• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <limits.h>
14 #include <math.h>
15 #include <stdbool.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <string.h>
19 
20 #include "config/aom_config.h"
21 
22 #include "aom_dsp/aom_dsp_common.h"
23 #include "aom_dsp/flow_estimation/corner_detect.h"
24 #include "aom_ports/mem.h"
25 #include "aom_scale/aom_scale.h"
26 #include "av1/common/common.h"
27 #include "av1/common/resize.h"
28 
29 #include "config/aom_dsp_rtcd.h"
30 #include "config/aom_scale_rtcd.h"
31 
32 // Filters for interpolation (0.5-band) - note this also filters integer pels.
33 static const InterpKernel filteredinterp_filters500[(1 << RS_SUBPEL_BITS)] = {
34   { -3, 0, 35, 64, 35, 0, -3, 0 },    { -3, 0, 34, 64, 36, 0, -3, 0 },
35   { -3, -1, 34, 64, 36, 1, -3, 0 },   { -3, -1, 33, 64, 37, 1, -3, 0 },
36   { -3, -1, 32, 64, 38, 1, -3, 0 },   { -3, -1, 31, 64, 39, 1, -3, 0 },
37   { -3, -1, 31, 63, 39, 2, -3, 0 },   { -2, -2, 30, 63, 40, 2, -3, 0 },
38   { -2, -2, 29, 63, 41, 2, -3, 0 },   { -2, -2, 29, 63, 41, 3, -4, 0 },
39   { -2, -2, 28, 63, 42, 3, -4, 0 },   { -2, -2, 27, 63, 43, 3, -4, 0 },
40   { -2, -3, 27, 63, 43, 4, -4, 0 },   { -2, -3, 26, 62, 44, 5, -4, 0 },
41   { -2, -3, 25, 62, 45, 5, -4, 0 },   { -2, -3, 25, 62, 45, 5, -4, 0 },
42   { -2, -3, 24, 62, 46, 5, -4, 0 },   { -2, -3, 23, 61, 47, 6, -4, 0 },
43   { -2, -3, 23, 61, 47, 6, -4, 0 },   { -2, -3, 22, 61, 48, 7, -4, -1 },
44   { -2, -3, 21, 60, 49, 7, -4, 0 },   { -1, -4, 20, 60, 49, 8, -4, 0 },
45   { -1, -4, 20, 60, 50, 8, -4, -1 },  { -1, -4, 19, 59, 51, 9, -4, -1 },
46   { -1, -4, 19, 59, 51, 9, -4, -1 },  { -1, -4, 18, 58, 52, 10, -4, -1 },
47   { -1, -4, 17, 58, 52, 11, -4, -1 }, { -1, -4, 16, 58, 53, 11, -4, -1 },
48   { -1, -4, 16, 57, 53, 12, -4, -1 }, { -1, -4, 15, 57, 54, 12, -4, -1 },
49   { -1, -4, 15, 56, 54, 13, -4, -1 }, { -1, -4, 14, 56, 55, 13, -4, -1 },
50   { -1, -4, 14, 55, 55, 14, -4, -1 }, { -1, -4, 13, 55, 56, 14, -4, -1 },
51   { -1, -4, 13, 54, 56, 15, -4, -1 }, { -1, -4, 12, 54, 57, 15, -4, -1 },
52   { -1, -4, 12, 53, 57, 16, -4, -1 }, { -1, -4, 11, 53, 58, 16, -4, -1 },
53   { -1, -4, 11, 52, 58, 17, -4, -1 }, { -1, -4, 10, 52, 58, 18, -4, -1 },
54   { -1, -4, 9, 51, 59, 19, -4, -1 },  { -1, -4, 9, 51, 59, 19, -4, -1 },
55   { -1, -4, 8, 50, 60, 20, -4, -1 },  { 0, -4, 8, 49, 60, 20, -4, -1 },
56   { 0, -4, 7, 49, 60, 21, -3, -2 },   { -1, -4, 7, 48, 61, 22, -3, -2 },
57   { 0, -4, 6, 47, 61, 23, -3, -2 },   { 0, -4, 6, 47, 61, 23, -3, -2 },
58   { 0, -4, 5, 46, 62, 24, -3, -2 },   { 0, -4, 5, 45, 62, 25, -3, -2 },
59   { 0, -4, 5, 45, 62, 25, -3, -2 },   { 0, -4, 5, 44, 62, 26, -3, -2 },
60   { 0, -4, 4, 43, 63, 27, -3, -2 },   { 0, -4, 3, 43, 63, 27, -2, -2 },
61   { 0, -4, 3, 42, 63, 28, -2, -2 },   { 0, -4, 3, 41, 63, 29, -2, -2 },
62   { 0, -3, 2, 41, 63, 29, -2, -2 },   { 0, -3, 2, 40, 63, 30, -2, -2 },
63   { 0, -3, 2, 39, 63, 31, -1, -3 },   { 0, -3, 1, 39, 64, 31, -1, -3 },
64   { 0, -3, 1, 38, 64, 32, -1, -3 },   { 0, -3, 1, 37, 64, 33, -1, -3 },
65   { 0, -3, 1, 36, 64, 34, -1, -3 },   { 0, -3, 0, 36, 64, 34, 0, -3 },
66 };
67 
68 // Filters for interpolation (0.625-band) - note this also filters integer pels.
69 static const InterpKernel filteredinterp_filters625[(1 << RS_SUBPEL_BITS)] = {
70   { -1, -8, 33, 80, 33, -8, -1, 0 }, { -1, -8, 31, 80, 34, -8, -1, 1 },
71   { -1, -8, 30, 80, 35, -8, -1, 1 }, { -1, -8, 29, 80, 36, -7, -2, 1 },
72   { -1, -8, 28, 80, 37, -7, -2, 1 }, { -1, -8, 27, 80, 38, -7, -2, 1 },
73   { 0, -8, 26, 79, 39, -7, -2, 1 },  { 0, -8, 25, 79, 40, -7, -2, 1 },
74   { 0, -8, 24, 79, 41, -7, -2, 1 },  { 0, -8, 23, 78, 42, -6, -2, 1 },
75   { 0, -8, 22, 78, 43, -6, -2, 1 },  { 0, -8, 21, 78, 44, -6, -2, 1 },
76   { 0, -8, 20, 78, 45, -5, -3, 1 },  { 0, -8, 19, 77, 47, -5, -3, 1 },
77   { 0, -8, 18, 77, 48, -5, -3, 1 },  { 0, -8, 17, 77, 49, -5, -3, 1 },
78   { 0, -8, 16, 76, 50, -4, -3, 1 },  { 0, -8, 15, 76, 51, -4, -3, 1 },
79   { 0, -8, 15, 75, 52, -3, -4, 1 },  { 0, -7, 14, 74, 53, -3, -4, 1 },
80   { 0, -7, 13, 74, 54, -3, -4, 1 },  { 0, -7, 12, 73, 55, -2, -4, 1 },
81   { 0, -7, 11, 73, 56, -2, -4, 1 },  { 0, -7, 10, 72, 57, -1, -4, 1 },
82   { 1, -7, 10, 71, 58, -1, -5, 1 },  { 0, -7, 9, 71, 59, 0, -5, 1 },
83   { 1, -7, 8, 70, 60, 0, -5, 1 },    { 1, -7, 7, 69, 61, 1, -5, 1 },
84   { 1, -6, 6, 68, 62, 1, -5, 1 },    { 0, -6, 6, 68, 62, 2, -5, 1 },
85   { 1, -6, 5, 67, 63, 2, -5, 1 },    { 1, -6, 5, 66, 64, 3, -6, 1 },
86   { 1, -6, 4, 65, 65, 4, -6, 1 },    { 1, -6, 3, 64, 66, 5, -6, 1 },
87   { 1, -5, 2, 63, 67, 5, -6, 1 },    { 1, -5, 2, 62, 68, 6, -6, 0 },
88   { 1, -5, 1, 62, 68, 6, -6, 1 },    { 1, -5, 1, 61, 69, 7, -7, 1 },
89   { 1, -5, 0, 60, 70, 8, -7, 1 },    { 1, -5, 0, 59, 71, 9, -7, 0 },
90   { 1, -5, -1, 58, 71, 10, -7, 1 },  { 1, -4, -1, 57, 72, 10, -7, 0 },
91   { 1, -4, -2, 56, 73, 11, -7, 0 },  { 1, -4, -2, 55, 73, 12, -7, 0 },
92   { 1, -4, -3, 54, 74, 13, -7, 0 },  { 1, -4, -3, 53, 74, 14, -7, 0 },
93   { 1, -4, -3, 52, 75, 15, -8, 0 },  { 1, -3, -4, 51, 76, 15, -8, 0 },
94   { 1, -3, -4, 50, 76, 16, -8, 0 },  { 1, -3, -5, 49, 77, 17, -8, 0 },
95   { 1, -3, -5, 48, 77, 18, -8, 0 },  { 1, -3, -5, 47, 77, 19, -8, 0 },
96   { 1, -3, -5, 45, 78, 20, -8, 0 },  { 1, -2, -6, 44, 78, 21, -8, 0 },
97   { 1, -2, -6, 43, 78, 22, -8, 0 },  { 1, -2, -6, 42, 78, 23, -8, 0 },
98   { 1, -2, -7, 41, 79, 24, -8, 0 },  { 1, -2, -7, 40, 79, 25, -8, 0 },
99   { 1, -2, -7, 39, 79, 26, -8, 0 },  { 1, -2, -7, 38, 80, 27, -8, -1 },
100   { 1, -2, -7, 37, 80, 28, -8, -1 }, { 1, -2, -7, 36, 80, 29, -8, -1 },
101   { 1, -1, -8, 35, 80, 30, -8, -1 }, { 1, -1, -8, 34, 80, 31, -8, -1 },
102 };
103 
104 // Filters for interpolation (0.75-band) - note this also filters integer pels.
105 static const InterpKernel filteredinterp_filters750[(1 << RS_SUBPEL_BITS)] = {
106   { 2, -11, 25, 96, 25, -11, 2, 0 }, { 2, -11, 24, 96, 26, -11, 2, 0 },
107   { 2, -11, 22, 96, 28, -11, 2, 0 }, { 2, -10, 21, 96, 29, -12, 2, 0 },
108   { 2, -10, 19, 96, 31, -12, 2, 0 }, { 2, -10, 18, 95, 32, -11, 2, 0 },
109   { 2, -10, 17, 95, 34, -12, 2, 0 }, { 2, -9, 15, 95, 35, -12, 2, 0 },
110   { 2, -9, 14, 94, 37, -12, 2, 0 },  { 2, -9, 13, 94, 38, -12, 2, 0 },
111   { 2, -8, 12, 93, 40, -12, 1, 0 },  { 2, -8, 11, 93, 41, -12, 1, 0 },
112   { 2, -8, 9, 92, 43, -12, 1, 1 },   { 2, -8, 8, 92, 44, -12, 1, 1 },
113   { 2, -7, 7, 91, 46, -12, 1, 0 },   { 2, -7, 6, 90, 47, -12, 1, 1 },
114   { 2, -7, 5, 90, 49, -12, 1, 0 },   { 2, -6, 4, 89, 50, -12, 1, 0 },
115   { 2, -6, 3, 88, 52, -12, 0, 1 },   { 2, -6, 2, 87, 54, -12, 0, 1 },
116   { 2, -5, 1, 86, 55, -12, 0, 1 },   { 2, -5, 0, 85, 57, -12, 0, 1 },
117   { 2, -5, -1, 84, 58, -11, 0, 1 },  { 2, -5, -2, 83, 60, -11, 0, 1 },
118   { 2, -4, -2, 82, 61, -11, -1, 1 }, { 1, -4, -3, 81, 63, -10, -1, 1 },
119   { 2, -4, -4, 80, 64, -10, -1, 1 }, { 1, -4, -4, 79, 66, -10, -1, 1 },
120   { 1, -3, -5, 77, 67, -9, -1, 1 },  { 1, -3, -6, 76, 69, -9, -1, 1 },
121   { 1, -3, -6, 75, 70, -8, -2, 1 },  { 1, -2, -7, 74, 71, -8, -2, 1 },
122   { 1, -2, -7, 72, 72, -7, -2, 1 },  { 1, -2, -8, 71, 74, -7, -2, 1 },
123   { 1, -2, -8, 70, 75, -6, -3, 1 },  { 1, -1, -9, 69, 76, -6, -3, 1 },
124   { 1, -1, -9, 67, 77, -5, -3, 1 },  { 1, -1, -10, 66, 79, -4, -4, 1 },
125   { 1, -1, -10, 64, 80, -4, -4, 2 }, { 1, -1, -10, 63, 81, -3, -4, 1 },
126   { 1, -1, -11, 61, 82, -2, -4, 2 }, { 1, 0, -11, 60, 83, -2, -5, 2 },
127   { 1, 0, -11, 58, 84, -1, -5, 2 },  { 1, 0, -12, 57, 85, 0, -5, 2 },
128   { 1, 0, -12, 55, 86, 1, -5, 2 },   { 1, 0, -12, 54, 87, 2, -6, 2 },
129   { 1, 0, -12, 52, 88, 3, -6, 2 },   { 0, 1, -12, 50, 89, 4, -6, 2 },
130   { 0, 1, -12, 49, 90, 5, -7, 2 },   { 1, 1, -12, 47, 90, 6, -7, 2 },
131   { 0, 1, -12, 46, 91, 7, -7, 2 },   { 1, 1, -12, 44, 92, 8, -8, 2 },
132   { 1, 1, -12, 43, 92, 9, -8, 2 },   { 0, 1, -12, 41, 93, 11, -8, 2 },
133   { 0, 1, -12, 40, 93, 12, -8, 2 },  { 0, 2, -12, 38, 94, 13, -9, 2 },
134   { 0, 2, -12, 37, 94, 14, -9, 2 },  { 0, 2, -12, 35, 95, 15, -9, 2 },
135   { 0, 2, -12, 34, 95, 17, -10, 2 }, { 0, 2, -11, 32, 95, 18, -10, 2 },
136   { 0, 2, -12, 31, 96, 19, -10, 2 }, { 0, 2, -12, 29, 96, 21, -10, 2 },
137   { 0, 2, -11, 28, 96, 22, -11, 2 }, { 0, 2, -11, 26, 96, 24, -11, 2 },
138 };
139 
140 // Filters for interpolation (0.875-band) - note this also filters integer pels.
141 static const InterpKernel filteredinterp_filters875[(1 << RS_SUBPEL_BITS)] = {
142   { 3, -8, 13, 112, 13, -8, 3, 0 },   { 2, -7, 12, 112, 15, -8, 3, -1 },
143   { 3, -7, 10, 112, 17, -9, 3, -1 },  { 2, -6, 8, 112, 19, -9, 3, -1 },
144   { 2, -6, 7, 112, 21, -10, 3, -1 },  { 2, -5, 6, 111, 22, -10, 3, -1 },
145   { 2, -5, 4, 111, 24, -10, 3, -1 },  { 2, -4, 3, 110, 26, -11, 3, -1 },
146   { 2, -4, 1, 110, 28, -11, 3, -1 },  { 2, -4, 0, 109, 30, -12, 4, -1 },
147   { 1, -3, -1, 108, 32, -12, 4, -1 }, { 1, -3, -2, 108, 34, -13, 4, -1 },
148   { 1, -2, -4, 107, 36, -13, 4, -1 }, { 1, -2, -5, 106, 38, -13, 4, -1 },
149   { 1, -1, -6, 105, 40, -14, 4, -1 }, { 1, -1, -7, 104, 42, -14, 4, -1 },
150   { 1, -1, -7, 103, 44, -15, 4, -1 }, { 1, 0, -8, 101, 46, -15, 4, -1 },
151   { 1, 0, -9, 100, 48, -15, 4, -1 },  { 1, 0, -10, 99, 50, -15, 4, -1 },
152   { 1, 1, -11, 97, 53, -16, 4, -1 },  { 0, 1, -11, 96, 55, -16, 4, -1 },
153   { 0, 1, -12, 95, 57, -16, 4, -1 },  { 0, 2, -13, 93, 59, -16, 4, -1 },
154   { 0, 2, -13, 91, 61, -16, 4, -1 },  { 0, 2, -14, 90, 63, -16, 4, -1 },
155   { 0, 2, -14, 88, 65, -16, 4, -1 },  { 0, 2, -15, 86, 67, -16, 4, 0 },
156   { 0, 3, -15, 84, 69, -17, 4, 0 },   { 0, 3, -16, 83, 71, -17, 4, 0 },
157   { 0, 3, -16, 81, 73, -16, 3, 0 },   { 0, 3, -16, 79, 75, -16, 3, 0 },
158   { 0, 3, -16, 77, 77, -16, 3, 0 },   { 0, 3, -16, 75, 79, -16, 3, 0 },
159   { 0, 3, -16, 73, 81, -16, 3, 0 },   { 0, 4, -17, 71, 83, -16, 3, 0 },
160   { 0, 4, -17, 69, 84, -15, 3, 0 },   { 0, 4, -16, 67, 86, -15, 2, 0 },
161   { -1, 4, -16, 65, 88, -14, 2, 0 },  { -1, 4, -16, 63, 90, -14, 2, 0 },
162   { -1, 4, -16, 61, 91, -13, 2, 0 },  { -1, 4, -16, 59, 93, -13, 2, 0 },
163   { -1, 4, -16, 57, 95, -12, 1, 0 },  { -1, 4, -16, 55, 96, -11, 1, 0 },
164   { -1, 4, -16, 53, 97, -11, 1, 1 },  { -1, 4, -15, 50, 99, -10, 0, 1 },
165   { -1, 4, -15, 48, 100, -9, 0, 1 },  { -1, 4, -15, 46, 101, -8, 0, 1 },
166   { -1, 4, -15, 44, 103, -7, -1, 1 }, { -1, 4, -14, 42, 104, -7, -1, 1 },
167   { -1, 4, -14, 40, 105, -6, -1, 1 }, { -1, 4, -13, 38, 106, -5, -2, 1 },
168   { -1, 4, -13, 36, 107, -4, -2, 1 }, { -1, 4, -13, 34, 108, -2, -3, 1 },
169   { -1, 4, -12, 32, 108, -1, -3, 1 }, { -1, 4, -12, 30, 109, 0, -4, 2 },
170   { -1, 3, -11, 28, 110, 1, -4, 2 },  { -1, 3, -11, 26, 110, 3, -4, 2 },
171   { -1, 3, -10, 24, 111, 4, -5, 2 },  { -1, 3, -10, 22, 111, 6, -5, 2 },
172   { -1, 3, -10, 21, 112, 7, -6, 2 },  { -1, 3, -9, 19, 112, 8, -6, 2 },
173   { -1, 3, -9, 17, 112, 10, -7, 3 },  { -1, 3, -8, 15, 112, 12, -7, 2 },
174 };
175 
176 const int16_t av1_resize_filter_normative[(
177     1 << RS_SUBPEL_BITS)][UPSCALE_NORMATIVE_TAPS] = {
178 #if UPSCALE_NORMATIVE_TAPS == 8
179   { 0, 0, 0, 128, 0, 0, 0, 0 },        { 0, 0, -1, 128, 2, -1, 0, 0 },
180   { 0, 1, -3, 127, 4, -2, 1, 0 },      { 0, 1, -4, 127, 6, -3, 1, 0 },
181   { 0, 2, -6, 126, 8, -3, 1, 0 },      { 0, 2, -7, 125, 11, -4, 1, 0 },
182   { -1, 2, -8, 125, 13, -5, 2, 0 },    { -1, 3, -9, 124, 15, -6, 2, 0 },
183   { -1, 3, -10, 123, 18, -6, 2, -1 },  { -1, 3, -11, 122, 20, -7, 3, -1 },
184   { -1, 4, -12, 121, 22, -8, 3, -1 },  { -1, 4, -13, 120, 25, -9, 3, -1 },
185   { -1, 4, -14, 118, 28, -9, 3, -1 },  { -1, 4, -15, 117, 30, -10, 4, -1 },
186   { -1, 5, -16, 116, 32, -11, 4, -1 }, { -1, 5, -16, 114, 35, -12, 4, -1 },
187   { -1, 5, -17, 112, 38, -12, 4, -1 }, { -1, 5, -18, 111, 40, -13, 5, -1 },
188   { -1, 5, -18, 109, 43, -14, 5, -1 }, { -1, 6, -19, 107, 45, -14, 5, -1 },
189   { -1, 6, -19, 105, 48, -15, 5, -1 }, { -1, 6, -19, 103, 51, -16, 5, -1 },
190   { -1, 6, -20, 101, 53, -16, 6, -1 }, { -1, 6, -20, 99, 56, -17, 6, -1 },
191   { -1, 6, -20, 97, 58, -17, 6, -1 },  { -1, 6, -20, 95, 61, -18, 6, -1 },
192   { -2, 7, -20, 93, 64, -18, 6, -2 },  { -2, 7, -20, 91, 66, -19, 6, -1 },
193   { -2, 7, -20, 88, 69, -19, 6, -1 },  { -2, 7, -20, 86, 71, -19, 6, -1 },
194   { -2, 7, -20, 84, 74, -20, 7, -2 },  { -2, 7, -20, 81, 76, -20, 7, -1 },
195   { -2, 7, -20, 79, 79, -20, 7, -2 },  { -1, 7, -20, 76, 81, -20, 7, -2 },
196   { -2, 7, -20, 74, 84, -20, 7, -2 },  { -1, 6, -19, 71, 86, -20, 7, -2 },
197   { -1, 6, -19, 69, 88, -20, 7, -2 },  { -1, 6, -19, 66, 91, -20, 7, -2 },
198   { -2, 6, -18, 64, 93, -20, 7, -2 },  { -1, 6, -18, 61, 95, -20, 6, -1 },
199   { -1, 6, -17, 58, 97, -20, 6, -1 },  { -1, 6, -17, 56, 99, -20, 6, -1 },
200   { -1, 6, -16, 53, 101, -20, 6, -1 }, { -1, 5, -16, 51, 103, -19, 6, -1 },
201   { -1, 5, -15, 48, 105, -19, 6, -1 }, { -1, 5, -14, 45, 107, -19, 6, -1 },
202   { -1, 5, -14, 43, 109, -18, 5, -1 }, { -1, 5, -13, 40, 111, -18, 5, -1 },
203   { -1, 4, -12, 38, 112, -17, 5, -1 }, { -1, 4, -12, 35, 114, -16, 5, -1 },
204   { -1, 4, -11, 32, 116, -16, 5, -1 }, { -1, 4, -10, 30, 117, -15, 4, -1 },
205   { -1, 3, -9, 28, 118, -14, 4, -1 },  { -1, 3, -9, 25, 120, -13, 4, -1 },
206   { -1, 3, -8, 22, 121, -12, 4, -1 },  { -1, 3, -7, 20, 122, -11, 3, -1 },
207   { -1, 2, -6, 18, 123, -10, 3, -1 },  { 0, 2, -6, 15, 124, -9, 3, -1 },
208   { 0, 2, -5, 13, 125, -8, 2, -1 },    { 0, 1, -4, 11, 125, -7, 2, 0 },
209   { 0, 1, -3, 8, 126, -6, 2, 0 },      { 0, 1, -3, 6, 127, -4, 1, 0 },
210   { 0, 1, -2, 4, 127, -3, 1, 0 },      { 0, 0, -1, 2, 128, -1, 0, 0 },
211 #else
212 #error "Invalid value of UPSCALE_NORMATIVE_TAPS"
213 #endif  // UPSCALE_NORMATIVE_TAPS == 8
214 };
215 
216 // Filters for interpolation (full-band) - no filtering for integer pixels
217 #define filteredinterp_filters1000 av1_resize_filter_normative
218 
219 // Filters for factor of 2 downsampling.
220 static const int16_t av1_down2_symeven_half_filter[] = { 56, 12, -3, -1 };
221 static const int16_t av1_down2_symodd_half_filter[] = { 64, 35, 0, -3 };
222 
choose_interp_filter(int in_length,int out_length)223 static const InterpKernel *choose_interp_filter(int in_length, int out_length) {
224   int out_length16 = out_length * 16;
225   if (out_length16 >= in_length * 16)
226     return filteredinterp_filters1000;
227   else if (out_length16 >= in_length * 13)
228     return filteredinterp_filters875;
229   else if (out_length16 >= in_length * 11)
230     return filteredinterp_filters750;
231   else if (out_length16 >= in_length * 9)
232     return filteredinterp_filters625;
233   else
234     return filteredinterp_filters500;
235 }
236 
interpolate_core(const uint8_t * const input,int in_length,uint8_t * output,int out_length,const int16_t * interp_filters,int interp_taps)237 static void interpolate_core(const uint8_t *const input, int in_length,
238                              uint8_t *output, int out_length,
239                              const int16_t *interp_filters, int interp_taps) {
240   const int32_t delta =
241       (((uint32_t)in_length << RS_SCALE_SUBPEL_BITS) + out_length / 2) /
242       out_length;
243   const int32_t offset =
244       in_length > out_length
245           ? (((int32_t)(in_length - out_length) << (RS_SCALE_SUBPEL_BITS - 1)) +
246              out_length / 2) /
247                 out_length
248           : -(((int32_t)(out_length - in_length)
249                << (RS_SCALE_SUBPEL_BITS - 1)) +
250               out_length / 2) /
251                 out_length;
252   uint8_t *optr = output;
253   int x, x1, x2, sum, k, int_pel, sub_pel;
254   int32_t y;
255 
256   x = 0;
257   y = offset + RS_SCALE_EXTRA_OFF;
258   while ((y >> RS_SCALE_SUBPEL_BITS) < (interp_taps / 2 - 1)) {
259     x++;
260     y += delta;
261   }
262   x1 = x;
263   x = out_length - 1;
264   y = delta * x + offset + RS_SCALE_EXTRA_OFF;
265   while ((y >> RS_SCALE_SUBPEL_BITS) + (int32_t)(interp_taps / 2) >=
266          in_length) {
267     x--;
268     y -= delta;
269   }
270   x2 = x;
271   if (x1 > x2) {
272     for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < out_length;
273          ++x, y += delta) {
274       int_pel = y >> RS_SCALE_SUBPEL_BITS;
275       sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
276       const int16_t *filter = &interp_filters[sub_pel * interp_taps];
277       sum = 0;
278       for (k = 0; k < interp_taps; ++k) {
279         const int pk = int_pel - interp_taps / 2 + 1 + k;
280         sum += filter[k] * input[AOMMAX(AOMMIN(pk, in_length - 1), 0)];
281       }
282       *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
283     }
284   } else {
285     // Initial part.
286     for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < x1; ++x, y += delta) {
287       int_pel = y >> RS_SCALE_SUBPEL_BITS;
288       sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
289       const int16_t *filter = &interp_filters[sub_pel * interp_taps];
290       sum = 0;
291       for (k = 0; k < interp_taps; ++k)
292         sum += filter[k] * input[AOMMAX(int_pel - interp_taps / 2 + 1 + k, 0)];
293       *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
294     }
295     // Middle part.
296     for (; x <= x2; ++x, y += delta) {
297       int_pel = y >> RS_SCALE_SUBPEL_BITS;
298       sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
299       const int16_t *filter = &interp_filters[sub_pel * interp_taps];
300       sum = 0;
301       for (k = 0; k < interp_taps; ++k)
302         sum += filter[k] * input[int_pel - interp_taps / 2 + 1 + k];
303       *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
304     }
305     // End part.
306     for (; x < out_length; ++x, y += delta) {
307       int_pel = y >> RS_SCALE_SUBPEL_BITS;
308       sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
309       const int16_t *filter = &interp_filters[sub_pel * interp_taps];
310       sum = 0;
311       for (k = 0; k < interp_taps; ++k)
312         sum += filter[k] *
313                input[AOMMIN(int_pel - interp_taps / 2 + 1 + k, in_length - 1)];
314       *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
315     }
316   }
317 }
318 
interpolate(const uint8_t * const input,int in_length,uint8_t * output,int out_length)319 static void interpolate(const uint8_t *const input, int in_length,
320                         uint8_t *output, int out_length) {
321   const InterpKernel *interp_filters =
322       choose_interp_filter(in_length, out_length);
323 
324   interpolate_core(input, in_length, output, out_length, &interp_filters[0][0],
325                    SUBPEL_TAPS);
326 }
327 
av1_get_upscale_convolve_step(int in_length,int out_length)328 int32_t av1_get_upscale_convolve_step(int in_length, int out_length) {
329   return ((in_length << RS_SCALE_SUBPEL_BITS) + out_length / 2) / out_length;
330 }
331 
get_upscale_convolve_x0(int in_length,int out_length,int32_t x_step_qn)332 static int32_t get_upscale_convolve_x0(int in_length, int out_length,
333                                        int32_t x_step_qn) {
334   const int err = out_length * x_step_qn - (in_length << RS_SCALE_SUBPEL_BITS);
335   const int32_t x0 =
336       (-((out_length - in_length) << (RS_SCALE_SUBPEL_BITS - 1)) +
337        out_length / 2) /
338           out_length +
339       RS_SCALE_EXTRA_OFF - err / 2;
340   return (int32_t)((uint32_t)x0 & RS_SCALE_SUBPEL_MASK);
341 }
342 
down2_symeven(const uint8_t * const input,int length,uint8_t * output)343 static void down2_symeven(const uint8_t *const input, int length,
344                           uint8_t *output) {
345   // Actual filter len = 2 * filter_len_half.
346   const int16_t *filter = av1_down2_symeven_half_filter;
347   const int filter_len_half = sizeof(av1_down2_symeven_half_filter) / 2;
348   int i, j;
349   uint8_t *optr = output;
350   int l1 = filter_len_half;
351   int l2 = (length - filter_len_half);
352   l1 += (l1 & 1);
353   l2 += (l2 & 1);
354   if (l1 > l2) {
355     // Short input length.
356     for (i = 0; i < length; i += 2) {
357       int sum = (1 << (FILTER_BITS - 1));
358       for (j = 0; j < filter_len_half; ++j) {
359         sum +=
360             (input[AOMMAX(i - j, 0)] + input[AOMMIN(i + 1 + j, length - 1)]) *
361             filter[j];
362       }
363       sum >>= FILTER_BITS;
364       *optr++ = clip_pixel(sum);
365     }
366   } else {
367     // Initial part.
368     for (i = 0; i < l1; i += 2) {
369       int sum = (1 << (FILTER_BITS - 1));
370       for (j = 0; j < filter_len_half; ++j) {
371         sum += (input[AOMMAX(i - j, 0)] + input[i + 1 + j]) * filter[j];
372       }
373       sum >>= FILTER_BITS;
374       *optr++ = clip_pixel(sum);
375     }
376     // Middle part.
377     for (; i < l2; i += 2) {
378       int sum = (1 << (FILTER_BITS - 1));
379       for (j = 0; j < filter_len_half; ++j) {
380         sum += (input[i - j] + input[i + 1 + j]) * filter[j];
381       }
382       sum >>= FILTER_BITS;
383       *optr++ = clip_pixel(sum);
384     }
385     // End part.
386     for (; i < length; i += 2) {
387       int sum = (1 << (FILTER_BITS - 1));
388       for (j = 0; j < filter_len_half; ++j) {
389         sum +=
390             (input[i - j] + input[AOMMIN(i + 1 + j, length - 1)]) * filter[j];
391       }
392       sum >>= FILTER_BITS;
393       *optr++ = clip_pixel(sum);
394     }
395   }
396 }
397 
down2_symodd(const uint8_t * const input,int length,uint8_t * output)398 static void down2_symodd(const uint8_t *const input, int length,
399                          uint8_t *output) {
400   // Actual filter len = 2 * filter_len_half - 1.
401   const int16_t *filter = av1_down2_symodd_half_filter;
402   const int filter_len_half = sizeof(av1_down2_symodd_half_filter) / 2;
403   int i, j;
404   uint8_t *optr = output;
405   int l1 = filter_len_half - 1;
406   int l2 = (length - filter_len_half + 1);
407   l1 += (l1 & 1);
408   l2 += (l2 & 1);
409   if (l1 > l2) {
410     // Short input length.
411     for (i = 0; i < length; i += 2) {
412       int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
413       for (j = 1; j < filter_len_half; ++j) {
414         sum += (input[(i - j < 0 ? 0 : i - j)] +
415                 input[(i + j >= length ? length - 1 : i + j)]) *
416                filter[j];
417       }
418       sum >>= FILTER_BITS;
419       *optr++ = clip_pixel(sum);
420     }
421   } else {
422     // Initial part.
423     for (i = 0; i < l1; i += 2) {
424       int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
425       for (j = 1; j < filter_len_half; ++j) {
426         sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + j]) * filter[j];
427       }
428       sum >>= FILTER_BITS;
429       *optr++ = clip_pixel(sum);
430     }
431     // Middle part.
432     for (; i < l2; i += 2) {
433       int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
434       for (j = 1; j < filter_len_half; ++j) {
435         sum += (input[i - j] + input[i + j]) * filter[j];
436       }
437       sum >>= FILTER_BITS;
438       *optr++ = clip_pixel(sum);
439     }
440     // End part.
441     for (; i < length; i += 2) {
442       int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
443       for (j = 1; j < filter_len_half; ++j) {
444         sum += (input[i - j] + input[(i + j >= length ? length - 1 : i + j)]) *
445                filter[j];
446       }
447       sum >>= FILTER_BITS;
448       *optr++ = clip_pixel(sum);
449     }
450   }
451 }
452 
get_down2_length(int length,int steps)453 static int get_down2_length(int length, int steps) {
454   for (int s = 0; s < steps; ++s) length = (length + 1) >> 1;
455   return length;
456 }
457 
get_down2_steps(int in_length,int out_length)458 static int get_down2_steps(int in_length, int out_length) {
459   int steps = 0;
460   int proj_in_length;
461   while ((proj_in_length = get_down2_length(in_length, 1)) >= out_length) {
462     ++steps;
463     in_length = proj_in_length;
464     if (in_length == 1) {
465       // Special case: we break because any further calls to get_down2_length()
466       // with be with length == 1, which return 1, resulting in an infinite
467       // loop.
468       break;
469     }
470   }
471   return steps;
472 }
473 
resize_multistep(const uint8_t * const input,int length,uint8_t * output,int olength,uint8_t * otmp)474 static void resize_multistep(const uint8_t *const input, int length,
475                              uint8_t *output, int olength, uint8_t *otmp) {
476   if (length == olength) {
477     memcpy(output, input, sizeof(output[0]) * length);
478     return;
479   }
480   const int steps = get_down2_steps(length, olength);
481 
482   if (steps > 0) {
483     uint8_t *out = NULL;
484     int filteredlength = length;
485 
486     assert(otmp != NULL);
487     uint8_t *otmp2 = otmp + get_down2_length(length, 1);
488     for (int s = 0; s < steps; ++s) {
489       const int proj_filteredlength = get_down2_length(filteredlength, 1);
490       const uint8_t *const in = (s == 0 ? input : out);
491       if (s == steps - 1 && proj_filteredlength == olength)
492         out = output;
493       else
494         out = (s & 1 ? otmp2 : otmp);
495       if (filteredlength & 1)
496         down2_symodd(in, filteredlength, out);
497       else
498         down2_symeven(in, filteredlength, out);
499       filteredlength = proj_filteredlength;
500     }
501     if (filteredlength != olength) {
502       interpolate(out, filteredlength, output, olength);
503     }
504   } else {
505     interpolate(input, length, output, olength);
506   }
507 }
508 
fill_col_to_arr(uint8_t * img,int stride,int len,uint8_t * arr)509 static void fill_col_to_arr(uint8_t *img, int stride, int len, uint8_t *arr) {
510   int i;
511   uint8_t *iptr = img;
512   uint8_t *aptr = arr;
513   for (i = 0; i < len; ++i, iptr += stride) {
514     *aptr++ = *iptr;
515   }
516 }
517 
fill_arr_to_col(uint8_t * img,int stride,int len,uint8_t * arr)518 static void fill_arr_to_col(uint8_t *img, int stride, int len, uint8_t *arr) {
519   int i;
520   uint8_t *iptr = img;
521   uint8_t *aptr = arr;
522   for (i = 0; i < len; ++i, iptr += stride) {
523     *iptr = *aptr++;
524   }
525 }
526 
av1_resize_plane(const uint8_t * input,int height,int width,int in_stride,uint8_t * output,int height2,int width2,int out_stride)527 bool av1_resize_plane(const uint8_t *input, int height, int width,
528                       int in_stride, uint8_t *output, int height2, int width2,
529                       int out_stride) {
530   int i;
531   bool mem_status = true;
532   uint8_t *intbuf = (uint8_t *)aom_malloc(sizeof(uint8_t) * width2 * height);
533   uint8_t *tmpbuf =
534       (uint8_t *)aom_malloc(sizeof(uint8_t) * AOMMAX(width, height));
535   uint8_t *arrbuf = (uint8_t *)aom_malloc(sizeof(uint8_t) * height);
536   uint8_t *arrbuf2 = (uint8_t *)aom_malloc(sizeof(uint8_t) * height2);
537   if (intbuf == NULL || tmpbuf == NULL || arrbuf == NULL || arrbuf2 == NULL) {
538     mem_status = false;
539     goto Error;
540   }
541   assert(width > 0);
542   assert(height > 0);
543   assert(width2 > 0);
544   assert(height2 > 0);
545   for (i = 0; i < height; ++i)
546     resize_multistep(input + in_stride * i, width, intbuf + width2 * i, width2,
547                      tmpbuf);
548   for (i = 0; i < width2; ++i) {
549     fill_col_to_arr(intbuf + i, width2, height, arrbuf);
550     resize_multistep(arrbuf, height, arrbuf2, height2, tmpbuf);
551     fill_arr_to_col(output + i, out_stride, height2, arrbuf2);
552   }
553 
554 Error:
555   aom_free(intbuf);
556   aom_free(tmpbuf);
557   aom_free(arrbuf);
558   aom_free(arrbuf2);
559   return mem_status;
560 }
561 
upscale_normative_rect(const uint8_t * const input,int height,int width,int in_stride,uint8_t * output,int height2,int width2,int out_stride,int x_step_qn,int x0_qn,int pad_left,int pad_right)562 static bool upscale_normative_rect(const uint8_t *const input, int height,
563                                    int width, int in_stride, uint8_t *output,
564                                    int height2, int width2, int out_stride,
565                                    int x_step_qn, int x0_qn, int pad_left,
566                                    int pad_right) {
567   assert(width > 0);
568   assert(height > 0);
569   assert(width2 > 0);
570   assert(height2 > 0);
571   assert(height2 == height);
572 
573   // Extend the left/right pixels of the tile column if needed
574   // (either because we can't sample from other tiles, or because we're at
575   // a frame edge).
576   // Save the overwritten pixels into tmp_left and tmp_right.
577   // Note: Because we pass input-1 to av1_convolve_horiz_rs, we need one extra
578   // column of border pixels compared to what we'd naively think.
579   const int border_cols = UPSCALE_NORMATIVE_TAPS / 2 + 1;
580   uint8_t *tmp_left =
581       NULL;  // Silence spurious "may be used uninitialized" warnings
582   uint8_t *tmp_right = NULL;
583   uint8_t *const in_tl = (uint8_t *)(input - border_cols);  // Cast off 'const'
584   uint8_t *const in_tr = (uint8_t *)(input + width);
585   if (pad_left) {
586     tmp_left = (uint8_t *)aom_malloc(sizeof(*tmp_left) * border_cols * height);
587     if (!tmp_left) return false;
588     for (int i = 0; i < height; i++) {
589       memcpy(tmp_left + i * border_cols, in_tl + i * in_stride, border_cols);
590       memset(in_tl + i * in_stride, input[i * in_stride], border_cols);
591     }
592   }
593   if (pad_right) {
594     tmp_right =
595         (uint8_t *)aom_malloc(sizeof(*tmp_right) * border_cols * height);
596     if (!tmp_right) {
597       aom_free(tmp_left);
598       return false;
599     }
600     for (int i = 0; i < height; i++) {
601       memcpy(tmp_right + i * border_cols, in_tr + i * in_stride, border_cols);
602       memset(in_tr + i * in_stride, input[i * in_stride + width - 1],
603              border_cols);
604     }
605   }
606 
607   av1_convolve_horiz_rs(input - 1, in_stride, output, out_stride, width2,
608                         height2, &av1_resize_filter_normative[0][0], x0_qn,
609                         x_step_qn);
610 
611   // Restore the left/right border pixels
612   if (pad_left) {
613     for (int i = 0; i < height; i++) {
614       memcpy(in_tl + i * in_stride, tmp_left + i * border_cols, border_cols);
615     }
616     aom_free(tmp_left);
617   }
618   if (pad_right) {
619     for (int i = 0; i < height; i++) {
620       memcpy(in_tr + i * in_stride, tmp_right + i * border_cols, border_cols);
621     }
622     aom_free(tmp_right);
623   }
624   return true;
625 }
626 
627 #if CONFIG_AV1_HIGHBITDEPTH
highbd_interpolate_core(const uint16_t * const input,int in_length,uint16_t * output,int out_length,int bd,const int16_t * interp_filters,int interp_taps)628 static void highbd_interpolate_core(const uint16_t *const input, int in_length,
629                                     uint16_t *output, int out_length, int bd,
630                                     const int16_t *interp_filters,
631                                     int interp_taps) {
632   const int32_t delta =
633       (((uint32_t)in_length << RS_SCALE_SUBPEL_BITS) + out_length / 2) /
634       out_length;
635   const int32_t offset =
636       in_length > out_length
637           ? (((int32_t)(in_length - out_length) << (RS_SCALE_SUBPEL_BITS - 1)) +
638              out_length / 2) /
639                 out_length
640           : -(((int32_t)(out_length - in_length)
641                << (RS_SCALE_SUBPEL_BITS - 1)) +
642               out_length / 2) /
643                 out_length;
644   uint16_t *optr = output;
645   int x, x1, x2, sum, k, int_pel, sub_pel;
646   int32_t y;
647 
648   x = 0;
649   y = offset + RS_SCALE_EXTRA_OFF;
650   while ((y >> RS_SCALE_SUBPEL_BITS) < (interp_taps / 2 - 1)) {
651     x++;
652     y += delta;
653   }
654   x1 = x;
655   x = out_length - 1;
656   y = delta * x + offset + RS_SCALE_EXTRA_OFF;
657   while ((y >> RS_SCALE_SUBPEL_BITS) + (int32_t)(interp_taps / 2) >=
658          in_length) {
659     x--;
660     y -= delta;
661   }
662   x2 = x;
663   if (x1 > x2) {
664     for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < out_length;
665          ++x, y += delta) {
666       int_pel = y >> RS_SCALE_SUBPEL_BITS;
667       sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
668       const int16_t *filter = &interp_filters[sub_pel * interp_taps];
669       sum = 0;
670       for (k = 0; k < interp_taps; ++k) {
671         const int pk = int_pel - interp_taps / 2 + 1 + k;
672         sum += filter[k] * input[AOMMAX(AOMMIN(pk, in_length - 1), 0)];
673       }
674       *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
675     }
676   } else {
677     // Initial part.
678     for (x = 0, y = offset + RS_SCALE_EXTRA_OFF; x < x1; ++x, y += delta) {
679       int_pel = y >> RS_SCALE_SUBPEL_BITS;
680       sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
681       const int16_t *filter = &interp_filters[sub_pel * interp_taps];
682       sum = 0;
683       for (k = 0; k < interp_taps; ++k)
684         sum += filter[k] * input[AOMMAX(int_pel - interp_taps / 2 + 1 + k, 0)];
685       *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
686     }
687     // Middle part.
688     for (; x <= x2; ++x, y += delta) {
689       int_pel = y >> RS_SCALE_SUBPEL_BITS;
690       sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
691       const int16_t *filter = &interp_filters[sub_pel * interp_taps];
692       sum = 0;
693       for (k = 0; k < interp_taps; ++k)
694         sum += filter[k] * input[int_pel - interp_taps / 2 + 1 + k];
695       *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
696     }
697     // End part.
698     for (; x < out_length; ++x, y += delta) {
699       int_pel = y >> RS_SCALE_SUBPEL_BITS;
700       sub_pel = (y >> RS_SCALE_EXTRA_BITS) & RS_SUBPEL_MASK;
701       const int16_t *filter = &interp_filters[sub_pel * interp_taps];
702       sum = 0;
703       for (k = 0; k < interp_taps; ++k)
704         sum += filter[k] *
705                input[AOMMIN(int_pel - interp_taps / 2 + 1 + k, in_length - 1)];
706       *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
707     }
708   }
709 }
710 
highbd_interpolate(const uint16_t * const input,int in_length,uint16_t * output,int out_length,int bd)711 static void highbd_interpolate(const uint16_t *const input, int in_length,
712                                uint16_t *output, int out_length, int bd) {
713   const InterpKernel *interp_filters =
714       choose_interp_filter(in_length, out_length);
715 
716   highbd_interpolate_core(input, in_length, output, out_length, bd,
717                           &interp_filters[0][0], SUBPEL_TAPS);
718 }
719 
highbd_down2_symeven(const uint16_t * const input,int length,uint16_t * output,int bd)720 static void highbd_down2_symeven(const uint16_t *const input, int length,
721                                  uint16_t *output, int bd) {
722   // Actual filter len = 2 * filter_len_half.
723   static const int16_t *filter = av1_down2_symeven_half_filter;
724   const int filter_len_half = sizeof(av1_down2_symeven_half_filter) / 2;
725   int i, j;
726   uint16_t *optr = output;
727   int l1 = filter_len_half;
728   int l2 = (length - filter_len_half);
729   l1 += (l1 & 1);
730   l2 += (l2 & 1);
731   if (l1 > l2) {
732     // Short input length.
733     for (i = 0; i < length; i += 2) {
734       int sum = (1 << (FILTER_BITS - 1));
735       for (j = 0; j < filter_len_half; ++j) {
736         sum +=
737             (input[AOMMAX(0, i - j)] + input[AOMMIN(i + 1 + j, length - 1)]) *
738             filter[j];
739       }
740       sum >>= FILTER_BITS;
741       *optr++ = clip_pixel_highbd(sum, bd);
742     }
743   } else {
744     // Initial part.
745     for (i = 0; i < l1; i += 2) {
746       int sum = (1 << (FILTER_BITS - 1));
747       for (j = 0; j < filter_len_half; ++j) {
748         sum += (input[AOMMAX(0, i - j)] + input[i + 1 + j]) * filter[j];
749       }
750       sum >>= FILTER_BITS;
751       *optr++ = clip_pixel_highbd(sum, bd);
752     }
753     // Middle part.
754     for (; i < l2; i += 2) {
755       int sum = (1 << (FILTER_BITS - 1));
756       for (j = 0; j < filter_len_half; ++j) {
757         sum += (input[i - j] + input[i + 1 + j]) * filter[j];
758       }
759       sum >>= FILTER_BITS;
760       *optr++ = clip_pixel_highbd(sum, bd);
761     }
762     // End part.
763     for (; i < length; i += 2) {
764       int sum = (1 << (FILTER_BITS - 1));
765       for (j = 0; j < filter_len_half; ++j) {
766         sum +=
767             (input[i - j] + input[AOMMIN(i + 1 + j, length - 1)]) * filter[j];
768       }
769       sum >>= FILTER_BITS;
770       *optr++ = clip_pixel_highbd(sum, bd);
771     }
772   }
773 }
774 
highbd_down2_symodd(const uint16_t * const input,int length,uint16_t * output,int bd)775 static void highbd_down2_symodd(const uint16_t *const input, int length,
776                                 uint16_t *output, int bd) {
777   // Actual filter len = 2 * filter_len_half - 1.
778   static const int16_t *filter = av1_down2_symodd_half_filter;
779   const int filter_len_half = sizeof(av1_down2_symodd_half_filter) / 2;
780   int i, j;
781   uint16_t *optr = output;
782   int l1 = filter_len_half - 1;
783   int l2 = (length - filter_len_half + 1);
784   l1 += (l1 & 1);
785   l2 += (l2 & 1);
786   if (l1 > l2) {
787     // Short input length.
788     for (i = 0; i < length; i += 2) {
789       int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
790       for (j = 1; j < filter_len_half; ++j) {
791         sum += (input[AOMMAX(i - j, 0)] + input[AOMMIN(i + j, length - 1)]) *
792                filter[j];
793       }
794       sum >>= FILTER_BITS;
795       *optr++ = clip_pixel_highbd(sum, bd);
796     }
797   } else {
798     // Initial part.
799     for (i = 0; i < l1; i += 2) {
800       int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
801       for (j = 1; j < filter_len_half; ++j) {
802         sum += (input[AOMMAX(i - j, 0)] + input[i + j]) * filter[j];
803       }
804       sum >>= FILTER_BITS;
805       *optr++ = clip_pixel_highbd(sum, bd);
806     }
807     // Middle part.
808     for (; i < l2; i += 2) {
809       int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
810       for (j = 1; j < filter_len_half; ++j) {
811         sum += (input[i - j] + input[i + j]) * filter[j];
812       }
813       sum >>= FILTER_BITS;
814       *optr++ = clip_pixel_highbd(sum, bd);
815     }
816     // End part.
817     for (; i < length; i += 2) {
818       int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0];
819       for (j = 1; j < filter_len_half; ++j) {
820         sum += (input[i - j] + input[AOMMIN(i + j, length - 1)]) * filter[j];
821       }
822       sum >>= FILTER_BITS;
823       *optr++ = clip_pixel_highbd(sum, bd);
824     }
825   }
826 }
827 
highbd_resize_multistep(const uint16_t * const input,int length,uint16_t * output,int olength,uint16_t * otmp,int bd)828 static void highbd_resize_multistep(const uint16_t *const input, int length,
829                                     uint16_t *output, int olength,
830                                     uint16_t *otmp, int bd) {
831   if (length == olength) {
832     memcpy(output, input, sizeof(output[0]) * length);
833     return;
834   }
835   const int steps = get_down2_steps(length, olength);
836 
837   if (steps > 0) {
838     uint16_t *out = NULL;
839     int filteredlength = length;
840 
841     assert(otmp != NULL);
842     uint16_t *otmp2 = otmp + get_down2_length(length, 1);
843     for (int s = 0; s < steps; ++s) {
844       const int proj_filteredlength = get_down2_length(filteredlength, 1);
845       const uint16_t *const in = (s == 0 ? input : out);
846       if (s == steps - 1 && proj_filteredlength == olength)
847         out = output;
848       else
849         out = (s & 1 ? otmp2 : otmp);
850       if (filteredlength & 1)
851         highbd_down2_symodd(in, filteredlength, out, bd);
852       else
853         highbd_down2_symeven(in, filteredlength, out, bd);
854       filteredlength = proj_filteredlength;
855     }
856     if (filteredlength != olength) {
857       highbd_interpolate(out, filteredlength, output, olength, bd);
858     }
859   } else {
860     highbd_interpolate(input, length, output, olength, bd);
861   }
862 }
863 
highbd_fill_col_to_arr(uint16_t * img,int stride,int len,uint16_t * arr)864 static void highbd_fill_col_to_arr(uint16_t *img, int stride, int len,
865                                    uint16_t *arr) {
866   int i;
867   uint16_t *iptr = img;
868   uint16_t *aptr = arr;
869   for (i = 0; i < len; ++i, iptr += stride) {
870     *aptr++ = *iptr;
871   }
872 }
873 
highbd_fill_arr_to_col(uint16_t * img,int stride,int len,uint16_t * arr)874 static void highbd_fill_arr_to_col(uint16_t *img, int stride, int len,
875                                    uint16_t *arr) {
876   int i;
877   uint16_t *iptr = img;
878   uint16_t *aptr = arr;
879   for (i = 0; i < len; ++i, iptr += stride) {
880     *iptr = *aptr++;
881   }
882 }
883 
av1_highbd_resize_plane(const uint8_t * input,int height,int width,int in_stride,uint8_t * output,int height2,int width2,int out_stride,int bd)884 void av1_highbd_resize_plane(const uint8_t *input, int height, int width,
885                              int in_stride, uint8_t *output, int height2,
886                              int width2, int out_stride, int bd) {
887   int i;
888   uint16_t *intbuf = (uint16_t *)aom_malloc(sizeof(uint16_t) * width2 * height);
889   uint16_t *tmpbuf =
890       (uint16_t *)aom_malloc(sizeof(uint16_t) * AOMMAX(width, height));
891   uint16_t *arrbuf = (uint16_t *)aom_malloc(sizeof(uint16_t) * height);
892   uint16_t *arrbuf2 = (uint16_t *)aom_malloc(sizeof(uint16_t) * height2);
893   if (intbuf == NULL || tmpbuf == NULL || arrbuf == NULL || arrbuf2 == NULL)
894     goto Error;
895   for (i = 0; i < height; ++i) {
896     highbd_resize_multistep(CONVERT_TO_SHORTPTR(input + in_stride * i), width,
897                             intbuf + width2 * i, width2, tmpbuf, bd);
898   }
899   for (i = 0; i < width2; ++i) {
900     highbd_fill_col_to_arr(intbuf + i, width2, height, arrbuf);
901     highbd_resize_multistep(arrbuf, height, arrbuf2, height2, tmpbuf, bd);
902     highbd_fill_arr_to_col(CONVERT_TO_SHORTPTR(output + i), out_stride, height2,
903                            arrbuf2);
904   }
905 
906 Error:
907   aom_free(intbuf);
908   aom_free(tmpbuf);
909   aom_free(arrbuf);
910   aom_free(arrbuf2);
911 }
912 
highbd_upscale_normative_rect(const uint8_t * const input,int height,int width,int in_stride,uint8_t * output,int height2,int width2,int out_stride,int x_step_qn,int x0_qn,int pad_left,int pad_right,int bd)913 static bool highbd_upscale_normative_rect(const uint8_t *const input,
914                                           int height, int width, int in_stride,
915                                           uint8_t *output, int height2,
916                                           int width2, int out_stride,
917                                           int x_step_qn, int x0_qn,
918                                           int pad_left, int pad_right, int bd) {
919   assert(width > 0);
920   assert(height > 0);
921   assert(width2 > 0);
922   assert(height2 > 0);
923   assert(height2 == height);
924 
925   // Extend the left/right pixels of the tile column if needed
926   // (either because we can't sample from other tiles, or because we're at
927   // a frame edge).
928   // Save the overwritten pixels into tmp_left and tmp_right.
929   // Note: Because we pass input-1 to av1_convolve_horiz_rs, we need one extra
930   // column of border pixels compared to what we'd naively think.
931   const int border_cols = UPSCALE_NORMATIVE_TAPS / 2 + 1;
932   const int border_size = border_cols * sizeof(uint16_t);
933   uint16_t *tmp_left =
934       NULL;  // Silence spurious "may be used uninitialized" warnings
935   uint16_t *tmp_right = NULL;
936   uint16_t *const input16 = CONVERT_TO_SHORTPTR(input);
937   uint16_t *const in_tl = input16 - border_cols;
938   uint16_t *const in_tr = input16 + width;
939   if (pad_left) {
940     tmp_left = (uint16_t *)aom_malloc(sizeof(*tmp_left) * border_cols * height);
941     if (!tmp_left) return false;
942     for (int i = 0; i < height; i++) {
943       memcpy(tmp_left + i * border_cols, in_tl + i * in_stride, border_size);
944       aom_memset16(in_tl + i * in_stride, input16[i * in_stride], border_cols);
945     }
946   }
947   if (pad_right) {
948     tmp_right =
949         (uint16_t *)aom_malloc(sizeof(*tmp_right) * border_cols * height);
950     if (!tmp_right) {
951       aom_free(tmp_left);
952       return false;
953     }
954     for (int i = 0; i < height; i++) {
955       memcpy(tmp_right + i * border_cols, in_tr + i * in_stride, border_size);
956       aom_memset16(in_tr + i * in_stride, input16[i * in_stride + width - 1],
957                    border_cols);
958     }
959   }
960 
961   av1_highbd_convolve_horiz_rs(CONVERT_TO_SHORTPTR(input - 1), in_stride,
962                                CONVERT_TO_SHORTPTR(output), out_stride, width2,
963                                height2, &av1_resize_filter_normative[0][0],
964                                x0_qn, x_step_qn, bd);
965 
966   // Restore the left/right border pixels
967   if (pad_left) {
968     for (int i = 0; i < height; i++) {
969       memcpy(in_tl + i * in_stride, tmp_left + i * border_cols, border_size);
970     }
971     aom_free(tmp_left);
972   }
973   if (pad_right) {
974     for (int i = 0; i < height; i++) {
975       memcpy(in_tr + i * in_stride, tmp_right + i * border_cols, border_size);
976     }
977     aom_free(tmp_right);
978   }
979   return true;
980 }
981 #endif  // CONFIG_AV1_HIGHBITDEPTH
982 
av1_resize_frame420(const uint8_t * y,int y_stride,const uint8_t * u,const uint8_t * v,int uv_stride,int height,int width,uint8_t * oy,int oy_stride,uint8_t * ou,uint8_t * ov,int ouv_stride,int oheight,int owidth)983 void av1_resize_frame420(const uint8_t *y, int y_stride, const uint8_t *u,
984                          const uint8_t *v, int uv_stride, int height, int width,
985                          uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov,
986                          int ouv_stride, int oheight, int owidth) {
987   if (!av1_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
988                         oy_stride))
989     abort();
990   if (!av1_resize_plane(u, height / 2, width / 2, uv_stride, ou, oheight / 2,
991                         owidth / 2, ouv_stride))
992     abort();
993   if (!av1_resize_plane(v, height / 2, width / 2, uv_stride, ov, oheight / 2,
994                         owidth / 2, ouv_stride))
995     abort();
996 }
997 
av1_resize_frame422(const uint8_t * y,int y_stride,const uint8_t * u,const uint8_t * v,int uv_stride,int height,int width,uint8_t * oy,int oy_stride,uint8_t * ou,uint8_t * ov,int ouv_stride,int oheight,int owidth)998 bool av1_resize_frame422(const uint8_t *y, int y_stride, const uint8_t *u,
999                          const uint8_t *v, int uv_stride, int height, int width,
1000                          uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov,
1001                          int ouv_stride, int oheight, int owidth) {
1002   if (!av1_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
1003                         oy_stride))
1004     return false;
1005   if (!av1_resize_plane(u, height, width / 2, uv_stride, ou, oheight,
1006                         owidth / 2, ouv_stride))
1007     return false;
1008   if (!av1_resize_plane(v, height, width / 2, uv_stride, ov, oheight,
1009                         owidth / 2, ouv_stride))
1010     return false;
1011   return true;
1012 }
1013 
av1_resize_frame444(const uint8_t * y,int y_stride,const uint8_t * u,const uint8_t * v,int uv_stride,int height,int width,uint8_t * oy,int oy_stride,uint8_t * ou,uint8_t * ov,int ouv_stride,int oheight,int owidth)1014 bool av1_resize_frame444(const uint8_t *y, int y_stride, const uint8_t *u,
1015                          const uint8_t *v, int uv_stride, int height, int width,
1016                          uint8_t *oy, int oy_stride, uint8_t *ou, uint8_t *ov,
1017                          int ouv_stride, int oheight, int owidth) {
1018   if (!av1_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
1019                         oy_stride))
1020     return false;
1021   if (!av1_resize_plane(u, height, width, uv_stride, ou, oheight, owidth,
1022                         ouv_stride))
1023     return false;
1024   if (!av1_resize_plane(v, height, width, uv_stride, ov, oheight, owidth,
1025                         ouv_stride))
1026     return false;
1027   return true;
1028 }
1029 
1030 #if CONFIG_AV1_HIGHBITDEPTH
av1_highbd_resize_frame420(const uint8_t * y,int y_stride,const uint8_t * u,const uint8_t * v,int uv_stride,int height,int width,uint8_t * oy,int oy_stride,uint8_t * ou,uint8_t * ov,int ouv_stride,int oheight,int owidth,int bd)1031 void av1_highbd_resize_frame420(const uint8_t *y, int y_stride,
1032                                 const uint8_t *u, const uint8_t *v,
1033                                 int uv_stride, int height, int width,
1034                                 uint8_t *oy, int oy_stride, uint8_t *ou,
1035                                 uint8_t *ov, int ouv_stride, int oheight,
1036                                 int owidth, int bd) {
1037   av1_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
1038                           oy_stride, bd);
1039   av1_highbd_resize_plane(u, height / 2, width / 2, uv_stride, ou, oheight / 2,
1040                           owidth / 2, ouv_stride, bd);
1041   av1_highbd_resize_plane(v, height / 2, width / 2, uv_stride, ov, oheight / 2,
1042                           owidth / 2, ouv_stride, bd);
1043 }
1044 
av1_highbd_resize_frame422(const uint8_t * y,int y_stride,const uint8_t * u,const uint8_t * v,int uv_stride,int height,int width,uint8_t * oy,int oy_stride,uint8_t * ou,uint8_t * ov,int ouv_stride,int oheight,int owidth,int bd)1045 void av1_highbd_resize_frame422(const uint8_t *y, int y_stride,
1046                                 const uint8_t *u, const uint8_t *v,
1047                                 int uv_stride, int height, int width,
1048                                 uint8_t *oy, int oy_stride, uint8_t *ou,
1049                                 uint8_t *ov, int ouv_stride, int oheight,
1050                                 int owidth, int bd) {
1051   av1_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
1052                           oy_stride, bd);
1053   av1_highbd_resize_plane(u, height, width / 2, uv_stride, ou, oheight,
1054                           owidth / 2, ouv_stride, bd);
1055   av1_highbd_resize_plane(v, height, width / 2, uv_stride, ov, oheight,
1056                           owidth / 2, ouv_stride, bd);
1057 }
1058 
av1_highbd_resize_frame444(const uint8_t * y,int y_stride,const uint8_t * u,const uint8_t * v,int uv_stride,int height,int width,uint8_t * oy,int oy_stride,uint8_t * ou,uint8_t * ov,int ouv_stride,int oheight,int owidth,int bd)1059 void av1_highbd_resize_frame444(const uint8_t *y, int y_stride,
1060                                 const uint8_t *u, const uint8_t *v,
1061                                 int uv_stride, int height, int width,
1062                                 uint8_t *oy, int oy_stride, uint8_t *ou,
1063                                 uint8_t *ov, int ouv_stride, int oheight,
1064                                 int owidth, int bd) {
1065   av1_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth,
1066                           oy_stride, bd);
1067   av1_highbd_resize_plane(u, height, width, uv_stride, ou, oheight, owidth,
1068                           ouv_stride, bd);
1069   av1_highbd_resize_plane(v, height, width, uv_stride, ov, oheight, owidth,
1070                           ouv_stride, bd);
1071 }
1072 #endif  // CONFIG_AV1_HIGHBITDEPTH
1073 
av1_resize_and_extend_frame_c(const YV12_BUFFER_CONFIG * src,YV12_BUFFER_CONFIG * dst,const InterpFilter filter,const int phase_scaler,const int num_planes)1074 void av1_resize_and_extend_frame_c(const YV12_BUFFER_CONFIG *src,
1075                                    YV12_BUFFER_CONFIG *dst,
1076                                    const InterpFilter filter,
1077                                    const int phase_scaler,
1078                                    const int num_planes) {
1079   assert(filter == BILINEAR || filter == EIGHTTAP_SMOOTH ||
1080          filter == EIGHTTAP_REGULAR);
1081   const InterpKernel *const kernel =
1082       (const InterpKernel *)av1_interp_filter_params_list[filter].filter_ptr;
1083 
1084   for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
1085     const int is_uv = i > 0;
1086     const int src_w = src->crop_widths[is_uv];
1087     const int src_h = src->crop_heights[is_uv];
1088     const uint8_t *src_buffer = src->buffers[i];
1089     const int src_stride = src->strides[is_uv];
1090     const int dst_w = dst->crop_widths[is_uv];
1091     const int dst_h = dst->crop_heights[is_uv];
1092     uint8_t *dst_buffer = dst->buffers[i];
1093     const int dst_stride = dst->strides[is_uv];
1094     for (int y = 0; y < dst_h; y += 16) {
1095       const int y_q4 =
1096           src_h == dst_h ? 0 : y * 16 * src_h / dst_h + phase_scaler;
1097       for (int x = 0; x < dst_w; x += 16) {
1098         const int x_q4 =
1099             src_w == dst_w ? 0 : x * 16 * src_w / dst_w + phase_scaler;
1100         const uint8_t *src_ptr =
1101             src_buffer + y * src_h / dst_h * src_stride + x * src_w / dst_w;
1102         uint8_t *dst_ptr = dst_buffer + y * dst_stride + x;
1103 
1104         // Width and height of the actual working area.
1105         const int work_w = AOMMIN(16, dst_w - x);
1106         const int work_h = AOMMIN(16, dst_h - y);
1107         // SIMD versions of aom_scaled_2d() have some trouble handling
1108         // nonstandard sizes, so fall back on the C version to handle borders.
1109         if (work_w != 16 || work_h != 16) {
1110           aom_scaled_2d_c(src_ptr, src_stride, dst_ptr, dst_stride, kernel,
1111                           x_q4 & 0xf, 16 * src_w / dst_w, y_q4 & 0xf,
1112                           16 * src_h / dst_h, work_w, work_h);
1113         } else {
1114           aom_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride, kernel,
1115                         x_q4 & 0xf, 16 * src_w / dst_w, y_q4 & 0xf,
1116                         16 * src_h / dst_h, 16, 16);
1117         }
1118       }
1119     }
1120   }
1121   aom_extend_frame_borders(dst, num_planes);
1122 }
1123 
av1_resize_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG * src,YV12_BUFFER_CONFIG * dst,int bd,int num_planes)1124 bool av1_resize_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
1125                                               YV12_BUFFER_CONFIG *dst, int bd,
1126                                               int num_planes) {
1127   // TODO(dkovalev): replace YV12_BUFFER_CONFIG with aom_image_t
1128 
1129   // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
1130   // the static analysis warnings.
1131   for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
1132     const int is_uv = i > 0;
1133 #if CONFIG_AV1_HIGHBITDEPTH
1134     if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
1135       av1_highbd_resize_plane(src->buffers[i], src->crop_heights[is_uv],
1136                               src->crop_widths[is_uv], src->strides[is_uv],
1137                               dst->buffers[i], dst->crop_heights[is_uv],
1138                               dst->crop_widths[is_uv], dst->strides[is_uv], bd);
1139     } else if (!av1_resize_plane(src->buffers[i], src->crop_heights[is_uv],
1140                                  src->crop_widths[is_uv], src->strides[is_uv],
1141                                  dst->buffers[i], dst->crop_heights[is_uv],
1142                                  dst->crop_widths[is_uv],
1143                                  dst->strides[is_uv])) {
1144       return false;
1145     }
1146 #else
1147     (void)bd;
1148     if (!av1_resize_plane(src->buffers[i], src->crop_heights[is_uv],
1149                           src->crop_widths[is_uv], src->strides[is_uv],
1150                           dst->buffers[i], dst->crop_heights[is_uv],
1151                           dst->crop_widths[is_uv], dst->strides[is_uv]))
1152       return false;
1153 #endif
1154   }
1155   aom_extend_frame_borders(dst, num_planes);
1156   return true;
1157 }
1158 
av1_upscale_normative_rows(const AV1_COMMON * cm,const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int plane,int rows)1159 void av1_upscale_normative_rows(const AV1_COMMON *cm, const uint8_t *src,
1160                                 int src_stride, uint8_t *dst, int dst_stride,
1161                                 int plane, int rows) {
1162   const int is_uv = (plane > 0);
1163   const int ss_x = is_uv && cm->seq_params->subsampling_x;
1164   const int downscaled_plane_width = ROUND_POWER_OF_TWO(cm->width, ss_x);
1165   const int upscaled_plane_width =
1166       ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x);
1167   const int superres_denom = cm->superres_scale_denominator;
1168 
1169   TileInfo tile_col;
1170   const int32_t x_step_qn = av1_get_upscale_convolve_step(
1171       downscaled_plane_width, upscaled_plane_width);
1172   int32_t x0_qn = get_upscale_convolve_x0(downscaled_plane_width,
1173                                           upscaled_plane_width, x_step_qn);
1174 
1175   for (int j = 0; j < cm->tiles.cols; j++) {
1176     av1_tile_set_col(&tile_col, cm, j);
1177     // Determine the limits of this tile column in both the source
1178     // and destination images.
1179     // Note: The actual location which we start sampling from is
1180     // (downscaled_x0 - 1 + (x0_qn/2^14)), and this quantity increases
1181     // by exactly dst_width * (x_step_qn/2^14) pixels each iteration.
1182     const int downscaled_x0 = tile_col.mi_col_start << (MI_SIZE_LOG2 - ss_x);
1183     const int downscaled_x1 = tile_col.mi_col_end << (MI_SIZE_LOG2 - ss_x);
1184     const int src_width = downscaled_x1 - downscaled_x0;
1185 
1186     const int upscaled_x0 = (downscaled_x0 * superres_denom) / SCALE_NUMERATOR;
1187     int upscaled_x1;
1188     if (j == cm->tiles.cols - 1) {
1189       // Note that we can't just use AOMMIN here - due to rounding,
1190       // (downscaled_x1 * superres_denom) / SCALE_NUMERATOR may be less than
1191       // upscaled_plane_width.
1192       upscaled_x1 = upscaled_plane_width;
1193     } else {
1194       upscaled_x1 = (downscaled_x1 * superres_denom) / SCALE_NUMERATOR;
1195     }
1196 
1197     const uint8_t *const src_ptr = src + downscaled_x0;
1198     uint8_t *const dst_ptr = dst + upscaled_x0;
1199     const int dst_width = upscaled_x1 - upscaled_x0;
1200 
1201     const int pad_left = (j == 0);
1202     const int pad_right = (j == cm->tiles.cols - 1);
1203 
1204     bool success;
1205 #if CONFIG_AV1_HIGHBITDEPTH
1206     if (cm->seq_params->use_highbitdepth)
1207       success = highbd_upscale_normative_rect(
1208           src_ptr, rows, src_width, src_stride, dst_ptr, rows, dst_width,
1209           dst_stride, x_step_qn, x0_qn, pad_left, pad_right,
1210           cm->seq_params->bit_depth);
1211     else
1212       success = upscale_normative_rect(src_ptr, rows, src_width, src_stride,
1213                                        dst_ptr, rows, dst_width, dst_stride,
1214                                        x_step_qn, x0_qn, pad_left, pad_right);
1215 #else
1216     success = upscale_normative_rect(src_ptr, rows, src_width, src_stride,
1217                                      dst_ptr, rows, dst_width, dst_stride,
1218                                      x_step_qn, x0_qn, pad_left, pad_right);
1219 #endif
1220     if (!success) {
1221       aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1222                          "Error upscaling frame");
1223     }
1224     // Update the fractional pixel offset to prepare for the next tile column.
1225     x0_qn += (dst_width * x_step_qn) - (src_width << RS_SCALE_SUBPEL_BITS);
1226   }
1227 }
1228 
av1_upscale_normative_and_extend_frame(const AV1_COMMON * cm,const YV12_BUFFER_CONFIG * src,YV12_BUFFER_CONFIG * dst)1229 void av1_upscale_normative_and_extend_frame(const AV1_COMMON *cm,
1230                                             const YV12_BUFFER_CONFIG *src,
1231                                             YV12_BUFFER_CONFIG *dst) {
1232   const int num_planes = av1_num_planes(cm);
1233   for (int i = 0; i < num_planes; ++i) {
1234     const int is_uv = (i > 0);
1235     av1_upscale_normative_rows(cm, src->buffers[i], src->strides[is_uv],
1236                                dst->buffers[i], dst->strides[is_uv], i,
1237                                src->crop_heights[is_uv]);
1238   }
1239 
1240   aom_extend_frame_borders(dst, num_planes);
1241 }
1242 
av1_realloc_and_scale_if_required(AV1_COMMON * cm,YV12_BUFFER_CONFIG * unscaled,YV12_BUFFER_CONFIG * scaled,const InterpFilter filter,const int phase,const bool use_optimized_scaler,const bool for_psnr,const int border_in_pixels,const bool alloc_pyramid)1243 YV12_BUFFER_CONFIG *av1_realloc_and_scale_if_required(
1244     AV1_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled,
1245     const InterpFilter filter, const int phase, const bool use_optimized_scaler,
1246     const bool for_psnr, const int border_in_pixels, const bool alloc_pyramid) {
1247   // If scaling is performed for the sole purpose of calculating PSNR, then our
1248   // target dimensions are superres upscaled width/height. Otherwise our target
1249   // dimensions are coded width/height.
1250   const int scaled_width = for_psnr ? cm->superres_upscaled_width : cm->width;
1251   const int scaled_height =
1252       for_psnr ? cm->superres_upscaled_height : cm->height;
1253   const bool scaling_required = (scaled_width != unscaled->y_crop_width) ||
1254                                 (scaled_height != unscaled->y_crop_height);
1255 
1256   if (scaling_required) {
1257     const int num_planes = av1_num_planes(cm);
1258     const SequenceHeader *seq_params = cm->seq_params;
1259 
1260     // Reallocate the frame buffer based on the target dimensions when scaling
1261     // is required.
1262     if (aom_realloc_frame_buffer(
1263             scaled, scaled_width, scaled_height, seq_params->subsampling_x,
1264             seq_params->subsampling_y, seq_params->use_highbitdepth,
1265             border_in_pixels, cm->features.byte_alignment, NULL, NULL, NULL,
1266             alloc_pyramid, 0))
1267       aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1268                          "Failed to allocate scaled buffer");
1269 
1270     bool has_optimized_scaler = av1_has_optimized_scaler(
1271         unscaled->y_crop_width, unscaled->y_crop_height, scaled_width,
1272         scaled_height);
1273     if (num_planes > 1) {
1274       has_optimized_scaler = has_optimized_scaler &&
1275                              av1_has_optimized_scaler(unscaled->uv_crop_width,
1276                                                       unscaled->uv_crop_height,
1277                                                       scaled->uv_crop_width,
1278                                                       scaled->uv_crop_height);
1279     }
1280 
1281 #if CONFIG_AV1_HIGHBITDEPTH
1282     if (use_optimized_scaler && has_optimized_scaler &&
1283         cm->seq_params->bit_depth == AOM_BITS_8) {
1284       av1_resize_and_extend_frame(unscaled, scaled, filter, phase, num_planes);
1285     } else {
1286       if (!av1_resize_and_extend_frame_nonnormative(
1287               unscaled, scaled, (int)cm->seq_params->bit_depth, num_planes))
1288         aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1289                            "Failed to allocate buffers during resize");
1290     }
1291 #else
1292     if (use_optimized_scaler && has_optimized_scaler) {
1293       av1_resize_and_extend_frame(unscaled, scaled, filter, phase, num_planes);
1294     } else {
1295       if (!av1_resize_and_extend_frame_nonnormative(
1296               unscaled, scaled, (int)cm->seq_params->bit_depth, num_planes))
1297         aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1298                            "Failed to allocate buffers during resize");
1299     }
1300 #endif
1301     return scaled;
1302   }
1303   return unscaled;
1304 }
1305 
1306 // Calculates the scaled dimension given the original dimension and the scale
1307 // denominator.
calculate_scaled_size_helper(int * dim,int denom)1308 static void calculate_scaled_size_helper(int *dim, int denom) {
1309   if (denom != SCALE_NUMERATOR) {
1310     // We need to ensure the constraint in "Appendix A" of the spec:
1311     // * FrameWidth is greater than or equal to 16
1312     // * FrameHeight is greater than or equal to 16
1313     // For this, we clamp the downscaled dimension to at least 16. One
1314     // exception: if original dimension itself was < 16, then we keep the
1315     // downscaled dimension to be same as the original, to ensure that resizing
1316     // is valid.
1317     const int min_dim = AOMMIN(16, *dim);
1318     // Use this version if we need *dim to be even
1319     // *width = (*width * SCALE_NUMERATOR + denom) / (2 * denom);
1320     // *width <<= 1;
1321     *dim = (*dim * SCALE_NUMERATOR + denom / 2) / (denom);
1322     *dim = AOMMAX(*dim, min_dim);
1323   }
1324 }
1325 
av1_calculate_scaled_size(int * width,int * height,int resize_denom)1326 void av1_calculate_scaled_size(int *width, int *height, int resize_denom) {
1327   calculate_scaled_size_helper(width, resize_denom);
1328   calculate_scaled_size_helper(height, resize_denom);
1329 }
1330 
av1_calculate_scaled_superres_size(int * width,int * height,int superres_denom)1331 void av1_calculate_scaled_superres_size(int *width, int *height,
1332                                         int superres_denom) {
1333   (void)height;
1334   calculate_scaled_size_helper(width, superres_denom);
1335 }
1336 
av1_calculate_unscaled_superres_size(int * width,int * height,int denom)1337 void av1_calculate_unscaled_superres_size(int *width, int *height, int denom) {
1338   if (denom != SCALE_NUMERATOR) {
1339     // Note: av1_calculate_scaled_superres_size() rounds *up* after division
1340     // when the resulting dimensions are odd. So here, we round *down*.
1341     *width = *width * denom / SCALE_NUMERATOR;
1342     (void)height;
1343   }
1344 }
1345 
1346 // Copy only the config data from 'src' to 'dst'.
copy_buffer_config(const YV12_BUFFER_CONFIG * const src,YV12_BUFFER_CONFIG * const dst)1347 static void copy_buffer_config(const YV12_BUFFER_CONFIG *const src,
1348                                YV12_BUFFER_CONFIG *const dst) {
1349   dst->bit_depth = src->bit_depth;
1350   dst->color_primaries = src->color_primaries;
1351   dst->transfer_characteristics = src->transfer_characteristics;
1352   dst->matrix_coefficients = src->matrix_coefficients;
1353   dst->monochrome = src->monochrome;
1354   dst->chroma_sample_position = src->chroma_sample_position;
1355   dst->color_range = src->color_range;
1356 }
1357 
1358 // TODO(afergs): Look for in-place upscaling
1359 // TODO(afergs): aom_ vs av1_ functions? Which can I use?
1360 // Upscale decoded image.
av1_superres_upscale(AV1_COMMON * cm,BufferPool * const pool,bool alloc_pyramid)1361 void av1_superres_upscale(AV1_COMMON *cm, BufferPool *const pool,
1362                           bool alloc_pyramid) {
1363   const int num_planes = av1_num_planes(cm);
1364   if (!av1_superres_scaled(cm)) return;
1365   const SequenceHeader *const seq_params = cm->seq_params;
1366   const int byte_alignment = cm->features.byte_alignment;
1367 
1368   YV12_BUFFER_CONFIG copy_buffer;
1369   memset(&copy_buffer, 0, sizeof(copy_buffer));
1370 
1371   YV12_BUFFER_CONFIG *const frame_to_show = &cm->cur_frame->buf;
1372 
1373   const int aligned_width = ALIGN_POWER_OF_TWO(cm->width, 3);
1374   if (aom_alloc_frame_buffer(
1375           &copy_buffer, aligned_width, cm->height, seq_params->subsampling_x,
1376           seq_params->subsampling_y, seq_params->use_highbitdepth,
1377           AOM_BORDER_IN_PIXELS, byte_alignment, false, 0))
1378     aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1379                        "Failed to allocate copy buffer for superres upscaling");
1380 
1381   // Copy function assumes the frames are the same size.
1382   // Note that it does not copy YV12_BUFFER_CONFIG config data.
1383   aom_yv12_copy_frame(frame_to_show, &copy_buffer, num_planes);
1384 
1385   assert(copy_buffer.y_crop_width == aligned_width);
1386   assert(copy_buffer.y_crop_height == cm->height);
1387 
1388   // Realloc the current frame buffer at a higher resolution in place.
1389   if (pool != NULL) {
1390     // Use callbacks if on the decoder.
1391     aom_codec_frame_buffer_t *fb = &cm->cur_frame->raw_frame_buffer;
1392     aom_release_frame_buffer_cb_fn_t release_fb_cb = pool->release_fb_cb;
1393     aom_get_frame_buffer_cb_fn_t cb = pool->get_fb_cb;
1394     void *cb_priv = pool->cb_priv;
1395 
1396     lock_buffer_pool(pool);
1397     // Realloc with callback does not release the frame buffer - release first.
1398     if (release_fb_cb(cb_priv, fb)) {
1399       unlock_buffer_pool(pool);
1400       aom_internal_error(
1401           cm->error, AOM_CODEC_MEM_ERROR,
1402           "Failed to free current frame buffer before superres upscaling");
1403     }
1404     // aom_realloc_frame_buffer() leaves config data for frame_to_show intact
1405     if (aom_realloc_frame_buffer(
1406             frame_to_show, cm->superres_upscaled_width,
1407             cm->superres_upscaled_height, seq_params->subsampling_x,
1408             seq_params->subsampling_y, seq_params->use_highbitdepth,
1409             AOM_BORDER_IN_PIXELS, byte_alignment, fb, cb, cb_priv,
1410             alloc_pyramid, 0)) {
1411       unlock_buffer_pool(pool);
1412       aom_internal_error(
1413           cm->error, AOM_CODEC_MEM_ERROR,
1414           "Failed to allocate current frame buffer for superres upscaling");
1415     }
1416     unlock_buffer_pool(pool);
1417   } else {
1418     // Make a copy of the config data for frame_to_show in copy_buffer
1419     copy_buffer_config(frame_to_show, &copy_buffer);
1420 
1421     // Don't use callbacks on the encoder.
1422     // aom_alloc_frame_buffer() clears the config data for frame_to_show
1423     if (aom_alloc_frame_buffer(
1424             frame_to_show, cm->superres_upscaled_width,
1425             cm->superres_upscaled_height, seq_params->subsampling_x,
1426             seq_params->subsampling_y, seq_params->use_highbitdepth,
1427             AOM_BORDER_IN_PIXELS, byte_alignment, alloc_pyramid, 0))
1428       aom_internal_error(
1429           cm->error, AOM_CODEC_MEM_ERROR,
1430           "Failed to reallocate current frame buffer for superres upscaling");
1431 
1432     // Restore config data back to frame_to_show
1433     copy_buffer_config(&copy_buffer, frame_to_show);
1434   }
1435   // TODO(afergs): verify frame_to_show is correct after realloc
1436   //               encoder:
1437   //               decoder:
1438 
1439   assert(frame_to_show->y_crop_width == cm->superres_upscaled_width);
1440   assert(frame_to_show->y_crop_height == cm->superres_upscaled_height);
1441 
1442   // Scale up and back into frame_to_show.
1443   assert(frame_to_show->y_crop_width != cm->width);
1444   av1_upscale_normative_and_extend_frame(cm, &copy_buffer, frame_to_show);
1445 
1446   // Free the copy buffer
1447   aom_free_frame_buffer(&copy_buffer);
1448 }
1449