1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13 #define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14
15 #include "config/aom_config.h"
16 #include "config/av1_rtcd.h"
17
18 #include "aom/internal/aom_codec_internal.h"
19 #include "aom_dsp/flow_estimation/corner_detect.h"
20 #include "aom_util/aom_pthread.h"
21 #include "av1/common/alloccommon.h"
22 #include "av1/common/av1_loopfilter.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/entropymv.h"
26 #include "av1/common/enums.h"
27 #include "av1/common/frame_buffers.h"
28 #include "av1/common/mv.h"
29 #include "av1/common/quant_common.h"
30 #include "av1/common/restoration.h"
31 #include "av1/common/tile_common.h"
32 #include "av1/common/timing.h"
33 #include "aom_dsp/grain_params.h"
34 #include "aom_dsp/grain_table.h"
35 #include "aom_dsp/odintrin.h"
36 #ifdef __cplusplus
37 extern "C" {
38 #endif
39
40 #if defined(__clang__) && defined(__has_warning)
41 #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
42 #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
43 #endif
44 #elif defined(__GNUC__) && __GNUC__ >= 7
45 #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
46 #endif
47
48 #ifndef AOM_FALLTHROUGH_INTENDED
49 #define AOM_FALLTHROUGH_INTENDED \
50 do { \
51 } while (0)
52 #endif
53
54 #define CDEF_MAX_STRENGTHS 16
55
56 /* Constant values while waiting for the sequence header */
57 #define FRAME_ID_LENGTH 15
58 #define DELTA_FRAME_ID_LENGTH 14
59
60 #define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
61 // Extra frame context which is always kept at default values
62 #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
63 #define PRIMARY_REF_BITS 3
64 #define PRIMARY_REF_NONE 7
65
66 #define NUM_PING_PONG_BUFFERS 2
67
68 #define MAX_NUM_TEMPORAL_LAYERS 8
69 #define MAX_NUM_SPATIAL_LAYERS 4
70 /* clang-format off */
71 // clang-format seems to think this is a pointer dereference and not a
72 // multiplication.
73 #define MAX_NUM_OPERATING_POINTS \
74 (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
75 /* clang-format on */
76
77 // TODO(jingning): Turning this on to set up transform coefficient
78 // processing timer.
79 #define TXCOEFF_TIMER 0
80 #define TXCOEFF_COST_TIMER 0
81
82 /*!\cond */
83
84 enum {
85 SINGLE_REFERENCE = 0,
86 COMPOUND_REFERENCE = 1,
87 REFERENCE_MODE_SELECT = 2,
88 REFERENCE_MODES = 3,
89 } UENUM1BYTE(REFERENCE_MODE);
90
91 enum {
92 /**
93 * Frame context updates are disabled
94 */
95 REFRESH_FRAME_CONTEXT_DISABLED,
96 /**
97 * Update frame context to values resulting from backward probability
98 * updates based on entropy/counts in the decoded frame
99 */
100 REFRESH_FRAME_CONTEXT_BACKWARD,
101 } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
102
103 #define MFMV_STACK_SIZE 3
104 typedef struct {
105 int_mv mfmv0;
106 uint8_t ref_frame_offset;
107 } TPL_MV_REF;
108
109 typedef struct {
110 int_mv mv;
111 MV_REFERENCE_FRAME ref_frame;
112 } MV_REF;
113
114 typedef struct RefCntBuffer {
115 // For a RefCntBuffer, the following are reference-holding variables:
116 // - cm->ref_frame_map[]
117 // - cm->cur_frame
118 // - cm->scaled_ref_buf[] (encoder only)
119 // - pbi->output_frame_index[] (decoder only)
120 // With that definition, 'ref_count' is the number of reference-holding
121 // variables that are currently referencing this buffer.
122 // For example:
123 // - suppose this buffer is at index 'k' in the buffer pool, and
124 // - Total 'n' of the variables / array elements above have value 'k' (that
125 // is, they are pointing to buffer at index 'k').
126 // Then, pool->frame_bufs[k].ref_count = n.
127 int ref_count;
128
129 unsigned int order_hint;
130 unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
131
132 // These variables are used only in encoder and compare the absolute
133 // display order hint to compute the relative distance and overcome
134 // the limitation of get_relative_dist() which returns incorrect
135 // distance when a very old frame is used as a reference.
136 unsigned int display_order_hint;
137 unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
138 // Frame's level within the hierarchical structure.
139 unsigned int pyramid_level;
140 MV_REF *mvs;
141 uint8_t *seg_map;
142 struct segmentation seg;
143 int mi_rows;
144 int mi_cols;
145 // Width and height give the size of the buffer (before any upscaling, unlike
146 // the sizes that can be derived from the buf structure)
147 int width;
148 int height;
149 WarpedMotionParams global_motion[REF_FRAMES];
150 int showable_frame; // frame can be used as show existing frame in future
151 uint8_t film_grain_params_present;
152 aom_film_grain_t film_grain_params;
153 aom_codec_frame_buffer_t raw_frame_buffer;
154 YV12_BUFFER_CONFIG buf;
155 int temporal_id; // Temporal layer ID of the frame
156 int spatial_id; // Spatial layer ID of the frame
157 FRAME_TYPE frame_type;
158
159 // This is only used in the encoder but needs to be indexed per ref frame
160 // so it's extremely convenient to keep it here.
161 int interp_filter_selected[SWITCHABLE];
162
163 // Inter frame reference frame delta for loop filter
164 int8_t ref_deltas[REF_FRAMES];
165
166 // 0 = ZERO_MV, MV
167 int8_t mode_deltas[MAX_MODE_LF_DELTAS];
168
169 FRAME_CONTEXT frame_context;
170 } RefCntBuffer;
171
172 typedef struct BufferPool {
173 // Protect BufferPool from being accessed by several FrameWorkers at
174 // the same time during frame parallel decode.
175 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
176 // TODO(wtc): Remove this. See
177 // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
178 #if CONFIG_MULTITHREAD
179 pthread_mutex_t pool_mutex;
180 #endif
181
182 // Private data associated with the frame buffer callbacks.
183 void *cb_priv;
184
185 aom_get_frame_buffer_cb_fn_t get_fb_cb;
186 aom_release_frame_buffer_cb_fn_t release_fb_cb;
187
188 RefCntBuffer *frame_bufs;
189 uint8_t num_frame_bufs;
190
191 // Frame buffers allocated internally by the codec.
192 InternalFrameBufferList int_frame_buffers;
193 } BufferPool;
194
195 /*!\endcond */
196
197 /*!\brief Parameters related to CDEF */
198 typedef struct {
199 //! CDEF column line buffer
200 uint16_t *colbuf[MAX_MB_PLANE];
201 //! CDEF top & bottom line buffer
202 uint16_t *linebuf[MAX_MB_PLANE];
203 //! CDEF intermediate buffer
204 uint16_t *srcbuf;
205 //! CDEF column line buffer sizes
206 size_t allocated_colbuf_size[MAX_MB_PLANE];
207 //! CDEF top and bottom line buffer sizes
208 size_t allocated_linebuf_size[MAX_MB_PLANE];
209 //! CDEF intermediate buffer size
210 size_t allocated_srcbuf_size;
211 //! CDEF damping factor
212 int cdef_damping;
213 //! Number of CDEF strength values
214 int nb_cdef_strengths;
215 //! CDEF strength values for luma
216 int cdef_strengths[CDEF_MAX_STRENGTHS];
217 //! CDEF strength values for chroma
218 int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
219 //! Number of CDEF strength values in bits
220 int cdef_bits;
221 //! Number of rows in the frame in 4 pixel
222 int allocated_mi_rows;
223 //! Number of CDEF workers
224 int allocated_num_workers;
225 } CdefInfo;
226
227 /*!\cond */
228
229 typedef struct {
230 int delta_q_present_flag;
231 // Resolution of delta quant
232 int delta_q_res;
233 int delta_lf_present_flag;
234 // Resolution of delta lf level
235 int delta_lf_res;
236 // This is a flag for number of deltas of loop filter level
237 // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
238 // 1: use separate deltas for each filter level
239 int delta_lf_multi;
240 } DeltaQInfo;
241
242 typedef struct {
243 int enable_order_hint; // 0 - disable order hint, and related tools
244 int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
245 // frame_sign_bias
246 // if 0, enable_dist_wtd_comp and
247 // enable_ref_frame_mvs must be set as 0.
248 int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
249 // 1 - enable it
250 int enable_ref_frame_mvs; // 0 - disable ref frame mvs
251 // 1 - enable it
252 } OrderHintInfo;
253
254 // Sequence header structure.
255 // Note: All syntax elements of sequence_header_obu that need to be
256 // bit-identical across multiple sequence headers must be part of this struct,
257 // so that consistency is checked by are_seq_headers_consistent() function.
258 // One exception is the last member 'op_params' that is ignored by
259 // are_seq_headers_consistent() function.
260 typedef struct SequenceHeader {
261 int num_bits_width;
262 int num_bits_height;
263 int max_frame_width;
264 int max_frame_height;
265 // Whether current and reference frame IDs are signaled in the bitstream.
266 // Frame id numbers are additional information that do not affect the
267 // decoding process, but provide decoders with a way of detecting missing
268 // reference frames so that appropriate action can be taken.
269 uint8_t frame_id_numbers_present_flag;
270 int frame_id_length;
271 int delta_frame_id_length;
272 BLOCK_SIZE sb_size; // Size of the superblock used for this frame
273 int mib_size; // Size of the superblock in units of MI blocks
274 int mib_size_log2; // Log 2 of above.
275
276 OrderHintInfo order_hint_info;
277
278 uint8_t force_screen_content_tools; // 0 - force off
279 // 1 - force on
280 // 2 - adaptive
281 uint8_t still_picture; // Video is a single frame still picture
282 uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
283 uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
284 // 1 - force to integer
285 // 2 - adaptive
286 uint8_t enable_filter_intra; // enables/disables filterintra
287 uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
288 uint8_t enable_interintra_compound; // enables/disables interintra_compound
289 uint8_t enable_masked_compound; // enables/disables masked compound
290 uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
291 // 1 - enable vert/horz filter selection
292 uint8_t enable_warped_motion; // 0 - disable warp for the sequence
293 // 1 - enable warp for the sequence
294 uint8_t enable_superres; // 0 - Disable superres for the sequence
295 // and no frame level superres flag
296 // 1 - Enable superres for the sequence
297 // enable per-frame superres flag
298 uint8_t enable_cdef; // To turn on/off CDEF
299 uint8_t enable_restoration; // To turn on/off loop restoration
300 BITSTREAM_PROFILE profile;
301
302 // Color config.
303 aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
304 // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
305 uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
306 uint8_t monochrome; // Monochrome video
307 aom_color_primaries_t color_primaries;
308 aom_transfer_characteristics_t transfer_characteristics;
309 aom_matrix_coefficients_t matrix_coefficients;
310 int color_range;
311 int subsampling_x; // Chroma subsampling for x
312 int subsampling_y; // Chroma subsampling for y
313 aom_chroma_sample_position_t chroma_sample_position;
314 uint8_t separate_uv_delta_q;
315 uint8_t film_grain_params_present;
316
317 // Operating point info.
318 int operating_points_cnt_minus_1;
319 int operating_point_idc[MAX_NUM_OPERATING_POINTS];
320 int timing_info_present;
321 aom_timing_info_t timing_info;
322 uint8_t decoder_model_info_present_flag;
323 aom_dec_model_info_t decoder_model_info;
324 uint8_t display_model_info_present_flag;
325 AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
326 uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
327
328 // IMPORTANT: the op_params member must be at the end of the struct so that
329 // are_seq_headers_consistent() can be implemented with a memcmp() call.
330 // TODO(urvang): We probably don't need the +1 here.
331 aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
332 } SequenceHeader;
333
334 typedef struct {
335 int skip_mode_allowed;
336 int skip_mode_flag;
337 int ref_frame_idx_0;
338 int ref_frame_idx_1;
339 } SkipModeInfo;
340
341 typedef struct {
342 FRAME_TYPE frame_type;
343 REFERENCE_MODE reference_mode;
344
345 unsigned int order_hint;
346 unsigned int display_order_hint;
347 // Frame's level within the hierarchical structure.
348 unsigned int pyramid_level;
349 unsigned int frame_number;
350 SkipModeInfo skip_mode_info;
351 int refresh_frame_flags; // Which ref frames are overwritten by this frame
352 int frame_refs_short_signaling;
353 } CurrentFrame;
354
355 /*!\endcond */
356
357 /*!
358 * \brief Frame level features.
359 */
360 typedef struct {
361 /*!
362 * If true, CDF update in the symbol encoding/decoding process is disabled.
363 */
364 bool disable_cdf_update;
365 /*!
366 * If true, motion vectors are specified to eighth pel precision; and
367 * if false, motion vectors are specified to quarter pel precision.
368 */
369 bool allow_high_precision_mv;
370 /*!
371 * If true, force integer motion vectors; if false, use the default.
372 */
373 bool cur_frame_force_integer_mv;
374 /*!
375 * If true, palette tool and/or intra block copy tools may be used.
376 */
377 bool allow_screen_content_tools;
378 bool allow_intrabc; /*!< If true, intra block copy tool may be used. */
379 bool allow_warped_motion; /*!< If true, frame may use warped motion mode. */
380 /*!
381 * If true, using previous frames' motion vectors for prediction is allowed.
382 */
383 bool allow_ref_frame_mvs;
384 /*!
385 * If true, frame is fully lossless at coded resolution.
386 * */
387 bool coded_lossless;
388 /*!
389 * If true, frame is fully lossless at upscaled resolution.
390 */
391 bool all_lossless;
392 /*!
393 * If true, the frame is restricted to a reduced subset of the full set of
394 * transform types.
395 */
396 bool reduced_tx_set_used;
397 /*!
398 * If true, error resilient mode is enabled.
399 * Note: Error resilient mode allows the syntax of a frame to be parsed
400 * independently of previously decoded frames.
401 */
402 bool error_resilient_mode;
403 /*!
404 * If false, only MOTION_MODE that may be used is SIMPLE_TRANSLATION;
405 * if true, all MOTION_MODES may be used.
406 */
407 bool switchable_motion_mode;
408 TX_MODE tx_mode; /*!< Transform mode at frame level. */
409 InterpFilter interp_filter; /*!< Interpolation filter at frame level. */
410 /*!
411 * The reference frame that contains the CDF values and other state that
412 * should be loaded at the start of the frame.
413 */
414 int primary_ref_frame;
415 /*!
416 * Byte alignment of the planes in the reference buffers.
417 */
418 int byte_alignment;
419 /*!
420 * Flag signaling how frame contexts should be updated at the end of
421 * a frame decode.
422 */
423 REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
424 } FeatureFlags;
425
426 /*!
427 * \brief Params related to tiles.
428 */
429 typedef struct CommonTileParams {
430 int cols; /*!< number of tile columns that frame is divided into */
431 int rows; /*!< number of tile rows that frame is divided into */
432 int max_width_sb; /*!< maximum tile width in superblock units. */
433 int max_height_sb; /*!< maximum tile height in superblock units. */
434
435 /*!
436 * Min width of non-rightmost tile in MI units. Only valid if cols > 1.
437 */
438 int min_inner_width;
439
440 /*!
441 * If true, tiles are uniformly spaced with power-of-two number of rows and
442 * columns.
443 * If false, tiles have explicitly configured widths and heights.
444 */
445 int uniform_spacing;
446
447 /**
448 * \name Members only valid when uniform_spacing == 1
449 */
450 /**@{*/
451 int log2_cols; /*!< log2 of 'cols'. */
452 int log2_rows; /*!< log2 of 'rows'. */
453 int width; /*!< tile width in MI units */
454 int height; /*!< tile height in MI units */
455 /**@}*/
456
457 /*!
458 * Min num of tile columns possible based on 'max_width_sb' and frame width.
459 */
460 int min_log2_cols;
461 /*!
462 * Min num of tile rows possible based on 'max_height_sb' and frame height.
463 */
464 int min_log2_rows;
465 /*!
466 * Max num of tile columns possible based on frame width.
467 */
468 int max_log2_cols;
469 /*!
470 * Max num of tile rows possible based on frame height.
471 */
472 int max_log2_rows;
473 /*!
474 * log2 of min number of tiles (same as min_log2_cols + min_log2_rows).
475 */
476 int min_log2;
477 /*!
478 * col_start_sb[i] is the start position of tile column i in superblock units.
479 * valid for 0 <= i <= cols
480 */
481 int col_start_sb[MAX_TILE_COLS + 1];
482 /*!
483 * row_start_sb[i] is the start position of tile row i in superblock units.
484 * valid for 0 <= i <= rows
485 */
486 int row_start_sb[MAX_TILE_ROWS + 1];
487 /*!
488 * If true, we are using large scale tile mode.
489 */
490 unsigned int large_scale;
491 /*!
492 * Only relevant when large_scale == 1.
493 * If true, the independent decoding of a single tile or a section of a frame
494 * is allowed.
495 */
496 unsigned int single_tile_decoding;
497 } CommonTileParams;
498
499 typedef struct CommonModeInfoParams CommonModeInfoParams;
500 /*!
501 * \brief Params related to MB_MODE_INFO arrays and related info.
502 */
503 struct CommonModeInfoParams {
504 /*!
505 * Number of rows in the frame in 16 pixel units.
506 * This is computed from frame height aligned to a multiple of 8.
507 */
508 int mb_rows;
509 /*!
510 * Number of cols in the frame in 16 pixel units.
511 * This is computed from frame width aligned to a multiple of 8.
512 */
513 int mb_cols;
514
515 /*!
516 * Total MBs = mb_rows * mb_cols.
517 */
518 int MBs;
519
520 /*!
521 * Number of rows in the frame in 4 pixel (MB_MODE_INFO) units.
522 * This is computed from frame height aligned to a multiple of 8.
523 */
524 int mi_rows;
525 /*!
526 * Number of cols in the frame in 4 pixel (MB_MODE_INFO) units.
527 * This is computed from frame width aligned to a multiple of 8.
528 */
529 int mi_cols;
530
531 /*!
532 * An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block
533 * in the frame.
534 * Note: This array should be treated like a scratch memory, and should NOT be
535 * accessed directly, in most cases. Please use 'mi_grid_base' array instead.
536 */
537 MB_MODE_INFO *mi_alloc;
538 /*!
539 * Number of allocated elements in 'mi_alloc'.
540 */
541 int mi_alloc_size;
542 /*!
543 * Stride for 'mi_alloc' array.
544 */
545 int mi_alloc_stride;
546 /*!
547 * The minimum block size that each element in 'mi_alloc' can correspond to.
548 * For decoder, this is always BLOCK_4X4.
549 * For encoder, this is BLOCK_8X8 for resolution >= 4k case or REALTIME mode
550 * case. Otherwise, this is BLOCK_4X4.
551 */
552 BLOCK_SIZE mi_alloc_bsize;
553
554 /*!
555 * Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'.
556 * It's possible that:
557 * - Multiple pointers in the grid point to the same element in 'mi_alloc'
558 * (for example, for all 4x4 blocks that belong to the same partition block).
559 * - Some pointers can be NULL (for example, for blocks outside visible area).
560 */
561 MB_MODE_INFO **mi_grid_base;
562 /*!
563 * Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also).
564 */
565 int mi_grid_size;
566 /*!
567 * Stride for 'mi_grid_base' (and 'tx_type_map' also).
568 */
569 int mi_stride;
570
571 /*!
572 * An array of tx types for each 4x4 block in the frame.
573 * Number of allocated elements is same as 'mi_grid_size', and stride is
574 * same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of
575 * 'mi_grid_base'.
576 */
577 TX_TYPE *tx_type_map;
578
579 /**
580 * \name Function pointers to allow separate logic for encoder and decoder.
581 */
582 /**@{*/
583 /*!
584 * Free the memory allocated to arrays in 'mi_params'.
585 * \param[in,out] mi_params object containing common mode info parameters
586 */
587 void (*free_mi)(struct CommonModeInfoParams *mi_params);
588 /*!
589 * Initialize / reset appropriate arrays in 'mi_params'.
590 * \param[in,out] mi_params object containing common mode info parameters
591 */
592 void (*setup_mi)(struct CommonModeInfoParams *mi_params);
593 /*!
594 * Allocate required memory for arrays in 'mi_params'.
595 * \param[in,out] mi_params object containing common mode info
596 * parameters
597 * \param width frame width
598 * \param height frame height
599 * \param min_partition_size minimum partition size allowed while
600 * encoding
601 */
602 void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
603 int height, BLOCK_SIZE min_partition_size);
604 /**@}*/
605 };
606
607 typedef struct CommonQuantParams CommonQuantParams;
608 /*!
609 * \brief Parameters related to quantization at the frame level.
610 */
611 struct CommonQuantParams {
612 /*!
613 * Base qindex of the frame in the range 0 to 255.
614 */
615 int base_qindex;
616
617 /*!
618 * Delta of qindex (from base_qindex) for Y plane DC coefficient.
619 * Note: y_ac_delta_q is implicitly 0.
620 */
621 int y_dc_delta_q;
622
623 /*!
624 * Delta of qindex (from base_qindex) for U plane DC coefficients.
625 */
626 int u_dc_delta_q;
627 /*!
628 * Delta of qindex (from base_qindex) for U plane AC coefficients.
629 */
630 int v_dc_delta_q;
631
632 /*!
633 * Delta of qindex (from base_qindex) for V plane DC coefficients.
634 * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
635 */
636 int u_ac_delta_q;
637 /*!
638 * Delta of qindex (from base_qindex) for V plane AC coefficients.
639 * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
640 */
641 int v_ac_delta_q;
642
643 /*
644 * Note: The qindex per superblock may have a delta from the qindex obtained
645 * at frame level from parameters above, based on 'cm->delta_q_info'.
646 */
647
648 /**
649 * \name True dequantizers.
650 * The dequantizers below are true dequantizers used only in the
651 * dequantization process. They have the same coefficient
652 * shift/scale as TX.
653 */
654 /**@{*/
655 int16_t y_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for Y plane */
656 int16_t u_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for U plane */
657 int16_t v_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for V plane */
658 /**@}*/
659
660 /**
661 * \name Global quantization matrix tables.
662 */
663 /**@{*/
664 /*!
665 * Global dequantization matrix table.
666 */
667 const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
668 /*!
669 * Global quantization matrix table.
670 */
671 const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
672 /**@}*/
673
674 /**
675 * \name Local dequantization matrix tables for each frame.
676 */
677 /**@{*/
678 /*!
679 * Local dequant matrix for Y plane.
680 */
681 const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
682 /*!
683 * Local dequant matrix for U plane.
684 */
685 const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
686 /*!
687 * Local dequant matrix for V plane.
688 */
689 const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
690 /**@}*/
691
692 /*!
693 * Flag indicating whether quantization matrices are being used:
694 * - If true, qm_level_y, qm_level_u and qm_level_v indicate the level
695 * indices to be used to access appropriate global quant matrix tables.
696 * - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'.
697 */
698 bool using_qmatrix;
699 /**
700 * \name Valid only when using_qmatrix == true
701 * Indicate the level indices to be used to access appropriate global quant
702 * matrix tables.
703 */
704 /**@{*/
705 int qmatrix_level_y; /*!< Level index for Y plane */
706 int qmatrix_level_u; /*!< Level index for U plane */
707 int qmatrix_level_v; /*!< Level index for V plane */
708 /**@}*/
709 };
710
711 typedef struct CommonContexts CommonContexts;
712 /*!
713 * \brief Contexts used for transmitting various symbols in the bitstream.
714 */
715 struct CommonContexts {
716 /*!
717 * Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type.
718 * partition[i][j] is the context for ith tile row, jth mi_col.
719 */
720 PARTITION_CONTEXT **partition;
721
722 /*!
723 * Context used to derive context for multiple symbols:
724 * - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit
725 * to transmit skip_txfm flag.
726 * - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit
727 * sign.
728 * entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col.
729 */
730 ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
731
732 /*!
733 * Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to
734 * transmit 'is_split' flag to indicate if this transform block should be
735 * split into smaller sub-blocks.
736 * txfm[i][j] is the context for ith tile row, jth mi_col.
737 */
738 TXFM_CONTEXT **txfm;
739
740 /*!
741 * Dimensions that were used to allocate the arrays above.
742 * If these dimensions change, the arrays may have to be re-allocated.
743 */
744 int num_planes; /*!< Corresponds to av1_num_planes(cm) */
745 int num_tile_rows; /*!< Corresponds to cm->tiles.row */
746 int num_mi_cols; /*!< Corresponds to cm->mi_params.mi_cols */
747 };
748
749 /*!
750 * \brief Top level common structure used by both encoder and decoder.
751 */
752 typedef struct AV1Common {
753 /*!
754 * Information about the current frame that is being coded.
755 */
756 CurrentFrame current_frame;
757 /*!
758 * Code and details about current error status.
759 */
760 struct aom_internal_error_info *error;
761
762 /*!
763 * AV1 allows two types of frame scaling operations:
764 * 1. Frame super-resolution: that allows coding a frame at lower resolution
765 * and after decoding the frame, normatively scales and restores the frame --
766 * inside the coding loop.
767 * 2. Frame resize: that allows coding frame at lower/higher resolution, and
768 * then non-normatively upscale the frame at the time of rendering -- outside
769 * the coding loop.
770 * Hence, the need for 3 types of dimensions.
771 */
772
773 /**
774 * \name Coded frame dimensions.
775 */
776 /**@{*/
777 int width; /*!< Coded frame width */
778 int height; /*!< Coded frame height */
779 /**@}*/
780
781 /**
782 * \name Rendered frame dimensions.
783 * Dimensions after applying both super-resolution and resize to the coded
784 * frame. Different from coded dimensions if super-resolution and/or resize
785 * are being used for this frame.
786 */
787 /**@{*/
788 int render_width; /*!< Rendered frame width */
789 int render_height; /*!< Rendered frame height */
790 /**@}*/
791
792 /**
793 * \name Super-resolved frame dimensions.
794 * Frame dimensions after applying super-resolution to the coded frame (if
795 * present), but before applying resize.
796 * Larger than the coded dimensions if super-resolution is being used for
797 * this frame.
798 * Different from rendered dimensions if resize is being used for this frame.
799 */
800 /**@{*/
801 int superres_upscaled_width; /*!< Super-resolved frame width */
802 int superres_upscaled_height; /*!< Super-resolved frame height */
803 /**@}*/
804
805 /*!
806 * The denominator of the superres scale used by this frame.
807 * Note: The numerator is fixed to be SCALE_NUMERATOR.
808 */
809 uint8_t superres_scale_denominator;
810
811 /*!
812 * buffer_removal_times[op_num] specifies the frame removal time in units of
813 * DecCT clock ticks counted from the removal time of the last random access
814 * point for operating point op_num.
815 * TODO(urvang): We probably don't need the +1 here.
816 */
817 uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
818 /*!
819 * Presentation time of the frame in clock ticks DispCT counted from the
820 * removal time of the last random access point for the operating point that
821 * is being decoded.
822 */
823 uint32_t frame_presentation_time;
824
825 /*!
826 * Buffer where previous frame is stored.
827 */
828 RefCntBuffer *prev_frame;
829
830 /*!
831 * Buffer into which the current frame will be stored and other related info.
832 * TODO(hkuang): Combine this with cur_buf in macroblockd.
833 */
834 RefCntBuffer *cur_frame;
835
836 /*!
837 * For encoder, we have a two-level mapping from reference frame type to the
838 * corresponding buffer in the buffer pool:
839 * * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ...
840 * EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1)
841 * * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to
842 * the reference counted buffer structure RefCntBuffer, taken from the buffer
843 * pool cm->buffer_pool->frame_bufs.
844 *
845 * LAST_FRAME, ..., EXTREF_FRAME
846 * | |
847 * v v
848 * remapped_ref_idx[LAST_FRAME - 1], ..., remapped_ref_idx[EXTREF_FRAME - 1]
849 * | |
850 * v v
851 * ref_frame_map[], ..., ref_frame_map[]
852 *
853 * Note: INTRA_FRAME always refers to the current frame, so there's no need to
854 * have a remapped index for the same.
855 */
856 int remapped_ref_idx[REF_FRAMES];
857
858 /*!
859 * Scale of the current frame with respect to itself.
860 * This is currently used for intra block copy, which behaves like an inter
861 * prediction mode, where the reference frame is the current frame itself.
862 */
863 struct scale_factors sf_identity;
864
865 /*!
866 * Scale factors of the reference frame with respect to the current frame.
867 * This is required for generating inter prediction and will be non-identity
868 * for a reference frame, if it has different dimensions than the coded
869 * dimensions of the current frame.
870 */
871 struct scale_factors ref_scale_factors[REF_FRAMES];
872
873 /*!
874 * For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to
875 * the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
876 * For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps
877 * remapped reference index 'j' (that is, original reference type 'i') to
878 * a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
879 */
880 RefCntBuffer *ref_frame_map[REF_FRAMES];
881
882 /*!
883 * If true, this frame is actually shown after decoding.
884 * If false, this frame is coded in the bitstream, but not shown. It is only
885 * used as a reference for other frames coded later.
886 */
887 int show_frame;
888
889 /*!
890 * If true, this frame can be used as a show-existing frame for other frames
891 * coded later.
892 * When 'show_frame' is true, this is always true for all non-keyframes.
893 * When 'show_frame' is false, this value is transmitted in the bitstream.
894 */
895 int showable_frame;
896
897 /*!
898 * If true, show an existing frame coded before, instead of actually coding a
899 * frame. The existing frame comes from one of the existing reference buffers,
900 * as signaled in the bitstream.
901 */
902 int show_existing_frame;
903
904 /*!
905 * Whether some features are allowed or not.
906 */
907 FeatureFlags features;
908
909 /*!
910 * Params related to MB_MODE_INFO arrays and related info.
911 */
912 CommonModeInfoParams mi_params;
913
914 #if CONFIG_ENTROPY_STATS
915 /*!
916 * Context type used by token CDFs, in the range 0 .. (TOKEN_CDF_Q_CTXS - 1).
917 */
918 int coef_cdf_category;
919 #endif // CONFIG_ENTROPY_STATS
920
921 /*!
922 * Quantization params.
923 */
924 CommonQuantParams quant_params;
925
926 /*!
927 * Segmentation info for current frame.
928 */
929 struct segmentation seg;
930
931 /*!
932 * Segmentation map for previous frame.
933 */
934 uint8_t *last_frame_seg_map;
935
936 /**
937 * \name Deblocking filter parameters.
938 */
939 /**@{*/
940 loop_filter_info_n lf_info; /*!< Loop filter info */
941 struct loopfilter lf; /*!< Loop filter parameters */
942 /**@}*/
943
944 /**
945 * \name Loop Restoration filter parameters.
946 */
947 /**@{*/
948 RestorationInfo rst_info[MAX_MB_PLANE]; /*!< Loop Restoration filter info */
949 int32_t *rst_tmpbuf; /*!< Scratch buffer for self-guided restoration */
950 RestorationLineBuffers *rlbs; /*!< Line buffers needed by loop restoration */
951 YV12_BUFFER_CONFIG rst_frame; /*!< Stores the output of loop restoration */
952 /**@}*/
953
954 /*!
955 * CDEF (Constrained Directional Enhancement Filter) parameters.
956 */
957 CdefInfo cdef_info;
958
959 /*!
960 * Parameters for film grain synthesis.
961 */
962 aom_film_grain_t film_grain_params;
963
964 /*!
965 * Parameters for delta quantization and delta loop filter level.
966 */
967 DeltaQInfo delta_q_info;
968
969 /*!
970 * Global motion parameters for each reference frame.
971 */
972 WarpedMotionParams global_motion[REF_FRAMES];
973
974 /*!
975 * Elements part of the sequence header, that are applicable for all the
976 * frames in the video.
977 */
978 SequenceHeader *seq_params;
979
980 /*!
981 * Current CDFs of all the symbols for the current frame.
982 */
983 FRAME_CONTEXT *fc;
984 /*!
985 * Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE
986 * (e.g. for a keyframe). These default CDFs are defined by the bitstream and
987 * copied from default CDF tables for each symbol.
988 */
989 FRAME_CONTEXT *default_frame_context;
990
991 /*!
992 * Parameters related to tiling.
993 */
994 CommonTileParams tiles;
995
996 /*!
997 * External BufferPool passed from outside.
998 */
999 BufferPool *buffer_pool;
1000
1001 /*!
1002 * Above context buffers and their sizes.
1003 * Note: above contexts are allocated in this struct, as their size is
1004 * dependent on frame width, while left contexts are declared and allocated in
1005 * MACROBLOCKD struct, as they have a fixed size.
1006 */
1007 CommonContexts above_contexts;
1008
1009 /**
1010 * \name Signaled when cm->seq_params->frame_id_numbers_present_flag == 1
1011 */
1012 /**@{*/
1013 int current_frame_id; /*!< frame ID for the current frame. */
1014 int ref_frame_id[REF_FRAMES]; /*!< frame IDs for the reference frames. */
1015 /**@}*/
1016
1017 /*!
1018 * Motion vectors provided by motion field estimation.
1019 * tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where:
1020 * mi_row = 2 * row,
1021 * mi_col = 2 * col, and
1022 * stride = cm->mi_params.mi_stride / 2
1023 */
1024 TPL_MV_REF *tpl_mvs;
1025 /*!
1026 * Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function.
1027 */
1028 int tpl_mvs_mem_size;
1029 /*!
1030 * ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and
1031 * current frame is positive; and 0 otherwise.
1032 */
1033 int ref_frame_sign_bias[REF_FRAMES];
1034 /*!
1035 * ref_frame_side[k] is 1 if relative distance between reference 'k' and
1036 * current frame is positive, -1 if relative distance is 0; and 0 otherwise.
1037 * TODO(jingning): This can be combined with sign_bias later.
1038 */
1039 int8_t ref_frame_side[REF_FRAMES];
1040
1041 /*!
1042 * Temporal layer ID of this frame
1043 * (in the range 0 ... (number_temporal_layers - 1)).
1044 */
1045 int temporal_layer_id;
1046
1047 /*!
1048 * Spatial layer ID of this frame
1049 * (in the range 0 ... (number_spatial_layers - 1)).
1050 */
1051 int spatial_layer_id;
1052
1053 #if TXCOEFF_TIMER
1054 int64_t cum_txcoeff_timer;
1055 int64_t txcoeff_timer;
1056 int txb_count;
1057 #endif // TXCOEFF_TIMER
1058
1059 #if TXCOEFF_COST_TIMER
1060 int64_t cum_txcoeff_cost_timer;
1061 int64_t txcoeff_cost_timer;
1062 int64_t txcoeff_cost_count;
1063 #endif // TXCOEFF_COST_TIMER
1064 } AV1_COMMON;
1065
1066 /*!\cond */
1067
1068 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1069 // frame reference count.
lock_buffer_pool(BufferPool * const pool)1070 static void lock_buffer_pool(BufferPool *const pool) {
1071 #if CONFIG_MULTITHREAD
1072 pthread_mutex_lock(&pool->pool_mutex);
1073 #else
1074 (void)pool;
1075 #endif
1076 }
1077
unlock_buffer_pool(BufferPool * const pool)1078 static void unlock_buffer_pool(BufferPool *const pool) {
1079 #if CONFIG_MULTITHREAD
1080 pthread_mutex_unlock(&pool->pool_mutex);
1081 #else
1082 (void)pool;
1083 #endif
1084 }
1085
get_ref_frame(AV1_COMMON * cm,int index)1086 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1087 if (index < 0 || index >= REF_FRAMES) return NULL;
1088 if (cm->ref_frame_map[index] == NULL) return NULL;
1089 return &cm->ref_frame_map[index]->buf;
1090 }
1091
get_free_fb(AV1_COMMON * cm)1092 static INLINE int get_free_fb(AV1_COMMON *cm) {
1093 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1094 int i;
1095
1096 lock_buffer_pool(cm->buffer_pool);
1097 const int num_frame_bufs = cm->buffer_pool->num_frame_bufs;
1098 for (i = 0; i < num_frame_bufs; ++i)
1099 if (frame_bufs[i].ref_count == 0) break;
1100
1101 if (i != num_frame_bufs) {
1102 if (frame_bufs[i].buf.use_external_reference_buffers) {
1103 // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1104 // external reference buffers. Restore the buffer pointers to point to the
1105 // internally allocated memory.
1106 YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1107 ybf->y_buffer = ybf->store_buf_adr[0];
1108 ybf->u_buffer = ybf->store_buf_adr[1];
1109 ybf->v_buffer = ybf->store_buf_adr[2];
1110 ybf->use_external_reference_buffers = 0;
1111 }
1112
1113 frame_bufs[i].ref_count = 1;
1114 } else {
1115 // We should never run out of free buffers. If this assertion fails, there
1116 // is a reference leak.
1117 assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
1118 // Reset i to be INVALID_IDX to indicate no free buffer found.
1119 i = INVALID_IDX;
1120 }
1121
1122 unlock_buffer_pool(cm->buffer_pool);
1123 return i;
1124 }
1125
assign_cur_frame_new_fb(AV1_COMMON * const cm)1126 static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1127 // Release the previously-used frame-buffer
1128 if (cm->cur_frame != NULL) {
1129 --cm->cur_frame->ref_count;
1130 cm->cur_frame = NULL;
1131 }
1132
1133 // Assign a new framebuffer
1134 const int new_fb_idx = get_free_fb(cm);
1135 if (new_fb_idx == INVALID_IDX) return NULL;
1136
1137 cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1138 #if CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1139 aom_invalidate_pyramid(cm->cur_frame->buf.y_pyramid);
1140 av1_invalidate_corner_list(cm->cur_frame->buf.corners);
1141 #endif // CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1142 av1_zero(cm->cur_frame->interp_filter_selected);
1143 return cm->cur_frame;
1144 }
1145
1146 // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1147 // counts accordingly.
assign_frame_buffer_p(RefCntBuffer ** lhs_ptr,RefCntBuffer * rhs_ptr)1148 static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1149 RefCntBuffer *rhs_ptr) {
1150 RefCntBuffer *const old_ptr = *lhs_ptr;
1151 if (old_ptr != NULL) {
1152 assert(old_ptr->ref_count > 0);
1153 // One less reference to the buffer at 'old_ptr', so decrease ref count.
1154 --old_ptr->ref_count;
1155 }
1156
1157 *lhs_ptr = rhs_ptr;
1158 // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1159 ++rhs_ptr->ref_count;
1160 }
1161
frame_is_intra_only(const AV1_COMMON * const cm)1162 static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
1163 return cm->current_frame.frame_type == KEY_FRAME ||
1164 cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1165 }
1166
frame_is_sframe(const AV1_COMMON * cm)1167 static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
1168 return cm->current_frame.frame_type == S_FRAME;
1169 }
1170
1171 // These functions take a reference frame label between LAST_FRAME and
1172 // EXTREF_FRAME inclusive. Note that this is different to the indexing
1173 // previously used by the frame_refs[] array.
get_ref_frame_map_idx(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1174 static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1175 const MV_REFERENCE_FRAME ref_frame) {
1176 return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1177 ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1178 : INVALID_IDX;
1179 }
1180
get_ref_frame_buf(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1181 static INLINE RefCntBuffer *get_ref_frame_buf(
1182 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1183 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1184 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1185 }
1186
1187 // Both const and non-const versions of this function are provided so that it
1188 // can be used with a const AV1_COMMON if needed.
get_ref_scale_factors_const(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1189 static INLINE const struct scale_factors *get_ref_scale_factors_const(
1190 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1191 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1192 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1193 }
1194
get_ref_scale_factors(AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1195 static INLINE struct scale_factors *get_ref_scale_factors(
1196 AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1197 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1198 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1199 }
1200
get_primary_ref_frame_buf(const AV1_COMMON * const cm)1201 static INLINE RefCntBuffer *get_primary_ref_frame_buf(
1202 const AV1_COMMON *const cm) {
1203 const int primary_ref_frame = cm->features.primary_ref_frame;
1204 if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
1205 const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1206 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1207 }
1208
1209 // Returns 1 if this frame might allow mvs from some reference frame.
frame_might_allow_ref_frame_mvs(const AV1_COMMON * cm)1210 static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1211 return !cm->features.error_resilient_mode &&
1212 cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
1213 cm->seq_params->order_hint_info.enable_order_hint &&
1214 !frame_is_intra_only(cm);
1215 }
1216
1217 // Returns 1 if this frame might use warped_motion
frame_might_allow_warped_motion(const AV1_COMMON * cm)1218 static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1219 return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1220 cm->seq_params->enable_warped_motion;
1221 }
1222
ensure_mv_buffer(RefCntBuffer * buf,AV1_COMMON * cm)1223 static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1224 const int buf_rows = buf->mi_rows;
1225 const int buf_cols = buf->mi_cols;
1226 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1227
1228 if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
1229 buf_cols != mi_params->mi_cols) {
1230 aom_free(buf->mvs);
1231 buf->mi_rows = mi_params->mi_rows;
1232 buf->mi_cols = mi_params->mi_cols;
1233 CHECK_MEM_ERROR(cm, buf->mvs,
1234 (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
1235 ((mi_params->mi_cols + 1) >> 1),
1236 sizeof(*buf->mvs)));
1237 aom_free(buf->seg_map);
1238 CHECK_MEM_ERROR(
1239 cm, buf->seg_map,
1240 (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
1241 sizeof(*buf->seg_map)));
1242 }
1243
1244 const int mem_size =
1245 ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
1246
1247 if (cm->tpl_mvs == NULL || cm->tpl_mvs_mem_size < mem_size) {
1248 aom_free(cm->tpl_mvs);
1249 CHECK_MEM_ERROR(cm, cm->tpl_mvs,
1250 (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
1251 cm->tpl_mvs_mem_size = mem_size;
1252 }
1253 }
1254
1255 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1256
av1_num_planes(const AV1_COMMON * cm)1257 static INLINE int av1_num_planes(const AV1_COMMON *cm) {
1258 return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
1259 }
1260
av1_init_above_context(CommonContexts * above_contexts,int num_planes,int tile_row,MACROBLOCKD * xd)1261 static INLINE void av1_init_above_context(CommonContexts *above_contexts,
1262 int num_planes, int tile_row,
1263 MACROBLOCKD *xd) {
1264 for (int i = 0; i < num_planes; ++i) {
1265 xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1266 }
1267 xd->above_partition_context = above_contexts->partition[tile_row];
1268 xd->above_txfm_context = above_contexts->txfm[tile_row];
1269 }
1270
av1_init_macroblockd(AV1_COMMON * cm,MACROBLOCKD * xd)1271 static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1272 const int num_planes = av1_num_planes(cm);
1273 const CommonQuantParams *const quant_params = &cm->quant_params;
1274
1275 for (int i = 0; i < num_planes; ++i) {
1276 if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1277 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1278 sizeof(quant_params->y_dequant_QTX));
1279 memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1280 sizeof(quant_params->y_iqmatrix));
1281
1282 } else {
1283 if (i == AOM_PLANE_U) {
1284 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1285 sizeof(quant_params->u_dequant_QTX));
1286 memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1287 sizeof(quant_params->u_iqmatrix));
1288 } else {
1289 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1290 sizeof(quant_params->v_dequant_QTX));
1291 memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1292 sizeof(quant_params->v_iqmatrix));
1293 }
1294 }
1295 }
1296 xd->mi_stride = cm->mi_params.mi_stride;
1297 xd->error_info = cm->error;
1298 cfl_init(&xd->cfl, cm->seq_params);
1299 }
1300
set_entropy_context(MACROBLOCKD * xd,int mi_row,int mi_col,const int num_planes)1301 static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1302 const int num_planes) {
1303 int i;
1304 int row_offset = mi_row;
1305 int col_offset = mi_col;
1306 for (i = 0; i < num_planes; ++i) {
1307 struct macroblockd_plane *const pd = &xd->plane[i];
1308 // Offset the buffer pointer
1309 const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1310 if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1311 row_offset = mi_row - 1;
1312 if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1313 col_offset = mi_col - 1;
1314 int above_idx = col_offset;
1315 int left_idx = row_offset & MAX_MIB_MASK;
1316 pd->above_entropy_context =
1317 &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1318 pd->left_entropy_context =
1319 &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1320 }
1321 }
1322
calc_mi_size(int len)1323 static INLINE int calc_mi_size(int len) {
1324 // len is in mi units. Align to a multiple of SBs.
1325 return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
1326 }
1327
set_plane_n4(MACROBLOCKD * const xd,int bw,int bh,const int num_planes)1328 static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1329 const int num_planes) {
1330 int i;
1331 for (i = 0; i < num_planes; i++) {
1332 xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1333 xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1334
1335 xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1336 xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1337 }
1338 }
1339
set_mi_row_col(MACROBLOCKD * xd,const TileInfo * const tile,int mi_row,int bh,int mi_col,int bw,int mi_rows,int mi_cols)1340 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1341 int mi_row, int bh, int mi_col, int bw,
1342 int mi_rows, int mi_cols) {
1343 xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1344 xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1345 xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1346 xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1347
1348 xd->mi_row = mi_row;
1349 xd->mi_col = mi_col;
1350
1351 // Are edges available for intra prediction?
1352 xd->up_available = (mi_row > tile->mi_row_start);
1353
1354 const int ss_x = xd->plane[1].subsampling_x;
1355 const int ss_y = xd->plane[1].subsampling_y;
1356
1357 xd->left_available = (mi_col > tile->mi_col_start);
1358 xd->chroma_up_available = xd->up_available;
1359 xd->chroma_left_available = xd->left_available;
1360 if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1361 xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1362 if (ss_y && bh < mi_size_high[BLOCK_8X8])
1363 xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1364 if (xd->up_available) {
1365 xd->above_mbmi = xd->mi[-xd->mi_stride];
1366 } else {
1367 xd->above_mbmi = NULL;
1368 }
1369
1370 if (xd->left_available) {
1371 xd->left_mbmi = xd->mi[-1];
1372 } else {
1373 xd->left_mbmi = NULL;
1374 }
1375
1376 const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1377 ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1378 xd->is_chroma_ref = chroma_ref;
1379 if (chroma_ref) {
1380 // To help calculate the "above" and "left" chroma blocks, note that the
1381 // current block may cover multiple luma blocks (e.g., if partitioned into
1382 // 4x4 luma blocks).
1383 // First, find the top-left-most luma block covered by this chroma block
1384 MB_MODE_INFO **base_mi =
1385 &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1386
1387 // Then, we consider the luma region covered by the left or above 4x4 chroma
1388 // prediction. We want to point to the chroma reference block in that
1389 // region, which is the bottom-right-most mi unit.
1390 // This leads to the following offsets:
1391 MB_MODE_INFO *chroma_above_mi =
1392 xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1393 xd->chroma_above_mbmi = chroma_above_mi;
1394
1395 MB_MODE_INFO *chroma_left_mi =
1396 xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1397 xd->chroma_left_mbmi = chroma_left_mi;
1398 }
1399
1400 xd->height = bh;
1401 xd->width = bw;
1402
1403 xd->is_last_vertical_rect = 0;
1404 if (xd->width < xd->height) {
1405 if (!((mi_col + xd->width) & (xd->height - 1))) {
1406 xd->is_last_vertical_rect = 1;
1407 }
1408 }
1409
1410 xd->is_first_horizontal_rect = 0;
1411 if (xd->width > xd->height)
1412 if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1413 }
1414
get_y_mode_cdf(FRAME_CONTEXT * tile_ctx,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi)1415 static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1416 const MB_MODE_INFO *above_mi,
1417 const MB_MODE_INFO *left_mi) {
1418 const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1419 const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1420 const int above_ctx = intra_mode_context[above];
1421 const int left_ctx = intra_mode_context[left];
1422 return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1423 }
1424
update_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize)1425 static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
1426 int mi_col, BLOCK_SIZE subsize,
1427 BLOCK_SIZE bsize) {
1428 PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1429 PARTITION_CONTEXT *const left_ctx =
1430 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1431
1432 const int bw = mi_size_wide[bsize];
1433 const int bh = mi_size_high[bsize];
1434 memset(above_ctx, partition_context_lookup[subsize].above, bw);
1435 memset(left_ctx, partition_context_lookup[subsize].left, bh);
1436 }
1437
is_chroma_reference(int mi_row,int mi_col,BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1438 static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1439 int subsampling_x, int subsampling_y) {
1440 assert(bsize < BLOCK_SIZES_ALL);
1441 const int bw = mi_size_wide[bsize];
1442 const int bh = mi_size_high[bsize];
1443 int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1444 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1445 return ref_pos;
1446 }
1447
cdf_element_prob(const aom_cdf_prob * cdf,size_t element)1448 static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1449 size_t element) {
1450 assert(cdf != NULL);
1451 return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1452 }
1453
partition_gather_horz_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)1454 static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
1455 const aom_cdf_prob *const in,
1456 BLOCK_SIZE bsize) {
1457 (void)bsize;
1458 out[0] = CDF_PROB_TOP;
1459 out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1460 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1461 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1462 out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1463 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1464 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1465 out[0] = AOM_ICDF(out[0]);
1466 out[1] = AOM_ICDF(CDF_PROB_TOP);
1467 }
1468
partition_gather_vert_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)1469 static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
1470 const aom_cdf_prob *const in,
1471 BLOCK_SIZE bsize) {
1472 (void)bsize;
1473 out[0] = CDF_PROB_TOP;
1474 out[0] -= cdf_element_prob(in, PARTITION_VERT);
1475 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1476 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1477 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1478 out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1479 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1480 out[0] = AOM_ICDF(out[0]);
1481 out[1] = AOM_ICDF(CDF_PROB_TOP);
1482 }
1483
update_ext_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize,PARTITION_TYPE partition)1484 static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1485 int mi_col, BLOCK_SIZE subsize,
1486 BLOCK_SIZE bsize,
1487 PARTITION_TYPE partition) {
1488 if (bsize >= BLOCK_8X8) {
1489 const int hbs = mi_size_wide[bsize] / 2;
1490 BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1491 switch (partition) {
1492 case PARTITION_SPLIT:
1493 if (bsize != BLOCK_8X8) break;
1494 AOM_FALLTHROUGH_INTENDED;
1495 case PARTITION_NONE:
1496 case PARTITION_HORZ:
1497 case PARTITION_VERT:
1498 case PARTITION_HORZ_4:
1499 case PARTITION_VERT_4:
1500 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1501 break;
1502 case PARTITION_HORZ_A:
1503 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1504 update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1505 break;
1506 case PARTITION_HORZ_B:
1507 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1508 update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1509 break;
1510 case PARTITION_VERT_A:
1511 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1512 update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1513 break;
1514 case PARTITION_VERT_B:
1515 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1516 update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1517 break;
1518 default: assert(0 && "Invalid partition type");
1519 }
1520 }
1521 }
1522
partition_plane_context(const MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)1523 static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1524 int mi_col, BLOCK_SIZE bsize) {
1525 const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1526 const PARTITION_CONTEXT *left_ctx =
1527 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1528 // Minimum partition point is 8x8. Offset the bsl accordingly.
1529 const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1530 int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1531
1532 assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1533 assert(bsl >= 0);
1534
1535 return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1536 }
1537
1538 // Return the number of elements in the partition CDF when
1539 // partitioning the (square) block with luma block size of bsize.
partition_cdf_length(BLOCK_SIZE bsize)1540 static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
1541 if (bsize <= BLOCK_8X8)
1542 return PARTITION_TYPES;
1543 else if (bsize == BLOCK_128X128)
1544 return EXT_PARTITION_TYPES - 2;
1545 else
1546 return EXT_PARTITION_TYPES;
1547 }
1548
max_block_wide(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1549 static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1550 int plane) {
1551 assert(bsize < BLOCK_SIZES_ALL);
1552 int max_blocks_wide = block_size_wide[bsize];
1553
1554 if (xd->mb_to_right_edge < 0) {
1555 const struct macroblockd_plane *const pd = &xd->plane[plane];
1556 max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1557 }
1558
1559 // Scale the width in the transform block unit.
1560 return max_blocks_wide >> MI_SIZE_LOG2;
1561 }
1562
max_block_high(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1563 static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1564 int plane) {
1565 int max_blocks_high = block_size_high[bsize];
1566
1567 if (xd->mb_to_bottom_edge < 0) {
1568 const struct macroblockd_plane *const pd = &xd->plane[plane];
1569 max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1570 }
1571
1572 // Scale the height in the transform block unit.
1573 return max_blocks_high >> MI_SIZE_LOG2;
1574 }
1575
av1_zero_above_context(AV1_COMMON * const cm,const MACROBLOCKD * xd,int mi_col_start,int mi_col_end,const int tile_row)1576 static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
1577 const MACROBLOCKD *xd,
1578 int mi_col_start, int mi_col_end,
1579 const int tile_row) {
1580 const SequenceHeader *const seq_params = cm->seq_params;
1581 const int num_planes = av1_num_planes(cm);
1582 const int width = mi_col_end - mi_col_start;
1583 const int aligned_width =
1584 ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1585 const int offset_y = mi_col_start;
1586 const int width_y = aligned_width;
1587 const int offset_uv = offset_y >> seq_params->subsampling_x;
1588 const int width_uv = width_y >> seq_params->subsampling_x;
1589 CommonContexts *const above_contexts = &cm->above_contexts;
1590
1591 av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1592 if (num_planes > 1) {
1593 if (above_contexts->entropy[1][tile_row] &&
1594 above_contexts->entropy[2][tile_row]) {
1595 av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1596 width_uv);
1597 av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1598 width_uv);
1599 } else {
1600 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1601 "Invalid value of planes");
1602 }
1603 }
1604
1605 av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1606 aligned_width);
1607
1608 memset(above_contexts->txfm[tile_row] + mi_col_start,
1609 tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1610 }
1611
av1_zero_left_context(MACROBLOCKD * const xd)1612 static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
1613 av1_zero(xd->left_entropy_context);
1614 av1_zero(xd->left_partition_context);
1615
1616 memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1617 sizeof(xd->left_txfm_context_buffer));
1618 }
1619
set_txfm_ctx(TXFM_CONTEXT * txfm_ctx,uint8_t txs,int len)1620 static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1621 int i;
1622 for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1623 }
1624
set_txfm_ctxs(TX_SIZE tx_size,int n4_w,int n4_h,int skip,const MACROBLOCKD * xd)1625 static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1626 const MACROBLOCKD *xd) {
1627 uint8_t bw = tx_size_wide[tx_size];
1628 uint8_t bh = tx_size_high[tx_size];
1629
1630 if (skip) {
1631 bw = n4_w * MI_SIZE;
1632 bh = n4_h * MI_SIZE;
1633 }
1634
1635 set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1636 set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1637 }
1638
get_mi_grid_idx(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col)1639 static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1640 int mi_row, int mi_col) {
1641 return mi_row * mi_params->mi_stride + mi_col;
1642 }
1643
get_alloc_mi_idx(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col)1644 static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1645 int mi_row, int mi_col) {
1646 const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1647 const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1648 const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1649
1650 return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1651 }
1652
1653 // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
set_mi_offsets(const CommonModeInfoParams * const mi_params,MACROBLOCKD * const xd,int mi_row,int mi_col)1654 static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1655 MACROBLOCKD *const xd, int mi_row,
1656 int mi_col) {
1657 // 'mi_grid_base' should point to appropriate memory in 'mi'.
1658 const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1659 const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1660 mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1661 // 'xd->mi' should point to an offset in 'mi_grid_base';
1662 xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1663 // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1664 xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1665 xd->tx_type_map_stride = mi_params->mi_stride;
1666 }
1667
txfm_partition_update(TXFM_CONTEXT * above_ctx,TXFM_CONTEXT * left_ctx,TX_SIZE tx_size,TX_SIZE txb_size)1668 static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1669 TXFM_CONTEXT *left_ctx,
1670 TX_SIZE tx_size, TX_SIZE txb_size) {
1671 BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1672 int bh = mi_size_high[bsize];
1673 int bw = mi_size_wide[bsize];
1674 uint8_t txw = tx_size_wide[tx_size];
1675 uint8_t txh = tx_size_high[tx_size];
1676 int i;
1677 for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1678 for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1679 }
1680
get_sqr_tx_size(int tx_dim)1681 static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
1682 switch (tx_dim) {
1683 case 128:
1684 case 64: return TX_64X64; break;
1685 case 32: return TX_32X32; break;
1686 case 16: return TX_16X16; break;
1687 case 8: return TX_8X8; break;
1688 default: return TX_4X4;
1689 }
1690 }
1691
get_tx_size(int width,int height)1692 static INLINE TX_SIZE get_tx_size(int width, int height) {
1693 if (width == height) {
1694 return get_sqr_tx_size(width);
1695 }
1696 if (width < height) {
1697 if (width + width == height) {
1698 switch (width) {
1699 case 4: return TX_4X8; break;
1700 case 8: return TX_8X16; break;
1701 case 16: return TX_16X32; break;
1702 case 32: return TX_32X64; break;
1703 }
1704 } else {
1705 switch (width) {
1706 case 4: return TX_4X16; break;
1707 case 8: return TX_8X32; break;
1708 case 16: return TX_16X64; break;
1709 }
1710 }
1711 } else {
1712 if (height + height == width) {
1713 switch (height) {
1714 case 4: return TX_8X4; break;
1715 case 8: return TX_16X8; break;
1716 case 16: return TX_32X16; break;
1717 case 32: return TX_64X32; break;
1718 }
1719 } else {
1720 switch (height) {
1721 case 4: return TX_16X4; break;
1722 case 8: return TX_32X8; break;
1723 case 16: return TX_64X16; break;
1724 }
1725 }
1726 }
1727 assert(0);
1728 return TX_4X4;
1729 }
1730
txfm_partition_context(const TXFM_CONTEXT * const above_ctx,const TXFM_CONTEXT * const left_ctx,BLOCK_SIZE bsize,TX_SIZE tx_size)1731 static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1732 const TXFM_CONTEXT *const left_ctx,
1733 BLOCK_SIZE bsize, TX_SIZE tx_size) {
1734 const uint8_t txw = tx_size_wide[tx_size];
1735 const uint8_t txh = tx_size_high[tx_size];
1736 const int above = *above_ctx < txw;
1737 const int left = *left_ctx < txh;
1738 int category = TXFM_PARTITION_CONTEXTS;
1739
1740 // dummy return, not used by others.
1741 if (tx_size <= TX_4X4) return 0;
1742
1743 TX_SIZE max_tx_size =
1744 get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1745
1746 if (max_tx_size >= TX_8X8) {
1747 category =
1748 (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1749 (TX_SIZES - 1 - max_tx_size) * 2;
1750 }
1751 assert(category != TXFM_PARTITION_CONTEXTS);
1752 return category * 3 + above + left;
1753 }
1754
1755 // Compute the next partition in the direction of the sb_type stored in the mi
1756 // array, starting with bsize.
get_partition(const AV1_COMMON * const cm,int mi_row,int mi_col,BLOCK_SIZE bsize)1757 static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1758 int mi_row, int mi_col,
1759 BLOCK_SIZE bsize) {
1760 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1761 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1762 return PARTITION_INVALID;
1763
1764 const int offset = mi_row * mi_params->mi_stride + mi_col;
1765 MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1766 const BLOCK_SIZE subsize = mi[0]->bsize;
1767
1768 assert(bsize < BLOCK_SIZES_ALL);
1769
1770 if (subsize == bsize) return PARTITION_NONE;
1771
1772 const int bhigh = mi_size_high[bsize];
1773 const int bwide = mi_size_wide[bsize];
1774 const int sshigh = mi_size_high[subsize];
1775 const int sswide = mi_size_wide[subsize];
1776
1777 if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1778 mi_col + bhigh / 2 < mi_params->mi_cols) {
1779 // In this case, the block might be using an extended partition
1780 // type.
1781 const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1782 const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1783
1784 if (sswide == bwide) {
1785 // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1786 // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1787 // half was split.
1788 if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1789 assert(sshigh * 2 == bhigh);
1790
1791 if (mbmi_below->bsize == subsize)
1792 return PARTITION_HORZ;
1793 else
1794 return PARTITION_HORZ_B;
1795 } else if (sshigh == bhigh) {
1796 // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1797 // PARTITION_VERT_B. To distinguish the latter two, check if the right
1798 // half was split.
1799 if (sswide * 4 == bwide) return PARTITION_VERT_4;
1800 assert(sswide * 2 == bhigh);
1801
1802 if (mbmi_right->bsize == subsize)
1803 return PARTITION_VERT;
1804 else
1805 return PARTITION_VERT_B;
1806 } else {
1807 // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1808 // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1809 // dimensions, we immediately know this is a split (which will recurse to
1810 // get to subsize). Otherwise look down and to the right. With
1811 // PARTITION_VERT_A, the right block will have height bhigh; with
1812 // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1813 // it's PARTITION_SPLIT.
1814 if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1815
1816 if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1817 if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1818
1819 return PARTITION_SPLIT;
1820 }
1821 }
1822 const int vert_split = sswide < bwide;
1823 const int horz_split = sshigh < bhigh;
1824 const int split_idx = (vert_split << 1) | horz_split;
1825 assert(split_idx != 0);
1826
1827 static const PARTITION_TYPE base_partitions[4] = {
1828 PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1829 };
1830
1831 return base_partitions[split_idx];
1832 }
1833
set_sb_size(SequenceHeader * const seq_params,BLOCK_SIZE sb_size)1834 static INLINE void set_sb_size(SequenceHeader *const seq_params,
1835 BLOCK_SIZE sb_size) {
1836 seq_params->sb_size = sb_size;
1837 seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1838 seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1839 }
1840
1841 // Returns true if the frame is fully lossless at the coded resolution.
1842 // Note: If super-resolution is used, such a frame will still NOT be lossless at
1843 // the upscaled resolution.
is_coded_lossless(const AV1_COMMON * cm,const MACROBLOCKD * xd)1844 static INLINE int is_coded_lossless(const AV1_COMMON *cm,
1845 const MACROBLOCKD *xd) {
1846 int coded_lossless = 1;
1847 if (cm->seg.enabled) {
1848 for (int i = 0; i < MAX_SEGMENTS; ++i) {
1849 if (!xd->lossless[i]) {
1850 coded_lossless = 0;
1851 break;
1852 }
1853 }
1854 } else {
1855 coded_lossless = xd->lossless[0];
1856 }
1857 return coded_lossless;
1858 }
1859
is_valid_seq_level_idx(AV1_LEVEL seq_level_idx)1860 static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1861 return seq_level_idx == SEQ_LEVEL_MAX ||
1862 (seq_level_idx < SEQ_LEVELS &&
1863 // The following levels are currently undefined.
1864 seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1865 seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1866 seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3
1867 #if !CONFIG_CWG_C013
1868 && seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1869 seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3 &&
1870 seq_level_idx != SEQ_LEVEL_8_0 && seq_level_idx != SEQ_LEVEL_8_1 &&
1871 seq_level_idx != SEQ_LEVEL_8_2 && seq_level_idx != SEQ_LEVEL_8_3
1872 #endif
1873 );
1874 }
1875
1876 /*!\endcond */
1877
1878 #ifdef __cplusplus
1879 } // extern "C"
1880 #endif
1881
1882 #endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_
1883