1 /*
2 * Copyright (c) 2019, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <float.h>
13
14 #include "av1/encoder/encodeframe_utils.h"
15 #include "av1/encoder/thirdpass.h"
16 #include "config/aom_dsp_rtcd.h"
17
18 #include "av1/common/enums.h"
19 #include "av1/common/reconinter.h"
20
21 #if !CONFIG_REALTIME_ONLY
22 #include "av1/encoder/cnn.h"
23 #include "av1/encoder/partition_model_weights.h"
24 #include "av1/encoder/partition_cnn_weights.h"
25 #endif
26 #include "av1/encoder/encoder.h"
27
28 #include "av1/encoder/motion_search_facade.h"
29 #include "av1/encoder/partition_strategy.h"
30 #include "av1/encoder/partition_search.h"
31 #include "av1/encoder/rdopt.h"
32
33 #if !CONFIG_REALTIME_ONLY
34 static AOM_INLINE void simple_motion_search_prune_part_features(
35 AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
36 int mi_row, int mi_col, BLOCK_SIZE bsize, float *features,
37 int features_to_get);
38
39 static bool ext_ml_model_decision_before_none(
40 AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],
41 int *partition_none_allowed, int *partition_horz_allowed,
42 int *partition_vert_allowed, int *do_rectangular_split,
43 int *do_square_split);
44
45 static bool ext_ml_model_decision_before_none_part2(
46 AV1_COMP *cpi,
47 const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],
48 int *prune_horz, int *prune_vert);
49
50 static bool ext_ml_model_decision_after_none(
51 ExtPartController *const ext_part_controller, const int is_intra_frame,
52 const float *const features_after_none, int *do_square_split,
53 int *do_rectangular_split);
54
55 static bool ext_ml_model_decision_after_none_part2(
56 AV1_COMP *const cpi, const float *const features_terminate,
57 int *terminate_partition_search);
58
59 static bool ext_ml_model_decision_after_split(
60 AV1_COMP *const cpi, const float *const features_terminate,
61 int *terminate_partition_search);
62
63 static bool ext_ml_model_decision_after_split_part2(
64 ExtPartController *const ext_part_controller, const int is_intra_frame,
65 const float *const features_prune, int *prune_rect_part_horz,
66 int *prune_rect_part_vert);
67
68 static bool ext_ml_model_decision_after_rect(
69 ExtPartController *const ext_part_controller, const int is_intra_frame,
70 const float *const features_after_rect, int *horza_partition_allowed,
71 int *horzb_partition_allowed, int *verta_partition_allowed,
72 int *vertb_partition_allowed);
73
74 static bool ext_ml_model_decision_after_part_ab(
75 AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx,
76 int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
77 int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed,
78 int *const partition_vert4_allowed, unsigned int pb_source_variance,
79 int mi_row, int mi_col);
80
convert_bsize_to_idx(BLOCK_SIZE bsize)81 static INLINE int convert_bsize_to_idx(BLOCK_SIZE bsize) {
82 switch (bsize) {
83 case BLOCK_128X128: return 0;
84 case BLOCK_64X64: return 1;
85 case BLOCK_32X32: return 2;
86 case BLOCK_16X16: return 3;
87 case BLOCK_8X8: return 4;
88 default: assert(0 && "Invalid bsize"); return -1;
89 }
90 }
91
get_feature_file_name(int id)92 static char *get_feature_file_name(int id) {
93 static char *feature_file_names[] = {
94 "feature_before_partition_none",
95 "feature_before_partition_none_prune_rect",
96 "feature_after_partition_none_prune",
97 "feature_after_partition_none_terminate",
98 "feature_after_partition_split_terminate",
99 "feature_after_partition_split_prune_rect",
100 "feature_after_partition_rect",
101 "feature_after_partition_ab",
102 };
103
104 return feature_file_names[id];
105 }
106
write_features_to_file(const char * const path,const bool is_test_mode,const float * features,const int feature_size,const int id,const BLOCK_SIZE bsize,const int mi_row,const int mi_col)107 static void write_features_to_file(const char *const path,
108 const bool is_test_mode,
109 const float *features,
110 const int feature_size, const int id,
111 const BLOCK_SIZE bsize, const int mi_row,
112 const int mi_col) {
113 if (!WRITE_FEATURE_TO_FILE && !is_test_mode) return;
114
115 char filename[256];
116 snprintf(filename, sizeof(filename), "%s/%s", path,
117 get_feature_file_name(id));
118 FILE *pfile = fopen(filename, "a");
119 if (pfile == NULL) return;
120 if (!is_test_mode) {
121 fprintf(pfile, "%d,%d,%d,%d,%d\n", id, (int)bsize, mi_row, mi_col,
122 feature_size);
123 }
124 for (int i = 0; i < feature_size; ++i) {
125 fprintf(pfile, "%.6f", features[i]);
126 if (i < feature_size - 1) fprintf(pfile, ",");
127 }
128 fprintf(pfile, "\n");
129 fclose(pfile);
130 }
131
132 // TODO(chiyotsai@google.com): This is very much a work in progress. We still
133 // need to the following:
134 // -- add support for hdres
135 // -- add support for pruning rectangular partitions
136 // -- use reconstructed pixels instead of source pixels for padding
137 // -- use chroma pixels in addition to luma pixels
av1_intra_mode_cnn_partition(const AV1_COMMON * const cm,MACROBLOCK * x,int quad_tree_idx,int intra_cnn_based_part_prune_level,PartitionSearchState * part_state)138 void av1_intra_mode_cnn_partition(const AV1_COMMON *const cm, MACROBLOCK *x,
139 int quad_tree_idx,
140 int intra_cnn_based_part_prune_level,
141 PartitionSearchState *part_state) {
142 assert(cm->seq_params->sb_size >= BLOCK_64X64 &&
143 "Invalid sb_size for intra_cnn!");
144 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
145 const BLOCK_SIZE bsize = blk_params->bsize;
146
147 const int bsize_idx = convert_bsize_to_idx(bsize);
148
149 if (bsize == BLOCK_128X128) {
150 return;
151 }
152
153 PartitionSearchInfo *part_info = &x->part_search_info;
154
155 // Precompute the CNN part and cache the result in MACROBLOCK
156 if (bsize == BLOCK_64X64 && !part_info->cnn_output_valid) {
157 const CNN_CONFIG *cnn_config = &av1_intra_mode_cnn_partition_cnn_config;
158
159 // Prepare the output
160 const CNN_THREAD_DATA thread_data = { .num_workers = 1, .workers = NULL };
161 const int num_outputs = 4;
162 const int output_dims[4] = { 1, 2, 4, 8 };
163 const int out_chs[4] = { CNN_BRANCH_0_OUT_CH, CNN_BRANCH_1_OUT_CH,
164 CNN_BRANCH_2_OUT_CH, CNN_BRANCH_3_OUT_CH };
165 float *output_buffer[CNN_TOT_OUT_CH];
166
167 float **cur_output_buf = output_buffer;
168 float *curr_buf_ptr = part_info->cnn_buffer;
169 for (int output_idx = 0; output_idx < num_outputs; output_idx++) {
170 const int num_chs = out_chs[output_idx];
171 const int ch_size = output_dims[output_idx] * output_dims[output_idx];
172 for (int ch = 0; ch < num_chs; ch++) {
173 cur_output_buf[ch] = curr_buf_ptr;
174 curr_buf_ptr += ch_size;
175 }
176 cur_output_buf += num_chs;
177 }
178
179 CNN_MULTI_OUT output = {
180 .num_outputs = 4,
181 .output_channels = out_chs,
182 .output_strides = output_dims,
183 .output_buffer = output_buffer,
184 };
185
186 // Prepare the input
187 const MACROBLOCKD *xd = &x->e_mbd;
188 const int bit_depth = xd->bd;
189 const int dc_q =
190 av1_dc_quant_QTX(x->qindex, 0, bit_depth) >> (bit_depth - 8);
191 part_info->log_q = log1pf((float)(dc_q * dc_q) / 256.0f);
192 part_info->log_q =
193 (part_info->log_q - av1_intra_mode_cnn_partition_mean[0]) /
194 av1_intra_mode_cnn_partition_std[0];
195
196 const int width = 65, height = 65,
197 stride = x->plane[AOM_PLANE_Y].src.stride;
198
199 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
200 uint16_t *image[1] = {
201 CONVERT_TO_SHORTPTR(x->plane[AOM_PLANE_Y].src.buf) - stride - 1
202 };
203
204 if (!av1_cnn_predict_img_multi_out_highbd(image, width, height, stride,
205 cnn_config, &thread_data,
206 bit_depth, &output)) {
207 aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
208 "Error allocating CNN data");
209 return;
210 }
211 } else {
212 uint8_t *image[1] = { x->plane[AOM_PLANE_Y].src.buf - stride - 1 };
213
214 if (!av1_cnn_predict_img_multi_out(image, width, height, stride,
215 cnn_config, &thread_data, &output)) {
216 aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
217 "Error allocating CNN data");
218 return;
219 }
220 }
221
222 part_info->cnn_output_valid = 1;
223 }
224
225 if (!part_info->cnn_output_valid) {
226 return;
227 }
228
229 const NN_CONFIG *dnn_configs[5] = {
230 NULL,
231 &av1_intra_mode_cnn_partition_branch_0_dnn_config,
232 &av1_intra_mode_cnn_partition_branch_1_dnn_config,
233 &av1_intra_mode_cnn_partition_branch_2_dnn_config,
234 &av1_intra_mode_cnn_partition_branch_3_dnn_config,
235 };
236
237 const NN_CONFIG *dnn_config = dnn_configs[bsize_idx];
238
239 float dnn_features[100];
240 float logits[4] = { 0.0f };
241
242 const float *branch_0 = part_info->cnn_buffer;
243 const float *branch_1 = branch_0 + CNN_BRANCH_0_OUT_SIZE;
244 const float *branch_2 = branch_1 + CNN_BRANCH_1_OUT_SIZE;
245 const float *branch_3 = branch_2 + CNN_BRANCH_2_OUT_SIZE;
246
247 if (bsize == BLOCK_64X64) {
248 int f_idx = 0;
249 for (int ch_idx = 0; ch_idx < CNN_BRANCH_0_OUT_CH; ch_idx++) {
250 dnn_features[f_idx++] = branch_0[ch_idx];
251 }
252
253 const int spa_stride = 2 * 2;
254 for (int lin_idx = 0; lin_idx < spa_stride; lin_idx++) {
255 for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
256 dnn_features[f_idx++] = branch_1[lin_idx + ch_idx * spa_stride];
257 }
258 }
259 dnn_features[f_idx++] = part_info->log_q;
260 } else if (bsize == BLOCK_32X32) {
261 int f_idx = 0;
262 for (int idx = 0; idx < CNN_BRANCH_0_OUT_CH; idx++) {
263 dnn_features[f_idx++] = branch_0[idx];
264 }
265
266 const int curr_lin_idx = quad_to_linear_1[quad_tree_idx - 1];
267 const int spa_stride = 2 * 2;
268 for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
269 dnn_features[f_idx++] = branch_1[curr_lin_idx + ch_idx * spa_stride];
270 }
271 dnn_features[f_idx++] = part_info->log_q;
272 } else if (bsize == BLOCK_16X16) {
273 int f_idx = 0;
274 const int prev_quad_idx = (quad_tree_idx - 1) / 4;
275 const int prev_lin_idx = quad_to_linear_1[prev_quad_idx - 1];
276 const int prev_spa_stride = 2 * 2;
277 for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
278 dnn_features[f_idx++] = branch_1[prev_lin_idx + ch_idx * prev_spa_stride];
279 }
280
281 const int curr_lin_idx = quad_to_linear_2[quad_tree_idx - 5];
282 const int spa_stride = 4 * 4;
283 for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
284 dnn_features[f_idx++] = branch_2[curr_lin_idx + ch_idx * spa_stride];
285 }
286 dnn_features[f_idx++] = part_info->log_q;
287 } else if (bsize == BLOCK_8X8) {
288 int f_idx = 0;
289 const int prev_quad_idx = (quad_tree_idx - 1) / 4;
290 const int prev_lin_idx = quad_to_linear_2[prev_quad_idx - 5];
291 const int prev_spa_stride = 4 * 4;
292 for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
293 dnn_features[f_idx++] = branch_2[prev_lin_idx + ch_idx * prev_spa_stride];
294 }
295
296 const int curr_lin_idx = quad_to_linear_3[quad_tree_idx - 21];
297 const int spa_stride = 8 * 8;
298 for (int ch_idx = 0; ch_idx < CNN_BRANCH_3_OUT_CH; ch_idx++) {
299 dnn_features[f_idx++] = branch_3[curr_lin_idx + ch_idx * spa_stride];
300 }
301 dnn_features[f_idx++] = part_info->log_q;
302 } else {
303 assert(0 && "Invalid bsize in intra_cnn partition");
304 }
305
306 // Make decision
307 av1_nn_predict(dnn_features, dnn_config, 1, logits);
308
309 const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
310 const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
311 float split_only_thresh = 100.0f, no_split_thresh = -100.0f;
312 if (is_720p_or_larger) {
313 split_only_thresh =
314 av1_intra_mode_cnn_partition_split_thresh_hdres[bsize_idx];
315 no_split_thresh =
316 av1_intra_mode_cnn_partition_no_split_thresh_hdres[bsize_idx];
317 } else if (is_480p_or_larger) {
318 split_only_thresh =
319 av1_intra_mode_cnn_partition_split_thresh_midres[bsize_idx];
320 no_split_thresh =
321 av1_intra_mode_cnn_partition_no_split_thresh_midres[bsize_idx];
322 } else {
323 split_only_thresh =
324 av1_intra_mode_cnn_partition_split_thresh_lowres[bsize_idx];
325 no_split_thresh =
326 av1_intra_mode_cnn_partition_no_split_thresh_lowres[bsize_idx];
327 }
328
329 if (logits[0] > split_only_thresh) {
330 // As screen contents tend to choose larger partitions, do not prune
331 // PARTITION_NONE when intra_cnn_based_part_prune_level=1.
332 if (intra_cnn_based_part_prune_level != 1) {
333 part_state->partition_none_allowed = 0;
334 }
335 part_state->do_square_split = 1;
336 av1_disable_rect_partitions(part_state);
337 }
338
339 if (logits[0] < no_split_thresh) {
340 av1_disable_square_split_partition(part_state);
341 }
342 }
343
get_simple_motion_search_prune_agg(int qindex,int prune_level,int is_rect_part)344 static INLINE int get_simple_motion_search_prune_agg(int qindex,
345 int prune_level,
346 int is_rect_part) {
347 assert(prune_level < TOTAL_AGG_LVLS);
348 if (prune_level == NO_PRUNING) {
349 return -1;
350 }
351
352 // Aggressiveness value for SIMPLE_MOTION_SEARCH_PRUNE_LEVEL except
353 // QIDX_BASED_AGG_LVL
354 const int sms_prune_agg_levels[TOTAL_SIMPLE_AGG_LVLS] = { 0, 1, 2, 3 };
355 if (prune_level < TOTAL_SIMPLE_AGG_LVLS) {
356 return sms_prune_agg_levels[prune_level];
357 }
358
359 // Map the QIDX_BASED_AGG_LVL to corresponding aggressiveness value.
360 // Aggressive pruning for lower quantizers in non-boosted frames to prune
361 // rectangular partitions.
362 const int qband = is_rect_part ? (qindex <= 90 ? 1 : 0) : 0;
363 const int sms_prune_agg_qindex_based[2] = { 1, 2 };
364 return sms_prune_agg_qindex_based[qband];
365 }
366
av1_simple_motion_search_based_split(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,PartitionSearchState * part_state)367 void av1_simple_motion_search_based_split(AV1_COMP *const cpi, MACROBLOCK *x,
368 SIMPLE_MOTION_DATA_TREE *sms_tree,
369 PartitionSearchState *part_state) {
370 const AV1_COMMON *const cm = &cpi->common;
371 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
372 const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
373 const BLOCK_SIZE bsize = blk_params->bsize;
374
375 const int bsize_idx = convert_bsize_to_idx(bsize);
376 const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
377 const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
378 // res_idx is 0 for res < 480p, 1 for 480p, 2 for 720p+
379 const int res_idx = is_480p_or_larger + is_720p_or_larger;
380
381 assert(bsize_idx >= 0 && bsize_idx <= 4 &&
382 "Invalid bsize in simple_motion_search_based_split");
383
384 const float *ml_mean = av1_simple_motion_search_split_mean[bsize_idx];
385 const float *ml_std = av1_simple_motion_search_split_std[bsize_idx];
386 const NN_CONFIG *nn_config =
387 av1_simple_motion_search_split_nn_config[bsize_idx];
388
389 const int agg = get_simple_motion_search_prune_agg(
390 x->qindex, cpi->sf.part_sf.simple_motion_search_prune_agg, 0);
391 if (agg < 0) {
392 return;
393 }
394
395 const float split_only_thresh =
396 av1_simple_motion_search_split_thresh[agg][res_idx][bsize_idx];
397 const float no_split_thresh =
398 av1_simple_motion_search_no_split_thresh[agg][res_idx][bsize_idx];
399
400 float features[FEATURE_SIZE_SMS_SPLIT] = { 0.0f };
401 simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
402 bsize, features,
403 FEATURE_SMS_SPLIT_MODEL_FLAG);
404
405 // Write features to file
406 write_features_to_file(cpi->oxcf.partition_info_path,
407 cpi->ext_part_controller.test_mode, features,
408 FEATURE_SIZE_SMS_SPLIT, 0, bsize, mi_row, mi_col);
409
410 // Note: it is intended to not normalize the features here, to keep it
411 // consistent for all features collected and passed to the external model.
412 if (ext_ml_model_decision_before_none(
413 cpi, features, &part_state->partition_none_allowed,
414 &part_state->partition_rect_allowed[HORZ],
415 &part_state->partition_rect_allowed[VERT],
416 &part_state->do_rectangular_split, &part_state->do_square_split)) {
417 return;
418 }
419
420 for (int idx = 0; idx < FEATURE_SIZE_SMS_SPLIT; idx++) {
421 features[idx] = (features[idx] - ml_mean[idx]) / ml_std[idx];
422 }
423
424 float score = 0.0f;
425
426 av1_nn_predict(features, nn_config, 1, &score);
427
428 if (score > split_only_thresh) {
429 av1_set_square_split_only(part_state);
430 }
431
432 if (cpi->sf.part_sf.simple_motion_search_split >= 2 &&
433 score < no_split_thresh) {
434 av1_disable_square_split_partition(part_state);
435 }
436
437 // If the score is very low, prune rectangular split since it is unlikely to
438 // occur.
439 if (cpi->sf.part_sf.simple_motion_search_rect_split) {
440 const float scale = res_idx >= 2 ? 3.0f : 2.0f;
441 const float rect_split_thresh =
442 scale * av1_simple_motion_search_no_split_thresh
443 [cpi->sf.part_sf.simple_motion_search_rect_split][res_idx]
444 [bsize_idx];
445 if (score < rect_split_thresh) {
446 part_state->do_rectangular_split = 0;
447 }
448 }
449 }
450
451 // Given a list of ref frames in refs, performs simple_motion_search on each of
452 // the refs and returns the ref with the smallest sse. Returns -1 if none of the
453 // ref in the list is available. Also stores the best sse and var in best_sse,
454 // best_var, respectively. If save_mv is 0, don't update mv_ref_fulls in
455 // sms_tree. If save_mv is 1, update mv_ref_fulls under sms_tree and the
456 // subtrees.
simple_motion_search_get_best_ref(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,int mi_row,int mi_col,BLOCK_SIZE bsize,const int * const refs,int num_refs,int use_subpixel,int save_mv,unsigned int * best_sse,unsigned int * best_var)457 static int simple_motion_search_get_best_ref(
458 AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
459 int mi_row, int mi_col, BLOCK_SIZE bsize, const int *const refs,
460 int num_refs, int use_subpixel, int save_mv, unsigned int *best_sse,
461 unsigned int *best_var) {
462 const AV1_COMMON *const cm = &cpi->common;
463 int best_ref = -1;
464
465 if (mi_col >= cm->mi_params.mi_cols || mi_row >= cm->mi_params.mi_rows) {
466 // If the whole block is outside of the image, set the var and sse to 0.
467 *best_var = 0;
468 *best_sse = 0;
469
470 return best_ref;
471 }
472
473 // Otherwise do loop through the reference frames and find the one with the
474 // minimum SSE
475 const int num_planes = 1;
476
477 *best_sse = INT_MAX;
478
479 for (int ref_idx = 0; ref_idx < num_refs; ref_idx++) {
480 const int ref = refs[ref_idx];
481
482 if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref]) {
483 const FULLPEL_MV *start_mvs = sms_tree->start_mvs;
484 unsigned int curr_sse = 0, curr_var = 0;
485 const int_mv best_mv = av1_simple_motion_search_sse_var(
486 cpi, x, mi_row, mi_col, bsize, ref, start_mvs[ref], num_planes,
487 use_subpixel, &curr_sse, &curr_var);
488 if (curr_sse < *best_sse) {
489 *best_sse = curr_sse;
490 *best_var = curr_var;
491 best_ref = ref;
492 }
493
494 if (save_mv) {
495 sms_tree->start_mvs[ref].row = best_mv.as_mv.row / 8;
496 sms_tree->start_mvs[ref].col = best_mv.as_mv.col / 8;
497
498 if (bsize >= BLOCK_8X8) {
499 for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) {
500 // Propagate the new motion vectors to a lower level
501 SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx];
502 sub_tree->start_mvs[ref] = sms_tree->start_mvs[ref];
503 }
504 }
505 }
506 }
507 }
508
509 return best_ref;
510 }
511
512 // Collects features using simple_motion_search and store them in features. The
513 // features are also cached in SIMPLE_MOTION_DATA_TREE. By default, the features
514 // collected are the sse and var from the subblocks flagged by features_to_get.
515 // Furthermore, if features is not NULL, then 7 more features are appended to
516 // the end of features:
517 // - log(1.0 + dc_q ** 2)
518 // - whether an above macroblock exists
519 // - width of above macroblock
520 // - height of above macroblock
521 // - whether a left marcoblock exists
522 // - width of left macroblock
523 // - height of left macroblock
simple_motion_search_prune_part_features(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,int mi_row,int mi_col,BLOCK_SIZE bsize,float * features,int features_to_get)524 static AOM_INLINE void simple_motion_search_prune_part_features(
525 AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
526 int mi_row, int mi_col, BLOCK_SIZE bsize, float *features,
527 int features_to_get) {
528 const int w_mi = mi_size_wide[bsize];
529 const int h_mi = mi_size_high[bsize];
530 assert(mi_size_wide[bsize] == mi_size_high[bsize]);
531 assert(bsize >= BLOCK_8X8);
532 assert(cpi->ref_frame_flags & av1_ref_frame_flag_list[LAST_FRAME] ||
533 cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]);
534
535 // Setting up motion search
536 const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
537 : LAST_FRAME };
538 const int num_refs = 1;
539 const int use_subpixel = 1;
540
541 // Doing whole block first to update the mv
542 if (!sms_tree->sms_none_valid && features_to_get & FEATURE_SMS_NONE_FLAG) {
543 simple_motion_search_get_best_ref(cpi, x, sms_tree, mi_row, mi_col, bsize,
544 ref_list, num_refs, use_subpixel, 1,
545 &sms_tree->sms_none_feat[0],
546 &sms_tree->sms_none_feat[1]);
547 sms_tree->sms_none_valid = 1;
548 }
549
550 // Split subblocks
551 if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
552 const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
553 for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) {
554 const int sub_mi_col = mi_col + (r_idx & 1) * w_mi / 2;
555 const int sub_mi_row = mi_row + (r_idx >> 1) * h_mi / 2;
556 SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx];
557
558 if (!sub_tree->sms_none_valid) {
559 simple_motion_search_get_best_ref(
560 cpi, x, sub_tree, sub_mi_row, sub_mi_col, subsize, ref_list,
561 num_refs, use_subpixel, 1, &sub_tree->sms_none_feat[0],
562 &sub_tree->sms_none_feat[1]);
563 sub_tree->sms_none_valid = 1;
564 }
565 }
566 }
567
568 // Rectangular subblocks
569 if (!sms_tree->sms_rect_valid && features_to_get & FEATURE_SMS_RECT_FLAG) {
570 // Horz subblock
571 BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
572 for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) {
573 const int sub_mi_col = mi_col + 0;
574 const int sub_mi_row = mi_row + r_idx * h_mi / 2;
575
576 simple_motion_search_get_best_ref(
577 cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
578 use_subpixel, 0, &sms_tree->sms_rect_feat[2 * r_idx],
579 &sms_tree->sms_rect_feat[2 * r_idx + 1]);
580 }
581
582 // Vert subblock
583 subsize = get_partition_subsize(bsize, PARTITION_VERT);
584 for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) {
585 const int sub_mi_col = mi_col + r_idx * w_mi / 2;
586 const int sub_mi_row = mi_row + 0;
587
588 simple_motion_search_get_best_ref(
589 cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
590 use_subpixel, 0, &sms_tree->sms_rect_feat[4 + 2 * r_idx],
591 &sms_tree->sms_rect_feat[4 + 2 * r_idx + 1]);
592 }
593 sms_tree->sms_rect_valid = 1;
594 }
595
596 if (!features) return;
597
598 int f_idx = 0;
599 if (features_to_get & FEATURE_SMS_NONE_FLAG) {
600 for (int sub_idx = 0; sub_idx < 2; sub_idx++) {
601 features[f_idx++] = log1pf((float)sms_tree->sms_none_feat[sub_idx]);
602 }
603 }
604
605 if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
606 for (int sub_idx = 0; sub_idx < SUB_PARTITIONS_SPLIT; sub_idx++) {
607 SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[sub_idx];
608 features[f_idx++] = log1pf((float)sub_tree->sms_none_feat[0]);
609 features[f_idx++] = log1pf((float)sub_tree->sms_none_feat[1]);
610 }
611 }
612
613 if (features_to_get & FEATURE_SMS_RECT_FLAG) {
614 for (int sub_idx = 0; sub_idx < 8; sub_idx++) {
615 features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[sub_idx]);
616 }
617 }
618
619 const MACROBLOCKD *xd = &x->e_mbd;
620 set_offsets_for_motion_search(cpi, x, mi_row, mi_col, bsize);
621
622 // Q_INDEX
623 const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
624 features[f_idx++] = log1pf((float)(dc_q * dc_q) / 256.0f);
625
626 // Neighbor stuff
627 const int has_above = !!xd->above_mbmi;
628 const int has_left = !!xd->left_mbmi;
629 const BLOCK_SIZE above_bsize = has_above ? xd->above_mbmi->bsize : bsize;
630 const BLOCK_SIZE left_bsize = has_left ? xd->left_mbmi->bsize : bsize;
631 features[f_idx++] = (float)has_above;
632 features[f_idx++] = (float)mi_size_wide_log2[above_bsize];
633 features[f_idx++] = (float)mi_size_high_log2[above_bsize];
634 features[f_idx++] = (float)has_left;
635 features[f_idx++] = (float)mi_size_wide_log2[left_bsize];
636 features[f_idx++] = (float)mi_size_high_log2[left_bsize];
637 }
638
av1_simple_motion_search_prune_rect(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,PartitionSearchState * part_state)639 void av1_simple_motion_search_prune_rect(AV1_COMP *const cpi, MACROBLOCK *x,
640 SIMPLE_MOTION_DATA_TREE *sms_tree,
641 PartitionSearchState *part_state) {
642 const AV1_COMMON *const cm = &cpi->common;
643 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
644 const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
645 const BLOCK_SIZE bsize = blk_params->bsize;
646
647 const int bsize_idx = convert_bsize_to_idx(bsize);
648 const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
649 const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
650 // res_idx is 0 for lowres, 1 for 48p, 2 for 720p+
651 const int res_idx = is_480p_or_larger + is_720p_or_larger;
652
653 // Get model parameters
654 const NN_CONFIG *nn_config =
655 av1_simple_motion_search_prune_rect_nn_config[bsize_idx];
656 const float *ml_mean = av1_simple_motion_search_prune_rect_mean[bsize_idx],
657 *ml_std = av1_simple_motion_search_prune_rect_std[bsize_idx];
658
659 const int agg = get_simple_motion_search_prune_agg(
660 x->qindex, cpi->sf.part_sf.simple_motion_search_prune_agg, 1);
661 if (agg < 0) {
662 return;
663 }
664
665 const float prune_thresh =
666 av1_simple_motion_search_prune_rect_thresh[agg][res_idx][bsize_idx];
667
668 // If there is no valid threshold, return immediately.
669 if (!nn_config || prune_thresh == 0.0f) {
670 return;
671 }
672
673 // Get features
674 float features[FEATURE_SIZE_SMS_PRUNE_PART] = { 0.0f };
675 simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
676 bsize, features,
677 FEATURE_SMS_PRUNE_PART_FLAG);
678
679 // Note: it is intended to not normalize the features here, to keep it
680 // consistent for all features collected and passed to the external model.
681 if (cpi->sf.part_sf.simple_motion_search_prune_rect &&
682 !frame_is_intra_only(cm) &&
683 (part_state->partition_rect_allowed[HORZ] ||
684 part_state->partition_rect_allowed[VERT]) &&
685 bsize >= BLOCK_8X8 && !av1_superres_scaled(cm)) {
686 // Write features to file
687 write_features_to_file(
688 cpi->oxcf.partition_info_path, cpi->ext_part_controller.test_mode,
689 features, FEATURE_SIZE_SMS_PRUNE_PART, 1, bsize, mi_row, mi_col);
690
691 if (ext_ml_model_decision_before_none_part2(
692 cpi, features, &part_state->prune_rect_part[HORZ],
693 &part_state->prune_rect_part[VERT])) {
694 return;
695 }
696 }
697
698 for (int f_idx = 0; f_idx < FEATURE_SIZE_SMS_PRUNE_PART; f_idx++) {
699 features[f_idx] = (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
700 }
701
702 // Get probabilities
703 float scores[EXT_PARTITION_TYPES] = { 0.0f },
704 probs[EXT_PARTITION_TYPES] = { 0.0f };
705 const int num_classes = (bsize == BLOCK_128X128 || bsize == BLOCK_8X8)
706 ? PARTITION_TYPES
707 : EXT_PARTITION_TYPES;
708
709 av1_nn_predict(features, nn_config, 1, scores);
710
711 av1_nn_softmax(scores, probs, num_classes);
712
713 // Determine if we should prune rectangular partitions.
714 if (probs[PARTITION_HORZ] <= prune_thresh) {
715 part_state->prune_rect_part[HORZ] = 1;
716 }
717 if (probs[PARTITION_VERT] <= prune_thresh) {
718 part_state->prune_rect_part[VERT] = 1;
719 }
720 }
721
722 // Early terminates PARTITION_NONE using simple_motion_search features and the
723 // rate, distortion, and rdcost of PARTITION_NONE. This is only called when:
724 // - The frame is a show frame
725 // - The frame is not intra only
726 // - The current bsize is > BLOCK_8X8
727 // - blk_row + blk_height/2 < total_rows and blk_col + blk_width/2 < total_cols
av1_simple_motion_search_early_term_none(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,const RD_STATS * none_rdc,PartitionSearchState * part_state)728 void av1_simple_motion_search_early_term_none(
729 AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
730 const RD_STATS *none_rdc, PartitionSearchState *part_state) {
731 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
732 const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
733 const BLOCK_SIZE bsize = blk_params->bsize;
734
735 float features[FEATURE_SIZE_SMS_TERM_NONE] = { 0.0f };
736 simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
737 bsize, features,
738 FEATURE_SMS_PRUNE_PART_FLAG);
739 int f_idx = FEATURE_SIZE_SMS_PRUNE_PART;
740
741 features[f_idx++] = log1pf((float)none_rdc->rate);
742 features[f_idx++] = log1pf((float)none_rdc->dist);
743 features[f_idx++] = log1pf((float)none_rdc->rdcost);
744
745 assert(f_idx == FEATURE_SIZE_SMS_TERM_NONE);
746
747 const float *ml_mean = NULL;
748 const float *ml_std = NULL;
749 const float *ml_model = NULL;
750
751 if (bsize == BLOCK_128X128) {
752 ml_mean = av1_simple_motion_search_term_none_mean_128;
753 ml_std = av1_simple_motion_search_term_none_std_128;
754 ml_model = av1_simple_motion_search_term_none_model_128;
755 } else if (bsize == BLOCK_64X64) {
756 ml_mean = av1_simple_motion_search_term_none_mean_64;
757 ml_std = av1_simple_motion_search_term_none_std_64;
758 ml_model = av1_simple_motion_search_term_none_model_64;
759 } else if (bsize == BLOCK_32X32) {
760 ml_mean = av1_simple_motion_search_term_none_mean_32;
761 ml_std = av1_simple_motion_search_term_none_std_32;
762 ml_model = av1_simple_motion_search_term_none_model_32;
763 } else if (bsize == BLOCK_16X16) {
764 ml_mean = av1_simple_motion_search_term_none_mean_16;
765 ml_std = av1_simple_motion_search_term_none_std_16;
766 ml_model = av1_simple_motion_search_term_none_model_16;
767 } else {
768 assert(0 && "Unexpected block size in simple_motion_term_none");
769 }
770
771 // Write features to file
772 write_features_to_file(cpi->oxcf.partition_info_path,
773 cpi->ext_part_controller.test_mode, features,
774 FEATURE_SIZE_SMS_TERM_NONE, 3, bsize, mi_row, mi_col);
775
776 if (ext_ml_model_decision_after_none_part2(
777 cpi, features, &part_state->terminate_partition_search)) {
778 return;
779 }
780
781 if (ml_model) {
782 float score = 0.0f;
783 for (f_idx = 0; f_idx < FEATURE_SIZE_SMS_TERM_NONE; f_idx++) {
784 score +=
785 ml_model[f_idx] * (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
786 }
787 score += ml_model[FEATURE_SIZE_SMS_TERM_NONE];
788
789 if (score >= 0.0f) {
790 part_state->terminate_partition_search = 1;
791 }
792 }
793 }
794
av1_get_max_min_partition_features(AV1_COMP * const cpi,MACROBLOCK * x,int mi_row,int mi_col,float * features)795 void av1_get_max_min_partition_features(AV1_COMP *const cpi, MACROBLOCK *x,
796 int mi_row, int mi_col,
797 float *features) {
798 AV1_COMMON *const cm = &cpi->common;
799 MACROBLOCKD *xd = &x->e_mbd;
800 const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
801
802 // Currently this only allows 128X128 SB size. May extend it to 64X64 SB size.
803 assert(sb_size == BLOCK_128X128);
804
805 int f_idx = 0;
806
807 const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
808 const float log_q_sq = log1pf((float)(dc_q * dc_q) / 256.0f);
809
810 // Perform full-pixel single motion search in Y plane of 16x16 mbs in the sb
811 float sum_mv_row_sq = 0;
812 float sum_mv_row = 0;
813 float min_abs_mv_row = FLT_MAX;
814 float max_abs_mv_row = 0;
815
816 float sum_mv_col_sq = 0;
817 float sum_mv_col = 0;
818 float min_abs_mv_col = FLT_MAX;
819 float max_abs_mv_col = 0;
820
821 float sum_log_sse_sq = 0;
822 float sum_log_sse = 0;
823 float min_log_sse = FLT_MAX;
824 float max_log_sse = 0;
825
826 const BLOCK_SIZE mb_size = BLOCK_16X16;
827 const int mb_rows = block_size_high[sb_size] / block_size_high[mb_size];
828 const int mb_cols = block_size_wide[sb_size] / block_size_wide[mb_size];
829 const int mb_in_mi_size_high_log2 = mi_size_high_log2[mb_size];
830 const int mb_in_mi_size_wide_log2 = mi_size_wide_log2[mb_size];
831
832 for (int mb_row = 0; mb_row < mb_rows; mb_row++)
833 for (int mb_col = 0; mb_col < mb_cols; mb_col++) {
834 const int this_mi_row = mi_row + (mb_row << mb_in_mi_size_high_log2);
835 const int this_mi_col = mi_col + (mb_col << mb_in_mi_size_wide_log2);
836 unsigned int sse = 0;
837 unsigned int var = 0;
838 const FULLPEL_MV start_mv = kZeroFullMv;
839 const MV_REFERENCE_FRAME ref =
840 cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
841 const int_mv best_mv = av1_simple_motion_search_sse_var(
842 cpi, x, this_mi_row, this_mi_col, mb_size, ref, start_mv, 1, 0, &sse,
843 &var);
844
845 const float mv_row = (float)(best_mv.as_mv.row / 8);
846 const float mv_col = (float)(best_mv.as_mv.col / 8);
847 const float log_sse = log1pf((float)sse);
848 const float abs_mv_row = fabsf(mv_row);
849 const float abs_mv_col = fabsf(mv_col);
850
851 sum_mv_row_sq += mv_row * mv_row;
852 sum_mv_row += mv_row;
853 sum_mv_col_sq += mv_col * mv_col;
854 sum_mv_col += mv_col;
855
856 if (abs_mv_row < min_abs_mv_row) min_abs_mv_row = abs_mv_row;
857 if (abs_mv_row > max_abs_mv_row) max_abs_mv_row = abs_mv_row;
858 if (abs_mv_col < min_abs_mv_col) min_abs_mv_col = abs_mv_col;
859 if (abs_mv_col > max_abs_mv_col) max_abs_mv_col = abs_mv_col;
860
861 sum_log_sse_sq += log_sse * log_sse;
862 sum_log_sse += log_sse;
863 if (log_sse < min_log_sse) min_log_sse = log_sse;
864 if (log_sse > max_log_sse) max_log_sse = log_sse;
865 }
866 const int blks = mb_rows * mb_cols;
867 const float avg_mv_row = sum_mv_row / (float)blks;
868 const float var_mv_row =
869 sum_mv_row_sq / (float)blks - avg_mv_row * avg_mv_row;
870
871 const float avg_mv_col = sum_mv_col / (float)blks;
872 const float var_mv_col =
873 sum_mv_col_sq / (float)blks - avg_mv_col * avg_mv_col;
874
875 const float avg_log_sse = sum_log_sse / (float)blks;
876 const float var_log_sse =
877 sum_log_sse_sq / (float)blks - avg_log_sse * avg_log_sse;
878
879 features[f_idx++] = avg_log_sse;
880 features[f_idx++] = avg_mv_col;
881 features[f_idx++] = avg_mv_row;
882 features[f_idx++] = log_q_sq;
883 features[f_idx++] = max_abs_mv_col;
884 features[f_idx++] = max_abs_mv_row;
885 features[f_idx++] = max_log_sse;
886 features[f_idx++] = min_abs_mv_col;
887 features[f_idx++] = min_abs_mv_row;
888 features[f_idx++] = min_log_sse;
889 features[f_idx++] = var_log_sse;
890 features[f_idx++] = var_mv_col;
891 features[f_idx++] = var_mv_row;
892
893 assert(f_idx == FEATURE_SIZE_MAX_MIN_PART_PRED);
894 }
895
896 // Convert result index to block size.
897 // result idx block size
898 // 0 BLOCK_16X16
899 // 1 BLOCK_32X32
900 // 2 BLOCK_64X64
901 // 3 BLOCK_128X128
get_block_size(int idx)902 static BLOCK_SIZE get_block_size(int idx) {
903 return (BLOCK_SIZE)((idx + 2) * 3);
904 }
905
av1_predict_max_partition(const AV1_COMP * const cpi,const MACROBLOCK * const x,const float * features)906 BLOCK_SIZE av1_predict_max_partition(const AV1_COMP *const cpi,
907 const MACROBLOCK *const x,
908 const float *features) {
909 float scores[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f };
910 const NN_CONFIG *nn_config = &av1_max_part_pred_nn_config;
911
912 assert(cpi->sf.part_sf.auto_max_partition_based_on_simple_motion !=
913 NOT_IN_USE);
914
915 av1_nn_predict(features, nn_config, 1, scores);
916
917 int result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1;
918 if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
919 DIRECT_PRED) {
920 result = 0;
921 float max_score = scores[0];
922 for (int i = 1; i < MAX_NUM_CLASSES_MAX_MIN_PART_PRED; ++i) {
923 if (scores[i] > max_score) {
924 max_score = scores[i];
925 result = i;
926 }
927 }
928 return get_block_size(result);
929 }
930
931 float probs[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f };
932 av1_nn_softmax(scores, probs, MAX_NUM_CLASSES_MAX_MIN_PART_PRED);
933
934 if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
935 RELAXED_PRED) {
936 for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
937 --result) {
938 if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
939 probs[result] += probs[result + 1];
940 }
941 if (probs[result] > 0.2) break;
942 }
943 } else if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
944 ADAPT_PRED) {
945 const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size;
946 // TODO(debargha): x->source_variance is unavailable at this point,
947 // so compute. The redundant recomputation later can be removed.
948 const unsigned int source_variance = av1_get_perpixel_variance_facade(
949 cpi, &x->e_mbd, &x->plane[0].src, sb_size, AOM_PLANE_Y);
950 if (source_variance > 16) {
951 const double thresh = source_variance < 128 ? 0.05 : 0.1;
952 for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
953 --result) {
954 if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
955 probs[result] += probs[result + 1];
956 }
957 if (probs[result] > thresh) break;
958 }
959 }
960 }
961
962 return get_block_size(result);
963 }
964
965 // Get the minimum partition block width and height(in log scale) under a
966 // SIMPLE_MOTION_DATA_TREE.
get_min_bsize(const SIMPLE_MOTION_DATA_TREE * sms_tree,int * min_bw,int * min_bh)967 static AOM_INLINE void get_min_bsize(const SIMPLE_MOTION_DATA_TREE *sms_tree,
968 int *min_bw, int *min_bh) {
969 if (!sms_tree) return;
970
971 const BLOCK_SIZE bsize = sms_tree->block_size;
972 if (bsize == BLOCK_4X4) {
973 *min_bw = 0;
974 *min_bh = 0;
975 return;
976 }
977
978 PARTITION_TYPE part_type = sms_tree->partitioning;
979 if (part_type == PARTITION_INVALID) return;
980
981 if (part_type == PARTITION_SPLIT) {
982 for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
983 get_min_bsize(sms_tree->split[i], min_bw, min_bh);
984 }
985 } else {
986 if (part_type == PARTITION_HORZ_A || part_type == PARTITION_HORZ_B ||
987 part_type == PARTITION_VERT_A || part_type == PARTITION_VERT_B)
988 part_type = PARTITION_SPLIT;
989 const BLOCK_SIZE subsize = get_partition_subsize(bsize, part_type);
990 if (subsize != BLOCK_INVALID) {
991 *min_bw = AOMMIN(*min_bw, mi_size_wide_log2[subsize]);
992 *min_bh = AOMMIN(*min_bh, mi_size_high_log2[subsize]);
993 }
994 }
995 }
996
add_rd_feature(int64_t rd,int64_t best_rd,float * features,int * feature_idx)997 static INLINE void add_rd_feature(int64_t rd, int64_t best_rd, float *features,
998 int *feature_idx) {
999 const int rd_valid = rd > 0 && rd < INT64_MAX;
1000 const float rd_ratio = rd_valid ? (float)rd / best_rd : 1.0f;
1001 features[(*feature_idx)++] = (float)rd_valid;
1002 features[(*feature_idx)++] = rd_ratio;
1003 }
1004
1005 #define FEATURES 31
av1_ml_early_term_after_split(AV1_COMP * const cpi,MACROBLOCK * const x,SIMPLE_MOTION_DATA_TREE * const sms_tree,int64_t best_rd,int64_t part_none_rd,int64_t part_split_rd,int64_t * split_block_rd,PartitionSearchState * part_state)1006 void av1_ml_early_term_after_split(AV1_COMP *const cpi, MACROBLOCK *const x,
1007 SIMPLE_MOTION_DATA_TREE *const sms_tree,
1008 int64_t best_rd, int64_t part_none_rd,
1009 int64_t part_split_rd,
1010 int64_t *split_block_rd,
1011 PartitionSearchState *part_state) {
1012 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1013 const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1014 const BLOCK_SIZE bsize = blk_params->bsize;
1015
1016 if (best_rd <= 0 || best_rd == INT64_MAX ||
1017 part_state->terminate_partition_search)
1018 return;
1019
1020 const AV1_COMMON *const cm = &cpi->common;
1021 const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
1022 const NN_CONFIG *nn_config = NULL;
1023 float thresh = -1e6;
1024 switch (bsize) {
1025 case BLOCK_128X128: break;
1026 case BLOCK_64X64:
1027 nn_config = &av1_early_term_after_split_nnconfig_64;
1028 thresh = is_480p_or_larger ? -2.0f : -1.2f;
1029 break;
1030 case BLOCK_32X32:
1031 nn_config = &av1_early_term_after_split_nnconfig_32;
1032 thresh = is_480p_or_larger ? -2.6f : -2.3f;
1033 break;
1034 case BLOCK_16X16:
1035 nn_config = &av1_early_term_after_split_nnconfig_16;
1036 thresh = is_480p_or_larger ? -2.0f : -2.4f;
1037 break;
1038 case BLOCK_8X8:
1039 nn_config = &av1_early_term_after_split_nnconfig_8;
1040 thresh = is_480p_or_larger ? -1.0f : -1.4f;
1041 break;
1042 case BLOCK_4X4: break;
1043 default:
1044 assert(0 && "Invalid block size in av1_ml_early_term_after_split().");
1045 break;
1046 }
1047 if (!nn_config) return;
1048
1049 // Use more conservative threshold for level 1.
1050 if (cpi->sf.part_sf.ml_early_term_after_part_split_level < 2) thresh -= 0.3f;
1051
1052 const MACROBLOCKD *const xd = &x->e_mbd;
1053 const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
1054 const int bs = block_size_wide[bsize];
1055 int f_idx = 0;
1056 float features[FEATURES] = { 0.0f };
1057
1058 features[f_idx++] = log1pf((float)dc_q / 4.0f);
1059 features[f_idx++] = log1pf((float)best_rd / bs / bs / 1024.0f);
1060
1061 add_rd_feature(part_none_rd, best_rd, features, &f_idx);
1062 add_rd_feature(part_split_rd, best_rd, features, &f_idx);
1063
1064 for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1065 add_rd_feature(split_block_rd[i], best_rd, features, &f_idx);
1066 int min_bw = MAX_SB_SIZE_LOG2;
1067 int min_bh = MAX_SB_SIZE_LOG2;
1068 get_min_bsize(sms_tree->split[i], &min_bw, &min_bh);
1069 features[f_idx++] = (float)min_bw;
1070 features[f_idx++] = (float)min_bh;
1071 }
1072
1073 simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
1074 bsize, NULL,
1075 FEATURE_SMS_PRUNE_PART_FLAG);
1076
1077 features[f_idx++] = log1pf((float)sms_tree->sms_none_feat[1]);
1078
1079 features[f_idx++] = log1pf((float)sms_tree->split[0]->sms_none_feat[1]);
1080 features[f_idx++] = log1pf((float)sms_tree->split[1]->sms_none_feat[1]);
1081 features[f_idx++] = log1pf((float)sms_tree->split[2]->sms_none_feat[1]);
1082 features[f_idx++] = log1pf((float)sms_tree->split[3]->sms_none_feat[1]);
1083
1084 features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[1]);
1085 features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[3]);
1086 features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[5]);
1087 features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[7]);
1088
1089 assert(f_idx == FEATURES);
1090
1091 // Write features to file
1092 write_features_to_file(cpi->oxcf.partition_info_path,
1093 cpi->ext_part_controller.test_mode, features, FEATURES,
1094 4, bsize, mi_row, mi_col);
1095
1096 if (ext_ml_model_decision_after_split(
1097 cpi, features, &part_state->terminate_partition_search)) {
1098 return;
1099 }
1100
1101 float score = 0.0f;
1102 av1_nn_predict(features, nn_config, 1, &score);
1103 // Score is indicator of confidence that we should NOT terminate.
1104 if (score < thresh) {
1105 part_state->terminate_partition_search = 1;
1106 }
1107 }
1108 #undef FEATURES
1109
av1_ml_prune_rect_partition(AV1_COMP * const cpi,const MACROBLOCK * const x,int64_t best_rd,int64_t none_rd,const int64_t * split_rd,PartitionSearchState * part_state)1110 void av1_ml_prune_rect_partition(AV1_COMP *const cpi, const MACROBLOCK *const x,
1111 int64_t best_rd, int64_t none_rd,
1112 const int64_t *split_rd,
1113 PartitionSearchState *part_state) {
1114 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1115 const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1116 const BLOCK_SIZE bsize = blk_params->bsize;
1117
1118 if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
1119 best_rd = AOMMAX(best_rd, 1);
1120 const NN_CONFIG *nn_config = NULL;
1121 const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f };
1122 float cur_thresh = 0.0f;
1123 switch (bsize) {
1124 case BLOCK_8X8:
1125 nn_config = &av1_rect_partition_nnconfig_8;
1126 cur_thresh = prob_thresholds[0];
1127 break;
1128 case BLOCK_16X16:
1129 nn_config = &av1_rect_partition_nnconfig_16;
1130 cur_thresh = prob_thresholds[1];
1131 break;
1132 case BLOCK_32X32:
1133 nn_config = &av1_rect_partition_nnconfig_32;
1134 cur_thresh = prob_thresholds[2];
1135 break;
1136 case BLOCK_64X64:
1137 nn_config = &av1_rect_partition_nnconfig_64;
1138 cur_thresh = prob_thresholds[3];
1139 break;
1140 case BLOCK_128X128:
1141 nn_config = &av1_rect_partition_nnconfig_128;
1142 cur_thresh = prob_thresholds[4];
1143 break;
1144 default: assert(0 && "Unexpected bsize.");
1145 }
1146 if (!nn_config) return;
1147
1148 // 1. Compute input features
1149 float features[9];
1150
1151 // RD cost ratios
1152 for (int i = 0; i < 5; i++) features[i] = 1.0f;
1153 if (none_rd > 0 && none_rd < 1000000000)
1154 features[0] = (float)none_rd / (float)best_rd;
1155 for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
1156 if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1157 features[1 + i] = (float)split_rd[i] / (float)best_rd;
1158 }
1159
1160 // Variance ratios
1161 const MACROBLOCKD *const xd = &x->e_mbd;
1162 int whole_block_variance;
1163 whole_block_variance = av1_get_perpixel_variance_facade(
1164 cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
1165 whole_block_variance = AOMMAX(whole_block_variance, 1);
1166
1167 int split_variance[SUB_PARTITIONS_SPLIT];
1168 const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
1169 struct buf_2d buf;
1170 buf.stride = x->plane[0].src.stride;
1171 const int bw = block_size_wide[bsize];
1172 for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1173 const int x_idx = (i & 1) * bw / 2;
1174 const int y_idx = (i >> 1) * bw / 2;
1175 buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride;
1176 split_variance[i] =
1177 av1_get_perpixel_variance_facade(cpi, xd, &buf, subsize, AOM_PLANE_Y);
1178 }
1179
1180 for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++)
1181 features[5 + i] = (float)split_variance[i] / (float)whole_block_variance;
1182
1183 // Write features to file
1184 write_features_to_file(cpi->oxcf.partition_info_path,
1185 cpi->ext_part_controller.test_mode, features,
1186 /*feature_size=*/9, 5, bsize, mi_row, mi_col);
1187
1188 if (ext_ml_model_decision_after_split_part2(
1189 &cpi->ext_part_controller, frame_is_intra_only(&cpi->common),
1190 features, &part_state->prune_rect_part[HORZ],
1191 &part_state->prune_rect_part[VERT])) {
1192 return;
1193 }
1194
1195 // 2. Do the prediction and prune 0-2 partitions based on their probabilities
1196 float raw_scores[3] = { 0.0f };
1197 av1_nn_predict(features, nn_config, 1, raw_scores);
1198 float probs[3] = { 0.0f };
1199 av1_nn_softmax(raw_scores, probs, 3);
1200
1201 // probs[0] is the probability of the fact that both rectangular partitions
1202 // are worse than current best_rd
1203 if (probs[1] <= cur_thresh) part_state->prune_rect_part[HORZ] = 1;
1204 if (probs[2] <= cur_thresh) part_state->prune_rect_part[VERT] = 1;
1205 }
1206
1207 // Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be
1208 // considered.
av1_ml_prune_ab_partition(AV1_COMP * const cpi,int part_ctx,int var_ctx,int64_t best_rd,PartitionSearchState * part_state,int * ab_partitions_allowed)1209 void av1_ml_prune_ab_partition(AV1_COMP *const cpi, int part_ctx, int var_ctx,
1210 int64_t best_rd,
1211 PartitionSearchState *part_state,
1212 int *ab_partitions_allowed) {
1213 const PartitionBlkParams blk_params = part_state->part_blk_params;
1214 const int mi_row = blk_params.mi_row;
1215 const int mi_col = blk_params.mi_col;
1216 const BLOCK_SIZE bsize = blk_params.bsize;
1217
1218 if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
1219 const NN_CONFIG *nn_config = NULL;
1220 switch (bsize) {
1221 case BLOCK_8X8: nn_config = NULL; break;
1222 case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break;
1223 case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break;
1224 case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break;
1225 case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break;
1226 default: assert(0 && "Unexpected bsize.");
1227 }
1228 if (!nn_config) return;
1229
1230 // Generate features.
1231 float features[10];
1232 int feature_index = 0;
1233 features[feature_index++] = (float)part_ctx;
1234 features[feature_index++] = (float)var_ctx;
1235 const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1236 int sub_block_rdcost[8] = { 0 };
1237 int rd_index = 0;
1238 for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1239 const int64_t *horz_rd = part_state->rect_part_rd[HORZ];
1240 if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1241 sub_block_rdcost[rd_index] = (int)horz_rd[i];
1242 ++rd_index;
1243 }
1244 for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1245 const int64_t *vert_rd = part_state->rect_part_rd[VERT];
1246 if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1247 sub_block_rdcost[rd_index] = (int)vert_rd[i];
1248 ++rd_index;
1249 }
1250 for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1251 const int64_t *split_rd = part_state->split_rd;
1252 if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1253 sub_block_rdcost[rd_index] = (int)split_rd[i];
1254 ++rd_index;
1255 }
1256 for (int i = 0; i < 8; ++i) {
1257 // Ratio between the sub-block RD and the whole-block RD.
1258 float rd_ratio = 1.0f;
1259 if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1260 rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1261 features[feature_index++] = rd_ratio;
1262 }
1263 assert(feature_index == 10);
1264
1265 // Write features to file
1266 if (!frame_is_intra_only(&cpi->common)) {
1267 write_features_to_file(cpi->oxcf.partition_info_path,
1268 cpi->ext_part_controller.test_mode, features,
1269 /*feature_size=*/10, 6, bsize, mi_row, mi_col);
1270 }
1271
1272 if (ext_ml_model_decision_after_rect(
1273 &cpi->ext_part_controller, frame_is_intra_only(&cpi->common),
1274 features, &ab_partitions_allowed[HORZ_A],
1275 &ab_partitions_allowed[HORZ_B], &ab_partitions_allowed[VERT_A],
1276 &ab_partitions_allowed[VERT_B])) {
1277 return;
1278 }
1279
1280 // Calculate scores using the NN model.
1281 float score[16] = { 0.0f };
1282 av1_nn_predict(features, nn_config, 1, score);
1283 int int_score[16];
1284 int max_score = -1000;
1285 for (int i = 0; i < 16; ++i) {
1286 int_score[i] = (int)(100 * score[i]);
1287 max_score = AOMMAX(int_score[i], max_score);
1288 }
1289
1290 // Make decisions based on the model scores.
1291 int thresh = max_score;
1292 switch (bsize) {
1293 case BLOCK_16X16: thresh -= 150; break;
1294 case BLOCK_32X32: thresh -= 100; break;
1295 default: break;
1296 }
1297 av1_zero_array(ab_partitions_allowed, NUM_AB_PARTS);
1298 for (int i = 0; i < 16; ++i) {
1299 if (int_score[i] >= thresh) {
1300 if ((i >> 0) & 1) ab_partitions_allowed[HORZ_A] = 1;
1301 if ((i >> 1) & 1) ab_partitions_allowed[HORZ_B] = 1;
1302 if ((i >> 2) & 1) ab_partitions_allowed[VERT_A] = 1;
1303 if ((i >> 3) & 1) ab_partitions_allowed[VERT_B] = 1;
1304 }
1305 }
1306 }
1307
1308 #define FEATURES 18
1309 #define LABELS 4
1310 // Use a ML model to predict if horz4 and vert4 should be considered.
av1_ml_prune_4_partition(AV1_COMP * const cpi,MACROBLOCK * const x,int part_ctx,int64_t best_rd,PartitionSearchState * part_state,int * part4_allowed,unsigned int pb_source_variance)1311 void av1_ml_prune_4_partition(AV1_COMP *const cpi, MACROBLOCK *const x,
1312 int part_ctx, int64_t best_rd,
1313 PartitionSearchState *part_state,
1314 int *part4_allowed,
1315 unsigned int pb_source_variance) {
1316 const PartitionBlkParams blk_params = part_state->part_blk_params;
1317 const int mi_row = blk_params.mi_row;
1318 const int mi_col = blk_params.mi_col;
1319 const BLOCK_SIZE bsize = blk_params.bsize;
1320
1321 int64_t(*rect_part_rd)[SUB_PARTITIONS_RECT] = part_state->rect_part_rd;
1322 int64_t *split_rd = part_state->split_rd;
1323 if (ext_ml_model_decision_after_part_ab(
1324 cpi, x, bsize, part_ctx, best_rd, rect_part_rd, split_rd,
1325 &part4_allowed[HORZ4], &part4_allowed[VERT4], pb_source_variance,
1326 mi_row, mi_col))
1327 return;
1328
1329 if (best_rd >= 1000000000) return;
1330 int64_t *horz_rd = rect_part_rd[HORZ4];
1331 int64_t *vert_rd = rect_part_rd[VERT4];
1332 const NN_CONFIG *nn_config = NULL;
1333 // 4-way partitions are only allowed for these three square block sizes.
1334 switch (bsize) {
1335 case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break;
1336 case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break;
1337 case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break;
1338 default: assert(0 && "Unexpected bsize.");
1339 }
1340 if (!nn_config) return;
1341
1342 // Generate features.
1343 float features[FEATURES];
1344 int feature_index = 0;
1345 features[feature_index++] = (float)part_ctx;
1346 features[feature_index++] = (float)get_unsigned_bits(pb_source_variance);
1347
1348 const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1349 int sub_block_rdcost[8] = { 0 };
1350 int rd_index = 0;
1351 for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1352 if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1353 sub_block_rdcost[rd_index] = (int)horz_rd[i];
1354 ++rd_index;
1355 }
1356 for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1357 if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1358 sub_block_rdcost[rd_index] = (int)vert_rd[i];
1359 ++rd_index;
1360 }
1361 for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1362 if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1363 sub_block_rdcost[rd_index] = (int)split_rd[i];
1364 ++rd_index;
1365 }
1366 for (int i = 0; i < 8; ++i) {
1367 // Ratio between the sub-block RD and the whole-block RD.
1368 float rd_ratio = 1.0f;
1369 if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1370 rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1371 features[feature_index++] = rd_ratio;
1372 }
1373
1374 // Get variance of the 1:4 and 4:1 sub-blocks.
1375 unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1376 unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1377 {
1378 BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
1379 BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);
1380
1381 assert(horz_4_bs != BLOCK_INVALID);
1382 assert(vert_4_bs != BLOCK_INVALID);
1383
1384 av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
1385 av1_num_planes(&cpi->common), bsize);
1386 const int src_stride = x->plane[0].src.stride;
1387 uint8_t *src = x->plane[0].src.buf;
1388 const MACROBLOCKD *const xd = &x->e_mbd;
1389
1390 struct buf_2d horz_4_src, vert_4_src;
1391 horz_4_src.stride = src_stride;
1392 vert_4_src.stride = src_stride;
1393
1394 for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1395 horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride;
1396 vert_4_src.buf = src + i * block_size_wide[vert_4_bs];
1397
1398 horz_4_source_var[i] = av1_get_perpixel_variance_facade(
1399 cpi, xd, &horz_4_src, horz_4_bs, AOM_PLANE_Y);
1400 vert_4_source_var[i] = av1_get_perpixel_variance_facade(
1401 cpi, xd, &vert_4_src, vert_4_bs, AOM_PLANE_Y);
1402 }
1403 }
1404
1405 const float denom = (float)(pb_source_variance + 1);
1406 const float low_b = 0.1f;
1407 const float high_b = 10.0f;
1408 for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1409 // Ratio between the 4:1 sub-block variance and the whole-block variance.
1410 float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
1411 if (var_ratio < low_b) var_ratio = low_b;
1412 if (var_ratio > high_b) var_ratio = high_b;
1413 features[feature_index++] = var_ratio;
1414 }
1415 for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1416 // Ratio between the 1:4 sub-block RD and the whole-block RD.
1417 float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
1418 if (var_ratio < low_b) var_ratio = low_b;
1419 if (var_ratio > high_b) var_ratio = high_b;
1420 features[feature_index++] = var_ratio;
1421 }
1422 assert(feature_index == FEATURES);
1423
1424 // Write features to file
1425 if (!frame_is_intra_only(&cpi->common)) {
1426 write_features_to_file(cpi->oxcf.partition_info_path,
1427 cpi->ext_part_controller.test_mode, features,
1428 FEATURES, 7, bsize, mi_row, mi_col);
1429 }
1430
1431 // Calculate scores using the NN model.
1432 float score[LABELS] = { 0.0f };
1433 av1_nn_predict(features, nn_config, 1, score);
1434 int int_score[LABELS];
1435 int max_score = -1000;
1436 for (int i = 0; i < LABELS; ++i) {
1437 int_score[i] = (int)(100 * score[i]);
1438 max_score = AOMMAX(int_score[i], max_score);
1439 }
1440
1441 // Make decisions based on the model scores.
1442 int thresh = max_score;
1443 switch (bsize) {
1444 case BLOCK_16X16: thresh -= 500; break;
1445 case BLOCK_32X32: thresh -= 500; break;
1446 case BLOCK_64X64: thresh -= 200; break;
1447 default: break;
1448 }
1449 av1_zero_array(part4_allowed, NUM_PART4_TYPES);
1450 for (int i = 0; i < LABELS; ++i) {
1451 if (int_score[i] >= thresh) {
1452 if ((i >> 0) & 1) part4_allowed[HORZ4] = 1;
1453 if ((i >> 1) & 1) part4_allowed[VERT4] = 1;
1454 }
1455 }
1456 }
1457 #undef FEATURES
1458 #undef LABELS
1459
1460 #define FEATURES 4
av1_ml_predict_breakout(AV1_COMP * const cpi,const MACROBLOCK * const x,const RD_STATS * const rd_stats,unsigned int pb_source_variance,int bit_depth,PartitionSearchState * part_state)1461 void av1_ml_predict_breakout(AV1_COMP *const cpi, const MACROBLOCK *const x,
1462 const RD_STATS *const rd_stats,
1463 unsigned int pb_source_variance, int bit_depth,
1464 PartitionSearchState *part_state) {
1465 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1466 const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1467 const BLOCK_SIZE bsize = blk_params->bsize;
1468
1469 const NN_CONFIG *nn_config = NULL;
1470 int thresh = 0;
1471 switch (bsize) {
1472 case BLOCK_8X8:
1473 nn_config = &av1_partition_breakout_nnconfig_8;
1474 thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[0];
1475 break;
1476 case BLOCK_16X16:
1477 nn_config = &av1_partition_breakout_nnconfig_16;
1478 thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[1];
1479 break;
1480 case BLOCK_32X32:
1481 nn_config = &av1_partition_breakout_nnconfig_32;
1482 thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[2];
1483 break;
1484 case BLOCK_64X64:
1485 nn_config = &av1_partition_breakout_nnconfig_64;
1486 thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[3];
1487 break;
1488 case BLOCK_128X128:
1489 nn_config = &av1_partition_breakout_nnconfig_128;
1490 thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[4];
1491 break;
1492 default: assert(0 && "Unexpected bsize.");
1493 }
1494 if (!nn_config || thresh < 0) return;
1495
1496 const float ml_predict_breakout_thresh_scale[3] = { 1.15f, 1.05f, 1.0f };
1497 thresh = (int)((float)thresh *
1498 ml_predict_breakout_thresh_scale
1499 [cpi->sf.part_sf.ml_predict_breakout_level - 1]);
1500
1501 // Generate feature values.
1502 float features[FEATURES];
1503 int feature_index = 0;
1504
1505 const int num_pels_log2 = num_pels_log2_lookup[bsize];
1506 float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX);
1507 rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) *
1508 rate_f;
1509 features[feature_index++] = rate_f;
1510
1511 const float dist_f =
1512 (float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2);
1513 features[feature_index++] = dist_f;
1514
1515 features[feature_index++] = (float)pb_source_variance;
1516
1517 const int dc_q = (int)x->plane[0].dequant_QTX[0] >> (bit_depth - 8);
1518 features[feature_index++] = (float)(dc_q * dc_q) / 256.0f;
1519 assert(feature_index == FEATURES);
1520
1521 // Write features to file
1522 write_features_to_file(cpi->oxcf.partition_info_path,
1523 cpi->ext_part_controller.test_mode, features, FEATURES,
1524 2, bsize, mi_row, mi_col);
1525
1526 if (ext_ml_model_decision_after_none(&cpi->ext_part_controller,
1527 frame_is_intra_only(&cpi->common),
1528 features, &part_state->do_square_split,
1529 &part_state->do_rectangular_split)) {
1530 return;
1531 }
1532
1533 // Calculate score using the NN model.
1534 float score = 0.0f;
1535 av1_nn_predict(features, nn_config, 1, &score);
1536
1537 // Make decision.
1538 if ((int)(score * 100) >= thresh) {
1539 part_state->do_square_split = 0;
1540 part_state->do_rectangular_split = 0;
1541 }
1542 }
1543 #undef FEATURES
1544
av1_prune_partitions_before_search(AV1_COMP * const cpi,MACROBLOCK * const x,SIMPLE_MOTION_DATA_TREE * const sms_tree,PartitionSearchState * part_state)1545 void av1_prune_partitions_before_search(AV1_COMP *const cpi,
1546 MACROBLOCK *const x,
1547 SIMPLE_MOTION_DATA_TREE *const sms_tree,
1548 PartitionSearchState *part_state) {
1549 const AV1_COMMON *const cm = &cpi->common;
1550 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1551
1552 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1553 const BLOCK_SIZE bsize = blk_params->bsize;
1554
1555 if (cpi->third_pass_ctx) {
1556 int mi_row = blk_params->mi_row;
1557 int mi_col = blk_params->mi_col;
1558 double ratio_h, ratio_w;
1559 av1_get_third_pass_ratio(cpi->third_pass_ctx, 0, cm->height, cm->width,
1560 &ratio_h, &ratio_w);
1561 THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
1562 cpi->third_pass_ctx, 0, mi_row, mi_col, ratio_h, ratio_w);
1563 BLOCK_SIZE third_pass_bsize =
1564 av1_get_third_pass_adjusted_blk_size(this_mi, ratio_h, ratio_w);
1565 // check the actual partition of this block in the second pass
1566 PARTITION_TYPE third_pass_part =
1567 av1_third_pass_get_sb_part_type(cpi->third_pass_ctx, this_mi);
1568
1569 int is_edge = (mi_row + mi_size_high[bsize] >= cm->mi_params.mi_rows) ||
1570 (mi_col + mi_size_wide[bsize] >= cm->mi_params.mi_cols);
1571
1572 if (!is_edge && block_size_wide[bsize] >= 16) {
1573 // If in second pass we used rectangular partition, then do not search for
1574 // rectangular partition in the different direction.
1575 if (third_pass_part != PARTITION_NONE) {
1576 if (third_pass_part == PARTITION_HORZ ||
1577 third_pass_part == PARTITION_HORZ_4 ||
1578 third_pass_part == PARTITION_HORZ_A ||
1579 third_pass_part == PARTITION_HORZ_B) {
1580 part_state->partition_rect_allowed[VERT] = 0;
1581 } else if (third_pass_part == PARTITION_VERT ||
1582 third_pass_part == PARTITION_VERT_4 ||
1583 third_pass_part == PARTITION_VERT_A ||
1584 third_pass_part == PARTITION_VERT_B) {
1585 part_state->partition_rect_allowed[HORZ] = 0;
1586 }
1587 }
1588
1589 int minSize = AOMMIN(block_size_wide[third_pass_bsize],
1590 block_size_high[third_pass_bsize]);
1591 int maxSize = AOMMAX(block_size_wide[third_pass_bsize],
1592 block_size_high[third_pass_bsize]);
1593 if (block_size_wide[bsize] < minSize / 4) {
1594 // Current partition is too small, just terminate
1595 part_state->terminate_partition_search = 1;
1596 return;
1597 } else if (block_size_wide[bsize] < minSize / 2) {
1598 if (third_pass_part != PARTITION_NONE) {
1599 // Current partition is very small, and in second pass we used
1600 // rectangular partition. Terminate the search here then.
1601 part_state->terminate_partition_search = 1;
1602 return;
1603 } else {
1604 // Partition is small, but we still check this partition, only disable
1605 // further splits.
1606 // TODO(any): check why this is not covered by the termination for <
1607 // minSize/4.
1608 av1_disable_square_split_partition(part_state);
1609 av1_disable_rect_partitions(part_state);
1610 return;
1611 }
1612 } else if (block_size_wide[bsize] > maxSize) {
1613 // Partition is larger than in the second pass. Only allow split.
1614 av1_set_square_split_only(part_state);
1615 return;
1616 } else if (block_size_wide[bsize] >= minSize &&
1617 block_size_wide[bsize] <= maxSize) {
1618 // Partition is within a range where it is very likely to find a good
1619 // choice, so do not prune anything.
1620 return;
1621 }
1622 }
1623 }
1624
1625 // Prune rectangular partitions for larger blocks.
1626 if (bsize > cpi->sf.part_sf.rect_partition_eval_thresh) {
1627 part_state->do_rectangular_split = 0;
1628 part_state->partition_rect_allowed[HORZ] = 0;
1629 part_state->partition_rect_allowed[VERT] = 0;
1630 }
1631
1632 // Prune rectangular, AB and 4-way partition based on q index and block size
1633 if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 1) {
1634 if (bsize == BLOCK_8X8 && x->qindex < 35)
1635 av1_disable_rect_partitions(part_state);
1636
1637 } else if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 2) {
1638 // Enumeration difference between two square partitions
1639 const int sqr_bsize_step = BLOCK_32X32 - BLOCK_16X16;
1640 int max_bsize =
1641 BLOCK_32X32 - (x->qindex * 3 / QINDEX_RANGE) * sqr_bsize_step;
1642 max_bsize = AOMMAX(max_bsize, BLOCK_4X4);
1643 const BLOCK_SIZE max_prune_bsize =
1644 (BLOCK_SIZE)AOMMIN(max_bsize, BLOCK_32X32);
1645
1646 // Prune partition
1647 // qidx 0 to 85: prune bsize below BLOCK_32X32
1648 // qidx 86 to 170: prune bsize below BLOCK_16X16
1649 // qidx 171 to 255: prune bsize below BLOCK_8X8
1650 if (bsize < max_prune_bsize) {
1651 av1_disable_rect_partitions(part_state);
1652 }
1653 }
1654
1655 if (cpi->sf.part_sf.prune_sub_8x8_partition_level && (bsize == BLOCK_8X8)) {
1656 const MACROBLOCKD *const xd = &x->e_mbd;
1657 int prune_sub_8x8;
1658 if (cpi->sf.part_sf.prune_sub_8x8_partition_level == 2) {
1659 prune_sub_8x8 = 1;
1660 } else {
1661 assert(cpi->sf.part_sf.prune_sub_8x8_partition_level == 1);
1662 // Prune if both neighbors are available and either is > BLOCK_8X8
1663 prune_sub_8x8 = xd->left_available && xd->up_available &&
1664 (xd->left_mbmi->bsize > BLOCK_8X8 ||
1665 xd->above_mbmi->bsize > BLOCK_8X8);
1666 }
1667 if (prune_sub_8x8) {
1668 av1_disable_all_splits(part_state);
1669 }
1670 }
1671
1672 // A CNN-based speed feature pruning out either split or all non-split
1673 // partition in INTRA frame coding.
1674 const int try_intra_cnn_based_part_prune =
1675 frame_is_intra_only(cm) &&
1676 cpi->sf.part_sf.intra_cnn_based_part_prune_level &&
1677 cm->seq_params->sb_size >= BLOCK_64X64 && bsize <= BLOCK_64X64 &&
1678 blk_params->bsize_at_least_8x8 &&
1679 av1_is_whole_blk_in_frame(blk_params, mi_params);
1680
1681 if (try_intra_cnn_based_part_prune) {
1682 av1_intra_mode_cnn_partition(
1683 &cpi->common, x, x->part_search_info.quad_tree_idx,
1684 cpi->sf.part_sf.intra_cnn_based_part_prune_level, part_state);
1685 }
1686
1687 // Use simple motion search to prune out split or non-split partitions. This
1688 // must be done prior to PARTITION_SPLIT to propagate the initial mvs to a
1689 // smaller blocksize.
1690 const int try_split_only =
1691 cpi->sf.part_sf.simple_motion_search_split &&
1692 part_state->do_square_split && blk_params->bsize_at_least_8x8 &&
1693 av1_is_whole_blk_in_frame(blk_params, mi_params) &&
1694 !frame_is_intra_only(cm) && !av1_superres_scaled(cm);
1695
1696 if (try_split_only) {
1697 av1_simple_motion_search_based_split(cpi, x, sms_tree, part_state);
1698 }
1699
1700 // Use simple motion search to prune out rectangular partition in some
1701 // direction. The results are stored in prune_horz and prune_vert in order to
1702 // bypass future related pruning checks if a pruning decision has been made.
1703
1704 // We want to search at least one partition mode, so don't prune if NONE and
1705 // SPLIT are disabled.
1706 const int non_rect_part_allowed =
1707 part_state->do_square_split || part_state->partition_none_allowed;
1708 // Only run the model if the partitions are not already pruned.
1709 const int rect_part_allowed = part_state->do_rectangular_split &&
1710 ((part_state->partition_rect_allowed[HORZ] &&
1711 !part_state->prune_rect_part[HORZ]) ||
1712 (part_state->partition_rect_allowed[VERT] &&
1713 !part_state->prune_rect_part[VERT]));
1714
1715 const int try_prune_rect = cpi->sf.part_sf.simple_motion_search_prune_rect &&
1716 !frame_is_intra_only(cm) &&
1717 non_rect_part_allowed && rect_part_allowed &&
1718 !av1_superres_scaled(cm);
1719
1720 if (try_prune_rect) {
1721 av1_simple_motion_search_prune_rect(cpi, x, sms_tree, part_state);
1722 }
1723 }
1724
1725 #ifndef NDEBUG
is_bsize_square(BLOCK_SIZE bsize)1726 static AOM_INLINE int is_bsize_square(BLOCK_SIZE bsize) {
1727 return block_size_wide[bsize] == block_size_high[bsize];
1728 }
1729 #endif // NDEBUG
1730
av1_prune_partitions_by_max_min_bsize(SuperBlockEnc * sb_enc,PartitionSearchState * part_state)1731 void av1_prune_partitions_by_max_min_bsize(SuperBlockEnc *sb_enc,
1732 PartitionSearchState *part_state) {
1733 assert(is_bsize_square(sb_enc->max_partition_size));
1734 assert(is_bsize_square(sb_enc->min_partition_size));
1735 assert(sb_enc->min_partition_size <= sb_enc->max_partition_size);
1736 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1737 const BLOCK_SIZE bsize = blk_params->bsize;
1738 assert(is_bsize_square(bsize));
1739 const int max_partition_size_1d = block_size_wide[sb_enc->max_partition_size];
1740 const int min_partition_size_1d = block_size_wide[sb_enc->min_partition_size];
1741 const int bsize_1d = block_size_wide[bsize];
1742 assert(min_partition_size_1d <= max_partition_size_1d);
1743 const int is_le_min_sq_part = bsize_1d <= min_partition_size_1d;
1744 const int is_gt_max_sq_part = bsize_1d > max_partition_size_1d;
1745 if (is_gt_max_sq_part) {
1746 // If current block size is larger than max, only allow split.
1747 av1_set_square_split_only(part_state);
1748 } else if (is_le_min_sq_part) {
1749 // If current block size is less or equal to min, only allow none if valid
1750 // block large enough; only allow split otherwise.
1751 av1_disable_rect_partitions(part_state);
1752
1753 // only disable square split when current block is not at the picture
1754 // boundary. otherwise, inherit the square split flag from previous logic
1755 if (av1_blk_has_rows_and_cols(blk_params)) {
1756 part_state->do_square_split = 0;
1757 }
1758 part_state->partition_none_allowed = !(part_state->do_square_split);
1759 }
1760 }
1761
1762 // Decide whether to evaluate the AB partition specified by part_type based on
1763 // split and HORZ/VERT info
evaluate_ab_partition_based_on_split(const PC_TREE * pc_tree,PARTITION_TYPE rect_part,const RD_RECT_PART_WIN_INFO * rect_part_win_info,int qindex,int split_idx1,int split_idx2)1764 int evaluate_ab_partition_based_on_split(
1765 const PC_TREE *pc_tree, PARTITION_TYPE rect_part,
1766 const RD_RECT_PART_WIN_INFO *rect_part_win_info, int qindex, int split_idx1,
1767 int split_idx2) {
1768 int num_win = 0;
1769 // Threshold for number of winners
1770 // Conservative pruning for high quantizers
1771 const int num_win_thresh = AOMMIN(3 * (2 * (MAXQ - qindex) / MAXQ), 3);
1772 int sub_part_win =
1773 (rect_part_win_info == NULL) ? (pc_tree->partitioning == rect_part)
1774 : (rect_part == PARTITION_HORZ) ? rect_part_win_info->rect_part_win[HORZ]
1775 : rect_part_win_info->rect_part_win[VERT];
1776 num_win += (sub_part_win) ? 1 : 0;
1777 if (pc_tree->split[split_idx1]) {
1778 num_win +=
1779 (pc_tree->split[split_idx1]->partitioning == PARTITION_NONE) ? 1 : 0;
1780 } else {
1781 num_win += 1;
1782 }
1783 if (pc_tree->split[split_idx2]) {
1784 num_win +=
1785 (pc_tree->split[split_idx2]->partitioning == PARTITION_NONE) ? 1 : 0;
1786 } else {
1787 num_win += 1;
1788 }
1789 if (num_win < num_win_thresh) {
1790 return 0;
1791 }
1792 return 1;
1793 }
1794
av1_prune_ab_partitions(AV1_COMP * cpi,const MACROBLOCK * x,const PC_TREE * pc_tree,int pb_source_variance,int64_t best_rdcost,const RD_RECT_PART_WIN_INFO * rect_part_win_info,bool ext_partition_allowed,PartitionSearchState * part_state,int * ab_partitions_allowed)1795 void av1_prune_ab_partitions(AV1_COMP *cpi, const MACROBLOCK *x,
1796 const PC_TREE *pc_tree, int pb_source_variance,
1797 int64_t best_rdcost,
1798 const RD_RECT_PART_WIN_INFO *rect_part_win_info,
1799 bool ext_partition_allowed,
1800 PartitionSearchState *part_state,
1801 int *ab_partitions_allowed) {
1802 int64_t *horz_rd = part_state->rect_part_rd[HORZ];
1803 int64_t *vert_rd = part_state->rect_part_rd[VERT];
1804 int64_t *split_rd = part_state->split_rd;
1805 const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
1806 // The standard AB partitions are allowed initially if ext-partition-types are
1807 // allowed.
1808 int horzab_partition_allowed = ext_partition_allowed &&
1809 part_cfg->enable_ab_partitions &&
1810 part_state->partition_rect_allowed[HORZ];
1811 int vertab_partition_allowed = ext_partition_allowed &&
1812 part_cfg->enable_ab_partitions &&
1813 part_state->partition_rect_allowed[VERT];
1814
1815 // Pruning: pruning out AB partitions on one main direction based on the
1816 // current best partition and source variance.
1817 if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1818 if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 1) {
1819 // TODO(debargha,huisu@google.com): may need to tune the threshold for
1820 // pb_source_variance.
1821 horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
1822 (pc_tree->partitioning == PARTITION_NONE &&
1823 pb_source_variance < 32) ||
1824 pc_tree->partitioning == PARTITION_SPLIT);
1825 vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
1826 (pc_tree->partitioning == PARTITION_NONE &&
1827 pb_source_variance < 32) ||
1828 pc_tree->partitioning == PARTITION_SPLIT);
1829 } else {
1830 horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
1831 pc_tree->partitioning == PARTITION_SPLIT);
1832 vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
1833 pc_tree->partitioning == PARTITION_SPLIT);
1834 }
1835 horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0);
1836 horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0);
1837 vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0);
1838 vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0);
1839 split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0);
1840 split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0);
1841 split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0);
1842 split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0);
1843 }
1844
1845 // Pruning: pruning out horz_a or horz_b if the combined rdcost of its
1846 // subblocks estimated from previous partitions is much higher than the best
1847 // rd so far.
1848 ab_partitions_allowed[HORZ_A] = horzab_partition_allowed;
1849 ab_partitions_allowed[HORZ_B] = horzab_partition_allowed;
1850 if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1851 const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1];
1852 const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3];
1853 switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1854 case 1:
1855 ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 14 < best_rdcost);
1856 ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 14 < best_rdcost);
1857 break;
1858 case 2:
1859 default:
1860 ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 15 < best_rdcost);
1861 ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 15 < best_rdcost);
1862 break;
1863 }
1864 }
1865
1866 // Pruning: pruning out vert_a or vert_b if the combined rdcost of its
1867 // subblocks estimated from previous partitions is much higher than the best
1868 // rd so far.
1869 ab_partitions_allowed[VERT_A] = vertab_partition_allowed;
1870 ab_partitions_allowed[VERT_B] = vertab_partition_allowed;
1871 if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1872 const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2];
1873 const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3];
1874 switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1875 case 1:
1876 ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 14 < best_rdcost);
1877 ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 14 < best_rdcost);
1878 break;
1879 case 2:
1880 default:
1881 ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 15 < best_rdcost);
1882 ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 15 < best_rdcost);
1883 break;
1884 }
1885 }
1886
1887 // Pruning: pruning out some ab partitions using a DNN taking rd costs of
1888 // sub-blocks from previous basic partition types.
1889 if (cpi->sf.part_sf.ml_prune_partition && ext_partition_allowed &&
1890 part_state->partition_rect_allowed[HORZ] &&
1891 part_state->partition_rect_allowed[VERT]) {
1892 // TODO(huisu@google.com): x->source_variance may not be the current
1893 // block's variance. The correct one to use is pb_source_variance. Need to
1894 // re-train the model to fix it.
1895 av1_ml_prune_ab_partition(cpi, pc_tree->partitioning,
1896 get_unsigned_bits(x->source_variance),
1897 best_rdcost, part_state, ab_partitions_allowed);
1898 }
1899
1900 // Pruning: pruning AB partitions based on the number of horz/vert wins
1901 // in the current block and sub-blocks in PARTITION_SPLIT.
1902 if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1903 ab_partitions_allowed[HORZ_A]) {
1904 ab_partitions_allowed[HORZ_A] &= evaluate_ab_partition_based_on_split(
1905 pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 0, 1);
1906 }
1907 if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1908 ab_partitions_allowed[HORZ_B]) {
1909 ab_partitions_allowed[HORZ_B] &= evaluate_ab_partition_based_on_split(
1910 pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 2, 3);
1911 }
1912 if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1913 ab_partitions_allowed[VERT_A]) {
1914 ab_partitions_allowed[VERT_A] &= evaluate_ab_partition_based_on_split(
1915 pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 0, 2);
1916 }
1917 if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1918 ab_partitions_allowed[VERT_B]) {
1919 ab_partitions_allowed[VERT_B] &= evaluate_ab_partition_based_on_split(
1920 pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 1, 3);
1921 }
1922 }
1923
1924 // Prepare features for the external model. Specifically, features after
1925 // ab partition is searched.
prepare_features_after_part_ab(const AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int part_ctx,int64_t best_rd,int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],int64_t split_rd[SUB_PARTITIONS_SPLIT],unsigned int pb_source_variance,int mi_row,int mi_col,aom_partition_features_t * const features)1926 static void prepare_features_after_part_ab(
1927 const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
1928 int part_ctx, int64_t best_rd,
1929 int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
1930 int64_t split_rd[SUB_PARTITIONS_SPLIT], unsigned int pb_source_variance,
1931 int mi_row, int mi_col, aom_partition_features_t *const features) {
1932 int64_t *horz_rd = rect_part_rd[HORZ];
1933 int64_t *vert_rd = rect_part_rd[VERT];
1934
1935 // Generate features.
1936 int feature_index = 0;
1937 features->after_part_ab.f[feature_index++] = (float)part_ctx;
1938 features->after_part_ab.f[feature_index++] =
1939 (float)get_unsigned_bits(pb_source_variance);
1940
1941 const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1942 int sub_block_rdcost[8] = { 0 };
1943 int rd_index = 0;
1944 for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1945 if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1946 sub_block_rdcost[rd_index] = (int)horz_rd[i];
1947 ++rd_index;
1948 }
1949 for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1950 if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1951 sub_block_rdcost[rd_index] = (int)vert_rd[i];
1952 ++rd_index;
1953 }
1954 for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1955 if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1956 sub_block_rdcost[rd_index] = (int)split_rd[i];
1957 ++rd_index;
1958 }
1959 for (int i = 0; i < 8; ++i) {
1960 // Ratio between the sub-block RD and the whole-block RD.
1961 float rd_ratio = 1.0f;
1962 if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1963 rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1964 features->after_part_ab.f[feature_index++] = rd_ratio;
1965 }
1966
1967 // 4-way partitions are only allowed for these three square block sizes.
1968 assert(bsize == BLOCK_16X16 || bsize == BLOCK_32X32 || bsize == BLOCK_64X64);
1969
1970 // Get variance of the 1:4 and 4:1 sub-blocks.
1971 unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1972 unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1973 {
1974 BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
1975 BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);
1976
1977 assert(horz_4_bs != BLOCK_INVALID);
1978 assert(vert_4_bs != BLOCK_INVALID);
1979
1980 av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
1981 av1_num_planes(&cpi->common), bsize);
1982 const int src_stride = x->plane[0].src.stride;
1983 uint8_t *src = x->plane[0].src.buf;
1984 const MACROBLOCKD *const xd = &x->e_mbd;
1985
1986 struct buf_2d horz_4_src, vert_4_src;
1987 horz_4_src.stride = src_stride;
1988 vert_4_src.stride = src_stride;
1989
1990 for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1991 horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride;
1992 vert_4_src.buf = src + i * block_size_wide[vert_4_bs];
1993
1994 horz_4_source_var[i] = av1_get_perpixel_variance_facade(
1995 cpi, xd, &horz_4_src, horz_4_bs, AOM_PLANE_Y);
1996 vert_4_source_var[i] = av1_get_perpixel_variance_facade(
1997 cpi, xd, &vert_4_src, vert_4_bs, AOM_PLANE_Y);
1998 }
1999 }
2000
2001 const float denom = (float)(pb_source_variance + 1);
2002 const float low_b = 0.1f;
2003 const float high_b = 10.0f;
2004 for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
2005 // Ratio between the 4:1 sub-block variance and the whole-block variance.
2006 float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
2007 if (var_ratio < low_b) var_ratio = low_b;
2008 if (var_ratio > high_b) var_ratio = high_b;
2009 features->after_part_ab.f[feature_index++] = var_ratio;
2010 }
2011 for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
2012 // Ratio between the 1:4 sub-block RD and the whole-block RD.
2013 float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
2014 if (var_ratio < low_b) var_ratio = low_b;
2015 if (var_ratio > high_b) var_ratio = high_b;
2016 features->after_part_ab.f[feature_index++] = var_ratio;
2017 }
2018 assert(feature_index == 18);
2019 }
2020
2021 // If the external partition model is used, we let it determine partition
2022 // decisions before partition none. Specifically, these parameters:
2023 // partition_none_allowed
2024 // partition_horz_allowed
2025 // partition_vert_allowed
2026 // do_rectangular_split
2027 // do_square_split
ext_ml_model_decision_before_none(AV1_COMP * cpi,const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],int * partition_none_allowed,int * partition_horz_allowed,int * partition_vert_allowed,int * do_rectangular_split,int * do_square_split)2028 static bool ext_ml_model_decision_before_none(
2029 AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],
2030 int *partition_none_allowed, int *partition_horz_allowed,
2031 int *partition_vert_allowed, int *do_rectangular_split,
2032 int *do_square_split) {
2033 ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2034 if (!ext_part_controller->ready) return false;
2035
2036 // Setup features.
2037 aom_partition_features_t features;
2038 features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE;
2039 for (int i = 0; i < FEATURE_SIZE_SMS_SPLIT; ++i) {
2040 features.before_part_none.f[i] = features_from_motion[i];
2041 }
2042
2043 // Send necessary features to the external model.
2044 av1_ext_part_send_features(ext_part_controller, &features);
2045
2046 // Get partition decisions from the external model.
2047 aom_partition_decision_t decision;
2048 const bool valid_decision =
2049 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2050 if (!valid_decision) return false;
2051
2052 // Populate decisions
2053 *partition_none_allowed = decision.partition_none_allowed;
2054 *partition_horz_allowed = decision.partition_rect_allowed[HORZ];
2055 *partition_vert_allowed = decision.partition_rect_allowed[VERT];
2056 *do_rectangular_split = decision.do_rectangular_split;
2057 *do_square_split = decision.do_square_split;
2058
2059 return true;
2060 }
2061
2062 // If the external partition model is used, we let it determine partition
2063 // decisions before partition none. Specifically, these parameters:
2064 // prune_horz
2065 // prune_vert
ext_ml_model_decision_before_none_part2(AV1_COMP * cpi,const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],int * prune_horz,int * prune_vert)2066 static bool ext_ml_model_decision_before_none_part2(
2067 AV1_COMP *cpi,
2068 const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],
2069 int *prune_horz, int *prune_vert) {
2070 ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2071 if (!ext_part_controller->ready) return false;
2072
2073 // Setup features.
2074 aom_partition_features_t features;
2075 features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE_PART2;
2076 for (int i = 0; i < FEATURE_SIZE_SMS_PRUNE_PART; ++i) {
2077 features.before_part_none.f_part2[i] = features_from_motion[i];
2078 }
2079
2080 // Send necessary features to the external model.
2081 av1_ext_part_send_features(ext_part_controller, &features);
2082
2083 // Get partition decisions from the external model.
2084 aom_partition_decision_t decision;
2085 const bool valid_decision =
2086 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2087 if (!valid_decision) return false;
2088
2089 // Populate decisions
2090 *prune_horz = decision.prune_rect_part[HORZ];
2091 *prune_vert = decision.prune_rect_part[VERT];
2092
2093 return true;
2094 }
2095
2096 // If the external partition model is used, we let it determine partition
2097 // decisions after none partition. Specifically, these parameters:
2098 // do_square_split
2099 // do_rectangular_split
ext_ml_model_decision_after_none(ExtPartController * const ext_part_controller,const int is_intra_frame,const float * const features_after_none,int * do_square_split,int * do_rectangular_split)2100 bool ext_ml_model_decision_after_none(
2101 ExtPartController *const ext_part_controller, const int is_intra_frame,
2102 const float *const features_after_none, int *do_square_split,
2103 int *do_rectangular_split) {
2104 if (!ext_part_controller->ready || is_intra_frame) return false;
2105
2106 // Setup features.
2107 aom_partition_features_t features;
2108 features.id = AOM_EXT_PART_FEATURE_AFTER_NONE;
2109 for (int i = 0; i < 4; ++i) {
2110 features.after_part_none.f[i] = features_after_none[i];
2111 }
2112
2113 // Send necessary features to the external model.
2114 av1_ext_part_send_features(ext_part_controller, &features);
2115
2116 // Get partition decisions from the external model.
2117 aom_partition_decision_t decision;
2118 const bool valid_decision =
2119 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2120 if (!valid_decision) return false;
2121
2122 // Populate decisions
2123 *do_square_split = decision.do_square_split;
2124 *do_rectangular_split = decision.do_rectangular_split;
2125
2126 return true;
2127 }
2128
2129 // If the external partition model is used, we let it determine partition
2130 // decisions after none partition. Specifically, these parameters:
2131 // terminate_partition_search
ext_ml_model_decision_after_none_part2(AV1_COMP * const cpi,const float * const features_terminate,int * terminate_partition_search)2132 bool ext_ml_model_decision_after_none_part2(
2133 AV1_COMP *const cpi, const float *const features_terminate,
2134 int *terminate_partition_search) {
2135 AV1_COMMON *const cm = &cpi->common;
2136 ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2137 if (!ext_part_controller->ready || frame_is_intra_only(cm)) return false;
2138
2139 // Setup features.
2140 aom_partition_features_t features;
2141 features.id = AOM_EXT_PART_FEATURE_AFTER_NONE_PART2;
2142 for (int i = 0; i < FEATURE_SIZE_SMS_TERM_NONE; ++i) {
2143 features.after_part_none.f_terminate[i] = features_terminate[i];
2144 }
2145
2146 // Send necessary features to the external model.
2147 av1_ext_part_send_features(ext_part_controller, &features);
2148
2149 // Get partition decisions from the external model.
2150 aom_partition_decision_t decision;
2151 const bool valid_decision =
2152 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2153 if (!valid_decision) return false;
2154
2155 // Populate decisions
2156 *terminate_partition_search = decision.terminate_partition_search;
2157
2158 return true;
2159 }
2160
2161 // If the external partition model is used, we let it determine partition
2162 // decisions after none partition. Specifically, these parameters:
2163 // terminate_partition_search
ext_ml_model_decision_after_split(AV1_COMP * const cpi,const float * const features_terminate,int * terminate_partition_search)2164 bool ext_ml_model_decision_after_split(AV1_COMP *const cpi,
2165 const float *const features_terminate,
2166 int *terminate_partition_search) {
2167 const AV1_COMMON *const cm = &cpi->common;
2168 ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2169 if (frame_is_intra_only(cm) || !cpi->ext_part_controller.ready) {
2170 return false;
2171 }
2172
2173 // Setup features.
2174 aom_partition_features_t features;
2175 features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT;
2176 for (int i = 0; i < 31; ++i) {
2177 features.after_part_split.f_terminate[i] = features_terminate[i];
2178 }
2179
2180 // Send necessary features to the external model.
2181 av1_ext_part_send_features(ext_part_controller, &features);
2182
2183 // Get partition decisions from the external model.
2184 aom_partition_decision_t decision;
2185 const bool valid_decision =
2186 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2187 if (!valid_decision) return false;
2188
2189 // Populate decisions
2190 *terminate_partition_search = decision.terminate_partition_search;
2191
2192 return true;
2193 }
2194
2195 // If the external partition model is used, we let it determine partition
2196 // decisions after none partition. Specifically, these parameters:
2197 // prune_rect_part[HORZ]
2198 // prune_rect_part[VERT]
ext_ml_model_decision_after_split_part2(ExtPartController * const ext_part_controller,const int is_intra_frame,const float * const features_prune,int * prune_rect_part_horz,int * prune_rect_part_vert)2199 bool ext_ml_model_decision_after_split_part2(
2200 ExtPartController *const ext_part_controller, const int is_intra_frame,
2201 const float *const features_prune, int *prune_rect_part_horz,
2202 int *prune_rect_part_vert) {
2203 if (is_intra_frame || !ext_part_controller->ready) {
2204 return false;
2205 }
2206
2207 // Setup features.
2208 aom_partition_features_t features;
2209 features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT_PART2;
2210 for (int i = 0; i < 9; ++i) {
2211 features.after_part_split.f_prune_rect[i] = features_prune[i];
2212 }
2213
2214 // Send necessary features to the external model.
2215 av1_ext_part_send_features(ext_part_controller, &features);
2216
2217 // Get partition decisions from the external model.
2218 aom_partition_decision_t decision;
2219 const bool valid_decision =
2220 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2221 if (!valid_decision) return false;
2222
2223 // Populate decisions
2224 *prune_rect_part_horz = decision.prune_rect_part[0];
2225 *prune_rect_part_vert = decision.prune_rect_part[1];
2226
2227 return true;
2228 }
2229
2230 // If the external partition model is used, we let it determine partition
2231 // decisions after rectangular partition. Specifically, these parameters:
2232 // horza_partition_allowed
2233 // horzb_partition_allowed
2234 // verta_partition_allowed
2235 // vertb_partition_allowed
ext_ml_model_decision_after_rect(ExtPartController * const ext_part_controller,const int is_intra_frame,const float * const features_after_rect,int * horza_partition_allowed,int * horzb_partition_allowed,int * verta_partition_allowed,int * vertb_partition_allowed)2236 static bool ext_ml_model_decision_after_rect(
2237 ExtPartController *const ext_part_controller, const int is_intra_frame,
2238 const float *const features_after_rect, int *horza_partition_allowed,
2239 int *horzb_partition_allowed, int *verta_partition_allowed,
2240 int *vertb_partition_allowed) {
2241 if (is_intra_frame || !ext_part_controller->ready) return false;
2242
2243 // Setup features.
2244 aom_partition_features_t features;
2245 features.id = AOM_EXT_PART_FEATURE_AFTER_RECT;
2246 for (int i = 0; i < 10; ++i) {
2247 features.after_part_rect.f[i] = features_after_rect[i];
2248 }
2249
2250 // Send necessary features to the external model.
2251 av1_ext_part_send_features(ext_part_controller, &features);
2252
2253 // Get partition decisions from the external model.
2254 aom_partition_decision_t decision;
2255 const bool valid_decision =
2256 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2257 if (!valid_decision) return false;
2258
2259 // Populate decisions
2260 *horza_partition_allowed = decision.horza_partition_allowed;
2261 *horzb_partition_allowed = decision.horzb_partition_allowed;
2262 *verta_partition_allowed = decision.verta_partition_allowed;
2263 *vertb_partition_allowed = decision.vertb_partition_allowed;
2264
2265 return true;
2266 }
2267
2268 // If the external partition model is used, we let it determine partition
2269 // decisions after AB partition. Specifically, these parameters:
2270 // partition_vert4_allowed
2271 // partition_horz4_allowed
ext_ml_model_decision_after_part_ab(AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int part_ctx,int64_t best_rd,int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],int64_t split_rd[SUB_PARTITIONS_SPLIT],int * const partition_horz4_allowed,int * const partition_vert4_allowed,unsigned int pb_source_variance,int mi_row,int mi_col)2272 static bool ext_ml_model_decision_after_part_ab(
2273 AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx,
2274 int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
2275 int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed,
2276 int *const partition_vert4_allowed, unsigned int pb_source_variance,
2277 int mi_row, int mi_col) {
2278 const AV1_COMMON *const cm = &cpi->common;
2279 ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2280
2281 if (!frame_is_intra_only(cm) && ext_part_controller->ready) {
2282 // Setup features.
2283 aom_partition_features_t features;
2284 features.id = AOM_EXT_PART_FEATURE_AFTER_AB;
2285 prepare_features_after_part_ab(cpi, x, bsize, part_ctx, best_rd,
2286 rect_part_rd, split_rd, pb_source_variance,
2287 mi_row, mi_col, &features);
2288
2289 // Send necessary features to the external model.
2290 av1_ext_part_send_features(ext_part_controller, &features);
2291
2292 // Get partition decisions from the external model.
2293 aom_partition_decision_t decision;
2294 const bool valid_decision =
2295 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2296 if (!valid_decision) return false;
2297
2298 // Populate decisions
2299 *partition_horz4_allowed = decision.partition_horz4_allowed;
2300 *partition_vert4_allowed = decision.partition_vert4_allowed;
2301
2302 return true;
2303 }
2304
2305 return false;
2306 }
2307
2308 // This function resembles "av1_setup_sms_tree()" in context_tree.c
2309 // with function signature change.
setup_sms_tree(AV1_COMP * const cpi,SIMPLE_MOTION_DATA_TREE * sms_tree)2310 static SIMPLE_MOTION_DATA_TREE *setup_sms_tree(
2311 AV1_COMP *const cpi, SIMPLE_MOTION_DATA_TREE *sms_tree) {
2312 AV1_COMMON *const cm = &cpi->common;
2313 const int stat_generation_stage = is_stat_generation_stage(cpi);
2314 const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
2315 const int tree_nodes =
2316 av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
2317 int sms_tree_index = 0;
2318 SIMPLE_MOTION_DATA_TREE *this_sms;
2319 int square_index = 1;
2320 int nodes;
2321 this_sms = &sms_tree[0];
2322
2323 if (!stat_generation_stage) {
2324 const int leaf_factor = is_sb_size_128 ? 4 : 1;
2325 const int leaf_nodes = 256 * leaf_factor;
2326
2327 // Sets up all the leaf nodes in the tree.
2328 for (sms_tree_index = 0; sms_tree_index < leaf_nodes; ++sms_tree_index) {
2329 SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2330 tree->block_size = square[0];
2331 }
2332
2333 // Each node has 4 leaf nodes, fill each block_size level of the tree
2334 // from leafs to the root.
2335 for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) {
2336 for (int i = 0; i < nodes; ++i) {
2337 SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2338 tree->block_size = square[square_index];
2339 for (int j = 0; j < 4; j++) tree->split[j] = this_sms++;
2340 ++sms_tree_index;
2341 }
2342 ++square_index;
2343 }
2344 } else {
2345 // Allocation for firstpass/LAP stage
2346 // TODO(Mufaddal): refactor square_index to use a common block_size macro
2347 // from firstpass.c
2348 SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2349 square_index = 2;
2350 tree->block_size = square[square_index];
2351 }
2352
2353 // Set up the root node for the largest superblock size
2354 return &sms_tree[tree_nodes - 1];
2355 }
2356
write_motion_feature_to_file(const char * const path,const int sb_counter,const unsigned int * block_sse,const unsigned int * block_var,const int num_blocks,const BLOCK_SIZE bsize,const BLOCK_SIZE fixed_block_size,const int mi_row,const int mi_col)2357 static void write_motion_feature_to_file(
2358 const char *const path, const int sb_counter, const unsigned int *block_sse,
2359 const unsigned int *block_var, const int num_blocks, const BLOCK_SIZE bsize,
2360 const BLOCK_SIZE fixed_block_size, const int mi_row, const int mi_col) {
2361 char filename[256];
2362 snprintf(filename, sizeof(filename), "%s/motion_search_feature_sb%d", path,
2363 sb_counter);
2364 FILE *pfile = fopen(filename, "w");
2365 fprintf(pfile, "%d,%d,%d,%d,%d\n", mi_row, mi_col, bsize,
2366 block_size_wide[fixed_block_size], num_blocks);
2367 for (int i = 0; i < num_blocks; ++i) {
2368 fprintf(pfile, "%d", block_sse[i]);
2369 if (i < num_blocks - 1) fprintf(pfile, ",");
2370 }
2371 fprintf(pfile, "\n");
2372 for (int i = 0; i < num_blocks; ++i) {
2373 fprintf(pfile, "%d", block_var[i]);
2374 if (i < num_blocks - 1) fprintf(pfile, ",");
2375 }
2376 fprintf(pfile, "\n");
2377 fclose(pfile);
2378 }
2379
av1_collect_motion_search_features_sb(AV1_COMP * const cpi,ThreadData * td,TileDataEnc * tile_data,const int mi_row,const int mi_col,const BLOCK_SIZE bsize,aom_partition_features_t * features)2380 void av1_collect_motion_search_features_sb(AV1_COMP *const cpi, ThreadData *td,
2381 TileDataEnc *tile_data,
2382 const int mi_row, const int mi_col,
2383 const BLOCK_SIZE bsize,
2384 aom_partition_features_t *features) {
2385 const AV1_COMMON *const cm = &cpi->common;
2386 if (frame_is_intra_only(cm)) return;
2387
2388 MACROBLOCK *const x = &td->mb;
2389 const BLOCK_SIZE fixed_block_size = BLOCK_16X16;
2390 const int col_step = mi_size_wide[fixed_block_size];
2391 const int row_step = mi_size_high[fixed_block_size];
2392 SIMPLE_MOTION_DATA_TREE *sms_tree = NULL;
2393 const int stat_generation_stage = is_stat_generation_stage(cpi);
2394 const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
2395 const int tree_nodes =
2396 av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
2397 CHECK_MEM_ERROR(cm, sms_tree, aom_calloc(tree_nodes, sizeof(*sms_tree)));
2398 SIMPLE_MOTION_DATA_TREE *sms_root = setup_sms_tree(cpi, sms_tree);
2399 TileInfo *const tile_info = &tile_data->tile_info;
2400 av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, bsize);
2401 av1_init_simple_motion_search_mvs_for_sb(cpi, NULL, x, sms_root, mi_row,
2402 mi_col);
2403 av1_reset_simple_motion_tree_partition(sms_root, bsize);
2404 const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
2405 : LAST_FRAME };
2406 const int mi_width =
2407 AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
2408 const int mi_height =
2409 AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
2410 const int col_steps = (mi_width / col_step) + ((mi_width % col_step) > 0);
2411 const int row_steps = (mi_height / row_step) + ((mi_height % row_step) > 0);
2412 const int num_blocks = col_steps * row_steps;
2413 unsigned int *block_sse = aom_calloc(num_blocks, sizeof(*block_sse));
2414 unsigned int *block_var = aom_calloc(num_blocks, sizeof(*block_var));
2415 if (!(block_sse && block_var)) {
2416 aom_free(sms_tree);
2417 aom_free(block_sse);
2418 aom_free(block_var);
2419 aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
2420 "Error allocating block_sse & block_var");
2421 }
2422 int idx = 0;
2423
2424 for (int row = mi_row;
2425 row < AOMMIN(mi_row + mi_size_high[bsize], cm->mi_params.mi_rows);
2426 row += row_step) {
2427 for (int col = mi_col;
2428 col < AOMMIN(mi_col + mi_size_wide[bsize], cm->mi_params.mi_cols);
2429 col += col_step) {
2430 simple_motion_search_get_best_ref(
2431 cpi, x, sms_root, row, col, fixed_block_size, ref_list,
2432 /*num_refs=*/1, /*use_subpixel=*/1,
2433 /*save_mv=*/1, &block_sse[idx], &block_var[idx]);
2434 ++idx;
2435 }
2436 }
2437 if (features == NULL) {
2438 write_motion_feature_to_file(cpi->oxcf.partition_info_path, cpi->sb_counter,
2439 block_sse, block_var, idx, bsize,
2440 fixed_block_size, mi_row, mi_col);
2441 } else {
2442 features->sb_features.motion_features.unit_length =
2443 block_size_wide[fixed_block_size];
2444 features->sb_features.motion_features.num_units = idx;
2445 for (int i = 0; i < idx; ++i) {
2446 features->sb_features.motion_features.block_sse[i] = block_sse[i];
2447 features->sb_features.motion_features.block_var[i] = block_var[i];
2448 }
2449 }
2450
2451 aom_free(block_sse);
2452 aom_free(block_var);
2453 aom_free(sms_tree);
2454 }
2455
av1_prepare_motion_search_features_block(AV1_COMP * const cpi,ThreadData * td,TileDataEnc * tile_data,const int mi_row,const int mi_col,const BLOCK_SIZE bsize,const int valid_partition_types,unsigned int * block_sse,unsigned int * block_var,unsigned int sub_block_sse[4],unsigned int sub_block_var[4],unsigned int horz_block_sse[2],unsigned int horz_block_var[2],unsigned int vert_block_sse[2],unsigned int vert_block_var[2])2456 void av1_prepare_motion_search_features_block(
2457 AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
2458 const int mi_row, const int mi_col, const BLOCK_SIZE bsize,
2459 const int valid_partition_types, unsigned int *block_sse,
2460 unsigned int *block_var, unsigned int sub_block_sse[4],
2461 unsigned int sub_block_var[4], unsigned int horz_block_sse[2],
2462 unsigned int horz_block_var[2], unsigned int vert_block_sse[2],
2463 unsigned int vert_block_var[2]) {
2464 const AV1_COMMON *const cm = &cpi->common;
2465 if (frame_is_intra_only(cm)) return;
2466 MACROBLOCK *const x = &td->mb;
2467 SIMPLE_MOTION_DATA_TREE *sms_tree = NULL;
2468 const int stat_generation_stage = is_stat_generation_stage(cpi);
2469 const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
2470 const int tree_nodes =
2471 av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
2472 CHECK_MEM_ERROR(cm, sms_tree, aom_calloc(tree_nodes, sizeof(*sms_tree)));
2473 SIMPLE_MOTION_DATA_TREE *sms_root = setup_sms_tree(cpi, sms_tree);
2474 TileInfo *const tile_info = &tile_data->tile_info;
2475 av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, bsize);
2476 av1_reset_simple_motion_tree_partition(sms_root, bsize);
2477 const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
2478 : LAST_FRAME };
2479 const int sub_mi_width = mi_size_wide[bsize] / 2;
2480 const int sub_mi_height = sub_mi_width;
2481 simple_motion_search_get_best_ref(
2482 cpi, x, sms_root, mi_row, mi_col, bsize, ref_list, /*num_refs=*/1,
2483 /*use_subpixel=*/1, /*save_mv=*/1, block_sse, block_var);
2484 // Split to 4 sub blocks.
2485 if (valid_partition_types & (1 << PARTITION_SPLIT)) {
2486 const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
2487 for (int i = 0; i < 4; ++i) {
2488 const int row = mi_row + (i >> 1) * sub_mi_height;
2489 const int col = mi_col + (i & 1) * sub_mi_width;
2490 simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
2491 ref_list, /*num_refs=*/1,
2492 /*use_subpixel=*/1, /*save_mv=*/1,
2493 &sub_block_sse[i], &sub_block_var[i]);
2494 }
2495 }
2496 // Horizontal split
2497 if (valid_partition_types & (1 << PARTITION_HORZ)) {
2498 const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
2499 for (int i = 0; i < 2; ++i) {
2500 const int row = mi_row + (i & 1) * sub_mi_height;
2501 const int col = mi_col;
2502 simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
2503 ref_list, /*num_refs=*/1,
2504 /*use_subpixel=*/1, /*save_mv=*/1,
2505 &horz_block_sse[i], &horz_block_var[i]);
2506 }
2507 }
2508 // Vertical split
2509 if (valid_partition_types & (1 << PARTITION_VERT)) {
2510 const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT);
2511 for (int i = 0; i < 2; ++i) {
2512 const int row = mi_row;
2513 const int col = mi_col + (i & 1) * sub_mi_width;
2514 simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
2515 ref_list, /*num_refs=*/1,
2516 /*use_subpixel=*/1, /*save_mv=*/1,
2517 &vert_block_sse[i], &vert_block_var[i]);
2518 }
2519 }
2520
2521 aom_free(sms_tree);
2522 }
2523 #endif // !CONFIG_REALTIME_ONLY
2524
init_simple_motion_search_mvs(SIMPLE_MOTION_DATA_TREE * sms_tree,const FULLPEL_MV * start_mvs)2525 static INLINE void init_simple_motion_search_mvs(
2526 SIMPLE_MOTION_DATA_TREE *sms_tree, const FULLPEL_MV *start_mvs) {
2527 memcpy(sms_tree->start_mvs, start_mvs, sizeof(sms_tree->start_mvs));
2528 av1_zero(sms_tree->sms_none_feat);
2529 av1_zero(sms_tree->sms_rect_feat);
2530 av1_zero(sms_tree->sms_none_valid);
2531 av1_zero(sms_tree->sms_rect_valid);
2532
2533 if (sms_tree->block_size >= BLOCK_8X8) {
2534 init_simple_motion_search_mvs(sms_tree->split[0], start_mvs);
2535 init_simple_motion_search_mvs(sms_tree->split[1], start_mvs);
2536 init_simple_motion_search_mvs(sms_tree->split[2], start_mvs);
2537 init_simple_motion_search_mvs(sms_tree->split[3], start_mvs);
2538 }
2539 }
2540
av1_init_simple_motion_search_mvs_for_sb(const AV1_COMP * cpi,const TileInfo * tile_info,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_root,int mi_row,int mi_col)2541 void av1_init_simple_motion_search_mvs_for_sb(const AV1_COMP *cpi,
2542 const TileInfo *tile_info,
2543 MACROBLOCK *x,
2544 SIMPLE_MOTION_DATA_TREE *sms_root,
2545 int mi_row, int mi_col) {
2546 // Use the NEARESTMV of the sb as the start mv
2547 const AV1_COMMON *cm = &cpi->common;
2548 MACROBLOCKD *const xd = &x->e_mbd;
2549 FULLPEL_MV ref_mvs[REF_FRAMES];
2550 const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
2551 av1_zero(ref_mvs);
2552 // If tile_info is NULL, assume that the offsets have already been set.
2553 if (tile_info) {
2554 av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col,
2555 sb_size);
2556 }
2557
2558 MB_MODE_INFO_EXT mbmi_ext;
2559 const int ref_frame =
2560 cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
2561 av1_find_mv_refs(cm, xd, xd->mi[0], ref_frame, mbmi_ext.ref_mv_count,
2562 xd->ref_mv_stack, xd->weight, NULL, mbmi_ext.global_mvs,
2563 mbmi_ext.mode_context);
2564 if (mbmi_ext.ref_mv_count[ref_frame] > 0) {
2565 ref_mvs[ref_frame] =
2566 get_fullmv_from_mv(&xd->ref_mv_stack[ref_frame][0].this_mv.as_mv);
2567 } else {
2568 ref_mvs[ref_frame] =
2569 get_fullmv_from_mv(&mbmi_ext.global_mvs[ref_frame].as_mv);
2570 }
2571
2572 init_simple_motion_search_mvs(sms_root, ref_mvs);
2573 }
2574