1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <stdbool.h>
14
15 #include "aom_util/aom_pthread.h"
16
17 #include "av1/common/warped_motion.h"
18 #include "av1/common/thread_common.h"
19
20 #include "av1/encoder/allintra_vis.h"
21 #include "av1/encoder/bitstream.h"
22 #include "av1/encoder/encodeframe.h"
23 #include "av1/encoder/encodeframe_utils.h"
24 #include "av1/encoder/encoder.h"
25 #include "av1/encoder/encoder_alloc.h"
26 #include "av1/encoder/ethread.h"
27 #if !CONFIG_REALTIME_ONLY
28 #include "av1/encoder/firstpass.h"
29 #endif
30 #include "av1/encoder/global_motion.h"
31 #include "av1/encoder/global_motion_facade.h"
32 #include "av1/encoder/intra_mode_search_utils.h"
33 #include "av1/encoder/picklpf.h"
34 #include "av1/encoder/rdopt.h"
35 #include "aom_dsp/aom_dsp_common.h"
36 #include "av1/encoder/temporal_filter.h"
37 #include "av1/encoder/tpl_model.h"
38
accumulate_rd_opt(ThreadData * td,ThreadData * td_t)39 static AOM_INLINE void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
40 td->rd_counts.compound_ref_used_flag |=
41 td_t->rd_counts.compound_ref_used_flag;
42 td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag;
43
44 for (int i = 0; i < TX_SIZES_ALL; i++) {
45 for (int j = 0; j < TX_TYPES; j++)
46 td->rd_counts.tx_type_used[i][j] += td_t->rd_counts.tx_type_used[i][j];
47 }
48
49 for (int i = 0; i < BLOCK_SIZES_ALL; i++) {
50 for (int j = 0; j < 2; j++) {
51 td->rd_counts.obmc_used[i][j] += td_t->rd_counts.obmc_used[i][j];
52 }
53 }
54
55 for (int i = 0; i < 2; i++) {
56 td->rd_counts.warped_used[i] += td_t->rd_counts.warped_used[i];
57 }
58
59 td->rd_counts.seg_tmp_pred_cost[0] += td_t->rd_counts.seg_tmp_pred_cost[0];
60 td->rd_counts.seg_tmp_pred_cost[1] += td_t->rd_counts.seg_tmp_pred_cost[1];
61
62 td->rd_counts.newmv_or_intra_blocks += td_t->rd_counts.newmv_or_intra_blocks;
63 }
64
update_delta_lf_for_row_mt(AV1_COMP * cpi)65 static AOM_INLINE void update_delta_lf_for_row_mt(AV1_COMP *cpi) {
66 AV1_COMMON *cm = &cpi->common;
67 MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
68 const int mib_size = cm->seq_params->mib_size;
69 const int frame_lf_count =
70 av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
71 for (int row = 0; row < cm->tiles.rows; row++) {
72 for (int col = 0; col < cm->tiles.cols; col++) {
73 TileDataEnc *tile_data = &cpi->tile_data[row * cm->tiles.cols + col];
74 const TileInfo *const tile_info = &tile_data->tile_info;
75 for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
76 mi_row += mib_size) {
77 if (mi_row == tile_info->mi_row_start)
78 av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
79 for (int mi_col = tile_info->mi_col_start;
80 mi_col < tile_info->mi_col_end; mi_col += mib_size) {
81 const int idx_str = cm->mi_params.mi_stride * mi_row + mi_col;
82 MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + idx_str;
83 MB_MODE_INFO *mbmi = mi[0];
84 if (mbmi->skip_txfm == 1 &&
85 (mbmi->bsize == cm->seq_params->sb_size)) {
86 for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
87 mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
88 mbmi->delta_lf_from_base = xd->delta_lf_from_base;
89 } else {
90 if (cm->delta_q_info.delta_lf_multi) {
91 for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
92 xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
93 } else {
94 xd->delta_lf_from_base = mbmi->delta_lf_from_base;
95 }
96 }
97 }
98 }
99 }
100 }
101 }
102
av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c)103 void av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
104 int c) {
105 (void)row_mt_sync;
106 (void)r;
107 (void)c;
108 }
109
av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c,int cols)110 void av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
111 int c, int cols) {
112 (void)row_mt_sync;
113 (void)r;
114 (void)c;
115 (void)cols;
116 }
117
av1_row_mt_sync_read(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c)118 void av1_row_mt_sync_read(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) {
119 #if CONFIG_MULTITHREAD
120 const int nsync = row_mt_sync->sync_range;
121
122 if (r) {
123 pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1];
124 pthread_mutex_lock(mutex);
125
126 while (c > row_mt_sync->num_finished_cols[r - 1] - nsync -
127 row_mt_sync->intrabc_extra_top_right_sb_delay) {
128 pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex);
129 }
130 pthread_mutex_unlock(mutex);
131 }
132 #else
133 (void)row_mt_sync;
134 (void)r;
135 (void)c;
136 #endif // CONFIG_MULTITHREAD
137 }
138
av1_row_mt_sync_write(AV1EncRowMultiThreadSync * row_mt_sync,int r,int c,int cols)139 void av1_row_mt_sync_write(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c,
140 int cols) {
141 #if CONFIG_MULTITHREAD
142 const int nsync = row_mt_sync->sync_range;
143 int cur;
144 // Only signal when there are enough encoded blocks for next row to run.
145 int sig = 1;
146
147 if (c < cols - 1) {
148 cur = c;
149 if (c % nsync) sig = 0;
150 } else {
151 cur = cols + nsync + row_mt_sync->intrabc_extra_top_right_sb_delay;
152 }
153
154 if (sig) {
155 pthread_mutex_lock(&row_mt_sync->mutex_[r]);
156
157 // When a thread encounters an error, num_finished_cols[r] is set to maximum
158 // column number. In this case, the AOMMAX operation here ensures that
159 // num_finished_cols[r] is not overwritten with a smaller value thus
160 // preventing the infinite waiting of threads in the relevant sync_read()
161 // function.
162 row_mt_sync->num_finished_cols[r] =
163 AOMMAX(row_mt_sync->num_finished_cols[r], cur);
164
165 pthread_cond_signal(&row_mt_sync->cond_[r]);
166 pthread_mutex_unlock(&row_mt_sync->mutex_[r]);
167 }
168 #else
169 (void)row_mt_sync;
170 (void)r;
171 (void)c;
172 (void)cols;
173 #endif // CONFIG_MULTITHREAD
174 }
175
176 // Allocate memory for row synchronization
row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync * row_mt_sync,AV1_COMMON * cm,int rows)177 static void row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync *row_mt_sync,
178 AV1_COMMON *cm, int rows) {
179 #if CONFIG_MULTITHREAD
180 int i;
181
182 CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
183 aom_malloc(sizeof(*row_mt_sync->mutex_) * rows));
184 if (row_mt_sync->mutex_) {
185 for (i = 0; i < rows; ++i) {
186 pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
187 }
188 }
189
190 CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
191 aom_malloc(sizeof(*row_mt_sync->cond_) * rows));
192 if (row_mt_sync->cond_) {
193 for (i = 0; i < rows; ++i) {
194 pthread_cond_init(&row_mt_sync->cond_[i], NULL);
195 }
196 }
197 #endif // CONFIG_MULTITHREAD
198
199 CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols,
200 aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows));
201
202 row_mt_sync->rows = rows;
203 // Set up nsync.
204 row_mt_sync->sync_range = 1;
205 }
206
207 // Deallocate row based multi-threading synchronization related mutex and data
av1_row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync * row_mt_sync)208 void av1_row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) {
209 if (row_mt_sync != NULL) {
210 #if CONFIG_MULTITHREAD
211 int i;
212
213 if (row_mt_sync->mutex_ != NULL) {
214 for (i = 0; i < row_mt_sync->rows; ++i) {
215 pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
216 }
217 aom_free(row_mt_sync->mutex_);
218 }
219 if (row_mt_sync->cond_ != NULL) {
220 for (i = 0; i < row_mt_sync->rows; ++i) {
221 pthread_cond_destroy(&row_mt_sync->cond_[i]);
222 }
223 aom_free(row_mt_sync->cond_);
224 }
225 #endif // CONFIG_MULTITHREAD
226 aom_free(row_mt_sync->num_finished_cols);
227
228 // clear the structure as the source of this call may be dynamic change
229 // in tiles in which case this call will be followed by an _alloc()
230 // which may fail.
231 av1_zero(*row_mt_sync);
232 }
233 }
234
get_sb_rows_in_frame(AV1_COMMON * cm)235 static AOM_INLINE int get_sb_rows_in_frame(AV1_COMMON *cm) {
236 return CEIL_POWER_OF_TWO(cm->mi_params.mi_rows,
237 cm->seq_params->mib_size_log2);
238 }
239
row_mt_mem_alloc(AV1_COMP * cpi,int max_rows,int max_cols,int alloc_row_ctx)240 static void row_mt_mem_alloc(AV1_COMP *cpi, int max_rows, int max_cols,
241 int alloc_row_ctx) {
242 struct AV1Common *cm = &cpi->common;
243 AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
244 const int tile_cols = cm->tiles.cols;
245 const int tile_rows = cm->tiles.rows;
246 int tile_col, tile_row;
247
248 av1_row_mt_mem_dealloc(cpi);
249
250 // Allocate memory for row based multi-threading
251 for (tile_row = 0; tile_row < tile_rows; tile_row++) {
252 for (tile_col = 0; tile_col < tile_cols; tile_col++) {
253 int tile_index = tile_row * tile_cols + tile_col;
254 TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
255
256 row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, max_rows);
257
258 if (alloc_row_ctx) {
259 assert(max_cols > 0);
260 const int num_row_ctx = AOMMAX(1, (max_cols - 1));
261 CHECK_MEM_ERROR(cm, this_tile->row_ctx,
262 (FRAME_CONTEXT *)aom_memalign(
263 16, num_row_ctx * sizeof(*this_tile->row_ctx)));
264 }
265 }
266 }
267 const int sb_rows = get_sb_rows_in_frame(cm);
268 CHECK_MEM_ERROR(
269 cm, enc_row_mt->num_tile_cols_done,
270 aom_malloc(sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows));
271
272 enc_row_mt->allocated_rows = max_rows;
273 enc_row_mt->allocated_cols = max_cols - 1;
274 enc_row_mt->allocated_sb_rows = sb_rows;
275 }
276
av1_row_mt_mem_dealloc(AV1_COMP * cpi)277 void av1_row_mt_mem_dealloc(AV1_COMP *cpi) {
278 AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
279 const int tile_cols = enc_row_mt->allocated_tile_cols;
280 const int tile_rows = enc_row_mt->allocated_tile_rows;
281 int tile_col, tile_row;
282
283 // Free row based multi-threading sync memory
284 for (tile_row = 0; tile_row < tile_rows; tile_row++) {
285 for (tile_col = 0; tile_col < tile_cols; tile_col++) {
286 int tile_index = tile_row * tile_cols + tile_col;
287 TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
288
289 av1_row_mt_sync_mem_dealloc(&this_tile->row_mt_sync);
290
291 if (cpi->oxcf.algo_cfg.cdf_update_mode) {
292 aom_free(this_tile->row_ctx);
293 this_tile->row_ctx = NULL;
294 }
295 }
296 }
297 aom_free(enc_row_mt->num_tile_cols_done);
298 enc_row_mt->num_tile_cols_done = NULL;
299 enc_row_mt->allocated_rows = 0;
300 enc_row_mt->allocated_cols = 0;
301 enc_row_mt->allocated_sb_rows = 0;
302 }
303
assign_tile_to_thread(int * thread_id_to_tile_id,int num_tiles,int num_workers)304 static AOM_INLINE void assign_tile_to_thread(int *thread_id_to_tile_id,
305 int num_tiles, int num_workers) {
306 int tile_id = 0;
307 int i;
308
309 for (i = 0; i < num_workers; i++) {
310 thread_id_to_tile_id[i] = tile_id++;
311 if (tile_id == num_tiles) tile_id = 0;
312 }
313 }
314
get_next_job(TileDataEnc * const tile_data,int * current_mi_row,int mib_size)315 static AOM_INLINE int get_next_job(TileDataEnc *const tile_data,
316 int *current_mi_row, int mib_size) {
317 AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
318 const int mi_row_end = tile_data->tile_info.mi_row_end;
319
320 if (row_mt_sync->next_mi_row < mi_row_end) {
321 *current_mi_row = row_mt_sync->next_mi_row;
322 row_mt_sync->num_threads_working++;
323 row_mt_sync->next_mi_row += mib_size;
324 return 1;
325 }
326 return 0;
327 }
328
switch_tile_and_get_next_job(AV1_COMMON * const cm,TileDataEnc * const tile_data,int * cur_tile_id,int * current_mi_row,int * end_of_frame,int is_firstpass,const BLOCK_SIZE fp_block_size)329 static AOM_INLINE void switch_tile_and_get_next_job(
330 AV1_COMMON *const cm, TileDataEnc *const tile_data, int *cur_tile_id,
331 int *current_mi_row, int *end_of_frame, int is_firstpass,
332 const BLOCK_SIZE fp_block_size) {
333 const int tile_cols = cm->tiles.cols;
334 const int tile_rows = cm->tiles.rows;
335
336 int tile_id = -1; // Stores the tile ID with minimum proc done
337 int max_mis_to_encode = 0;
338 int min_num_threads_working = INT_MAX;
339
340 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
341 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
342 int tile_index = tile_row * tile_cols + tile_col;
343 TileDataEnc *const this_tile = &tile_data[tile_index];
344 AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
345
346 #if CONFIG_REALTIME_ONLY
347 int num_b_rows_in_tile =
348 av1_get_sb_rows_in_tile(cm, &this_tile->tile_info);
349 int num_b_cols_in_tile =
350 av1_get_sb_cols_in_tile(cm, &this_tile->tile_info);
351 #else
352 int num_b_rows_in_tile =
353 is_firstpass
354 ? av1_get_unit_rows_in_tile(&this_tile->tile_info, fp_block_size)
355 : av1_get_sb_rows_in_tile(cm, &this_tile->tile_info);
356 int num_b_cols_in_tile =
357 is_firstpass
358 ? av1_get_unit_cols_in_tile(&this_tile->tile_info, fp_block_size)
359 : av1_get_sb_cols_in_tile(cm, &this_tile->tile_info);
360 #endif
361 int theoretical_limit_on_threads =
362 AOMMIN((num_b_cols_in_tile + 1) >> 1, num_b_rows_in_tile);
363 int num_threads_working = row_mt_sync->num_threads_working;
364
365 if (num_threads_working < theoretical_limit_on_threads) {
366 int num_mis_to_encode =
367 this_tile->tile_info.mi_row_end - row_mt_sync->next_mi_row;
368
369 // Tile to be processed by this thread is selected on the basis of
370 // availability of jobs:
371 // 1) If jobs are available, tile to be processed is chosen on the
372 // basis of minimum number of threads working for that tile. If two or
373 // more tiles have same number of threads working for them, then the
374 // tile with maximum number of jobs available will be chosen.
375 // 2) If no jobs are available, then end_of_frame is reached.
376 if (num_mis_to_encode > 0) {
377 if (num_threads_working < min_num_threads_working) {
378 min_num_threads_working = num_threads_working;
379 max_mis_to_encode = 0;
380 }
381 if (num_threads_working == min_num_threads_working &&
382 num_mis_to_encode > max_mis_to_encode) {
383 tile_id = tile_index;
384 max_mis_to_encode = num_mis_to_encode;
385 }
386 }
387 }
388 }
389 }
390 if (tile_id == -1) {
391 *end_of_frame = 1;
392 } else {
393 // Update the current tile id to the tile id that will be processed next,
394 // which will be the least processed tile.
395 *cur_tile_id = tile_id;
396 const int unit_height = mi_size_high[fp_block_size];
397 get_next_job(&tile_data[tile_id], current_mi_row,
398 is_firstpass ? unit_height : cm->seq_params->mib_size);
399 }
400 }
401
402 #if !CONFIG_REALTIME_ONLY
set_firstpass_encode_done(AV1_COMP * cpi)403 static void set_firstpass_encode_done(AV1_COMP *cpi) {
404 AV1_COMMON *const cm = &cpi->common;
405 AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
406 const int tile_cols = cm->tiles.cols;
407 const int tile_rows = cm->tiles.rows;
408 const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
409 const int unit_height = mi_size_high[fp_block_size];
410
411 // In case of multithreading of firstpass encode, due to top-right
412 // dependency, the worker on a firstpass row waits for the completion of the
413 // firstpass processing of the top and top-right fp_blocks. Hence, in case a
414 // thread (main/worker) encounters an error, update the firstpass processing
415 // of every row in the frame to indicate that it is complete in order to avoid
416 // dependent workers waiting indefinitely.
417 for (int tile_row = 0; tile_row < tile_rows; ++tile_row) {
418 for (int tile_col = 0; tile_col < tile_cols; ++tile_col) {
419 TileDataEnc *const tile_data =
420 &cpi->tile_data[tile_row * tile_cols + tile_col];
421 TileInfo *tile = &tile_data->tile_info;
422 AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
423 const int unit_cols_in_tile =
424 av1_get_unit_cols_in_tile(tile, fp_block_size);
425 for (int mi_row = tile->mi_row_start, unit_row_in_tile = 0;
426 mi_row < tile->mi_row_end;
427 mi_row += unit_height, unit_row_in_tile++) {
428 enc_row_mt->sync_write_ptr(row_mt_sync, unit_row_in_tile,
429 unit_cols_in_tile - 1, unit_cols_in_tile);
430 }
431 }
432 }
433 }
434
fp_enc_row_mt_worker_hook(void * arg1,void * unused)435 static int fp_enc_row_mt_worker_hook(void *arg1, void *unused) {
436 EncWorkerData *const thread_data = (EncWorkerData *)arg1;
437 AV1_COMP *const cpi = thread_data->cpi;
438 int thread_id = thread_data->thread_id;
439 AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
440 #if CONFIG_MULTITHREAD
441 pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
442 #endif
443 (void)unused;
444 struct aom_internal_error_info *const error_info = &thread_data->error_info;
445 MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
446 xd->error_info = error_info;
447
448 // The jmp_buf is valid only for the duration of the function that calls
449 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
450 // before it returns.
451 if (setjmp(error_info->jmp)) {
452 error_info->setjmp = 0;
453 #if CONFIG_MULTITHREAD
454 pthread_mutex_lock(enc_row_mt_mutex_);
455 enc_row_mt->firstpass_mt_exit = true;
456 pthread_mutex_unlock(enc_row_mt_mutex_);
457 #endif
458 set_firstpass_encode_done(cpi);
459 return 0;
460 }
461 error_info->setjmp = 1;
462
463 AV1_COMMON *const cm = &cpi->common;
464 int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
465 assert(cur_tile_id != -1);
466
467 const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
468 const int unit_height = mi_size_high[fp_block_size];
469 int end_of_frame = 0;
470 while (1) {
471 int current_mi_row = -1;
472 #if CONFIG_MULTITHREAD
473 pthread_mutex_lock(enc_row_mt_mutex_);
474 #endif
475 bool firstpass_mt_exit = enc_row_mt->firstpass_mt_exit;
476 if (!firstpass_mt_exit && !get_next_job(&cpi->tile_data[cur_tile_id],
477 ¤t_mi_row, unit_height)) {
478 // No jobs are available for the current tile. Query for the status of
479 // other tiles and get the next job if available
480 switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
481 ¤t_mi_row, &end_of_frame, 1,
482 fp_block_size);
483 }
484 #if CONFIG_MULTITHREAD
485 pthread_mutex_unlock(enc_row_mt_mutex_);
486 #endif
487 // When firstpass_mt_exit is set to true, other workers need not pursue any
488 // further jobs.
489 if (firstpass_mt_exit || end_of_frame) break;
490
491 TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
492 AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
493 ThreadData *td = thread_data->td;
494
495 assert(current_mi_row != -1 &&
496 current_mi_row < this_tile->tile_info.mi_row_end);
497
498 const int unit_height_log2 = mi_size_high_log2[fp_block_size];
499 av1_first_pass_row(cpi, td, this_tile, current_mi_row >> unit_height_log2,
500 fp_block_size);
501 #if CONFIG_MULTITHREAD
502 pthread_mutex_lock(enc_row_mt_mutex_);
503 #endif
504 row_mt_sync->num_threads_working--;
505 #if CONFIG_MULTITHREAD
506 pthread_mutex_unlock(enc_row_mt_mutex_);
507 #endif
508 }
509 error_info->setjmp = 0;
510 return 1;
511 }
512 #endif
513
launch_loop_filter_rows(AV1_COMMON * cm,EncWorkerData * thread_data,AV1EncRowMultiThreadInfo * enc_row_mt,int mib_size_log2)514 static void launch_loop_filter_rows(AV1_COMMON *cm, EncWorkerData *thread_data,
515 AV1EncRowMultiThreadInfo *enc_row_mt,
516 int mib_size_log2) {
517 AV1LfSync *const lf_sync = (AV1LfSync *)thread_data->lf_sync;
518 const int sb_rows = get_sb_rows_in_frame(cm);
519 AV1LfMTInfo *cur_job_info;
520 bool row_mt_exit = false;
521 (void)enc_row_mt;
522 #if CONFIG_MULTITHREAD
523 pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
524 #endif
525
526 while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) {
527 LFWorkerData *const lf_data = (LFWorkerData *)thread_data->lf_data;
528 const int lpf_opt_level = cur_job_info->lpf_opt_level;
529 (void)sb_rows;
530 #if CONFIG_MULTITHREAD
531 const int cur_sb_row = cur_job_info->mi_row >> mib_size_log2;
532 const int next_sb_row = AOMMIN(sb_rows - 1, cur_sb_row + 1);
533 // Wait for current and next superblock row to finish encoding.
534 pthread_mutex_lock(enc_row_mt_mutex_);
535 while (!enc_row_mt->row_mt_exit &&
536 (enc_row_mt->num_tile_cols_done[cur_sb_row] < cm->tiles.cols ||
537 enc_row_mt->num_tile_cols_done[next_sb_row] < cm->tiles.cols)) {
538 pthread_cond_wait(enc_row_mt->cond_, enc_row_mt_mutex_);
539 }
540 row_mt_exit = enc_row_mt->row_mt_exit;
541 pthread_mutex_unlock(enc_row_mt_mutex_);
542 #endif
543 if (row_mt_exit) return;
544
545 av1_thread_loop_filter_rows(
546 lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd,
547 cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir,
548 lpf_opt_level, lf_sync, &thread_data->error_info, lf_data->params_buf,
549 lf_data->tx_buf, mib_size_log2);
550 }
551 }
552
set_encoding_done(AV1_COMP * cpi)553 static void set_encoding_done(AV1_COMP *cpi) {
554 AV1_COMMON *const cm = &cpi->common;
555 const int tile_cols = cm->tiles.cols;
556 const int tile_rows = cm->tiles.rows;
557 AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
558 const int mib_size = cm->seq_params->mib_size;
559
560 // In case of row-multithreading, due to top-right dependency, the worker on
561 // an SB row waits for the completion of the encode of the top and top-right
562 // SBs. Hence, in case a thread (main/worker) encounters an error, update that
563 // encoding of every SB row in the frame is complete in order to avoid the
564 // dependent workers of every tile from waiting indefinitely.
565 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
566 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
567 TileDataEnc *const this_tile =
568 &cpi->tile_data[tile_row * tile_cols + tile_col];
569 const TileInfo *const tile_info = &this_tile->tile_info;
570 AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
571 const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
572 for (int mi_row = tile_info->mi_row_start, sb_row_in_tile = 0;
573 mi_row < tile_info->mi_row_end;
574 mi_row += mib_size, sb_row_in_tile++) {
575 enc_row_mt->sync_write_ptr(row_mt_sync, sb_row_in_tile,
576 sb_cols_in_tile - 1, sb_cols_in_tile);
577 }
578 }
579 }
580 }
581
lpf_mt_with_enc_enabled(int pipeline_lpf_mt_with_enc,const int filter_level[2])582 static bool lpf_mt_with_enc_enabled(int pipeline_lpf_mt_with_enc,
583 const int filter_level[2]) {
584 return pipeline_lpf_mt_with_enc && (filter_level[0] || filter_level[1]);
585 }
586
enc_row_mt_worker_hook(void * arg1,void * unused)587 static int enc_row_mt_worker_hook(void *arg1, void *unused) {
588 EncWorkerData *const thread_data = (EncWorkerData *)arg1;
589 AV1_COMP *const cpi = thread_data->cpi;
590 int thread_id = thread_data->thread_id;
591 AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
592 #if CONFIG_MULTITHREAD
593 pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
594 #endif
595 (void)unused;
596
597 struct aom_internal_error_info *const error_info = &thread_data->error_info;
598 AV1LfSync *const lf_sync = thread_data->lf_sync;
599 MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
600 xd->error_info = error_info;
601 AV1_COMMON *volatile const cm = &cpi->common;
602 volatile const bool do_pipelined_lpf_mt_with_enc = lpf_mt_with_enc_enabled(
603 cpi->mt_info.pipeline_lpf_mt_with_enc, cm->lf.filter_level);
604
605 // The jmp_buf is valid only for the duration of the function that calls
606 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
607 // before it returns.
608 if (setjmp(error_info->jmp)) {
609 error_info->setjmp = 0;
610 #if CONFIG_MULTITHREAD
611 pthread_mutex_lock(enc_row_mt_mutex_);
612 enc_row_mt->row_mt_exit = true;
613 // Wake up all the workers waiting in launch_loop_filter_rows() to exit in
614 // case of an error.
615 pthread_cond_broadcast(enc_row_mt->cond_);
616 pthread_mutex_unlock(enc_row_mt_mutex_);
617 #endif
618 set_encoding_done(cpi);
619
620 if (do_pipelined_lpf_mt_with_enc) {
621 #if CONFIG_MULTITHREAD
622 pthread_mutex_lock(lf_sync->job_mutex);
623 lf_sync->lf_mt_exit = true;
624 pthread_mutex_unlock(lf_sync->job_mutex);
625 #endif
626 av1_set_vert_loop_filter_done(&cpi->common, lf_sync,
627 cpi->common.seq_params->mib_size_log2);
628 }
629 return 0;
630 }
631 error_info->setjmp = 1;
632
633 const int mib_size_log2 = cm->seq_params->mib_size_log2;
634 int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
635
636 // Preallocate the pc_tree for realtime coding to reduce the cost of memory
637 // allocation.
638 if (cpi->sf.rt_sf.use_nonrd_pick_mode) {
639 thread_data->td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size);
640 if (!thread_data->td->pc_root)
641 aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
642 "Failed to allocate PC_TREE");
643 } else {
644 thread_data->td->pc_root = NULL;
645 }
646
647 assert(cur_tile_id != -1);
648
649 const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
650 int end_of_frame = 0;
651 bool row_mt_exit = false;
652
653 // When master thread does not have a valid job to process, xd->tile_ctx
654 // is not set and it contains NULL pointer. This can result in NULL pointer
655 // access violation if accessed beyond the encode stage. Hence, updating
656 // thread_data->td->mb.e_mbd.tile_ctx is initialized with common frame
657 // context to avoid NULL pointer access in subsequent stages.
658 thread_data->td->mb.e_mbd.tile_ctx = cm->fc;
659 while (1) {
660 int current_mi_row = -1;
661 #if CONFIG_MULTITHREAD
662 pthread_mutex_lock(enc_row_mt_mutex_);
663 #endif
664 row_mt_exit = enc_row_mt->row_mt_exit;
665 // row_mt_exit check here can be avoided as it is checked after
666 // sync_read_ptr() in encode_sb_row(). However, checking row_mt_exit here,
667 // tries to return before calling the function get_next_job().
668 if (!row_mt_exit &&
669 !get_next_job(&cpi->tile_data[cur_tile_id], ¤t_mi_row,
670 cm->seq_params->mib_size)) {
671 // No jobs are available for the current tile. Query for the status of
672 // other tiles and get the next job if available
673 switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
674 ¤t_mi_row, &end_of_frame, 0,
675 fp_block_size);
676 }
677 #if CONFIG_MULTITHREAD
678 pthread_mutex_unlock(enc_row_mt_mutex_);
679 #endif
680 // When row_mt_exit is set to true, other workers need not pursue any
681 // further jobs.
682 if (row_mt_exit) {
683 error_info->setjmp = 0;
684 return 1;
685 }
686
687 if (end_of_frame) break;
688
689 TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
690 AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
691 const TileInfo *const tile_info = &this_tile->tile_info;
692 const int tile_row = tile_info->tile_row;
693 const int tile_col = tile_info->tile_col;
694 ThreadData *td = thread_data->td;
695 const int sb_row = current_mi_row >> mib_size_log2;
696
697 assert(current_mi_row != -1 && current_mi_row <= tile_info->mi_row_end);
698
699 td->mb.e_mbd.tile_ctx = td->tctx;
700 td->mb.tile_pb_ctx = &this_tile->tctx;
701 td->abs_sum_level = 0;
702
703 if (this_tile->allow_update_cdf) {
704 td->mb.row_ctx = this_tile->row_ctx;
705 if (current_mi_row == tile_info->mi_row_start)
706 memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
707 } else {
708 memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
709 }
710
711 av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row,
712 &td->mb.e_mbd);
713
714 cfl_init(&td->mb.e_mbd.cfl, cm->seq_params);
715 if (td->mb.txfm_search_info.mb_rd_record != NULL) {
716 av1_crc32c_calculator_init(
717 &td->mb.txfm_search_info.mb_rd_record->crc_calculator);
718 }
719
720 av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row);
721 #if CONFIG_MULTITHREAD
722 pthread_mutex_lock(enc_row_mt_mutex_);
723 #endif
724 this_tile->abs_sum_level += td->abs_sum_level;
725 row_mt_sync->num_threads_working--;
726 enc_row_mt->num_tile_cols_done[sb_row]++;
727 #if CONFIG_MULTITHREAD
728 pthread_cond_broadcast(enc_row_mt->cond_);
729 pthread_mutex_unlock(enc_row_mt_mutex_);
730 #endif
731 }
732 if (do_pipelined_lpf_mt_with_enc) {
733 // Loop-filter a superblock row if encoding of the current and next
734 // superblock row is complete.
735 // TODO(deepa.kg @ittiam.com) Evaluate encoder speed by interleaving
736 // encoding and loop filter stage.
737 launch_loop_filter_rows(cm, thread_data, enc_row_mt, mib_size_log2);
738 }
739 av1_free_pc_tree_recursive(thread_data->td->pc_root, av1_num_planes(cm), 0, 0,
740 cpi->sf.part_sf.partition_search_type);
741 thread_data->td->pc_root = NULL;
742 error_info->setjmp = 0;
743 return 1;
744 }
745
enc_worker_hook(void * arg1,void * unused)746 static int enc_worker_hook(void *arg1, void *unused) {
747 EncWorkerData *const thread_data = (EncWorkerData *)arg1;
748 AV1_COMP *const cpi = thread_data->cpi;
749 MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
750 struct aom_internal_error_info *const error_info = &thread_data->error_info;
751 const AV1_COMMON *const cm = &cpi->common;
752 const int tile_cols = cm->tiles.cols;
753 const int tile_rows = cm->tiles.rows;
754 int t;
755
756 (void)unused;
757
758 xd->error_info = error_info;
759
760 // The jmp_buf is valid only for the duration of the function that calls
761 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
762 // before it returns.
763 if (setjmp(error_info->jmp)) {
764 error_info->setjmp = 0;
765 return 0;
766 }
767 error_info->setjmp = 1;
768
769 // Preallocate the pc_tree for realtime coding to reduce the cost of memory
770 // allocation.
771 if (cpi->sf.rt_sf.use_nonrd_pick_mode) {
772 thread_data->td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size);
773 if (!thread_data->td->pc_root)
774 aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
775 "Failed to allocate PC_TREE");
776 } else {
777 thread_data->td->pc_root = NULL;
778 }
779
780 for (t = thread_data->start; t < tile_rows * tile_cols;
781 t += cpi->mt_info.num_workers) {
782 int tile_row = t / tile_cols;
783 int tile_col = t % tile_cols;
784
785 TileDataEnc *const this_tile =
786 &cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
787 thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
788 thread_data->td->mb.tile_pb_ctx = &this_tile->tctx;
789 av1_encode_tile(cpi, thread_data->td, tile_row, tile_col);
790 }
791
792 av1_free_pc_tree_recursive(thread_data->td->pc_root, av1_num_planes(cm), 0, 0,
793 cpi->sf.part_sf.partition_search_type);
794 thread_data->td->pc_root = NULL;
795 error_info->setjmp = 0;
796 return 1;
797 }
798
av1_init_frame_mt(AV1_PRIMARY * ppi,AV1_COMP * cpi)799 void av1_init_frame_mt(AV1_PRIMARY *ppi, AV1_COMP *cpi) {
800 cpi->mt_info.workers = ppi->p_mt_info.workers;
801 cpi->mt_info.num_workers = ppi->p_mt_info.num_workers;
802 cpi->mt_info.tile_thr_data = ppi->p_mt_info.tile_thr_data;
803 int i;
804 for (i = MOD_FP; i < NUM_MT_MODULES; i++) {
805 cpi->mt_info.num_mod_workers[i] =
806 AOMMIN(cpi->mt_info.num_workers, ppi->p_mt_info.num_mod_workers[i]);
807 }
808 }
809
av1_init_cdef_worker(AV1_COMP * cpi)810 void av1_init_cdef_worker(AV1_COMP *cpi) {
811 // The allocation is done only for level 0 parallel frames. No change
812 // in config is supported in the middle of a parallel encode set, since the
813 // rest of the MT modules also do not support dynamic change of config.
814 if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) return;
815 PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info;
816 int num_cdef_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_CDEF);
817
818 av1_alloc_cdef_buffers(&cpi->common, &p_mt_info->cdef_worker,
819 &cpi->mt_info.cdef_sync, num_cdef_workers, 1);
820 cpi->mt_info.cdef_worker = p_mt_info->cdef_worker;
821 }
822
823 #if !CONFIG_REALTIME_ONLY
av1_init_lr_mt_buffers(AV1_COMP * cpi)824 void av1_init_lr_mt_buffers(AV1_COMP *cpi) {
825 AV1_COMMON *const cm = &cpi->common;
826 AV1LrSync *lr_sync = &cpi->mt_info.lr_row_sync;
827 if (lr_sync->sync_range) {
828 if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
829 return;
830 int num_lr_workers =
831 av1_get_num_mod_workers_for_alloc(&cpi->ppi->p_mt_info, MOD_LR);
832 assert(num_lr_workers <= lr_sync->num_workers);
833 lr_sync->lrworkerdata[num_lr_workers - 1].rst_tmpbuf = cm->rst_tmpbuf;
834 lr_sync->lrworkerdata[num_lr_workers - 1].rlbs = cm->rlbs;
835 }
836 }
837 #endif
838
839 #if CONFIG_MULTITHREAD
av1_init_mt_sync(AV1_COMP * cpi,int is_first_pass)840 void av1_init_mt_sync(AV1_COMP *cpi, int is_first_pass) {
841 AV1_COMMON *const cm = &cpi->common;
842 MultiThreadInfo *const mt_info = &cpi->mt_info;
843
844 if (setjmp(cm->error->jmp)) {
845 cm->error->setjmp = 0;
846 aom_internal_error_copy(&cpi->ppi->error, cm->error);
847 }
848 cm->error->setjmp = 1;
849 // Initialize enc row MT object.
850 if (is_first_pass || cpi->oxcf.row_mt == 1) {
851 AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt;
852 if (enc_row_mt->mutex_ == NULL) {
853 CHECK_MEM_ERROR(cm, enc_row_mt->mutex_,
854 aom_malloc(sizeof(*(enc_row_mt->mutex_))));
855 if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL);
856 }
857 if (enc_row_mt->cond_ == NULL) {
858 CHECK_MEM_ERROR(cm, enc_row_mt->cond_,
859 aom_malloc(sizeof(*(enc_row_mt->cond_))));
860 if (enc_row_mt->cond_) pthread_cond_init(enc_row_mt->cond_, NULL);
861 }
862 }
863
864 if (!is_first_pass) {
865 // Initialize global motion MT object.
866 AV1GlobalMotionSync *gm_sync = &mt_info->gm_sync;
867 if (gm_sync->mutex_ == NULL) {
868 CHECK_MEM_ERROR(cm, gm_sync->mutex_,
869 aom_malloc(sizeof(*(gm_sync->mutex_))));
870 if (gm_sync->mutex_) pthread_mutex_init(gm_sync->mutex_, NULL);
871 }
872 #if !CONFIG_REALTIME_ONLY
873 // Initialize temporal filtering MT object.
874 AV1TemporalFilterSync *tf_sync = &mt_info->tf_sync;
875 if (tf_sync->mutex_ == NULL) {
876 CHECK_MEM_ERROR(cm, tf_sync->mutex_,
877 aom_malloc(sizeof(*tf_sync->mutex_)));
878 if (tf_sync->mutex_) pthread_mutex_init(tf_sync->mutex_, NULL);
879 }
880 #endif // !CONFIG_REALTIME_ONLY
881 // Initialize CDEF MT object.
882 AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
883 if (cdef_sync->mutex_ == NULL) {
884 CHECK_MEM_ERROR(cm, cdef_sync->mutex_,
885 aom_malloc(sizeof(*(cdef_sync->mutex_))));
886 if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
887 }
888
889 // Initialize loop filter MT object.
890 AV1LfSync *lf_sync = &mt_info->lf_row_sync;
891 // Number of superblock rows
892 const int sb_rows =
893 CEIL_POWER_OF_TWO(cm->height >> MI_SIZE_LOG2, MAX_MIB_SIZE_LOG2);
894 PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info;
895 int num_lf_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LPF);
896
897 if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
898 num_lf_workers > lf_sync->num_workers) {
899 av1_loop_filter_dealloc(lf_sync);
900 av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_lf_workers);
901 }
902
903 // Initialize tpl MT object.
904 AV1TplRowMultiThreadInfo *tpl_row_mt = &mt_info->tpl_row_mt;
905 if (tpl_row_mt->mutex_ == NULL) {
906 CHECK_MEM_ERROR(cm, tpl_row_mt->mutex_,
907 aom_malloc(sizeof(*(tpl_row_mt->mutex_))));
908 if (tpl_row_mt->mutex_) pthread_mutex_init(tpl_row_mt->mutex_, NULL);
909 }
910
911 #if !CONFIG_REALTIME_ONLY
912 if (is_restoration_used(cm)) {
913 // Initialize loop restoration MT object.
914 AV1LrSync *lr_sync = &mt_info->lr_row_sync;
915 int rst_unit_size = cpi->sf.lpf_sf.min_lr_unit_size;
916 int num_rows_lr = av1_lr_count_units(rst_unit_size, cm->height);
917 int num_lr_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LR);
918 if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows ||
919 num_lr_workers > lr_sync->num_workers ||
920 MAX_MB_PLANE > lr_sync->num_planes) {
921 av1_loop_restoration_dealloc(lr_sync);
922 av1_loop_restoration_alloc(lr_sync, cm, num_lr_workers, num_rows_lr,
923 MAX_MB_PLANE, cm->width);
924 }
925 }
926 #endif
927
928 // Initialization of pack bitstream MT object.
929 AV1EncPackBSSync *pack_bs_sync = &mt_info->pack_bs_sync;
930 if (pack_bs_sync->mutex_ == NULL) {
931 CHECK_MEM_ERROR(cm, pack_bs_sync->mutex_,
932 aom_malloc(sizeof(*pack_bs_sync->mutex_)));
933 if (pack_bs_sync->mutex_) pthread_mutex_init(pack_bs_sync->mutex_, NULL);
934 }
935 }
936 cm->error->setjmp = 0;
937 }
938 #endif // CONFIG_MULTITHREAD
939
940 // Computes the number of workers to be considered while allocating memory for a
941 // multi-threaded module under FPMT.
av1_get_num_mod_workers_for_alloc(const PrimaryMultiThreadInfo * p_mt_info,MULTI_THREADED_MODULES mod_name)942 int av1_get_num_mod_workers_for_alloc(const PrimaryMultiThreadInfo *p_mt_info,
943 MULTI_THREADED_MODULES mod_name) {
944 int num_mod_workers = p_mt_info->num_mod_workers[mod_name];
945 if (p_mt_info->num_mod_workers[MOD_FRAME_ENC] > 1) {
946 // TODO(anyone): Change num_mod_workers to num_mod_workers[MOD_FRAME_ENC].
947 // As frame parallel jobs will only perform multi-threading for the encode
948 // stage, we can limit the allocations according to num_enc_workers per
949 // frame parallel encode(a.k.a num_mod_workers[MOD_FRAME_ENC]).
950 num_mod_workers = p_mt_info->num_workers;
951 }
952 return num_mod_workers;
953 }
954
av1_init_tile_thread_data(AV1_PRIMARY * ppi,int is_first_pass)955 void av1_init_tile_thread_data(AV1_PRIMARY *ppi, int is_first_pass) {
956 PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
957
958 assert(p_mt_info->workers != NULL);
959 assert(p_mt_info->tile_thr_data != NULL);
960
961 int num_workers = p_mt_info->num_workers;
962 int num_enc_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_ENC);
963 assert(num_enc_workers <= num_workers);
964 for (int i = num_workers - 1; i >= 0; i--) {
965 EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i];
966
967 if (i > 0) {
968 // Allocate thread data.
969 ThreadData *td;
970 AOM_CHECK_MEM_ERROR(&ppi->error, td, aom_memalign(32, sizeof(*td)));
971 av1_zero(*td);
972 thread_data->original_td = thread_data->td = td;
973
974 // Set up shared coeff buffers.
975 av1_setup_shared_coeff_buffer(&ppi->seq_params, &td->shared_coeff_buf,
976 &ppi->error);
977 AOM_CHECK_MEM_ERROR(&ppi->error, td->tmp_conv_dst,
978 aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
979 sizeof(*td->tmp_conv_dst)));
980
981 if (i < p_mt_info->num_mod_workers[MOD_FP]) {
982 // Set up firstpass PICK_MODE_CONTEXT.
983 td->firstpass_ctx =
984 av1_alloc_pmc(ppi->cpi, BLOCK_16X16, &td->shared_coeff_buf);
985 if (!td->firstpass_ctx)
986 aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
987 "Failed to allocate PICK_MODE_CONTEXT");
988 }
989
990 if (!is_first_pass && i < num_enc_workers) {
991 // Set up sms_tree.
992 if (av1_setup_sms_tree(ppi->cpi, td)) {
993 aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
994 "Failed to allocate SMS tree");
995 }
996
997 for (int x = 0; x < 2; x++)
998 for (int y = 0; y < 2; y++)
999 AOM_CHECK_MEM_ERROR(
1000 &ppi->error, td->hash_value_buffer[x][y],
1001 (uint32_t *)aom_malloc(AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
1002 sizeof(*td->hash_value_buffer[0][0])));
1003
1004 // Allocate frame counters in thread data.
1005 AOM_CHECK_MEM_ERROR(&ppi->error, td->counts,
1006 aom_calloc(1, sizeof(*td->counts)));
1007
1008 // Allocate buffers used by palette coding mode.
1009 AOM_CHECK_MEM_ERROR(&ppi->error, td->palette_buffer,
1010 aom_memalign(16, sizeof(*td->palette_buffer)));
1011
1012 // The buffers 'tmp_pred_bufs[]', 'comp_rd_buffer' and 'obmc_buffer' are
1013 // used in inter frames to store intermediate inter mode prediction
1014 // results and are not required for allintra encoding mode. Hence, the
1015 // memory allocations for these buffers are avoided for allintra
1016 // encoding mode.
1017 if (ppi->cpi->oxcf.kf_cfg.key_freq_max != 0) {
1018 alloc_obmc_buffers(&td->obmc_buffer, &ppi->error);
1019
1020 alloc_compound_type_rd_buffers(&ppi->error, &td->comp_rd_buffer);
1021
1022 for (int j = 0; j < 2; ++j) {
1023 AOM_CHECK_MEM_ERROR(
1024 &ppi->error, td->tmp_pred_bufs[j],
1025 aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
1026 sizeof(*td->tmp_pred_bufs[j])));
1027 }
1028 }
1029
1030 if (is_gradient_caching_for_hog_enabled(ppi->cpi)) {
1031 const int plane_types = PLANE_TYPES >> ppi->seq_params.monochrome;
1032 AOM_CHECK_MEM_ERROR(&ppi->error, td->pixel_gradient_info,
1033 aom_malloc(sizeof(*td->pixel_gradient_info) *
1034 plane_types * MAX_SB_SQUARE));
1035 }
1036
1037 if (is_src_var_for_4x4_sub_blocks_caching_enabled(ppi->cpi)) {
1038 const BLOCK_SIZE sb_size = ppi->cpi->common.seq_params->sb_size;
1039 const int mi_count_in_sb =
1040 mi_size_wide[sb_size] * mi_size_high[sb_size];
1041
1042 AOM_CHECK_MEM_ERROR(
1043 &ppi->error, td->src_var_info_of_4x4_sub_blocks,
1044 aom_malloc(sizeof(*td->src_var_info_of_4x4_sub_blocks) *
1045 mi_count_in_sb));
1046 }
1047
1048 if (ppi->cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION) {
1049 const int num_64x64_blocks =
1050 (ppi->seq_params.sb_size == BLOCK_64X64) ? 1 : 4;
1051 AOM_CHECK_MEM_ERROR(
1052 &ppi->error, td->vt64x64,
1053 aom_malloc(sizeof(*td->vt64x64) * num_64x64_blocks));
1054 }
1055 }
1056 }
1057
1058 if (!is_first_pass && ppi->cpi->oxcf.row_mt == 1 && i < num_enc_workers) {
1059 if (i == 0) {
1060 for (int j = 0; j < ppi->num_fp_contexts; j++) {
1061 AOM_CHECK_MEM_ERROR(&ppi->error, ppi->parallel_cpi[j]->td.tctx,
1062 (FRAME_CONTEXT *)aom_memalign(
1063 16, sizeof(*ppi->parallel_cpi[j]->td.tctx)));
1064 }
1065 } else {
1066 AOM_CHECK_MEM_ERROR(
1067 &ppi->error, thread_data->td->tctx,
1068 (FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx)));
1069 }
1070 }
1071 }
1072
1073 // Record the number of workers in encode stage multi-threading for which
1074 // allocation is done.
1075 p_mt_info->prev_num_enc_workers = num_enc_workers;
1076 }
1077
av1_create_workers(AV1_PRIMARY * ppi,int num_workers)1078 void av1_create_workers(AV1_PRIMARY *ppi, int num_workers) {
1079 PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1080 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1081 assert(p_mt_info->num_workers == 0);
1082
1083 AOM_CHECK_MEM_ERROR(&ppi->error, p_mt_info->workers,
1084 aom_malloc(num_workers * sizeof(*p_mt_info->workers)));
1085
1086 AOM_CHECK_MEM_ERROR(
1087 &ppi->error, p_mt_info->tile_thr_data,
1088 aom_calloc(num_workers, sizeof(*p_mt_info->tile_thr_data)));
1089
1090 for (int i = 0; i < num_workers; ++i) {
1091 AVxWorker *const worker = &p_mt_info->workers[i];
1092 EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i];
1093
1094 winterface->init(worker);
1095 worker->thread_name = "aom enc worker";
1096
1097 thread_data->thread_id = i;
1098 // Set the starting tile for each thread.
1099 thread_data->start = i;
1100
1101 if (i > 0) {
1102 // Create threads
1103 if (!winterface->reset(worker))
1104 aom_internal_error(&ppi->error, AOM_CODEC_ERROR,
1105 "Tile encoder thread creation failed");
1106 }
1107 winterface->sync(worker);
1108
1109 ++p_mt_info->num_workers;
1110 }
1111 }
1112
1113 // This function will change the state and free the mutex of corresponding
1114 // workers and terminate the object. The object can not be re-used unless a call
1115 // to reset() is made.
av1_terminate_workers(AV1_PRIMARY * ppi)1116 void av1_terminate_workers(AV1_PRIMARY *ppi) {
1117 PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1118 for (int t = 0; t < p_mt_info->num_workers; ++t) {
1119 AVxWorker *const worker = &p_mt_info->workers[t];
1120 aom_get_worker_interface()->end(worker);
1121 }
1122 }
1123
1124 // This function returns 1 if frame parallel encode is supported for
1125 // the current configuration. Returns 0 otherwise.
is_fpmt_config(AV1_PRIMARY * ppi,AV1EncoderConfig * oxcf)1126 static AOM_INLINE int is_fpmt_config(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) {
1127 // FPMT is enabled for AOM_Q and AOM_VBR.
1128 // TODO(Tarun): Test and enable resize config.
1129 if (oxcf->rc_cfg.mode == AOM_CBR || oxcf->rc_cfg.mode == AOM_CQ) {
1130 return 0;
1131 }
1132 if (ppi->use_svc) {
1133 return 0;
1134 }
1135 if (oxcf->tile_cfg.enable_large_scale_tile) {
1136 return 0;
1137 }
1138 if (oxcf->dec_model_cfg.timing_info_present) {
1139 return 0;
1140 }
1141 if (oxcf->mode != GOOD) {
1142 return 0;
1143 }
1144 if (oxcf->tool_cfg.error_resilient_mode) {
1145 return 0;
1146 }
1147 if (oxcf->resize_cfg.resize_mode) {
1148 return 0;
1149 }
1150 if (oxcf->pass != AOM_RC_SECOND_PASS) {
1151 return 0;
1152 }
1153 if (oxcf->max_threads < 2) {
1154 return 0;
1155 }
1156 if (!oxcf->fp_mt) {
1157 return 0;
1158 }
1159
1160 return 1;
1161 }
1162
av1_check_fpmt_config(AV1_PRIMARY * const ppi,AV1EncoderConfig * const oxcf)1163 int av1_check_fpmt_config(AV1_PRIMARY *const ppi,
1164 AV1EncoderConfig *const oxcf) {
1165 if (is_fpmt_config(ppi, oxcf)) return 1;
1166 // Reset frame parallel configuration for unsupported config
1167 if (ppi->num_fp_contexts > 1) {
1168 for (int i = 1; i < ppi->num_fp_contexts; i++) {
1169 // Release the previously-used frame-buffer
1170 if (ppi->parallel_cpi[i]->common.cur_frame != NULL) {
1171 --ppi->parallel_cpi[i]->common.cur_frame->ref_count;
1172 ppi->parallel_cpi[i]->common.cur_frame = NULL;
1173 }
1174 }
1175
1176 int cur_gf_index = ppi->cpi->gf_frame_index;
1177 int reset_size = AOMMAX(0, ppi->gf_group.size - cur_gf_index);
1178 av1_zero_array(&ppi->gf_group.frame_parallel_level[cur_gf_index],
1179 reset_size);
1180 av1_zero_array(&ppi->gf_group.is_frame_non_ref[cur_gf_index], reset_size);
1181 av1_zero_array(&ppi->gf_group.src_offset[cur_gf_index], reset_size);
1182 memset(&ppi->gf_group.skip_frame_refresh[cur_gf_index][0], INVALID_IDX,
1183 sizeof(ppi->gf_group.skip_frame_refresh[cur_gf_index][0]) *
1184 reset_size * REF_FRAMES);
1185 memset(&ppi->gf_group.skip_frame_as_ref[cur_gf_index], INVALID_IDX,
1186 sizeof(ppi->gf_group.skip_frame_as_ref[cur_gf_index]) * reset_size);
1187 ppi->num_fp_contexts = 1;
1188 }
1189 return 0;
1190 }
1191
1192 // A large value for threads used to compute the max num_enc_workers
1193 // possible for each resolution.
1194 #define MAX_THREADS 100
1195
1196 // Computes the max number of enc workers possible for each resolution.
compute_max_num_enc_workers(CommonModeInfoParams * const mi_params,int mib_size_log2)1197 static AOM_INLINE int compute_max_num_enc_workers(
1198 CommonModeInfoParams *const mi_params, int mib_size_log2) {
1199 int num_sb_rows = CEIL_POWER_OF_TWO(mi_params->mi_rows, mib_size_log2);
1200 int num_sb_cols = CEIL_POWER_OF_TWO(mi_params->mi_cols, mib_size_log2);
1201
1202 return AOMMIN((num_sb_cols + 1) >> 1, num_sb_rows);
1203 }
1204
1205 // Computes the number of frame parallel(fp) contexts to be created
1206 // based on the number of max_enc_workers.
av1_compute_num_fp_contexts(AV1_PRIMARY * ppi,AV1EncoderConfig * oxcf)1207 int av1_compute_num_fp_contexts(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) {
1208 ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] = 0;
1209 if (!av1_check_fpmt_config(ppi, oxcf)) {
1210 return 1;
1211 }
1212 int max_num_enc_workers = compute_max_num_enc_workers(
1213 &ppi->cpi->common.mi_params, ppi->cpi->common.seq_params->mib_size_log2);
1214 // Scaling factors and rounding factors used to tune worker_per_frame
1215 // computation.
1216 int rounding_factor[2] = { 2, 4 };
1217 int scaling_factor[2] = { 4, 8 };
1218 int is_480p_or_lesser =
1219 AOMMIN(oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height) <= 480;
1220 int is_sb_64 = 0;
1221 if (ppi->cpi != NULL)
1222 is_sb_64 = ppi->cpi->common.seq_params->sb_size == BLOCK_64X64;
1223 // A parallel frame encode has at least 1/4th the
1224 // theoretical limit of max enc workers in default case. For resolutions
1225 // larger than 480p, if SB size is 64x64, optimal performance is obtained with
1226 // limit of 1/8.
1227 int index = (!is_480p_or_lesser && is_sb_64) ? 1 : 0;
1228 int workers_per_frame =
1229 AOMMAX(1, (max_num_enc_workers + rounding_factor[index]) /
1230 scaling_factor[index]);
1231 int max_threads = oxcf->max_threads;
1232 int num_fp_contexts = max_threads / workers_per_frame;
1233 // Based on empirical results, FPMT gains with multi-tile are significant when
1234 // more parallel frames are available. Use FPMT with multi-tile encode only
1235 // when sufficient threads are available for parallel encode of
1236 // MAX_PARALLEL_FRAMES frames.
1237 if (oxcf->tile_cfg.tile_columns > 0 || oxcf->tile_cfg.tile_rows > 0) {
1238 if (num_fp_contexts < MAX_PARALLEL_FRAMES) num_fp_contexts = 1;
1239 }
1240
1241 num_fp_contexts = AOMMAX(1, AOMMIN(num_fp_contexts, MAX_PARALLEL_FRAMES));
1242 // Limit recalculated num_fp_contexts to ppi->num_fp_contexts.
1243 num_fp_contexts = (ppi->num_fp_contexts == 1)
1244 ? num_fp_contexts
1245 : AOMMIN(num_fp_contexts, ppi->num_fp_contexts);
1246 if (num_fp_contexts > 1) {
1247 ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] =
1248 AOMMIN(max_num_enc_workers * num_fp_contexts, oxcf->max_threads);
1249 }
1250 return num_fp_contexts;
1251 }
1252
1253 // Computes the number of workers to process each of the parallel frames.
compute_num_workers_per_frame(const int num_workers,const int parallel_frame_count)1254 static AOM_INLINE int compute_num_workers_per_frame(
1255 const int num_workers, const int parallel_frame_count) {
1256 // Number of level 2 workers per frame context (floor division).
1257 int workers_per_frame = (num_workers / parallel_frame_count);
1258 return workers_per_frame;
1259 }
1260
1261 static AOM_INLINE void restore_workers_after_fpmt(
1262 AV1_PRIMARY *ppi, int parallel_frame_count, int num_fpmt_workers_prepared);
1263
1264 // Prepare level 1 workers. This function is only called for
1265 // parallel_frame_count > 1. This function populates the mt_info structure of
1266 // frame level contexts appropriately by dividing the total number of available
1267 // workers amongst the frames as level 2 workers. It also populates the hook and
1268 // data members of level 1 workers.
prepare_fpmt_workers(AV1_PRIMARY * ppi,AV1_COMP_DATA * first_cpi_data,AVxWorkerHook hook,int parallel_frame_count)1269 static AOM_INLINE void prepare_fpmt_workers(AV1_PRIMARY *ppi,
1270 AV1_COMP_DATA *first_cpi_data,
1271 AVxWorkerHook hook,
1272 int parallel_frame_count) {
1273 assert(parallel_frame_count <= ppi->num_fp_contexts &&
1274 parallel_frame_count > 1);
1275
1276 PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1277 int num_workers = p_mt_info->num_workers;
1278
1279 volatile int frame_idx = 0;
1280 volatile int i = 0;
1281 while (i < num_workers) {
1282 // Assign level 1 worker
1283 AVxWorker *frame_worker = p_mt_info->p_workers[frame_idx] =
1284 &p_mt_info->workers[i];
1285 AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx];
1286 MultiThreadInfo *mt_info = &cur_cpi->mt_info;
1287 // This 'aom_internal_error_info' pointer is not derived from the local
1288 // pointer ('AV1_COMMON *const cm') to silence the compiler warning
1289 // "variable 'cm' might be clobbered by 'longjmp' or 'vfork' [-Wclobbered]".
1290 struct aom_internal_error_info *const error = cur_cpi->common.error;
1291
1292 // The jmp_buf is valid only within the scope of the function that calls
1293 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
1294 // before it returns.
1295 if (setjmp(error->jmp)) {
1296 error->setjmp = 0;
1297 restore_workers_after_fpmt(ppi, parallel_frame_count, i);
1298 aom_internal_error_copy(&ppi->error, error);
1299 }
1300 error->setjmp = 1;
1301
1302 AV1_COMMON *const cm = &cur_cpi->common;
1303 // Assign start of level 2 worker pool
1304 mt_info->workers = &p_mt_info->workers[i];
1305 mt_info->tile_thr_data = &p_mt_info->tile_thr_data[i];
1306 // Assign number of workers for each frame in the parallel encode set.
1307 mt_info->num_workers = compute_num_workers_per_frame(
1308 num_workers - i, parallel_frame_count - frame_idx);
1309 for (int j = MOD_FP; j < NUM_MT_MODULES; j++) {
1310 mt_info->num_mod_workers[j] =
1311 AOMMIN(mt_info->num_workers, p_mt_info->num_mod_workers[j]);
1312 }
1313 if (p_mt_info->cdef_worker != NULL) {
1314 mt_info->cdef_worker = &p_mt_info->cdef_worker[i];
1315
1316 // Back up the original cdef_worker pointers.
1317 mt_info->restore_state_buf.cdef_srcbuf = mt_info->cdef_worker->srcbuf;
1318 const int num_planes = av1_num_planes(cm);
1319 for (int plane = 0; plane < num_planes; plane++)
1320 mt_info->restore_state_buf.cdef_colbuf[plane] =
1321 mt_info->cdef_worker->colbuf[plane];
1322 }
1323 #if !CONFIG_REALTIME_ONLY
1324 if (is_restoration_used(cm)) {
1325 // Back up the original LR buffers before update.
1326 int idx = i + mt_info->num_workers - 1;
1327 assert(idx < mt_info->lr_row_sync.num_workers);
1328 mt_info->restore_state_buf.rst_tmpbuf =
1329 mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf;
1330 mt_info->restore_state_buf.rlbs =
1331 mt_info->lr_row_sync.lrworkerdata[idx].rlbs;
1332
1333 // Update LR buffers.
1334 mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf = cm->rst_tmpbuf;
1335 mt_info->lr_row_sync.lrworkerdata[idx].rlbs = cm->rlbs;
1336 }
1337 #endif
1338
1339 i += mt_info->num_workers;
1340
1341 // At this stage, the thread specific CDEF buffers for the current frame's
1342 // 'common' and 'cdef_sync' only need to be allocated. 'cdef_worker' has
1343 // already been allocated across parallel frames.
1344 av1_alloc_cdef_buffers(cm, &p_mt_info->cdef_worker, &mt_info->cdef_sync,
1345 p_mt_info->num_workers, 0);
1346
1347 frame_worker->hook = hook;
1348 frame_worker->data1 = cur_cpi;
1349 frame_worker->data2 = (frame_idx == 0)
1350 ? first_cpi_data
1351 : &ppi->parallel_frames_data[frame_idx - 1];
1352 frame_idx++;
1353 error->setjmp = 0;
1354 }
1355 p_mt_info->p_num_workers = parallel_frame_count;
1356 }
1357
1358 // Launch level 1 workers to perform frame parallel encode.
launch_fpmt_workers(AV1_PRIMARY * ppi)1359 static AOM_INLINE void launch_fpmt_workers(AV1_PRIMARY *ppi) {
1360 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1361 int num_workers = ppi->p_mt_info.p_num_workers;
1362
1363 for (int i = num_workers - 1; i >= 0; i--) {
1364 AVxWorker *const worker = ppi->p_mt_info.p_workers[i];
1365 if (i == 0)
1366 winterface->execute(worker);
1367 else
1368 winterface->launch(worker);
1369 }
1370 }
1371
1372 // Restore worker states after parallel encode.
restore_workers_after_fpmt(AV1_PRIMARY * ppi,int parallel_frame_count,int num_fpmt_workers_prepared)1373 static AOM_INLINE void restore_workers_after_fpmt(
1374 AV1_PRIMARY *ppi, int parallel_frame_count, int num_fpmt_workers_prepared) {
1375 assert(parallel_frame_count <= ppi->num_fp_contexts &&
1376 parallel_frame_count > 1);
1377 (void)parallel_frame_count;
1378
1379 PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
1380
1381 int frame_idx = 0;
1382 int i = 0;
1383 while (i < num_fpmt_workers_prepared) {
1384 AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx];
1385 MultiThreadInfo *mt_info = &cur_cpi->mt_info;
1386 const AV1_COMMON *const cm = &cur_cpi->common;
1387 const int num_planes = av1_num_planes(cm);
1388
1389 // Restore the original cdef_worker pointers.
1390 if (p_mt_info->cdef_worker != NULL) {
1391 mt_info->cdef_worker->srcbuf = mt_info->restore_state_buf.cdef_srcbuf;
1392 for (int plane = 0; plane < num_planes; plane++)
1393 mt_info->cdef_worker->colbuf[plane] =
1394 mt_info->restore_state_buf.cdef_colbuf[plane];
1395 }
1396 #if !CONFIG_REALTIME_ONLY
1397 if (is_restoration_used(cm)) {
1398 // Restore the original LR buffers.
1399 int idx = i + mt_info->num_workers - 1;
1400 assert(idx < mt_info->lr_row_sync.num_workers);
1401 mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf =
1402 mt_info->restore_state_buf.rst_tmpbuf;
1403 mt_info->lr_row_sync.lrworkerdata[idx].rlbs =
1404 mt_info->restore_state_buf.rlbs;
1405 }
1406 #endif
1407
1408 frame_idx++;
1409 i += mt_info->num_workers;
1410 }
1411 }
1412
1413 // Synchronize level 1 workers.
sync_fpmt_workers(AV1_PRIMARY * ppi,int frames_in_parallel_set)1414 static AOM_INLINE void sync_fpmt_workers(AV1_PRIMARY *ppi,
1415 int frames_in_parallel_set) {
1416 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1417 int num_workers = ppi->p_mt_info.p_num_workers;
1418 int had_error = 0;
1419 // Points to error in the earliest display order frame in the parallel set.
1420 const struct aom_internal_error_info *error = NULL;
1421
1422 // Encoding ends.
1423 for (int i = num_workers - 1; i >= 0; --i) {
1424 AVxWorker *const worker = ppi->p_mt_info.p_workers[i];
1425 if (!winterface->sync(worker)) {
1426 had_error = 1;
1427 error = ppi->parallel_cpi[i]->common.error;
1428 }
1429 }
1430
1431 restore_workers_after_fpmt(ppi, frames_in_parallel_set,
1432 ppi->p_mt_info.num_workers);
1433
1434 if (had_error) aom_internal_error_copy(&ppi->error, error);
1435 }
1436
get_compressed_data_hook(void * arg1,void * arg2)1437 static int get_compressed_data_hook(void *arg1, void *arg2) {
1438 AV1_COMP *cpi = (AV1_COMP *)arg1;
1439 AV1_COMP_DATA *cpi_data = (AV1_COMP_DATA *)arg2;
1440 int status = av1_get_compressed_data(cpi, cpi_data);
1441
1442 // AOM_CODEC_OK(0) means no error.
1443 return !status;
1444 }
1445
1446 // This function encodes the raw frame data for each frame in parallel encode
1447 // set, and outputs the frame bit stream to the designated buffers.
av1_compress_parallel_frames(AV1_PRIMARY * const ppi,AV1_COMP_DATA * const first_cpi_data)1448 void av1_compress_parallel_frames(AV1_PRIMARY *const ppi,
1449 AV1_COMP_DATA *const first_cpi_data) {
1450 // Bitmask for the frame buffers referenced by cpi->scaled_ref_buf
1451 // corresponding to frames in the current parallel encode set.
1452 int ref_buffers_used_map = 0;
1453 int frames_in_parallel_set = av1_init_parallel_frame_context(
1454 first_cpi_data, ppi, &ref_buffers_used_map);
1455 prepare_fpmt_workers(ppi, first_cpi_data, get_compressed_data_hook,
1456 frames_in_parallel_set);
1457 launch_fpmt_workers(ppi);
1458 sync_fpmt_workers(ppi, frames_in_parallel_set);
1459
1460 // Release cpi->scaled_ref_buf corresponding to frames in the current parallel
1461 // encode set.
1462 for (int i = 0; i < frames_in_parallel_set; ++i) {
1463 av1_release_scaled_references_fpmt(ppi->parallel_cpi[i]);
1464 }
1465 av1_decrement_ref_counts_fpmt(ppi->cpi->common.buffer_pool,
1466 ref_buffers_used_map);
1467 }
1468
launch_workers(MultiThreadInfo * const mt_info,int num_workers)1469 static AOM_INLINE void launch_workers(MultiThreadInfo *const mt_info,
1470 int num_workers) {
1471 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1472 for (int i = num_workers - 1; i >= 0; i--) {
1473 AVxWorker *const worker = &mt_info->workers[i];
1474 worker->had_error = 0;
1475 if (i == 0)
1476 winterface->execute(worker);
1477 else
1478 winterface->launch(worker);
1479 }
1480 }
1481
sync_enc_workers(MultiThreadInfo * const mt_info,AV1_COMMON * const cm,int num_workers)1482 static AOM_INLINE void sync_enc_workers(MultiThreadInfo *const mt_info,
1483 AV1_COMMON *const cm, int num_workers) {
1484 const AVxWorkerInterface *const winterface = aom_get_worker_interface();
1485 const AVxWorker *const worker_main = &mt_info->workers[0];
1486 int had_error = worker_main->had_error;
1487 struct aom_internal_error_info error_info;
1488
1489 // Read the error_info of main thread.
1490 if (had_error) {
1491 error_info = ((EncWorkerData *)worker_main->data1)->error_info;
1492 }
1493
1494 // Encoding ends.
1495 for (int i = num_workers - 1; i > 0; i--) {
1496 AVxWorker *const worker = &mt_info->workers[i];
1497 if (!winterface->sync(worker)) {
1498 had_error = 1;
1499 error_info = ((EncWorkerData *)worker->data1)->error_info;
1500 }
1501 }
1502
1503 if (had_error) aom_internal_error_copy(cm->error, &error_info);
1504
1505 // Restore xd->error_info of the main thread back to cm->error so that the
1506 // multithreaded code, when executed using a single thread, has a valid
1507 // xd->error_info.
1508 MACROBLOCKD *const xd = &((EncWorkerData *)worker_main->data1)->td->mb.e_mbd;
1509 xd->error_info = cm->error;
1510 }
1511
accumulate_counters_enc_workers(AV1_COMP * cpi,int num_workers)1512 static AOM_INLINE void accumulate_counters_enc_workers(AV1_COMP *cpi,
1513 int num_workers) {
1514 for (int i = num_workers - 1; i >= 0; i--) {
1515 AVxWorker *const worker = &cpi->mt_info.workers[i];
1516 EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
1517 cpi->intrabc_used |= thread_data->td->intrabc_used;
1518 cpi->deltaq_used |= thread_data->td->deltaq_used;
1519 // Accumulate rtc counters.
1520 if (!frame_is_intra_only(&cpi->common))
1521 av1_accumulate_rtc_counters(cpi, &thread_data->td->mb);
1522 cpi->palette_pixel_num += thread_data->td->mb.palette_pixels;
1523 if (thread_data->td != &cpi->td) {
1524 // Keep these conditional expressions in sync with the corresponding ones
1525 // in prepare_enc_workers().
1526 if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1527 aom_free(thread_data->td->mv_costs_alloc);
1528 thread_data->td->mv_costs_alloc = NULL;
1529 }
1530 if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1531 aom_free(thread_data->td->dv_costs_alloc);
1532 thread_data->td->dv_costs_alloc = NULL;
1533 }
1534 }
1535 av1_dealloc_mb_data(&thread_data->td->mb, av1_num_planes(&cpi->common));
1536
1537 // Accumulate counters.
1538 if (i > 0) {
1539 av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts);
1540 accumulate_rd_opt(&cpi->td, thread_data->td);
1541 cpi->td.mb.txfm_search_info.txb_split_count +=
1542 thread_data->td->mb.txfm_search_info.txb_split_count;
1543 #if CONFIG_SPEED_STATS
1544 cpi->td.mb.txfm_search_info.tx_search_count +=
1545 thread_data->td->mb.txfm_search_info.tx_search_count;
1546 #endif // CONFIG_SPEED_STATS
1547 }
1548 }
1549 }
1550
prepare_enc_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)1551 static AOM_INLINE void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
1552 int num_workers) {
1553 MultiThreadInfo *const mt_info = &cpi->mt_info;
1554 AV1_COMMON *const cm = &cpi->common;
1555 for (int i = num_workers - 1; i >= 0; i--) {
1556 AVxWorker *const worker = &mt_info->workers[i];
1557 EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
1558
1559 worker->hook = hook;
1560 worker->data1 = thread_data;
1561 worker->data2 = NULL;
1562
1563 thread_data->thread_id = i;
1564 // Set the starting tile for each thread.
1565 thread_data->start = i;
1566
1567 thread_data->cpi = cpi;
1568 if (i == 0) {
1569 thread_data->td = &cpi->td;
1570 } else {
1571 thread_data->td = thread_data->original_td;
1572 }
1573
1574 thread_data->td->intrabc_used = 0;
1575 thread_data->td->deltaq_used = 0;
1576 thread_data->td->abs_sum_level = 0;
1577 thread_data->td->rd_counts.seg_tmp_pred_cost[0] = 0;
1578 thread_data->td->rd_counts.seg_tmp_pred_cost[1] = 0;
1579
1580 // Before encoding a frame, copy the thread data from cpi.
1581 if (thread_data->td != &cpi->td) {
1582 thread_data->td->mb = cpi->td.mb;
1583 thread_data->td->rd_counts = cpi->td.rd_counts;
1584 thread_data->td->mb.obmc_buffer = thread_data->td->obmc_buffer;
1585
1586 for (int x = 0; x < 2; x++) {
1587 for (int y = 0; y < 2; y++) {
1588 memcpy(thread_data->td->hash_value_buffer[x][y],
1589 cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y],
1590 AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
1591 sizeof(*thread_data->td->hash_value_buffer[0][0]));
1592 thread_data->td->mb.intrabc_hash_info.hash_value_buffer[x][y] =
1593 thread_data->td->hash_value_buffer[x][y];
1594 }
1595 }
1596 // Keep these conditional expressions in sync with the corresponding ones
1597 // in accumulate_counters_enc_workers().
1598 if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1599 CHECK_MEM_ERROR(
1600 cm, thread_data->td->mv_costs_alloc,
1601 (MvCosts *)aom_malloc(sizeof(*thread_data->td->mv_costs_alloc)));
1602 thread_data->td->mb.mv_costs = thread_data->td->mv_costs_alloc;
1603 memcpy(thread_data->td->mb.mv_costs, cpi->td.mb.mv_costs,
1604 sizeof(MvCosts));
1605 }
1606 if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
1607 // Reset dv_costs to NULL for worker threads when dv cost update is
1608 // enabled so that only dv_cost_upd_level needs to be checked before the
1609 // aom_free() call for the same.
1610 thread_data->td->mb.dv_costs = NULL;
1611 if (av1_need_dv_costs(cpi)) {
1612 CHECK_MEM_ERROR(cm, thread_data->td->dv_costs_alloc,
1613 (IntraBCMVCosts *)aom_malloc(
1614 sizeof(*thread_data->td->dv_costs_alloc)));
1615 thread_data->td->mb.dv_costs = thread_data->td->dv_costs_alloc;
1616 memcpy(thread_data->td->mb.dv_costs, cpi->td.mb.dv_costs,
1617 sizeof(IntraBCMVCosts));
1618 }
1619 }
1620 }
1621 av1_alloc_mb_data(cpi, &thread_data->td->mb);
1622
1623 // Reset rtc counters.
1624 av1_init_rtc_counters(&thread_data->td->mb);
1625
1626 thread_data->td->mb.palette_pixels = 0;
1627
1628 if (thread_data->td->counts != &cpi->counts) {
1629 memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts));
1630 }
1631
1632 if (i > 0) {
1633 thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer;
1634 thread_data->td->mb.comp_rd_buffer = thread_data->td->comp_rd_buffer;
1635 thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
1636 for (int j = 0; j < 2; ++j) {
1637 thread_data->td->mb.tmp_pred_bufs[j] =
1638 thread_data->td->tmp_pred_bufs[j];
1639 }
1640 thread_data->td->mb.pixel_gradient_info =
1641 thread_data->td->pixel_gradient_info;
1642
1643 thread_data->td->mb.src_var_info_of_4x4_sub_blocks =
1644 thread_data->td->src_var_info_of_4x4_sub_blocks;
1645
1646 thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
1647 for (int j = 0; j < 2; ++j) {
1648 thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] =
1649 thread_data->td->mb.tmp_pred_bufs[j];
1650 }
1651 }
1652 }
1653 }
1654
1655 #if !CONFIG_REALTIME_ONLY
fp_prepare_enc_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)1656 static AOM_INLINE void fp_prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
1657 int num_workers) {
1658 AV1_COMMON *const cm = &cpi->common;
1659 MultiThreadInfo *const mt_info = &cpi->mt_info;
1660 for (int i = num_workers - 1; i >= 0; i--) {
1661 AVxWorker *const worker = &mt_info->workers[i];
1662 EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
1663
1664 worker->hook = hook;
1665 worker->data1 = thread_data;
1666 worker->data2 = NULL;
1667
1668 thread_data->thread_id = i;
1669 // Set the starting tile for each thread.
1670 thread_data->start = i;
1671
1672 thread_data->cpi = cpi;
1673 if (i == 0) {
1674 thread_data->td = &cpi->td;
1675 } else {
1676 thread_data->td = thread_data->original_td;
1677 // Before encoding a frame, copy the thread data from cpi.
1678 thread_data->td->mb = cpi->td.mb;
1679 }
1680 av1_alloc_src_diff_buf(cm, &thread_data->td->mb);
1681 }
1682 }
1683 #endif
1684
1685 // Computes the number of workers for row multi-threading of encoding stage
compute_num_enc_row_mt_workers(const AV1_COMMON * cm,int max_threads)1686 static AOM_INLINE int compute_num_enc_row_mt_workers(const AV1_COMMON *cm,
1687 int max_threads) {
1688 TileInfo tile_info;
1689 const int tile_cols = cm->tiles.cols;
1690 const int tile_rows = cm->tiles.rows;
1691 int total_num_threads_row_mt = 0;
1692 for (int row = 0; row < tile_rows; row++) {
1693 for (int col = 0; col < tile_cols; col++) {
1694 av1_tile_init(&tile_info, cm, row, col);
1695 const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, &tile_info);
1696 const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, &tile_info);
1697 total_num_threads_row_mt +=
1698 AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile);
1699 }
1700 }
1701 return AOMMIN(max_threads, total_num_threads_row_mt);
1702 }
1703
1704 // Computes the number of workers for tile multi-threading of encoding stage
compute_num_enc_tile_mt_workers(const AV1_COMMON * cm,int max_threads)1705 static AOM_INLINE int compute_num_enc_tile_mt_workers(const AV1_COMMON *cm,
1706 int max_threads) {
1707 const int tile_cols = cm->tiles.cols;
1708 const int tile_rows = cm->tiles.rows;
1709 return AOMMIN(max_threads, tile_cols * tile_rows);
1710 }
1711
1712 // Find max worker of all MT stages
av1_get_max_num_workers(const AV1_COMP * cpi)1713 int av1_get_max_num_workers(const AV1_COMP *cpi) {
1714 int max_num_workers = 0;
1715 for (int i = MOD_FP; i < NUM_MT_MODULES; i++)
1716 max_num_workers =
1717 AOMMAX(cpi->ppi->p_mt_info.num_mod_workers[i], max_num_workers);
1718 assert(max_num_workers >= 1);
1719 return AOMMIN(max_num_workers, cpi->oxcf.max_threads);
1720 }
1721
1722 // Computes the number of workers for encoding stage (row/tile multi-threading)
av1_compute_num_enc_workers(const AV1_COMP * cpi,int max_workers)1723 int av1_compute_num_enc_workers(const AV1_COMP *cpi, int max_workers) {
1724 if (max_workers <= 1) return 1;
1725 if (cpi->oxcf.row_mt)
1726 return compute_num_enc_row_mt_workers(&cpi->common, max_workers);
1727 else
1728 return compute_num_enc_tile_mt_workers(&cpi->common, max_workers);
1729 }
1730
av1_encode_tiles_mt(AV1_COMP * cpi)1731 void av1_encode_tiles_mt(AV1_COMP *cpi) {
1732 AV1_COMMON *const cm = &cpi->common;
1733 MultiThreadInfo *const mt_info = &cpi->mt_info;
1734 const int tile_cols = cm->tiles.cols;
1735 const int tile_rows = cm->tiles.rows;
1736 int num_workers = mt_info->num_mod_workers[MOD_ENC];
1737
1738 assert(IMPLIES(cpi->tile_data == NULL,
1739 cpi->allocated_tiles < tile_cols * tile_rows));
1740 if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi);
1741
1742 av1_init_tile_data(cpi);
1743 num_workers = AOMMIN(num_workers, mt_info->num_workers);
1744
1745 prepare_enc_workers(cpi, enc_worker_hook, num_workers);
1746 launch_workers(&cpi->mt_info, num_workers);
1747 sync_enc_workers(&cpi->mt_info, cm, num_workers);
1748 accumulate_counters_enc_workers(cpi, num_workers);
1749 }
1750
1751 // Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int'
1752 // members, so we treat it as an array, and sum over the whole length.
av1_accumulate_frame_counts(FRAME_COUNTS * acc_counts,const FRAME_COUNTS * counts)1753 void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts,
1754 const FRAME_COUNTS *counts) {
1755 unsigned int *const acc = (unsigned int *)acc_counts;
1756 const unsigned int *const cnt = (const unsigned int *)counts;
1757
1758 const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int);
1759
1760 for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i];
1761 }
1762
1763 // Computes the maximum number of sb rows and sb_cols across tiles which are
1764 // used to allocate memory for multi-threaded encoding with row-mt=1.
compute_max_sb_rows_cols(const AV1_COMMON * cm,int * max_sb_rows_in_tile,int * max_sb_cols_in_tile)1765 static AOM_INLINE void compute_max_sb_rows_cols(const AV1_COMMON *cm,
1766 int *max_sb_rows_in_tile,
1767 int *max_sb_cols_in_tile) {
1768 const int tile_rows = cm->tiles.rows;
1769 const int mib_size_log2 = cm->seq_params->mib_size_log2;
1770 const int num_mi_rows = cm->mi_params.mi_rows;
1771 const int *const row_start_sb = cm->tiles.row_start_sb;
1772 for (int row = 0; row < tile_rows; row++) {
1773 const int mi_row_start = row_start_sb[row] << mib_size_log2;
1774 const int mi_row_end =
1775 AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows);
1776 const int num_sb_rows_in_tile =
1777 CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, mib_size_log2);
1778 *max_sb_rows_in_tile = AOMMAX(*max_sb_rows_in_tile, num_sb_rows_in_tile);
1779 }
1780
1781 const int tile_cols = cm->tiles.cols;
1782 const int num_mi_cols = cm->mi_params.mi_cols;
1783 const int *const col_start_sb = cm->tiles.col_start_sb;
1784 for (int col = 0; col < tile_cols; col++) {
1785 const int mi_col_start = col_start_sb[col] << mib_size_log2;
1786 const int mi_col_end =
1787 AOMMIN(col_start_sb[col + 1] << mib_size_log2, num_mi_cols);
1788 const int num_sb_cols_in_tile =
1789 CEIL_POWER_OF_TWO(mi_col_end - mi_col_start, mib_size_log2);
1790 *max_sb_cols_in_tile = AOMMAX(*max_sb_cols_in_tile, num_sb_cols_in_tile);
1791 }
1792 }
1793
1794 #if !CONFIG_REALTIME_ONLY
1795 // Computes the number of workers for firstpass stage (row/tile multi-threading)
av1_fp_compute_num_enc_workers(AV1_COMP * cpi)1796 int av1_fp_compute_num_enc_workers(AV1_COMP *cpi) {
1797 AV1_COMMON *cm = &cpi->common;
1798 const int tile_cols = cm->tiles.cols;
1799 const int tile_rows = cm->tiles.rows;
1800 int total_num_threads_row_mt = 0;
1801 TileInfo tile_info;
1802
1803 if (cpi->oxcf.max_threads <= 1) return 1;
1804
1805 for (int row = 0; row < tile_rows; row++) {
1806 for (int col = 0; col < tile_cols; col++) {
1807 av1_tile_init(&tile_info, cm, row, col);
1808 const int num_mb_rows_in_tile =
1809 av1_get_unit_rows_in_tile(&tile_info, cpi->fp_block_size);
1810 const int num_mb_cols_in_tile =
1811 av1_get_unit_cols_in_tile(&tile_info, cpi->fp_block_size);
1812 total_num_threads_row_mt +=
1813 AOMMIN((num_mb_cols_in_tile + 1) >> 1, num_mb_rows_in_tile);
1814 }
1815 }
1816 return AOMMIN(cpi->oxcf.max_threads, total_num_threads_row_mt);
1817 }
1818
1819 // Computes the maximum number of mb_rows for row multi-threading of firstpass
1820 // stage
fp_compute_max_mb_rows(const AV1_COMMON * cm,BLOCK_SIZE fp_block_size)1821 static AOM_INLINE int fp_compute_max_mb_rows(const AV1_COMMON *cm,
1822 BLOCK_SIZE fp_block_size) {
1823 const int tile_rows = cm->tiles.rows;
1824 const int unit_height_log2 = mi_size_high_log2[fp_block_size];
1825 const int mib_size_log2 = cm->seq_params->mib_size_log2;
1826 const int num_mi_rows = cm->mi_params.mi_rows;
1827 const int *const row_start_sb = cm->tiles.row_start_sb;
1828 int max_mb_rows = 0;
1829
1830 for (int row = 0; row < tile_rows; row++) {
1831 const int mi_row_start = row_start_sb[row] << mib_size_log2;
1832 const int mi_row_end =
1833 AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows);
1834 const int num_mb_rows_in_tile =
1835 CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, unit_height_log2);
1836 max_mb_rows = AOMMAX(max_mb_rows, num_mb_rows_in_tile);
1837 }
1838 return max_mb_rows;
1839 }
1840 #endif
1841
lpf_pipeline_mt_init(AV1_COMP * cpi,int num_workers)1842 static void lpf_pipeline_mt_init(AV1_COMP *cpi, int num_workers) {
1843 // Pipelining of loop-filtering after encoding is enabled when loop-filter
1844 // level is chosen based on quantizer and frame type. It is disabled in case
1845 // of 'LOOPFILTER_SELECTIVELY' as the stats collected during encoding stage
1846 // decides the filter level. Loop-filtering is disabled in case
1847 // of non-reference frames and for frames with intra block copy tool enabled.
1848 AV1_COMMON *cm = &cpi->common;
1849 const int use_loopfilter = is_loopfilter_used(cm);
1850 const int use_superres = av1_superres_scaled(cm);
1851 const int use_cdef = is_cdef_used(cm);
1852 const int use_restoration = is_restoration_used(cm);
1853 MultiThreadInfo *const mt_info = &cpi->mt_info;
1854 MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
1855
1856 const unsigned int skip_apply_postproc_filters =
1857 derive_skip_apply_postproc_filters(cpi, use_loopfilter, use_cdef,
1858 use_superres, use_restoration);
1859 mt_info->pipeline_lpf_mt_with_enc =
1860 (cpi->oxcf.mode == REALTIME) && (cpi->oxcf.speed >= 5) &&
1861 (cpi->sf.lpf_sf.lpf_pick == LPF_PICK_FROM_Q) &&
1862 (cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY) &&
1863 !cpi->ppi->rtc_ref.non_reference_frame && !cm->features.allow_intrabc &&
1864 ((skip_apply_postproc_filters & SKIP_APPLY_LOOPFILTER) == 0);
1865
1866 if (!mt_info->pipeline_lpf_mt_with_enc) return;
1867
1868 set_postproc_filter_default_params(cm);
1869
1870 if (!use_loopfilter) return;
1871
1872 const LPF_PICK_METHOD method = cpi->sf.lpf_sf.lpf_pick;
1873 assert(method == LPF_PICK_FROM_Q);
1874 assert(cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY);
1875
1876 av1_pick_filter_level(cpi->source, cpi, method);
1877
1878 struct loopfilter *lf = &cm->lf;
1879 const int plane_start = 0;
1880 const int plane_end = av1_num_planes(cm);
1881 int planes_to_lf[MAX_MB_PLANE];
1882 if (lpf_mt_with_enc_enabled(cpi->mt_info.pipeline_lpf_mt_with_enc,
1883 lf->filter_level)) {
1884 set_planes_to_loop_filter(lf, planes_to_lf, plane_start, plane_end);
1885 int lpf_opt_level = get_lpf_opt_level(&cpi->sf);
1886 assert(lpf_opt_level == 2);
1887
1888 const int start_mi_row = 0;
1889 const int end_mi_row = start_mi_row + cm->mi_params.mi_rows;
1890
1891 av1_loop_filter_frame_init(cm, plane_start, plane_end);
1892
1893 assert(mt_info->num_mod_workers[MOD_ENC] ==
1894 mt_info->num_mod_workers[MOD_LPF]);
1895 loop_filter_frame_mt_init(cm, start_mi_row, end_mi_row, planes_to_lf,
1896 mt_info->num_mod_workers[MOD_LPF],
1897 &mt_info->lf_row_sync, lpf_opt_level,
1898 cm->seq_params->mib_size_log2);
1899
1900 for (int i = num_workers - 1; i >= 0; i--) {
1901 EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
1902 // Initialize loopfilter data
1903 thread_data->lf_sync = &mt_info->lf_row_sync;
1904 thread_data->lf_data = &thread_data->lf_sync->lfdata[i];
1905 loop_filter_data_reset(thread_data->lf_data, &cm->cur_frame->buf, cm, xd);
1906 }
1907 }
1908 }
1909
av1_encode_tiles_row_mt(AV1_COMP * cpi)1910 void av1_encode_tiles_row_mt(AV1_COMP *cpi) {
1911 AV1_COMMON *const cm = &cpi->common;
1912 MultiThreadInfo *const mt_info = &cpi->mt_info;
1913 AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
1914 const int tile_cols = cm->tiles.cols;
1915 const int tile_rows = cm->tiles.rows;
1916 const int sb_rows_in_frame = get_sb_rows_in_frame(cm);
1917 int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
1918 int max_sb_rows_in_tile = 0, max_sb_cols_in_tile = 0;
1919 int num_workers = mt_info->num_mod_workers[MOD_ENC];
1920
1921 compute_max_sb_rows_cols(cm, &max_sb_rows_in_tile, &max_sb_cols_in_tile);
1922 const bool alloc_row_mt_mem =
1923 (enc_row_mt->allocated_tile_cols != tile_cols ||
1924 enc_row_mt->allocated_tile_rows != tile_rows ||
1925 enc_row_mt->allocated_rows != max_sb_rows_in_tile ||
1926 enc_row_mt->allocated_cols != (max_sb_cols_in_tile - 1) ||
1927 enc_row_mt->allocated_sb_rows != sb_rows_in_frame);
1928 const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows;
1929
1930 assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data));
1931 if (alloc_tile_data) {
1932 av1_alloc_tile_data(cpi);
1933 }
1934
1935 assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem));
1936 if (alloc_row_mt_mem) {
1937 row_mt_mem_alloc(cpi, max_sb_rows_in_tile, max_sb_cols_in_tile,
1938 cpi->oxcf.algo_cfg.cdf_update_mode);
1939 }
1940
1941 num_workers = AOMMIN(num_workers, mt_info->num_workers);
1942 lpf_pipeline_mt_init(cpi, num_workers);
1943
1944 av1_init_tile_data(cpi);
1945
1946 memset(thread_id_to_tile_id, -1,
1947 sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
1948 memset(enc_row_mt->num_tile_cols_done, 0,
1949 sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows_in_frame);
1950 enc_row_mt->row_mt_exit = false;
1951
1952 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
1953 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
1954 int tile_index = tile_row * tile_cols + tile_col;
1955 TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
1956 AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
1957
1958 // Initialize num_finished_cols to -1 for all rows.
1959 memset(row_mt_sync->num_finished_cols, -1,
1960 sizeof(*row_mt_sync->num_finished_cols) * max_sb_rows_in_tile);
1961 row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
1962 row_mt_sync->num_threads_working = 0;
1963 row_mt_sync->intrabc_extra_top_right_sb_delay =
1964 av1_get_intrabc_extra_top_right_sb_delay(cm);
1965
1966 av1_inter_mode_data_init(this_tile);
1967 av1_zero_above_context(cm, &cpi->td.mb.e_mbd,
1968 this_tile->tile_info.mi_col_start,
1969 this_tile->tile_info.mi_col_end, tile_row);
1970 }
1971 }
1972
1973 assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
1974 num_workers);
1975 prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers);
1976 launch_workers(&cpi->mt_info, num_workers);
1977 sync_enc_workers(&cpi->mt_info, cm, num_workers);
1978 if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi);
1979 accumulate_counters_enc_workers(cpi, num_workers);
1980 }
1981
1982 #if !CONFIG_REALTIME_ONLY
dealloc_thread_data_src_diff_buf(AV1_COMP * cpi,int num_workers)1983 static void dealloc_thread_data_src_diff_buf(AV1_COMP *cpi, int num_workers) {
1984 for (int i = num_workers - 1; i >= 0; --i) {
1985 EncWorkerData *const thread_data = &cpi->mt_info.tile_thr_data[i];
1986 if (thread_data->td != &cpi->td)
1987 av1_dealloc_src_diff_buf(&thread_data->td->mb,
1988 av1_num_planes(&cpi->common));
1989 }
1990 }
1991
av1_fp_encode_tiles_row_mt(AV1_COMP * cpi)1992 void av1_fp_encode_tiles_row_mt(AV1_COMP *cpi) {
1993 AV1_COMMON *const cm = &cpi->common;
1994 MultiThreadInfo *const mt_info = &cpi->mt_info;
1995 AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
1996 const int tile_cols = cm->tiles.cols;
1997 const int tile_rows = cm->tiles.rows;
1998 int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
1999 int num_workers = 0;
2000 int max_mb_rows = 0;
2001
2002 max_mb_rows = fp_compute_max_mb_rows(cm, cpi->fp_block_size);
2003 const bool alloc_row_mt_mem = enc_row_mt->allocated_tile_cols != tile_cols ||
2004 enc_row_mt->allocated_tile_rows != tile_rows ||
2005 enc_row_mt->allocated_rows != max_mb_rows;
2006 const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows;
2007
2008 assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data));
2009 if (alloc_tile_data) {
2010 av1_alloc_tile_data(cpi);
2011 }
2012
2013 assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem));
2014 if (alloc_row_mt_mem) {
2015 row_mt_mem_alloc(cpi, max_mb_rows, -1, 0);
2016 }
2017
2018 av1_init_tile_data(cpi);
2019
2020 // For pass = 1, compute the no. of workers needed. For single-pass encode
2021 // (pass = 0), no. of workers are already computed.
2022 if (mt_info->num_mod_workers[MOD_FP] == 0)
2023 num_workers = av1_fp_compute_num_enc_workers(cpi);
2024 else
2025 num_workers = mt_info->num_mod_workers[MOD_FP];
2026
2027 memset(thread_id_to_tile_id, -1,
2028 sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
2029 enc_row_mt->firstpass_mt_exit = false;
2030
2031 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
2032 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
2033 int tile_index = tile_row * tile_cols + tile_col;
2034 TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
2035 AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
2036
2037 // Initialize num_finished_cols to -1 for all rows.
2038 memset(row_mt_sync->num_finished_cols, -1,
2039 sizeof(*row_mt_sync->num_finished_cols) * max_mb_rows);
2040 row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
2041 row_mt_sync->num_threads_working = 0;
2042
2043 // intraBC mode is not evaluated during first-pass encoding. Hence, no
2044 // additional top-right delay is required.
2045 row_mt_sync->intrabc_extra_top_right_sb_delay = 0;
2046 }
2047 }
2048
2049 num_workers = AOMMIN(num_workers, mt_info->num_workers);
2050 assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
2051 num_workers);
2052 fp_prepare_enc_workers(cpi, fp_enc_row_mt_worker_hook, num_workers);
2053 launch_workers(&cpi->mt_info, num_workers);
2054 sync_enc_workers(&cpi->mt_info, cm, num_workers);
2055 dealloc_thread_data_src_diff_buf(cpi, num_workers);
2056 }
2057
av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync * tpl_mt_sync,int r,int c)2058 void av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
2059 int r, int c) {
2060 (void)tpl_mt_sync;
2061 (void)r;
2062 (void)c;
2063 }
2064
av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync * tpl_mt_sync,int r,int c,int cols)2065 void av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
2066 int r, int c, int cols) {
2067 (void)tpl_mt_sync;
2068 (void)r;
2069 (void)c;
2070 (void)cols;
2071 }
2072
av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync * tpl_row_mt_sync,int r,int c)2073 void av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
2074 int c) {
2075 #if CONFIG_MULTITHREAD
2076 int nsync = tpl_row_mt_sync->sync_range;
2077
2078 if (r) {
2079 pthread_mutex_t *const mutex = &tpl_row_mt_sync->mutex_[r - 1];
2080 pthread_mutex_lock(mutex);
2081
2082 while (c > tpl_row_mt_sync->num_finished_cols[r - 1] - nsync)
2083 pthread_cond_wait(&tpl_row_mt_sync->cond_[r - 1], mutex);
2084 pthread_mutex_unlock(mutex);
2085 }
2086 #else
2087 (void)tpl_row_mt_sync;
2088 (void)r;
2089 (void)c;
2090 #endif // CONFIG_MULTITHREAD
2091 }
2092
av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync * tpl_row_mt_sync,int r,int c,int cols)2093 void av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
2094 int c, int cols) {
2095 #if CONFIG_MULTITHREAD
2096 int nsync = tpl_row_mt_sync->sync_range;
2097 int cur;
2098 // Only signal when there are enough encoded blocks for next row to run.
2099 int sig = 1;
2100
2101 if (c < cols - 1) {
2102 cur = c;
2103 if (c % nsync) sig = 0;
2104 } else {
2105 cur = cols + nsync;
2106 }
2107
2108 if (sig) {
2109 pthread_mutex_lock(&tpl_row_mt_sync->mutex_[r]);
2110
2111 // When a thread encounters an error, num_finished_cols[r] is set to maximum
2112 // column number. In this case, the AOMMAX operation here ensures that
2113 // num_finished_cols[r] is not overwritten with a smaller value thus
2114 // preventing the infinite waiting of threads in the relevant sync_read()
2115 // function.
2116 tpl_row_mt_sync->num_finished_cols[r] =
2117 AOMMAX(tpl_row_mt_sync->num_finished_cols[r], cur);
2118
2119 pthread_cond_signal(&tpl_row_mt_sync->cond_[r]);
2120 pthread_mutex_unlock(&tpl_row_mt_sync->mutex_[r]);
2121 }
2122 #else
2123 (void)tpl_row_mt_sync;
2124 (void)r;
2125 (void)c;
2126 (void)cols;
2127 #endif // CONFIG_MULTITHREAD
2128 }
2129
set_mode_estimation_done(AV1_COMP * cpi)2130 static AOM_INLINE void set_mode_estimation_done(AV1_COMP *cpi) {
2131 const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
2132 TplParams *const tpl_data = &cpi->ppi->tpl_data;
2133 const BLOCK_SIZE bsize =
2134 convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
2135 const int mi_height = mi_size_high[bsize];
2136 AV1TplRowMultiThreadInfo *const tpl_row_mt = &cpi->mt_info.tpl_row_mt;
2137 const int tplb_cols_in_tile =
2138 ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]);
2139 // In case of tpl row-multithreading, due to top-right dependency, the worker
2140 // on an mb_row waits for the completion of the tpl processing of the top and
2141 // top-right blocks. Hence, in case a thread (main/worker) encounters an
2142 // error, update that the tpl processing of every mb_row in the frame is
2143 // complete in order to avoid dependent workers waiting indefinitely.
2144 for (int mi_row = 0, tplb_row = 0; mi_row < mi_params->mi_rows;
2145 mi_row += mi_height, tplb_row++) {
2146 (*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
2147 tplb_cols_in_tile - 1, tplb_cols_in_tile);
2148 }
2149 }
2150
2151 // Each worker calls tpl_worker_hook() and computes the tpl data.
tpl_worker_hook(void * arg1,void * unused)2152 static int tpl_worker_hook(void *arg1, void *unused) {
2153 (void)unused;
2154 EncWorkerData *thread_data = (EncWorkerData *)arg1;
2155 AV1_COMP *cpi = thread_data->cpi;
2156 AV1_COMMON *cm = &cpi->common;
2157 MACROBLOCK *x = &thread_data->td->mb;
2158 MACROBLOCKD *xd = &x->e_mbd;
2159 TplTxfmStats *tpl_txfm_stats = &thread_data->td->tpl_txfm_stats;
2160 TplBuffers *tpl_tmp_buffers = &thread_data->td->tpl_tmp_buffers;
2161 CommonModeInfoParams *mi_params = &cm->mi_params;
2162 int num_active_workers = cpi->ppi->tpl_data.tpl_mt_sync.num_threads_working;
2163
2164 struct aom_internal_error_info *const error_info = &thread_data->error_info;
2165 xd->error_info = error_info;
2166 AV1TplRowMultiThreadInfo *const tpl_row_mt = &cpi->mt_info.tpl_row_mt;
2167 (void)tpl_row_mt;
2168 #if CONFIG_MULTITHREAD
2169 pthread_mutex_t *tpl_error_mutex_ = tpl_row_mt->mutex_;
2170 #endif
2171
2172 // The jmp_buf is valid only for the duration of the function that calls
2173 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2174 // before it returns.
2175 if (setjmp(error_info->jmp)) {
2176 error_info->setjmp = 0;
2177 #if CONFIG_MULTITHREAD
2178 pthread_mutex_lock(tpl_error_mutex_);
2179 tpl_row_mt->tpl_mt_exit = true;
2180 pthread_mutex_unlock(tpl_error_mutex_);
2181 #endif
2182 set_mode_estimation_done(cpi);
2183 return 0;
2184 }
2185 error_info->setjmp = 1;
2186
2187 BLOCK_SIZE bsize = convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
2188 TX_SIZE tx_size = max_txsize_lookup[bsize];
2189 int mi_height = mi_size_high[bsize];
2190
2191 av1_init_tpl_txfm_stats(tpl_txfm_stats);
2192
2193 for (int mi_row = thread_data->start * mi_height; mi_row < mi_params->mi_rows;
2194 mi_row += num_active_workers * mi_height) {
2195 // Motion estimation row boundary
2196 av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
2197 cpi->oxcf.border_in_pixels);
2198 xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
2199 xd->mb_to_bottom_edge =
2200 GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
2201 av1_mc_flow_dispenser_row(cpi, tpl_txfm_stats, tpl_tmp_buffers, x, mi_row,
2202 bsize, tx_size);
2203 }
2204 error_info->setjmp = 0;
2205 return 1;
2206 }
2207
2208 // Deallocate tpl synchronization related mutex and data.
av1_tpl_dealloc(AV1TplRowMultiThreadSync * tpl_sync)2209 void av1_tpl_dealloc(AV1TplRowMultiThreadSync *tpl_sync) {
2210 assert(tpl_sync != NULL);
2211
2212 #if CONFIG_MULTITHREAD
2213 if (tpl_sync->mutex_ != NULL) {
2214 for (int i = 0; i < tpl_sync->rows; ++i)
2215 pthread_mutex_destroy(&tpl_sync->mutex_[i]);
2216 aom_free(tpl_sync->mutex_);
2217 }
2218 if (tpl_sync->cond_ != NULL) {
2219 for (int i = 0; i < tpl_sync->rows; ++i)
2220 pthread_cond_destroy(&tpl_sync->cond_[i]);
2221 aom_free(tpl_sync->cond_);
2222 }
2223 #endif // CONFIG_MULTITHREAD
2224
2225 aom_free(tpl_sync->num_finished_cols);
2226 // clear the structure as the source of this call may be a resize in which
2227 // case this call will be followed by an _alloc() which may fail.
2228 av1_zero(*tpl_sync);
2229 }
2230
2231 // Allocate memory for tpl row synchronization.
av1_tpl_alloc(AV1TplRowMultiThreadSync * tpl_sync,AV1_COMMON * cm,int mb_rows)2232 void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm,
2233 int mb_rows) {
2234 tpl_sync->rows = mb_rows;
2235 #if CONFIG_MULTITHREAD
2236 {
2237 CHECK_MEM_ERROR(cm, tpl_sync->mutex_,
2238 aom_malloc(sizeof(*tpl_sync->mutex_) * mb_rows));
2239 if (tpl_sync->mutex_) {
2240 for (int i = 0; i < mb_rows; ++i)
2241 pthread_mutex_init(&tpl_sync->mutex_[i], NULL);
2242 }
2243
2244 CHECK_MEM_ERROR(cm, tpl_sync->cond_,
2245 aom_malloc(sizeof(*tpl_sync->cond_) * mb_rows));
2246 if (tpl_sync->cond_) {
2247 for (int i = 0; i < mb_rows; ++i)
2248 pthread_cond_init(&tpl_sync->cond_[i], NULL);
2249 }
2250 }
2251 #endif // CONFIG_MULTITHREAD
2252 CHECK_MEM_ERROR(cm, tpl_sync->num_finished_cols,
2253 aom_malloc(sizeof(*tpl_sync->num_finished_cols) * mb_rows));
2254
2255 // Set up nsync.
2256 tpl_sync->sync_range = 1;
2257 }
2258
2259 // Each worker is prepared by assigning the hook function and individual thread
2260 // data.
prepare_tpl_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)2261 static AOM_INLINE void prepare_tpl_workers(AV1_COMP *cpi, AVxWorkerHook hook,
2262 int num_workers) {
2263 MultiThreadInfo *mt_info = &cpi->mt_info;
2264 for (int i = num_workers - 1; i >= 0; i--) {
2265 AVxWorker *worker = &mt_info->workers[i];
2266 EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2267
2268 worker->hook = hook;
2269 worker->data1 = thread_data;
2270 worker->data2 = NULL;
2271
2272 thread_data->thread_id = i;
2273 // Set the starting tile for each thread.
2274 thread_data->start = i;
2275
2276 thread_data->cpi = cpi;
2277 if (i == 0) {
2278 thread_data->td = &cpi->td;
2279 } else {
2280 thread_data->td = thread_data->original_td;
2281 }
2282
2283 // Before encoding a frame, copy the thread data from cpi.
2284 if (thread_data->td != &cpi->td) {
2285 thread_data->td->mb = cpi->td.mb;
2286 // OBMC buffers are used only to init MS params and remain unused when
2287 // called from tpl, hence set the buffers to defaults.
2288 av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
2289 if (!tpl_alloc_temp_buffers(&thread_data->td->tpl_tmp_buffers,
2290 cpi->ppi->tpl_data.tpl_bsize_1d)) {
2291 aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
2292 "Error allocating tpl data");
2293 }
2294 thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
2295 thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
2296 }
2297 }
2298 }
2299
2300 #if CONFIG_BITRATE_ACCURACY
2301 // Accumulate transform stats after tpl.
tpl_accumulate_txfm_stats(ThreadData * main_td,const MultiThreadInfo * mt_info,int num_workers)2302 static void tpl_accumulate_txfm_stats(ThreadData *main_td,
2303 const MultiThreadInfo *mt_info,
2304 int num_workers) {
2305 TplTxfmStats *accumulated_stats = &main_td->tpl_txfm_stats;
2306 for (int i = num_workers - 1; i >= 0; i--) {
2307 AVxWorker *const worker = &mt_info->workers[i];
2308 EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
2309 ThreadData *td = thread_data->td;
2310 if (td != main_td) {
2311 const TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
2312 av1_accumulate_tpl_txfm_stats(tpl_txfm_stats, accumulated_stats);
2313 }
2314 }
2315 }
2316 #endif // CONFIG_BITRATE_ACCURACY
2317
2318 // Implements multi-threading for tpl.
av1_mc_flow_dispenser_mt(AV1_COMP * cpi)2319 void av1_mc_flow_dispenser_mt(AV1_COMP *cpi) {
2320 AV1_COMMON *cm = &cpi->common;
2321 CommonModeInfoParams *mi_params = &cm->mi_params;
2322 MultiThreadInfo *mt_info = &cpi->mt_info;
2323 TplParams *tpl_data = &cpi->ppi->tpl_data;
2324 AV1TplRowMultiThreadSync *tpl_sync = &tpl_data->tpl_mt_sync;
2325 int mb_rows = mi_params->mb_rows;
2326 int num_workers =
2327 AOMMIN(mt_info->num_mod_workers[MOD_TPL], mt_info->num_workers);
2328
2329 if (mb_rows != tpl_sync->rows) {
2330 av1_tpl_dealloc(tpl_sync);
2331 av1_tpl_alloc(tpl_sync, cm, mb_rows);
2332 }
2333 tpl_sync->num_threads_working = num_workers;
2334 mt_info->tpl_row_mt.tpl_mt_exit = false;
2335
2336 // Initialize cur_mb_col to -1 for all MB rows.
2337 memset(tpl_sync->num_finished_cols, -1,
2338 sizeof(*tpl_sync->num_finished_cols) * mb_rows);
2339
2340 prepare_tpl_workers(cpi, tpl_worker_hook, num_workers);
2341 launch_workers(&cpi->mt_info, num_workers);
2342 sync_enc_workers(&cpi->mt_info, cm, num_workers);
2343 #if CONFIG_BITRATE_ACCURACY
2344 tpl_accumulate_txfm_stats(&cpi->td, &cpi->mt_info, num_workers);
2345 #endif // CONFIG_BITRATE_ACCURACY
2346 for (int i = num_workers - 1; i >= 0; i--) {
2347 EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2348 ThreadData *td = thread_data->td;
2349 if (td != &cpi->td) tpl_dealloc_temp_buffers(&td->tpl_tmp_buffers);
2350 }
2351 }
2352
2353 // Deallocate memory for temporal filter multi-thread synchronization.
av1_tf_mt_dealloc(AV1TemporalFilterSync * tf_sync)2354 void av1_tf_mt_dealloc(AV1TemporalFilterSync *tf_sync) {
2355 assert(tf_sync != NULL);
2356 #if CONFIG_MULTITHREAD
2357 if (tf_sync->mutex_ != NULL) {
2358 pthread_mutex_destroy(tf_sync->mutex_);
2359 aom_free(tf_sync->mutex_);
2360 }
2361 #endif // CONFIG_MULTITHREAD
2362 tf_sync->next_tf_row = 0;
2363 }
2364
2365 // Checks if a job is available. If job is available,
2366 // populates next_tf_row and returns 1, else returns 0.
tf_get_next_job(AV1TemporalFilterSync * tf_mt_sync,int * current_mb_row,int mb_rows)2367 static AOM_INLINE int tf_get_next_job(AV1TemporalFilterSync *tf_mt_sync,
2368 int *current_mb_row, int mb_rows) {
2369 int do_next_row = 0;
2370 #if CONFIG_MULTITHREAD
2371 pthread_mutex_t *tf_mutex_ = tf_mt_sync->mutex_;
2372 pthread_mutex_lock(tf_mutex_);
2373 #endif
2374 if (!tf_mt_sync->tf_mt_exit && tf_mt_sync->next_tf_row < mb_rows) {
2375 *current_mb_row = tf_mt_sync->next_tf_row;
2376 tf_mt_sync->next_tf_row++;
2377 do_next_row = 1;
2378 }
2379 #if CONFIG_MULTITHREAD
2380 pthread_mutex_unlock(tf_mutex_);
2381 #endif
2382 return do_next_row;
2383 }
2384
2385 // Hook function for each thread in temporal filter multi-threading.
tf_worker_hook(void * arg1,void * unused)2386 static int tf_worker_hook(void *arg1, void *unused) {
2387 (void)unused;
2388 EncWorkerData *thread_data = (EncWorkerData *)arg1;
2389 AV1_COMP *cpi = thread_data->cpi;
2390 ThreadData *td = thread_data->td;
2391 TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
2392 AV1TemporalFilterSync *tf_sync = &cpi->mt_info.tf_sync;
2393 const struct scale_factors *scale = &cpi->tf_ctx.sf;
2394
2395 #if CONFIG_MULTITHREAD
2396 pthread_mutex_t *tf_mutex_ = tf_sync->mutex_;
2397 #endif
2398 MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
2399 struct aom_internal_error_info *const error_info = &thread_data->error_info;
2400 xd->error_info = error_info;
2401
2402 // The jmp_buf is valid only for the duration of the function that calls
2403 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2404 // before it returns.
2405 if (setjmp(error_info->jmp)) {
2406 error_info->setjmp = 0;
2407 #if CONFIG_MULTITHREAD
2408 pthread_mutex_lock(tf_mutex_);
2409 tf_sync->tf_mt_exit = true;
2410 pthread_mutex_unlock(tf_mutex_);
2411 #endif
2412 return 0;
2413 }
2414 error_info->setjmp = 1;
2415
2416 const int num_planes = av1_num_planes(&cpi->common);
2417 assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
2418
2419 MACROBLOCKD *mbd = &td->mb.e_mbd;
2420 uint8_t *input_buffer[MAX_MB_PLANE];
2421 MB_MODE_INFO **input_mb_mode_info;
2422 tf_save_state(mbd, &input_mb_mode_info, input_buffer, num_planes);
2423 tf_setup_macroblockd(mbd, &td->tf_data, scale);
2424
2425 int current_mb_row = -1;
2426
2427 while (tf_get_next_job(tf_sync, ¤t_mb_row, tf_ctx->mb_rows))
2428 av1_tf_do_filtering_row(cpi, td, current_mb_row);
2429
2430 tf_restore_state(mbd, input_mb_mode_info, input_buffer, num_planes);
2431
2432 error_info->setjmp = 0;
2433 return 1;
2434 }
2435
2436 // Assigns temporal filter hook function and thread data to each worker.
prepare_tf_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers,int is_highbitdepth)2437 static void prepare_tf_workers(AV1_COMP *cpi, AVxWorkerHook hook,
2438 int num_workers, int is_highbitdepth) {
2439 MultiThreadInfo *mt_info = &cpi->mt_info;
2440 mt_info->tf_sync.next_tf_row = 0;
2441 mt_info->tf_sync.tf_mt_exit = false;
2442 for (int i = num_workers - 1; i >= 0; i--) {
2443 AVxWorker *worker = &mt_info->workers[i];
2444 EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2445
2446 worker->hook = hook;
2447 worker->data1 = thread_data;
2448 worker->data2 = NULL;
2449
2450 thread_data->thread_id = i;
2451 // Set the starting tile for each thread.
2452 thread_data->start = i;
2453
2454 thread_data->cpi = cpi;
2455 if (i == 0) {
2456 thread_data->td = &cpi->td;
2457 } else {
2458 thread_data->td = thread_data->original_td;
2459 }
2460
2461 // Before encoding a frame, copy the thread data from cpi.
2462 if (thread_data->td != &cpi->td) {
2463 thread_data->td->mb = cpi->td.mb;
2464 // OBMC buffers are used only to init MS params and remain unused when
2465 // called from tf, hence set the buffers to defaults.
2466 av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
2467 if (!tf_alloc_and_reset_data(&thread_data->td->tf_data,
2468 cpi->tf_ctx.num_pels, is_highbitdepth)) {
2469 aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
2470 "Error allocating temporal filter data");
2471 }
2472 }
2473 }
2474 }
2475
2476 // Deallocate thread specific data for temporal filter.
tf_dealloc_thread_data(AV1_COMP * cpi,int num_workers,int is_highbitdepth)2477 static void tf_dealloc_thread_data(AV1_COMP *cpi, int num_workers,
2478 int is_highbitdepth) {
2479 MultiThreadInfo *mt_info = &cpi->mt_info;
2480 for (int i = num_workers - 1; i >= 0; i--) {
2481 EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2482 ThreadData *td = thread_data->td;
2483 if (td != &cpi->td) tf_dealloc_data(&td->tf_data, is_highbitdepth);
2484 }
2485 }
2486
2487 // Accumulate sse and sum after temporal filtering.
tf_accumulate_frame_diff(AV1_COMP * cpi,int num_workers)2488 static void tf_accumulate_frame_diff(AV1_COMP *cpi, int num_workers) {
2489 FRAME_DIFF *total_diff = &cpi->td.tf_data.diff;
2490 for (int i = num_workers - 1; i >= 0; i--) {
2491 AVxWorker *const worker = &cpi->mt_info.workers[i];
2492 EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
2493 ThreadData *td = thread_data->td;
2494 FRAME_DIFF *diff = &td->tf_data.diff;
2495 if (td != &cpi->td) {
2496 total_diff->sse += diff->sse;
2497 total_diff->sum += diff->sum;
2498 }
2499 }
2500 }
2501
2502 // Implements multi-threading for temporal filter.
av1_tf_do_filtering_mt(AV1_COMP * cpi)2503 void av1_tf_do_filtering_mt(AV1_COMP *cpi) {
2504 AV1_COMMON *cm = &cpi->common;
2505 MultiThreadInfo *mt_info = &cpi->mt_info;
2506 const int is_highbitdepth = cpi->tf_ctx.is_highbitdepth;
2507
2508 int num_workers =
2509 AOMMIN(mt_info->num_mod_workers[MOD_TF], mt_info->num_workers);
2510
2511 prepare_tf_workers(cpi, tf_worker_hook, num_workers, is_highbitdepth);
2512 launch_workers(mt_info, num_workers);
2513 sync_enc_workers(mt_info, cm, num_workers);
2514 tf_accumulate_frame_diff(cpi, num_workers);
2515 tf_dealloc_thread_data(cpi, num_workers, is_highbitdepth);
2516 }
2517
2518 // Checks if a job is available in the current direction. If a job is available,
2519 // frame_idx will be populated and returns 1, else returns 0.
get_next_gm_job(AV1_COMP * cpi,int * frame_idx,int cur_dir)2520 static AOM_INLINE int get_next_gm_job(AV1_COMP *cpi, int *frame_idx,
2521 int cur_dir) {
2522 GlobalMotionInfo *gm_info = &cpi->gm_info;
2523 JobInfo *job_info = &cpi->mt_info.gm_sync.job_info;
2524
2525 int total_refs = gm_info->num_ref_frames[cur_dir];
2526 int8_t cur_frame_to_process = job_info->next_frame_to_process[cur_dir];
2527
2528 if (cur_frame_to_process < total_refs && !job_info->early_exit[cur_dir]) {
2529 *frame_idx = gm_info->reference_frames[cur_dir][cur_frame_to_process].frame;
2530 job_info->next_frame_to_process[cur_dir] += 1;
2531 return 1;
2532 }
2533 return 0;
2534 }
2535
2536 // Switches the current direction and calls the function get_next_gm_job() if
2537 // the speed feature 'prune_ref_frame_for_gm_search' is not set.
switch_direction(AV1_COMP * cpi,int * frame_idx,int * cur_dir)2538 static AOM_INLINE void switch_direction(AV1_COMP *cpi, int *frame_idx,
2539 int *cur_dir) {
2540 if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search) return;
2541 // Switch the direction and get next job
2542 *cur_dir = !(*cur_dir);
2543 get_next_gm_job(cpi, frame_idx, *(cur_dir));
2544 }
2545
2546 // Hook function for each thread in global motion multi-threading.
gm_mt_worker_hook(void * arg1,void * unused)2547 static int gm_mt_worker_hook(void *arg1, void *unused) {
2548 (void)unused;
2549
2550 EncWorkerData *thread_data = (EncWorkerData *)arg1;
2551 AV1_COMP *cpi = thread_data->cpi;
2552 GlobalMotionInfo *gm_info = &cpi->gm_info;
2553 AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync;
2554 JobInfo *job_info = &gm_sync->job_info;
2555 int thread_id = thread_data->thread_id;
2556 GlobalMotionData *gm_thread_data = &thread_data->td->gm_data;
2557 #if CONFIG_MULTITHREAD
2558 pthread_mutex_t *gm_mt_mutex_ = gm_sync->mutex_;
2559 #endif
2560
2561 MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
2562 struct aom_internal_error_info *const error_info = &thread_data->error_info;
2563 xd->error_info = error_info;
2564
2565 // The jmp_buf is valid only for the duration of the function that calls
2566 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2567 // before it returns.
2568 if (setjmp(error_info->jmp)) {
2569 error_info->setjmp = 0;
2570 #if CONFIG_MULTITHREAD
2571 pthread_mutex_lock(gm_mt_mutex_);
2572 gm_sync->gm_mt_exit = true;
2573 pthread_mutex_unlock(gm_mt_mutex_);
2574 #endif
2575 return 0;
2576 }
2577 error_info->setjmp = 1;
2578
2579 int cur_dir = job_info->thread_id_to_dir[thread_id];
2580 bool gm_mt_exit = false;
2581 while (1) {
2582 int ref_buf_idx = -1;
2583
2584 #if CONFIG_MULTITHREAD
2585 pthread_mutex_lock(gm_mt_mutex_);
2586 #endif
2587
2588 gm_mt_exit = gm_sync->gm_mt_exit;
2589 // Populates ref_buf_idx(the reference frame type) for which global motion
2590 // estimation will be done.
2591 if (!gm_mt_exit && !get_next_gm_job(cpi, &ref_buf_idx, cur_dir)) {
2592 // No jobs are available for the current direction. Switch
2593 // to other direction and get the next job, if available.
2594 switch_direction(cpi, &ref_buf_idx, &cur_dir);
2595 }
2596
2597 #if CONFIG_MULTITHREAD
2598 pthread_mutex_unlock(gm_mt_mutex_);
2599 #endif
2600
2601 // When gm_mt_exit is set to true, other workers need not pursue any
2602 // further jobs.
2603 if (gm_mt_exit || ref_buf_idx == -1) break;
2604
2605 // Compute global motion for the given ref_buf_idx.
2606 av1_compute_gm_for_valid_ref_frames(
2607 cpi, error_info, gm_info->ref_buf, ref_buf_idx,
2608 gm_thread_data->motion_models, gm_thread_data->segment_map,
2609 gm_info->segment_map_w, gm_info->segment_map_h);
2610
2611 #if CONFIG_MULTITHREAD
2612 pthread_mutex_lock(gm_mt_mutex_);
2613 #endif
2614 // If global motion w.r.t. current ref frame is
2615 // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t
2616 // the remaining ref frames in that direction.
2617 if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search &&
2618 cpi->common.global_motion[ref_buf_idx].wmtype <= TRANSLATION)
2619 job_info->early_exit[cur_dir] = 1;
2620
2621 #if CONFIG_MULTITHREAD
2622 pthread_mutex_unlock(gm_mt_mutex_);
2623 #endif
2624 }
2625 error_info->setjmp = 0;
2626 return 1;
2627 }
2628
2629 // Assigns global motion hook function and thread data to each worker.
prepare_gm_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)2630 static AOM_INLINE void prepare_gm_workers(AV1_COMP *cpi, AVxWorkerHook hook,
2631 int num_workers) {
2632 MultiThreadInfo *mt_info = &cpi->mt_info;
2633 mt_info->gm_sync.gm_mt_exit = false;
2634 for (int i = num_workers - 1; i >= 0; i--) {
2635 AVxWorker *worker = &mt_info->workers[i];
2636 EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
2637
2638 worker->hook = hook;
2639 worker->data1 = thread_data;
2640 worker->data2 = NULL;
2641
2642 thread_data->thread_id = i;
2643 // Set the starting tile for each thread.
2644 thread_data->start = i;
2645
2646 thread_data->cpi = cpi;
2647 if (i == 0) {
2648 thread_data->td = &cpi->td;
2649 } else {
2650 thread_data->td = thread_data->original_td;
2651 }
2652
2653 if (thread_data->td != &cpi->td)
2654 gm_alloc_data(cpi, &thread_data->td->gm_data);
2655 }
2656 }
2657
2658 // Assigns available threads to past/future direction.
assign_thread_to_dir(int8_t * thread_id_to_dir,int num_workers)2659 static AOM_INLINE void assign_thread_to_dir(int8_t *thread_id_to_dir,
2660 int num_workers) {
2661 int8_t frame_dir_idx = 0;
2662
2663 for (int i = 0; i < num_workers; i++) {
2664 thread_id_to_dir[i] = frame_dir_idx++;
2665 if (frame_dir_idx == MAX_DIRECTIONS) frame_dir_idx = 0;
2666 }
2667 }
2668
2669 // Computes number of workers for global motion multi-threading.
compute_gm_workers(const AV1_COMP * cpi)2670 static AOM_INLINE int compute_gm_workers(const AV1_COMP *cpi) {
2671 int total_refs =
2672 cpi->gm_info.num_ref_frames[0] + cpi->gm_info.num_ref_frames[1];
2673 int num_gm_workers = cpi->sf.gm_sf.prune_ref_frame_for_gm_search
2674 ? AOMMIN(MAX_DIRECTIONS, total_refs)
2675 : total_refs;
2676 num_gm_workers = AOMMIN(num_gm_workers, cpi->mt_info.num_workers);
2677 return (num_gm_workers);
2678 }
2679
2680 // Frees the memory allocated for each worker in global motion multi-threading.
gm_dealloc_thread_data(AV1_COMP * cpi,int num_workers)2681 static AOM_INLINE void gm_dealloc_thread_data(AV1_COMP *cpi, int num_workers) {
2682 MultiThreadInfo *mt_info = &cpi->mt_info;
2683 for (int j = 0; j < num_workers; j++) {
2684 EncWorkerData *thread_data = &mt_info->tile_thr_data[j];
2685 ThreadData *td = thread_data->td;
2686 if (td != &cpi->td) gm_dealloc_data(&td->gm_data);
2687 }
2688 }
2689
2690 // Implements multi-threading for global motion.
av1_global_motion_estimation_mt(AV1_COMP * cpi)2691 void av1_global_motion_estimation_mt(AV1_COMP *cpi) {
2692 JobInfo *job_info = &cpi->mt_info.gm_sync.job_info;
2693
2694 av1_zero(*job_info);
2695
2696 int num_workers = compute_gm_workers(cpi);
2697
2698 assign_thread_to_dir(job_info->thread_id_to_dir, num_workers);
2699 prepare_gm_workers(cpi, gm_mt_worker_hook, num_workers);
2700 launch_workers(&cpi->mt_info, num_workers);
2701 sync_enc_workers(&cpi->mt_info, &cpi->common, num_workers);
2702 gm_dealloc_thread_data(cpi, num_workers);
2703 }
2704 #endif // !CONFIG_REALTIME_ONLY
2705
get_next_job_allintra(AV1EncRowMultiThreadSync * const row_mt_sync,const int mi_row_end,int * current_mi_row,int mib_size)2706 static AOM_INLINE int get_next_job_allintra(
2707 AV1EncRowMultiThreadSync *const row_mt_sync, const int mi_row_end,
2708 int *current_mi_row, int mib_size) {
2709 if (row_mt_sync->next_mi_row < mi_row_end) {
2710 *current_mi_row = row_mt_sync->next_mi_row;
2711 row_mt_sync->num_threads_working++;
2712 row_mt_sync->next_mi_row += mib_size;
2713 return 1;
2714 }
2715 return 0;
2716 }
2717
prepare_wiener_var_workers(AV1_COMP * const cpi,AVxWorkerHook hook,const int num_workers)2718 static AOM_INLINE void prepare_wiener_var_workers(AV1_COMP *const cpi,
2719 AVxWorkerHook hook,
2720 const int num_workers) {
2721 MultiThreadInfo *const mt_info = &cpi->mt_info;
2722 for (int i = num_workers - 1; i >= 0; i--) {
2723 AVxWorker *const worker = &mt_info->workers[i];
2724 EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
2725
2726 worker->hook = hook;
2727 worker->data1 = thread_data;
2728 worker->data2 = NULL;
2729
2730 thread_data->thread_id = i;
2731 // Set the starting tile for each thread, in this case the preprocessing
2732 // stage does not need tiles. So we set it to 0.
2733 thread_data->start = 0;
2734
2735 thread_data->cpi = cpi;
2736 if (i == 0) {
2737 thread_data->td = &cpi->td;
2738 } else {
2739 thread_data->td = thread_data->original_td;
2740 }
2741
2742 if (thread_data->td != &cpi->td) {
2743 thread_data->td->mb = cpi->td.mb;
2744 av1_alloc_mb_wiener_var_pred_buf(&cpi->common, thread_data->td);
2745 }
2746 }
2747 }
2748
set_mb_wiener_var_calc_done(AV1_COMP * const cpi)2749 static void set_mb_wiener_var_calc_done(AV1_COMP *const cpi) {
2750 const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
2751 const BLOCK_SIZE bsize = cpi->weber_bsize;
2752 const int mb_step = mi_size_wide[bsize];
2753 assert(MB_WIENER_MT_UNIT_SIZE < BLOCK_SIZES_ALL);
2754 const int mt_unit_step = mi_size_wide[MB_WIENER_MT_UNIT_SIZE];
2755 const int mt_unit_cols =
2756 (mi_params->mi_cols + (mt_unit_step >> 1)) / mt_unit_step;
2757 const AV1EncAllIntraMultiThreadInfo *const intra_mt = &cpi->mt_info.intra_mt;
2758 AV1EncRowMultiThreadSync *const intra_row_mt_sync =
2759 &cpi->ppi->intra_row_mt_sync;
2760
2761 // Update the wiener variance computation of every row in the frame to
2762 // indicate that it is complete in order to avoid dependent workers waiting
2763 // indefinitely.
2764 for (int mi_row = 0, mt_thread_id = 0; mi_row < mi_params->mi_rows;
2765 mi_row += mb_step, ++mt_thread_id) {
2766 intra_mt->intra_sync_write_ptr(intra_row_mt_sync, mt_thread_id,
2767 mt_unit_cols - 1, mt_unit_cols);
2768 }
2769 }
2770
cal_mb_wiener_var_hook(void * arg1,void * unused)2771 static int cal_mb_wiener_var_hook(void *arg1, void *unused) {
2772 (void)unused;
2773 EncWorkerData *const thread_data = (EncWorkerData *)arg1;
2774 AV1_COMP *const cpi = thread_data->cpi;
2775 MACROBLOCK *x = &thread_data->td->mb;
2776 MACROBLOCKD *xd = &x->e_mbd;
2777 const BLOCK_SIZE bsize = cpi->weber_bsize;
2778 const int mb_step = mi_size_wide[bsize];
2779 AV1EncRowMultiThreadSync *const intra_row_mt_sync =
2780 &cpi->ppi->intra_row_mt_sync;
2781 AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
2782 (void)enc_row_mt;
2783 #if CONFIG_MULTITHREAD
2784 pthread_mutex_t *enc_row_mt_mutex = enc_row_mt->mutex_;
2785 #endif
2786
2787 struct aom_internal_error_info *const error_info = &thread_data->error_info;
2788 xd->error_info = error_info;
2789
2790 // The jmp_buf is valid only for the duration of the function that calls
2791 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
2792 // before it returns.
2793 if (setjmp(error_info->jmp)) {
2794 error_info->setjmp = 0;
2795 #if CONFIG_MULTITHREAD
2796 pthread_mutex_lock(enc_row_mt_mutex);
2797 enc_row_mt->mb_wiener_mt_exit = true;
2798 pthread_mutex_unlock(enc_row_mt_mutex);
2799 #endif
2800 set_mb_wiener_var_calc_done(cpi);
2801 return 0;
2802 }
2803 error_info->setjmp = 1;
2804 DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]);
2805 DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]);
2806 DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]);
2807 DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]);
2808 double sum_rec_distortion = 0;
2809 double sum_est_rate = 0;
2810 while (1) {
2811 int current_mi_row = -1;
2812 #if CONFIG_MULTITHREAD
2813 pthread_mutex_lock(enc_row_mt_mutex);
2814 #endif
2815 int has_jobs = enc_row_mt->mb_wiener_mt_exit
2816 ? 0
2817 : get_next_job_allintra(intra_row_mt_sync,
2818 cpi->common.mi_params.mi_rows,
2819 ¤t_mi_row, mb_step);
2820 #if CONFIG_MULTITHREAD
2821 pthread_mutex_unlock(enc_row_mt_mutex);
2822 #endif
2823 if (!has_jobs) break;
2824 // TODO(chengchen): properly accumulate the distortion and rate.
2825 av1_calc_mb_wiener_var_row(cpi, x, xd, current_mi_row, src_diff, coeff,
2826 qcoeff, dqcoeff, &sum_rec_distortion,
2827 &sum_est_rate,
2828 thread_data->td->wiener_tmp_pred_buf);
2829 #if CONFIG_MULTITHREAD
2830 pthread_mutex_lock(enc_row_mt_mutex);
2831 #endif
2832 intra_row_mt_sync->num_threads_working--;
2833 #if CONFIG_MULTITHREAD
2834 pthread_mutex_unlock(enc_row_mt_mutex);
2835 #endif
2836 }
2837 error_info->setjmp = 0;
2838 return 1;
2839 }
2840
dealloc_mb_wiener_var_mt_data(AV1_COMP * cpi,int num_workers)2841 static void dealloc_mb_wiener_var_mt_data(AV1_COMP *cpi, int num_workers) {
2842 av1_row_mt_sync_mem_dealloc(&cpi->ppi->intra_row_mt_sync);
2843
2844 MultiThreadInfo *mt_info = &cpi->mt_info;
2845 for (int j = 0; j < num_workers; ++j) {
2846 EncWorkerData *thread_data = &mt_info->tile_thr_data[j];
2847 ThreadData *td = thread_data->td;
2848 if (td != &cpi->td) av1_dealloc_mb_wiener_var_pred_buf(td);
2849 }
2850 }
2851
2852 // This function is the multi-threading version of computing the wiener
2853 // variance.
2854 // Note that the wiener variance is used for allintra mode (1 pass) and its
2855 // computation is before the frame encoding, so we don't need to consider
2856 // the number of tiles, instead we allocate all available threads to
2857 // the computation.
av1_calc_mb_wiener_var_mt(AV1_COMP * cpi,int num_workers,double * sum_rec_distortion,double * sum_est_rate)2858 void av1_calc_mb_wiener_var_mt(AV1_COMP *cpi, int num_workers,
2859 double *sum_rec_distortion,
2860 double *sum_est_rate) {
2861 (void)sum_rec_distortion;
2862 (void)sum_est_rate;
2863 AV1_COMMON *const cm = &cpi->common;
2864 MultiThreadInfo *const mt_info = &cpi->mt_info;
2865 AV1EncRowMultiThreadSync *const intra_row_mt_sync =
2866 &cpi->ppi->intra_row_mt_sync;
2867
2868 // TODO(chengchen): the memory usage could be improved.
2869 const int mi_rows = cm->mi_params.mi_rows;
2870 row_mt_sync_mem_alloc(intra_row_mt_sync, cm, mi_rows);
2871
2872 intra_row_mt_sync->intrabc_extra_top_right_sb_delay = 0;
2873 intra_row_mt_sync->num_threads_working = num_workers;
2874 intra_row_mt_sync->next_mi_row = 0;
2875 memset(intra_row_mt_sync->num_finished_cols, -1,
2876 sizeof(*intra_row_mt_sync->num_finished_cols) * mi_rows);
2877 mt_info->enc_row_mt.mb_wiener_mt_exit = false;
2878
2879 prepare_wiener_var_workers(cpi, cal_mb_wiener_var_hook, num_workers);
2880 launch_workers(mt_info, num_workers);
2881 sync_enc_workers(mt_info, cm, num_workers);
2882 dealloc_mb_wiener_var_mt_data(cpi, num_workers);
2883 }
2884
2885 // Compare and order tiles based on absolute sum of tx coeffs.
compare_tile_order(const void * a,const void * b)2886 static int compare_tile_order(const void *a, const void *b) {
2887 const PackBSTileOrder *const tile_a = (const PackBSTileOrder *)a;
2888 const PackBSTileOrder *const tile_b = (const PackBSTileOrder *)b;
2889
2890 if (tile_a->abs_sum_level > tile_b->abs_sum_level)
2891 return -1;
2892 else if (tile_a->abs_sum_level == tile_b->abs_sum_level)
2893 return (tile_a->tile_idx > tile_b->tile_idx ? 1 : -1);
2894 else
2895 return 1;
2896 }
2897
2898 // Get next tile index to be processed for pack bitstream
get_next_pack_bs_tile_idx(AV1EncPackBSSync * const pack_bs_sync,const int num_tiles)2899 static AOM_INLINE int get_next_pack_bs_tile_idx(
2900 AV1EncPackBSSync *const pack_bs_sync, const int num_tiles) {
2901 assert(pack_bs_sync->next_job_idx <= num_tiles);
2902 if (pack_bs_sync->next_job_idx == num_tiles) return -1;
2903
2904 return pack_bs_sync->pack_bs_tile_order[pack_bs_sync->next_job_idx++]
2905 .tile_idx;
2906 }
2907
2908 // Calculates bitstream chunk size based on total buffer size and tile or tile
2909 // group size.
get_bs_chunk_size(int tg_or_tile_size,const int frame_or_tg_size,size_t * remain_buf_size,size_t max_buf_size,int is_last_chunk)2910 static AOM_INLINE size_t get_bs_chunk_size(int tg_or_tile_size,
2911 const int frame_or_tg_size,
2912 size_t *remain_buf_size,
2913 size_t max_buf_size,
2914 int is_last_chunk) {
2915 size_t this_chunk_size;
2916 assert(*remain_buf_size > 0);
2917 if (is_last_chunk) {
2918 this_chunk_size = *remain_buf_size;
2919 *remain_buf_size = 0;
2920 } else {
2921 const uint64_t size_scale = (uint64_t)max_buf_size * tg_or_tile_size;
2922 this_chunk_size = (size_t)(size_scale / frame_or_tg_size);
2923 *remain_buf_size -= this_chunk_size;
2924 assert(*remain_buf_size > 0);
2925 }
2926 assert(this_chunk_size > 0);
2927 return this_chunk_size;
2928 }
2929
2930 // Initializes params required for pack bitstream tile.
init_tile_pack_bs_params(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,PackBSParams * const pack_bs_params_arr,uint8_t obu_extn_header)2931 static void init_tile_pack_bs_params(AV1_COMP *const cpi, uint8_t *const dst,
2932 struct aom_write_bit_buffer *saved_wb,
2933 PackBSParams *const pack_bs_params_arr,
2934 uint8_t obu_extn_header) {
2935 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
2936 AV1_COMMON *const cm = &cpi->common;
2937 const CommonTileParams *const tiles = &cm->tiles;
2938 const int num_tiles = tiles->cols * tiles->rows;
2939 // Fixed size tile groups for the moment
2940 const int num_tg_hdrs = cpi->num_tg;
2941 // Tile group size in terms of number of tiles.
2942 const int tg_size_in_tiles = (num_tiles + num_tg_hdrs - 1) / num_tg_hdrs;
2943 uint8_t *tile_dst = dst;
2944 uint8_t *tile_data_curr = dst;
2945 // Max tile group count can not be more than MAX_TILES.
2946 int tg_size_mi[MAX_TILES] = { 0 }; // Size of tile group in mi units
2947 int tile_idx;
2948 int tg_idx = 0;
2949 int tile_count_in_tg = 0;
2950 int new_tg = 1;
2951
2952 // Populate pack bitstream params of all tiles.
2953 for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
2954 const TileInfo *const tile_info = &cpi->tile_data[tile_idx].tile_info;
2955 PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
2956 // Calculate tile size in mi units.
2957 const int tile_size_mi = (tile_info->mi_col_end - tile_info->mi_col_start) *
2958 (tile_info->mi_row_end - tile_info->mi_row_start);
2959 int is_last_tile_in_tg = 0;
2960 tile_count_in_tg++;
2961 if (tile_count_in_tg == tg_size_in_tiles || tile_idx == (num_tiles - 1))
2962 is_last_tile_in_tg = 1;
2963
2964 // Populate pack bitstream params of this tile.
2965 pack_bs_params->curr_tg_hdr_size = 0;
2966 pack_bs_params->obu_extn_header = obu_extn_header;
2967 pack_bs_params->saved_wb = saved_wb;
2968 pack_bs_params->obu_header_size = 0;
2969 pack_bs_params->is_last_tile_in_tg = is_last_tile_in_tg;
2970 pack_bs_params->new_tg = new_tg;
2971 pack_bs_params->tile_col = tile_info->tile_col;
2972 pack_bs_params->tile_row = tile_info->tile_row;
2973 pack_bs_params->tile_size_mi = tile_size_mi;
2974 tg_size_mi[tg_idx] += tile_size_mi;
2975
2976 if (new_tg) new_tg = 0;
2977 if (is_last_tile_in_tg) {
2978 tile_count_in_tg = 0;
2979 new_tg = 1;
2980 tg_idx++;
2981 }
2982 }
2983
2984 assert(cpi->available_bs_size > 0);
2985 size_t tg_buf_size[MAX_TILES] = { 0 };
2986 size_t max_buf_size = cpi->available_bs_size;
2987 size_t remain_buf_size = max_buf_size;
2988 const int frame_size_mi = cm->mi_params.mi_rows * cm->mi_params.mi_cols;
2989
2990 tile_idx = 0;
2991 // Prepare obu, tile group and frame header of each tile group.
2992 for (tg_idx = 0; tg_idx < cpi->num_tg; tg_idx++) {
2993 PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
2994 int is_last_tg = tg_idx == cpi->num_tg - 1;
2995 // Prorate bitstream buffer size based on tile group size and available
2996 // buffer size. This buffer will be used to store headers and tile data.
2997 tg_buf_size[tg_idx] =
2998 get_bs_chunk_size(tg_size_mi[tg_idx], frame_size_mi, &remain_buf_size,
2999 max_buf_size, is_last_tg);
3000
3001 pack_bs_params->dst = tile_dst;
3002 pack_bs_params->tile_data_curr = tile_dst;
3003
3004 // Write obu, tile group and frame header at first tile in the tile
3005 // group.
3006 av1_write_obu_tg_tile_headers(cpi, xd, pack_bs_params, tile_idx);
3007 tile_dst += tg_buf_size[tg_idx];
3008
3009 // Exclude headers from tile group buffer size.
3010 tg_buf_size[tg_idx] -= pack_bs_params->curr_tg_hdr_size;
3011 tile_idx += tg_size_in_tiles;
3012 }
3013
3014 tg_idx = 0;
3015 // Calculate bitstream buffer size of each tile in the tile group.
3016 for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
3017 PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
3018
3019 if (pack_bs_params->new_tg) {
3020 max_buf_size = tg_buf_size[tg_idx];
3021 remain_buf_size = max_buf_size;
3022 }
3023
3024 // Prorate bitstream buffer size of this tile based on tile size and
3025 // available buffer size. For this proration, header size is not accounted.
3026 const size_t tile_buf_size = get_bs_chunk_size(
3027 pack_bs_params->tile_size_mi, tg_size_mi[tg_idx], &remain_buf_size,
3028 max_buf_size, pack_bs_params->is_last_tile_in_tg);
3029 pack_bs_params->tile_buf_size = tile_buf_size;
3030
3031 // Update base address of bitstream buffer for tile and tile group.
3032 if (pack_bs_params->new_tg) {
3033 tile_dst = pack_bs_params->dst;
3034 tile_data_curr = pack_bs_params->tile_data_curr;
3035 // Account header size in first tile of a tile group.
3036 pack_bs_params->tile_buf_size += pack_bs_params->curr_tg_hdr_size;
3037 } else {
3038 pack_bs_params->dst = tile_dst;
3039 pack_bs_params->tile_data_curr = tile_data_curr;
3040 }
3041
3042 if (pack_bs_params->is_last_tile_in_tg) tg_idx++;
3043 tile_dst += pack_bs_params->tile_buf_size;
3044 }
3045 }
3046
3047 // Worker hook function of pack bitsteam multithreading.
pack_bs_worker_hook(void * arg1,void * arg2)3048 static int pack_bs_worker_hook(void *arg1, void *arg2) {
3049 EncWorkerData *const thread_data = (EncWorkerData *)arg1;
3050 PackBSParams *const pack_bs_params = (PackBSParams *)arg2;
3051 AV1_COMP *const cpi = thread_data->cpi;
3052 AV1_COMMON *const cm = &cpi->common;
3053 AV1EncPackBSSync *const pack_bs_sync = &cpi->mt_info.pack_bs_sync;
3054 const CommonTileParams *const tiles = &cm->tiles;
3055 const int num_tiles = tiles->cols * tiles->rows;
3056
3057 #if CONFIG_MULTITHREAD
3058 pthread_mutex_t *const pack_bs_mutex = pack_bs_sync->mutex_;
3059 #endif
3060 MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd;
3061 struct aom_internal_error_info *const error_info = &thread_data->error_info;
3062 xd->error_info = error_info;
3063
3064 // The jmp_buf is valid only for the duration of the function that calls
3065 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
3066 // before it returns.
3067 if (setjmp(error_info->jmp)) {
3068 error_info->setjmp = 0;
3069 #if CONFIG_MULTITHREAD
3070 pthread_mutex_lock(pack_bs_mutex);
3071 pack_bs_sync->pack_bs_mt_exit = true;
3072 pthread_mutex_unlock(pack_bs_mutex);
3073 #endif
3074 return 0;
3075 }
3076 error_info->setjmp = 1;
3077
3078 while (1) {
3079 #if CONFIG_MULTITHREAD
3080 pthread_mutex_lock(pack_bs_mutex);
3081 #endif
3082 const int tile_idx =
3083 pack_bs_sync->pack_bs_mt_exit
3084 ? -1
3085 : get_next_pack_bs_tile_idx(pack_bs_sync, num_tiles);
3086 #if CONFIG_MULTITHREAD
3087 pthread_mutex_unlock(pack_bs_mutex);
3088 #endif
3089 // When pack_bs_mt_exit is set to true, other workers need not pursue any
3090 // further jobs.
3091 if (tile_idx == -1) break;
3092 TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3093 thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
3094
3095 av1_pack_tile_info(cpi, thread_data->td, &pack_bs_params[tile_idx]);
3096 }
3097
3098 error_info->setjmp = 0;
3099 return 1;
3100 }
3101
3102 // Prepares thread data and workers of pack bitsteam multithreading.
prepare_pack_bs_workers(AV1_COMP * const cpi,PackBSParams * const pack_bs_params,AVxWorkerHook hook,const int num_workers)3103 static void prepare_pack_bs_workers(AV1_COMP *const cpi,
3104 PackBSParams *const pack_bs_params,
3105 AVxWorkerHook hook, const int num_workers) {
3106 MultiThreadInfo *const mt_info = &cpi->mt_info;
3107 for (int i = num_workers - 1; i >= 0; i--) {
3108 AVxWorker *worker = &mt_info->workers[i];
3109 EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
3110 if (i == 0) {
3111 thread_data->td = &cpi->td;
3112 } else {
3113 thread_data->td = thread_data->original_td;
3114 }
3115
3116 if (thread_data->td != &cpi->td) thread_data->td->mb = cpi->td.mb;
3117
3118 thread_data->cpi = cpi;
3119 thread_data->start = i;
3120 thread_data->thread_id = i;
3121 av1_reset_pack_bs_thread_data(thread_data->td);
3122
3123 worker->hook = hook;
3124 worker->data1 = thread_data;
3125 worker->data2 = pack_bs_params;
3126 }
3127
3128 AV1_COMMON *const cm = &cpi->common;
3129 AV1EncPackBSSync *const pack_bs_sync = &mt_info->pack_bs_sync;
3130 const uint16_t num_tiles = cm->tiles.rows * cm->tiles.cols;
3131 pack_bs_sync->next_job_idx = 0;
3132 pack_bs_sync->pack_bs_mt_exit = false;
3133
3134 PackBSTileOrder *const pack_bs_tile_order = pack_bs_sync->pack_bs_tile_order;
3135 // Reset tile order data of pack bitstream
3136 av1_zero_array(pack_bs_tile_order, num_tiles);
3137
3138 // Populate pack bitstream tile order structure
3139 for (uint16_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
3140 pack_bs_tile_order[tile_idx].abs_sum_level =
3141 cpi->tile_data[tile_idx].abs_sum_level;
3142 pack_bs_tile_order[tile_idx].tile_idx = tile_idx;
3143 }
3144
3145 // Sort tiles in descending order based on tile area.
3146 qsort(pack_bs_tile_order, num_tiles, sizeof(*pack_bs_tile_order),
3147 compare_tile_order);
3148 }
3149
3150 // Accumulates data after pack bitsteam processing.
accumulate_pack_bs_data(AV1_COMP * const cpi,const PackBSParams * const pack_bs_params_arr,uint8_t * const dst,uint32_t * total_size,const FrameHeaderInfo * fh_info,int * const largest_tile_id,unsigned int * max_tile_size,uint32_t * const obu_header_size,uint8_t ** tile_data_start,const int num_workers)3151 static void accumulate_pack_bs_data(
3152 AV1_COMP *const cpi, const PackBSParams *const pack_bs_params_arr,
3153 uint8_t *const dst, uint32_t *total_size, const FrameHeaderInfo *fh_info,
3154 int *const largest_tile_id, unsigned int *max_tile_size,
3155 uint32_t *const obu_header_size, uint8_t **tile_data_start,
3156 const int num_workers) {
3157 const AV1_COMMON *const cm = &cpi->common;
3158 const CommonTileParams *const tiles = &cm->tiles;
3159 const int tile_count = tiles->cols * tiles->rows;
3160 // Fixed size tile groups for the moment
3161 size_t curr_tg_data_size = 0;
3162 int is_first_tg = 1;
3163 uint8_t *curr_tg_start = dst;
3164 size_t src_offset = 0;
3165 size_t dst_offset = 0;
3166
3167 for (int tile_idx = 0; tile_idx < tile_count; tile_idx++) {
3168 // PackBSParams stores all parameters required to pack tile and header
3169 // info.
3170 const PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
3171 uint32_t tile_size = 0;
3172
3173 if (pack_bs_params->new_tg) {
3174 curr_tg_start = dst + *total_size;
3175 curr_tg_data_size = pack_bs_params->curr_tg_hdr_size;
3176 *tile_data_start += pack_bs_params->curr_tg_hdr_size;
3177 *obu_header_size = pack_bs_params->obu_header_size;
3178 }
3179 curr_tg_data_size +=
3180 pack_bs_params->buf.size + (pack_bs_params->is_last_tile_in_tg ? 0 : 4);
3181
3182 if (pack_bs_params->buf.size > *max_tile_size) {
3183 *largest_tile_id = tile_idx;
3184 *max_tile_size = (unsigned int)pack_bs_params->buf.size;
3185 }
3186 tile_size +=
3187 (uint32_t)pack_bs_params->buf.size + *pack_bs_params->total_size;
3188
3189 // Pack all the chunks of tile bitstreams together
3190 if (tile_idx != 0) memmove(dst + dst_offset, dst + src_offset, tile_size);
3191
3192 if (pack_bs_params->is_last_tile_in_tg)
3193 av1_write_last_tile_info(
3194 cpi, fh_info, pack_bs_params->saved_wb, &curr_tg_data_size,
3195 curr_tg_start, &tile_size, tile_data_start, largest_tile_id,
3196 &is_first_tg, *obu_header_size, pack_bs_params->obu_extn_header);
3197 src_offset += pack_bs_params->tile_buf_size;
3198 dst_offset += tile_size;
3199 *total_size += tile_size;
3200 }
3201
3202 // Accumulate thread data
3203 MultiThreadInfo *const mt_info = &cpi->mt_info;
3204 for (int idx = num_workers - 1; idx >= 0; idx--) {
3205 ThreadData const *td = mt_info->tile_thr_data[idx].td;
3206 av1_accumulate_pack_bs_thread_data(cpi, td);
3207 }
3208 }
3209
av1_write_tile_obu_mt(AV1_COMP * const cpi,uint8_t * const dst,uint32_t * total_size,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extn_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id,unsigned int * max_tile_size,uint32_t * const obu_header_size,uint8_t ** tile_data_start,const int num_workers)3210 void av1_write_tile_obu_mt(
3211 AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
3212 struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
3213 const FrameHeaderInfo *fh_info, int *const largest_tile_id,
3214 unsigned int *max_tile_size, uint32_t *const obu_header_size,
3215 uint8_t **tile_data_start, const int num_workers) {
3216 MultiThreadInfo *const mt_info = &cpi->mt_info;
3217
3218 PackBSParams pack_bs_params[MAX_TILES];
3219 uint32_t tile_size[MAX_TILES] = { 0 };
3220
3221 for (int tile_idx = 0; tile_idx < MAX_TILES; tile_idx++)
3222 pack_bs_params[tile_idx].total_size = &tile_size[tile_idx];
3223
3224 init_tile_pack_bs_params(cpi, dst, saved_wb, pack_bs_params, obu_extn_header);
3225 prepare_pack_bs_workers(cpi, pack_bs_params, pack_bs_worker_hook,
3226 num_workers);
3227 launch_workers(mt_info, num_workers);
3228 sync_enc_workers(mt_info, &cpi->common, num_workers);
3229 accumulate_pack_bs_data(cpi, pack_bs_params, dst, total_size, fh_info,
3230 largest_tile_id, max_tile_size, obu_header_size,
3231 tile_data_start, num_workers);
3232 }
3233
3234 // Deallocate memory for CDEF search multi-thread synchronization.
av1_cdef_mt_dealloc(AV1CdefSync * cdef_sync)3235 void av1_cdef_mt_dealloc(AV1CdefSync *cdef_sync) {
3236 (void)cdef_sync;
3237 assert(cdef_sync != NULL);
3238 #if CONFIG_MULTITHREAD
3239 if (cdef_sync->mutex_ != NULL) {
3240 pthread_mutex_destroy(cdef_sync->mutex_);
3241 aom_free(cdef_sync->mutex_);
3242 }
3243 #endif // CONFIG_MULTITHREAD
3244 }
3245
3246 // Updates the row and column indices of the next job to be processed.
3247 // Also updates end_of_frame flag when the processing of all blocks is complete.
update_next_job_info(AV1CdefSync * cdef_sync,int nvfb,int nhfb)3248 static void update_next_job_info(AV1CdefSync *cdef_sync, int nvfb, int nhfb) {
3249 cdef_sync->fbc++;
3250 if (cdef_sync->fbc == nhfb) {
3251 cdef_sync->fbr++;
3252 if (cdef_sync->fbr == nvfb) {
3253 cdef_sync->end_of_frame = 1;
3254 } else {
3255 cdef_sync->fbc = 0;
3256 }
3257 }
3258 }
3259
3260 // Initializes cdef_sync parameters.
cdef_reset_job_info(AV1CdefSync * cdef_sync)3261 static AOM_INLINE void cdef_reset_job_info(AV1CdefSync *cdef_sync) {
3262 #if CONFIG_MULTITHREAD
3263 if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
3264 #endif // CONFIG_MULTITHREAD
3265 cdef_sync->end_of_frame = 0;
3266 cdef_sync->fbr = 0;
3267 cdef_sync->fbc = 0;
3268 cdef_sync->cdef_mt_exit = false;
3269 }
3270
3271 // Checks if a job is available. If job is available,
3272 // populates next job information and returns 1, else returns 0.
cdef_get_next_job(AV1CdefSync * cdef_sync,CdefSearchCtx * cdef_search_ctx,volatile int * cur_fbr,volatile int * cur_fbc,volatile int * sb_count)3273 static AOM_INLINE int cdef_get_next_job(AV1CdefSync *cdef_sync,
3274 CdefSearchCtx *cdef_search_ctx,
3275 volatile int *cur_fbr,
3276 volatile int *cur_fbc,
3277 volatile int *sb_count) {
3278 #if CONFIG_MULTITHREAD
3279 pthread_mutex_lock(cdef_sync->mutex_);
3280 #endif // CONFIG_MULTITHREAD
3281 int do_next_block = 0;
3282 const int nvfb = cdef_search_ctx->nvfb;
3283 const int nhfb = cdef_search_ctx->nhfb;
3284
3285 // If a block is skip, do not process the block and
3286 // check the skip condition for the next block.
3287 while (!cdef_sync->cdef_mt_exit && !cdef_sync->end_of_frame &&
3288 cdef_sb_skip(cdef_search_ctx->mi_params, cdef_sync->fbr,
3289 cdef_sync->fbc)) {
3290 update_next_job_info(cdef_sync, nvfb, nhfb);
3291 }
3292
3293 // Populates information needed for current job and update the row,
3294 // column indices of the next block to be processed.
3295 if (!cdef_sync->cdef_mt_exit && cdef_sync->end_of_frame == 0) {
3296 do_next_block = 1;
3297 *cur_fbr = cdef_sync->fbr;
3298 *cur_fbc = cdef_sync->fbc;
3299 *sb_count = cdef_search_ctx->sb_count;
3300 cdef_search_ctx->sb_count++;
3301 update_next_job_info(cdef_sync, nvfb, nhfb);
3302 }
3303 #if CONFIG_MULTITHREAD
3304 pthread_mutex_unlock(cdef_sync->mutex_);
3305 #endif // CONFIG_MULTITHREAD
3306 return do_next_block;
3307 }
3308
3309 // Hook function for each thread in CDEF search multi-threading.
cdef_filter_block_worker_hook(void * arg1,void * arg2)3310 static int cdef_filter_block_worker_hook(void *arg1, void *arg2) {
3311 EncWorkerData *thread_data = (EncWorkerData *)arg1;
3312 AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg2;
3313
3314 #if CONFIG_MULTITHREAD
3315 pthread_mutex_t *cdef_mutex_ = cdef_sync->mutex_;
3316 #endif
3317 struct aom_internal_error_info *const error_info = &thread_data->error_info;
3318 CdefSearchCtx *cdef_search_ctx = thread_data->cpi->cdef_search_ctx;
3319
3320 // The jmp_buf is valid only for the duration of the function that calls
3321 // setjmp(). Therefore, this function must reset the 'setjmp' field to 0
3322 // before it returns.
3323 if (setjmp(error_info->jmp)) {
3324 error_info->setjmp = 0;
3325 #if CONFIG_MULTITHREAD
3326 pthread_mutex_lock(cdef_mutex_);
3327 cdef_sync->cdef_mt_exit = true;
3328 pthread_mutex_unlock(cdef_mutex_);
3329 #endif
3330 return 0;
3331 }
3332 error_info->setjmp = 1;
3333
3334 volatile int cur_fbr, cur_fbc, sb_count;
3335 while (cdef_get_next_job(cdef_sync, cdef_search_ctx, &cur_fbr, &cur_fbc,
3336 &sb_count)) {
3337 av1_cdef_mse_calc_block(cdef_search_ctx, error_info, cur_fbr, cur_fbc,
3338 sb_count);
3339 }
3340 error_info->setjmp = 0;
3341 return 1;
3342 }
3343
3344 // Assigns CDEF search hook function and thread data to each worker.
prepare_cdef_workers(AV1_COMP * cpi,AVxWorkerHook hook,int num_workers)3345 static void prepare_cdef_workers(AV1_COMP *cpi, AVxWorkerHook hook,
3346 int num_workers) {
3347 MultiThreadInfo *mt_info = &cpi->mt_info;
3348 for (int i = num_workers - 1; i >= 0; i--) {
3349 AVxWorker *worker = &mt_info->workers[i];
3350 EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
3351
3352 thread_data->cpi = cpi;
3353 worker->hook = hook;
3354 worker->data1 = thread_data;
3355 worker->data2 = &mt_info->cdef_sync;
3356 }
3357 }
3358
3359 // Implements multi-threading for CDEF search.
av1_cdef_mse_calc_frame_mt(AV1_COMP * cpi)3360 void av1_cdef_mse_calc_frame_mt(AV1_COMP *cpi) {
3361 MultiThreadInfo *mt_info = &cpi->mt_info;
3362 AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
3363 const int num_workers = mt_info->num_mod_workers[MOD_CDEF_SEARCH];
3364
3365 cdef_reset_job_info(cdef_sync);
3366 prepare_cdef_workers(cpi, cdef_filter_block_worker_hook, num_workers);
3367 launch_workers(mt_info, num_workers);
3368 sync_enc_workers(mt_info, &cpi->common, num_workers);
3369 }
3370
3371 // Computes num_workers for temporal filter multi-threading.
compute_num_tf_workers(const AV1_COMP * cpi)3372 static AOM_INLINE int compute_num_tf_workers(const AV1_COMP *cpi) {
3373 // For single-pass encode, using no. of workers as per tf block size was not
3374 // found to improve speed. Hence the thread assignment for single-pass encode
3375 // is kept based on compute_num_enc_workers().
3376 if (cpi->oxcf.pass < AOM_RC_SECOND_PASS)
3377 return (av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads));
3378
3379 if (cpi->oxcf.max_threads <= 1) return 1;
3380
3381 const int frame_height = cpi->common.height;
3382 const BLOCK_SIZE block_size = TF_BLOCK_SIZE;
3383 const int mb_height = block_size_high[block_size];
3384 const int mb_rows = get_num_blocks(frame_height, mb_height);
3385 return AOMMIN(cpi->oxcf.max_threads, mb_rows);
3386 }
3387
3388 // Computes num_workers for tpl multi-threading.
compute_num_tpl_workers(AV1_COMP * cpi)3389 static AOM_INLINE int compute_num_tpl_workers(AV1_COMP *cpi) {
3390 return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3391 }
3392
3393 // Computes num_workers for loop filter multi-threading.
compute_num_lf_workers(AV1_COMP * cpi)3394 static AOM_INLINE int compute_num_lf_workers(AV1_COMP *cpi) {
3395 return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3396 }
3397
3398 // Computes num_workers for cdef multi-threading.
compute_num_cdef_workers(AV1_COMP * cpi)3399 static AOM_INLINE int compute_num_cdef_workers(AV1_COMP *cpi) {
3400 return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3401 }
3402
3403 // Computes num_workers for loop-restoration multi-threading.
compute_num_lr_workers(AV1_COMP * cpi)3404 static AOM_INLINE int compute_num_lr_workers(AV1_COMP *cpi) {
3405 return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3406 }
3407
3408 // Computes num_workers for pack bitstream multi-threading.
compute_num_pack_bs_workers(AV1_COMP * cpi)3409 static AOM_INLINE int compute_num_pack_bs_workers(AV1_COMP *cpi) {
3410 if (cpi->oxcf.max_threads <= 1) return 1;
3411 return compute_num_enc_tile_mt_workers(&cpi->common, cpi->oxcf.max_threads);
3412 }
3413
3414 // Computes num_workers for all intra multi-threading.
compute_num_ai_workers(AV1_COMP * cpi)3415 static AOM_INLINE int compute_num_ai_workers(AV1_COMP *cpi) {
3416 if (cpi->oxcf.max_threads <= 1) return 1;
3417 // The multi-threading implementation of deltaq-mode = 3 in allintra
3418 // mode is based on row multi threading.
3419 if (!cpi->oxcf.row_mt) return 1;
3420 cpi->weber_bsize = BLOCK_8X8;
3421 const BLOCK_SIZE bsize = cpi->weber_bsize;
3422 const int mb_step = mi_size_wide[bsize];
3423 const int num_mb_rows = cpi->common.mi_params.mi_rows / mb_step;
3424 return AOMMIN(num_mb_rows, cpi->oxcf.max_threads);
3425 }
3426
compute_num_mod_workers(AV1_COMP * cpi,MULTI_THREADED_MODULES mod_name)3427 static int compute_num_mod_workers(AV1_COMP *cpi,
3428 MULTI_THREADED_MODULES mod_name) {
3429 int num_mod_workers = 0;
3430 switch (mod_name) {
3431 case MOD_FP:
3432 if (cpi->oxcf.pass >= AOM_RC_SECOND_PASS)
3433 num_mod_workers = 0;
3434 else
3435 num_mod_workers =
3436 av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3437 break;
3438 case MOD_TF: num_mod_workers = compute_num_tf_workers(cpi); break;
3439 case MOD_TPL: num_mod_workers = compute_num_tpl_workers(cpi); break;
3440 case MOD_GME: num_mod_workers = 1; break;
3441 case MOD_ENC:
3442 num_mod_workers = av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
3443 break;
3444 case MOD_LPF: num_mod_workers = compute_num_lf_workers(cpi); break;
3445 case MOD_CDEF_SEARCH:
3446 num_mod_workers = compute_num_cdef_workers(cpi);
3447 break;
3448 case MOD_CDEF: num_mod_workers = compute_num_cdef_workers(cpi); break;
3449 case MOD_LR: num_mod_workers = compute_num_lr_workers(cpi); break;
3450 case MOD_PACK_BS: num_mod_workers = compute_num_pack_bs_workers(cpi); break;
3451 case MOD_FRAME_ENC:
3452 num_mod_workers = cpi->ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC];
3453 break;
3454 case MOD_AI:
3455 if (cpi->oxcf.pass == AOM_RC_ONE_PASS) {
3456 num_mod_workers = compute_num_ai_workers(cpi);
3457 } else {
3458 num_mod_workers = 0;
3459 }
3460 break;
3461 default: assert(0); break;
3462 }
3463 return (num_mod_workers);
3464 }
3465 // Computes the number of workers for each MT modules in the encoder
av1_compute_num_workers_for_mt(AV1_COMP * cpi)3466 void av1_compute_num_workers_for_mt(AV1_COMP *cpi) {
3467 for (int i = MOD_FP; i < NUM_MT_MODULES; i++) {
3468 cpi->ppi->p_mt_info.num_mod_workers[i] =
3469 compute_num_mod_workers(cpi, (MULTI_THREADED_MODULES)i);
3470 }
3471 }
3472