• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <limits.h>
14 #include <stdio.h>
15 
16 #include "aom/aom_encoder.h"
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_dsp/binary_codes_writer.h"
19 #include "aom_dsp/bitwriter_buffer.h"
20 #include "aom_mem/aom_mem.h"
21 #include "aom_ports/bitops.h"
22 #include "aom_ports/mem_ops.h"
23 #if CONFIG_BITSTREAM_DEBUG
24 #include "aom_util/debug_util.h"
25 #endif  // CONFIG_BITSTREAM_DEBUG
26 
27 #include "av1/common/cdef.h"
28 #include "av1/common/cfl.h"
29 #include "av1/common/entropy.h"
30 #include "av1/common/entropymode.h"
31 #include "av1/common/entropymv.h"
32 #include "av1/common/mvref_common.h"
33 #include "av1/common/pred_common.h"
34 #include "av1/common/reconinter.h"
35 #include "av1/common/reconintra.h"
36 #include "av1/common/seg_common.h"
37 #include "av1/common/tile_common.h"
38 
39 #include "av1/encoder/bitstream.h"
40 #include "av1/encoder/cost.h"
41 #include "av1/encoder/encodemv.h"
42 #include "av1/encoder/encodetxb.h"
43 #include "av1/encoder/ethread.h"
44 #include "av1/encoder/mcomp.h"
45 #include "av1/encoder/palette.h"
46 #include "av1/encoder/pickrst.h"
47 #include "av1/encoder/segmentation.h"
48 #include "av1/encoder/tokenize.h"
49 
50 #define ENC_MISMATCH_DEBUG 0
51 #define SETUP_TIME_OH_CONST 5     // Setup time overhead constant per worker
52 #define JOB_DISP_TIME_OH_CONST 1  // Job dispatch time overhead per tile
53 
write_uniform(aom_writer * w,int n,int v)54 static INLINE void write_uniform(aom_writer *w, int n, int v) {
55   const int l = get_unsigned_bits(n);
56   const int m = (1 << l) - n;
57   if (l == 0) return;
58   if (v < m) {
59     aom_write_literal(w, v, l - 1);
60   } else {
61     aom_write_literal(w, m + ((v - m) >> 1), l - 1);
62     aom_write_literal(w, (v - m) & 1, 1);
63   }
64 }
65 
66 #if !CONFIG_REALTIME_ONLY
67 static AOM_INLINE void loop_restoration_write_sb_coeffs(
68     const AV1_COMMON *const cm, MACROBLOCKD *xd, int runit_idx,
69     aom_writer *const w, int plane, FRAME_COUNTS *counts);
70 #endif
71 
write_intra_y_mode_kf(FRAME_CONTEXT * frame_ctx,const MB_MODE_INFO * mi,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi,PREDICTION_MODE mode,aom_writer * w)72 static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx,
73                                              const MB_MODE_INFO *mi,
74                                              const MB_MODE_INFO *above_mi,
75                                              const MB_MODE_INFO *left_mi,
76                                              PREDICTION_MODE mode,
77                                              aom_writer *w) {
78   assert(!is_intrabc_block(mi));
79   (void)mi;
80   aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi),
81                    INTRA_MODES);
82 }
83 
write_inter_mode(aom_writer * w,PREDICTION_MODE mode,FRAME_CONTEXT * ec_ctx,const int16_t mode_ctx)84 static AOM_INLINE void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
85                                         FRAME_CONTEXT *ec_ctx,
86                                         const int16_t mode_ctx) {
87   const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
88 
89   aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);
90 
91   if (mode != NEWMV) {
92     const int16_t zeromv_ctx =
93         (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
94     aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);
95 
96     if (mode != GLOBALMV) {
97       int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
98       aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
99     }
100   }
101 }
102 
write_drl_idx(FRAME_CONTEXT * ec_ctx,const MB_MODE_INFO * mbmi,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)103 static AOM_INLINE void write_drl_idx(
104     FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi,
105     const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
106   assert(mbmi->ref_mv_idx < 3);
107 
108   const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
109   if (new_mv) {
110     int idx;
111     for (idx = 0; idx < 2; ++idx) {
112       if (mbmi_ext_frame->ref_mv_count > idx + 1) {
113         uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
114 
115         aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
116                          2);
117         if (mbmi->ref_mv_idx == idx) return;
118       }
119     }
120     return;
121   }
122 
123   if (have_nearmv_in_inter_mode(mbmi->mode)) {
124     int idx;
125     // TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
126     for (idx = 1; idx < 3; ++idx) {
127       if (mbmi_ext_frame->ref_mv_count > idx + 1) {
128         uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
129         aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
130                          ec_ctx->drl_cdf[drl_ctx], 2);
131         if (mbmi->ref_mv_idx == (idx - 1)) return;
132       }
133     }
134     return;
135   }
136 }
137 
write_inter_compound_mode(MACROBLOCKD * xd,aom_writer * w,PREDICTION_MODE mode,const int16_t mode_ctx)138 static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
139                                                  PREDICTION_MODE mode,
140                                                  const int16_t mode_ctx) {
141   assert(is_inter_compound_mode(mode));
142   aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
143                    xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
144                    INTER_COMPOUND_MODES);
145 }
146 
write_tx_size_vartx(MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,TX_SIZE tx_size,int depth,int blk_row,int blk_col,aom_writer * w)147 static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd,
148                                            const MB_MODE_INFO *mbmi,
149                                            TX_SIZE tx_size, int depth,
150                                            int blk_row, int blk_col,
151                                            aom_writer *w) {
152   FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
153   const int max_blocks_high = max_block_high(xd, mbmi->bsize, 0);
154   const int max_blocks_wide = max_block_wide(xd, mbmi->bsize, 0);
155 
156   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
157 
158   if (depth == MAX_VARTX_DEPTH) {
159     txfm_partition_update(xd->above_txfm_context + blk_col,
160                           xd->left_txfm_context + blk_row, tx_size, tx_size);
161     return;
162   }
163 
164   const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
165                                          xd->left_txfm_context + blk_row,
166                                          mbmi->bsize, tx_size);
167   const int txb_size_index =
168       av1_get_txb_size_index(mbmi->bsize, blk_row, blk_col);
169   const int write_txfm_partition =
170       tx_size == mbmi->inter_tx_size[txb_size_index];
171   if (write_txfm_partition) {
172     aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);
173 
174     txfm_partition_update(xd->above_txfm_context + blk_col,
175                           xd->left_txfm_context + blk_row, tx_size, tx_size);
176     // TODO(yuec): set correct txfm partition update for qttx
177   } else {
178     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
179     const int bsw = tx_size_wide_unit[sub_txs];
180     const int bsh = tx_size_high_unit[sub_txs];
181 
182     aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);
183 
184     if (sub_txs == TX_4X4) {
185       txfm_partition_update(xd->above_txfm_context + blk_col,
186                             xd->left_txfm_context + blk_row, sub_txs, tx_size);
187       return;
188     }
189 
190     assert(bsw > 0 && bsh > 0);
191     for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
192       const int offsetr = blk_row + row;
193       for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
194         const int offsetc = blk_col + col;
195         write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
196       }
197     }
198   }
199 }
200 
write_selected_tx_size(const MACROBLOCKD * xd,aom_writer * w)201 static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd,
202                                               aom_writer *w) {
203   const MB_MODE_INFO *const mbmi = xd->mi[0];
204   const BLOCK_SIZE bsize = mbmi->bsize;
205   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
206   if (block_signals_txsize(bsize)) {
207     const TX_SIZE tx_size = mbmi->tx_size;
208     const int tx_size_ctx = get_tx_size_context(xd);
209     const int depth = tx_size_to_depth(tx_size, bsize);
210     const int max_depths = bsize_to_max_depth(bsize);
211     const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
212 
213     assert(depth >= 0 && depth <= max_depths);
214     assert(!is_inter_block(mbmi));
215     assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
216 
217     aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
218                      max_depths + 1);
219   }
220 }
221 
write_skip(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,const MB_MODE_INFO * mi,aom_writer * w)222 static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
223                       uint8_t segment_id, const MB_MODE_INFO *mi,
224                       aom_writer *w) {
225   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
226     return 1;
227   } else {
228     const int skip_txfm = mi->skip_txfm;
229     const int ctx = av1_get_skip_txfm_context(xd);
230     FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
231     aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2);
232     return skip_txfm;
233   }
234 }
235 
write_skip_mode(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,const MB_MODE_INFO * mi,aom_writer * w)236 static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
237                            uint8_t segment_id, const MB_MODE_INFO *mi,
238                            aom_writer *w) {
239   if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
240   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
241     return 0;
242   }
243   const int skip_mode = mi->skip_mode;
244   if (!is_comp_ref_allowed(mi->bsize)) {
245     assert(!skip_mode);
246     return 0;
247   }
248   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
249       segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
250     // These features imply single-reference mode, while skip mode implies
251     // compound reference. Hence, the two are mutually exclusive.
252     // In other words, skip_mode is implicitly 0 here.
253     assert(!skip_mode);
254     return 0;
255   }
256   const int ctx = av1_get_skip_mode_context(xd);
257   aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
258   return skip_mode;
259 }
260 
write_is_inter(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,aom_writer * w,const int is_inter)261 static AOM_INLINE void write_is_inter(const AV1_COMMON *cm,
262                                       const MACROBLOCKD *xd, uint8_t segment_id,
263                                       aom_writer *w, const int is_inter) {
264   if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
265     if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
266       assert(is_inter);
267       return;
268     }
269     const int ctx = av1_get_intra_inter_context(xd);
270     FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
271     aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
272   }
273 }
274 
write_motion_mode(const AV1_COMMON * cm,MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,aom_writer * w)275 static AOM_INLINE void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
276                                          const MB_MODE_INFO *mbmi,
277                                          aom_writer *w) {
278   MOTION_MODE last_motion_mode_allowed =
279       cm->features.switchable_motion_mode
280           ? motion_mode_allowed(cm->global_motion, xd, mbmi,
281                                 cm->features.allow_warped_motion)
282           : SIMPLE_TRANSLATION;
283   assert(mbmi->motion_mode <= last_motion_mode_allowed);
284   switch (last_motion_mode_allowed) {
285     case SIMPLE_TRANSLATION: break;
286     case OBMC_CAUSAL:
287       aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
288                        xd->tile_ctx->obmc_cdf[mbmi->bsize], 2);
289       break;
290     default:
291       aom_write_symbol(w, mbmi->motion_mode,
292                        xd->tile_ctx->motion_mode_cdf[mbmi->bsize],
293                        MOTION_MODES);
294   }
295 }
296 
write_delta_qindex(const MACROBLOCKD * xd,int delta_qindex,aom_writer * w)297 static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd,
298                                           int delta_qindex, aom_writer *w) {
299   int sign = delta_qindex < 0;
300   int abs = sign ? -delta_qindex : delta_qindex;
301   int rem_bits, thr;
302   int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
303   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
304 
305   aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
306                    DELTA_Q_PROBS + 1);
307 
308   if (!smallval) {
309     rem_bits = get_msb(abs - 1);
310     thr = (1 << rem_bits) + 1;
311     aom_write_literal(w, rem_bits - 1, 3);
312     aom_write_literal(w, abs - thr, rem_bits);
313   }
314   if (abs > 0) {
315     aom_write_bit(w, sign);
316   }
317 }
318 
write_delta_lflevel(const AV1_COMMON * cm,const MACROBLOCKD * xd,int lf_id,int delta_lflevel,int delta_lf_multi,aom_writer * w)319 static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm,
320                                            const MACROBLOCKD *xd, int lf_id,
321                                            int delta_lflevel,
322                                            int delta_lf_multi, aom_writer *w) {
323   int sign = delta_lflevel < 0;
324   int abs = sign ? -delta_lflevel : delta_lflevel;
325   int rem_bits, thr;
326   int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
327   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
328   (void)cm;
329 
330   if (delta_lf_multi) {
331     assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
332                                                          : FRAME_LF_COUNT - 2));
333     aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
334                      ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
335   } else {
336     aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
337                      DELTA_LF_PROBS + 1);
338   }
339 
340   if (!smallval) {
341     rem_bits = get_msb(abs - 1);
342     thr = (1 << rem_bits) + 1;
343     aom_write_literal(w, rem_bits - 1, 3);
344     aom_write_literal(w, abs - thr, rem_bits);
345   }
346   if (abs > 0) {
347     aom_write_bit(w, sign);
348   }
349 }
350 
pack_map_tokens(aom_writer * w,const TokenExtra ** tp,int n,int num,MapCdf map_pb_cdf)351 static AOM_INLINE void pack_map_tokens(aom_writer *w, const TokenExtra **tp,
352                                        int n, int num, MapCdf map_pb_cdf) {
353   const TokenExtra *p = *tp;
354   const int palette_size_idx = n - PALETTE_MIN_SIZE;
355   write_uniform(w, n, p->token);  // The first color index.
356   ++p;
357   --num;
358   for (int i = 0; i < num; ++i) {
359     assert((p->color_ctx >= 0) &&
360            (p->color_ctx < PALETTE_COLOR_INDEX_CONTEXTS));
361     aom_cdf_prob *color_map_cdf = map_pb_cdf[palette_size_idx][p->color_ctx];
362     aom_write_symbol(w, p->token, color_map_cdf, n);
363     ++p;
364   }
365   *tp = p;
366 }
367 
pack_txb_tokens(aom_writer * w,AV1_COMMON * cm,MACROBLOCK * const x,const TokenExtra ** tp,const TokenExtra * const tok_end,MACROBLOCKD * xd,MB_MODE_INFO * mbmi,int plane,BLOCK_SIZE plane_bsize,aom_bit_depth_t bit_depth,int block,int blk_row,int blk_col,TX_SIZE tx_size,TOKEN_STATS * token_stats)368 static AOM_INLINE void pack_txb_tokens(
369     aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp,
370     const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
371     int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block,
372     int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) {
373   const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
374   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
375 
376   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
377 
378   const struct macroblockd_plane *const pd = &xd->plane[plane];
379   const TX_SIZE plane_tx_size =
380       plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
381                                     pd->subsampling_y)
382             : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
383                                                          blk_col)];
384 
385   if (tx_size == plane_tx_size || plane) {
386     av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size);
387 #if CONFIG_RD_DEBUG
388     TOKEN_STATS tmp_token_stats;
389     init_token_stats(&tmp_token_stats);
390     token_stats->cost += tmp_token_stats.cost;
391 #endif
392   } else {
393     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
394     const int bsw = tx_size_wide_unit[sub_txs];
395     const int bsh = tx_size_high_unit[sub_txs];
396     const int step = bsh * bsw;
397     const int row_end =
398         AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
399     const int col_end =
400         AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
401 
402     assert(bsw > 0 && bsh > 0);
403 
404     for (int r = 0; r < row_end; r += bsh) {
405       const int offsetr = blk_row + r;
406       for (int c = 0; c < col_end; c += bsw) {
407         const int offsetc = blk_col + c;
408         pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
409                         bit_depth, block, offsetr, offsetc, sub_txs,
410                         token_stats);
411         block += step;
412       }
413     }
414   }
415 }
416 
set_spatial_segment_id(const CommonModeInfoParams * const mi_params,uint8_t * segment_ids,BLOCK_SIZE bsize,int mi_row,int mi_col,uint8_t segment_id)417 static INLINE void set_spatial_segment_id(
418     const CommonModeInfoParams *const mi_params, uint8_t *segment_ids,
419     BLOCK_SIZE bsize, int mi_row, int mi_col, uint8_t segment_id) {
420   const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
421   const int bw = mi_size_wide[bsize];
422   const int bh = mi_size_high[bsize];
423   const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw);
424   const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh);
425 
426   const int mi_stride = mi_params->mi_cols;
427 
428   set_segment_id(segment_ids, mi_offset, xmis, ymis, mi_stride, segment_id);
429 }
430 
av1_neg_interleave(int x,int ref,int max)431 int av1_neg_interleave(int x, int ref, int max) {
432   assert(x < max);
433   const int diff = x - ref;
434   if (!ref) return x;
435   if (ref >= (max - 1)) return -x + max - 1;
436   if (2 * ref < max) {
437     if (abs(diff) <= ref) {
438       if (diff > 0)
439         return (diff << 1) - 1;
440       else
441         return ((-diff) << 1);
442     }
443     return x;
444   } else {
445     if (abs(diff) < (max - ref)) {
446       if (diff > 0)
447         return (diff << 1) - 1;
448       else
449         return ((-diff) << 1);
450     }
451     return (max - x) - 1;
452   }
453 }
454 
write_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,const MB_MODE_INFO * const mbmi,aom_writer * w,const struct segmentation * seg,struct segmentation_probs * segp,int skip_txfm)455 static AOM_INLINE void write_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd,
456                                         const MB_MODE_INFO *const mbmi,
457                                         aom_writer *w,
458                                         const struct segmentation *seg,
459                                         struct segmentation_probs *segp,
460                                         int skip_txfm) {
461   if (!seg->enabled || !seg->update_map) return;
462 
463   AV1_COMMON *const cm = &cpi->common;
464   int cdf_num;
465   const uint8_t pred = av1_get_spatial_seg_pred(
466       cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4);
467   const int mi_row = xd->mi_row;
468   const int mi_col = xd->mi_col;
469 
470   if (skip_txfm) {
471     // Still need to transmit tx size for intra blocks even if skip_txfm is
472     // true. Changing segment_id may make the tx size become invalid, e.g
473     // changing from lossless to lossy.
474     assert(is_inter_block(mbmi) || !cpi->enc_seg.has_lossless_segment);
475 
476     set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
477                            mi_row, mi_col, pred);
478     set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, mbmi->bsize,
479                            mi_row, mi_col, pred);
480     /* mbmi is read only but we need to update segment_id */
481     ((MB_MODE_INFO *)mbmi)->segment_id = pred;
482     return;
483   }
484 
485   const int coded_id =
486       av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
487   aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
488   aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
489   set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
490                          mi_row, mi_col, mbmi->segment_id);
491 }
492 
493 #define WRITE_REF_BIT(bname, pname) \
494   aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2)
495 
496 // This function encodes the reference frame
write_ref_frames(const AV1_COMMON * cm,const MACROBLOCKD * xd,aom_writer * w)497 static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm,
498                                         const MACROBLOCKD *xd, aom_writer *w) {
499   const MB_MODE_INFO *const mbmi = xd->mi[0];
500   const int is_compound = has_second_ref(mbmi);
501   const uint8_t segment_id = mbmi->segment_id;
502 
503   // If segment level coding of this signal is disabled...
504   // or the segment allows multiple reference frame options
505   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
506     assert(!is_compound);
507     assert(mbmi->ref_frame[0] ==
508            get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
509   } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
510              segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
511     assert(!is_compound);
512     assert(mbmi->ref_frame[0] == LAST_FRAME);
513   } else {
514     // does the feature use compound prediction or not
515     // (if not specified at the frame/segment level)
516     if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
517       if (is_comp_ref_allowed(mbmi->bsize))
518         aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2);
519     } else {
520       assert((!is_compound) ==
521              (cm->current_frame.reference_mode == SINGLE_REFERENCE));
522     }
523 
524     if (is_compound) {
525       const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
526                                                     ? UNIDIR_COMP_REFERENCE
527                                                     : BIDIR_COMP_REFERENCE;
528       aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd),
529                        2);
530 
531       if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
532         const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
533         WRITE_REF_BIT(bit, uni_comp_ref_p);
534 
535         if (!bit) {
536           assert(mbmi->ref_frame[0] == LAST_FRAME);
537           const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME ||
538                            mbmi->ref_frame[1] == GOLDEN_FRAME;
539           WRITE_REF_BIT(bit1, uni_comp_ref_p1);
540           if (bit1) {
541             const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME;
542             WRITE_REF_BIT(bit2, uni_comp_ref_p2);
543           }
544         } else {
545           assert(mbmi->ref_frame[1] == ALTREF_FRAME);
546         }
547 
548         return;
549       }
550 
551       assert(comp_ref_type == BIDIR_COMP_REFERENCE);
552 
553       const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
554                        mbmi->ref_frame[0] == LAST3_FRAME);
555       WRITE_REF_BIT(bit, comp_ref_p);
556 
557       if (!bit) {
558         const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME;
559         WRITE_REF_BIT(bit1, comp_ref_p1);
560       } else {
561         const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
562         WRITE_REF_BIT(bit2, comp_ref_p2);
563       }
564 
565       const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
566       WRITE_REF_BIT(bit_bwd, comp_bwdref_p);
567 
568       if (!bit_bwd) {
569         WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1);
570       }
571 
572     } else {
573       const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME &&
574                         mbmi->ref_frame[0] >= BWDREF_FRAME);
575       WRITE_REF_BIT(bit0, single_ref_p1);
576 
577       if (bit0) {
578         const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
579         WRITE_REF_BIT(bit1, single_ref_p2);
580 
581         if (!bit1) {
582           WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6);
583         }
584       } else {
585         const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
586                           mbmi->ref_frame[0] == GOLDEN_FRAME);
587         WRITE_REF_BIT(bit2, single_ref_p3);
588 
589         if (!bit2) {
590           const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
591           WRITE_REF_BIT(bit3, single_ref_p4);
592         } else {
593           const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
594           WRITE_REF_BIT(bit4, single_ref_p5);
595         }
596       }
597     }
598   }
599 }
600 
write_filter_intra_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)601 static AOM_INLINE void write_filter_intra_mode_info(
602     const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
603     aom_writer *w) {
604   if (av1_filter_intra_allowed(cm, mbmi)) {
605     aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra,
606                      xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2);
607     if (mbmi->filter_intra_mode_info.use_filter_intra) {
608       const FILTER_INTRA_MODE mode =
609           mbmi->filter_intra_mode_info.filter_intra_mode;
610       aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
611                        FILTER_INTRA_MODES);
612     }
613   }
614 }
615 
write_angle_delta(aom_writer * w,int angle_delta,aom_cdf_prob * cdf)616 static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta,
617                                          aom_cdf_prob *cdf) {
618   aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
619                    2 * MAX_ANGLE_DELTA + 1);
620 }
621 
write_mb_interp_filter(AV1_COMMON * const cm,ThreadData * td,aom_writer * w)622 static AOM_INLINE void write_mb_interp_filter(AV1_COMMON *const cm,
623                                               ThreadData *td, aom_writer *w) {
624   const MACROBLOCKD *xd = &td->mb.e_mbd;
625   const MB_MODE_INFO *const mbmi = xd->mi[0];
626   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
627 
628   if (!av1_is_interp_needed(xd)) {
629     int_interpfilters filters = av1_broadcast_interp_filter(
630         av1_unswitchable_filter(cm->features.interp_filter));
631     assert(mbmi->interp_filters.as_int == filters.as_int);
632     (void)filters;
633     return;
634   }
635   if (cm->features.interp_filter == SWITCHABLE) {
636     int dir;
637     for (dir = 0; dir < 2; ++dir) {
638       const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
639       InterpFilter filter =
640           av1_extract_interp_filter(mbmi->interp_filters, dir);
641       aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
642                        SWITCHABLE_FILTERS);
643       ++td->interp_filter_selected[filter];
644       if (cm->seq_params->enable_dual_filter == 0) return;
645     }
646   }
647 }
648 
649 // Transmit color values with delta encoding. Write the first value as
650 // literal, and the deltas between each value and the previous one. "min_val" is
651 // the smallest possible value of the deltas.
delta_encode_palette_colors(const int * colors,int num,int bit_depth,int min_val,aom_writer * w)652 static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num,
653                                                    int bit_depth, int min_val,
654                                                    aom_writer *w) {
655   if (num <= 0) return;
656   assert(colors[0] < (1 << bit_depth));
657   aom_write_literal(w, colors[0], bit_depth);
658   if (num == 1) return;
659   int max_delta = 0;
660   int deltas[PALETTE_MAX_SIZE];
661   memset(deltas, 0, sizeof(deltas));
662   for (int i = 1; i < num; ++i) {
663     assert(colors[i] < (1 << bit_depth));
664     const int delta = colors[i] - colors[i - 1];
665     deltas[i - 1] = delta;
666     assert(delta >= min_val);
667     if (delta > max_delta) max_delta = delta;
668   }
669   const int min_bits = bit_depth - 3;
670   int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
671   assert(bits <= bit_depth);
672   int range = (1 << bit_depth) - colors[0] - min_val;
673   aom_write_literal(w, bits - min_bits, 2);
674   for (int i = 0; i < num - 1; ++i) {
675     aom_write_literal(w, deltas[i] - min_val, bits);
676     range -= deltas[i];
677     bits = AOMMIN(bits, av1_ceil_log2(range));
678   }
679 }
680 
681 // Transmit luma palette color values. First signal if each color in the color
682 // cache is used. Those colors that are not in the cache are transmitted with
683 // delta encoding.
write_palette_colors_y(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)684 static AOM_INLINE void write_palette_colors_y(
685     const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
686     int bit_depth, aom_writer *w) {
687   const int n = pmi->palette_size[0];
688   uint16_t color_cache[2 * PALETTE_MAX_SIZE];
689   const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
690   int out_cache_colors[PALETTE_MAX_SIZE];
691   uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
692   const int n_out_cache =
693       av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
694                             cache_color_found, out_cache_colors);
695   int n_in_cache = 0;
696   for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
697     const int found = cache_color_found[i];
698     aom_write_bit(w, found);
699     n_in_cache += found;
700   }
701   assert(n_in_cache + n_out_cache == n);
702   delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
703 }
704 
705 // Write chroma palette color values. U channel is handled similarly to the luma
706 // channel. For v channel, either use delta encoding or transmit raw values
707 // directly, whichever costs less.
write_palette_colors_uv(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)708 static AOM_INLINE void write_palette_colors_uv(
709     const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
710     int bit_depth, aom_writer *w) {
711   const int n = pmi->palette_size[1];
712   const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
713   const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
714   // U channel colors.
715   uint16_t color_cache[2 * PALETTE_MAX_SIZE];
716   const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
717   int out_cache_colors[PALETTE_MAX_SIZE];
718   uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
719   const int n_out_cache = av1_index_color_cache(
720       color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
721   int n_in_cache = 0;
722   for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
723     const int found = cache_color_found[i];
724     aom_write_bit(w, found);
725     n_in_cache += found;
726   }
727   delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
728 
729   // V channel colors. Don't use color cache as the colors are not sorted.
730   const int max_val = 1 << bit_depth;
731   int zero_count = 0, min_bits_v = 0;
732   int bits_v =
733       av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
734   const int rate_using_delta =
735       2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
736   const int rate_using_raw = bit_depth * n;
737   if (rate_using_delta < rate_using_raw) {  // delta encoding
738     assert(colors_v[0] < (1 << bit_depth));
739     aom_write_bit(w, 1);
740     aom_write_literal(w, bits_v - min_bits_v, 2);
741     aom_write_literal(w, colors_v[0], bit_depth);
742     for (int i = 1; i < n; ++i) {
743       assert(colors_v[i] < (1 << bit_depth));
744       if (colors_v[i] == colors_v[i - 1]) {  // No need to signal sign bit.
745         aom_write_literal(w, 0, bits_v);
746         continue;
747       }
748       const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
749       const int sign_bit = colors_v[i] < colors_v[i - 1];
750       if (delta <= max_val - delta) {
751         aom_write_literal(w, delta, bits_v);
752         aom_write_bit(w, sign_bit);
753       } else {
754         aom_write_literal(w, max_val - delta, bits_v);
755         aom_write_bit(w, !sign_bit);
756       }
757     }
758   } else {  // Transmit raw values.
759     aom_write_bit(w, 0);
760     for (int i = 0; i < n; ++i) {
761       assert(colors_v[i] < (1 << bit_depth));
762       aom_write_literal(w, colors_v[i], bit_depth);
763     }
764   }
765 }
766 
write_palette_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)767 static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm,
768                                                const MACROBLOCKD *xd,
769                                                const MB_MODE_INFO *const mbmi,
770                                                aom_writer *w) {
771   const int num_planes = av1_num_planes(cm);
772   const BLOCK_SIZE bsize = mbmi->bsize;
773   assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
774   const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
775   const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
776 
777   if (mbmi->mode == DC_PRED) {
778     const int n = pmi->palette_size[0];
779     const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
780     aom_write_symbol(
781         w, n > 0,
782         xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
783     if (n > 0) {
784       aom_write_symbol(w, n - PALETTE_MIN_SIZE,
785                        xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
786                        PALETTE_SIZES);
787       write_palette_colors_y(xd, pmi, cm->seq_params->bit_depth, w);
788     }
789   }
790 
791   const int uv_dc_pred =
792       num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref;
793   if (uv_dc_pred) {
794     const int n = pmi->palette_size[1];
795     const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
796     aom_write_symbol(w, n > 0,
797                      xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
798     if (n > 0) {
799       aom_write_symbol(w, n - PALETTE_MIN_SIZE,
800                        xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
801                        PALETTE_SIZES);
802       write_palette_colors_uv(xd, pmi, cm->seq_params->bit_depth, w);
803     }
804   }
805 }
806 
av1_write_tx_type(const AV1_COMMON * const cm,const MACROBLOCKD * xd,TX_TYPE tx_type,TX_SIZE tx_size,aom_writer * w)807 void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
808                        TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) {
809   MB_MODE_INFO *mbmi = xd->mi[0];
810   const FeatureFlags *const features = &cm->features;
811   const int is_inter = is_inter_block(mbmi);
812   if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 &&
813       ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
814        (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
815       !mbmi->skip_txfm &&
816       !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
817     FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
818     const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
819     const TxSetType tx_set_type = av1_get_ext_tx_set_type(
820         tx_size, is_inter, features->reduced_tx_set_used);
821     const int eset =
822         get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used);
823     // eset == 0 should correspond to a set with only DCT_DCT and there
824     // is no need to send the tx_type
825     assert(eset > 0);
826     assert(av1_ext_tx_used[tx_set_type][tx_type]);
827     if (is_inter) {
828       aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
829                        ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
830                        av1_num_ext_tx_set[tx_set_type]);
831     } else {
832       PREDICTION_MODE intra_dir;
833       if (mbmi->filter_intra_mode_info.use_filter_intra)
834         intra_dir =
835             fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
836       else
837         intra_dir = mbmi->mode;
838       aom_write_symbol(
839           w, av1_ext_tx_ind[tx_set_type][tx_type],
840           ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
841           av1_num_ext_tx_set[tx_set_type]);
842     }
843   }
844 }
845 
write_intra_y_mode_nonkf(FRAME_CONTEXT * frame_ctx,BLOCK_SIZE bsize,PREDICTION_MODE mode,aom_writer * w)846 static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx,
847                                                 BLOCK_SIZE bsize,
848                                                 PREDICTION_MODE mode,
849                                                 aom_writer *w) {
850   aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
851                    INTRA_MODES);
852 }
853 
write_intra_uv_mode(FRAME_CONTEXT * frame_ctx,UV_PREDICTION_MODE uv_mode,PREDICTION_MODE y_mode,CFL_ALLOWED_TYPE cfl_allowed,aom_writer * w)854 static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
855                                            UV_PREDICTION_MODE uv_mode,
856                                            PREDICTION_MODE y_mode,
857                                            CFL_ALLOWED_TYPE cfl_allowed,
858                                            aom_writer *w) {
859   aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
860                    UV_INTRA_MODES - !cfl_allowed);
861 }
862 
write_cfl_alphas(FRAME_CONTEXT * const ec_ctx,uint8_t idx,int8_t joint_sign,aom_writer * w)863 static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx,
864                                         uint8_t idx, int8_t joint_sign,
865                                         aom_writer *w) {
866   aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
867   // Magnitudes are only signaled for nonzero codes.
868   if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
869     aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
870     aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
871   }
872   if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
873     aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
874     aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
875   }
876 }
877 
write_cdef(AV1_COMMON * cm,MACROBLOCKD * const xd,aom_writer * w,int skip)878 static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd,
879                                   aom_writer *w, int skip) {
880   if (cm->features.coded_lossless || cm->features.allow_intrabc) return;
881 
882   // At the start of a superblock, mark that we haven't yet written CDEF
883   // strengths for any of the CDEF units contained in this superblock.
884   const int sb_mask = (cm->seq_params->mib_size - 1);
885   const int mi_row_in_sb = (xd->mi_row & sb_mask);
886   const int mi_col_in_sb = (xd->mi_col & sb_mask);
887   if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
888     xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
889         xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
890   }
891 
892   // CDEF unit size is 64x64 irrespective of the superblock size.
893   const int cdef_size = 1 << (6 - MI_SIZE_LOG2);
894 
895   // Find index of this CDEF unit in this superblock.
896   const int index_mask = cdef_size;
897   const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
898   const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
899   const int index = (cm->seq_params->sb_size == BLOCK_128X128)
900                         ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
901                         : 0;
902 
903   // Write CDEF strength to the first non-skip coding block in this CDEF unit.
904   if (!xd->cdef_transmitted[index] && !skip) {
905     // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO
906     // of the 1st block in this CDEF unit.
907     const int first_block_mask = ~(cdef_size - 1);
908     const CommonModeInfoParams *const mi_params = &cm->mi_params;
909     const int grid_idx =
910         get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
911                         xd->mi_col & first_block_mask);
912     const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
913     aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits);
914     xd->cdef_transmitted[index] = true;
915   }
916 }
917 
write_inter_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,aom_writer * w,const struct segmentation * const seg,struct segmentation_probs * const segp,int skip,int preskip)918 static AOM_INLINE void write_inter_segment_id(
919     AV1_COMP *cpi, MACROBLOCKD *const xd, aom_writer *w,
920     const struct segmentation *const seg, struct segmentation_probs *const segp,
921     int skip, int preskip) {
922   MB_MODE_INFO *const mbmi = xd->mi[0];
923   AV1_COMMON *const cm = &cpi->common;
924   const int mi_row = xd->mi_row;
925   const int mi_col = xd->mi_col;
926 
927   if (seg->update_map) {
928     if (preskip) {
929       if (!seg->segid_preskip) return;
930     } else {
931       if (seg->segid_preskip) return;
932       if (skip) {
933         write_segment_id(cpi, xd, mbmi, w, seg, segp, 1);
934         if (seg->temporal_update) mbmi->seg_id_predicted = 0;
935         return;
936       }
937     }
938     if (seg->temporal_update) {
939       const int pred_flag = mbmi->seg_id_predicted;
940       aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
941       aom_write_symbol(w, pred_flag, pred_cdf, 2);
942       if (!pred_flag) {
943         write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
944       }
945       if (pred_flag) {
946         set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
947                                mbmi->bsize, mi_row, mi_col, mbmi->segment_id);
948       }
949     } else {
950       write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
951     }
952   }
953 }
954 
955 // If delta q is present, writes delta_q index.
956 // Also writes delta_q loop filter levels, if present.
write_delta_q_params(AV1_COMMON * const cm,MACROBLOCKD * const xd,int skip,aom_writer * w)957 static AOM_INLINE void write_delta_q_params(AV1_COMMON *const cm,
958                                             MACROBLOCKD *const xd, int skip,
959                                             aom_writer *w) {
960   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
961 
962   if (delta_q_info->delta_q_present_flag) {
963     const MB_MODE_INFO *const mbmi = xd->mi[0];
964     const BLOCK_SIZE bsize = mbmi->bsize;
965     const int super_block_upper_left =
966         ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
967         ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0);
968 
969     if ((bsize != cm->seq_params->sb_size || skip == 0) &&
970         super_block_upper_left) {
971       assert(mbmi->current_qindex > 0);
972       const int reduced_delta_qindex =
973           (mbmi->current_qindex - xd->current_base_qindex) /
974           delta_q_info->delta_q_res;
975       write_delta_qindex(xd, reduced_delta_qindex, w);
976       xd->current_base_qindex = mbmi->current_qindex;
977       if (delta_q_info->delta_lf_present_flag) {
978         if (delta_q_info->delta_lf_multi) {
979           const int frame_lf_count =
980               av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
981           for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
982             int reduced_delta_lflevel =
983                 (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
984                 delta_q_info->delta_lf_res;
985             write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, 1, w);
986             xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
987           }
988         } else {
989           int reduced_delta_lflevel =
990               (mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
991               delta_q_info->delta_lf_res;
992           write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, 0, w);
993           xd->delta_lf_from_base = mbmi->delta_lf_from_base;
994         }
995       }
996     }
997   }
998 }
999 
write_intra_prediction_modes(const AV1_COMMON * cm,MACROBLOCKD * const xd,int is_keyframe,aom_writer * w)1000 static AOM_INLINE void write_intra_prediction_modes(const AV1_COMMON *cm,
1001                                                     MACROBLOCKD *const xd,
1002                                                     int is_keyframe,
1003                                                     aom_writer *w) {
1004   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1005   const MB_MODE_INFO *const mbmi = xd->mi[0];
1006   const PREDICTION_MODE mode = mbmi->mode;
1007   const BLOCK_SIZE bsize = mbmi->bsize;
1008 
1009   // Y mode.
1010   if (is_keyframe) {
1011     const MB_MODE_INFO *const above_mi = xd->above_mbmi;
1012     const MB_MODE_INFO *const left_mi = xd->left_mbmi;
1013     write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w);
1014   } else {
1015     write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w);
1016   }
1017 
1018   // Y angle delta.
1019   const int use_angle_delta = av1_use_angle_delta(bsize);
1020   if (use_angle_delta && av1_is_directional_mode(mode)) {
1021     write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
1022                       ec_ctx->angle_delta_cdf[mode - V_PRED]);
1023   }
1024 
1025   // UV mode and UV angle delta.
1026   if (!cm->seq_params->monochrome && xd->is_chroma_ref) {
1027     const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
1028     write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
1029     if (uv_mode == UV_CFL_PRED)
1030       write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
1031     const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode);
1032     if (use_angle_delta && av1_is_directional_mode(intra_mode)) {
1033       write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
1034                         ec_ctx->angle_delta_cdf[intra_mode - V_PRED]);
1035     }
1036   }
1037 
1038   // Palette.
1039   if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
1040     write_palette_mode_info(cm, xd, mbmi, w);
1041   }
1042 
1043   // Filter intra.
1044   write_filter_intra_mode_info(cm, xd, mbmi, w);
1045 }
1046 
mode_context_analyzer(const int16_t mode_context,const MV_REFERENCE_FRAME * const rf)1047 static INLINE int16_t mode_context_analyzer(
1048     const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) {
1049   if (rf[1] <= INTRA_FRAME) return mode_context;
1050 
1051   const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK;
1052   const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
1053 
1054   const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
1055       newmv_ctx, COMP_NEWMV_CTXS - 1)];
1056   return comp_ctx;
1057 }
1058 
get_ref_mv_from_stack(int ref_idx,const MV_REFERENCE_FRAME * ref_frame,int ref_mv_idx,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame)1059 static INLINE int_mv get_ref_mv_from_stack(
1060     int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx,
1061     const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) {
1062   const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
1063   const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;
1064 
1065   if (ref_frame[1] > INTRA_FRAME) {
1066     assert(ref_idx == 0 || ref_idx == 1);
1067     return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
1068                    : curr_ref_mv_stack[ref_mv_idx].this_mv;
1069   }
1070 
1071   assert(ref_idx == 0);
1072   return ref_mv_idx < mbmi_ext_frame->ref_mv_count
1073              ? curr_ref_mv_stack[ref_mv_idx].this_mv
1074              : mbmi_ext_frame->global_mvs[ref_frame_type];
1075 }
1076 
get_ref_mv(const MACROBLOCK * x,int ref_idx)1077 static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) {
1078   const MACROBLOCKD *xd = &x->e_mbd;
1079   const MB_MODE_INFO *mbmi = xd->mi[0];
1080   int ref_mv_idx = mbmi->ref_mv_idx;
1081   if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) {
1082     assert(has_second_ref(mbmi));
1083     ref_mv_idx += 1;
1084   }
1085   return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
1086                                x->mbmi_ext_frame);
1087 }
1088 
pack_inter_mode_mvs(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1089 static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, ThreadData *const td,
1090                                            aom_writer *w) {
1091   AV1_COMMON *const cm = &cpi->common;
1092   MACROBLOCK *const x = &td->mb;
1093   MACROBLOCKD *const xd = &x->e_mbd;
1094   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1095   const struct segmentation *const seg = &cm->seg;
1096   struct segmentation_probs *const segp = &ec_ctx->seg;
1097   const MB_MODE_INFO *const mbmi = xd->mi[0];
1098   const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame;
1099   const PREDICTION_MODE mode = mbmi->mode;
1100   const uint8_t segment_id = mbmi->segment_id;
1101   const BLOCK_SIZE bsize = mbmi->bsize;
1102   const int allow_hp = cm->features.allow_high_precision_mv;
1103   const int is_inter = is_inter_block(mbmi);
1104   const int is_compound = has_second_ref(mbmi);
1105   int ref;
1106 
1107   write_inter_segment_id(cpi, xd, w, seg, segp, 0, 1);
1108 
1109   write_skip_mode(cm, xd, segment_id, mbmi, w);
1110 
1111   assert(IMPLIES(mbmi->skip_mode, mbmi->skip_txfm));
1112   const int skip =
1113       mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);
1114 
1115   write_inter_segment_id(cpi, xd, w, seg, segp, skip, 0);
1116 
1117   write_cdef(cm, xd, w, skip);
1118 
1119   write_delta_q_params(cm, xd, skip, w);
1120 
1121   if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);
1122 
1123   if (mbmi->skip_mode) return;
1124 
1125   if (!is_inter) {
1126     write_intra_prediction_modes(cm, xd, 0, w);
1127   } else {
1128     int16_t mode_ctx;
1129 
1130     av1_collect_neighbors_ref_counts(xd);
1131 
1132     write_ref_frames(cm, xd, w);
1133 
1134     mode_ctx =
1135         mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame);
1136 
1137     // If segment skip is not enabled code the mode.
1138     if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
1139       if (is_inter_compound_mode(mode))
1140         write_inter_compound_mode(xd, w, mode, mode_ctx);
1141       else if (is_inter_singleref_mode(mode))
1142         write_inter_mode(w, mode, ec_ctx, mode_ctx);
1143 
1144       if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode))
1145         write_drl_idx(ec_ctx, mbmi, mbmi_ext_frame, w);
1146       else
1147         assert(mbmi->ref_mv_idx == 0);
1148     }
1149 
1150     if (mode == NEWMV || mode == NEW_NEWMV) {
1151       for (ref = 0; ref < 1 + is_compound; ++ref) {
1152         nmv_context *nmvc = &ec_ctx->nmvc;
1153         const int_mv ref_mv = get_ref_mv(x, ref);
1154         av1_encode_mv(cpi, w, td, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
1155                       allow_hp);
1156       }
1157     } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
1158       nmv_context *nmvc = &ec_ctx->nmvc;
1159       const int_mv ref_mv = get_ref_mv(x, 1);
1160       av1_encode_mv(cpi, w, td, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc,
1161                     allow_hp);
1162     } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
1163       nmv_context *nmvc = &ec_ctx->nmvc;
1164       const int_mv ref_mv = get_ref_mv(x, 0);
1165       av1_encode_mv(cpi, w, td, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc,
1166                     allow_hp);
1167     }
1168 
1169     if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE &&
1170         cpi->common.seq_params->enable_interintra_compound &&
1171         is_interintra_allowed(mbmi)) {
1172       const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
1173       const int bsize_group = size_group_lookup[bsize];
1174       aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
1175       if (interintra) {
1176         aom_write_symbol(w, mbmi->interintra_mode,
1177                          ec_ctx->interintra_mode_cdf[bsize_group],
1178                          INTERINTRA_MODES);
1179         if (av1_is_wedge_used(bsize)) {
1180           aom_write_symbol(w, mbmi->use_wedge_interintra,
1181                            ec_ctx->wedge_interintra_cdf[bsize], 2);
1182           if (mbmi->use_wedge_interintra) {
1183             aom_write_symbol(w, mbmi->interintra_wedge_index,
1184                              ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1185           }
1186         }
1187       }
1188     }
1189 
1190     if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);
1191 
1192     // First write idx to indicate current compound inter prediction mode group
1193     // Group A (0): dist_wtd_comp, compound_average
1194     // Group B (1): interintra, compound_diffwtd, wedge
1195     if (has_second_ref(mbmi)) {
1196       const int masked_compound_used = is_any_masked_compound_used(bsize) &&
1197                                        cm->seq_params->enable_masked_compound;
1198 
1199       if (masked_compound_used) {
1200         const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
1201         aom_write_symbol(w, mbmi->comp_group_idx,
1202                          ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
1203       } else {
1204         assert(mbmi->comp_group_idx == 0);
1205       }
1206 
1207       if (mbmi->comp_group_idx == 0) {
1208         if (mbmi->compound_idx)
1209           assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE);
1210 
1211         if (cm->seq_params->order_hint_info.enable_dist_wtd_comp) {
1212           const int comp_index_ctx = get_comp_index_context(cm, xd);
1213           aom_write_symbol(w, mbmi->compound_idx,
1214                            ec_ctx->compound_index_cdf[comp_index_ctx], 2);
1215         } else {
1216           assert(mbmi->compound_idx == 1);
1217         }
1218       } else {
1219         assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE &&
1220                is_inter_compound_mode(mbmi->mode) &&
1221                mbmi->motion_mode == SIMPLE_TRANSLATION);
1222         assert(masked_compound_used);
1223         // compound_diffwtd, wedge
1224         assert(mbmi->interinter_comp.type == COMPOUND_WEDGE ||
1225                mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1226 
1227         if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
1228           aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE,
1229                            ec_ctx->compound_type_cdf[bsize],
1230                            MASKED_COMPOUND_TYPES);
1231 
1232         if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
1233           assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
1234           aom_write_symbol(w, mbmi->interinter_comp.wedge_index,
1235                            ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1236           aom_write_bit(w, mbmi->interinter_comp.wedge_sign);
1237         } else {
1238           assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1239           aom_write_literal(w, mbmi->interinter_comp.mask_type,
1240                             MAX_DIFFWTD_MASK_BITS);
1241         }
1242       }
1243     }
1244     write_mb_interp_filter(cm, td, w);
1245   }
1246 }
1247 
write_intrabc_info(MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1248 static AOM_INLINE void write_intrabc_info(
1249     MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
1250     aom_writer *w) {
1251   const MB_MODE_INFO *const mbmi = xd->mi[0];
1252   int use_intrabc = is_intrabc_block(mbmi);
1253   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1254   aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
1255   if (use_intrabc) {
1256     assert(mbmi->mode == DC_PRED);
1257     assert(mbmi->uv_mode == UV_DC_PRED);
1258     assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
1259     int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv;
1260     av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
1261   }
1262 }
1263 
write_mb_modes_kf(AV1_COMP * cpi,MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1264 static AOM_INLINE void write_mb_modes_kf(
1265     AV1_COMP *cpi, MACROBLOCKD *xd,
1266     const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
1267   AV1_COMMON *const cm = &cpi->common;
1268   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1269   const struct segmentation *const seg = &cm->seg;
1270   struct segmentation_probs *const segp = &ec_ctx->seg;
1271   const MB_MODE_INFO *const mbmi = xd->mi[0];
1272 
1273   if (seg->segid_preskip && seg->update_map)
1274     write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
1275 
1276   const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);
1277 
1278   if (!seg->segid_preskip && seg->update_map)
1279     write_segment_id(cpi, xd, mbmi, w, seg, segp, skip);
1280 
1281   write_cdef(cm, xd, w, skip);
1282 
1283   write_delta_q_params(cm, xd, skip, w);
1284 
1285   if (av1_allow_intrabc(cm)) {
1286     write_intrabc_info(xd, mbmi_ext_frame, w);
1287     if (is_intrabc_block(mbmi)) return;
1288   }
1289 
1290   write_intra_prediction_modes(cm, xd, 1, w);
1291 }
1292 
1293 #if CONFIG_RD_DEBUG
dump_mode_info(MB_MODE_INFO * mi)1294 static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) {
1295   printf("\nmi->mi_row == %d\n", mi->mi_row);
1296   printf("&& mi->mi_col == %d\n", mi->mi_col);
1297   printf("&& mi->bsize == %d\n", mi->bsize);
1298   printf("&& mi->tx_size == %d\n", mi->tx_size);
1299   printf("&& mi->mode == %d\n", mi->mode);
1300 }
1301 
rd_token_stats_mismatch(RD_STATS * rd_stats,TOKEN_STATS * token_stats,int plane)1302 static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
1303                                    int plane) {
1304   if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
1305     printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
1306            plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
1307     return 1;
1308   }
1309   return 0;
1310 }
1311 #endif
1312 
1313 #if ENC_MISMATCH_DEBUG
enc_dump_logs(const AV1_COMMON * const cm,const MBMIExtFrameBufferInfo * const mbmi_ext_info,int mi_row,int mi_col)1314 static AOM_INLINE void enc_dump_logs(
1315     const AV1_COMMON *const cm,
1316     const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) {
1317   const MB_MODE_INFO *const mbmi = *(
1318       cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col));
1319   const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame =
1320       mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col,
1321                                                  cm->mi_params.mi_alloc_bsize,
1322                                                  mbmi_ext_info->stride);
1323   if (is_inter_block(mbmi)) {
1324 #define FRAME_TO_CHECK 11
1325     if (cm->current_frame.frame_number == FRAME_TO_CHECK &&
1326         cm->show_frame == 1) {
1327       const BLOCK_SIZE bsize = mbmi->bsize;
1328 
1329       int_mv mv[2] = { 0 };
1330       const int is_comp_ref = has_second_ref(mbmi);
1331 
1332       for (int ref = 0; ref < 1 + is_comp_ref; ++ref)
1333         mv[ref].as_mv = mbmi->mv[ref].as_mv;
1334 
1335       if (!is_comp_ref) {
1336         mv[1].as_int = 0;
1337       }
1338 
1339       const int16_t mode_ctx =
1340           is_comp_ref ? 0
1341                       : mode_context_analyzer(mbmi_ext_frame->mode_context,
1342                                               mbmi->ref_frame);
1343 
1344       const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
1345       int16_t zeromv_ctx = -1;
1346       int16_t refmv_ctx = -1;
1347 
1348       if (mbmi->mode != NEWMV) {
1349         zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
1350         if (mbmi->mode != GLOBALMV)
1351           refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
1352       }
1353 
1354       printf(
1355           "=== ENCODER ===: "
1356           "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
1357           "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
1358           "ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
1359           "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
1360           cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
1361           mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
1362           mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
1363           mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
1364           zeromv_ctx, refmv_ctx, mbmi->tx_size);
1365     }
1366   }
1367 }
1368 #endif  // ENC_MISMATCH_DEBUG
1369 
write_mbmi_b(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1370 static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, ThreadData *const td,
1371                                     aom_writer *w) {
1372   AV1_COMMON *const cm = &cpi->common;
1373   MACROBLOCKD *const xd = &td->mb.e_mbd;
1374   MB_MODE_INFO *m = xd->mi[0];
1375 
1376   if (frame_is_intra_only(cm)) {
1377     write_mb_modes_kf(cpi, xd, td->mb.mbmi_ext_frame, w);
1378   } else {
1379     // has_subpel_mv_component needs the ref frame buffers set up to look
1380     // up if they are scaled. has_subpel_mv_component is in turn needed by
1381     // write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
1382     set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);
1383 
1384 #if ENC_MISMATCH_DEBUG
1385     enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col);
1386 #endif  // ENC_MISMATCH_DEBUG
1387 
1388     pack_inter_mode_mvs(cpi, td, w);
1389   }
1390 }
1391 
write_inter_txb_coeff(AV1_COMMON * const cm,MACROBLOCK * const x,MB_MODE_INFO * const mbmi,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,TOKEN_STATS * token_stats,const int row,const int col,int * block,const int plane)1392 static AOM_INLINE void write_inter_txb_coeff(
1393     AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi,
1394     aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end,
1395     TOKEN_STATS *token_stats, const int row, const int col, int *block,
1396     const int plane) {
1397   MACROBLOCKD *const xd = &x->e_mbd;
1398   const struct macroblockd_plane *const pd = &xd->plane[plane];
1399   const BLOCK_SIZE bsize = mbmi->bsize;
1400   assert(bsize < BLOCK_SIZES_ALL);
1401   const int ss_x = pd->subsampling_x;
1402   const int ss_y = pd->subsampling_y;
1403   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
1404   assert(plane_bsize < BLOCK_SIZES_ALL);
1405   const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
1406   const int step =
1407       tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
1408   const int bkw = tx_size_wide_unit[max_tx_size];
1409   const int bkh = tx_size_high_unit[max_tx_size];
1410   const BLOCK_SIZE max_unit_bsize =
1411       get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
1412   const int num_4x4_w = mi_size_wide[plane_bsize];
1413   const int num_4x4_h = mi_size_high[plane_bsize];
1414   const int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1415   const int mu_blocks_high = mi_size_high[max_unit_bsize];
1416   const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h);
1417   const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w);
1418   for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) {
1419     for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) {
1420       pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
1421                       cm->seq_params->bit_depth, *block, blk_row, blk_col,
1422                       max_tx_size, token_stats);
1423       *block += step;
1424     }
1425   }
1426 }
1427 
write_tokens_b(AV1_COMP * cpi,MACROBLOCK * const x,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end)1428 static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, MACROBLOCK *const x,
1429                                       aom_writer *w, const TokenExtra **tok,
1430                                       const TokenExtra *const tok_end) {
1431   AV1_COMMON *const cm = &cpi->common;
1432   MACROBLOCKD *const xd = &x->e_mbd;
1433   MB_MODE_INFO *const mbmi = xd->mi[0];
1434   const BLOCK_SIZE bsize = mbmi->bsize;
1435 
1436   assert(!mbmi->skip_txfm);
1437 
1438   const int is_inter = is_inter_block(mbmi);
1439   if (!is_inter) {
1440     av1_write_intra_coeffs_mb(cm, x, w, bsize);
1441   } else {
1442     int block[MAX_MB_PLANE] = { 0 };
1443     assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
1444                                          xd->plane[0].subsampling_y));
1445     const int num_4x4_w = mi_size_wide[bsize];
1446     const int num_4x4_h = mi_size_high[bsize];
1447     TOKEN_STATS token_stats;
1448     init_token_stats(&token_stats);
1449 
1450     const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
1451     assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64,
1452                                                   xd->plane[0].subsampling_x,
1453                                                   xd->plane[0].subsampling_y));
1454     int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1455     int mu_blocks_high = mi_size_high[max_unit_bsize];
1456     mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
1457     mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);
1458 
1459     const int num_planes = av1_num_planes(cm);
1460     for (int row = 0; row < num_4x4_h; row += mu_blocks_high) {
1461       for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) {
1462         for (int plane = 0; plane < num_planes; ++plane) {
1463           if (plane && !xd->is_chroma_ref) break;
1464           write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
1465                                 col, &block[plane], plane);
1466         }
1467       }
1468     }
1469 #if CONFIG_RD_DEBUG
1470     for (int plane = 0; plane < num_planes; ++plane) {
1471       if (mbmi->bsize >= BLOCK_8X8 &&
1472           rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
1473         dump_mode_info(mbmi);
1474         assert(0);
1475       }
1476     }
1477 #endif  // CONFIG_RD_DEBUG
1478   }
1479 }
1480 
write_modes_b(AV1_COMP * cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col)1481 static AOM_INLINE void write_modes_b(AV1_COMP *cpi, ThreadData *const td,
1482                                      const TileInfo *const tile, aom_writer *w,
1483                                      const TokenExtra **tok,
1484                                      const TokenExtra *const tok_end,
1485                                      int mi_row, int mi_col) {
1486   const AV1_COMMON *cm = &cpi->common;
1487   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1488   MACROBLOCKD *xd = &td->mb.e_mbd;
1489   FRAME_CONTEXT *tile_ctx = xd->tile_ctx;
1490   const int grid_idx = mi_row * mi_params->mi_stride + mi_col;
1491   xd->mi = mi_params->mi_grid_base + grid_idx;
1492   td->mb.mbmi_ext_frame =
1493       cpi->mbmi_ext_info.frame_base +
1494       get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize,
1495                      cpi->mbmi_ext_info.stride);
1496   xd->tx_type_map = mi_params->tx_type_map + grid_idx;
1497   xd->tx_type_map_stride = mi_params->mi_stride;
1498 
1499   const MB_MODE_INFO *mbmi = xd->mi[0];
1500   const BLOCK_SIZE bsize = mbmi->bsize;
1501   assert(bsize <= cm->seq_params->sb_size ||
1502          (bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL));
1503 
1504   const int bh = mi_size_high[bsize];
1505   const int bw = mi_size_wide[bsize];
1506   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
1507                  mi_params->mi_cols);
1508 
1509   xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
1510   xd->left_txfm_context =
1511       xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
1512 
1513   write_mbmi_b(cpi, td, w);
1514 
1515   for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) {
1516     const uint8_t palette_size_plane =
1517         mbmi->palette_mode_info.palette_size[plane];
1518     assert(!mbmi->skip_mode || !palette_size_plane);
1519     if (palette_size_plane > 0) {
1520       assert(mbmi->use_intrabc == 0);
1521       assert(av1_allow_palette(cm->features.allow_screen_content_tools,
1522                                mbmi->bsize));
1523       assert(!plane || xd->is_chroma_ref);
1524       int rows, cols;
1525       av1_get_block_dimensions(mbmi->bsize, plane, xd, NULL, NULL, &rows,
1526                                &cols);
1527       assert(*tok < tok_end);
1528       MapCdf map_pb_cdf = plane ? tile_ctx->palette_uv_color_index_cdf
1529                                 : tile_ctx->palette_y_color_index_cdf;
1530       pack_map_tokens(w, tok, palette_size_plane, rows * cols, map_pb_cdf);
1531     }
1532   }
1533 
1534   const int is_inter_tx = is_inter_block(mbmi);
1535   const int skip_txfm = mbmi->skip_txfm;
1536   const uint8_t segment_id = mbmi->segment_id;
1537   if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
1538       !(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) {
1539     if (is_inter_tx) {  // This implies skip flag is 0.
1540       const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
1541       const int txbh = tx_size_high_unit[max_tx_size];
1542       const int txbw = tx_size_wide_unit[max_tx_size];
1543       const int width = mi_size_wide[bsize];
1544       const int height = mi_size_high[bsize];
1545       for (int idy = 0; idy < height; idy += txbh) {
1546         for (int idx = 0; idx < width; idx += txbw) {
1547           write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
1548         }
1549       }
1550     } else {
1551       write_selected_tx_size(xd, w);
1552       set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd);
1553     }
1554   } else {
1555     set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
1556                   skip_txfm && is_inter_tx, xd);
1557   }
1558 
1559   if (!mbmi->skip_txfm) {
1560     int start = aom_tell_size(w);
1561 
1562     write_tokens_b(cpi, &td->mb, w, tok, tok_end);
1563 
1564     const int end = aom_tell_size(w);
1565     td->coefficient_size += end - start;
1566   }
1567 }
1568 
write_partition(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,aom_writer * w)1569 static AOM_INLINE void write_partition(const AV1_COMMON *const cm,
1570                                        const MACROBLOCKD *const xd, int hbs,
1571                                        int mi_row, int mi_col, PARTITION_TYPE p,
1572                                        BLOCK_SIZE bsize, aom_writer *w) {
1573   const int is_partition_point = bsize >= BLOCK_8X8;
1574 
1575   if (!is_partition_point) return;
1576 
1577   const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
1578   const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
1579   const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1580   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1581 
1582   if (!has_rows && !has_cols) {
1583     assert(p == PARTITION_SPLIT);
1584     return;
1585   }
1586 
1587   if (has_rows && has_cols) {
1588     aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx],
1589                      partition_cdf_length(bsize));
1590   } else if (!has_rows && has_cols) {
1591     assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
1592     assert(bsize > BLOCK_8X8);
1593     aom_cdf_prob cdf[2];
1594     partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1595     aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1596   } else {
1597     assert(has_rows && !has_cols);
1598     assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
1599     assert(bsize > BLOCK_8X8);
1600     aom_cdf_prob cdf[2];
1601     partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1602     aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1603   }
1604 }
1605 
write_modes_sb(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize)1606 static AOM_INLINE void write_modes_sb(
1607     AV1_COMP *const cpi, ThreadData *const td, const TileInfo *const tile,
1608     aom_writer *const w, const TokenExtra **tok,
1609     const TokenExtra *const tok_end, int mi_row, int mi_col, BLOCK_SIZE bsize) {
1610   const AV1_COMMON *const cm = &cpi->common;
1611   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1612   MACROBLOCKD *const xd = &td->mb.e_mbd;
1613   assert(bsize < BLOCK_SIZES_ALL);
1614   const int hbs = mi_size_wide[bsize] / 2;
1615   const int quarter_step = mi_size_wide[bsize] / 4;
1616   int i;
1617   const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
1618   const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
1619 
1620   if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
1621 
1622 #if !CONFIG_REALTIME_ONLY
1623   const int num_planes = av1_num_planes(cm);
1624   for (int plane = 0; plane < num_planes; ++plane) {
1625     int rcol0, rcol1, rrow0, rrow1;
1626 
1627     // Skip some unnecessary work if loop restoration is disabled
1628     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
1629 
1630     if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
1631                                            &rcol0, &rcol1, &rrow0, &rrow1)) {
1632       const int rstride = cm->rst_info[plane].horz_units;
1633       for (int rrow = rrow0; rrow < rrow1; ++rrow) {
1634         for (int rcol = rcol0; rcol < rcol1; ++rcol) {
1635           const int runit_idx = rcol + rrow * rstride;
1636           loop_restoration_write_sb_coeffs(cm, xd, runit_idx, w, plane,
1637                                            td->counts);
1638         }
1639       }
1640     }
1641   }
1642 #endif
1643 
1644   write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
1645   switch (partition) {
1646     case PARTITION_NONE:
1647       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1648       break;
1649     case PARTITION_HORZ:
1650       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1651       if (mi_row + hbs < mi_params->mi_rows)
1652         write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1653       break;
1654     case PARTITION_VERT:
1655       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1656       if (mi_col + hbs < mi_params->mi_cols)
1657         write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1658       break;
1659     case PARTITION_SPLIT:
1660       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col, subsize);
1661       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs,
1662                      subsize);
1663       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col,
1664                      subsize);
1665       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
1666                      subsize);
1667       break;
1668     case PARTITION_HORZ_A:
1669       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1670       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1671       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1672       break;
1673     case PARTITION_HORZ_B:
1674       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1675       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1676       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1677       break;
1678     case PARTITION_VERT_A:
1679       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1680       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1681       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1682       break;
1683     case PARTITION_VERT_B:
1684       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1685       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1686       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1687       break;
1688     case PARTITION_HORZ_4:
1689       for (i = 0; i < 4; ++i) {
1690         int this_mi_row = mi_row + i * quarter_step;
1691         if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
1692 
1693         write_modes_b(cpi, td, tile, w, tok, tok_end, this_mi_row, mi_col);
1694       }
1695       break;
1696     case PARTITION_VERT_4:
1697       for (i = 0; i < 4; ++i) {
1698         int this_mi_col = mi_col + i * quarter_step;
1699         if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
1700 
1701         write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, this_mi_col);
1702       }
1703       break;
1704     default: assert(0);
1705   }
1706 
1707   // update partition context
1708   update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
1709 }
1710 
1711 // Populate token pointers appropriately based on token_info.
get_token_pointers(const TokenInfo * token_info,const int tile_row,int tile_col,const int sb_row_in_tile,const TokenExtra ** tok,const TokenExtra ** tok_end)1712 static AOM_INLINE void get_token_pointers(const TokenInfo *token_info,
1713                                           const int tile_row, int tile_col,
1714                                           const int sb_row_in_tile,
1715                                           const TokenExtra **tok,
1716                                           const TokenExtra **tok_end) {
1717   if (!is_token_info_allocated(token_info)) {
1718     *tok = NULL;
1719     *tok_end = NULL;
1720     return;
1721   }
1722   *tok = token_info->tplist[tile_row][tile_col][sb_row_in_tile].start;
1723   *tok_end =
1724       *tok + token_info->tplist[tile_row][tile_col][sb_row_in_tile].count;
1725 }
1726 
write_modes(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,int tile_row,int tile_col)1727 static AOM_INLINE void write_modes(AV1_COMP *const cpi, ThreadData *const td,
1728                                    const TileInfo *const tile,
1729                                    aom_writer *const w, int tile_row,
1730                                    int tile_col) {
1731   AV1_COMMON *const cm = &cpi->common;
1732   MACROBLOCKD *const xd = &td->mb.e_mbd;
1733   const int mi_row_start = tile->mi_row_start;
1734   const int mi_row_end = tile->mi_row_end;
1735   const int mi_col_start = tile->mi_col_start;
1736   const int mi_col_end = tile->mi_col_end;
1737   const int num_planes = av1_num_planes(cm);
1738 
1739   av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row);
1740   av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd);
1741 
1742   if (cpi->common.delta_q_info.delta_q_present_flag) {
1743     xd->current_base_qindex = cpi->common.quant_params.base_qindex;
1744     if (cpi->common.delta_q_info.delta_lf_present_flag) {
1745       av1_reset_loop_filter_delta(xd, num_planes);
1746     }
1747   }
1748 
1749   for (int mi_row = mi_row_start; mi_row < mi_row_end;
1750        mi_row += cm->seq_params->mib_size) {
1751     const int sb_row_in_tile =
1752         (mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2;
1753     const TokenInfo *token_info = &cpi->token_info;
1754     const TokenExtra *tok;
1755     const TokenExtra *tok_end;
1756     get_token_pointers(token_info, tile_row, tile_col, sb_row_in_tile, &tok,
1757                        &tok_end);
1758 
1759     av1_zero_left_context(xd);
1760 
1761     for (int mi_col = mi_col_start; mi_col < mi_col_end;
1762          mi_col += cm->seq_params->mib_size) {
1763       td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
1764       write_modes_sb(cpi, td, tile, w, &tok, tok_end, mi_row, mi_col,
1765                      cm->seq_params->sb_size);
1766     }
1767     assert(tok == tok_end);
1768   }
1769 }
1770 
encode_restoration_mode(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)1771 static AOM_INLINE void encode_restoration_mode(
1772     AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
1773   assert(!cm->features.all_lossless);
1774   if (!cm->seq_params->enable_restoration) return;
1775   if (cm->features.allow_intrabc) return;
1776   const int num_planes = av1_num_planes(cm);
1777   int all_none = 1, chroma_none = 1;
1778   for (int p = 0; p < num_planes; ++p) {
1779     RestorationInfo *rsi = &cm->rst_info[p];
1780     if (rsi->frame_restoration_type != RESTORE_NONE) {
1781       all_none = 0;
1782       chroma_none &= p == 0;
1783     }
1784     switch (rsi->frame_restoration_type) {
1785       case RESTORE_NONE:
1786         aom_wb_write_bit(wb, 0);
1787         aom_wb_write_bit(wb, 0);
1788         break;
1789       case RESTORE_WIENER:
1790         aom_wb_write_bit(wb, 1);
1791         aom_wb_write_bit(wb, 0);
1792         break;
1793       case RESTORE_SGRPROJ:
1794         aom_wb_write_bit(wb, 1);
1795         aom_wb_write_bit(wb, 1);
1796         break;
1797       case RESTORE_SWITCHABLE:
1798         aom_wb_write_bit(wb, 0);
1799         aom_wb_write_bit(wb, 1);
1800         break;
1801       default: assert(0);
1802     }
1803   }
1804   if (!all_none) {
1805     assert(cm->seq_params->sb_size == BLOCK_64X64 ||
1806            cm->seq_params->sb_size == BLOCK_128X128);
1807     const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64;
1808 
1809     RestorationInfo *rsi = &cm->rst_info[0];
1810 
1811     assert(rsi->restoration_unit_size >= sb_size);
1812     assert(RESTORATION_UNITSIZE_MAX == 256);
1813 
1814     if (sb_size == 64) {
1815       aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
1816     }
1817     if (rsi->restoration_unit_size > 64) {
1818       aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
1819     }
1820   }
1821 
1822   if (num_planes > 1) {
1823     int s =
1824         AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y);
1825     if (s && !chroma_none) {
1826       aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
1827                                cm->rst_info[0].restoration_unit_size);
1828       assert(cm->rst_info[1].restoration_unit_size ==
1829                  cm->rst_info[0].restoration_unit_size ||
1830              cm->rst_info[1].restoration_unit_size ==
1831                  (cm->rst_info[0].restoration_unit_size >> s));
1832       assert(cm->rst_info[2].restoration_unit_size ==
1833              cm->rst_info[1].restoration_unit_size);
1834     } else if (!s) {
1835       assert(cm->rst_info[1].restoration_unit_size ==
1836              cm->rst_info[0].restoration_unit_size);
1837       assert(cm->rst_info[2].restoration_unit_size ==
1838              cm->rst_info[1].restoration_unit_size);
1839     }
1840   }
1841 }
1842 
1843 #if !CONFIG_REALTIME_ONLY
write_wiener_filter(int wiener_win,const WienerInfo * wiener_info,WienerInfo * ref_wiener_info,aom_writer * wb)1844 static AOM_INLINE void write_wiener_filter(int wiener_win,
1845                                            const WienerInfo *wiener_info,
1846                                            WienerInfo *ref_wiener_info,
1847                                            aom_writer *wb) {
1848   if (wiener_win == WIENER_WIN)
1849     aom_write_primitive_refsubexpfin(
1850         wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1851         WIENER_FILT_TAP0_SUBEXP_K,
1852         ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
1853         wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
1854   else
1855     assert(wiener_info->vfilter[0] == 0 &&
1856            wiener_info->vfilter[WIENER_WIN - 1] == 0);
1857   aom_write_primitive_refsubexpfin(
1858       wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1859       WIENER_FILT_TAP1_SUBEXP_K,
1860       ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
1861       wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
1862   aom_write_primitive_refsubexpfin(
1863       wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1864       WIENER_FILT_TAP2_SUBEXP_K,
1865       ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
1866       wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
1867   if (wiener_win == WIENER_WIN)
1868     aom_write_primitive_refsubexpfin(
1869         wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1870         WIENER_FILT_TAP0_SUBEXP_K,
1871         ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
1872         wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
1873   else
1874     assert(wiener_info->hfilter[0] == 0 &&
1875            wiener_info->hfilter[WIENER_WIN - 1] == 0);
1876   aom_write_primitive_refsubexpfin(
1877       wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1878       WIENER_FILT_TAP1_SUBEXP_K,
1879       ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
1880       wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
1881   aom_write_primitive_refsubexpfin(
1882       wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1883       WIENER_FILT_TAP2_SUBEXP_K,
1884       ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
1885       wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
1886   memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
1887 }
1888 
write_sgrproj_filter(const SgrprojInfo * sgrproj_info,SgrprojInfo * ref_sgrproj_info,aom_writer * wb)1889 static AOM_INLINE void write_sgrproj_filter(const SgrprojInfo *sgrproj_info,
1890                                             SgrprojInfo *ref_sgrproj_info,
1891                                             aom_writer *wb) {
1892   aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
1893   const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
1894 
1895   if (params->r[0] == 0) {
1896     assert(sgrproj_info->xqd[0] == 0);
1897     aom_write_primitive_refsubexpfin(
1898         wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1899         ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1900         sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1901   } else if (params->r[1] == 0) {
1902     aom_write_primitive_refsubexpfin(
1903         wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1904         ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1905         sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1906   } else {
1907     aom_write_primitive_refsubexpfin(
1908         wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1909         ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1910         sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1911     aom_write_primitive_refsubexpfin(
1912         wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1913         ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1914         sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1915   }
1916 
1917   memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
1918 }
1919 
loop_restoration_write_sb_coeffs(const AV1_COMMON * const cm,MACROBLOCKD * xd,int runit_idx,aom_writer * const w,int plane,FRAME_COUNTS * counts)1920 static AOM_INLINE void loop_restoration_write_sb_coeffs(
1921     const AV1_COMMON *const cm, MACROBLOCKD *xd, int runit_idx,
1922     aom_writer *const w, int plane, FRAME_COUNTS *counts) {
1923   const RestorationUnitInfo *rui = &cm->rst_info[plane].unit_info[runit_idx];
1924   const RestorationInfo *rsi = cm->rst_info + plane;
1925   RestorationType frame_rtype = rsi->frame_restoration_type;
1926   assert(frame_rtype != RESTORE_NONE);
1927 
1928   (void)counts;
1929   assert(!cm->features.all_lossless);
1930 
1931   const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
1932   WienerInfo *ref_wiener_info = &xd->wiener_info[plane];
1933   SgrprojInfo *ref_sgrproj_info = &xd->sgrproj_info[plane];
1934   RestorationType unit_rtype = rui->restoration_type;
1935 
1936   if (frame_rtype == RESTORE_SWITCHABLE) {
1937     aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
1938                      RESTORE_SWITCHABLE_TYPES);
1939 #if CONFIG_ENTROPY_STATS
1940     ++counts->switchable_restore[unit_rtype];
1941 #endif
1942     switch (unit_rtype) {
1943       case RESTORE_WIENER:
1944 #if DEBUG_LR_COSTING
1945         assert(!memcmp(
1946             ref_wiener_info,
1947             &lr_ref_params[RESTORE_SWITCHABLE][plane][runit_idx].wiener_info,
1948             sizeof(*ref_wiener_info)));
1949 #endif
1950         write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1951         break;
1952       case RESTORE_SGRPROJ:
1953 #if DEBUG_LR_COSTING
1954         assert(!memcmp(&ref_sgrproj_info->xqd,
1955                        &lr_ref_params[RESTORE_SWITCHABLE][plane][runit_idx]
1956                             .sgrproj_info.xqd,
1957                        sizeof(ref_sgrproj_info->xqd)));
1958 #endif
1959         write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1960         break;
1961       default: assert(unit_rtype == RESTORE_NONE); break;
1962     }
1963   } else if (frame_rtype == RESTORE_WIENER) {
1964     aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1965                      xd->tile_ctx->wiener_restore_cdf, 2);
1966 #if CONFIG_ENTROPY_STATS
1967     ++counts->wiener_restore[unit_rtype != RESTORE_NONE];
1968 #endif
1969     if (unit_rtype != RESTORE_NONE) {
1970 #if DEBUG_LR_COSTING
1971       assert(
1972           !memcmp(ref_wiener_info,
1973                   &lr_ref_params[RESTORE_WIENER][plane][runit_idx].wiener_info,
1974                   sizeof(*ref_wiener_info)));
1975 #endif
1976       write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1977     }
1978   } else if (frame_rtype == RESTORE_SGRPROJ) {
1979     aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1980                      xd->tile_ctx->sgrproj_restore_cdf, 2);
1981 #if CONFIG_ENTROPY_STATS
1982     ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
1983 #endif
1984     if (unit_rtype != RESTORE_NONE) {
1985 #if DEBUG_LR_COSTING
1986       assert(!memcmp(
1987           &ref_sgrproj_info->xqd,
1988           &lr_ref_params[RESTORE_SGRPROJ][plane][runit_idx].sgrproj_info.xqd,
1989           sizeof(ref_sgrproj_info->xqd)));
1990 #endif
1991       write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1992     }
1993   }
1994 }
1995 #endif  // !CONFIG_REALTIME_ONLY
1996 
1997 // Only write out the ref delta section if any of the elements
1998 // will signal a delta.
is_mode_ref_delta_meaningful(AV1_COMMON * cm)1999 static bool is_mode_ref_delta_meaningful(AV1_COMMON *cm) {
2000   struct loopfilter *lf = &cm->lf;
2001   if (!lf->mode_ref_delta_update) {
2002     return 0;
2003   }
2004   const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
2005   int8_t last_ref_deltas[REF_FRAMES];
2006   int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
2007   if (buf == NULL) {
2008     av1_set_default_ref_deltas(last_ref_deltas);
2009     av1_set_default_mode_deltas(last_mode_deltas);
2010   } else {
2011     memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
2012     memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
2013   }
2014   for (int i = 0; i < REF_FRAMES; i++) {
2015     if (lf->ref_deltas[i] != last_ref_deltas[i]) {
2016       return true;
2017     }
2018   }
2019   for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
2020     if (lf->mode_deltas[i] != last_mode_deltas[i]) {
2021       return true;
2022     }
2023   }
2024   return false;
2025 }
2026 
encode_loopfilter(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2027 static AOM_INLINE void encode_loopfilter(AV1_COMMON *cm,
2028                                          struct aom_write_bit_buffer *wb) {
2029   assert(!cm->features.coded_lossless);
2030   if (cm->features.allow_intrabc) return;
2031   const int num_planes = av1_num_planes(cm);
2032   struct loopfilter *lf = &cm->lf;
2033 
2034   // Encode the loop filter level and type
2035   aom_wb_write_literal(wb, lf->filter_level[0], 6);
2036   aom_wb_write_literal(wb, lf->filter_level[1], 6);
2037   if (num_planes > 1) {
2038     if (lf->filter_level[0] || lf->filter_level[1]) {
2039       aom_wb_write_literal(wb, lf->filter_level_u, 6);
2040       aom_wb_write_literal(wb, lf->filter_level_v, 6);
2041     }
2042   }
2043   aom_wb_write_literal(wb, lf->sharpness_level, 3);
2044 
2045   aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
2046 
2047   // Write out loop filter deltas applied at the MB level based on mode or
2048   // ref frame (if they are enabled), only if there is information to write.
2049   int meaningful = is_mode_ref_delta_meaningful(cm);
2050   aom_wb_write_bit(wb, meaningful);
2051   if (!meaningful) {
2052     return;
2053   }
2054 
2055   const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
2056   int8_t last_ref_deltas[REF_FRAMES];
2057   int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
2058   if (buf == NULL) {
2059     av1_set_default_ref_deltas(last_ref_deltas);
2060     av1_set_default_mode_deltas(last_mode_deltas);
2061   } else {
2062     memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
2063     memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
2064   }
2065   for (int i = 0; i < REF_FRAMES; i++) {
2066     const int delta = lf->ref_deltas[i];
2067     const int changed = delta != last_ref_deltas[i];
2068     aom_wb_write_bit(wb, changed);
2069     if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2070   }
2071   for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
2072     const int delta = lf->mode_deltas[i];
2073     const int changed = delta != last_mode_deltas[i];
2074     aom_wb_write_bit(wb, changed);
2075     if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2076   }
2077 }
2078 
encode_cdef(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2079 static AOM_INLINE void encode_cdef(const AV1_COMMON *cm,
2080                                    struct aom_write_bit_buffer *wb) {
2081   assert(!cm->features.coded_lossless);
2082   if (!cm->seq_params->enable_cdef) return;
2083   if (cm->features.allow_intrabc) return;
2084   const int num_planes = av1_num_planes(cm);
2085   int i;
2086   aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2);
2087   aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2);
2088   for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) {
2089     aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i],
2090                          CDEF_STRENGTH_BITS);
2091     if (num_planes > 1)
2092       aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i],
2093                            CDEF_STRENGTH_BITS);
2094   }
2095 }
2096 
write_delta_q(struct aom_write_bit_buffer * wb,int delta_q)2097 static AOM_INLINE void write_delta_q(struct aom_write_bit_buffer *wb,
2098                                      int delta_q) {
2099   if (delta_q != 0) {
2100     aom_wb_write_bit(wb, 1);
2101     aom_wb_write_inv_signed_literal(wb, delta_q, 6);
2102   } else {
2103     aom_wb_write_bit(wb, 0);
2104   }
2105 }
2106 
encode_quantization(const CommonQuantParams * const quant_params,int num_planes,bool separate_uv_delta_q,struct aom_write_bit_buffer * wb)2107 static AOM_INLINE void encode_quantization(
2108     const CommonQuantParams *const quant_params, int num_planes,
2109     bool separate_uv_delta_q, struct aom_write_bit_buffer *wb) {
2110   aom_wb_write_literal(wb, quant_params->base_qindex, QINDEX_BITS);
2111   write_delta_q(wb, quant_params->y_dc_delta_q);
2112   if (num_planes > 1) {
2113     int diff_uv_delta =
2114         (quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) ||
2115         (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q);
2116     if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
2117     write_delta_q(wb, quant_params->u_dc_delta_q);
2118     write_delta_q(wb, quant_params->u_ac_delta_q);
2119     if (diff_uv_delta) {
2120       write_delta_q(wb, quant_params->v_dc_delta_q);
2121       write_delta_q(wb, quant_params->v_ac_delta_q);
2122     }
2123   }
2124   aom_wb_write_bit(wb, quant_params->using_qmatrix);
2125   if (quant_params->using_qmatrix) {
2126     aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS);
2127     aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS);
2128     if (!separate_uv_delta_q)
2129       assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v);
2130     else
2131       aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS);
2132   }
2133 }
2134 
encode_segmentation(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2135 static AOM_INLINE void encode_segmentation(AV1_COMMON *cm,
2136                                            struct aom_write_bit_buffer *wb) {
2137   int i, j;
2138   struct segmentation *seg = &cm->seg;
2139 
2140   aom_wb_write_bit(wb, seg->enabled);
2141   if (!seg->enabled) return;
2142 
2143   // Write update flags
2144   if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) {
2145     aom_wb_write_bit(wb, seg->update_map);
2146     if (seg->update_map) aom_wb_write_bit(wb, seg->temporal_update);
2147     aom_wb_write_bit(wb, seg->update_data);
2148   }
2149 
2150   // Segmentation data
2151   if (seg->update_data) {
2152     for (i = 0; i < MAX_SEGMENTS; i++) {
2153       for (j = 0; j < SEG_LVL_MAX; j++) {
2154         const int active = segfeature_active(seg, i, j);
2155         aom_wb_write_bit(wb, active);
2156         if (active) {
2157           const int data_max = av1_seg_feature_data_max(j);
2158           const int data_min = -data_max;
2159           const int ubits = get_unsigned_bits(data_max);
2160           const int data = clamp(get_segdata(seg, i, j), data_min, data_max);
2161 
2162           if (av1_is_segfeature_signed(j)) {
2163             aom_wb_write_inv_signed_literal(wb, data, ubits);
2164           } else {
2165             aom_wb_write_literal(wb, data, ubits);
2166           }
2167         }
2168       }
2169     }
2170   }
2171 }
2172 
write_frame_interp_filter(InterpFilter filter,struct aom_write_bit_buffer * wb)2173 static AOM_INLINE void write_frame_interp_filter(
2174     InterpFilter filter, struct aom_write_bit_buffer *wb) {
2175   aom_wb_write_bit(wb, filter == SWITCHABLE);
2176   if (filter != SWITCHABLE)
2177     aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
2178 }
2179 
2180 // Same function as write_uniform but writing to uncompresses header wb
wb_write_uniform(struct aom_write_bit_buffer * wb,int n,int v)2181 static AOM_INLINE void wb_write_uniform(struct aom_write_bit_buffer *wb, int n,
2182                                         int v) {
2183   const int l = get_unsigned_bits(n);
2184   const int m = (1 << l) - n;
2185   if (l == 0) return;
2186   if (v < m) {
2187     aom_wb_write_literal(wb, v, l - 1);
2188   } else {
2189     aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
2190     aom_wb_write_literal(wb, (v - m) & 1, 1);
2191   }
2192 }
2193 
write_tile_info_max_tile(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2194 static AOM_INLINE void write_tile_info_max_tile(
2195     const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
2196   int width_sb =
2197       CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2);
2198   int height_sb =
2199       CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2);
2200   int size_sb, i;
2201   const CommonTileParams *const tiles = &cm->tiles;
2202 
2203   aom_wb_write_bit(wb, tiles->uniform_spacing);
2204 
2205   if (tiles->uniform_spacing) {
2206     int ones = tiles->log2_cols - tiles->min_log2_cols;
2207     while (ones--) {
2208       aom_wb_write_bit(wb, 1);
2209     }
2210     if (tiles->log2_cols < tiles->max_log2_cols) {
2211       aom_wb_write_bit(wb, 0);
2212     }
2213 
2214     // rows
2215     ones = tiles->log2_rows - tiles->min_log2_rows;
2216     while (ones--) {
2217       aom_wb_write_bit(wb, 1);
2218     }
2219     if (tiles->log2_rows < tiles->max_log2_rows) {
2220       aom_wb_write_bit(wb, 0);
2221     }
2222   } else {
2223     // Explicit tiles with configurable tile widths and heights
2224     // columns
2225     for (i = 0; i < tiles->cols; i++) {
2226       size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
2227       wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1);
2228       width_sb -= size_sb;
2229     }
2230     assert(width_sb == 0);
2231 
2232     // rows
2233     for (i = 0; i < tiles->rows; i++) {
2234       size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
2235       wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb),
2236                        size_sb - 1);
2237       height_sb -= size_sb;
2238     }
2239     assert(height_sb == 0);
2240   }
2241 }
2242 
write_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2243 static AOM_INLINE void write_tile_info(const AV1_COMMON *const cm,
2244                                        struct aom_write_bit_buffer *saved_wb,
2245                                        struct aom_write_bit_buffer *wb) {
2246   write_tile_info_max_tile(cm, wb);
2247 
2248   *saved_wb = *wb;
2249   if (cm->tiles.rows * cm->tiles.cols > 1) {
2250     // tile id used for cdf update
2251     aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows);
2252     // Number of bytes in tile size - 1
2253     aom_wb_write_literal(wb, 3, 2);
2254   }
2255 }
2256 
write_ext_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2257 static AOM_INLINE void write_ext_tile_info(
2258     const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb,
2259     struct aom_write_bit_buffer *wb) {
2260   // This information is stored as a separate byte.
2261   int mod = wb->bit_offset % CHAR_BIT;
2262   if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod);
2263   assert(aom_wb_is_byte_aligned(wb));
2264 
2265   *saved_wb = *wb;
2266   if (cm->tiles.rows * cm->tiles.cols > 1) {
2267     // Note that the last item in the uncompressed header is the data
2268     // describing tile configuration.
2269     // Number of bytes in tile column size - 1
2270     aom_wb_write_literal(wb, 0, 2);
2271     // Number of bytes in tile size - 1
2272     aom_wb_write_literal(wb, 0, 2);
2273   }
2274 }
2275 
find_identical_tile(const int tile_row,const int tile_col,TileBufferEnc (* const tile_buffers)[MAX_TILE_COLS])2276 static INLINE int find_identical_tile(
2277     const int tile_row, const int tile_col,
2278     TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) {
2279   const MV32 candidate_offset[1] = { { 1, 0 } };
2280   const uint8_t *const cur_tile_data =
2281       tile_buffers[tile_row][tile_col].data + 4;
2282   const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
2283 
2284   int i;
2285 
2286   if (tile_row == 0) return 0;
2287 
2288   // (TODO: yunqingwang) For now, only above tile is checked and used.
2289   // More candidates such as left tile can be added later.
2290   for (i = 0; i < 1; i++) {
2291     int row_offset = candidate_offset[0].row;
2292     int col_offset = candidate_offset[0].col;
2293     int row = tile_row - row_offset;
2294     int col = tile_col - col_offset;
2295     const uint8_t *tile_data;
2296     TileBufferEnc *candidate;
2297 
2298     if (row < 0 || col < 0) continue;
2299 
2300     const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data);
2301 
2302     // Read out tile-copy-mode bit:
2303     if ((tile_hdr >> 31) == 1) {
2304       // The candidate is a copy tile itself: the offset is stored in bits
2305       // 30 through 24 inclusive.
2306       row_offset += (tile_hdr >> 24) & 0x7f;
2307       row = tile_row - row_offset;
2308     }
2309 
2310     candidate = &tile_buffers[row][col];
2311 
2312     if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
2313 
2314     tile_data = candidate->data + 4;
2315 
2316     if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
2317 
2318     // Identical tile found
2319     assert(row_offset > 0);
2320     return row_offset;
2321   }
2322 
2323   // No identical tile found
2324   return 0;
2325 }
2326 
write_render_size(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2327 static AOM_INLINE void write_render_size(const AV1_COMMON *cm,
2328                                          struct aom_write_bit_buffer *wb) {
2329   const int scaling_active = av1_resize_scaled(cm);
2330   aom_wb_write_bit(wb, scaling_active);
2331   if (scaling_active) {
2332     aom_wb_write_literal(wb, cm->render_width - 1, 16);
2333     aom_wb_write_literal(wb, cm->render_height - 1, 16);
2334   }
2335 }
2336 
write_superres_scale(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2337 static AOM_INLINE void write_superres_scale(const AV1_COMMON *const cm,
2338                                             struct aom_write_bit_buffer *wb) {
2339   const SequenceHeader *const seq_params = cm->seq_params;
2340   if (!seq_params->enable_superres) {
2341     assert(cm->superres_scale_denominator == SCALE_NUMERATOR);
2342     return;
2343   }
2344 
2345   // First bit is whether to to scale or not
2346   if (cm->superres_scale_denominator == SCALE_NUMERATOR) {
2347     aom_wb_write_bit(wb, 0);  // no scaling
2348   } else {
2349     aom_wb_write_bit(wb, 1);  // scaling, write scale factor
2350     assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN);
2351     assert(cm->superres_scale_denominator <
2352            SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS));
2353     aom_wb_write_literal(
2354         wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN,
2355         SUPERRES_SCALE_BITS);
2356   }
2357 }
2358 
write_frame_size(const AV1_COMMON * cm,int frame_size_override,struct aom_write_bit_buffer * wb)2359 static AOM_INLINE void write_frame_size(const AV1_COMMON *cm,
2360                                         int frame_size_override,
2361                                         struct aom_write_bit_buffer *wb) {
2362   const int coded_width = cm->superres_upscaled_width - 1;
2363   const int coded_height = cm->superres_upscaled_height - 1;
2364 
2365   if (frame_size_override) {
2366     const SequenceHeader *seq_params = cm->seq_params;
2367     int num_bits_width = seq_params->num_bits_width;
2368     int num_bits_height = seq_params->num_bits_height;
2369     aom_wb_write_literal(wb, coded_width, num_bits_width);
2370     aom_wb_write_literal(wb, coded_height, num_bits_height);
2371   }
2372 
2373   write_superres_scale(cm, wb);
2374   write_render_size(cm, wb);
2375 }
2376 
write_frame_size_with_refs(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2377 static AOM_INLINE void write_frame_size_with_refs(
2378     const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
2379   int found = 0;
2380 
2381   MV_REFERENCE_FRAME ref_frame;
2382   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2383     const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);
2384 
2385     if (cfg != NULL) {
2386       found = cm->superres_upscaled_width == cfg->y_crop_width &&
2387               cm->superres_upscaled_height == cfg->y_crop_height;
2388       found &= cm->render_width == cfg->render_width &&
2389                cm->render_height == cfg->render_height;
2390     }
2391     aom_wb_write_bit(wb, found);
2392     if (found) {
2393       write_superres_scale(cm, wb);
2394       break;
2395     }
2396   }
2397 
2398   if (!found) {
2399     int frame_size_override = 1;  // Always equal to 1 in this function
2400     write_frame_size(cm, frame_size_override, wb);
2401   }
2402 }
2403 
write_profile(BITSTREAM_PROFILE profile,struct aom_write_bit_buffer * wb)2404 static AOM_INLINE void write_profile(BITSTREAM_PROFILE profile,
2405                                      struct aom_write_bit_buffer *wb) {
2406   assert(profile >= PROFILE_0 && profile < MAX_PROFILES);
2407   aom_wb_write_literal(wb, profile, PROFILE_BITS);
2408 }
2409 
write_bitdepth(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2410 static AOM_INLINE void write_bitdepth(const SequenceHeader *const seq_params,
2411                                       struct aom_write_bit_buffer *wb) {
2412   // Profile 0/1: [0] for 8 bit, [1]  10-bit
2413   // Profile   2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit
2414   aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1);
2415   if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) {
2416     aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1);
2417   }
2418 }
2419 
write_color_config(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2420 static AOM_INLINE void write_color_config(
2421     const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
2422   write_bitdepth(seq_params, wb);
2423   const int is_monochrome = seq_params->monochrome;
2424   // monochrome bit
2425   if (seq_params->profile != PROFILE_1)
2426     aom_wb_write_bit(wb, is_monochrome);
2427   else
2428     assert(!is_monochrome);
2429   if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED &&
2430       seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED &&
2431       seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) {
2432     aom_wb_write_bit(wb, 0);  // No color description present
2433   } else {
2434     aom_wb_write_bit(wb, 1);  // Color description present
2435     aom_wb_write_literal(wb, seq_params->color_primaries, 8);
2436     aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8);
2437     aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8);
2438   }
2439   if (is_monochrome) {
2440     // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2441     aom_wb_write_bit(wb, seq_params->color_range);
2442     return;
2443   }
2444   if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
2445       seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
2446       seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2447     assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2448     assert(seq_params->profile == PROFILE_1 ||
2449            (seq_params->profile == PROFILE_2 &&
2450             seq_params->bit_depth == AOM_BITS_12));
2451   } else {
2452     // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2453     aom_wb_write_bit(wb, seq_params->color_range);
2454     if (seq_params->profile == PROFILE_0) {
2455       // 420 only
2456       assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1);
2457     } else if (seq_params->profile == PROFILE_1) {
2458       // 444 only
2459       assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2460     } else if (seq_params->profile == PROFILE_2) {
2461       if (seq_params->bit_depth == AOM_BITS_12) {
2462         // 420, 444 or 422
2463         aom_wb_write_bit(wb, seq_params->subsampling_x);
2464         if (seq_params->subsampling_x == 0) {
2465           assert(seq_params->subsampling_y == 0 &&
2466                  "4:4:0 subsampling not allowed in AV1");
2467         } else {
2468           aom_wb_write_bit(wb, seq_params->subsampling_y);
2469         }
2470       } else {
2471         // 422 only
2472         assert(seq_params->subsampling_x == 1 &&
2473                seq_params->subsampling_y == 0);
2474       }
2475     }
2476     if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2477       assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2478     }
2479     if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) {
2480       aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2);
2481     }
2482   }
2483   aom_wb_write_bit(wb, seq_params->separate_uv_delta_q);
2484 }
2485 
write_timing_info_header(const aom_timing_info_t * const timing_info,struct aom_write_bit_buffer * wb)2486 static AOM_INLINE void write_timing_info_header(
2487     const aom_timing_info_t *const timing_info,
2488     struct aom_write_bit_buffer *wb) {
2489   aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32);
2490   aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32);
2491   aom_wb_write_bit(wb, timing_info->equal_picture_interval);
2492   if (timing_info->equal_picture_interval) {
2493     aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1);
2494   }
2495 }
2496 
write_decoder_model_info(const aom_dec_model_info_t * const decoder_model_info,struct aom_write_bit_buffer * wb)2497 static AOM_INLINE void write_decoder_model_info(
2498     const aom_dec_model_info_t *const decoder_model_info,
2499     struct aom_write_bit_buffer *wb) {
2500   aom_wb_write_literal(
2501       wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5);
2502   aom_wb_write_unsigned_literal(
2503       wb, decoder_model_info->num_units_in_decoding_tick, 32);
2504   aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1,
2505                        5);
2506   aom_wb_write_literal(
2507       wb, decoder_model_info->frame_presentation_time_length - 1, 5);
2508 }
2509 
write_dec_model_op_parameters(const aom_dec_model_op_parameters_t * op_params,int buffer_delay_length,struct aom_write_bit_buffer * wb)2510 static AOM_INLINE void write_dec_model_op_parameters(
2511     const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length,
2512     struct aom_write_bit_buffer *wb) {
2513   aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay,
2514                                 buffer_delay_length);
2515   aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay,
2516                                 buffer_delay_length);
2517   aom_wb_write_bit(wb, op_params->low_delay_mode_flag);
2518 }
2519 
write_tu_pts_info(AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2520 static AOM_INLINE void write_tu_pts_info(AV1_COMMON *const cm,
2521                                          struct aom_write_bit_buffer *wb) {
2522   aom_wb_write_unsigned_literal(
2523       wb, cm->frame_presentation_time,
2524       cm->seq_params->decoder_model_info.frame_presentation_time_length);
2525 }
2526 
write_film_grain_params(const AV1_COMP * const cpi,struct aom_write_bit_buffer * wb)2527 static AOM_INLINE void write_film_grain_params(
2528     const AV1_COMP *const cpi, struct aom_write_bit_buffer *wb) {
2529   const AV1_COMMON *const cm = &cpi->common;
2530   const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params;
2531   aom_wb_write_bit(wb, pars->apply_grain);
2532   if (!pars->apply_grain) return;
2533 
2534   aom_wb_write_literal(wb, pars->random_seed, 16);
2535 
2536   if (cm->current_frame.frame_type == INTER_FRAME)
2537     aom_wb_write_bit(wb, pars->update_parameters);
2538 
2539   if (!pars->update_parameters) {
2540     int ref_frame, ref_idx;
2541     for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) {
2542       ref_idx = get_ref_frame_map_idx(cm, ref_frame);
2543       assert(ref_idx != INVALID_IDX);
2544       const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx];
2545       if (buf->film_grain_params_present &&
2546           aom_check_grain_params_equiv(pars, &buf->film_grain_params)) {
2547         break;
2548       }
2549     }
2550     assert(ref_frame < REF_FRAMES);
2551     aom_wb_write_literal(wb, ref_idx, 3);
2552     return;
2553   }
2554 
2555   // Scaling functions parameters
2556   aom_wb_write_literal(wb, pars->num_y_points, 4);  // max 14
2557   for (int i = 0; i < pars->num_y_points; i++) {
2558     aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8);
2559     aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8);
2560   }
2561 
2562   if (!cm->seq_params->monochrome) {
2563     aom_wb_write_bit(wb, pars->chroma_scaling_from_luma);
2564   } else {
2565     assert(!pars->chroma_scaling_from_luma);
2566   }
2567 
2568   if (cm->seq_params->monochrome || pars->chroma_scaling_from_luma ||
2569       ((cm->seq_params->subsampling_x == 1) &&
2570        (cm->seq_params->subsampling_y == 1) && (pars->num_y_points == 0))) {
2571     assert(pars->num_cb_points == 0 && pars->num_cr_points == 0);
2572   } else {
2573     aom_wb_write_literal(wb, pars->num_cb_points, 4);  // max 10
2574     for (int i = 0; i < pars->num_cb_points; i++) {
2575       aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8);
2576       aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8);
2577     }
2578 
2579     aom_wb_write_literal(wb, pars->num_cr_points, 4);  // max 10
2580     for (int i = 0; i < pars->num_cr_points; i++) {
2581       aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8);
2582       aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8);
2583     }
2584   }
2585 
2586   aom_wb_write_literal(wb, pars->scaling_shift - 8, 2);  // 8 + value
2587 
2588   // AR coefficients
2589   // Only sent if the corresponsing scaling function has
2590   // more than 0 points
2591 
2592   aom_wb_write_literal(wb, pars->ar_coeff_lag, 2);
2593 
2594   int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
2595   int num_pos_chroma = num_pos_luma;
2596   if (pars->num_y_points > 0) ++num_pos_chroma;
2597 
2598   if (pars->num_y_points)
2599     for (int i = 0; i < num_pos_luma; i++)
2600       aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8);
2601 
2602   if (pars->num_cb_points || pars->chroma_scaling_from_luma)
2603     for (int i = 0; i < num_pos_chroma; i++)
2604       aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8);
2605 
2606   if (pars->num_cr_points || pars->chroma_scaling_from_luma)
2607     for (int i = 0; i < num_pos_chroma; i++)
2608       aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8);
2609 
2610   aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2);  // 8 + value
2611 
2612   aom_wb_write_literal(wb, pars->grain_scale_shift, 2);
2613 
2614   if (pars->num_cb_points) {
2615     aom_wb_write_literal(wb, pars->cb_mult, 8);
2616     aom_wb_write_literal(wb, pars->cb_luma_mult, 8);
2617     aom_wb_write_literal(wb, pars->cb_offset, 9);
2618   }
2619 
2620   if (pars->num_cr_points) {
2621     aom_wb_write_literal(wb, pars->cr_mult, 8);
2622     aom_wb_write_literal(wb, pars->cr_luma_mult, 8);
2623     aom_wb_write_literal(wb, pars->cr_offset, 9);
2624   }
2625 
2626   aom_wb_write_bit(wb, pars->overlap_flag);
2627 
2628   aom_wb_write_bit(wb, pars->clip_to_restricted_range);
2629 }
2630 
write_sb_size(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2631 static AOM_INLINE void write_sb_size(const SequenceHeader *const seq_params,
2632                                      struct aom_write_bit_buffer *wb) {
2633   (void)seq_params;
2634   (void)wb;
2635   assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]);
2636   assert(seq_params->mib_size == 1 << seq_params->mib_size_log2);
2637   assert(seq_params->sb_size == BLOCK_128X128 ||
2638          seq_params->sb_size == BLOCK_64X64);
2639   aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0);
2640 }
2641 
write_sequence_header(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2642 static AOM_INLINE void write_sequence_header(
2643     const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
2644   aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4);
2645   aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4);
2646   aom_wb_write_literal(wb, seq_params->max_frame_width - 1,
2647                        seq_params->num_bits_width);
2648   aom_wb_write_literal(wb, seq_params->max_frame_height - 1,
2649                        seq_params->num_bits_height);
2650 
2651   if (!seq_params->reduced_still_picture_hdr) {
2652     aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag);
2653     if (seq_params->frame_id_numbers_present_flag) {
2654       // We must always have delta_frame_id_length < frame_id_length,
2655       // in order for a frame to be referenced with a unique delta.
2656       // Avoid wasting bits by using a coding that enforces this restriction.
2657       aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4);
2658       aom_wb_write_literal(
2659           wb,
2660           seq_params->frame_id_length - seq_params->delta_frame_id_length - 1,
2661           3);
2662     }
2663   }
2664 
2665   write_sb_size(seq_params, wb);
2666 
2667   aom_wb_write_bit(wb, seq_params->enable_filter_intra);
2668   aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter);
2669 
2670   if (!seq_params->reduced_still_picture_hdr) {
2671     aom_wb_write_bit(wb, seq_params->enable_interintra_compound);
2672     aom_wb_write_bit(wb, seq_params->enable_masked_compound);
2673     aom_wb_write_bit(wb, seq_params->enable_warped_motion);
2674     aom_wb_write_bit(wb, seq_params->enable_dual_filter);
2675 
2676     aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint);
2677 
2678     if (seq_params->order_hint_info.enable_order_hint) {
2679       aom_wb_write_bit(wb, seq_params->order_hint_info.enable_dist_wtd_comp);
2680       aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs);
2681     }
2682     if (seq_params->force_screen_content_tools == 2) {
2683       aom_wb_write_bit(wb, 1);
2684     } else {
2685       aom_wb_write_bit(wb, 0);
2686       aom_wb_write_bit(wb, seq_params->force_screen_content_tools);
2687     }
2688     if (seq_params->force_screen_content_tools > 0) {
2689       if (seq_params->force_integer_mv == 2) {
2690         aom_wb_write_bit(wb, 1);
2691       } else {
2692         aom_wb_write_bit(wb, 0);
2693         aom_wb_write_bit(wb, seq_params->force_integer_mv);
2694       }
2695     } else {
2696       assert(seq_params->force_integer_mv == 2);
2697     }
2698     if (seq_params->order_hint_info.enable_order_hint)
2699       aom_wb_write_literal(
2700           wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3);
2701   }
2702 
2703   aom_wb_write_bit(wb, seq_params->enable_superres);
2704   aom_wb_write_bit(wb, seq_params->enable_cdef);
2705   aom_wb_write_bit(wb, seq_params->enable_restoration);
2706 }
2707 
write_global_motion_params(const WarpedMotionParams * params,const WarpedMotionParams * ref_params,struct aom_write_bit_buffer * wb,int allow_hp)2708 static AOM_INLINE void write_global_motion_params(
2709     const WarpedMotionParams *params, const WarpedMotionParams *ref_params,
2710     struct aom_write_bit_buffer *wb, int allow_hp) {
2711   const TransformationType type = params->wmtype;
2712 
2713   // As a workaround for an AV1 spec bug, we avoid choosing TRANSLATION
2714   // type models. Check here that we don't accidentally pick one somehow.
2715   // See comments in gm_get_motion_vector() for details on the bug we're
2716   // working around here
2717   assert(type != TRANSLATION);
2718 
2719   aom_wb_write_bit(wb, type != IDENTITY);
2720   if (type != IDENTITY) {
2721     aom_wb_write_bit(wb, type == ROTZOOM);
2722     if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION);
2723   }
2724 
2725   if (type >= ROTZOOM) {
2726     aom_wb_write_signed_primitive_refsubexpfin(
2727         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2728         (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
2729             (1 << GM_ALPHA_PREC_BITS),
2730         (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2731     aom_wb_write_signed_primitive_refsubexpfin(
2732         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2733         (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
2734         (params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
2735   }
2736 
2737   if (type >= AFFINE) {
2738     aom_wb_write_signed_primitive_refsubexpfin(
2739         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2740         (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
2741         (params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
2742     aom_wb_write_signed_primitive_refsubexpfin(
2743         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2744         (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
2745             (1 << GM_ALPHA_PREC_BITS),
2746         (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2747   }
2748 
2749   if (type >= TRANSLATION) {
2750     const int trans_bits = (type == TRANSLATION)
2751                                ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
2752                                : GM_ABS_TRANS_BITS;
2753     const int trans_prec_diff = (type == TRANSLATION)
2754                                     ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
2755                                     : GM_TRANS_PREC_DIFF;
2756     aom_wb_write_signed_primitive_refsubexpfin(
2757         wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2758         (ref_params->wmmat[0] >> trans_prec_diff),
2759         (params->wmmat[0] >> trans_prec_diff));
2760     aom_wb_write_signed_primitive_refsubexpfin(
2761         wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2762         (ref_params->wmmat[1] >> trans_prec_diff),
2763         (params->wmmat[1] >> trans_prec_diff));
2764   }
2765 }
2766 
write_global_motion(AV1_COMP * cpi,struct aom_write_bit_buffer * wb)2767 static AOM_INLINE void write_global_motion(AV1_COMP *cpi,
2768                                            struct aom_write_bit_buffer *wb) {
2769   AV1_COMMON *const cm = &cpi->common;
2770   int frame;
2771   for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
2772     const WarpedMotionParams *ref_params =
2773         cm->prev_frame ? &cm->prev_frame->global_motion[frame]
2774                        : &default_warp_params;
2775     write_global_motion_params(&cm->global_motion[frame], ref_params, wb,
2776                                cm->features.allow_high_precision_mv);
2777     // TODO(sarahparker, debargha): The logic in the commented out code below
2778     // does not work currently and causes mismatches when resize is on.
2779     // Fix it before turning the optimization back on.
2780     /*
2781     YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame);
2782     if (cpi->source->y_crop_width == ref_buf->y_crop_width &&
2783         cpi->source->y_crop_height == ref_buf->y_crop_height) {
2784       write_global_motion_params(&cm->global_motion[frame],
2785                                  &cm->prev_frame->global_motion[frame], wb,
2786                                  cm->features.allow_high_precision_mv);
2787     } else {
2788       assert(cm->global_motion[frame].wmtype == IDENTITY &&
2789              "Invalid warp type for frames of different resolutions");
2790     }
2791     */
2792     /*
2793     printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n",
2794            cm->current_frame.frame_number, cm->show_frame, frame,
2795            cm->global_motion[frame].wmmat[0],
2796            cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
2797            cm->global_motion[frame].wmmat[3]);
2798            */
2799   }
2800 }
2801 
check_frame_refs_short_signaling(AV1_COMMON * const cm,bool enable_ref_short_signaling)2802 static int check_frame_refs_short_signaling(AV1_COMMON *const cm,
2803                                             bool enable_ref_short_signaling) {
2804   // In rtc case when res < 360p and speed >= 9, we turn on
2805   // frame_refs_short_signaling if it won't break the decoder.
2806   if (enable_ref_short_signaling) {
2807     const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
2808     const int base =
2809         1 << (cm->seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
2810 
2811     const int order_hint_group_cur =
2812         cm->current_frame.display_order_hint / base;
2813     const int order_hint_group_gld =
2814         cm->ref_frame_map[gld_map_idx]->display_order_hint / base;
2815     const int relative_dist = cm->current_frame.order_hint -
2816                               cm->ref_frame_map[gld_map_idx]->order_hint;
2817 
2818     // If current frame and GOLDEN frame are in the same order_hint group, and
2819     // they are not far apart (i.e., > 64 frames), then return 1.
2820     if (order_hint_group_cur == order_hint_group_gld && relative_dist >= 0 &&
2821         relative_dist <= 64) {
2822       return 1;
2823     }
2824     return 0;
2825   }
2826 
2827   // Check whether all references are distinct frames.
2828   const RefCntBuffer *seen_bufs[INTER_REFS_PER_FRAME] = { NULL };
2829   int num_refs = 0;
2830   for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2831     const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
2832     if (buf != NULL) {
2833       int seen = 0;
2834       for (int i = 0; i < num_refs; i++) {
2835         if (seen_bufs[i] == buf) {
2836           seen = 1;
2837           break;
2838         }
2839       }
2840       if (!seen) seen_bufs[num_refs++] = buf;
2841     }
2842   }
2843 
2844   // We only turn on frame_refs_short_signaling when all references are
2845   // distinct.
2846   if (num_refs < INTER_REFS_PER_FRAME) {
2847     // It indicates that there exist more than one reference frame pointing to
2848     // the same reference buffer, i.e. two or more references are duplicate.
2849     return 0;
2850   }
2851 
2852   // Check whether the encoder side ref frame choices are aligned with that to
2853   // be derived at the decoder side.
2854   int remapped_ref_idx_decoder[REF_FRAMES];
2855 
2856   const int lst_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
2857   const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
2858 
2859   // Set up the frame refs mapping indexes according to the
2860   // frame_refs_short_signaling policy.
2861   av1_set_frame_refs(cm, remapped_ref_idx_decoder, lst_map_idx, gld_map_idx);
2862 
2863   // We only turn on frame_refs_short_signaling when the encoder side decision
2864   // on ref frames is identical to that at the decoder side.
2865   int frame_refs_short_signaling = 1;
2866   for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) {
2867     // Compare the buffer index between two reference frames indexed
2868     // respectively by the encoder and the decoder side decisions.
2869     RefCntBuffer *ref_frame_buf_new = NULL;
2870     if (remapped_ref_idx_decoder[ref_idx] != INVALID_IDX) {
2871       ref_frame_buf_new = cm->ref_frame_map[remapped_ref_idx_decoder[ref_idx]];
2872     }
2873     if (get_ref_frame_buf(cm, LAST_FRAME + ref_idx) != ref_frame_buf_new) {
2874       frame_refs_short_signaling = 0;
2875       break;
2876     }
2877   }
2878 
2879 #if 0   // For debug
2880   printf("\nFrame=%d: \n", cm->current_frame.frame_number);
2881   printf("***frame_refs_short_signaling=%d\n", frame_refs_short_signaling);
2882   for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2883     printf("enc_ref(map_idx=%d)=%d, vs. "
2884         "dec_ref(map_idx=%d)=%d\n",
2885         get_ref_frame_map_idx(cm, ref_frame), ref_frame,
2886         cm->remapped_ref_idx[ref_frame - LAST_FRAME],
2887         ref_frame);
2888   }
2889 #endif  // 0
2890 
2891   return frame_refs_short_signaling;
2892 }
2893 
2894 // New function based on HLS R18
write_uncompressed_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2895 static AOM_INLINE void write_uncompressed_header_obu(
2896     AV1_COMP *cpi, MACROBLOCKD *const xd, struct aom_write_bit_buffer *saved_wb,
2897     struct aom_write_bit_buffer *wb) {
2898   AV1_COMMON *const cm = &cpi->common;
2899   const SequenceHeader *const seq_params = cm->seq_params;
2900   const CommonQuantParams *quant_params = &cm->quant_params;
2901   CurrentFrame *const current_frame = &cm->current_frame;
2902   FeatureFlags *const features = &cm->features;
2903 
2904   if (!cpi->sf.rt_sf.enable_ref_short_signaling ||
2905       !seq_params->order_hint_info.enable_order_hint ||
2906       seq_params->order_hint_info.enable_ref_frame_mvs) {
2907     current_frame->frame_refs_short_signaling = 0;
2908   } else {
2909     current_frame->frame_refs_short_signaling = 1;
2910   }
2911 
2912   if (seq_params->still_picture) {
2913     assert(cm->show_existing_frame == 0);
2914     assert(cm->show_frame == 1);
2915     assert(current_frame->frame_type == KEY_FRAME);
2916   }
2917   if (!seq_params->reduced_still_picture_hdr) {
2918     if (encode_show_existing_frame(cm)) {
2919       aom_wb_write_bit(wb, 1);  // show_existing_frame
2920       aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
2921 
2922       if (seq_params->decoder_model_info_present_flag &&
2923           seq_params->timing_info.equal_picture_interval == 0) {
2924         write_tu_pts_info(cm, wb);
2925       }
2926       if (seq_params->frame_id_numbers_present_flag) {
2927         int frame_id_len = seq_params->frame_id_length;
2928         int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
2929         aom_wb_write_literal(wb, display_frame_id, frame_id_len);
2930       }
2931       return;
2932     } else {
2933       aom_wb_write_bit(wb, 0);  // show_existing_frame
2934     }
2935 
2936     aom_wb_write_literal(wb, current_frame->frame_type, 2);
2937 
2938     aom_wb_write_bit(wb, cm->show_frame);
2939     if (cm->show_frame) {
2940       if (seq_params->decoder_model_info_present_flag &&
2941           seq_params->timing_info.equal_picture_interval == 0)
2942         write_tu_pts_info(cm, wb);
2943     } else {
2944       aom_wb_write_bit(wb, cm->showable_frame);
2945     }
2946     if (frame_is_sframe(cm)) {
2947       assert(features->error_resilient_mode);
2948     } else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) {
2949       aom_wb_write_bit(wb, features->error_resilient_mode);
2950     }
2951   }
2952   aom_wb_write_bit(wb, features->disable_cdf_update);
2953 
2954   if (seq_params->force_screen_content_tools == 2) {
2955     aom_wb_write_bit(wb, features->allow_screen_content_tools);
2956   } else {
2957     assert(features->allow_screen_content_tools ==
2958            seq_params->force_screen_content_tools);
2959   }
2960 
2961   if (features->allow_screen_content_tools) {
2962     if (seq_params->force_integer_mv == 2) {
2963       aom_wb_write_bit(wb, features->cur_frame_force_integer_mv);
2964     } else {
2965       assert(features->cur_frame_force_integer_mv ==
2966              seq_params->force_integer_mv);
2967     }
2968   } else {
2969     assert(features->cur_frame_force_integer_mv == 0);
2970   }
2971 
2972   int frame_size_override_flag = 0;
2973 
2974   if (seq_params->reduced_still_picture_hdr) {
2975     assert(cm->superres_upscaled_width == seq_params->max_frame_width &&
2976            cm->superres_upscaled_height == seq_params->max_frame_height);
2977   } else {
2978     if (seq_params->frame_id_numbers_present_flag) {
2979       int frame_id_len = seq_params->frame_id_length;
2980       aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
2981     }
2982 
2983     if (cm->superres_upscaled_width > seq_params->max_frame_width ||
2984         cm->superres_upscaled_height > seq_params->max_frame_height) {
2985       aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
2986                          "Frame dimensions are larger than the maximum values");
2987     }
2988 
2989     frame_size_override_flag =
2990         frame_is_sframe(cm)
2991             ? 1
2992             : (cm->superres_upscaled_width != seq_params->max_frame_width ||
2993                cm->superres_upscaled_height != seq_params->max_frame_height);
2994     if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag);
2995 
2996     if (seq_params->order_hint_info.enable_order_hint)
2997       aom_wb_write_literal(
2998           wb, current_frame->order_hint,
2999           seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
3000 
3001     if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
3002       aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS);
3003     }
3004   }
3005 
3006   if (seq_params->decoder_model_info_present_flag) {
3007     aom_wb_write_bit(wb, cpi->ppi->buffer_removal_time_present);
3008     if (cpi->ppi->buffer_removal_time_present) {
3009       for (int op_num = 0;
3010            op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
3011         if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
3012           if (seq_params->operating_point_idc[op_num] == 0 ||
3013               ((seq_params->operating_point_idc[op_num] >>
3014                 cm->temporal_layer_id) &
3015                    0x1 &&
3016                (seq_params->operating_point_idc[op_num] >>
3017                 (cm->spatial_layer_id + 8)) &
3018                    0x1)) {
3019             aom_wb_write_unsigned_literal(
3020                 wb, cm->buffer_removal_times[op_num],
3021                 seq_params->decoder_model_info.buffer_removal_time_length);
3022             cm->buffer_removal_times[op_num]++;
3023             if (cm->buffer_removal_times[op_num] == 0) {
3024               aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3025                                  "buffer_removal_time overflowed");
3026             }
3027           }
3028         }
3029       }
3030     }
3031   }
3032 
3033   // Shown keyframes and switch-frames automatically refreshes all reference
3034   // frames.  For all other frame types, we need to write refresh_frame_flags.
3035   if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) ||
3036       current_frame->frame_type == INTER_FRAME ||
3037       current_frame->frame_type == INTRA_ONLY_FRAME)
3038     aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES);
3039 
3040   if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xff) {
3041     // Write all ref frame order hints if error_resilient_mode == 1
3042     if (features->error_resilient_mode &&
3043         seq_params->order_hint_info.enable_order_hint) {
3044       for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
3045         aom_wb_write_literal(
3046             wb, cm->ref_frame_map[ref_idx]->order_hint,
3047             seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
3048       }
3049     }
3050   }
3051 
3052   if (current_frame->frame_type == KEY_FRAME) {
3053     write_frame_size(cm, frame_size_override_flag, wb);
3054     assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
3055     if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
3056       aom_wb_write_bit(wb, features->allow_intrabc);
3057   } else {
3058     if (current_frame->frame_type == INTRA_ONLY_FRAME) {
3059       write_frame_size(cm, frame_size_override_flag, wb);
3060       assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
3061       if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
3062         aom_wb_write_bit(wb, features->allow_intrabc);
3063     } else if (current_frame->frame_type == INTER_FRAME ||
3064                frame_is_sframe(cm)) {
3065       MV_REFERENCE_FRAME ref_frame;
3066 
3067       // NOTE: Error resilient mode turns off frame_refs_short_signaling
3068       //       automatically.
3069 #define FRAME_REFS_SHORT_SIGNALING 0
3070 #if FRAME_REFS_SHORT_SIGNALING
3071       current_frame->frame_refs_short_signaling =
3072           seq_params->order_hint_info.enable_order_hint;
3073 #endif  // FRAME_REFS_SHORT_SIGNALING
3074 
3075       if (current_frame->frame_refs_short_signaling) {
3076         //    In rtc case when cpi->sf.rt_sf.enable_ref_short_signaling is true,
3077         //    we turn on frame_refs_short_signaling when the current frame and
3078         //    golden frame are in the same order_hint group, and their relative
3079         //    distance is <= 64 (in order to be decodable).
3080 
3081         //    For other cases, an example solution for encoder-side
3082         //    implementation on frame_refs_short_signaling is also provided in
3083         //    this function, where frame_refs_short_signaling is only turned on
3084         //    when the encoder side decision on ref frames is identical to that
3085         //    at the decoder side.
3086 
3087         current_frame->frame_refs_short_signaling =
3088             check_frame_refs_short_signaling(
3089                 cm, cpi->sf.rt_sf.enable_ref_short_signaling);
3090       }
3091 
3092       if (seq_params->order_hint_info.enable_order_hint)
3093         aom_wb_write_bit(wb, current_frame->frame_refs_short_signaling);
3094 
3095       if (current_frame->frame_refs_short_signaling) {
3096         const int lst_ref = get_ref_frame_map_idx(cm, LAST_FRAME);
3097         aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2);
3098 
3099         const int gld_ref = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
3100         aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2);
3101       }
3102 
3103       for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
3104         assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX);
3105         if (!current_frame->frame_refs_short_signaling)
3106           aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame),
3107                                REF_FRAMES_LOG2);
3108         if (seq_params->frame_id_numbers_present_flag) {
3109           int i = get_ref_frame_map_idx(cm, ref_frame);
3110           int frame_id_len = seq_params->frame_id_length;
3111           int diff_len = seq_params->delta_frame_id_length;
3112           int delta_frame_id_minus_1 =
3113               ((cm->current_frame_id - cm->ref_frame_id[i] +
3114                 (1 << frame_id_len)) %
3115                (1 << frame_id_len)) -
3116               1;
3117           if (delta_frame_id_minus_1 < 0 ||
3118               delta_frame_id_minus_1 >= (1 << diff_len)) {
3119             aom_internal_error(cm->error, AOM_CODEC_ERROR,
3120                                "Invalid delta_frame_id_minus_1");
3121           }
3122           aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len);
3123         }
3124       }
3125 
3126       if (!features->error_resilient_mode && frame_size_override_flag) {
3127         write_frame_size_with_refs(cm, wb);
3128       } else {
3129         write_frame_size(cm, frame_size_override_flag, wb);
3130       }
3131 
3132       if (!features->cur_frame_force_integer_mv)
3133         aom_wb_write_bit(wb, features->allow_high_precision_mv);
3134       write_frame_interp_filter(features->interp_filter, wb);
3135       aom_wb_write_bit(wb, features->switchable_motion_mode);
3136       if (frame_might_allow_ref_frame_mvs(cm)) {
3137         aom_wb_write_bit(wb, features->allow_ref_frame_mvs);
3138       } else {
3139         assert(features->allow_ref_frame_mvs == 0);
3140       }
3141     }
3142   }
3143 
3144   const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
3145                               !(features->disable_cdf_update);
3146   if (cm->tiles.large_scale)
3147     assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3148 
3149   if (might_bwd_adapt) {
3150     aom_wb_write_bit(
3151         wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3152   }
3153 
3154   write_tile_info(cm, saved_wb, wb);
3155   encode_quantization(quant_params, av1_num_planes(cm),
3156                       cm->seq_params->separate_uv_delta_q, wb);
3157   encode_segmentation(cm, wb);
3158 
3159   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
3160   if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0);
3161   if (quant_params->base_qindex > 0) {
3162     aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag);
3163     if (delta_q_info->delta_q_present_flag) {
3164       aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2);
3165       xd->current_base_qindex = quant_params->base_qindex;
3166       if (features->allow_intrabc)
3167         assert(delta_q_info->delta_lf_present_flag == 0);
3168       else
3169         aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag);
3170       if (delta_q_info->delta_lf_present_flag) {
3171         aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2);
3172         aom_wb_write_bit(wb, delta_q_info->delta_lf_multi);
3173         av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
3174       }
3175     }
3176   }
3177 
3178   if (features->all_lossless) {
3179     assert(!av1_superres_scaled(cm));
3180   } else {
3181     if (!features->coded_lossless) {
3182       encode_loopfilter(cm, wb);
3183       encode_cdef(cm, wb);
3184     }
3185     encode_restoration_mode(cm, wb);
3186   }
3187 
3188   // Write TX mode
3189   if (features->coded_lossless)
3190     assert(features->tx_mode == ONLY_4X4);
3191   else
3192     aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT);
3193 
3194   if (!frame_is_intra_only(cm)) {
3195     const int use_hybrid_pred =
3196         current_frame->reference_mode == REFERENCE_MODE_SELECT;
3197 
3198     aom_wb_write_bit(wb, use_hybrid_pred);
3199   }
3200 
3201   if (current_frame->skip_mode_info.skip_mode_allowed)
3202     aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag);
3203 
3204   if (frame_might_allow_warped_motion(cm))
3205     aom_wb_write_bit(wb, features->allow_warped_motion);
3206   else
3207     assert(!features->allow_warped_motion);
3208 
3209   aom_wb_write_bit(wb, features->reduced_tx_set_used);
3210 
3211   if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb);
3212 
3213   if (seq_params->film_grain_params_present &&
3214       (cm->show_frame || cm->showable_frame))
3215     write_film_grain_params(cpi, wb);
3216 
3217   if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb);
3218 }
3219 
choose_size_bytes(uint32_t size,int spare_msbs)3220 static int choose_size_bytes(uint32_t size, int spare_msbs) {
3221   // Choose the number of bytes required to represent size, without
3222   // using the 'spare_msbs' number of most significant bits.
3223 
3224   // Make sure we will fit in 4 bytes to start with..
3225   if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
3226 
3227   // Normalise to 32 bits
3228   size <<= spare_msbs;
3229 
3230   if (size >> 24 != 0)
3231     return 4;
3232   else if (size >> 16 != 0)
3233     return 3;
3234   else if (size >> 8 != 0)
3235     return 2;
3236   else
3237     return 1;
3238 }
3239 
mem_put_varsize(uint8_t * const dst,const int sz,const int val)3240 static AOM_INLINE void mem_put_varsize(uint8_t *const dst, const int sz,
3241                                        const int val) {
3242   switch (sz) {
3243     case 1: dst[0] = (uint8_t)(val & 0xff); break;
3244     case 2: mem_put_le16(dst, val); break;
3245     case 3: mem_put_le24(dst, val); break;
3246     case 4: mem_put_le32(dst, val); break;
3247     default: assert(0 && "Invalid size"); break;
3248   }
3249 }
3250 
remux_tiles(const CommonTileParams * const tiles,uint8_t * dst,const uint32_t data_size,const uint32_t max_tile_size,const uint32_t max_tile_col_size,int * const tile_size_bytes,int * const tile_col_size_bytes)3251 static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst,
3252                        const uint32_t data_size, const uint32_t max_tile_size,
3253                        const uint32_t max_tile_col_size,
3254                        int *const tile_size_bytes,
3255                        int *const tile_col_size_bytes) {
3256   // Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
3257   int tsb;
3258   int tcsb;
3259 
3260   if (tiles->large_scale) {
3261     // The top bit in the tile size field indicates tile copy mode, so we
3262     // have 1 less bit to code the tile size
3263     tsb = choose_size_bytes(max_tile_size, 1);
3264     tcsb = choose_size_bytes(max_tile_col_size, 0);
3265   } else {
3266     tsb = choose_size_bytes(max_tile_size, 0);
3267     tcsb = 4;  // This is ignored
3268     (void)max_tile_col_size;
3269   }
3270 
3271   assert(tsb > 0);
3272   assert(tcsb > 0);
3273 
3274   *tile_size_bytes = tsb;
3275   *tile_col_size_bytes = tcsb;
3276   if (tsb == 4 && tcsb == 4) return data_size;
3277 
3278   uint32_t wpos = 0;
3279   uint32_t rpos = 0;
3280 
3281   if (tiles->large_scale) {
3282     int tile_row;
3283     int tile_col;
3284 
3285     for (tile_col = 0; tile_col < tiles->cols; tile_col++) {
3286       // All but the last column has a column header
3287       if (tile_col < tiles->cols - 1) {
3288         uint32_t tile_col_size = mem_get_le32(dst + rpos);
3289         rpos += 4;
3290 
3291         // Adjust the tile column size by the number of bytes removed
3292         // from the tile size fields.
3293         tile_col_size -= (4 - tsb) * tiles->rows;
3294 
3295         mem_put_varsize(dst + wpos, tcsb, tile_col_size);
3296         wpos += tcsb;
3297       }
3298 
3299       for (tile_row = 0; tile_row < tiles->rows; tile_row++) {
3300         // All, including the last row has a header
3301         uint32_t tile_header = mem_get_le32(dst + rpos);
3302         rpos += 4;
3303 
3304         // If this is a copy tile, we need to shift the MSB to the
3305         // top bit of the new width, and there is no data to copy.
3306         if (tile_header >> 31 != 0) {
3307           if (tsb < 4) tile_header >>= 32 - 8 * tsb;
3308           mem_put_varsize(dst + wpos, tsb, tile_header);
3309           wpos += tsb;
3310         } else {
3311           mem_put_varsize(dst + wpos, tsb, tile_header);
3312           wpos += tsb;
3313 
3314           tile_header += AV1_MIN_TILE_SIZE_BYTES;
3315           memmove(dst + wpos, dst + rpos, tile_header);
3316           rpos += tile_header;
3317           wpos += tile_header;
3318         }
3319       }
3320     }
3321 
3322     assert(rpos > wpos);
3323     assert(rpos == data_size);
3324 
3325     return wpos;
3326   }
3327   const int n_tiles = tiles->cols * tiles->rows;
3328   int n;
3329 
3330   for (n = 0; n < n_tiles; n++) {
3331     int tile_size;
3332 
3333     if (n == n_tiles - 1) {
3334       tile_size = data_size - rpos;
3335     } else {
3336       tile_size = mem_get_le32(dst + rpos);
3337       rpos += 4;
3338       mem_put_varsize(dst + wpos, tsb, tile_size);
3339       tile_size += AV1_MIN_TILE_SIZE_BYTES;
3340       wpos += tsb;
3341     }
3342 
3343     memmove(dst + wpos, dst + rpos, tile_size);
3344 
3345     rpos += tile_size;
3346     wpos += tile_size;
3347   }
3348 
3349   assert(rpos > wpos);
3350   assert(rpos == data_size);
3351 
3352   return wpos;
3353 }
3354 
av1_write_obu_header(AV1LevelParams * const level_params,int * frame_header_count,OBU_TYPE obu_type,int obu_extension,uint8_t * const dst)3355 uint32_t av1_write_obu_header(AV1LevelParams *const level_params,
3356                               int *frame_header_count, OBU_TYPE obu_type,
3357                               int obu_extension, uint8_t *const dst) {
3358   if (level_params->keep_level_stats &&
3359       (obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER))
3360     ++(*frame_header_count);
3361 
3362   struct aom_write_bit_buffer wb = { dst, 0 };
3363   uint32_t size = 0;
3364 
3365   aom_wb_write_literal(&wb, 0, 1);  // forbidden bit.
3366   aom_wb_write_literal(&wb, (int)obu_type, 4);
3367   aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1);
3368   aom_wb_write_literal(&wb, 1, 1);  // obu_has_size_field
3369   aom_wb_write_literal(&wb, 0, 1);  // reserved
3370 
3371   if (obu_extension) {
3372     aom_wb_write_literal(&wb, obu_extension & 0xFF, 8);
3373   }
3374 
3375   size = aom_wb_bytes_written(&wb);
3376   return size;
3377 }
3378 
av1_write_uleb_obu_size(size_t obu_header_size,size_t obu_payload_size,uint8_t * dest)3379 int av1_write_uleb_obu_size(size_t obu_header_size, size_t obu_payload_size,
3380                             uint8_t *dest) {
3381   const size_t offset = obu_header_size;
3382   size_t coded_obu_size = 0;
3383   const uint32_t obu_size = (uint32_t)obu_payload_size;
3384   assert(obu_size == obu_payload_size);
3385 
3386   if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset,
3387                       &coded_obu_size) != 0) {
3388     return AOM_CODEC_ERROR;
3389   }
3390 
3391   return AOM_CODEC_OK;
3392 }
3393 
av1_obu_memmove(size_t obu_header_size,size_t obu_payload_size,uint8_t * data)3394 size_t av1_obu_memmove(size_t obu_header_size, size_t obu_payload_size,
3395                        uint8_t *data) {
3396   const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
3397   const size_t move_dst_offset = length_field_size + obu_header_size;
3398   const size_t move_src_offset = obu_header_size;
3399   const size_t move_size = obu_payload_size;
3400   memmove(data + move_dst_offset, data + move_src_offset, move_size);
3401   return length_field_size;
3402 }
3403 
add_trailing_bits(struct aom_write_bit_buffer * wb)3404 static AOM_INLINE void add_trailing_bits(struct aom_write_bit_buffer *wb) {
3405   if (aom_wb_is_byte_aligned(wb)) {
3406     aom_wb_write_literal(wb, 0x80, 8);
3407   } else {
3408     // assumes that the other bits are already 0s
3409     aom_wb_write_bit(wb, 1);
3410   }
3411 }
3412 
write_bitstream_level(AV1_LEVEL seq_level_idx,struct aom_write_bit_buffer * wb)3413 static AOM_INLINE void write_bitstream_level(AV1_LEVEL seq_level_idx,
3414                                              struct aom_write_bit_buffer *wb) {
3415   assert(is_valid_seq_level_idx(seq_level_idx));
3416   aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS);
3417 }
3418 
av1_write_sequence_header_obu(const SequenceHeader * seq_params,uint8_t * const dst)3419 uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params,
3420                                        uint8_t *const dst) {
3421   struct aom_write_bit_buffer wb = { dst, 0 };
3422   uint32_t size = 0;
3423 
3424   write_profile(seq_params->profile, &wb);
3425 
3426   // Still picture or not
3427   aom_wb_write_bit(&wb, seq_params->still_picture);
3428   assert(IMPLIES(!seq_params->still_picture,
3429                  !seq_params->reduced_still_picture_hdr));
3430   // whether to use reduced still picture header
3431   aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr);
3432 
3433   if (seq_params->reduced_still_picture_hdr) {
3434     assert(seq_params->timing_info_present == 0);
3435     assert(seq_params->decoder_model_info_present_flag == 0);
3436     assert(seq_params->display_model_info_present_flag == 0);
3437     write_bitstream_level(seq_params->seq_level_idx[0], &wb);
3438   } else {
3439     aom_wb_write_bit(
3440         &wb, seq_params->timing_info_present);  // timing info present flag
3441 
3442     if (seq_params->timing_info_present) {
3443       // timing_info
3444       write_timing_info_header(&seq_params->timing_info, &wb);
3445       aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag);
3446       if (seq_params->decoder_model_info_present_flag) {
3447         write_decoder_model_info(&seq_params->decoder_model_info, &wb);
3448       }
3449     }
3450     aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag);
3451     aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1,
3452                          OP_POINTS_CNT_MINUS_1_BITS);
3453     int i;
3454     for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
3455       aom_wb_write_literal(&wb, seq_params->operating_point_idc[i],
3456                            OP_POINTS_IDC_BITS);
3457       write_bitstream_level(seq_params->seq_level_idx[i], &wb);
3458       if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0)
3459         aom_wb_write_bit(&wb, seq_params->tier[i]);
3460       if (seq_params->decoder_model_info_present_flag) {
3461         aom_wb_write_bit(
3462             &wb, seq_params->op_params[i].decoder_model_param_present_flag);
3463         if (seq_params->op_params[i].decoder_model_param_present_flag) {
3464           write_dec_model_op_parameters(
3465               &seq_params->op_params[i],
3466               seq_params->decoder_model_info
3467                   .encoder_decoder_buffer_delay_length,
3468               &wb);
3469         }
3470       }
3471       if (seq_params->display_model_info_present_flag) {
3472         aom_wb_write_bit(
3473             &wb, seq_params->op_params[i].display_model_param_present_flag);
3474         if (seq_params->op_params[i].display_model_param_present_flag) {
3475           assert(seq_params->op_params[i].initial_display_delay >= 1);
3476           assert(seq_params->op_params[i].initial_display_delay <= 10);
3477           aom_wb_write_literal(
3478               &wb, seq_params->op_params[i].initial_display_delay - 1, 4);
3479         }
3480       }
3481     }
3482   }
3483   write_sequence_header(seq_params, &wb);
3484 
3485   write_color_config(seq_params, &wb);
3486 
3487   aom_wb_write_bit(&wb, seq_params->film_grain_params_present);
3488 
3489   add_trailing_bits(&wb);
3490 
3491   size = aom_wb_bytes_written(&wb);
3492   return size;
3493 }
3494 
write_frame_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,uint8_t * const dst,int append_trailing_bits)3495 static uint32_t write_frame_header_obu(AV1_COMP *cpi, MACROBLOCKD *const xd,
3496                                        struct aom_write_bit_buffer *saved_wb,
3497                                        uint8_t *const dst,
3498                                        int append_trailing_bits) {
3499   struct aom_write_bit_buffer wb = { dst, 0 };
3500   write_uncompressed_header_obu(cpi, xd, saved_wb, &wb);
3501   if (append_trailing_bits) add_trailing_bits(&wb);
3502   return aom_wb_bytes_written(&wb);
3503 }
3504 
write_tile_group_header(uint8_t * const dst,int start_tile,int end_tile,int tiles_log2,int tile_start_and_end_present_flag)3505 static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile,
3506                                         int end_tile, int tiles_log2,
3507                                         int tile_start_and_end_present_flag) {
3508   struct aom_write_bit_buffer wb = { dst, 0 };
3509   uint32_t size = 0;
3510 
3511   if (!tiles_log2) return size;
3512 
3513   aom_wb_write_bit(&wb, tile_start_and_end_present_flag);
3514 
3515   if (tile_start_and_end_present_flag) {
3516     aom_wb_write_literal(&wb, start_tile, tiles_log2);
3517     aom_wb_write_literal(&wb, end_tile, tiles_log2);
3518   }
3519 
3520   size = aom_wb_bytes_written(&wb);
3521   return size;
3522 }
3523 
3524 extern void av1_print_uncompressed_frame_header(const uint8_t *data, int size,
3525                                                 const char *filename);
3526 
3527 typedef struct {
3528   uint32_t tg_hdr_size;
3529   uint32_t frame_header_size;
3530 } LargeTileFrameOBU;
3531 
3532 // Initialize OBU header for large scale tile case.
init_large_scale_tile_obu_header(AV1_COMP * const cpi,uint8_t ** data,struct aom_write_bit_buffer * saved_wb,LargeTileFrameOBU * lst_obu)3533 static uint32_t init_large_scale_tile_obu_header(
3534     AV1_COMP *const cpi, uint8_t **data, struct aom_write_bit_buffer *saved_wb,
3535     LargeTileFrameOBU *lst_obu) {
3536   AV1LevelParams *const level_params = &cpi->ppi->level_params;
3537   CurrentFrame *const current_frame = &cpi->common.current_frame;
3538   // For large_scale_tile case, we always have only one tile group, so it can
3539   // be written as an OBU_FRAME.
3540   const OBU_TYPE obu_type = OBU_FRAME;
3541   lst_obu->tg_hdr_size = av1_write_obu_header(
3542       level_params, &cpi->frame_header_count, obu_type, 0, *data);
3543   *data += lst_obu->tg_hdr_size;
3544 
3545   const uint32_t frame_header_size =
3546       write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, saved_wb, *data, 0);
3547   *data += frame_header_size;
3548   lst_obu->frame_header_size = frame_header_size;
3549   // (yunqing) This test ensures the correctness of large scale tile coding.
3550   if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) {
3551     char fn[20] = "./fh";
3552     fn[4] = current_frame->frame_number / 100 + '0';
3553     fn[5] = (current_frame->frame_number % 100) / 10 + '0';
3554     fn[6] = (current_frame->frame_number % 10) + '0';
3555     fn[7] = '\0';
3556     av1_print_uncompressed_frame_header(*data - frame_header_size,
3557                                         frame_header_size, fn);
3558   }
3559   return frame_header_size;
3560 }
3561 
3562 // Write total buffer size and related information into the OBU header for large
3563 // scale tile case.
write_large_scale_tile_obu_size(const CommonTileParams * const tiles,uint8_t * const dst,uint8_t * data,struct aom_write_bit_buffer * saved_wb,LargeTileFrameOBU * const lst_obu,int have_tiles,uint32_t * total_size,int max_tile_size,int max_tile_col_size)3564 static void write_large_scale_tile_obu_size(
3565     const CommonTileParams *const tiles, uint8_t *const dst, uint8_t *data,
3566     struct aom_write_bit_buffer *saved_wb, LargeTileFrameOBU *const lst_obu,
3567     int have_tiles, uint32_t *total_size, int max_tile_size,
3568     int max_tile_col_size) {
3569   int tile_size_bytes = 0;
3570   int tile_col_size_bytes = 0;
3571   if (have_tiles) {
3572     *total_size = remux_tiles(
3573         tiles, data, *total_size - lst_obu->frame_header_size, max_tile_size,
3574         max_tile_col_size, &tile_size_bytes, &tile_col_size_bytes);
3575     *total_size += lst_obu->frame_header_size;
3576   }
3577 
3578   // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write
3579   // current tile group size before tile data(include tile column header).
3580   // Tile group size doesn't include the bytes storing tg size.
3581   *total_size += lst_obu->tg_hdr_size;
3582   const uint32_t obu_payload_size = *total_size - lst_obu->tg_hdr_size;
3583   const size_t length_field_size =
3584       av1_obu_memmove(lst_obu->tg_hdr_size, obu_payload_size, dst);
3585   if (av1_write_uleb_obu_size(lst_obu->tg_hdr_size, obu_payload_size, dst) !=
3586       AOM_CODEC_OK)
3587     assert(0);
3588 
3589   *total_size += (uint32_t)length_field_size;
3590   saved_wb->bit_buffer += length_field_size;
3591 
3592   // Now fill in the gaps in the uncompressed header.
3593   if (have_tiles) {
3594     assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
3595     aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2);
3596 
3597     assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3598     aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3599   }
3600 }
3601 
3602 // Store information on each large scale tile in the OBU header.
write_large_scale_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,LargeTileFrameOBU * const lst_obu,int * const largest_tile_id,uint32_t * total_size,const int have_tiles,unsigned int * const max_tile_size,unsigned int * const max_tile_col_size)3603 static void write_large_scale_tile_obu(
3604     AV1_COMP *const cpi, uint8_t *const dst, LargeTileFrameOBU *const lst_obu,
3605     int *const largest_tile_id, uint32_t *total_size, const int have_tiles,
3606     unsigned int *const max_tile_size, unsigned int *const max_tile_col_size) {
3607   AV1_COMMON *const cm = &cpi->common;
3608   const CommonTileParams *const tiles = &cm->tiles;
3609 
3610   TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS];
3611   const int tile_cols = tiles->cols;
3612   const int tile_rows = tiles->rows;
3613   unsigned int tile_size = 0;
3614 
3615   av1_reset_pack_bs_thread_data(&cpi->td);
3616   for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3617     TileInfo tile_info;
3618     const int is_last_col = (tile_col == tile_cols - 1);
3619     const uint32_t col_offset = *total_size;
3620 
3621     av1_tile_set_col(&tile_info, cm, tile_col);
3622 
3623     // The last column does not have a column header
3624     if (!is_last_col) *total_size += 4;
3625 
3626     for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3627       TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
3628       const int data_offset = have_tiles ? 4 : 0;
3629       const int tile_idx = tile_row * tile_cols + tile_col;
3630       TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3631       av1_tile_set_row(&tile_info, cm, tile_row);
3632       aom_writer mode_bc;
3633 
3634       buf->data = dst + *total_size + lst_obu->tg_hdr_size;
3635 
3636       // Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
3637       // even for the last one, unless no tiling is used at all.
3638       *total_size += data_offset;
3639       cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
3640       mode_bc.allow_update_cdf = !tiles->large_scale;
3641       mode_bc.allow_update_cdf =
3642           mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3643       aom_start_encode(&mode_bc, buf->data + data_offset);
3644       write_modes(cpi, &cpi->td, &tile_info, &mode_bc, tile_row, tile_col);
3645       if (aom_stop_encode(&mode_bc) < 0) {
3646         aom_internal_error(cm->error, AOM_CODEC_ERROR, "Error writing modes");
3647       }
3648       tile_size = mode_bc.pos;
3649       buf->size = tile_size;
3650 
3651       // Record the maximum tile size we see, so we can compact headers later.
3652       if (tile_size > *max_tile_size) {
3653         *max_tile_size = tile_size;
3654         *largest_tile_id = tile_cols * tile_row + tile_col;
3655       }
3656 
3657       if (have_tiles) {
3658         // tile header: size of this tile, or copy offset
3659         uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES;
3660         const int tile_copy_mode =
3661             ((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256) ? 1
3662                                                                            : 0;
3663 
3664         // If tile_copy_mode = 1, check if this tile is a copy tile.
3665         // Very low chances to have copy tiles on the key frames, so don't
3666         // search on key frames to reduce unnecessary search.
3667         if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) {
3668           const int identical_tile_offset =
3669               find_identical_tile(tile_row, tile_col, tile_buffers);
3670 
3671           // Indicate a copy-tile by setting the most significant bit.
3672           // The row-offset to copy from is stored in the highest byte.
3673           // remux_tiles will move these around later
3674           if (identical_tile_offset > 0) {
3675             tile_size = 0;
3676             tile_header = identical_tile_offset | 0x80;
3677             tile_header <<= 24;
3678           }
3679         }
3680 
3681         mem_put_le32(buf->data, (MEM_VALUE_T)tile_header);
3682       }
3683 
3684       *total_size += tile_size;
3685     }
3686     if (!is_last_col) {
3687       uint32_t col_size = *total_size - col_offset - 4;
3688       mem_put_le32(dst + col_offset + lst_obu->tg_hdr_size, col_size);
3689 
3690       // Record the maximum tile column size we see.
3691       *max_tile_col_size = AOMMAX(*max_tile_col_size, col_size);
3692     }
3693   }
3694   av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
3695 }
3696 
3697 // Packs information in the obu header for large scale tiles.
pack_large_scale_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,int * const largest_tile_id)3698 static INLINE uint32_t pack_large_scale_tiles_in_tg_obus(
3699     AV1_COMP *const cpi, uint8_t *const dst,
3700     struct aom_write_bit_buffer *saved_wb, int *const largest_tile_id) {
3701   AV1_COMMON *const cm = &cpi->common;
3702   const CommonTileParams *const tiles = &cm->tiles;
3703   uint32_t total_size = 0;
3704   unsigned int max_tile_size = 0;
3705   unsigned int max_tile_col_size = 0;
3706   const int have_tiles = tiles->cols * tiles->rows > 1;
3707   uint8_t *data = dst;
3708 
3709   LargeTileFrameOBU lst_obu;
3710 
3711   total_size +=
3712       init_large_scale_tile_obu_header(cpi, &data, saved_wb, &lst_obu);
3713 
3714   write_large_scale_tile_obu(cpi, dst, &lst_obu, largest_tile_id, &total_size,
3715                              have_tiles, &max_tile_size, &max_tile_col_size);
3716 
3717   write_large_scale_tile_obu_size(tiles, dst, data, saved_wb, &lst_obu,
3718                                   have_tiles, &total_size, max_tile_size,
3719                                   max_tile_col_size);
3720 
3721   return total_size;
3722 }
3723 
3724 // Writes obu, tile group and uncompressed headers to bitstream.
av1_write_obu_tg_tile_headers(AV1_COMP * const cpi,MACROBLOCKD * const xd,PackBSParams * const pack_bs_params,const int tile_idx)3725 void av1_write_obu_tg_tile_headers(AV1_COMP *const cpi, MACROBLOCKD *const xd,
3726                                    PackBSParams *const pack_bs_params,
3727                                    const int tile_idx) {
3728   AV1_COMMON *const cm = &cpi->common;
3729   const CommonTileParams *const tiles = &cm->tiles;
3730   int *const curr_tg_hdr_size = &pack_bs_params->curr_tg_hdr_size;
3731   const int tg_size =
3732       (tiles->rows * tiles->cols + cpi->num_tg - 1) / cpi->num_tg;
3733 
3734   // Write Tile group, frame and OBU header
3735   // A new tile group begins at this tile.  Write the obu header and
3736   // tile group header
3737   const OBU_TYPE obu_type = (cpi->num_tg == 1) ? OBU_FRAME : OBU_TILE_GROUP;
3738   *curr_tg_hdr_size = av1_write_obu_header(
3739       &cpi->ppi->level_params, &cpi->frame_header_count, obu_type,
3740       pack_bs_params->obu_extn_header, pack_bs_params->tile_data_curr);
3741   pack_bs_params->obu_header_size = *curr_tg_hdr_size;
3742 
3743   if (cpi->num_tg == 1)
3744     *curr_tg_hdr_size += write_frame_header_obu(
3745         cpi, xd, pack_bs_params->saved_wb,
3746         pack_bs_params->tile_data_curr + *curr_tg_hdr_size, 0);
3747   *curr_tg_hdr_size += write_tile_group_header(
3748       pack_bs_params->tile_data_curr + *curr_tg_hdr_size, tile_idx,
3749       AOMMIN(tile_idx + tg_size - 1, tiles->cols * tiles->rows - 1),
3750       (tiles->log2_rows + tiles->log2_cols), cpi->num_tg > 1);
3751   *pack_bs_params->total_size += *curr_tg_hdr_size;
3752 }
3753 
3754 // Pack tile data in the bitstream with tile_group, frame
3755 // and OBU header.
av1_pack_tile_info(AV1_COMP * const cpi,ThreadData * const td,PackBSParams * const pack_bs_params)3756 void av1_pack_tile_info(AV1_COMP *const cpi, ThreadData *const td,
3757                         PackBSParams *const pack_bs_params) {
3758   aom_writer mode_bc;
3759   AV1_COMMON *const cm = &cpi->common;
3760   int tile_row = pack_bs_params->tile_row;
3761   int tile_col = pack_bs_params->tile_col;
3762   uint32_t *const total_size = pack_bs_params->total_size;
3763   TileInfo tile_info;
3764   av1_tile_set_col(&tile_info, cm, tile_col);
3765   av1_tile_set_row(&tile_info, cm, tile_row);
3766   mode_bc.allow_update_cdf = 1;
3767   mode_bc.allow_update_cdf =
3768       mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3769 
3770   unsigned int tile_size;
3771 
3772   const int num_planes = av1_num_planes(cm);
3773   av1_reset_loop_restoration(&td->mb.e_mbd, num_planes);
3774 
3775   pack_bs_params->buf.data = pack_bs_params->dst + *total_size;
3776 
3777   // The last tile of the tile group does not have a header.
3778   if (!pack_bs_params->is_last_tile_in_tg) *total_size += 4;
3779 
3780   // Pack tile data
3781   aom_start_encode(&mode_bc, pack_bs_params->dst + *total_size);
3782   write_modes(cpi, td, &tile_info, &mode_bc, tile_row, tile_col);
3783   if (aom_stop_encode(&mode_bc) < 0) {
3784     aom_internal_error(td->mb.e_mbd.error_info, AOM_CODEC_ERROR,
3785                        "Error writing modes");
3786   }
3787   tile_size = mode_bc.pos;
3788   assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES);
3789 
3790   pack_bs_params->buf.size = tile_size;
3791 
3792   // Write tile size
3793   if (!pack_bs_params->is_last_tile_in_tg) {
3794     // size of this tile
3795     mem_put_le32(pack_bs_params->buf.data, tile_size - AV1_MIN_TILE_SIZE_BYTES);
3796   }
3797 }
3798 
av1_write_last_tile_info(AV1_COMP * const cpi,const FrameHeaderInfo * fh_info,struct aom_write_bit_buffer * saved_wb,size_t * curr_tg_data_size,uint8_t * curr_tg_start,uint32_t * const total_size,uint8_t ** tile_data_start,int * const largest_tile_id,int * const is_first_tg,uint32_t obu_header_size,uint8_t obu_extn_header)3799 void av1_write_last_tile_info(
3800     AV1_COMP *const cpi, const FrameHeaderInfo *fh_info,
3801     struct aom_write_bit_buffer *saved_wb, size_t *curr_tg_data_size,
3802     uint8_t *curr_tg_start, uint32_t *const total_size,
3803     uint8_t **tile_data_start, int *const largest_tile_id,
3804     int *const is_first_tg, uint32_t obu_header_size, uint8_t obu_extn_header) {
3805   // write current tile group size
3806   const uint32_t obu_payload_size =
3807       (uint32_t)(*curr_tg_data_size) - obu_header_size;
3808   const size_t length_field_size =
3809       av1_obu_memmove(obu_header_size, obu_payload_size, curr_tg_start);
3810   if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size,
3811                               curr_tg_start) != AOM_CODEC_OK) {
3812     assert(0);
3813   }
3814   *curr_tg_data_size += (int)length_field_size;
3815   *total_size += (uint32_t)length_field_size;
3816   *tile_data_start += length_field_size;
3817   if (cpi->num_tg == 1) {
3818     // if this tg is combined with the frame header then update saved
3819     // frame header base offset according to length field size
3820     saved_wb->bit_buffer += length_field_size;
3821   }
3822 
3823   if (!(*is_first_tg) && cpi->common.features.error_resilient_mode) {
3824     // Make room for a duplicate Frame Header OBU.
3825     memmove(curr_tg_start + fh_info->total_length, curr_tg_start,
3826             *curr_tg_data_size);
3827 
3828     // Insert a copy of the Frame Header OBU.
3829     memcpy(curr_tg_start, fh_info->frame_header, fh_info->total_length);
3830 
3831     // Force context update tile to be the first tile in error
3832     // resilient mode as the duplicate frame headers will have
3833     // context_update_tile_id set to 0
3834     *largest_tile_id = 0;
3835 
3836     // Rewrite the OBU header to change the OBU type to Redundant Frame
3837     // Header.
3838     av1_write_obu_header(&cpi->ppi->level_params, &cpi->frame_header_count,
3839                          OBU_REDUNDANT_FRAME_HEADER, obu_extn_header,
3840                          &curr_tg_start[fh_info->obu_header_byte_offset]);
3841 
3842     *curr_tg_data_size += (int)(fh_info->total_length);
3843     *total_size += (uint32_t)(fh_info->total_length);
3844   }
3845   *is_first_tg = 0;
3846 }
3847 
av1_reset_pack_bs_thread_data(ThreadData * const td)3848 void av1_reset_pack_bs_thread_data(ThreadData *const td) {
3849   td->coefficient_size = 0;
3850   td->max_mv_magnitude = 0;
3851   av1_zero(td->interp_filter_selected);
3852 }
3853 
av1_accumulate_pack_bs_thread_data(AV1_COMP * const cpi,ThreadData const * td)3854 void av1_accumulate_pack_bs_thread_data(AV1_COMP *const cpi,
3855                                         ThreadData const *td) {
3856   int do_max_mv_magnitude_update = 1;
3857   cpi->rc.coefficient_size += td->coefficient_size;
3858 
3859   // Disable max_mv_magnitude update for parallel frames based on update flag.
3860   if (!cpi->do_frame_data_update) do_max_mv_magnitude_update = 0;
3861 
3862   if (cpi->sf.mv_sf.auto_mv_step_size && do_max_mv_magnitude_update)
3863     cpi->mv_search_params.max_mv_magnitude =
3864         AOMMAX(cpi->mv_search_params.max_mv_magnitude, td->max_mv_magnitude);
3865 
3866   for (InterpFilter filter = EIGHTTAP_REGULAR; filter < SWITCHABLE; filter++)
3867     cpi->common.cur_frame->interp_filter_selected[filter] +=
3868         td->interp_filter_selected[filter];
3869 }
3870 
3871 // Store information related to each default tile in the OBU header.
write_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,uint32_t * total_size,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extn_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id,unsigned int * max_tile_size,uint32_t * const obu_header_size,uint8_t ** tile_data_start)3872 static void write_tile_obu(
3873     AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
3874     struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
3875     const FrameHeaderInfo *fh_info, int *const largest_tile_id,
3876     unsigned int *max_tile_size, uint32_t *const obu_header_size,
3877     uint8_t **tile_data_start) {
3878   AV1_COMMON *const cm = &cpi->common;
3879   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
3880   const CommonTileParams *const tiles = &cm->tiles;
3881   const int tile_cols = tiles->cols;
3882   const int tile_rows = tiles->rows;
3883   // Fixed size tile groups for the moment
3884   const int num_tg_hdrs = cpi->num_tg;
3885   const int tg_size = (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
3886   int tile_count = 0;
3887   size_t curr_tg_data_size = 0;
3888   uint8_t *tile_data_curr = dst;
3889   int new_tg = 1;
3890   int is_first_tg = 1;
3891 
3892   av1_reset_pack_bs_thread_data(&cpi->td);
3893   for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3894     for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3895       const int tile_idx = tile_row * tile_cols + tile_col;
3896       TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3897 
3898       int is_last_tile_in_tg = 0;
3899       if (new_tg) {
3900         tile_data_curr = dst + *total_size;
3901         tile_count = 0;
3902       }
3903       tile_count++;
3904 
3905       if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1))
3906         is_last_tile_in_tg = 1;
3907 
3908       xd->tile_ctx = &this_tile->tctx;
3909 
3910       // PackBSParams stores all parameters required to pack tile and header
3911       // info.
3912       PackBSParams pack_bs_params;
3913       pack_bs_params.dst = dst;
3914       pack_bs_params.curr_tg_hdr_size = 0;
3915       pack_bs_params.is_last_tile_in_tg = is_last_tile_in_tg;
3916       pack_bs_params.new_tg = new_tg;
3917       pack_bs_params.obu_extn_header = obu_extn_header;
3918       pack_bs_params.obu_header_size = 0;
3919       pack_bs_params.saved_wb = saved_wb;
3920       pack_bs_params.tile_col = tile_col;
3921       pack_bs_params.tile_row = tile_row;
3922       pack_bs_params.tile_data_curr = tile_data_curr;
3923       pack_bs_params.total_size = total_size;
3924 
3925       if (new_tg)
3926         av1_write_obu_tg_tile_headers(cpi, xd, &pack_bs_params, tile_idx);
3927 
3928       av1_pack_tile_info(cpi, &cpi->td, &pack_bs_params);
3929 
3930       if (new_tg) {
3931         curr_tg_data_size = pack_bs_params.curr_tg_hdr_size;
3932         *tile_data_start += pack_bs_params.curr_tg_hdr_size;
3933         *obu_header_size = pack_bs_params.obu_header_size;
3934         new_tg = 0;
3935       }
3936       if (is_last_tile_in_tg) new_tg = 1;
3937 
3938       curr_tg_data_size +=
3939           (pack_bs_params.buf.size + (is_last_tile_in_tg ? 0 : 4));
3940 
3941       if (pack_bs_params.buf.size > *max_tile_size) {
3942         *largest_tile_id = tile_idx;
3943         *max_tile_size = (unsigned int)pack_bs_params.buf.size;
3944       }
3945 
3946       if (is_last_tile_in_tg)
3947         av1_write_last_tile_info(cpi, fh_info, saved_wb, &curr_tg_data_size,
3948                                  tile_data_curr, total_size, tile_data_start,
3949                                  largest_tile_id, &is_first_tg,
3950                                  *obu_header_size, obu_extn_header);
3951       *total_size += (uint32_t)pack_bs_params.buf.size;
3952     }
3953   }
3954   av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
3955 }
3956 
3957 // Write total buffer size and related information into the OBU header for
3958 // default tile case.
write_tile_obu_size(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,int largest_tile_id,uint32_t * const total_size,unsigned int max_tile_size,uint32_t obu_header_size,uint8_t * tile_data_start)3959 static void write_tile_obu_size(AV1_COMP *const cpi, uint8_t *const dst,
3960                                 struct aom_write_bit_buffer *saved_wb,
3961                                 int largest_tile_id, uint32_t *const total_size,
3962                                 unsigned int max_tile_size,
3963                                 uint32_t obu_header_size,
3964                                 uint8_t *tile_data_start) {
3965   const CommonTileParams *const tiles = &cpi->common.tiles;
3966 
3967   // Fill in context_update_tile_id indicating the tile to use for the
3968   // cdf update. The encoder currently sets it to the largest tile
3969   // (but is up to the encoder)
3970   aom_wb_overwrite_literal(saved_wb, largest_tile_id,
3971                            (tiles->log2_cols + tiles->log2_rows));
3972   // If more than one tile group. tile_size_bytes takes the default value 4
3973   // and does not need to be set. For a single tile group it is set in the
3974   // section below.
3975   if (cpi->num_tg != 1) return;
3976   int tile_size_bytes = 4, unused;
3977   const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst);
3978   const uint32_t tile_data_size = *total_size - tile_data_offset;
3979 
3980   *total_size = remux_tiles(tiles, tile_data_start, tile_data_size,
3981                             max_tile_size, 0, &tile_size_bytes, &unused);
3982   *total_size += tile_data_offset;
3983   assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3984 
3985   aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3986 
3987   // Update the OBU length if remux_tiles() reduced the size.
3988   uint64_t payload_size;
3989   size_t length_field_size;
3990   int res =
3991       aom_uleb_decode(dst + obu_header_size, *total_size - obu_header_size,
3992                       &payload_size, &length_field_size);
3993   assert(res == 0);
3994   (void)res;
3995 
3996   const uint64_t new_payload_size =
3997       *total_size - obu_header_size - length_field_size;
3998   if (new_payload_size != payload_size) {
3999     size_t new_length_field_size;
4000     res = aom_uleb_encode(new_payload_size, length_field_size,
4001                           dst + obu_header_size, &new_length_field_size);
4002     assert(res == 0);
4003     if (new_length_field_size < length_field_size) {
4004       const size_t src_offset = obu_header_size + length_field_size;
4005       const size_t dst_offset = obu_header_size + new_length_field_size;
4006       memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size);
4007       *total_size -= (int)(length_field_size - new_length_field_size);
4008     }
4009   }
4010 }
4011 
4012 // As per the experiments, single-thread bitstream packing is better for
4013 // frames with a smaller bitstream size. This behavior is due to setup time
4014 // overhead of multithread function would be more than that of time required
4015 // to pack the smaller bitstream of such frames. This function computes the
4016 // number of required number of workers based on setup time overhead and job
4017 // dispatch time overhead for given tiles and available workers.
calc_pack_bs_mt_workers(const TileDataEnc * tile_data,int num_tiles,int avail_workers,bool pack_bs_mt_enabled)4018 int calc_pack_bs_mt_workers(const TileDataEnc *tile_data, int num_tiles,
4019                             int avail_workers, bool pack_bs_mt_enabled) {
4020   if (!pack_bs_mt_enabled) return 1;
4021 
4022   uint64_t frame_abs_sum_level = 0;
4023 
4024   for (int idx = 0; idx < num_tiles; idx++)
4025     frame_abs_sum_level += tile_data[idx].abs_sum_level;
4026 
4027   int ideal_num_workers = 1;
4028   const float job_disp_time_const = (float)num_tiles * JOB_DISP_TIME_OH_CONST;
4029   float max_sum = 0.0;
4030 
4031   for (int num_workers = avail_workers; num_workers > 1; num_workers--) {
4032     const float fas_per_worker_const =
4033         ((float)(num_workers - 1) / num_workers) * frame_abs_sum_level;
4034     const float setup_time_const = (float)num_workers * SETUP_TIME_OH_CONST;
4035     const float this_sum = fas_per_worker_const - setup_time_const -
4036                            job_disp_time_const / num_workers;
4037 
4038     if (this_sum > max_sum) {
4039       max_sum = this_sum;
4040       ideal_num_workers = num_workers;
4041     }
4042   }
4043   return ideal_num_workers;
4044 }
4045 
pack_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)4046 static INLINE uint32_t pack_tiles_in_tg_obus(
4047     AV1_COMP *const cpi, uint8_t *const dst,
4048     struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header,
4049     const FrameHeaderInfo *fh_info, int *const largest_tile_id) {
4050   const CommonTileParams *const tiles = &cpi->common.tiles;
4051   uint32_t total_size = 0;
4052   unsigned int max_tile_size = 0;
4053   uint32_t obu_header_size = 0;
4054   uint8_t *tile_data_start = dst;
4055   const int tile_cols = tiles->cols;
4056   const int tile_rows = tiles->rows;
4057   const int num_tiles = tile_rows * tile_cols;
4058 
4059   const int num_workers = calc_pack_bs_mt_workers(
4060       cpi->tile_data, num_tiles, cpi->mt_info.num_mod_workers[MOD_PACK_BS],
4061       cpi->mt_info.pack_bs_mt_enabled);
4062 
4063   if (num_workers > 1) {
4064     av1_write_tile_obu_mt(cpi, dst, &total_size, saved_wb, obu_extension_header,
4065                           fh_info, largest_tile_id, &max_tile_size,
4066                           &obu_header_size, &tile_data_start, num_workers);
4067   } else {
4068     write_tile_obu(cpi, dst, &total_size, saved_wb, obu_extension_header,
4069                    fh_info, largest_tile_id, &max_tile_size, &obu_header_size,
4070                    &tile_data_start);
4071   }
4072 
4073   if (num_tiles > 1)
4074     write_tile_obu_size(cpi, dst, saved_wb, *largest_tile_id, &total_size,
4075                         max_tile_size, obu_header_size, tile_data_start);
4076   return total_size;
4077 }
4078 
write_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)4079 static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst,
4080                                        struct aom_write_bit_buffer *saved_wb,
4081                                        uint8_t obu_extension_header,
4082                                        const FrameHeaderInfo *fh_info,
4083                                        int *const largest_tile_id) {
4084   AV1_COMMON *const cm = &cpi->common;
4085   const CommonTileParams *const tiles = &cm->tiles;
4086   *largest_tile_id = 0;
4087 
4088   // Select the coding strategy (temporal or spatial)
4089   if (cm->seg.enabled && cm->seg.update_map) {
4090     if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
4091       cm->seg.temporal_update = 0;
4092     } else {
4093       cm->seg.temporal_update = 1;
4094       if (cpi->td.rd_counts.seg_tmp_pred_cost[0] <
4095           cpi->td.rd_counts.seg_tmp_pred_cost[1])
4096         cm->seg.temporal_update = 0;
4097     }
4098   }
4099 
4100   if (tiles->large_scale)
4101     return pack_large_scale_tiles_in_tg_obus(cpi, dst, saved_wb,
4102                                              largest_tile_id);
4103 
4104   return pack_tiles_in_tg_obus(cpi, dst, saved_wb, obu_extension_header,
4105                                fh_info, largest_tile_id);
4106 }
4107 
av1_write_metadata_obu(const aom_metadata_t * metadata,uint8_t * const dst)4108 static size_t av1_write_metadata_obu(const aom_metadata_t *metadata,
4109                                      uint8_t *const dst) {
4110   size_t coded_metadata_size = 0;
4111   const uint64_t metadata_type = (uint64_t)metadata->type;
4112   if (aom_uleb_encode(metadata_type, sizeof(metadata_type), dst,
4113                       &coded_metadata_size) != 0) {
4114     return 0;
4115   }
4116   memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz);
4117   // Add trailing bits.
4118   dst[coded_metadata_size + metadata->sz] = 0x80;
4119   return (uint32_t)(coded_metadata_size + metadata->sz + 1);
4120 }
4121 
av1_write_metadata_array(AV1_COMP * const cpi,uint8_t * dst)4122 static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst) {
4123   if (!cpi->source) return 0;
4124   AV1_COMMON *const cm = &cpi->common;
4125   aom_metadata_array_t *arr = cpi->source->metadata;
4126   if (!arr) return 0;
4127   size_t obu_header_size = 0;
4128   size_t obu_payload_size = 0;
4129   size_t total_bytes_written = 0;
4130   size_t length_field_size = 0;
4131   for (size_t i = 0; i < arr->sz; i++) {
4132     aom_metadata_t *current_metadata = arr->metadata_array[i];
4133     if (current_metadata && current_metadata->payload) {
4134       if ((cm->current_frame.frame_type == KEY_FRAME &&
4135            current_metadata->insert_flag == AOM_MIF_KEY_FRAME) ||
4136           (cm->current_frame.frame_type != KEY_FRAME &&
4137            current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) ||
4138           current_metadata->insert_flag == AOM_MIF_ANY_FRAME) {
4139         obu_header_size = av1_write_obu_header(&cpi->ppi->level_params,
4140                                                &cpi->frame_header_count,
4141                                                OBU_METADATA, 0, dst);
4142         obu_payload_size =
4143             av1_write_metadata_obu(current_metadata, dst + obu_header_size);
4144         length_field_size =
4145             av1_obu_memmove(obu_header_size, obu_payload_size, dst);
4146         if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) ==
4147             AOM_CODEC_OK) {
4148           const size_t obu_size = obu_header_size + obu_payload_size;
4149           dst += obu_size + length_field_size;
4150           total_bytes_written += obu_size + length_field_size;
4151         } else {
4152           aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
4153                              "Error writing metadata OBU size");
4154         }
4155       }
4156     }
4157   }
4158   return total_bytes_written;
4159 }
4160 
av1_pack_bitstream(AV1_COMP * const cpi,uint8_t * dst,size_t * size,int * const largest_tile_id)4161 int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size,
4162                        int *const largest_tile_id) {
4163   uint8_t *data = dst;
4164   uint32_t data_size;
4165   AV1_COMMON *const cm = &cpi->common;
4166   AV1LevelParams *const level_params = &cpi->ppi->level_params;
4167   uint32_t obu_header_size = 0;
4168   uint32_t obu_payload_size = 0;
4169   FrameHeaderInfo fh_info = { NULL, 0, 0 };
4170   const uint8_t obu_extension_header =
4171       cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0;
4172 
4173   // If no non-zero delta_q has been used, reset delta_q_present_flag
4174   if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
4175     cm->delta_q_info.delta_q_present_flag = 0;
4176   }
4177 
4178 #if CONFIG_BITSTREAM_DEBUG
4179   bitstream_queue_reset_write();
4180 #endif
4181 
4182   cpi->frame_header_count = 0;
4183 
4184   // The TD is now written outside the frame encode loop
4185 
4186   // write sequence header obu at each key frame or intra_only frame,
4187   // preceded by 4-byte size
4188   if (cm->current_frame.frame_type == INTRA_ONLY_FRAME ||
4189       cm->current_frame.frame_type == KEY_FRAME) {
4190     obu_header_size = av1_write_obu_header(
4191         level_params, &cpi->frame_header_count, OBU_SEQUENCE_HEADER, 0, data);
4192     obu_payload_size =
4193         av1_write_sequence_header_obu(cm->seq_params, data + obu_header_size);
4194     const size_t length_field_size =
4195         av1_obu_memmove(obu_header_size, obu_payload_size, data);
4196     if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
4197         AOM_CODEC_OK) {
4198       return AOM_CODEC_ERROR;
4199     }
4200 
4201     data += obu_header_size + obu_payload_size + length_field_size;
4202   }
4203 
4204   // write metadata obus before the frame obu that has the show_frame flag set
4205   if (cm->show_frame) data += av1_write_metadata_array(cpi, data);
4206 
4207   const int write_frame_header =
4208       (cpi->num_tg > 1 || encode_show_existing_frame(cm));
4209   struct aom_write_bit_buffer saved_wb = { NULL, 0 };
4210   size_t length_field = 0;
4211   if (write_frame_header) {
4212     // Write Frame Header OBU.
4213     fh_info.frame_header = data;
4214     obu_header_size =
4215         av1_write_obu_header(level_params, &cpi->frame_header_count,
4216                              OBU_FRAME_HEADER, obu_extension_header, data);
4217     obu_payload_size = write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, &saved_wb,
4218                                               data + obu_header_size, 1);
4219 
4220     length_field = av1_obu_memmove(obu_header_size, obu_payload_size, data);
4221     if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
4222         AOM_CODEC_OK) {
4223       return AOM_CODEC_ERROR;
4224     }
4225 
4226     fh_info.obu_header_byte_offset = 0;
4227     fh_info.total_length = obu_header_size + obu_payload_size + length_field;
4228     data += fh_info.total_length;
4229   }
4230 
4231   if (encode_show_existing_frame(cm)) {
4232     data_size = 0;
4233   } else {
4234     // Since length_field is determined adaptively after frame header
4235     // encoding, saved_wb must be adjusted accordingly.
4236     if (saved_wb.bit_buffer != NULL) {
4237       saved_wb.bit_buffer += length_field;
4238     }
4239 
4240     //  Each tile group obu will be preceded by 4-byte size of the tile group
4241     //  obu
4242     data_size = write_tiles_in_tg_obus(
4243         cpi, data, &saved_wb, obu_extension_header, &fh_info, largest_tile_id);
4244   }
4245   data += data_size;
4246   *size = data - dst;
4247   return AOM_CODEC_OK;
4248 }
4249