• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13 #define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14 
15 #include "config/aom_config.h"
16 #include "config/av1_rtcd.h"
17 
18 #include "aom/internal/aom_codec_internal.h"
19 #include "aom_dsp/flow_estimation/corner_detect.h"
20 #include "aom_util/aom_pthread.h"
21 #include "av1/common/alloccommon.h"
22 #include "av1/common/av1_loopfilter.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/entropymv.h"
26 #include "av1/common/enums.h"
27 #include "av1/common/frame_buffers.h"
28 #include "av1/common/mv.h"
29 #include "av1/common/quant_common.h"
30 #include "av1/common/restoration.h"
31 #include "av1/common/tile_common.h"
32 #include "av1/common/timing.h"
33 #include "aom_dsp/grain_params.h"
34 #include "aom_dsp/grain_table.h"
35 #include "aom_dsp/odintrin.h"
36 #ifdef __cplusplus
37 extern "C" {
38 #endif
39 
40 #if defined(__clang__) && defined(__has_warning)
41 #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
42 #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]]  // NOLINT
43 #endif
44 #elif defined(__GNUC__) && __GNUC__ >= 7
45 #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough))  // NOLINT
46 #endif
47 
48 #ifndef AOM_FALLTHROUGH_INTENDED
49 #define AOM_FALLTHROUGH_INTENDED \
50   do {                           \
51   } while (0)
52 #endif
53 
54 #define CDEF_MAX_STRENGTHS 16
55 
56 /* Constant values while waiting for the sequence header */
57 #define FRAME_ID_LENGTH 15
58 #define DELTA_FRAME_ID_LENGTH 14
59 
60 #define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
61 // Extra frame context which is always kept at default values
62 #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
63 #define PRIMARY_REF_BITS 3
64 #define PRIMARY_REF_NONE 7
65 
66 #define NUM_PING_PONG_BUFFERS 2
67 
68 #define MAX_NUM_TEMPORAL_LAYERS 8
69 #define MAX_NUM_SPATIAL_LAYERS 4
70 /* clang-format off */
71 // clang-format seems to think this is a pointer dereference and not a
72 // multiplication.
73 #define MAX_NUM_OPERATING_POINTS \
74   (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
75 /* clang-format on */
76 
77 // TODO(jingning): Turning this on to set up transform coefficient
78 // processing timer.
79 #define TXCOEFF_TIMER 0
80 #define TXCOEFF_COST_TIMER 0
81 
82 /*!\cond */
83 
84 enum {
85   SINGLE_REFERENCE = 0,
86   COMPOUND_REFERENCE = 1,
87   REFERENCE_MODE_SELECT = 2,
88   REFERENCE_MODES = 3,
89 } UENUM1BYTE(REFERENCE_MODE);
90 
91 enum {
92   /**
93    * Frame context updates are disabled
94    */
95   REFRESH_FRAME_CONTEXT_DISABLED,
96   /**
97    * Update frame context to values resulting from backward probability
98    * updates based on entropy/counts in the decoded frame
99    */
100   REFRESH_FRAME_CONTEXT_BACKWARD,
101 } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
102 
103 #define MFMV_STACK_SIZE 3
104 typedef struct {
105   int_mv mfmv0;
106   uint8_t ref_frame_offset;
107 } TPL_MV_REF;
108 
109 typedef struct {
110   int_mv mv;
111   MV_REFERENCE_FRAME ref_frame;
112 } MV_REF;
113 
114 typedef struct RefCntBuffer {
115   // For a RefCntBuffer, the following are reference-holding variables:
116   // - cm->ref_frame_map[]
117   // - cm->cur_frame
118   // - cm->scaled_ref_buf[] (encoder only)
119   // - pbi->output_frame_index[] (decoder only)
120   // With that definition, 'ref_count' is the number of reference-holding
121   // variables that are currently referencing this buffer.
122   // For example:
123   // - suppose this buffer is at index 'k' in the buffer pool, and
124   // - Total 'n' of the variables / array elements above have value 'k' (that
125   // is, they are pointing to buffer at index 'k').
126   // Then, pool->frame_bufs[k].ref_count = n.
127   int ref_count;
128 
129   unsigned int order_hint;
130   unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
131 
132   // These variables are used only in encoder and compare the absolute
133   // display order hint to compute the relative distance and overcome
134   // the limitation of get_relative_dist() which returns incorrect
135   // distance when a very old frame is used as a reference.
136   unsigned int display_order_hint;
137   unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
138   // Frame's level within the hierarchical structure.
139   unsigned int pyramid_level;
140   MV_REF *mvs;
141   uint8_t *seg_map;
142   struct segmentation seg;
143   int mi_rows;
144   int mi_cols;
145   // Width and height give the size of the buffer (before any upscaling, unlike
146   // the sizes that can be derived from the buf structure)
147   int width;
148   int height;
149   WarpedMotionParams global_motion[REF_FRAMES];
150   int showable_frame;  // frame can be used as show existing frame in future
151   uint8_t film_grain_params_present;
152   aom_film_grain_t film_grain_params;
153   aom_codec_frame_buffer_t raw_frame_buffer;
154   YV12_BUFFER_CONFIG buf;
155   int temporal_id;  // Temporal layer ID of the frame
156   int spatial_id;   // Spatial layer ID of the frame
157   FRAME_TYPE frame_type;
158 
159   // This is only used in the encoder but needs to be indexed per ref frame
160   // so it's extremely convenient to keep it here.
161   int interp_filter_selected[SWITCHABLE];
162 
163   // Inter frame reference frame delta for loop filter
164   int8_t ref_deltas[REF_FRAMES];
165 
166   // 0 = ZERO_MV, MV
167   int8_t mode_deltas[MAX_MODE_LF_DELTAS];
168 
169   FRAME_CONTEXT frame_context;
170 } RefCntBuffer;
171 
172 typedef struct BufferPool {
173 // Protect BufferPool from being accessed by several FrameWorkers at
174 // the same time during frame parallel decode.
175 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
176 // TODO(wtc): Remove this. See
177 // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
178 #if CONFIG_MULTITHREAD
179   pthread_mutex_t pool_mutex;
180 #endif
181 
182   // Private data associated with the frame buffer callbacks.
183   void *cb_priv;
184 
185   aom_get_frame_buffer_cb_fn_t get_fb_cb;
186   aom_release_frame_buffer_cb_fn_t release_fb_cb;
187 
188   RefCntBuffer *frame_bufs;
189   uint8_t num_frame_bufs;
190 
191   // Frame buffers allocated internally by the codec.
192   InternalFrameBufferList int_frame_buffers;
193 } BufferPool;
194 
195 /*!\endcond */
196 
197 /*!\brief Parameters related to CDEF */
198 typedef struct {
199   //! CDEF column line buffer
200   uint16_t *colbuf[MAX_MB_PLANE];
201   //! CDEF top & bottom line buffer
202   uint16_t *linebuf[MAX_MB_PLANE];
203   //! CDEF intermediate buffer
204   uint16_t *srcbuf;
205   //! CDEF column line buffer sizes
206   size_t allocated_colbuf_size[MAX_MB_PLANE];
207   //! CDEF top and bottom line buffer sizes
208   size_t allocated_linebuf_size[MAX_MB_PLANE];
209   //! CDEF intermediate buffer size
210   size_t allocated_srcbuf_size;
211   //! CDEF damping factor
212   int cdef_damping;
213   //! Number of CDEF strength values
214   int nb_cdef_strengths;
215   //! CDEF strength values for luma
216   int cdef_strengths[CDEF_MAX_STRENGTHS];
217   //! CDEF strength values for chroma
218   int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
219   //! Number of CDEF strength values in bits
220   int cdef_bits;
221   //! Number of rows in the frame in 4 pixel
222   int allocated_mi_rows;
223   //! Number of CDEF workers
224   int allocated_num_workers;
225 } CdefInfo;
226 
227 /*!\cond */
228 
229 typedef struct {
230   int delta_q_present_flag;
231   // Resolution of delta quant
232   int delta_q_res;
233   int delta_lf_present_flag;
234   // Resolution of delta lf level
235   int delta_lf_res;
236   // This is a flag for number of deltas of loop filter level
237   // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
238   // 1: use separate deltas for each filter level
239   int delta_lf_multi;
240 } DeltaQInfo;
241 
242 typedef struct {
243   int enable_order_hint;        // 0 - disable order hint, and related tools
244   int order_hint_bits_minus_1;  // dist_wtd_comp, ref_frame_mvs,
245                                 // frame_sign_bias
246                                 // if 0, enable_dist_wtd_comp and
247                                 // enable_ref_frame_mvs must be set as 0.
248   int enable_dist_wtd_comp;     // 0 - disable dist-wtd compound modes
249                                 // 1 - enable it
250   int enable_ref_frame_mvs;     // 0 - disable ref frame mvs
251                                 // 1 - enable it
252 } OrderHintInfo;
253 
254 // Sequence header structure.
255 // Note: All syntax elements of sequence_header_obu that need to be
256 // bit-identical across multiple sequence headers must be part of this struct,
257 // so that consistency is checked by are_seq_headers_consistent() function.
258 // One exception is the last member 'op_params' that is ignored by
259 // are_seq_headers_consistent() function.
260 typedef struct SequenceHeader {
261   int num_bits_width;
262   int num_bits_height;
263   int max_frame_width;
264   int max_frame_height;
265   // Whether current and reference frame IDs are signaled in the bitstream.
266   // Frame id numbers are additional information that do not affect the
267   // decoding process, but provide decoders with a way of detecting missing
268   // reference frames so that appropriate action can be taken.
269   uint8_t frame_id_numbers_present_flag;
270   int frame_id_length;
271   int delta_frame_id_length;
272   BLOCK_SIZE sb_size;  // Size of the superblock used for this frame
273   int mib_size;        // Size of the superblock in units of MI blocks
274   int mib_size_log2;   // Log 2 of above.
275 
276   OrderHintInfo order_hint_info;
277 
278   uint8_t force_screen_content_tools;  // 0 - force off
279                                        // 1 - force on
280                                        // 2 - adaptive
281   uint8_t still_picture;               // Video is a single frame still picture
282   uint8_t reduced_still_picture_hdr;   // Use reduced header for still picture
283   uint8_t force_integer_mv;            // 0 - Don't force. MV can use subpel
284                                        // 1 - force to integer
285                                        // 2 - adaptive
286   uint8_t enable_filter_intra;         // enables/disables filterintra
287   uint8_t enable_intra_edge_filter;    // enables/disables edge upsampling
288   uint8_t enable_interintra_compound;  // enables/disables interintra_compound
289   uint8_t enable_masked_compound;      // enables/disables masked compound
290   uint8_t enable_dual_filter;          // 0 - disable dual interpolation filter
291                                        // 1 - enable vert/horz filter selection
292   uint8_t enable_warped_motion;        // 0 - disable warp for the sequence
293                                        // 1 - enable warp for the sequence
294   uint8_t enable_superres;             // 0 - Disable superres for the sequence
295                                        //     and no frame level superres flag
296                                        // 1 - Enable superres for the sequence
297                                        //     enable per-frame superres flag
298   uint8_t enable_cdef;                 // To turn on/off CDEF
299   uint8_t enable_restoration;          // To turn on/off loop restoration
300   BITSTREAM_PROFILE profile;
301 
302   // Color config.
303   aom_bit_depth_t bit_depth;  // AOM_BITS_8 in profile 0 or 1,
304                               // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
305   uint8_t use_highbitdepth;   // If true, we need to use 16bit frame buffers.
306   uint8_t monochrome;         // Monochrome video
307   aom_color_primaries_t color_primaries;
308   aom_transfer_characteristics_t transfer_characteristics;
309   aom_matrix_coefficients_t matrix_coefficients;
310   int color_range;
311   int subsampling_x;  // Chroma subsampling for x
312   int subsampling_y;  // Chroma subsampling for y
313   aom_chroma_sample_position_t chroma_sample_position;
314   uint8_t separate_uv_delta_q;
315   uint8_t film_grain_params_present;
316 
317   // Operating point info.
318   int operating_points_cnt_minus_1;
319   int operating_point_idc[MAX_NUM_OPERATING_POINTS];
320   int timing_info_present;
321   aom_timing_info_t timing_info;
322   uint8_t decoder_model_info_present_flag;
323   aom_dec_model_info_t decoder_model_info;
324   uint8_t display_model_info_present_flag;
325   AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
326   uint8_t tier[MAX_NUM_OPERATING_POINTS];  // seq_tier in spec. One bit: 0 or 1.
327 
328   // IMPORTANT: the op_params member must be at the end of the struct so that
329   // are_seq_headers_consistent() can be implemented with a memcmp() call.
330   // TODO(urvang): We probably don't need the +1 here.
331   aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
332 } SequenceHeader;
333 
334 typedef struct {
335   int skip_mode_allowed;
336   int skip_mode_flag;
337   int ref_frame_idx_0;
338   int ref_frame_idx_1;
339 } SkipModeInfo;
340 
341 typedef struct {
342   FRAME_TYPE frame_type;
343   REFERENCE_MODE reference_mode;
344 
345   unsigned int order_hint;
346   unsigned int display_order_hint;
347   // Frame's level within the hierarchical structure.
348   unsigned int pyramid_level;
349   unsigned int frame_number;
350   SkipModeInfo skip_mode_info;
351   int refresh_frame_flags;  // Which ref frames are overwritten by this frame
352   int frame_refs_short_signaling;
353 } CurrentFrame;
354 
355 /*!\endcond */
356 
357 /*!
358  * \brief Frame level features.
359  */
360 typedef struct {
361   /*!
362    * If true, CDF update in the symbol encoding/decoding process is disabled.
363    */
364   bool disable_cdf_update;
365   /*!
366    * If true, motion vectors are specified to eighth pel precision; and
367    * if false, motion vectors are specified to quarter pel precision.
368    */
369   bool allow_high_precision_mv;
370   /*!
371    * If true, force integer motion vectors; if false, use the default.
372    */
373   bool cur_frame_force_integer_mv;
374   /*!
375    * If true, palette tool and/or intra block copy tools may be used.
376    */
377   bool allow_screen_content_tools;
378   bool allow_intrabc;       /*!< If true, intra block copy tool may be used. */
379   bool allow_warped_motion; /*!< If true, frame may use warped motion mode. */
380   /*!
381    * If true, using previous frames' motion vectors for prediction is allowed.
382    */
383   bool allow_ref_frame_mvs;
384   /*!
385    * If true, frame is fully lossless at coded resolution.
386    * */
387   bool coded_lossless;
388   /*!
389    * If true, frame is fully lossless at upscaled resolution.
390    */
391   bool all_lossless;
392   /*!
393    * If true, the frame is restricted to a reduced subset of the full set of
394    * transform types.
395    */
396   bool reduced_tx_set_used;
397   /*!
398    * If true, error resilient mode is enabled.
399    * Note: Error resilient mode allows the syntax of a frame to be parsed
400    * independently of previously decoded frames.
401    */
402   bool error_resilient_mode;
403   /*!
404    * If false, only MOTION_MODE that may be used is SIMPLE_TRANSLATION;
405    * if true, all MOTION_MODES may be used.
406    */
407   bool switchable_motion_mode;
408   TX_MODE tx_mode;            /*!< Transform mode at frame level. */
409   InterpFilter interp_filter; /*!< Interpolation filter at frame level. */
410   /*!
411    * The reference frame that contains the CDF values and other state that
412    * should be loaded at the start of the frame.
413    */
414   int primary_ref_frame;
415   /*!
416    * Byte alignment of the planes in the reference buffers.
417    */
418   int byte_alignment;
419   /*!
420    * Flag signaling how frame contexts should be updated at the end of
421    * a frame decode.
422    */
423   REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
424 } FeatureFlags;
425 
426 /*!
427  * \brief Params related to tiles.
428  */
429 typedef struct CommonTileParams {
430   int cols;          /*!< number of tile columns that frame is divided into */
431   int rows;          /*!< number of tile rows that frame is divided into */
432   int max_width_sb;  /*!< maximum tile width in superblock units. */
433   int max_height_sb; /*!< maximum tile height in superblock units. */
434 
435   /*!
436    * Min width of non-rightmost tile in MI units. Only valid if cols > 1.
437    */
438   int min_inner_width;
439 
440   /*!
441    * If true, tiles are uniformly spaced with power-of-two number of rows and
442    * columns.
443    * If false, tiles have explicitly configured widths and heights.
444    */
445   int uniform_spacing;
446 
447   /**
448    * \name Members only valid when uniform_spacing == 1
449    */
450   /**@{*/
451   int log2_cols; /*!< log2 of 'cols'. */
452   int log2_rows; /*!< log2 of 'rows'. */
453   int width;     /*!< tile width in MI units */
454   int height;    /*!< tile height in MI units */
455   /**@}*/
456 
457   /*!
458    * Min num of tile columns possible based on 'max_width_sb' and frame width.
459    */
460   int min_log2_cols;
461   /*!
462    * Min num of tile rows possible based on 'max_height_sb' and frame height.
463    */
464   int min_log2_rows;
465   /*!
466    * Max num of tile columns possible based on frame width.
467    */
468   int max_log2_cols;
469   /*!
470    * Max num of tile rows possible based on frame height.
471    */
472   int max_log2_rows;
473   /*!
474    * log2 of min number of tiles (same as min_log2_cols + min_log2_rows).
475    */
476   int min_log2;
477   /*!
478    * col_start_sb[i] is the start position of tile column i in superblock units.
479    * valid for 0 <= i <= cols
480    */
481   int col_start_sb[MAX_TILE_COLS + 1];
482   /*!
483    * row_start_sb[i] is the start position of tile row i in superblock units.
484    * valid for 0 <= i <= rows
485    */
486   int row_start_sb[MAX_TILE_ROWS + 1];
487   /*!
488    * If true, we are using large scale tile mode.
489    */
490   unsigned int large_scale;
491   /*!
492    * Only relevant when large_scale == 1.
493    * If true, the independent decoding of a single tile or a section of a frame
494    * is allowed.
495    */
496   unsigned int single_tile_decoding;
497 } CommonTileParams;
498 
499 typedef struct CommonModeInfoParams CommonModeInfoParams;
500 /*!
501  * \brief Params related to MB_MODE_INFO arrays and related info.
502  */
503 struct CommonModeInfoParams {
504   /*!
505    * Number of rows in the frame in 16 pixel units.
506    * This is computed from frame height aligned to a multiple of 8.
507    */
508   int mb_rows;
509   /*!
510    * Number of cols in the frame in 16 pixel units.
511    * This is computed from frame width aligned to a multiple of 8.
512    */
513   int mb_cols;
514 
515   /*!
516    * Total MBs = mb_rows * mb_cols.
517    */
518   int MBs;
519 
520   /*!
521    * Number of rows in the frame in 4 pixel (MB_MODE_INFO) units.
522    * This is computed from frame height aligned to a multiple of 8.
523    */
524   int mi_rows;
525   /*!
526    * Number of cols in the frame in 4 pixel (MB_MODE_INFO) units.
527    * This is computed from frame width aligned to a multiple of 8.
528    */
529   int mi_cols;
530 
531   /*!
532    * An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block
533    * in the frame.
534    * Note: This array should be treated like a scratch memory, and should NOT be
535    * accessed directly, in most cases. Please use 'mi_grid_base' array instead.
536    */
537   MB_MODE_INFO *mi_alloc;
538   /*!
539    * Number of allocated elements in 'mi_alloc'.
540    */
541   int mi_alloc_size;
542   /*!
543    * Stride for 'mi_alloc' array.
544    */
545   int mi_alloc_stride;
546   /*!
547    * The minimum block size that each element in 'mi_alloc' can correspond to.
548    * For decoder, this is always BLOCK_4X4.
549    * For encoder, this is BLOCK_8X8 for resolution >= 4k case or REALTIME mode
550    * case. Otherwise, this is BLOCK_4X4.
551    */
552   BLOCK_SIZE mi_alloc_bsize;
553 
554   /*!
555    * Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'.
556    * It's possible that:
557    * - Multiple pointers in the grid point to the same element in 'mi_alloc'
558    * (for example, for all 4x4 blocks that belong to the same partition block).
559    * - Some pointers can be NULL (for example, for blocks outside visible area).
560    */
561   MB_MODE_INFO **mi_grid_base;
562   /*!
563    * Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also).
564    */
565   int mi_grid_size;
566   /*!
567    * Stride for 'mi_grid_base' (and 'tx_type_map' also).
568    */
569   int mi_stride;
570 
571   /*!
572    * An array of tx types for each 4x4 block in the frame.
573    * Number of allocated elements is same as 'mi_grid_size', and stride is
574    * same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of
575    * 'mi_grid_base'.
576    */
577   TX_TYPE *tx_type_map;
578 
579   /**
580    * \name Function pointers to allow separate logic for encoder and decoder.
581    */
582   /**@{*/
583   /*!
584    * Free the memory allocated to arrays in 'mi_params'.
585    * \param[in,out]   mi_params   object containing common mode info parameters
586    */
587   void (*free_mi)(struct CommonModeInfoParams *mi_params);
588   /*!
589    * Initialize / reset appropriate arrays in 'mi_params'.
590    * \param[in,out]   mi_params   object containing common mode info parameters
591    */
592   void (*setup_mi)(struct CommonModeInfoParams *mi_params);
593   /*!
594    * Allocate required memory for arrays in 'mi_params'.
595    * \param[in,out]   mi_params           object containing common mode info
596    *                                      parameters
597    * \param           width               frame width
598    * \param           height              frame height
599    * \param           min_partition_size  minimum partition size allowed while
600    *                                      encoding
601    */
602   void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
603                     int height, BLOCK_SIZE min_partition_size);
604   /**@}*/
605 };
606 
607 typedef struct CommonQuantParams CommonQuantParams;
608 /*!
609  * \brief Parameters related to quantization at the frame level.
610  */
611 struct CommonQuantParams {
612   /*!
613    * Base qindex of the frame in the range 0 to 255.
614    */
615   int base_qindex;
616 
617   /*!
618    * Delta of qindex (from base_qindex) for Y plane DC coefficient.
619    * Note: y_ac_delta_q is implicitly 0.
620    */
621   int y_dc_delta_q;
622 
623   /*!
624    * Delta of qindex (from base_qindex) for U plane DC coefficients.
625    */
626   int u_dc_delta_q;
627   /*!
628    * Delta of qindex (from base_qindex) for U plane AC coefficients.
629    */
630   int v_dc_delta_q;
631 
632   /*!
633    * Delta of qindex (from base_qindex) for V plane DC coefficients.
634    * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
635    */
636   int u_ac_delta_q;
637   /*!
638    * Delta of qindex (from base_qindex) for V plane AC coefficients.
639    * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
640    */
641   int v_ac_delta_q;
642 
643   /*
644    * Note: The qindex per superblock may have a delta from the qindex obtained
645    * at frame level from parameters above, based on 'cm->delta_q_info'.
646    */
647 
648   /**
649    * \name True dequantizers.
650    * The dequantizers below are true dequantizers used only in the
651    * dequantization process.  They have the same coefficient
652    * shift/scale as TX.
653    */
654   /**@{*/
655   int16_t y_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for Y plane */
656   int16_t u_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for U plane */
657   int16_t v_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for V plane */
658   /**@}*/
659 
660   /**
661    * \name Global quantization matrix tables.
662    */
663   /**@{*/
664   /*!
665    * Global dequantization matrix table.
666    */
667   const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
668   /*!
669    * Global quantization matrix table.
670    */
671   const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
672   /**@}*/
673 
674   /**
675    * \name Local dequantization matrix tables for each frame.
676    */
677   /**@{*/
678   /*!
679    * Local dequant matrix for Y plane.
680    */
681   const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
682   /*!
683    * Local dequant matrix for U plane.
684    */
685   const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
686   /*!
687    * Local dequant matrix for V plane.
688    */
689   const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
690   /**@}*/
691 
692   /*!
693    * Flag indicating whether quantization matrices are being used:
694    *  - If true, qm_level_y, qm_level_u and qm_level_v indicate the level
695    *    indices to be used to access appropriate global quant matrix tables.
696    *  - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'.
697    */
698   bool using_qmatrix;
699   /**
700    * \name Valid only when using_qmatrix == true
701    * Indicate the level indices to be used to access appropriate global quant
702    * matrix tables.
703    */
704   /**@{*/
705   int qmatrix_level_y; /*!< Level index for Y plane */
706   int qmatrix_level_u; /*!< Level index for U plane */
707   int qmatrix_level_v; /*!< Level index for V plane */
708   /**@}*/
709 };
710 
711 typedef struct CommonContexts CommonContexts;
712 /*!
713  * \brief Contexts used for transmitting various symbols in the bitstream.
714  */
715 struct CommonContexts {
716   /*!
717    * Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type.
718    * partition[i][j] is the context for ith tile row, jth mi_col.
719    */
720   PARTITION_CONTEXT **partition;
721 
722   /*!
723    * Context used to derive context for multiple symbols:
724    * - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit
725    * to transmit skip_txfm flag.
726    * - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit
727    * sign.
728    * entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col.
729    */
730   ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
731 
732   /*!
733    * Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to
734    * transmit 'is_split' flag to indicate if this transform block should be
735    * split into smaller sub-blocks.
736    * txfm[i][j] is the context for ith tile row, jth mi_col.
737    */
738   TXFM_CONTEXT **txfm;
739 
740   /*!
741    * Dimensions that were used to allocate the arrays above.
742    * If these dimensions change, the arrays may have to be re-allocated.
743    */
744   int num_planes;    /*!< Corresponds to av1_num_planes(cm) */
745   int num_tile_rows; /*!< Corresponds to cm->tiles.row */
746   int num_mi_cols;   /*!< Corresponds to cm->mi_params.mi_cols */
747 };
748 
749 /*!
750  * \brief Top level common structure used by both encoder and decoder.
751  */
752 typedef struct AV1Common {
753   /*!
754    * Information about the current frame that is being coded.
755    */
756   CurrentFrame current_frame;
757   /*!
758    * Code and details about current error status.
759    */
760   struct aom_internal_error_info *error;
761 
762   /*!
763    * AV1 allows two types of frame scaling operations:
764    * 1. Frame super-resolution: that allows coding a frame at lower resolution
765    * and after decoding the frame, normatively scales and restores the frame --
766    * inside the coding loop.
767    * 2. Frame resize: that allows coding frame at lower/higher resolution, and
768    * then non-normatively upscale the frame at the time of rendering -- outside
769    * the coding loop.
770    * Hence, the need for 3 types of dimensions.
771    */
772 
773   /**
774    * \name Coded frame dimensions.
775    */
776   /**@{*/
777   int width;  /*!< Coded frame width */
778   int height; /*!< Coded frame height */
779   /**@}*/
780 
781   /**
782    * \name Rendered frame dimensions.
783    * Dimensions after applying both super-resolution and resize to the coded
784    * frame. Different from coded dimensions if super-resolution and/or resize
785    * are being used for this frame.
786    */
787   /**@{*/
788   int render_width;  /*!< Rendered frame width */
789   int render_height; /*!< Rendered frame height */
790   /**@}*/
791 
792   /**
793    * \name Super-resolved frame dimensions.
794    * Frame dimensions after applying super-resolution to the coded frame (if
795    * present), but before applying resize.
796    * Larger than the coded dimensions if super-resolution is being used for
797    * this frame.
798    * Different from rendered dimensions if resize is being used for this frame.
799    */
800   /**@{*/
801   int superres_upscaled_width;  /*!< Super-resolved frame width */
802   int superres_upscaled_height; /*!< Super-resolved frame height */
803   /**@}*/
804 
805   /*!
806    * The denominator of the superres scale used by this frame.
807    * Note: The numerator is fixed to be SCALE_NUMERATOR.
808    */
809   uint8_t superres_scale_denominator;
810 
811   /*!
812    * buffer_removal_times[op_num] specifies the frame removal time in units of
813    * DecCT clock ticks counted from the removal time of the last random access
814    * point for operating point op_num.
815    * TODO(urvang): We probably don't need the +1 here.
816    */
817   uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
818   /*!
819    * Presentation time of the frame in clock ticks DispCT counted from the
820    * removal time of the last random access point for the operating point that
821    * is being decoded.
822    */
823   uint32_t frame_presentation_time;
824 
825   /*!
826    * Buffer where previous frame is stored.
827    */
828   RefCntBuffer *prev_frame;
829 
830   /*!
831    * Buffer into which the current frame will be stored and other related info.
832    * TODO(hkuang): Combine this with cur_buf in macroblockd.
833    */
834   RefCntBuffer *cur_frame;
835 
836   /*!
837    * For encoder, we have a two-level mapping from reference frame type to the
838    * corresponding buffer in the buffer pool:
839    * * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ...
840    * EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1)
841    * * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to
842    * the reference counted buffer structure RefCntBuffer, taken from the buffer
843    * pool cm->buffer_pool->frame_bufs.
844    *
845    * LAST_FRAME,                        ...,      EXTREF_FRAME
846    *      |                                           |
847    *      v                                           v
848    * remapped_ref_idx[LAST_FRAME - 1],  ...,  remapped_ref_idx[EXTREF_FRAME - 1]
849    *      |                                           |
850    *      v                                           v
851    * ref_frame_map[],                   ...,     ref_frame_map[]
852    *
853    * Note: INTRA_FRAME always refers to the current frame, so there's no need to
854    * have a remapped index for the same.
855    */
856   int remapped_ref_idx[REF_FRAMES];
857 
858   /*!
859    * Scale of the current frame with respect to itself.
860    * This is currently used for intra block copy, which behaves like an inter
861    * prediction mode, where the reference frame is the current frame itself.
862    */
863   struct scale_factors sf_identity;
864 
865   /*!
866    * Scale factors of the reference frame with respect to the current frame.
867    * This is required for generating inter prediction and will be non-identity
868    * for a reference frame, if it has different dimensions than the coded
869    * dimensions of the current frame.
870    */
871   struct scale_factors ref_scale_factors[REF_FRAMES];
872 
873   /*!
874    * For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to
875    * the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
876    * For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps
877    * remapped reference index 'j' (that is, original reference type 'i') to
878    * a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
879    */
880   RefCntBuffer *ref_frame_map[REF_FRAMES];
881 
882   /*!
883    * If true, this frame is actually shown after decoding.
884    * If false, this frame is coded in the bitstream, but not shown. It is only
885    * used as a reference for other frames coded later.
886    */
887   int show_frame;
888 
889   /*!
890    * If true, this frame can be used as a show-existing frame for other frames
891    * coded later.
892    * When 'show_frame' is true, this is always true for all non-keyframes.
893    * When 'show_frame' is false, this value is transmitted in the bitstream.
894    */
895   int showable_frame;
896 
897   /*!
898    * If true, show an existing frame coded before, instead of actually coding a
899    * frame. The existing frame comes from one of the existing reference buffers,
900    * as signaled in the bitstream.
901    */
902   int show_existing_frame;
903 
904   /*!
905    * Whether some features are allowed or not.
906    */
907   FeatureFlags features;
908 
909   /*!
910    * Params related to MB_MODE_INFO arrays and related info.
911    */
912   CommonModeInfoParams mi_params;
913 
914 #if CONFIG_ENTROPY_STATS
915   /*!
916    * Context type used by token CDFs, in the range 0 .. (TOKEN_CDF_Q_CTXS - 1).
917    */
918   int coef_cdf_category;
919 #endif  // CONFIG_ENTROPY_STATS
920 
921   /*!
922    * Quantization params.
923    */
924   CommonQuantParams quant_params;
925 
926   /*!
927    * Segmentation info for current frame.
928    */
929   struct segmentation seg;
930 
931   /*!
932    * Segmentation map for previous frame.
933    */
934   uint8_t *last_frame_seg_map;
935 
936   /**
937    * \name Deblocking filter parameters.
938    */
939   /**@{*/
940   loop_filter_info_n lf_info; /*!< Loop filter info */
941   struct loopfilter lf;       /*!< Loop filter parameters */
942   /**@}*/
943 
944   /**
945    * \name Loop Restoration filter parameters.
946    */
947   /**@{*/
948   RestorationInfo rst_info[MAX_MB_PLANE]; /*!< Loop Restoration filter info */
949   int32_t *rst_tmpbuf; /*!< Scratch buffer for self-guided restoration */
950   RestorationLineBuffers *rlbs; /*!< Line buffers needed by loop restoration */
951   YV12_BUFFER_CONFIG rst_frame; /*!< Stores the output of loop restoration */
952   /**@}*/
953 
954   /*!
955    * CDEF (Constrained Directional Enhancement Filter) parameters.
956    */
957   CdefInfo cdef_info;
958 
959   /*!
960    * Parameters for film grain synthesis.
961    */
962   aom_film_grain_t film_grain_params;
963 
964   /*!
965    * Parameters for delta quantization and delta loop filter level.
966    */
967   DeltaQInfo delta_q_info;
968 
969   /*!
970    * Global motion parameters for each reference frame.
971    */
972   WarpedMotionParams global_motion[REF_FRAMES];
973 
974   /*!
975    * Elements part of the sequence header, that are applicable for all the
976    * frames in the video.
977    */
978   SequenceHeader *seq_params;
979 
980   /*!
981    * Current CDFs of all the symbols for the current frame.
982    */
983   FRAME_CONTEXT *fc;
984   /*!
985    * Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE
986    * (e.g. for a keyframe). These default CDFs are defined by the bitstream and
987    * copied from default CDF tables for each symbol.
988    */
989   FRAME_CONTEXT *default_frame_context;
990 
991   /*!
992    * Parameters related to tiling.
993    */
994   CommonTileParams tiles;
995 
996   /*!
997    * External BufferPool passed from outside.
998    */
999   BufferPool *buffer_pool;
1000 
1001   /*!
1002    * Above context buffers and their sizes.
1003    * Note: above contexts are allocated in this struct, as their size is
1004    * dependent on frame width, while left contexts are declared and allocated in
1005    * MACROBLOCKD struct, as they have a fixed size.
1006    */
1007   CommonContexts above_contexts;
1008 
1009   /**
1010    * \name Signaled when cm->seq_params->frame_id_numbers_present_flag == 1
1011    */
1012   /**@{*/
1013   int current_frame_id;         /*!< frame ID for the current frame. */
1014   int ref_frame_id[REF_FRAMES]; /*!< frame IDs for the reference frames. */
1015   /**@}*/
1016 
1017   /*!
1018    * Motion vectors provided by motion field estimation.
1019    * tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where:
1020    * mi_row = 2 * row,
1021    * mi_col = 2 * col, and
1022    * stride = cm->mi_params.mi_stride / 2
1023    */
1024   TPL_MV_REF *tpl_mvs;
1025   /*!
1026    * Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function.
1027    */
1028   int tpl_mvs_mem_size;
1029   /*!
1030    * ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and
1031    * current frame is positive; and 0 otherwise.
1032    */
1033   int ref_frame_sign_bias[REF_FRAMES];
1034   /*!
1035    * ref_frame_side[k] is 1 if relative distance between reference 'k' and
1036    * current frame is positive, -1 if relative distance is 0; and 0 otherwise.
1037    * TODO(jingning): This can be combined with sign_bias later.
1038    */
1039   int8_t ref_frame_side[REF_FRAMES];
1040 
1041   /*!
1042    * Temporal layer ID of this frame
1043    * (in the range 0 ... (number_temporal_layers - 1)).
1044    */
1045   int temporal_layer_id;
1046 
1047   /*!
1048    * Spatial layer ID of this frame
1049    * (in the range 0 ... (number_spatial_layers - 1)).
1050    */
1051   int spatial_layer_id;
1052 
1053 #if TXCOEFF_TIMER
1054   int64_t cum_txcoeff_timer;
1055   int64_t txcoeff_timer;
1056   int txb_count;
1057 #endif  // TXCOEFF_TIMER
1058 
1059 #if TXCOEFF_COST_TIMER
1060   int64_t cum_txcoeff_cost_timer;
1061   int64_t txcoeff_cost_timer;
1062   int64_t txcoeff_cost_count;
1063 #endif  // TXCOEFF_COST_TIMER
1064 } AV1_COMMON;
1065 
1066 /*!\cond */
1067 
1068 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1069 // frame reference count.
lock_buffer_pool(BufferPool * const pool)1070 static void lock_buffer_pool(BufferPool *const pool) {
1071 #if CONFIG_MULTITHREAD
1072   pthread_mutex_lock(&pool->pool_mutex);
1073 #else
1074   (void)pool;
1075 #endif
1076 }
1077 
unlock_buffer_pool(BufferPool * const pool)1078 static void unlock_buffer_pool(BufferPool *const pool) {
1079 #if CONFIG_MULTITHREAD
1080   pthread_mutex_unlock(&pool->pool_mutex);
1081 #else
1082   (void)pool;
1083 #endif
1084 }
1085 
get_ref_frame(AV1_COMMON * cm,int index)1086 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1087   if (index < 0 || index >= REF_FRAMES) return NULL;
1088   if (cm->ref_frame_map[index] == NULL) return NULL;
1089   return &cm->ref_frame_map[index]->buf;
1090 }
1091 
get_free_fb(AV1_COMMON * cm)1092 static INLINE int get_free_fb(AV1_COMMON *cm) {
1093   RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1094   int i;
1095 
1096   lock_buffer_pool(cm->buffer_pool);
1097   const int num_frame_bufs = cm->buffer_pool->num_frame_bufs;
1098   for (i = 0; i < num_frame_bufs; ++i)
1099     if (frame_bufs[i].ref_count == 0) break;
1100 
1101   if (i != num_frame_bufs) {
1102     if (frame_bufs[i].buf.use_external_reference_buffers) {
1103       // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1104       // external reference buffers. Restore the buffer pointers to point to the
1105       // internally allocated memory.
1106       YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1107       ybf->y_buffer = ybf->store_buf_adr[0];
1108       ybf->u_buffer = ybf->store_buf_adr[1];
1109       ybf->v_buffer = ybf->store_buf_adr[2];
1110       ybf->use_external_reference_buffers = 0;
1111     }
1112 
1113     frame_bufs[i].ref_count = 1;
1114   } else {
1115     // We should never run out of free buffers. If this assertion fails, there
1116     // is a reference leak.
1117     assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
1118     // Reset i to be INVALID_IDX to indicate no free buffer found.
1119     i = INVALID_IDX;
1120   }
1121 
1122   unlock_buffer_pool(cm->buffer_pool);
1123   return i;
1124 }
1125 
assign_cur_frame_new_fb(AV1_COMMON * const cm)1126 static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1127   // Release the previously-used frame-buffer
1128   if (cm->cur_frame != NULL) {
1129     --cm->cur_frame->ref_count;
1130     cm->cur_frame = NULL;
1131   }
1132 
1133   // Assign a new framebuffer
1134   const int new_fb_idx = get_free_fb(cm);
1135   if (new_fb_idx == INVALID_IDX) return NULL;
1136 
1137   cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1138 #if CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1139   aom_invalidate_pyramid(cm->cur_frame->buf.y_pyramid);
1140   av1_invalidate_corner_list(cm->cur_frame->buf.corners);
1141 #endif  // CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1142   av1_zero(cm->cur_frame->interp_filter_selected);
1143   return cm->cur_frame;
1144 }
1145 
1146 // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1147 // counts accordingly.
assign_frame_buffer_p(RefCntBuffer ** lhs_ptr,RefCntBuffer * rhs_ptr)1148 static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1149                                          RefCntBuffer *rhs_ptr) {
1150   RefCntBuffer *const old_ptr = *lhs_ptr;
1151   if (old_ptr != NULL) {
1152     assert(old_ptr->ref_count > 0);
1153     // One less reference to the buffer at 'old_ptr', so decrease ref count.
1154     --old_ptr->ref_count;
1155   }
1156 
1157   *lhs_ptr = rhs_ptr;
1158   // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1159   ++rhs_ptr->ref_count;
1160 }
1161 
frame_is_intra_only(const AV1_COMMON * const cm)1162 static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
1163   return cm->current_frame.frame_type == KEY_FRAME ||
1164          cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1165 }
1166 
frame_is_sframe(const AV1_COMMON * cm)1167 static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
1168   return cm->current_frame.frame_type == S_FRAME;
1169 }
1170 
1171 // These functions take a reference frame label between LAST_FRAME and
1172 // EXTREF_FRAME inclusive.  Note that this is different to the indexing
1173 // previously used by the frame_refs[] array.
get_ref_frame_map_idx(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1174 static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1175                                         const MV_REFERENCE_FRAME ref_frame) {
1176   return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1177              ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1178              : INVALID_IDX;
1179 }
1180 
get_ref_frame_buf(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1181 static INLINE RefCntBuffer *get_ref_frame_buf(
1182     const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1183   const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1184   return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1185 }
1186 
1187 // Both const and non-const versions of this function are provided so that it
1188 // can be used with a const AV1_COMMON if needed.
get_ref_scale_factors_const(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1189 static INLINE const struct scale_factors *get_ref_scale_factors_const(
1190     const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1191   const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1192   return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1193 }
1194 
get_ref_scale_factors(AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1195 static INLINE struct scale_factors *get_ref_scale_factors(
1196     AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1197   const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1198   return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1199 }
1200 
get_primary_ref_frame_buf(const AV1_COMMON * const cm)1201 static INLINE RefCntBuffer *get_primary_ref_frame_buf(
1202     const AV1_COMMON *const cm) {
1203   const int primary_ref_frame = cm->features.primary_ref_frame;
1204   if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
1205   const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1206   return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1207 }
1208 
1209 // Returns 1 if this frame might allow mvs from some reference frame.
frame_might_allow_ref_frame_mvs(const AV1_COMMON * cm)1210 static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1211   return !cm->features.error_resilient_mode &&
1212          cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
1213          cm->seq_params->order_hint_info.enable_order_hint &&
1214          !frame_is_intra_only(cm);
1215 }
1216 
1217 // Returns 1 if this frame might use warped_motion
frame_might_allow_warped_motion(const AV1_COMMON * cm)1218 static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1219   return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1220          cm->seq_params->enable_warped_motion;
1221 }
1222 
ensure_mv_buffer(RefCntBuffer * buf,AV1_COMMON * cm)1223 static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1224   const int buf_rows = buf->mi_rows;
1225   const int buf_cols = buf->mi_cols;
1226   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1227 
1228   if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
1229       buf_cols != mi_params->mi_cols) {
1230     aom_free(buf->mvs);
1231     buf->mi_rows = mi_params->mi_rows;
1232     buf->mi_cols = mi_params->mi_cols;
1233     CHECK_MEM_ERROR(cm, buf->mvs,
1234                     (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
1235                                              ((mi_params->mi_cols + 1) >> 1),
1236                                          sizeof(*buf->mvs)));
1237     aom_free(buf->seg_map);
1238     CHECK_MEM_ERROR(
1239         cm, buf->seg_map,
1240         (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
1241                               sizeof(*buf->seg_map)));
1242   }
1243 
1244   const int mem_size =
1245       ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
1246 
1247   if (cm->tpl_mvs == NULL || cm->tpl_mvs_mem_size < mem_size) {
1248     aom_free(cm->tpl_mvs);
1249     CHECK_MEM_ERROR(cm, cm->tpl_mvs,
1250                     (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
1251     cm->tpl_mvs_mem_size = mem_size;
1252   }
1253 }
1254 
1255 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1256 
av1_num_planes(const AV1_COMMON * cm)1257 static INLINE int av1_num_planes(const AV1_COMMON *cm) {
1258   return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
1259 }
1260 
av1_init_above_context(CommonContexts * above_contexts,int num_planes,int tile_row,MACROBLOCKD * xd)1261 static INLINE void av1_init_above_context(CommonContexts *above_contexts,
1262                                           int num_planes, int tile_row,
1263                                           MACROBLOCKD *xd) {
1264   for (int i = 0; i < num_planes; ++i) {
1265     xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1266   }
1267   xd->above_partition_context = above_contexts->partition[tile_row];
1268   xd->above_txfm_context = above_contexts->txfm[tile_row];
1269 }
1270 
av1_init_macroblockd(AV1_COMMON * cm,MACROBLOCKD * xd)1271 static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1272   const int num_planes = av1_num_planes(cm);
1273   const CommonQuantParams *const quant_params = &cm->quant_params;
1274 
1275   for (int i = 0; i < num_planes; ++i) {
1276     if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1277       memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1278              sizeof(quant_params->y_dequant_QTX));
1279       memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1280              sizeof(quant_params->y_iqmatrix));
1281 
1282     } else {
1283       if (i == AOM_PLANE_U) {
1284         memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1285                sizeof(quant_params->u_dequant_QTX));
1286         memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1287                sizeof(quant_params->u_iqmatrix));
1288       } else {
1289         memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1290                sizeof(quant_params->v_dequant_QTX));
1291         memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1292                sizeof(quant_params->v_iqmatrix));
1293       }
1294     }
1295   }
1296   xd->mi_stride = cm->mi_params.mi_stride;
1297   xd->error_info = cm->error;
1298   cfl_init(&xd->cfl, cm->seq_params);
1299 }
1300 
set_entropy_context(MACROBLOCKD * xd,int mi_row,int mi_col,const int num_planes)1301 static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1302                                        const int num_planes) {
1303   int i;
1304   int row_offset = mi_row;
1305   int col_offset = mi_col;
1306   for (i = 0; i < num_planes; ++i) {
1307     struct macroblockd_plane *const pd = &xd->plane[i];
1308     // Offset the buffer pointer
1309     const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1310     if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1311       row_offset = mi_row - 1;
1312     if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1313       col_offset = mi_col - 1;
1314     int above_idx = col_offset;
1315     int left_idx = row_offset & MAX_MIB_MASK;
1316     pd->above_entropy_context =
1317         &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1318     pd->left_entropy_context =
1319         &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1320   }
1321 }
1322 
calc_mi_size(int len)1323 static INLINE int calc_mi_size(int len) {
1324   // len is in mi units. Align to a multiple of SBs.
1325   return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
1326 }
1327 
set_plane_n4(MACROBLOCKD * const xd,int bw,int bh,const int num_planes)1328 static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1329                                 const int num_planes) {
1330   int i;
1331   for (i = 0; i < num_planes; i++) {
1332     xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1333     xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1334 
1335     xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1336     xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1337   }
1338 }
1339 
set_mi_row_col(MACROBLOCKD * xd,const TileInfo * const tile,int mi_row,int bh,int mi_col,int bw,int mi_rows,int mi_cols)1340 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1341                                   int mi_row, int bh, int mi_col, int bw,
1342                                   int mi_rows, int mi_cols) {
1343   xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1344   xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1345   xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1346   xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1347 
1348   xd->mi_row = mi_row;
1349   xd->mi_col = mi_col;
1350 
1351   // Are edges available for intra prediction?
1352   xd->up_available = (mi_row > tile->mi_row_start);
1353 
1354   const int ss_x = xd->plane[1].subsampling_x;
1355   const int ss_y = xd->plane[1].subsampling_y;
1356 
1357   xd->left_available = (mi_col > tile->mi_col_start);
1358   xd->chroma_up_available = xd->up_available;
1359   xd->chroma_left_available = xd->left_available;
1360   if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1361     xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1362   if (ss_y && bh < mi_size_high[BLOCK_8X8])
1363     xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1364   if (xd->up_available) {
1365     xd->above_mbmi = xd->mi[-xd->mi_stride];
1366   } else {
1367     xd->above_mbmi = NULL;
1368   }
1369 
1370   if (xd->left_available) {
1371     xd->left_mbmi = xd->mi[-1];
1372   } else {
1373     xd->left_mbmi = NULL;
1374   }
1375 
1376   const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1377                          ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1378   xd->is_chroma_ref = chroma_ref;
1379   if (chroma_ref) {
1380     // To help calculate the "above" and "left" chroma blocks, note that the
1381     // current block may cover multiple luma blocks (e.g., if partitioned into
1382     // 4x4 luma blocks).
1383     // First, find the top-left-most luma block covered by this chroma block
1384     MB_MODE_INFO **base_mi =
1385         &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1386 
1387     // Then, we consider the luma region covered by the left or above 4x4 chroma
1388     // prediction. We want to point to the chroma reference block in that
1389     // region, which is the bottom-right-most mi unit.
1390     // This leads to the following offsets:
1391     MB_MODE_INFO *chroma_above_mi =
1392         xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1393     xd->chroma_above_mbmi = chroma_above_mi;
1394 
1395     MB_MODE_INFO *chroma_left_mi =
1396         xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1397     xd->chroma_left_mbmi = chroma_left_mi;
1398   }
1399 
1400   xd->height = bh;
1401   xd->width = bw;
1402 
1403   xd->is_last_vertical_rect = 0;
1404   if (xd->width < xd->height) {
1405     if (!((mi_col + xd->width) & (xd->height - 1))) {
1406       xd->is_last_vertical_rect = 1;
1407     }
1408   }
1409 
1410   xd->is_first_horizontal_rect = 0;
1411   if (xd->width > xd->height)
1412     if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1413 }
1414 
get_y_mode_cdf(FRAME_CONTEXT * tile_ctx,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi)1415 static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1416                                            const MB_MODE_INFO *above_mi,
1417                                            const MB_MODE_INFO *left_mi) {
1418   const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1419   const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1420   const int above_ctx = intra_mode_context[above];
1421   const int left_ctx = intra_mode_context[left];
1422   return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1423 }
1424 
update_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize)1425 static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
1426                                             int mi_col, BLOCK_SIZE subsize,
1427                                             BLOCK_SIZE bsize) {
1428   PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1429   PARTITION_CONTEXT *const left_ctx =
1430       xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1431 
1432   const int bw = mi_size_wide[bsize];
1433   const int bh = mi_size_high[bsize];
1434   memset(above_ctx, partition_context_lookup[subsize].above, bw);
1435   memset(left_ctx, partition_context_lookup[subsize].left, bh);
1436 }
1437 
is_chroma_reference(int mi_row,int mi_col,BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1438 static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1439                                       int subsampling_x, int subsampling_y) {
1440   assert(bsize < BLOCK_SIZES_ALL);
1441   const int bw = mi_size_wide[bsize];
1442   const int bh = mi_size_high[bsize];
1443   int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1444                 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1445   return ref_pos;
1446 }
1447 
cdf_element_prob(const aom_cdf_prob * cdf,size_t element)1448 static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1449                                             size_t element) {
1450   assert(cdf != NULL);
1451   return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1452 }
1453 
partition_gather_horz_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)1454 static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
1455                                                const aom_cdf_prob *const in,
1456                                                BLOCK_SIZE bsize) {
1457   (void)bsize;
1458   out[0] = CDF_PROB_TOP;
1459   out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1460   out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1461   out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1462   out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1463   out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1464   if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1465   out[0] = AOM_ICDF(out[0]);
1466   out[1] = AOM_ICDF(CDF_PROB_TOP);
1467 }
1468 
partition_gather_vert_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)1469 static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
1470                                                const aom_cdf_prob *const in,
1471                                                BLOCK_SIZE bsize) {
1472   (void)bsize;
1473   out[0] = CDF_PROB_TOP;
1474   out[0] -= cdf_element_prob(in, PARTITION_VERT);
1475   out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1476   out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1477   out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1478   out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1479   if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1480   out[0] = AOM_ICDF(out[0]);
1481   out[1] = AOM_ICDF(CDF_PROB_TOP);
1482 }
1483 
update_ext_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize,PARTITION_TYPE partition)1484 static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1485                                                 int mi_col, BLOCK_SIZE subsize,
1486                                                 BLOCK_SIZE bsize,
1487                                                 PARTITION_TYPE partition) {
1488   if (bsize >= BLOCK_8X8) {
1489     const int hbs = mi_size_wide[bsize] / 2;
1490     BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1491     switch (partition) {
1492       case PARTITION_SPLIT:
1493         if (bsize != BLOCK_8X8) break;
1494         AOM_FALLTHROUGH_INTENDED;
1495       case PARTITION_NONE:
1496       case PARTITION_HORZ:
1497       case PARTITION_VERT:
1498       case PARTITION_HORZ_4:
1499       case PARTITION_VERT_4:
1500         update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1501         break;
1502       case PARTITION_HORZ_A:
1503         update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1504         update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1505         break;
1506       case PARTITION_HORZ_B:
1507         update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1508         update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1509         break;
1510       case PARTITION_VERT_A:
1511         update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1512         update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1513         break;
1514       case PARTITION_VERT_B:
1515         update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1516         update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1517         break;
1518       default: assert(0 && "Invalid partition type");
1519     }
1520   }
1521 }
1522 
partition_plane_context(const MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)1523 static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1524                                           int mi_col, BLOCK_SIZE bsize) {
1525   const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1526   const PARTITION_CONTEXT *left_ctx =
1527       xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1528   // Minimum partition point is 8x8. Offset the bsl accordingly.
1529   const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1530   int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1531 
1532   assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1533   assert(bsl >= 0);
1534 
1535   return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1536 }
1537 
1538 // Return the number of elements in the partition CDF when
1539 // partitioning the (square) block with luma block size of bsize.
partition_cdf_length(BLOCK_SIZE bsize)1540 static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
1541   if (bsize <= BLOCK_8X8)
1542     return PARTITION_TYPES;
1543   else if (bsize == BLOCK_128X128)
1544     return EXT_PARTITION_TYPES - 2;
1545   else
1546     return EXT_PARTITION_TYPES;
1547 }
1548 
max_block_wide(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1549 static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1550                                  int plane) {
1551   assert(bsize < BLOCK_SIZES_ALL);
1552   int max_blocks_wide = block_size_wide[bsize];
1553 
1554   if (xd->mb_to_right_edge < 0) {
1555     const struct macroblockd_plane *const pd = &xd->plane[plane];
1556     max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1557   }
1558 
1559   // Scale the width in the transform block unit.
1560   return max_blocks_wide >> MI_SIZE_LOG2;
1561 }
1562 
max_block_high(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1563 static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1564                                  int plane) {
1565   int max_blocks_high = block_size_high[bsize];
1566 
1567   if (xd->mb_to_bottom_edge < 0) {
1568     const struct macroblockd_plane *const pd = &xd->plane[plane];
1569     max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1570   }
1571 
1572   // Scale the height in the transform block unit.
1573   return max_blocks_high >> MI_SIZE_LOG2;
1574 }
1575 
av1_zero_above_context(AV1_COMMON * const cm,const MACROBLOCKD * xd,int mi_col_start,int mi_col_end,const int tile_row)1576 static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
1577                                           const MACROBLOCKD *xd,
1578                                           int mi_col_start, int mi_col_end,
1579                                           const int tile_row) {
1580   const SequenceHeader *const seq_params = cm->seq_params;
1581   const int num_planes = av1_num_planes(cm);
1582   const int width = mi_col_end - mi_col_start;
1583   const int aligned_width =
1584       ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1585   const int offset_y = mi_col_start;
1586   const int width_y = aligned_width;
1587   const int offset_uv = offset_y >> seq_params->subsampling_x;
1588   const int width_uv = width_y >> seq_params->subsampling_x;
1589   CommonContexts *const above_contexts = &cm->above_contexts;
1590 
1591   av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1592   if (num_planes > 1) {
1593     if (above_contexts->entropy[1][tile_row] &&
1594         above_contexts->entropy[2][tile_row]) {
1595       av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1596                      width_uv);
1597       av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1598                      width_uv);
1599     } else {
1600       aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1601                          "Invalid value of planes");
1602     }
1603   }
1604 
1605   av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1606                  aligned_width);
1607 
1608   memset(above_contexts->txfm[tile_row] + mi_col_start,
1609          tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1610 }
1611 
av1_zero_left_context(MACROBLOCKD * const xd)1612 static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
1613   av1_zero(xd->left_entropy_context);
1614   av1_zero(xd->left_partition_context);
1615 
1616   memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1617          sizeof(xd->left_txfm_context_buffer));
1618 }
1619 
set_txfm_ctx(TXFM_CONTEXT * txfm_ctx,uint8_t txs,int len)1620 static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1621   int i;
1622   for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1623 }
1624 
set_txfm_ctxs(TX_SIZE tx_size,int n4_w,int n4_h,int skip,const MACROBLOCKD * xd)1625 static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1626                                  const MACROBLOCKD *xd) {
1627   uint8_t bw = tx_size_wide[tx_size];
1628   uint8_t bh = tx_size_high[tx_size];
1629 
1630   if (skip) {
1631     bw = n4_w * MI_SIZE;
1632     bh = n4_h * MI_SIZE;
1633   }
1634 
1635   set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1636   set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1637 }
1638 
get_mi_grid_idx(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col)1639 static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1640                                   int mi_row, int mi_col) {
1641   return mi_row * mi_params->mi_stride + mi_col;
1642 }
1643 
get_alloc_mi_idx(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col)1644 static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1645                                    int mi_row, int mi_col) {
1646   const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1647   const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1648   const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1649 
1650   return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1651 }
1652 
1653 // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
set_mi_offsets(const CommonModeInfoParams * const mi_params,MACROBLOCKD * const xd,int mi_row,int mi_col)1654 static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1655                                   MACROBLOCKD *const xd, int mi_row,
1656                                   int mi_col) {
1657   // 'mi_grid_base' should point to appropriate memory in 'mi'.
1658   const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1659   const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1660   mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1661   // 'xd->mi' should point to an offset in 'mi_grid_base';
1662   xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1663   // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1664   xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1665   xd->tx_type_map_stride = mi_params->mi_stride;
1666 }
1667 
txfm_partition_update(TXFM_CONTEXT * above_ctx,TXFM_CONTEXT * left_ctx,TX_SIZE tx_size,TX_SIZE txb_size)1668 static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1669                                          TXFM_CONTEXT *left_ctx,
1670                                          TX_SIZE tx_size, TX_SIZE txb_size) {
1671   BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1672   int bh = mi_size_high[bsize];
1673   int bw = mi_size_wide[bsize];
1674   uint8_t txw = tx_size_wide[tx_size];
1675   uint8_t txh = tx_size_high[tx_size];
1676   int i;
1677   for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1678   for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1679 }
1680 
get_sqr_tx_size(int tx_dim)1681 static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
1682   switch (tx_dim) {
1683     case 128:
1684     case 64: return TX_64X64; break;
1685     case 32: return TX_32X32; break;
1686     case 16: return TX_16X16; break;
1687     case 8: return TX_8X8; break;
1688     default: return TX_4X4;
1689   }
1690 }
1691 
get_tx_size(int width,int height)1692 static INLINE TX_SIZE get_tx_size(int width, int height) {
1693   if (width == height) {
1694     return get_sqr_tx_size(width);
1695   }
1696   if (width < height) {
1697     if (width + width == height) {
1698       switch (width) {
1699         case 4: return TX_4X8; break;
1700         case 8: return TX_8X16; break;
1701         case 16: return TX_16X32; break;
1702         case 32: return TX_32X64; break;
1703       }
1704     } else {
1705       switch (width) {
1706         case 4: return TX_4X16; break;
1707         case 8: return TX_8X32; break;
1708         case 16: return TX_16X64; break;
1709       }
1710     }
1711   } else {
1712     if (height + height == width) {
1713       switch (height) {
1714         case 4: return TX_8X4; break;
1715         case 8: return TX_16X8; break;
1716         case 16: return TX_32X16; break;
1717         case 32: return TX_64X32; break;
1718       }
1719     } else {
1720       switch (height) {
1721         case 4: return TX_16X4; break;
1722         case 8: return TX_32X8; break;
1723         case 16: return TX_64X16; break;
1724       }
1725     }
1726   }
1727   assert(0);
1728   return TX_4X4;
1729 }
1730 
txfm_partition_context(const TXFM_CONTEXT * const above_ctx,const TXFM_CONTEXT * const left_ctx,BLOCK_SIZE bsize,TX_SIZE tx_size)1731 static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1732                                          const TXFM_CONTEXT *const left_ctx,
1733                                          BLOCK_SIZE bsize, TX_SIZE tx_size) {
1734   const uint8_t txw = tx_size_wide[tx_size];
1735   const uint8_t txh = tx_size_high[tx_size];
1736   const int above = *above_ctx < txw;
1737   const int left = *left_ctx < txh;
1738   int category = TXFM_PARTITION_CONTEXTS;
1739 
1740   // dummy return, not used by others.
1741   if (tx_size <= TX_4X4) return 0;
1742 
1743   TX_SIZE max_tx_size =
1744       get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1745 
1746   if (max_tx_size >= TX_8X8) {
1747     category =
1748         (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1749         (TX_SIZES - 1 - max_tx_size) * 2;
1750   }
1751   assert(category != TXFM_PARTITION_CONTEXTS);
1752   return category * 3 + above + left;
1753 }
1754 
1755 // Compute the next partition in the direction of the sb_type stored in the mi
1756 // array, starting with bsize.
get_partition(const AV1_COMMON * const cm,int mi_row,int mi_col,BLOCK_SIZE bsize)1757 static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1758                                            int mi_row, int mi_col,
1759                                            BLOCK_SIZE bsize) {
1760   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1761   if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1762     return PARTITION_INVALID;
1763 
1764   const int offset = mi_row * mi_params->mi_stride + mi_col;
1765   MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1766   const BLOCK_SIZE subsize = mi[0]->bsize;
1767 
1768   assert(bsize < BLOCK_SIZES_ALL);
1769 
1770   if (subsize == bsize) return PARTITION_NONE;
1771 
1772   const int bhigh = mi_size_high[bsize];
1773   const int bwide = mi_size_wide[bsize];
1774   const int sshigh = mi_size_high[subsize];
1775   const int sswide = mi_size_wide[subsize];
1776 
1777   if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1778       mi_col + bhigh / 2 < mi_params->mi_cols) {
1779     // In this case, the block might be using an extended partition
1780     // type.
1781     const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1782     const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1783 
1784     if (sswide == bwide) {
1785       // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1786       // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1787       // half was split.
1788       if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1789       assert(sshigh * 2 == bhigh);
1790 
1791       if (mbmi_below->bsize == subsize)
1792         return PARTITION_HORZ;
1793       else
1794         return PARTITION_HORZ_B;
1795     } else if (sshigh == bhigh) {
1796       // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1797       // PARTITION_VERT_B. To distinguish the latter two, check if the right
1798       // half was split.
1799       if (sswide * 4 == bwide) return PARTITION_VERT_4;
1800       assert(sswide * 2 == bhigh);
1801 
1802       if (mbmi_right->bsize == subsize)
1803         return PARTITION_VERT;
1804       else
1805         return PARTITION_VERT_B;
1806     } else {
1807       // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1808       // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1809       // dimensions, we immediately know this is a split (which will recurse to
1810       // get to subsize). Otherwise look down and to the right. With
1811       // PARTITION_VERT_A, the right block will have height bhigh; with
1812       // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1813       // it's PARTITION_SPLIT.
1814       if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1815 
1816       if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1817       if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1818 
1819       return PARTITION_SPLIT;
1820     }
1821   }
1822   const int vert_split = sswide < bwide;
1823   const int horz_split = sshigh < bhigh;
1824   const int split_idx = (vert_split << 1) | horz_split;
1825   assert(split_idx != 0);
1826 
1827   static const PARTITION_TYPE base_partitions[4] = {
1828     PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1829   };
1830 
1831   return base_partitions[split_idx];
1832 }
1833 
set_sb_size(SequenceHeader * const seq_params,BLOCK_SIZE sb_size)1834 static INLINE void set_sb_size(SequenceHeader *const seq_params,
1835                                BLOCK_SIZE sb_size) {
1836   seq_params->sb_size = sb_size;
1837   seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1838   seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1839 }
1840 
1841 // Returns true if the frame is fully lossless at the coded resolution.
1842 // Note: If super-resolution is used, such a frame will still NOT be lossless at
1843 // the upscaled resolution.
is_coded_lossless(const AV1_COMMON * cm,const MACROBLOCKD * xd)1844 static INLINE int is_coded_lossless(const AV1_COMMON *cm,
1845                                     const MACROBLOCKD *xd) {
1846   int coded_lossless = 1;
1847   if (cm->seg.enabled) {
1848     for (int i = 0; i < MAX_SEGMENTS; ++i) {
1849       if (!xd->lossless[i]) {
1850         coded_lossless = 0;
1851         break;
1852       }
1853     }
1854   } else {
1855     coded_lossless = xd->lossless[0];
1856   }
1857   return coded_lossless;
1858 }
1859 
is_valid_seq_level_idx(AV1_LEVEL seq_level_idx)1860 static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1861   return seq_level_idx == SEQ_LEVEL_MAX ||
1862          (seq_level_idx < SEQ_LEVELS &&
1863           // The following levels are currently undefined.
1864           seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1865           seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1866           seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3
1867 #if !CONFIG_CWG_C013
1868           && seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1869           seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3 &&
1870           seq_level_idx != SEQ_LEVEL_8_0 && seq_level_idx != SEQ_LEVEL_8_1 &&
1871           seq_level_idx != SEQ_LEVEL_8_2 && seq_level_idx != SEQ_LEVEL_8_3
1872 #endif
1873          );
1874 }
1875 
1876 /*!\endcond */
1877 
1878 #ifdef __cplusplus
1879 }  // extern "C"
1880 #endif
1881 
1882 #endif  // AOM_AV1_COMMON_AV1_COMMON_INT_H_
1883