_inplace_u8_8x4(&d[0], &d[1], &d[2], &d[3]);
266 vst1_lane_u32((uint32_t *)(t + 0 * width_hor), vreinterpret_u32_u8(d[0]),
267 0);
268 vst1_lane_u32((uint32_t *)(t + 1 * width_hor), vreinterpret_u32_u8(d[1]),
269 0);
270 vst1_lane_u32((uint32_t *)(t + 2 * width_hor), vreinterpret_u32_u8(d[2]),
271 0);
272 vst1_lane_u32((uint32_t *)(t + 3 * width_hor), vreinterpret_u32_u8(d[3]),
273 0);
274 vst1_lane_u32((uint32_t *)(t + 4 * width_hor), vreinterpret_u32_u8(d[0]),
275 1);
276 vst1_lane_u32((uint32_t *)(t + 5 * width_hor), vreinterpret_u32_u8(d[1]),
277 1);
278 vst1_lane_u32((uint32_t *)(t + 6 * width_hor), vreinterpret_u32_u8(d[2]),
279 1);
280 vst1_lane_u32((uint32_t *)(t + 7 * width_hor), vreinterpret_u32_u8(d[3]),
281 1);
282
283 s[0] = s[8];
284 s[1] = s[9];
285 s[2] = s[10];
286 s[3] = s[11];
287 s[4] = s[12];
288 s[5] = s[13];
289
290 t += 4;
291 x -= 4;
292 } while (x);
293 src += 8 * src_stride - 2 * width_hor;
294 t += 7 * width_hor;
295 y -= 8;
296 } while (y);
297
298 // vertical 8x4
299 x = width_ver;
300 t = temp_buffer;
301 do {
302 load_u8_8x8(t, width_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
303 &s[7]);
304 t += 6 * width_hor;
305 y = height_ver;
306
307 do {
308 load_u8_8x8(t, width_hor, &s[6], &s[7], &s[8], &s[9], &s[10], &s[11],
309 &s[12], &s[13]);
310 t += 8 * width_hor;
311
312 d[0] = scale_filter_8(&s[0], filters); // 00 01 02 03 04 05 06 07
313 d[1] = scale_filter_8(&s[2], filters); // 10 11 12 13 14 15 16 17
314 d[2] = scale_filter_8(&s[4], filters); // 20 21 22 23 24 25 26 27
315 d[3] = scale_filter_8(&s[6], filters); // 30 31 32 33 34 35 36 37
316 vst1_u8(dst + 0 * dst_stride, d[0]);
317 vst1_u8(dst + 1 * dst_stride, d[1]);
318 vst1_u8(dst + 2 * dst_stride, d[2]);
319 vst1_u8(dst + 3 * dst_stride, d[3]);
320
321 s[0] = s[8];
322 s[1] = s[9];
323 s[2] = s[10];
324 s[3] = s[11];
325 s[4] = s[12];
326 s[5] = s[13];
327
328 dst += 4 * dst_stride;
329 y -= 4;
330 } while (y);
331 t -= width_hor * (2 * height_ver + 6);
332 t += 8;
333 dst -= height_ver * dst_stride;
334 dst += 8;
335 x -= 8;
336 } while (x);
337 }
338
scale_plane_4_to_1_general(const uint8_t * src,const int src_stride,uint8_t * dst,const int dst_stride,const int w,const int h,const int16_t * const coef,uint8_t * const temp_buffer)339 static void scale_plane_4_to_1_general(const uint8_t *src, const int src_stride,
340 uint8_t *dst, const int dst_stride,
341 const int w, const int h,
342 const int16_t *const coef,
343 uint8_t *const temp_buffer) {
344 const int width_hor = (w + 1) & ~1;
345 const int width_ver = (w + 7) & ~7;
346 const int height_hor = (4 * h + SUBPEL_TAPS - 2 + 7) & ~7;
347 const int height_ver = (h + 1) & ~1;
348 const int16x8_t filters = vld1q_s16(coef);
349 int x, y = height_hor;
350 uint8_t *t = temp_buffer;
351 uint8x8_t s[12], d[2];
352
353 assert(w && h);
354
355 src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 3;
356
357 // horizontal 2x8
358 // Note: processing 2x8 is about 20% faster than processing row by row using
359 // vld4_u8().
360 do {
361 load_u8_8x8(src + 4, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
362 &s[6], &s[7]);
363 transpose_elems_u8_4x8(s[0], s[1], s[2], s[3], s[4], s[5], s[6], s[7],
364 &s[0], &s[1], &s[2], &s[3]);
365 x = width_hor;
366
367 do {
368 uint8x8x2_t dd;
369 src += 8;
370 load_u8_8x8(src, src_stride, &s[4], &s[5], &s[6], &s[7], &s[8], &s[9],
371 &s[10], &s[11]);
372 transpose_elems_inplace_u8_8x8(&s[4], &s[5], &s[6], &s[7], &s[8], &s[9],
373 &s[10], &s[11]);
374
375 d[0] = scale_filter_8(&s[0], filters); // 00 10 20 30 40 50 60 70
376 d[1] = scale_filter_8(&s[4], filters); // 01 11 21 31 41 51 61 71
377 // dd.val[0]: 00 01 20 21 40 41 60 61
378 // dd.val[1]: 10 11 30 31 50 51 70 71
379 dd = vtrn_u8(d[0], d[1]);
380 vst1_lane_u16((uint16_t *)(t + 0 * width_hor),
381 vreinterpret_u16_u8(dd.val[0]), 0);
382 vst1_lane_u16((uint16_t *)(t + 1 * width_hor),
383 vreinterpret_u16_u8(dd.val[1]), 0);
384 vst1_lane_u16((uint16_t *)(t + 2 * width_hor),
385 vreinterpret_u16_u8(dd.val[0]), 1);
386 vst1_lane_u16((uint16_t *)(t + 3 * width_hor),
387 vreinterpret_u16_u8(dd.val[1]), 1);
388 vst1_lane_u16((uint16_t *)(t + 4 * width_hor),
389 vreinterpret_u16_u8(dd.val[0]), 2);
390 vst1_lane_u16((uint16_t *)(t + 5 * width_hor),
391 vreinterpret_u16_u8(dd.val[1]), 2);
392 vst1_lane_u16((uint16_t *)(t + 6 * width_hor),
393 vreinterpret_u16_u8(dd.val[0]), 3);
394 vst1_lane_u16((uint16_t *)(t + 7 * width_hor),
395 vreinterpret_u16_u8(dd.val[1]), 3);
396
397 s[0] = s[8];
398 s[1] = s[9];
399 s[2] = s[10];
400 s[3] = s[11];
401
402 t += 2;
403 x -= 2;
404 } while (x);
405 src += 8 * src_stride - 4 * width_hor;
406 t += 7 * width_hor;
407 y -= 8;
408 } while (y);
409
410 // vertical 8x2
411 x = width_ver;
412 t = temp_buffer;
413 do {
414 load_u8_8x4(t, width_hor, &s[0], &s[1], &s[2], &s[3]);
415 t += 4 * width_hor;
416 y = height_ver;
417
418 do {
419 load_u8_8x8(t, width_hor, &s[4], &s[5], &s[6], &s[7], &s[8], &s[9],
420 &s[10], &s[11]);
421 t += 8 * width_hor;
422
423 d[0] = scale_filter_8(&s[0], filters); // 00 01 02 03 04 05 06 07
424 d[1] = scale_filter_8(&s[4], filters); // 10 11 12 13 14 15 16 17
425 vst1_u8(dst + 0 * dst_stride, d[0]);
426 vst1_u8(dst + 1 * dst_stride, d[1]);
427
428 s[0] = s[8];
429 s[1] = s[9];
430 s[2] = s[10];
431 s[3] = s[11];
432
433 dst += 2 * dst_stride;
434 y -= 2;
435 } while (y);
436 t -= width_hor * (4 * height_ver + 4);
437 t += 8;
438 dst -= height_ver * dst_stride;
439 dst += 8;
440 x -= 8;
441 } while (x);
442 }
443
scale_filter_bilinear(const uint8x8_t * const s,const uint8x8_t * const coef)444 static INLINE uint8x8_t scale_filter_bilinear(const uint8x8_t *const s,
445 const uint8x8_t *const coef) {
446 const uint16x8_t h0 = vmull_u8(s[0], coef[0]);
447 const uint16x8_t h1 = vmlal_u8(h0, s[1], coef[1]);
448
449 return vrshrn_n_u16(h1, 7);
450 }
451
452 // Notes for 4 to 3 scaling:
453 //
454 // 1. 6 rows are calculated in each horizontal inner loop, so width_hor must be
455 // multiple of 6, and no less than w.
456 //
457 // 2. 8 rows are calculated in each vertical inner loop, so width_ver must be
458 // multiple of 8, and no less than w.
459 //
460 // 3. 8 columns are calculated in each horizontal inner loop for further
461 // vertical scaling, so height_hor must be multiple of 8, and no less than
462 // 4 * h / 3.
463 //
464 // 4. 6 columns are calculated in each vertical inner loop, so height_ver must
465 // be multiple of 6, and no less than h.
466 //
467 // 5. The physical location of the last row of the 4 to 3 scaled frame is
468 // decided by phase_scaler, and are always less than 1 pixel below the last row
469 // of the original image.
scale_plane_4_to_3_bilinear(const uint8_t * src,const int src_stride,uint8_t * dst,const int dst_stride,const int w,const int h,const int phase_scaler,uint8_t * const temp_buffer)470 static void scale_plane_4_to_3_bilinear(const uint8_t *src,
471 const int src_stride, uint8_t *dst,
472 const int dst_stride, const int w,
473 const int h, const int phase_scaler,
474 uint8_t *const temp_buffer) {
475 static const int step_q4 = 16 * 4 / 3;
476 const int width_hor = (w + 5) - ((w + 5) % 6);
477 const int stride_hor = width_hor + 2; // store 2 extra pixels
478 const int width_ver = (w + 7) & ~7;
479 // We only need 1 extra row below because there are only 2 bilinear
480 // coefficients.
481 const int height_hor = (4 * h / 3 + 1 + 7) & ~7;
482 const int height_ver = (h + 5) - ((h + 5) % 6);
483 int x, y = height_hor;
484 uint8_t *t = temp_buffer;
485 uint8x8_t s[9], d[8], c[6];
486 const InterpKernel *interp_kernel =
487 (const InterpKernel *)av1_interp_filter_params_list[BILINEAR].filter_ptr;
488 assert(w && h);
489
490 c[0] = vdup_n_u8((uint8_t)interp_kernel[phase_scaler][3]);
491 c[1] = vdup_n_u8((uint8_t)interp_kernel[phase_scaler][4]);
492 c[2] = vdup_n_u8(
493 (uint8_t)interp_kernel[(phase_scaler + 1 * step_q4) & SUBPEL_MASK][3]);
494 c[3] = vdup_n_u8(
495 (uint8_t)interp_kernel[(phase_scaler + 1 * step_q4) & SUBPEL_MASK][4]);
496 c[4] = vdup_n_u8(
497 (uint8_t)interp_kernel[(phase_scaler + 2 * step_q4) & SUBPEL_MASK][3]);
498 c[5] = vdup_n_u8(
499 (uint8_t)interp_kernel[(phase_scaler + 2 * step_q4) & SUBPEL_MASK][4]);
500
501 d[6] = vdup_n_u8(0);
502 d[7] = vdup_n_u8(0);
503
504 // horizontal 6x8
505 do {
506 load_u8_8x8(src, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
507 &s[6], &s[7]);
508 src += 1;
509 transpose_elems_inplace_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
510 &s[6], &s[7]);
511 x = width_hor;
512
513 do {
514 load_u8_8x8(src, src_stride, &s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
515 &s[7], &s[8]);
516 src += 8;
517 transpose_elems_inplace_u8_8x8(&s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
518 &s[7], &s[8]);
519
520 // 00 10 20 30 40 50 60 70
521 // 01 11 21 31 41 51 61 71
522 // 02 12 22 32 42 52 62 72
523 // 03 13 23 33 43 53 63 73
524 // 04 14 24 34 44 54 64 74
525 // 05 15 25 35 45 55 65 75
526 d[0] = scale_filter_bilinear(&s[0], &c[0]);
527 d[1] =
528 scale_filter_bilinear(&s[(phase_scaler + 1 * step_q4) >> 4], &c[2]);
529 d[2] =
530 scale_filter_bilinear(&s[(phase_scaler + 2 * step_q4) >> 4], &c[4]);
531 d[3] = scale_filter_bilinear(&s[4], &c[0]);
532 d[4] = scale_filter_bilinear(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)],
533 &c[2]);
534 d[5] = scale_filter_bilinear(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)],
535 &c[4]);
536
537 // 00 01 02 03 04 05 xx xx
538 // 10 11 12 13 14 15 xx xx
539 // 20 21 22 23 24 25 xx xx
540 // 30 31 32 33 34 35 xx xx
541 // 40 41 42 43 44 45 xx xx
542 // 50 51 52 53 54 55 xx xx
543 // 60 61 62 63 64 65 xx xx
544 // 70 71 72 73 74 75 xx xx
545 transpose_elems_inplace_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5],
546 &d[6], &d[7]);
547 // store 2 extra pixels
548 vst1_u8(t + 0 * stride_hor, d[0]);
549 vst1_u8(t + 1 * stride_hor, d[1]);
550 vst1_u8(t + 2 * stride_hor, d[2]);
551 vst1_u8(t + 3 * stride_hor, d[3]);
552 vst1_u8(t + 4 * stride_hor, d[4]);
553 vst1_u8(t + 5 * stride_hor, d[5]);
554 vst1_u8(t + 6 * stride_hor, d[6]);
555 vst1_u8(t + 7 * stride_hor, d[7]);
556
557 s[0] = s[8];
558
559 t += 6;
560 x -= 6;
561 } while (x);
562 src += 8 * src_stride - 4 * width_hor / 3 - 1;
563 t += 7 * stride_hor + 2;
564 y -= 8;
565 } while (y);
566
567 // vertical 8x6
568 x = width_ver;
569 t = temp_buffer;
570 do {
571 load_u8_8x8(t, stride_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
572 &s[7]);
573 t += stride_hor;
574 y = height_ver;
575
576 do {
577 load_u8_8x8(t, stride_hor, &s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
578 &s[7], &s[8]);
579 t += 8 * stride_hor;
580
581 d[0] = scale_filter_bilinear(&s[0], &c[0]);
582 d[1] =
583 scale_filter_bilinear(&s[(phase_scaler + 1 * step_q4) >> 4], &c[2]);
584 d[2] =
585 scale_filter_bilinear(&s[(phase_scaler + 2 * step_q4) >> 4], &c[4]);
586 d[3] = scale_filter_bilinear(&s[4], &c[0]);
587 d[4] = scale_filter_bilinear(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)],
588 &c[2]);
589 d[5] = scale_filter_bilinear(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)],
590 &c[4]);
591 vst1_u8(dst + 0 * dst_stride, d[0]);
592 vst1_u8(dst + 1 * dst_stride, d[1]);
593 vst1_u8(dst + 2 * dst_stride, d[2]);
594 vst1_u8(dst + 3 * dst_stride, d[3]);
595 vst1_u8(dst + 4 * dst_stride, d[4]);
596 vst1_u8(dst + 5 * dst_stride, d[5]);
597
598 s[0] = s[8];
599
600 dst += 6 * dst_stride;
601 y -= 6;
602 } while (y);
603 t -= stride_hor * (4 * height_ver / 3 + 1);
604 t += 8;
605 dst -= height_ver * dst_stride;
606 dst += 8;
607 x -= 8;
608 } while (x);
609 }
610
scale_plane_4_to_3_general(const uint8_t * src,const int src_stride,uint8_t * dst,const int dst_stride,const int w,const int h,const InterpKernel * const coef,const int phase_scaler,uint8_t * const temp_buffer)611 static void scale_plane_4_to_3_general(const uint8_t *src, const int src_stride,
612 uint8_t *dst, const int dst_stride,
613 const int w, const int h,
614 const InterpKernel *const coef,
615 const int phase_scaler,
616 uint8_t *const temp_buffer) {
617 static const int step_q4 = 16 * 4 / 3;
618 const int width_hor = (w + 5) - ((w + 5) % 6);
619 const int stride_hor = width_hor + 2; // store 2 extra pixels
620 const int width_ver = (w + 7) & ~7;
621 // We need (SUBPEL_TAPS - 1) extra rows: (SUBPEL_TAPS / 2 - 1) extra rows
622 // above and (SUBPEL_TAPS / 2) extra rows below.
623 const int height_hor = (4 * h / 3 + SUBPEL_TAPS - 1 + 7) & ~7;
624 const int height_ver = (h + 5) - ((h + 5) % 6);
625 const int16x8_t filters0 = vld1q_s16(
626 (const int16_t *)&coef[(phase_scaler + 0 * step_q4) & SUBPEL_MASK]);
627 const int16x8_t filters1 = vld1q_s16(
628 (const int16_t *)&coef[(phase_scaler + 1 * step_q4) & SUBPEL_MASK]);
629 const int16x8_t filters2 = vld1q_s16(
630 (const int16_t *)&coef[(phase_scaler + 2 * step_q4) & SUBPEL_MASK]);
631 int x, y = height_hor;
632 uint8_t *t = temp_buffer;
633 uint8x8_t s[15], d[8];
634
635 assert(w && h);
636
637 src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2;
638 d[6] = vdup_n_u8(0);
639 d[7] = vdup_n_u8(0);
640
641 // horizontal 6x8
642 do {
643 load_u8_8x8(src + 1, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
644 &s[6], &s[7]);
645 transpose_elems_inplace_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
646 &s[6], &s[7]);
647 x = width_hor;
648
649 do {
650 src += 8;
651 load_u8_8x8(src, src_stride, &s[7], &s[8], &s[9], &s[10], &s[11], &s[12],
652 &s[13], &s[14]);
653 transpose_elems_inplace_u8_8x8(&s[7], &s[8], &s[9], &s[10], &s[11],
654 &s[12], &s[13], &s[14]);
655
656 // 00 10 20 30 40 50 60 70
657 // 01 11 21 31 41 51 61 71
658 // 02 12 22 32 42 52 62 72
659 // 03 13 23 33 43 53 63 73
660 // 04 14 24 34 44 54 64 74
661 // 05 15 25 35 45 55 65 75
662 d[0] = scale_filter_8(&s[0], filters0);
663 d[1] = scale_filter_8(&s[(phase_scaler + 1 * step_q4) >> 4], filters1);
664 d[2] = scale_filter_8(&s[(phase_scaler + 2 * step_q4) >> 4], filters2);
665 d[3] = scale_filter_8(&s[4], filters0);
666 d[4] =
667 scale_filter_8(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], filters1);
668 d[5] =
669 scale_filter_8(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], filters2);
670
671 // 00 01 02 03 04 05 xx xx
672 // 10 11 12 13 14 15 xx xx
673 // 20 21 22 23 24 25 xx xx
674 // 30 31 32 33 34 35 xx xx
675 // 40 41 42 43 44 45 xx xx
676 // 50 51 52 53 54 55 xx xx
677 // 60 61 62 63 64 65 xx xx
678 // 70 71 72 73 74 75 xx xx
679 transpose_elems_inplace_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5],
680 &d[6], &d[7]);
681 // store 2 extra pixels
682 vst1_u8(t + 0 * stride_hor, d[0]);
683 vst1_u8(t + 1 * stride_hor, d[1]);
684 vst1_u8(t + 2 * stride_hor, d[2]);
685 vst1_u8(t + 3 * stride_hor, d[3]);
686 vst1_u8(t + 4 * stride_hor, d[4]);
687 vst1_u8(t + 5 * stride_hor, d[5]);
688 vst1_u8(t + 6 * stride_hor, d[6]);
689 vst1_u8(t + 7 * stride_hor, d[7]);
690
691 s[0] = s[8];
692 s[1] = s[9];
693 s[2] = s[10];
694 s[3] = s[11];
695 s[4] = s[12];
696 s[5] = s[13];
697 s[6] = s[14];
698
699 t += 6;
700 x -= 6;
701 } while (x);
702 src += 8 * src_stride - 4 * width_hor / 3;
703 t += 7 * stride_hor + 2;
704 y -= 8;
705 } while (y);
706
707 // vertical 8x6
708 x = width_ver;
709 t = temp_buffer;
710 do {
711 load_u8_8x8(t, stride_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
712 &s[7]);
713 t += 7 * stride_hor;
714 y = height_ver;
715
716 do {
717 load_u8_8x8(t, stride_hor, &s[7], &s[8], &s[9], &s[10], &s[11], &s[12],
718 &s[13], &s[14]);
719 t += 8 * stride_hor;
720
721 d[0] = scale_filter_8(&s[0], filters0);
722 d[1] = scale_filter_8(&s[(phase_scaler + 1 * step_q4) >> 4], filters1);
723 d[2] = scale_filter_8(&s[(phase_scaler + 2 * step_q4) >> 4], filters2);
724 d[3] = scale_filter_8(&s[4], filters0);
725 d[4] =
726 scale_filter_8(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], filters1);
727 d[5] =
728 scale_filter_8(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], filters2);
729 vst1_u8(dst + 0 * dst_stride, d[0]);
730 vst1_u8(dst + 1 * dst_stride, d[1]);
731 vst1_u8(dst + 2 * dst_stride, d[2]);
732 vst1_u8(dst + 3 * dst_stride, d[3]);
733 vst1_u8(dst + 4 * dst_stride, d[4]);
734 vst1_u8(dst + 5 * dst_stride, d[5]);
735
736 s[0] = s[8];
737 s[1] = s[9];
738 s[2] = s[10];
739 s[3] = s[11];
740 s[4] = s[12];
741 s[5] = s[13];
742 s[6] = s[14];
743
744 dst += 6 * dst_stride;
745 y -= 6;
746 } while (y);
747 t -= stride_hor * (4 * height_ver / 3 + 7);
748 t += 8;
749 dst -= height_ver * dst_stride;
750 dst += 8;
751 x -= 8;
752 } while (x);
753 }
754
755 // There's SIMD optimizations for 1/4, 1/2 and 3/4 downscaling in NEON.
has_normative_scaler_neon(const int src_width,const int src_height,const int dst_width,const int dst_height)756 static INLINE bool has_normative_scaler_neon(const int src_width,
757 const int src_height,
758 const int dst_width,
759 const int dst_height) {
760 const bool has_normative_scaler =
761 (2 * dst_width == src_width && 2 * dst_height == src_height) ||
762 (4 * dst_width == src_width && 4 * dst_height == src_height) ||
763 (4 * dst_width == 3 * src_width && 4 * dst_height == 3 * src_height);
764
765 return has_normative_scaler;
766 }
767
av1_resize_and_extend_frame_neon(const YV12_BUFFER_CONFIG * src,YV12_BUFFER_CONFIG * dst,const InterpFilter filter,const int phase,const int num_planes)768 void av1_resize_and_extend_frame_neon(const YV12_BUFFER_CONFIG *src,
769 YV12_BUFFER_CONFIG *dst,
770 const InterpFilter filter,
771 const int phase, const int num_planes) {
772 bool has_normative_scaler =
773 has_normative_scaler_neon(src->y_crop_width, src->y_crop_height,
774 dst->y_crop_width, dst->y_crop_height);
775
776 if (num_planes > 1) {
777 has_normative_scaler =
778 has_normative_scaler &&
779 has_normative_scaler_neon(src->uv_crop_width, src->uv_crop_height,
780 dst->uv_crop_width, dst->uv_crop_height);
781 }
782
783 if (!has_normative_scaler) {
784 av1_resize_and_extend_frame_c(src, dst, filter, phase, num_planes);
785 return;
786 }
787
788 // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
789 // the static analysis warnings.
790 int malloc_failed = 0;
791 for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
792 const int is_uv = i > 0;
793 const int src_w = src->crop_widths[is_uv];
794 const int src_h = src->crop_heights[is_uv];
795 const int dst_w = dst->crop_widths[is_uv];
796 const int dst_h = dst->crop_heights[is_uv];
797 const int dst_y_w = (dst->crop_widths[0] + 1) & ~1;
798 const int dst_y_h = (dst->crop_heights[0] + 1) & ~1;
799
800 if (2 * dst_w == src_w && 2 * dst_h == src_h) {
801 if (phase == 0) {
802 scale_plane_2_to_1_phase_0(src->buffers[i], src->strides[is_uv],
803 dst->buffers[i], dst->strides[is_uv], dst_w,
804 dst_h);
805 } else if (filter == BILINEAR) {
806 const int16_t c0 = av1_bilinear_filters[phase][3];
807 const int16_t c1 = av1_bilinear_filters[phase][4];
808 scale_plane_2_to_1_bilinear(src->buffers[i], src->strides[is_uv],
809 dst->buffers[i], dst->strides[is_uv], dst_w,
810 dst_h, c0, c1);
811 } else {
812 const int buffer_stride = (dst_y_w + 3) & ~3;
813 const int buffer_height = (2 * dst_y_h + SUBPEL_TAPS - 2 + 7) & ~7;
814 uint8_t *const temp_buffer =
815 (uint8_t *)malloc(buffer_stride * buffer_height);
816 if (!temp_buffer) {
817 malloc_failed = 1;
818 break;
819 }
820 const InterpKernel *interp_kernel =
821 (const InterpKernel *)av1_interp_filter_params_list[filter]
822 .filter_ptr;
823 scale_plane_2_to_1_general(src->buffers[i], src->strides[is_uv],
824 dst->buffers[i], dst->strides[is_uv], dst_w,
825 dst_h, interp_kernel[phase], temp_buffer);
826 free(temp_buffer);
827 }
828 } else if (4 * dst_w == src_w && 4 * dst_h == src_h) {
829 if (phase == 0) {
830 scale_plane_4_to_1_phase_0(src->buffers[i], src->strides[is_uv],
831 dst->buffers[i], dst->strides[is_uv], dst_w,
832 dst_h);
833 } else if (filter == BILINEAR) {
834 const int16_t c0 = av1_bilinear_filters[phase][3];
835 const int16_t c1 = av1_bilinear_filters[phase][4];
836 scale_plane_4_to_1_bilinear(src->buffers[i], src->strides[is_uv],
837 dst->buffers[i], dst->strides[is_uv], dst_w,
838 dst_h, c0, c1);
839 } else {
840 const int buffer_stride = (dst_y_w + 1) & ~1;
841 const int buffer_height = (4 * dst_y_h + SUBPEL_TAPS - 2 + 7) & ~7;
842 uint8_t *const temp_buffer =
843 (uint8_t *)malloc(buffer_stride * buffer_height);
844 if (!temp_buffer) {
845 malloc_failed = 1;
846 break;
847 }
848 const InterpKernel *interp_kernel =
849 (const InterpKernel *)av1_interp_filter_params_list[filter]
850 .filter_ptr;
851 scale_plane_4_to_1_general(src->buffers[i], src->strides[is_uv],
852 dst->buffers[i], dst->strides[is_uv], dst_w,
853 dst_h, interp_kernel[phase], temp_buffer);
854 free(temp_buffer);
855 }
856 } else {
857 assert(4 * dst_w == 3 * src_w && 4 * dst_h == 3 * src_h);
858 // 4 to 3
859 const int buffer_stride = (dst_y_w + 5) - ((dst_y_w + 5) % 6) + 2;
860 const int buffer_height = (4 * dst_y_h / 3 + SUBPEL_TAPS - 1 + 7) & ~7;
861 uint8_t *const temp_buffer =
862 (uint8_t *)malloc(buffer_stride * buffer_height);
863 if (!temp_buffer) {
864 malloc_failed = 1;
865 break;
866 }
867 if (filter == BILINEAR) {
868 scale_plane_4_to_3_bilinear(src->buffers[i], src->strides[is_uv],
869 dst->buffers[i], dst->strides[is_uv], dst_w,
870 dst_h, phase, temp_buffer);
871 } else {
872 const InterpKernel *interp_kernel =
873 (const InterpKernel *)av1_interp_filter_params_list[filter]
874 .filter_ptr;
875 scale_plane_4_to_3_general(src->buffers[i], src->strides[is_uv],
876 dst->buffers[i], dst->strides[is_uv], dst_w,
877 dst_h, interp_kernel, phase, temp_buffer);
878 }
879 free(temp_buffer);
880 }
881 }
882
883 if (malloc_failed) {
884 av1_resize_and_extend_frame_c(src, dst, filter, phase, num_planes);
885 } else {
886 aom_extend_frame_borders(dst, num_planes);
887 }
888 }
889
scaledconvolve_horiz_w4(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const x_filters,const int x0_q4,const int x_step_q4,const int w,const int h)890 static INLINE void scaledconvolve_horiz_w4(
891 const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
892 const ptrdiff_t dst_stride, const InterpKernel *const x_filters,
893 const int x0_q4, const int x_step_q4, const int w, const int h) {
894 DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]);
895 int x, y, z;
896
897 src -= SUBPEL_TAPS / 2 - 1;
898
899 y = h;
900 do {
901 int x_q4 = x0_q4;
902 x = 0;
903 do {
904 // process 4 src_x steps
905 for (z = 0; z < 4; ++z) {
906 const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
907 if (x_q4 & SUBPEL_MASK) {
908 const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]);
909 uint8x8_t s[8], d;
910 int16x8_t ss[4];
911 int16x4_t t[8], tt;
912
913 load_u8_8x4(src_x, src_stride, &s[0], &s[1], &s[2], &s[3]);
914 transpose_elems_inplace_u8_8x4(&s[0], &s[1], &s[2], &s[3]);
915
916 ss[0] = vreinterpretq_s16_u16(vmovl_u8(s[0]));
917 ss[1] = vreinterpretq_s16_u16(vmovl_u8(s[1]));
918 ss[2] = vreinterpretq_s16_u16(vmovl_u8(s[2]));
919 ss[3] = vreinterpretq_s16_u16(vmovl_u8(s[3]));
920 t[0] = vget_low_s16(ss[0]);
921 t[1] = vget_low_s16(ss[1]);
922 t[2] = vget_low_s16(ss[2]);
923 t[3] = vget_low_s16(ss[3]);
924 t[4] = vget_high_s16(ss[0]);
925 t[5] = vget_high_s16(ss[1]);
926 t[6] = vget_high_s16(ss[2]);
927 t[7] = vget_high_s16(ss[3]);
928
929 tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7],
930 filters);
931 d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7);
932 store_u8_4x1(&temp[4 * z], d);
933 } else {
934 int i;
935 for (i = 0; i < 4; ++i) {
936 temp[z * 4 + i] = src_x[i * src_stride + 3];
937 }
938 }
939 x_q4 += x_step_q4;
940 }
941
942 // transpose the 4x4 filters values back to dst
943 {
944 const uint8x8x4_t d4 = vld4_u8(temp);
945 store_u8_4x1(&dst[x + 0 * dst_stride], d4.val[0]);
946 store_u8_4x1(&dst[x + 1 * dst_stride], d4.val[1]);
947 store_u8_4x1(&dst[x + 2 * dst_stride], d4.val[2]);
948 store_u8_4x1(&dst[x + 3 * dst_stride], d4.val[3]);
949 }
950 x += 4;
951 } while (x < w);
952
953 src += src_stride * 4;
954 dst += dst_stride * 4;
955 y -= 4;
956 } while (y > 0);
957 }
958
scaledconvolve_horiz_w8(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const x_filters,const int x0_q4,const int x_step_q4,const int w,const int h)959 static INLINE void scaledconvolve_horiz_w8(
960 const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
961 const ptrdiff_t dst_stride, const InterpKernel *const x_filters,
962 const int x0_q4, const int x_step_q4, const int w, const int h) {
963 DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
964 int x, y, z;
965 src -= SUBPEL_TAPS / 2 - 1;
966
967 // This function processes 8x8 areas. The intermediate height is not always
968 // a multiple of 8, so force it to be a multiple of 8 here.
969 y = (h + 7) & ~7;
970
971 do {
972 int x_q4 = x0_q4;
973 x = 0;
974 do {
975 uint8x8_t d[8];
976 // process 8 src_x steps
977 for (z = 0; z < 8; ++z) {
978 const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
979
980 if (x_q4 & SUBPEL_MASK) {
981 const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]);
982 uint8x8_t s[8];
983 load_u8_8x8(src_x, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4],
984 &s[5], &s[6], &s[7]);
985 transpose_elems_inplace_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4],
986 &s[5], &s[6], &s[7]);
987 d[0] = scale_filter_8(s, filters);
988 vst1_u8(&temp[8 * z], d[0]);
989 } else {
990 int i;
991 for (i = 0; i < 8; ++i) {
992 temp[z * 8 + i] = src_x[i * src_stride + 3];
993 }
994 }
995 x_q4 += x_step_q4;
996 }
997
998 // transpose the 8x8 filters values back to dst
999 load_u8_8x8(temp, 8, &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6],
1000 &d[7]);
1001 transpose_elems_inplace_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5],
1002 &d[6], &d[7]);
1003 store_u8_8x8(dst + x, dst_stride, d[0], d[1], d[2], d[3], d[4], d[5],
1004 d[6], d[7]);
1005 x += 8;
1006 } while (x < w);
1007
1008 src += src_stride * 8;
1009 dst += dst_stride * 8;
1010 } while (y -= 8);
1011 }
1012
scaledconvolve_vert_w4(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const y_filters,const int y0_q4,const int y_step_q4,const int w,const int h)1013 static INLINE void scaledconvolve_vert_w4(
1014 const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
1015 const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
1016 const int y0_q4, const int y_step_q4, const int w, const int h) {
1017 int y;
1018 int y_q4 = y0_q4;
1019
1020 src -= src_stride * (SUBPEL_TAPS / 2 - 1);
1021 y = h;
1022 do {
1023 const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
1024
1025 if (y_q4 & SUBPEL_MASK) {
1026 const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]);
1027 uint8x8_t s[8], d;
1028 int16x4_t t[8], tt;
1029
1030 load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
1031 &s[6], &s[7]);
1032 t[0] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[0])));
1033 t[1] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[1])));
1034 t[2] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[2])));
1035 t[3] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[3])));
1036 t[4] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[4])));
1037 t[5] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[5])));
1038 t[6] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[6])));
1039 t[7] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[7])));
1040
1041 tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], filters);
1042 d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7);
1043 store_u8_4x1(dst, d);
1044 } else {
1045 memcpy(dst, &src_y[3 * src_stride], w);
1046 }
1047
1048 dst += dst_stride;
1049 y_q4 += y_step_q4;
1050 } while (--y);
1051 }
1052
scaledconvolve_vert_w8(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const y_filters,const int y0_q4,const int y_step_q4,const int w,const int h)1053 static INLINE void scaledconvolve_vert_w8(
1054 const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
1055 const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
1056 const int y0_q4, const int y_step_q4, const int w, const int h) {
1057 int y;
1058 int y_q4 = y0_q4;
1059
1060 src -= src_stride * (SUBPEL_TAPS / 2 - 1);
1061 y = h;
1062 do {
1063 const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
1064 if (y_q4 & SUBPEL_MASK) {
1065 const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]);
1066 uint8x8_t s[8], d;
1067 load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
1068 &s[6], &s[7]);
1069 d = scale_filter_8(s, filters);
1070 vst1_u8(dst, d);
1071 } else {
1072 memcpy(dst, &src_y[3 * src_stride], w);
1073 }
1074 dst += dst_stride;
1075 y_q4 += y_step_q4;
1076 } while (--y);
1077 }
1078
scaledconvolve_vert_w16(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const y_filters,const int y0_q4,const int y_step_q4,const int w,const int h)1079 static INLINE void scaledconvolve_vert_w16(
1080 const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
1081 const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
1082 const int y0_q4, const int y_step_q4, const int w, const int h) {
1083 int x, y;
1084 int y_q4 = y0_q4;
1085
1086 src -= src_stride * (SUBPEL_TAPS / 2 - 1);
1087 y = h;
1088 do {
1089 const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
1090 if (y_q4 & SUBPEL_MASK) {
1091 x = 0;
1092 do {
1093 const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]);
1094 uint8x16_t ss[8];
1095 uint8x8_t s[8], d[2];
1096 load_u8_16x8(src_y, src_stride, &ss[0], &ss[1], &ss[2], &ss[3], &ss[4],
1097 &ss[5], &ss[6], &ss[7]);
1098 s[0] = vget_low_u8(ss[0]);
1099 s[1] = vget_low_u8(ss[1]);
1100 s[2] = vget_low_u8(ss[2]);
1101 s[3] = vget_low_u8(ss[3]);
1102 s[4] = vget_low_u8(ss[4]);
1103 s[5] = vget_low_u8(ss[5]);
1104 s[6] = vget_low_u8(ss[6]);
1105 s[7] = vget_low_u8(ss[7]);
1106 d[0] = scale_filter_8(s, filters);
1107
1108 s[0] = vget_high_u8(ss[0]);
1109 s[1] = vget_high_u8(ss[1]);
1110 s[2] = vget_high_u8(ss[2]);
1111 s[3] = vget_high_u8(ss[3]);
1112 s[4] = vget_high_u8(ss[4]);
1113 s[5] = vget_high_u8(ss[5]);
1114 s[6] = vget_high_u8(ss[6]);
1115 s[7] = vget_high_u8(ss[7]);
1116 d[1] = scale_filter_8(s, filters);
1117 vst1q_u8(&dst[x], vcombine_u8(d[0], d[1]));
1118 src_y += 16;
1119 x += 16;
1120 } while (x < w);
1121 } else {
1122 memcpy(dst, &src_y[3 * src_stride], w);
1123 }
1124 dst += dst_stride;
1125 y_q4 += y_step_q4;
1126 } while (--y);
1127 }
1128
aom_scaled_2d_neon(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,const InterpKernel * filter,int x0_q4,int x_step_q4,int y0_q4,int y_step_q4,int w,int h)1129 void aom_scaled_2d_neon(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
1130 ptrdiff_t dst_stride, const InterpKernel *filter,
1131 int x0_q4, int x_step_q4, int y0_q4, int y_step_q4,
1132 int w, int h) {
1133 // Note: Fixed size intermediate buffer, temp, places limits on parameters.
1134 // 2d filtering proceeds in 2 steps:
1135 // (1) Interpolate horizontally into an intermediate buffer, temp.
1136 // (2) Interpolate temp vertically to derive the sub-pixel result.
1137 // Deriving the maximum number of rows in the temp buffer (135):
1138 // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
1139 // --Largest block size is 64x64 pixels.
1140 // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
1141 // original frame (in 1/16th pixel units).
1142 // --Must round-up because block may be located at sub-pixel position.
1143 // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
1144 // --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
1145 // --Require an additional 8 rows for the horiz_w8 transpose tail.
1146 // When calling in frame scaling function, the smallest scaling factor is x1/4
1147 // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still
1148 // big enough.
1149 DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]);
1150 const int intermediate_height =
1151 (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
1152
1153 assert(w <= 64);
1154 assert(h <= 64);
1155 assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32));
1156 assert(x_step_q4 <= 64);
1157
1158 if (w >= 8) {
1159 scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1),
1160 src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
1161 intermediate_height);
1162 } else {
1163 scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1),
1164 src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
1165 intermediate_height);
1166 }
1167
1168 if (w >= 16) {
1169 scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
1170 dst_stride, filter, y0_q4, y_step_q4, w, h);
1171 } else if (w == 8) {
1172 scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
1173 dst_stride, filter, y0_q4, y_step_q4, w, h);
1174 } else {
1175 scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
1176 dst_stride, filter, y0_q4, y_step_q4, w, h);
1177 }
1178 }
1179