• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "aom/aom_image.h"
13 #include "config/aom_config.h"
14 #include "config/aom_scale_rtcd.h"
15 
16 #include "aom_dsp/aom_dsp_common.h"
17 #include "aom_dsp/txfm_common.h"
18 #include "aom_mem/aom_mem.h"
19 #include "aom_util/aom_pthread.h"
20 #include "aom_util/aom_thread.h"
21 #include "av1/common/av1_loopfilter.h"
22 #include "av1/common/blockd.h"
23 #include "av1/common/cdef.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/enums.h"
26 #include "av1/common/thread_common.h"
27 #include "av1/common/reconinter.h"
28 #include "av1/common/reconintra.h"
29 #include "av1/common/restoration.h"
30 
31 // Set up nsync by width.
get_sync_range(int width)32 static INLINE int get_sync_range(int width) {
33   // nsync numbers are picked by testing. For example, for 4k
34   // video, using 4 gives best performance.
35   if (width < 640)
36     return 1;
37   else if (width <= 1280)
38     return 2;
39   else if (width <= 4096)
40     return 4;
41   else
42     return 8;
43 }
44 
get_lr_sync_range(int width)45 static INLINE int get_lr_sync_range(int width) {
46 #if 0
47   // nsync numbers are picked by testing. For example, for 4k
48   // video, using 4 gives best performance.
49   if (width < 640)
50     return 1;
51   else if (width <= 1280)
52     return 2;
53   else if (width <= 4096)
54     return 4;
55   else
56     return 8;
57 #else
58   (void)width;
59   return 1;
60 #endif
61 }
62 
63 // Allocate memory for lf row synchronization
av1_loop_filter_alloc(AV1LfSync * lf_sync,AV1_COMMON * cm,int rows,int width,int num_workers)64 void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows,
65                            int width, int num_workers) {
66   lf_sync->rows = rows;
67 #if CONFIG_MULTITHREAD
68   {
69     int i, j;
70 
71     for (j = 0; j < MAX_MB_PLANE; j++) {
72       CHECK_MEM_ERROR(cm, lf_sync->mutex_[j],
73                       aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows));
74       if (lf_sync->mutex_[j]) {
75         for (i = 0; i < rows; ++i) {
76           pthread_mutex_init(&lf_sync->mutex_[j][i], NULL);
77         }
78       }
79 
80       CHECK_MEM_ERROR(cm, lf_sync->cond_[j],
81                       aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows));
82       if (lf_sync->cond_[j]) {
83         for (i = 0; i < rows; ++i) {
84           pthread_cond_init(&lf_sync->cond_[j][i], NULL);
85         }
86       }
87     }
88 
89     CHECK_MEM_ERROR(cm, lf_sync->job_mutex,
90                     aom_malloc(sizeof(*(lf_sync->job_mutex))));
91     if (lf_sync->job_mutex) {
92       pthread_mutex_init(lf_sync->job_mutex, NULL);
93     }
94   }
95 #endif  // CONFIG_MULTITHREAD
96   CHECK_MEM_ERROR(cm, lf_sync->lfdata,
97                   aom_malloc(num_workers * sizeof(*(lf_sync->lfdata))));
98   lf_sync->num_workers = num_workers;
99 
100   for (int j = 0; j < MAX_MB_PLANE; j++) {
101     CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j],
102                     aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows));
103   }
104   CHECK_MEM_ERROR(
105       cm, lf_sync->job_queue,
106       aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2));
107   // Set up nsync.
108   lf_sync->sync_range = get_sync_range(width);
109 }
110 
111 // Deallocate lf synchronization related mutex and data
av1_loop_filter_dealloc(AV1LfSync * lf_sync)112 void av1_loop_filter_dealloc(AV1LfSync *lf_sync) {
113   if (lf_sync != NULL) {
114     int j;
115 #if CONFIG_MULTITHREAD
116     int i;
117     for (j = 0; j < MAX_MB_PLANE; j++) {
118       if (lf_sync->mutex_[j] != NULL) {
119         for (i = 0; i < lf_sync->rows; ++i) {
120           pthread_mutex_destroy(&lf_sync->mutex_[j][i]);
121         }
122         aom_free(lf_sync->mutex_[j]);
123       }
124       if (lf_sync->cond_[j] != NULL) {
125         for (i = 0; i < lf_sync->rows; ++i) {
126           pthread_cond_destroy(&lf_sync->cond_[j][i]);
127         }
128         aom_free(lf_sync->cond_[j]);
129       }
130     }
131     if (lf_sync->job_mutex != NULL) {
132       pthread_mutex_destroy(lf_sync->job_mutex);
133       aom_free(lf_sync->job_mutex);
134     }
135 #endif  // CONFIG_MULTITHREAD
136     aom_free(lf_sync->lfdata);
137     for (j = 0; j < MAX_MB_PLANE; j++) {
138       aom_free(lf_sync->cur_sb_col[j]);
139     }
140 
141     aom_free(lf_sync->job_queue);
142     // clear the structure as the source of this call may be a resize in which
143     // case this call will be followed by an _alloc() which may fail.
144     av1_zero(*lf_sync);
145   }
146 }
147 
av1_alloc_cdef_sync(AV1_COMMON * const cm,AV1CdefSync * cdef_sync,int num_workers)148 void av1_alloc_cdef_sync(AV1_COMMON *const cm, AV1CdefSync *cdef_sync,
149                          int num_workers) {
150   if (num_workers < 1) return;
151 #if CONFIG_MULTITHREAD
152   if (cdef_sync->mutex_ == NULL) {
153     CHECK_MEM_ERROR(cm, cdef_sync->mutex_,
154                     aom_malloc(sizeof(*(cdef_sync->mutex_))));
155     if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
156   }
157 #else
158   (void)cm;
159   (void)cdef_sync;
160 #endif  // CONFIG_MULTITHREAD
161 }
162 
av1_free_cdef_sync(AV1CdefSync * cdef_sync)163 void av1_free_cdef_sync(AV1CdefSync *cdef_sync) {
164   if (cdef_sync == NULL) return;
165 #if CONFIG_MULTITHREAD
166   if (cdef_sync->mutex_ != NULL) {
167     pthread_mutex_destroy(cdef_sync->mutex_);
168     aom_free(cdef_sync->mutex_);
169   }
170 #endif  // CONFIG_MULTITHREAD
171 }
172 
cdef_row_mt_sync_read(AV1CdefSync * const cdef_sync,int row)173 static INLINE void cdef_row_mt_sync_read(AV1CdefSync *const cdef_sync,
174                                          int row) {
175   if (!row) return;
176 #if CONFIG_MULTITHREAD
177   AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt;
178   pthread_mutex_lock(cdef_row_mt[row - 1].row_mutex_);
179   while (cdef_row_mt[row - 1].is_row_done != 1)
180     pthread_cond_wait(cdef_row_mt[row - 1].row_cond_,
181                       cdef_row_mt[row - 1].row_mutex_);
182   cdef_row_mt[row - 1].is_row_done = 0;
183   pthread_mutex_unlock(cdef_row_mt[row - 1].row_mutex_);
184 #else
185   (void)cdef_sync;
186 #endif  // CONFIG_MULTITHREAD
187 }
188 
cdef_row_mt_sync_write(AV1CdefSync * const cdef_sync,int row)189 static INLINE void cdef_row_mt_sync_write(AV1CdefSync *const cdef_sync,
190                                           int row) {
191 #if CONFIG_MULTITHREAD
192   AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt;
193   pthread_mutex_lock(cdef_row_mt[row].row_mutex_);
194   pthread_cond_signal(cdef_row_mt[row].row_cond_);
195   cdef_row_mt[row].is_row_done = 1;
196   pthread_mutex_unlock(cdef_row_mt[row].row_mutex_);
197 #else
198   (void)cdef_sync;
199   (void)row;
200 #endif  // CONFIG_MULTITHREAD
201 }
202 
sync_read(AV1LfSync * const lf_sync,int r,int c,int plane)203 static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c,
204                              int plane) {
205 #if CONFIG_MULTITHREAD
206   const int nsync = lf_sync->sync_range;
207 
208   if (r && !(c & (nsync - 1))) {
209     pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1];
210     pthread_mutex_lock(mutex);
211 
212     while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) {
213       pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex);
214     }
215     pthread_mutex_unlock(mutex);
216   }
217 #else
218   (void)lf_sync;
219   (void)r;
220   (void)c;
221   (void)plane;
222 #endif  // CONFIG_MULTITHREAD
223 }
224 
sync_write(AV1LfSync * const lf_sync,int r,int c,const int sb_cols,int plane)225 static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c,
226                               const int sb_cols, int plane) {
227 #if CONFIG_MULTITHREAD
228   const int nsync = lf_sync->sync_range;
229   int cur;
230   // Only signal when there are enough filtered SB for next row to run.
231   int sig = 1;
232 
233   if (c < sb_cols - 1) {
234     cur = c;
235     if (c % nsync) sig = 0;
236   } else {
237     cur = sb_cols + nsync;
238   }
239 
240   if (sig) {
241     pthread_mutex_lock(&lf_sync->mutex_[plane][r]);
242 
243     // When a thread encounters an error, cur_sb_col[plane][r] is set to maximum
244     // column number. In this case, the AOMMAX operation here ensures that
245     // cur_sb_col[plane][r] is not overwritten with a smaller value thus
246     // preventing the infinite waiting of threads in the relevant sync_read()
247     // function.
248     lf_sync->cur_sb_col[plane][r] = AOMMAX(lf_sync->cur_sb_col[plane][r], cur);
249 
250     pthread_cond_broadcast(&lf_sync->cond_[plane][r]);
251     pthread_mutex_unlock(&lf_sync->mutex_[plane][r]);
252   }
253 #else
254   (void)lf_sync;
255   (void)r;
256   (void)c;
257   (void)sb_cols;
258   (void)plane;
259 #endif  // CONFIG_MULTITHREAD
260 }
261 
262 // One job of row loopfiltering.
av1_thread_loop_filter_rows(const YV12_BUFFER_CONFIG * const frame_buffer,AV1_COMMON * const cm,struct macroblockd_plane * planes,MACROBLOCKD * xd,int mi_row,int plane,int dir,int lpf_opt_level,AV1LfSync * const lf_sync,struct aom_internal_error_info * error_info,AV1_DEBLOCKING_PARAMETERS * params_buf,TX_SIZE * tx_buf,int num_mis_in_lpf_unit_height_log2)263 void av1_thread_loop_filter_rows(
264     const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
265     struct macroblockd_plane *planes, MACROBLOCKD *xd, int mi_row, int plane,
266     int dir, int lpf_opt_level, AV1LfSync *const lf_sync,
267     struct aom_internal_error_info *error_info,
268     AV1_DEBLOCKING_PARAMETERS *params_buf, TX_SIZE *tx_buf,
269     int num_mis_in_lpf_unit_height_log2) {
270   // TODO(aomedia:3276): Pass error_info to the low-level functions as required
271   // in future to handle error propagation.
272   (void)error_info;
273   const int sb_cols =
274       CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, MAX_MIB_SIZE_LOG2);
275   const int r = mi_row >> num_mis_in_lpf_unit_height_log2;
276   int mi_col, c;
277 
278   const bool joint_filter_chroma = (lpf_opt_level == 2) && plane > AOM_PLANE_Y;
279   const int num_planes = joint_filter_chroma ? 2 : 1;
280   assert(IMPLIES(joint_filter_chroma, plane == AOM_PLANE_U));
281 
282   if (dir == 0) {
283     for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) {
284       c = mi_col >> MAX_MIB_SIZE_LOG2;
285 
286       av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer,
287                            mi_row, mi_col, plane, plane + num_planes);
288       if (lpf_opt_level) {
289         if (plane == AOM_PLANE_Y) {
290           av1_filter_block_plane_vert_opt(cm, xd, &planes[plane], mi_row,
291                                           mi_col, params_buf, tx_buf,
292                                           num_mis_in_lpf_unit_height_log2);
293         } else {
294           av1_filter_block_plane_vert_opt_chroma(
295               cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane,
296               joint_filter_chroma, num_mis_in_lpf_unit_height_log2);
297         }
298       } else {
299         av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row,
300                                     mi_col);
301       }
302       if (lf_sync != NULL) {
303         sync_write(lf_sync, r, c, sb_cols, plane);
304       }
305     }
306   } else if (dir == 1) {
307     for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) {
308       c = mi_col >> MAX_MIB_SIZE_LOG2;
309 
310       if (lf_sync != NULL) {
311         // Wait for vertical edge filtering of the top-right block to be
312         // completed
313         sync_read(lf_sync, r, c, plane);
314 
315         // Wait for vertical edge filtering of the right block to be completed
316         sync_read(lf_sync, r + 1, c, plane);
317       }
318 
319 #if CONFIG_MULTITHREAD
320       if (lf_sync && lf_sync->num_workers > 1) {
321         pthread_mutex_lock(lf_sync->job_mutex);
322         const bool lf_mt_exit = lf_sync->lf_mt_exit;
323         pthread_mutex_unlock(lf_sync->job_mutex);
324         // Exit in case any worker has encountered an error.
325         if (lf_mt_exit) return;
326       }
327 #endif
328 
329       av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer,
330                            mi_row, mi_col, plane, plane + num_planes);
331       if (lpf_opt_level) {
332         if (plane == AOM_PLANE_Y) {
333           av1_filter_block_plane_horz_opt(cm, xd, &planes[plane], mi_row,
334                                           mi_col, params_buf, tx_buf,
335                                           num_mis_in_lpf_unit_height_log2);
336         } else {
337           av1_filter_block_plane_horz_opt_chroma(
338               cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane,
339               joint_filter_chroma, num_mis_in_lpf_unit_height_log2);
340         }
341       } else {
342         av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row,
343                                     mi_col);
344       }
345     }
346   }
347 }
348 
av1_set_vert_loop_filter_done(AV1_COMMON * cm,AV1LfSync * lf_sync,int num_mis_in_lpf_unit_height_log2)349 void av1_set_vert_loop_filter_done(AV1_COMMON *cm, AV1LfSync *lf_sync,
350                                    int num_mis_in_lpf_unit_height_log2) {
351   int plane, sb_row;
352   const int sb_cols =
353       CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, num_mis_in_lpf_unit_height_log2);
354   const int sb_rows =
355       CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, num_mis_in_lpf_unit_height_log2);
356 
357   // In case of loopfilter row-multithreading, the worker on an SB row waits for
358   // the vertical edge filtering of the right and top-right SBs. Hence, in case
359   // a thread (main/worker) encounters an error, update that vertical
360   // loopfiltering of every SB row in the frame is complete in order to avoid
361   // dependent workers waiting indefinitely.
362   for (sb_row = 0; sb_row < sb_rows; ++sb_row)
363     for (plane = 0; plane < MAX_MB_PLANE; ++plane)
364       sync_write(lf_sync, sb_row, sb_cols - 1, sb_cols, plane);
365 }
366 
sync_lf_workers(AVxWorker * const workers,AV1_COMMON * const cm,int num_workers)367 static AOM_INLINE void sync_lf_workers(AVxWorker *const workers,
368                                        AV1_COMMON *const cm, int num_workers) {
369   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
370   int had_error = workers[0].had_error;
371   struct aom_internal_error_info error_info;
372 
373   // Read the error_info of main thread.
374   if (had_error) {
375     AVxWorker *const worker = &workers[0];
376     error_info = ((LFWorkerData *)worker->data2)->error_info;
377   }
378 
379   // Wait till all rows are finished.
380   for (int i = num_workers - 1; i > 0; --i) {
381     AVxWorker *const worker = &workers[i];
382     if (!winterface->sync(worker)) {
383       had_error = 1;
384       error_info = ((LFWorkerData *)worker->data2)->error_info;
385     }
386   }
387   if (had_error) aom_internal_error_copy(cm->error, &error_info);
388 }
389 
390 // Row-based multi-threaded loopfilter hook
loop_filter_row_worker(void * arg1,void * arg2)391 static int loop_filter_row_worker(void *arg1, void *arg2) {
392   AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
393   LFWorkerData *const lf_data = (LFWorkerData *)arg2;
394   AV1LfMTInfo *cur_job_info;
395 
396 #if CONFIG_MULTITHREAD
397   pthread_mutex_t *job_mutex_ = lf_sync->job_mutex;
398 #endif
399 
400   struct aom_internal_error_info *const error_info = &lf_data->error_info;
401 
402   // The jmp_buf is valid only for the duration of the function that calls
403   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
404   // before it returns.
405   if (setjmp(error_info->jmp)) {
406     error_info->setjmp = 0;
407 #if CONFIG_MULTITHREAD
408     pthread_mutex_lock(job_mutex_);
409     lf_sync->lf_mt_exit = true;
410     pthread_mutex_unlock(job_mutex_);
411 #endif
412     av1_set_vert_loop_filter_done(lf_data->cm, lf_sync, MAX_MIB_SIZE_LOG2);
413     return 0;
414   }
415   error_info->setjmp = 1;
416 
417   while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) {
418     const int lpf_opt_level = cur_job_info->lpf_opt_level;
419     av1_thread_loop_filter_rows(
420         lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd,
421         cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir,
422         lpf_opt_level, lf_sync, error_info, lf_data->params_buf,
423         lf_data->tx_buf, MAX_MIB_SIZE_LOG2);
424   }
425   error_info->setjmp = 0;
426   return 1;
427 }
428 
loop_filter_rows_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int start,int stop,const int planes_to_lf[MAX_MB_PLANE],AVxWorker * workers,int num_workers,AV1LfSync * lf_sync,int lpf_opt_level)429 static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
430                                 MACROBLOCKD *xd, int start, int stop,
431                                 const int planes_to_lf[MAX_MB_PLANE],
432                                 AVxWorker *workers, int num_workers,
433                                 AV1LfSync *lf_sync, int lpf_opt_level) {
434   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
435   int i;
436   loop_filter_frame_mt_init(cm, start, stop, planes_to_lf, num_workers, lf_sync,
437                             lpf_opt_level, MAX_MIB_SIZE_LOG2);
438 
439   // Set up loopfilter thread data.
440   for (i = num_workers - 1; i >= 0; --i) {
441     AVxWorker *const worker = &workers[i];
442     LFWorkerData *const lf_data = &lf_sync->lfdata[i];
443 
444     worker->hook = loop_filter_row_worker;
445     worker->data1 = lf_sync;
446     worker->data2 = lf_data;
447 
448     // Loopfilter data
449     loop_filter_data_reset(lf_data, frame, cm, xd);
450 
451     // Start loopfiltering
452     worker->had_error = 0;
453     if (i == 0) {
454       winterface->execute(worker);
455     } else {
456       winterface->launch(worker);
457     }
458   }
459 
460   sync_lf_workers(workers, cm, num_workers);
461 }
462 
loop_filter_rows(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int start,int stop,const int planes_to_lf[MAX_MB_PLANE],int lpf_opt_level)463 static void loop_filter_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
464                              MACROBLOCKD *xd, int start, int stop,
465                              const int planes_to_lf[MAX_MB_PLANE],
466                              int lpf_opt_level) {
467   // Filter top rows of all planes first, in case the output can be partially
468   // reconstructed row by row.
469   int mi_row, plane, dir;
470 
471   AV1_DEBLOCKING_PARAMETERS params_buf[MAX_MIB_SIZE];
472   TX_SIZE tx_buf[MAX_MIB_SIZE];
473   for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
474     for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
475       if (skip_loop_filter_plane(planes_to_lf, plane, lpf_opt_level)) {
476         continue;
477       }
478 
479       for (dir = 0; dir < 2; ++dir) {
480         av1_thread_loop_filter_rows(frame, cm, xd->plane, xd, mi_row, plane,
481                                     dir, lpf_opt_level, /*lf_sync=*/NULL,
482                                     xd->error_info, params_buf, tx_buf,
483                                     MAX_MIB_SIZE_LOG2);
484       }
485     }
486   }
487 }
488 
av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int plane_start,int plane_end,int partial_frame,AVxWorker * workers,int num_workers,AV1LfSync * lf_sync,int lpf_opt_level)489 void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
490                               MACROBLOCKD *xd, int plane_start, int plane_end,
491                               int partial_frame, AVxWorker *workers,
492                               int num_workers, AV1LfSync *lf_sync,
493                               int lpf_opt_level) {
494   int start_mi_row, end_mi_row, mi_rows_to_filter;
495   int planes_to_lf[MAX_MB_PLANE];
496 
497   if (!check_planes_to_loop_filter(&cm->lf, planes_to_lf, plane_start,
498                                    plane_end))
499     return;
500 
501   start_mi_row = 0;
502   mi_rows_to_filter = cm->mi_params.mi_rows;
503   if (partial_frame && cm->mi_params.mi_rows > 8) {
504     start_mi_row = cm->mi_params.mi_rows >> 1;
505     start_mi_row &= 0xfffffff8;
506     mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8);
507   }
508   end_mi_row = start_mi_row + mi_rows_to_filter;
509   av1_loop_filter_frame_init(cm, plane_start, plane_end);
510 
511   if (num_workers > 1) {
512     // Enqueue and execute loopfiltering jobs.
513     loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf,
514                         workers, num_workers, lf_sync, lpf_opt_level);
515   } else {
516     // Directly filter in the main thread.
517     loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf,
518                      lpf_opt_level);
519   }
520 }
521 
lr_sync_read(void * const lr_sync,int r,int c,int plane)522 static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) {
523 #if CONFIG_MULTITHREAD
524   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
525   const int nsync = loop_res_sync->sync_range;
526 
527   if (r && !(c & (nsync - 1))) {
528     pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1];
529     pthread_mutex_lock(mutex);
530 
531     while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) {
532       pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex);
533     }
534     pthread_mutex_unlock(mutex);
535   }
536 #else
537   (void)lr_sync;
538   (void)r;
539   (void)c;
540   (void)plane;
541 #endif  // CONFIG_MULTITHREAD
542 }
543 
lr_sync_write(void * const lr_sync,int r,int c,const int sb_cols,int plane)544 static INLINE void lr_sync_write(void *const lr_sync, int r, int c,
545                                  const int sb_cols, int plane) {
546 #if CONFIG_MULTITHREAD
547   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
548   const int nsync = loop_res_sync->sync_range;
549   int cur;
550   // Only signal when there are enough filtered SB for next row to run.
551   int sig = 1;
552 
553   if (c < sb_cols - 1) {
554     cur = c;
555     if (c % nsync) sig = 0;
556   } else {
557     cur = sb_cols + nsync;
558   }
559 
560   if (sig) {
561     pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]);
562 
563     // When a thread encounters an error, cur_sb_col[plane][r] is set to maximum
564     // column number. In this case, the AOMMAX operation here ensures that
565     // cur_sb_col[plane][r] is not overwritten with a smaller value thus
566     // preventing the infinite waiting of threads in the relevant sync_read()
567     // function.
568     loop_res_sync->cur_sb_col[plane][r] =
569         AOMMAX(loop_res_sync->cur_sb_col[plane][r], cur);
570 
571     pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]);
572     pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]);
573   }
574 #else
575   (void)lr_sync;
576   (void)r;
577   (void)c;
578   (void)sb_cols;
579   (void)plane;
580 #endif  // CONFIG_MULTITHREAD
581 }
582 
583 // Allocate memory for loop restoration row synchronization
av1_loop_restoration_alloc(AV1LrSync * lr_sync,AV1_COMMON * cm,int num_workers,int num_rows_lr,int num_planes,int width)584 void av1_loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm,
585                                 int num_workers, int num_rows_lr,
586                                 int num_planes, int width) {
587   lr_sync->rows = num_rows_lr;
588   lr_sync->num_planes = num_planes;
589 #if CONFIG_MULTITHREAD
590   {
591     int i, j;
592 
593     for (j = 0; j < num_planes; j++) {
594       CHECK_MEM_ERROR(cm, lr_sync->mutex_[j],
595                       aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr));
596       if (lr_sync->mutex_[j]) {
597         for (i = 0; i < num_rows_lr; ++i) {
598           pthread_mutex_init(&lr_sync->mutex_[j][i], NULL);
599         }
600       }
601 
602       CHECK_MEM_ERROR(cm, lr_sync->cond_[j],
603                       aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr));
604       if (lr_sync->cond_[j]) {
605         for (i = 0; i < num_rows_lr; ++i) {
606           pthread_cond_init(&lr_sync->cond_[j][i], NULL);
607         }
608       }
609     }
610 
611     CHECK_MEM_ERROR(cm, lr_sync->job_mutex,
612                     aom_malloc(sizeof(*(lr_sync->job_mutex))));
613     if (lr_sync->job_mutex) {
614       pthread_mutex_init(lr_sync->job_mutex, NULL);
615     }
616   }
617 #endif  // CONFIG_MULTITHREAD
618   CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata,
619                   aom_calloc(num_workers, sizeof(*(lr_sync->lrworkerdata))));
620   lr_sync->num_workers = num_workers;
621 
622   for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
623     if (worker_idx < num_workers - 1) {
624       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf,
625                       (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
626       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs,
627                       aom_malloc(sizeof(RestorationLineBuffers)));
628 
629     } else {
630       lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf;
631       lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs;
632     }
633   }
634 
635   for (int j = 0; j < num_planes; j++) {
636     CHECK_MEM_ERROR(
637         cm, lr_sync->cur_sb_col[j],
638         aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr));
639   }
640   CHECK_MEM_ERROR(
641       cm, lr_sync->job_queue,
642       aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes));
643   // Set up nsync.
644   lr_sync->sync_range = get_lr_sync_range(width);
645 }
646 
647 // Deallocate loop restoration synchronization related mutex and data
av1_loop_restoration_dealloc(AV1LrSync * lr_sync)648 void av1_loop_restoration_dealloc(AV1LrSync *lr_sync) {
649   if (lr_sync != NULL) {
650     int j;
651 #if CONFIG_MULTITHREAD
652     int i;
653     for (j = 0; j < MAX_MB_PLANE; j++) {
654       if (lr_sync->mutex_[j] != NULL) {
655         for (i = 0; i < lr_sync->rows; ++i) {
656           pthread_mutex_destroy(&lr_sync->mutex_[j][i]);
657         }
658         aom_free(lr_sync->mutex_[j]);
659       }
660       if (lr_sync->cond_[j] != NULL) {
661         for (i = 0; i < lr_sync->rows; ++i) {
662           pthread_cond_destroy(&lr_sync->cond_[j][i]);
663         }
664         aom_free(lr_sync->cond_[j]);
665       }
666     }
667     if (lr_sync->job_mutex != NULL) {
668       pthread_mutex_destroy(lr_sync->job_mutex);
669       aom_free(lr_sync->job_mutex);
670     }
671 #endif  // CONFIG_MULTITHREAD
672     for (j = 0; j < MAX_MB_PLANE; j++) {
673       aom_free(lr_sync->cur_sb_col[j]);
674     }
675 
676     aom_free(lr_sync->job_queue);
677 
678     if (lr_sync->lrworkerdata) {
679       for (int worker_idx = 0; worker_idx < lr_sync->num_workers - 1;
680            worker_idx++) {
681         LRWorkerData *const workerdata_data =
682             lr_sync->lrworkerdata + worker_idx;
683 
684         aom_free(workerdata_data->rst_tmpbuf);
685         aom_free(workerdata_data->rlbs);
686       }
687       aom_free(lr_sync->lrworkerdata);
688     }
689 
690     // clear the structure as the source of this call may be a resize in which
691     // case this call will be followed by an _alloc() which may fail.
692     av1_zero(*lr_sync);
693   }
694 }
695 
enqueue_lr_jobs(AV1LrSync * lr_sync,AV1LrStruct * lr_ctxt,AV1_COMMON * cm)696 static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt,
697                             AV1_COMMON *cm) {
698   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
699 
700   const int num_planes = av1_num_planes(cm);
701   AV1LrMTInfo *lr_job_queue = lr_sync->job_queue;
702   int32_t lr_job_counter[2], num_even_lr_jobs = 0;
703   lr_sync->jobs_enqueued = 0;
704   lr_sync->jobs_dequeued = 0;
705 
706   for (int plane = 0; plane < num_planes; plane++) {
707     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
708     num_even_lr_jobs =
709         num_even_lr_jobs + ((ctxt[plane].rsi->vert_units + 1) >> 1);
710   }
711   lr_job_counter[0] = 0;
712   lr_job_counter[1] = num_even_lr_jobs;
713 
714   for (int plane = 0; plane < num_planes; plane++) {
715     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
716     const int is_uv = plane > 0;
717     const int ss_y = is_uv && cm->seq_params->subsampling_y;
718     const int unit_size = ctxt[plane].rsi->restoration_unit_size;
719     const int plane_h = ctxt[plane].plane_h;
720     const int ext_size = unit_size * 3 / 2;
721 
722     int y0 = 0, i = 0;
723     while (y0 < plane_h) {
724       int remaining_h = plane_h - y0;
725       int h = (remaining_h < ext_size) ? remaining_h : unit_size;
726 
727       RestorationTileLimits limits;
728       limits.v_start = y0;
729       limits.v_end = y0 + h;
730       assert(limits.v_end <= plane_h);
731       // Offset upwards to align with the restoration processing stripe
732       const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
733       limits.v_start = AOMMAX(0, limits.v_start - voffset);
734       if (limits.v_end < plane_h) limits.v_end -= voffset;
735 
736       assert(lr_job_counter[0] <= num_even_lr_jobs);
737 
738       lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i;
739       lr_job_queue[lr_job_counter[i & 1]].plane = plane;
740       lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start;
741       lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end;
742       lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1;
743       if ((i & 1) == 0) {
744         lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
745             limits.v_start + RESTORATION_BORDER;
746         lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
747             limits.v_end - RESTORATION_BORDER;
748         if (i == 0) {
749           assert(limits.v_start == 0);
750           lr_job_queue[lr_job_counter[i & 1]].v_copy_start = 0;
751         }
752         if (i == (ctxt[plane].rsi->vert_units - 1)) {
753           assert(limits.v_end == plane_h);
754           lr_job_queue[lr_job_counter[i & 1]].v_copy_end = plane_h;
755         }
756       } else {
757         lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
758             AOMMAX(limits.v_start - RESTORATION_BORDER, 0);
759         lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
760             AOMMIN(limits.v_end + RESTORATION_BORDER, plane_h);
761       }
762       lr_job_counter[i & 1]++;
763       lr_sync->jobs_enqueued++;
764 
765       y0 += h;
766       ++i;
767     }
768   }
769 }
770 
get_lr_job_info(AV1LrSync * lr_sync)771 static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) {
772   AV1LrMTInfo *cur_job_info = NULL;
773 
774 #if CONFIG_MULTITHREAD
775   pthread_mutex_lock(lr_sync->job_mutex);
776 
777   if (!lr_sync->lr_mt_exit && lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) {
778     cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued;
779     lr_sync->jobs_dequeued++;
780   }
781 
782   pthread_mutex_unlock(lr_sync->job_mutex);
783 #else
784   (void)lr_sync;
785 #endif
786 
787   return cur_job_info;
788 }
789 
set_loop_restoration_done(AV1LrSync * const lr_sync,FilterFrameCtxt * const ctxt)790 static void set_loop_restoration_done(AV1LrSync *const lr_sync,
791                                       FilterFrameCtxt *const ctxt) {
792   for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
793     if (ctxt[plane].rsi->frame_restoration_type == RESTORE_NONE) continue;
794     int y0 = 0, row_number = 0;
795     const int unit_size = ctxt[plane].rsi->restoration_unit_size;
796     const int plane_h = ctxt[plane].plane_h;
797     const int ext_size = unit_size * 3 / 2;
798     const int hnum_rest_units = ctxt[plane].rsi->horz_units;
799     while (y0 < plane_h) {
800       const int remaining_h = plane_h - y0;
801       const int h = (remaining_h < ext_size) ? remaining_h : unit_size;
802       lr_sync_write(lr_sync, row_number, hnum_rest_units - 1, hnum_rest_units,
803                     plane);
804       y0 += h;
805       ++row_number;
806     }
807   }
808 }
809 
810 // Implement row loop restoration for each thread.
loop_restoration_row_worker(void * arg1,void * arg2)811 static int loop_restoration_row_worker(void *arg1, void *arg2) {
812   AV1LrSync *const lr_sync = (AV1LrSync *)arg1;
813   LRWorkerData *lrworkerdata = (LRWorkerData *)arg2;
814   AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt;
815   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
816   int lr_unit_row;
817   int plane;
818   int plane_w;
819 #if CONFIG_MULTITHREAD
820   pthread_mutex_t *job_mutex_ = lr_sync->job_mutex;
821 #endif
822   struct aom_internal_error_info *const error_info = &lrworkerdata->error_info;
823 
824   // The jmp_buf is valid only for the duration of the function that calls
825   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
826   // before it returns.
827   if (setjmp(error_info->jmp)) {
828     error_info->setjmp = 0;
829 #if CONFIG_MULTITHREAD
830     pthread_mutex_lock(job_mutex_);
831     lr_sync->lr_mt_exit = true;
832     pthread_mutex_unlock(job_mutex_);
833 #endif
834     // In case of loop restoration multithreading, the worker on an even lr
835     // block row waits for the completion of the filtering of the top-right and
836     // bottom-right blocks. Hence, in case a thread (main/worker) encounters an
837     // error, update that filtering of every row in the frame is complete in
838     // order to avoid the dependent workers from waiting indefinitely.
839     set_loop_restoration_done(lr_sync, lr_ctxt->ctxt);
840     return 0;
841   }
842   error_info->setjmp = 1;
843 
844   typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
845                            YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
846                            int vstart, int vend);
847   static const copy_fun copy_funs[MAX_MB_PLANE] = {
848     aom_yv12_partial_coloc_copy_y, aom_yv12_partial_coloc_copy_u,
849     aom_yv12_partial_coloc_copy_v
850   };
851 
852   while (1) {
853     AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync);
854     if (cur_job_info != NULL) {
855       RestorationTileLimits limits;
856       sync_read_fn_t on_sync_read;
857       sync_write_fn_t on_sync_write;
858       limits.v_start = cur_job_info->v_start;
859       limits.v_end = cur_job_info->v_end;
860       lr_unit_row = cur_job_info->lr_unit_row;
861       plane = cur_job_info->plane;
862       plane_w = ctxt[plane].plane_w;
863 
864       // sync_mode == 1 implies only sync read is required in LR Multi-threading
865       // sync_mode == 0 implies only sync write is required.
866       on_sync_read =
867           cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy;
868       on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write
869                                                    : av1_lr_sync_write_dummy;
870 
871       av1_foreach_rest_unit_in_row(
872           &limits, plane_w, lr_ctxt->on_rest_unit, lr_unit_row,
873           ctxt[plane].rsi->restoration_unit_size, ctxt[plane].rsi->horz_units,
874           ctxt[plane].rsi->vert_units, plane, &ctxt[plane],
875           lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read,
876           on_sync_write, lr_sync, error_info);
877 
878       copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, 0, plane_w,
879                        cur_job_info->v_copy_start, cur_job_info->v_copy_end);
880 
881       if (lrworkerdata->do_extend_border) {
882         aom_extend_frame_borders_plane_row(lr_ctxt->frame, plane,
883                                            cur_job_info->v_copy_start,
884                                            cur_job_info->v_copy_end);
885       }
886     } else {
887       break;
888     }
889   }
890   error_info->setjmp = 0;
891   return 1;
892 }
893 
sync_lr_workers(AVxWorker * const workers,AV1_COMMON * const cm,int num_workers)894 static AOM_INLINE void sync_lr_workers(AVxWorker *const workers,
895                                        AV1_COMMON *const cm, int num_workers) {
896   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
897   int had_error = workers[0].had_error;
898   struct aom_internal_error_info error_info;
899 
900   // Read the error_info of main thread.
901   if (had_error) {
902     AVxWorker *const worker = &workers[0];
903     error_info = ((LRWorkerData *)worker->data2)->error_info;
904   }
905 
906   // Wait till all rows are finished.
907   for (int i = num_workers - 1; i > 0; --i) {
908     AVxWorker *const worker = &workers[i];
909     if (!winterface->sync(worker)) {
910       had_error = 1;
911       error_info = ((LRWorkerData *)worker->data2)->error_info;
912     }
913   }
914   if (had_error) aom_internal_error_copy(cm->error, &error_info);
915 }
916 
foreach_rest_unit_in_planes_mt(AV1LrStruct * lr_ctxt,AVxWorker * workers,int num_workers,AV1LrSync * lr_sync,AV1_COMMON * cm,int do_extend_border)917 static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt,
918                                            AVxWorker *workers, int num_workers,
919                                            AV1LrSync *lr_sync, AV1_COMMON *cm,
920                                            int do_extend_border) {
921   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
922 
923   const int num_planes = av1_num_planes(cm);
924 
925   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
926   int num_rows_lr = 0;
927 
928   for (int plane = 0; plane < num_planes; plane++) {
929     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
930 
931     const int plane_h = ctxt[plane].plane_h;
932     const int unit_size = cm->rst_info[plane].restoration_unit_size;
933 
934     num_rows_lr = AOMMAX(num_rows_lr, av1_lr_count_units(unit_size, plane_h));
935   }
936 
937   int i;
938   assert(MAX_MB_PLANE == 3);
939 
940   if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows ||
941       num_workers > lr_sync->num_workers || num_planes > lr_sync->num_planes) {
942     av1_loop_restoration_dealloc(lr_sync);
943     av1_loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr,
944                                num_planes, cm->width);
945   }
946   lr_sync->lr_mt_exit = false;
947 
948   // Initialize cur_sb_col to -1 for all SB rows.
949   for (i = 0; i < num_planes; i++) {
950     memset(lr_sync->cur_sb_col[i], -1,
951            sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr);
952   }
953 
954   enqueue_lr_jobs(lr_sync, lr_ctxt, cm);
955 
956   // Set up looprestoration thread data.
957   for (i = num_workers - 1; i >= 0; --i) {
958     AVxWorker *const worker = &workers[i];
959     lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt;
960     lr_sync->lrworkerdata[i].do_extend_border = do_extend_border;
961     worker->hook = loop_restoration_row_worker;
962     worker->data1 = lr_sync;
963     worker->data2 = &lr_sync->lrworkerdata[i];
964 
965     // Start loop restoration
966     worker->had_error = 0;
967     if (i == 0) {
968       winterface->execute(worker);
969     } else {
970       winterface->launch(worker);
971     }
972   }
973 
974   sync_lr_workers(workers, cm, num_workers);
975 }
976 
av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,int optimized_lr,AVxWorker * workers,int num_workers,AV1LrSync * lr_sync,void * lr_ctxt,int do_extend_border)977 void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
978                                           AV1_COMMON *cm, int optimized_lr,
979                                           AVxWorker *workers, int num_workers,
980                                           AV1LrSync *lr_sync, void *lr_ctxt,
981                                           int do_extend_border) {
982   assert(!cm->features.all_lossless);
983 
984   const int num_planes = av1_num_planes(cm);
985 
986   AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
987 
988   av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
989                                          optimized_lr, num_planes);
990 
991   foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync,
992                                  cm, do_extend_border);
993 }
994 
995 // Initializes cdef_sync parameters.
reset_cdef_job_info(AV1CdefSync * const cdef_sync)996 static AOM_INLINE void reset_cdef_job_info(AV1CdefSync *const cdef_sync) {
997   cdef_sync->end_of_frame = 0;
998   cdef_sync->fbr = 0;
999   cdef_sync->fbc = 0;
1000   cdef_sync->cdef_mt_exit = false;
1001 }
1002 
launch_cdef_workers(AVxWorker * const workers,int num_workers)1003 static AOM_INLINE void launch_cdef_workers(AVxWorker *const workers,
1004                                            int num_workers) {
1005   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1006   for (int i = num_workers - 1; i >= 0; i--) {
1007     AVxWorker *const worker = &workers[i];
1008     worker->had_error = 0;
1009     if (i == 0)
1010       winterface->execute(worker);
1011     else
1012       winterface->launch(worker);
1013   }
1014 }
1015 
sync_cdef_workers(AVxWorker * const workers,AV1_COMMON * const cm,int num_workers)1016 static AOM_INLINE void sync_cdef_workers(AVxWorker *const workers,
1017                                          AV1_COMMON *const cm,
1018                                          int num_workers) {
1019   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1020   int had_error = workers[0].had_error;
1021   struct aom_internal_error_info error_info;
1022 
1023   // Read the error_info of main thread.
1024   if (had_error) {
1025     AVxWorker *const worker = &workers[0];
1026     error_info = ((AV1CdefWorkerData *)worker->data2)->error_info;
1027   }
1028 
1029   // Wait till all rows are finished.
1030   for (int i = num_workers - 1; i > 0; --i) {
1031     AVxWorker *const worker = &workers[i];
1032     if (!winterface->sync(worker)) {
1033       had_error = 1;
1034       error_info = ((AV1CdefWorkerData *)worker->data2)->error_info;
1035     }
1036   }
1037   if (had_error) aom_internal_error_copy(cm->error, &error_info);
1038 }
1039 
1040 // Updates the row index of the next job to be processed.
1041 // Also updates end_of_frame flag when the processing of all rows is complete.
update_cdef_row_next_job_info(AV1CdefSync * const cdef_sync,const int nvfb)1042 static void update_cdef_row_next_job_info(AV1CdefSync *const cdef_sync,
1043                                           const int nvfb) {
1044   cdef_sync->fbr++;
1045   if (cdef_sync->fbr == nvfb) {
1046     cdef_sync->end_of_frame = 1;
1047   }
1048 }
1049 
1050 // Checks if a job is available. If job is available,
1051 // populates next job information and returns 1, else returns 0.
get_cdef_row_next_job(AV1CdefSync * const cdef_sync,volatile int * cur_fbr,const int nvfb)1052 static AOM_INLINE int get_cdef_row_next_job(AV1CdefSync *const cdef_sync,
1053                                             volatile int *cur_fbr,
1054                                             const int nvfb) {
1055 #if CONFIG_MULTITHREAD
1056   pthread_mutex_lock(cdef_sync->mutex_);
1057 #endif  // CONFIG_MULTITHREAD
1058   int do_next_row = 0;
1059   // Populates information needed for current job and update the row
1060   // index of the next row to be processed.
1061   if (!cdef_sync->cdef_mt_exit && cdef_sync->end_of_frame == 0) {
1062     do_next_row = 1;
1063     *cur_fbr = cdef_sync->fbr;
1064     update_cdef_row_next_job_info(cdef_sync, nvfb);
1065   }
1066 #if CONFIG_MULTITHREAD
1067   pthread_mutex_unlock(cdef_sync->mutex_);
1068 #endif  // CONFIG_MULTITHREAD
1069   return do_next_row;
1070 }
1071 
set_cdef_init_fb_row_done(AV1CdefSync * const cdef_sync,int nvfb)1072 static void set_cdef_init_fb_row_done(AV1CdefSync *const cdef_sync, int nvfb) {
1073   for (int fbr = 0; fbr < nvfb; fbr++) cdef_row_mt_sync_write(cdef_sync, fbr);
1074 }
1075 
1076 // Hook function for each thread in CDEF multi-threading.
cdef_sb_row_worker_hook(void * arg1,void * arg2)1077 static int cdef_sb_row_worker_hook(void *arg1, void *arg2) {
1078   AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1;
1079   AV1CdefWorkerData *const cdef_worker = (AV1CdefWorkerData *)arg2;
1080   AV1_COMMON *cm = cdef_worker->cm;
1081   const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
1082 
1083 #if CONFIG_MULTITHREAD
1084   pthread_mutex_t *job_mutex_ = cdef_sync->mutex_;
1085 #endif
1086   struct aom_internal_error_info *const error_info = &cdef_worker->error_info;
1087 
1088   // The jmp_buf is valid only for the duration of the function that calls
1089   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
1090   // before it returns.
1091   if (setjmp(error_info->jmp)) {
1092     error_info->setjmp = 0;
1093 #if CONFIG_MULTITHREAD
1094     pthread_mutex_lock(job_mutex_);
1095     cdef_sync->cdef_mt_exit = true;
1096     pthread_mutex_unlock(job_mutex_);
1097 #endif
1098     // In case of cdef row-multithreading, the worker on a filter block row
1099     // (fbr) waits for the line buffers (top and bottom) copy of the above row.
1100     // Hence, in case a thread (main/worker) encounters an error before copying
1101     // of the line buffers, update that line buffer copy is complete in order to
1102     // avoid dependent workers waiting indefinitely.
1103     set_cdef_init_fb_row_done(cdef_sync, nvfb);
1104     return 0;
1105   }
1106   error_info->setjmp = 1;
1107 
1108   volatile int cur_fbr;
1109   const int num_planes = av1_num_planes(cm);
1110   while (get_cdef_row_next_job(cdef_sync, &cur_fbr, nvfb)) {
1111     MACROBLOCKD *xd = cdef_worker->xd;
1112     av1_cdef_fb_row(cm, xd, cdef_worker->linebuf, cdef_worker->colbuf,
1113                     cdef_worker->srcbuf, cur_fbr,
1114                     cdef_worker->cdef_init_fb_row_fn, cdef_sync, error_info);
1115     if (cdef_worker->do_extend_border) {
1116       for (int plane = 0; plane < num_planes; ++plane) {
1117         const YV12_BUFFER_CONFIG *ybf = &cm->cur_frame->buf;
1118         const int is_uv = plane > 0;
1119         const int mi_high = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
1120         const int unit_height = MI_SIZE_64X64 << mi_high;
1121         const int v_start = cur_fbr * unit_height;
1122         const int v_end =
1123             AOMMIN(v_start + unit_height, ybf->crop_heights[is_uv]);
1124         aom_extend_frame_borders_plane_row(ybf, plane, v_start, v_end);
1125       }
1126     }
1127   }
1128   error_info->setjmp = 0;
1129   return 1;
1130 }
1131 
1132 // Assigns CDEF hook function and thread data to each worker.
prepare_cdef_frame_workers(AV1_COMMON * const cm,MACROBLOCKD * xd,AV1CdefWorkerData * const cdef_worker,AVxWorkerHook hook,AVxWorker * const workers,AV1CdefSync * const cdef_sync,int num_workers,cdef_init_fb_row_t cdef_init_fb_row_fn,int do_extend_border)1133 static void prepare_cdef_frame_workers(
1134     AV1_COMMON *const cm, MACROBLOCKD *xd, AV1CdefWorkerData *const cdef_worker,
1135     AVxWorkerHook hook, AVxWorker *const workers, AV1CdefSync *const cdef_sync,
1136     int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn,
1137     int do_extend_border) {
1138   const int num_planes = av1_num_planes(cm);
1139 
1140   cdef_worker[0].srcbuf = cm->cdef_info.srcbuf;
1141   for (int plane = 0; plane < num_planes; plane++)
1142     cdef_worker[0].colbuf[plane] = cm->cdef_info.colbuf[plane];
1143   for (int i = num_workers - 1; i >= 0; i--) {
1144     AVxWorker *const worker = &workers[i];
1145     cdef_worker[i].cm = cm;
1146     cdef_worker[i].xd = xd;
1147     cdef_worker[i].cdef_init_fb_row_fn = cdef_init_fb_row_fn;
1148     cdef_worker[i].do_extend_border = do_extend_border;
1149     for (int plane = 0; plane < num_planes; plane++)
1150       cdef_worker[i].linebuf[plane] = cm->cdef_info.linebuf[plane];
1151 
1152     worker->hook = hook;
1153     worker->data1 = cdef_sync;
1154     worker->data2 = &cdef_worker[i];
1155   }
1156 }
1157 
1158 // Initializes row-level parameters for CDEF frame.
av1_cdef_init_fb_row_mt(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,CdefBlockInfo * const fb_info,uint16_t ** const linebuf,uint16_t * const src,struct AV1CdefSyncData * const cdef_sync,int fbr)1159 void av1_cdef_init_fb_row_mt(const AV1_COMMON *const cm,
1160                              const MACROBLOCKD *const xd,
1161                              CdefBlockInfo *const fb_info,
1162                              uint16_t **const linebuf, uint16_t *const src,
1163                              struct AV1CdefSyncData *const cdef_sync, int fbr) {
1164   const int num_planes = av1_num_planes(cm);
1165   const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
1166   const int luma_stride =
1167       ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4);
1168 
1169   // for the current filter block, it's top left corner mi structure (mi_tl)
1170   // is first accessed to check whether the top and left boundaries are
1171   // frame boundaries. Then bottom-left and top-right mi structures are
1172   // accessed to check whether the bottom and right boundaries
1173   // (respectively) are frame boundaries.
1174   //
1175   // Note that we can't just check the bottom-right mi structure - eg. if
1176   // we're at the right-hand edge of the frame but not the bottom, then
1177   // the bottom-right mi is NULL but the bottom-left is not.
1178   fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0;
1179   if (fbr != nvfb - 1)
1180     fb_info->frame_boundary[BOTTOM] =
1181         (MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0;
1182   else
1183     fb_info->frame_boundary[BOTTOM] = 1;
1184 
1185   fb_info->src = src;
1186   fb_info->damping = cm->cdef_info.cdef_damping;
1187   fb_info->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0);
1188   av1_zero(fb_info->dir);
1189   av1_zero(fb_info->var);
1190 
1191   for (int plane = 0; plane < num_planes; plane++) {
1192     const int stride = luma_stride >> xd->plane[plane].subsampling_x;
1193     uint16_t *top_linebuf = &linebuf[plane][0];
1194     uint16_t *bot_linebuf = &linebuf[plane][nvfb * CDEF_VBORDER * stride];
1195     {
1196       const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
1197       const int top_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
1198       const int bot_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
1199 
1200       if (fbr != nvfb - 1)  // if (fbr != 0)  // top line buffer copy
1201         av1_cdef_copy_sb8_16(
1202             cm, &top_linebuf[(fbr + 1) * CDEF_VBORDER * stride], stride,
1203             xd->plane[plane].dst.buf, top_offset - CDEF_VBORDER, 0,
1204             xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
1205       if (fbr != nvfb - 1)  // bottom line buffer copy
1206         av1_cdef_copy_sb8_16(cm, &bot_linebuf[fbr * CDEF_VBORDER * stride],
1207                              stride, xd->plane[plane].dst.buf, bot_offset, 0,
1208                              xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
1209     }
1210 
1211     fb_info->top_linebuf[plane] = &linebuf[plane][fbr * CDEF_VBORDER * stride];
1212     fb_info->bot_linebuf[plane] =
1213         &linebuf[plane]
1214                 [nvfb * CDEF_VBORDER * stride + (fbr * CDEF_VBORDER * stride)];
1215   }
1216 
1217   cdef_row_mt_sync_write(cdef_sync, fbr);
1218   cdef_row_mt_sync_read(cdef_sync, fbr);
1219 }
1220 
1221 // Implements multi-threading for CDEF.
1222 // Perform CDEF on input frame.
1223 // Inputs:
1224 //   frame: Pointer to input frame buffer.
1225 //   cm: Pointer to common structure.
1226 //   xd: Pointer to common current coding block structure.
1227 // Returns:
1228 //   Nothing will be returned.
av1_cdef_frame_mt(AV1_COMMON * const cm,MACROBLOCKD * const xd,AV1CdefWorkerData * const cdef_worker,AVxWorker * const workers,AV1CdefSync * const cdef_sync,int num_workers,cdef_init_fb_row_t cdef_init_fb_row_fn,int do_extend_border)1229 void av1_cdef_frame_mt(AV1_COMMON *const cm, MACROBLOCKD *const xd,
1230                        AV1CdefWorkerData *const cdef_worker,
1231                        AVxWorker *const workers, AV1CdefSync *const cdef_sync,
1232                        int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn,
1233                        int do_extend_border) {
1234   YV12_BUFFER_CONFIG *frame = &cm->cur_frame->buf;
1235   const int num_planes = av1_num_planes(cm);
1236 
1237   av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0,
1238                        num_planes);
1239 
1240   reset_cdef_job_info(cdef_sync);
1241   prepare_cdef_frame_workers(cm, xd, cdef_worker, cdef_sb_row_worker_hook,
1242                              workers, cdef_sync, num_workers,
1243                              cdef_init_fb_row_fn, do_extend_border);
1244   launch_cdef_workers(workers, num_workers);
1245   sync_cdef_workers(workers, cm, num_workers);
1246 }
1247 
av1_get_intrabc_extra_top_right_sb_delay(const AV1_COMMON * cm)1248 int av1_get_intrabc_extra_top_right_sb_delay(const AV1_COMMON *cm) {
1249   // No additional top-right delay when intraBC tool is not enabled.
1250   if (!av1_allow_intrabc(cm)) return 0;
1251   // Due to the hardware constraints on processing the intraBC tool with row
1252   // multithreading, a top-right delay of 3 superblocks of size 128x128 or 5
1253   // superblocks of size 64x64 is mandated. However, a minimum top-right delay
1254   // of 1 superblock is assured with 'sync_range'. Hence return only the
1255   // additional superblock delay when the intraBC tool is enabled.
1256   return cm->seq_params->sb_size == BLOCK_128X128 ? 2 : 4;
1257 }
1258