• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <float.h>
14 #include <stdint.h>
15 
16 #include "av1/encoder/thirdpass.h"
17 #include "config/aom_config.h"
18 #include "config/aom_dsp_rtcd.h"
19 #include "config/aom_scale_rtcd.h"
20 
21 #include "aom/aom_codec.h"
22 #include "aom_util/aom_pthread.h"
23 
24 #include "av1/common/av1_common_int.h"
25 #include "av1/common/enums.h"
26 #include "av1/common/idct.h"
27 #include "av1/common/reconintra.h"
28 
29 #include "av1/encoder/encoder.h"
30 #include "av1/encoder/ethread.h"
31 #include "av1/encoder/encodeframe_utils.h"
32 #include "av1/encoder/encode_strategy.h"
33 #include "av1/encoder/hybrid_fwd_txfm.h"
34 #include "av1/encoder/motion_search_facade.h"
35 #include "av1/encoder/rd.h"
36 #include "av1/encoder/rdopt.h"
37 #include "av1/encoder/reconinter_enc.h"
38 #include "av1/encoder/tpl_model.h"
39 
exp_bounded(double v)40 static INLINE double exp_bounded(double v) {
41   // When v > 700 or <-700, the exp function will be close to overflow
42   // For details, see the "Notes" in the following link.
43   // https://en.cppreference.com/w/c/numeric/math/exp
44   if (v > 700) {
45     return DBL_MAX;
46   } else if (v < -700) {
47     return 0;
48   }
49   return exp(v);
50 }
51 
av1_init_tpl_txfm_stats(TplTxfmStats * tpl_txfm_stats)52 void av1_init_tpl_txfm_stats(TplTxfmStats *tpl_txfm_stats) {
53   tpl_txfm_stats->ready = 0;
54   tpl_txfm_stats->coeff_num = 256;
55   tpl_txfm_stats->txfm_block_count = 0;
56   memset(tpl_txfm_stats->abs_coeff_sum, 0,
57          sizeof(tpl_txfm_stats->abs_coeff_sum[0]) * tpl_txfm_stats->coeff_num);
58   memset(tpl_txfm_stats->abs_coeff_mean, 0,
59          sizeof(tpl_txfm_stats->abs_coeff_mean[0]) * tpl_txfm_stats->coeff_num);
60 }
61 
62 #if CONFIG_BITRATE_ACCURACY
av1_accumulate_tpl_txfm_stats(const TplTxfmStats * sub_stats,TplTxfmStats * accumulated_stats)63 void av1_accumulate_tpl_txfm_stats(const TplTxfmStats *sub_stats,
64                                    TplTxfmStats *accumulated_stats) {
65   accumulated_stats->txfm_block_count += sub_stats->txfm_block_count;
66   for (int i = 0; i < accumulated_stats->coeff_num; ++i) {
67     accumulated_stats->abs_coeff_sum[i] += sub_stats->abs_coeff_sum[i];
68   }
69 }
70 
av1_record_tpl_txfm_block(TplTxfmStats * tpl_txfm_stats,const tran_low_t * coeff)71 void av1_record_tpl_txfm_block(TplTxfmStats *tpl_txfm_stats,
72                                const tran_low_t *coeff) {
73   // For transform larger than 16x16, the scale of coeff need to be adjusted.
74   // It's not LOSSLESS_Q_STEP.
75   assert(tpl_txfm_stats->coeff_num <= 256);
76   for (int i = 0; i < tpl_txfm_stats->coeff_num; ++i) {
77     tpl_txfm_stats->abs_coeff_sum[i] += abs(coeff[i]) / (double)LOSSLESS_Q_STEP;
78   }
79   ++tpl_txfm_stats->txfm_block_count;
80 }
81 
av1_tpl_txfm_stats_update_abs_coeff_mean(TplTxfmStats * txfm_stats)82 void av1_tpl_txfm_stats_update_abs_coeff_mean(TplTxfmStats *txfm_stats) {
83   if (txfm_stats->txfm_block_count > 0) {
84     for (int j = 0; j < txfm_stats->coeff_num; j++) {
85       txfm_stats->abs_coeff_mean[j] =
86           txfm_stats->abs_coeff_sum[j] / txfm_stats->txfm_block_count;
87     }
88     txfm_stats->ready = 1;
89   } else {
90     txfm_stats->ready = 0;
91   }
92 }
93 
av1_tpl_store_txfm_stats(TplParams * tpl_data,const TplTxfmStats * tpl_txfm_stats,const int frame_index)94 static AOM_INLINE void av1_tpl_store_txfm_stats(
95     TplParams *tpl_data, const TplTxfmStats *tpl_txfm_stats,
96     const int frame_index) {
97   tpl_data->txfm_stats_list[frame_index] = *tpl_txfm_stats;
98 }
99 #endif  // CONFIG_BITRATE_ACCURACY
100 
get_quantize_error(const MACROBLOCK * x,int plane,const tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,TX_SIZE tx_size,uint16_t * eob,int64_t * recon_error,int64_t * sse)101 static AOM_INLINE void get_quantize_error(const MACROBLOCK *x, int plane,
102                                           const tran_low_t *coeff,
103                                           tran_low_t *qcoeff,
104                                           tran_low_t *dqcoeff, TX_SIZE tx_size,
105                                           uint16_t *eob, int64_t *recon_error,
106                                           int64_t *sse) {
107   const struct macroblock_plane *const p = &x->plane[plane];
108   const MACROBLOCKD *xd = &x->e_mbd;
109   const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
110   int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
111   const int shift = tx_size == TX_32X32 ? 0 : 2;
112 
113   QUANT_PARAM quant_param;
114   av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param);
115 
116 #if CONFIG_AV1_HIGHBITDEPTH
117   if (is_cur_buf_hbd(xd)) {
118     av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob,
119                                   scan_order, &quant_param);
120     *recon_error =
121         av1_highbd_block_error(coeff, dqcoeff, pix_num, sse, xd->bd) >> shift;
122   } else {
123     av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
124                            &quant_param);
125     *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
126   }
127 #else
128   (void)xd;
129   av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
130                          &quant_param);
131   *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
132 #endif  // CONFIG_AV1_HIGHBITDEPTH
133 
134   *recon_error = AOMMAX(*recon_error, 1);
135 
136   *sse = (*sse) >> shift;
137   *sse = AOMMAX(*sse, 1);
138 }
139 
set_tpl_stats_block_size(uint8_t * block_mis_log2,uint8_t * tpl_bsize_1d)140 static AOM_INLINE void set_tpl_stats_block_size(uint8_t *block_mis_log2,
141                                                 uint8_t *tpl_bsize_1d) {
142   // tpl stats bsize: 2 means 16x16
143   *block_mis_log2 = 2;
144   // Block size used in tpl motion estimation
145   *tpl_bsize_1d = 16;
146   // MIN_TPL_BSIZE_1D = 16;
147   assert(*tpl_bsize_1d >= 16);
148 }
149 
av1_setup_tpl_buffers(AV1_PRIMARY * const ppi,CommonModeInfoParams * const mi_params,int width,int height,int byte_alignment,int lag_in_frames)150 void av1_setup_tpl_buffers(AV1_PRIMARY *const ppi,
151                            CommonModeInfoParams *const mi_params, int width,
152                            int height, int byte_alignment, int lag_in_frames) {
153   SequenceHeader *const seq_params = &ppi->seq_params;
154   TplParams *const tpl_data = &ppi->tpl_data;
155   set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
156                            &tpl_data->tpl_bsize_1d);
157   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
158   tpl_data->border_in_pixels =
159       ALIGN_POWER_OF_TWO(tpl_data->tpl_bsize_1d + 2 * AOM_INTERP_EXTEND, 5);
160 
161   const int alloc_y_plane_only =
162       ppi->cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : 0;
163   for (int frame = 0; frame < MAX_LENGTH_TPL_FRAME_STATS; ++frame) {
164     const int mi_cols =
165         ALIGN_POWER_OF_TWO(mi_params->mi_cols, MAX_MIB_SIZE_LOG2);
166     const int mi_rows =
167         ALIGN_POWER_OF_TWO(mi_params->mi_rows, MAX_MIB_SIZE_LOG2);
168     TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame];
169     tpl_frame->is_valid = 0;
170     tpl_frame->width = mi_cols >> block_mis_log2;
171     tpl_frame->height = mi_rows >> block_mis_log2;
172     tpl_frame->stride = tpl_data->tpl_stats_buffer[frame].width;
173     tpl_frame->mi_rows = mi_params->mi_rows;
174     tpl_frame->mi_cols = mi_params->mi_cols;
175   }
176   tpl_data->tpl_frame = &tpl_data->tpl_stats_buffer[REF_FRAMES + 1];
177 
178   // If lag_in_frames <= 1, TPL module is not invoked. Hence dynamic memory
179   // allocations are avoided for buffers in tpl_data.
180   if (lag_in_frames <= 1) return;
181 
182   AOM_CHECK_MEM_ERROR(&ppi->error, tpl_data->txfm_stats_list,
183                       aom_calloc(MAX_LENGTH_TPL_FRAME_STATS,
184                                  sizeof(*tpl_data->txfm_stats_list)));
185 
186   for (int frame = 0; frame < lag_in_frames; ++frame) {
187     AOM_CHECK_MEM_ERROR(
188         &ppi->error, tpl_data->tpl_stats_pool[frame],
189         aom_calloc(tpl_data->tpl_stats_buffer[frame].width *
190                        tpl_data->tpl_stats_buffer[frame].height,
191                    sizeof(*tpl_data->tpl_stats_buffer[frame].tpl_stats_ptr)));
192 
193     if (aom_alloc_frame_buffer(
194             &tpl_data->tpl_rec_pool[frame], width, height,
195             seq_params->subsampling_x, seq_params->subsampling_y,
196             seq_params->use_highbitdepth, tpl_data->border_in_pixels,
197             byte_alignment, false, alloc_y_plane_only))
198       aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
199                          "Failed to allocate frame buffer");
200   }
201 }
202 
tpl_get_satd_cost(BitDepthInfo bd_info,int16_t * src_diff,int diff_stride,const uint8_t * src,int src_stride,const uint8_t * dst,int dst_stride,tran_low_t * coeff,int bw,int bh,TX_SIZE tx_size)203 static AOM_INLINE int32_t tpl_get_satd_cost(BitDepthInfo bd_info,
204                                             int16_t *src_diff, int diff_stride,
205                                             const uint8_t *src, int src_stride,
206                                             const uint8_t *dst, int dst_stride,
207                                             tran_low_t *coeff, int bw, int bh,
208                                             TX_SIZE tx_size) {
209   const int pix_num = bw * bh;
210 
211   av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
212                      dst, dst_stride);
213   av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
214   return aom_satd(coeff, pix_num);
215 }
216 
rate_estimator(const tran_low_t * qcoeff,int eob,TX_SIZE tx_size)217 static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) {
218   const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
219 
220   assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob);
221   int rate_cost = 1;
222 
223   for (int idx = 0; idx < eob; ++idx) {
224     unsigned int abs_level = abs(qcoeff[scan_order->scan[idx]]);
225     rate_cost += get_msb(abs_level + 1) + 1 + (abs_level > 0);
226   }
227 
228   return (rate_cost << AV1_PROB_COST_SHIFT);
229 }
230 
txfm_quant_rdcost(const MACROBLOCK * x,int16_t * src_diff,int diff_stride,uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,int bw,int bh,TX_SIZE tx_size,int do_recon,int * rate_cost,int64_t * recon_error,int64_t * sse)231 static AOM_INLINE void txfm_quant_rdcost(
232     const MACROBLOCK *x, int16_t *src_diff, int diff_stride, uint8_t *src,
233     int src_stride, uint8_t *dst, int dst_stride, tran_low_t *coeff,
234     tran_low_t *qcoeff, tran_low_t *dqcoeff, int bw, int bh, TX_SIZE tx_size,
235     int do_recon, int *rate_cost, int64_t *recon_error, int64_t *sse) {
236   const MACROBLOCKD *xd = &x->e_mbd;
237   const BitDepthInfo bd_info = get_bit_depth_info(xd);
238   uint16_t eob;
239   av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
240                      dst, dst_stride);
241   av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
242 
243   get_quantize_error(x, 0, coeff, qcoeff, dqcoeff, tx_size, &eob, recon_error,
244                      sse);
245 
246   *rate_cost = rate_estimator(qcoeff, eob, tx_size);
247 
248   if (do_recon)
249     av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst,
250                                 dst_stride, eob, 0);
251 }
252 
motion_estimation(AV1_COMP * cpi,MACROBLOCK * x,uint8_t * cur_frame_buf,uint8_t * ref_frame_buf,int stride,int ref_stride,int width,int ref_width,BLOCK_SIZE bsize,MV center_mv,int_mv * best_mv)253 static uint32_t motion_estimation(AV1_COMP *cpi, MACROBLOCK *x,
254                                   uint8_t *cur_frame_buf,
255                                   uint8_t *ref_frame_buf, int stride,
256                                   int ref_stride, int width, int ref_width,
257                                   BLOCK_SIZE bsize, MV center_mv,
258                                   int_mv *best_mv) {
259   AV1_COMMON *cm = &cpi->common;
260   MACROBLOCKD *const xd = &x->e_mbd;
261   TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
262   int step_param;
263   uint32_t bestsme = UINT_MAX;
264   FULLPEL_MV_STATS best_mv_stats;
265   int distortion;
266   uint32_t sse;
267   int cost_list[5];
268   FULLPEL_MV start_mv = get_fullmv_from_mv(&center_mv);
269 
270   // Setup frame pointers
271   x->plane[0].src.buf = cur_frame_buf;
272   x->plane[0].src.stride = stride;
273   x->plane[0].src.width = width;
274   xd->plane[0].pre[0].buf = ref_frame_buf;
275   xd->plane[0].pre[0].stride = ref_stride;
276   xd->plane[0].pre[0].width = ref_width;
277 
278   step_param = tpl_sf->reduce_first_step_size;
279   step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2);
280 
281   const search_site_config *search_site_cfg =
282       cpi->mv_search_params.search_site_cfg[SS_CFG_SRC];
283   if (search_site_cfg->stride != ref_stride)
284     search_site_cfg = cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD];
285   assert(search_site_cfg->stride == ref_stride);
286 
287   FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
288   av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &center_mv,
289                                      start_mv, search_site_cfg,
290                                      tpl_sf->search_method,
291                                      /*fine_search_interval=*/0);
292 
293   bestsme = av1_full_pixel_search(start_mv, &full_ms_params, step_param,
294                                   cond_cost_list(cpi, cost_list),
295                                   &best_mv->as_fullmv, &best_mv_stats, NULL);
296 
297   // When sub-pel motion search is skipped, populate sub-pel precision MV and
298   // return.
299   if (tpl_sf->subpel_force_stop == FULL_PEL) {
300     best_mv->as_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
301     return bestsme;
302   }
303 
304   SUBPEL_MOTION_SEARCH_PARAMS ms_params;
305   av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &center_mv,
306                                     cost_list);
307   ms_params.forced_stop = tpl_sf->subpel_force_stop;
308   ms_params.var_params.subpel_search_type = USE_2_TAPS;
309   ms_params.mv_cost_params.mv_cost_type = MV_COST_NONE;
310   best_mv_stats.err_cost = 0;
311   MV subpel_start_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
312   assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv));
313   bestsme = cpi->mv_search_params.find_fractional_mv_step(
314       xd, cm, &ms_params, subpel_start_mv, &best_mv_stats, &best_mv->as_mv,
315       &distortion, &sse, NULL);
316 
317   return bestsme;
318 }
319 
320 typedef struct {
321   int_mv mv;
322   int sad;
323 } center_mv_t;
324 
compare_sad(const void * a,const void * b)325 static int compare_sad(const void *a, const void *b) {
326   const int diff = ((center_mv_t *)a)->sad - ((center_mv_t *)b)->sad;
327   if (diff < 0)
328     return -1;
329   else if (diff > 0)
330     return 1;
331   return 0;
332 }
333 
is_alike_mv(int_mv candidate_mv,center_mv_t * center_mvs,int center_mvs_count,int skip_alike_starting_mv)334 static int is_alike_mv(int_mv candidate_mv, center_mv_t *center_mvs,
335                        int center_mvs_count, int skip_alike_starting_mv) {
336   // MV difference threshold is in 1/8 precision.
337   const int mv_diff_thr[3] = { 1, (8 << 3), (16 << 3) };
338   int thr = mv_diff_thr[skip_alike_starting_mv];
339   int i;
340 
341   for (i = 0; i < center_mvs_count; i++) {
342     if (abs(center_mvs[i].mv.as_mv.col - candidate_mv.as_mv.col) < thr &&
343         abs(center_mvs[i].mv.as_mv.row - candidate_mv.as_mv.row) < thr)
344       return 1;
345   }
346 
347   return 0;
348 }
349 
get_rate_distortion(int * rate_cost,int64_t * recon_error,int64_t * pred_error,int16_t * src_diff,tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,AV1_COMMON * cm,MACROBLOCK * x,const YV12_BUFFER_CONFIG * ref_frame_ptr[2],uint8_t * rec_buffer_pool[3],const int rec_stride_pool[3],TX_SIZE tx_size,PREDICTION_MODE best_mode,int mi_row,int mi_col,int use_y_only_rate_distortion,int do_recon,TplTxfmStats * tpl_txfm_stats)350 static void get_rate_distortion(
351     int *rate_cost, int64_t *recon_error, int64_t *pred_error,
352     int16_t *src_diff, tran_low_t *coeff, tran_low_t *qcoeff,
353     tran_low_t *dqcoeff, AV1_COMMON *cm, MACROBLOCK *x,
354     const YV12_BUFFER_CONFIG *ref_frame_ptr[2], uint8_t *rec_buffer_pool[3],
355     const int rec_stride_pool[3], TX_SIZE tx_size, PREDICTION_MODE best_mode,
356     int mi_row, int mi_col, int use_y_only_rate_distortion, int do_recon,
357     TplTxfmStats *tpl_txfm_stats) {
358   const SequenceHeader *seq_params = cm->seq_params;
359   *rate_cost = 0;
360   *recon_error = 1;
361   *pred_error = 1;
362 
363   (void)tpl_txfm_stats;
364 
365   MACROBLOCKD *xd = &x->e_mbd;
366   int is_compound = (best_mode == NEW_NEWMV);
367   int num_planes = use_y_only_rate_distortion ? 1 : MAX_MB_PLANE;
368 
369   uint8_t *src_buffer_pool[MAX_MB_PLANE] = {
370     xd->cur_buf->y_buffer,
371     xd->cur_buf->u_buffer,
372     xd->cur_buf->v_buffer,
373   };
374   const int src_stride_pool[MAX_MB_PLANE] = {
375     xd->cur_buf->y_stride,
376     xd->cur_buf->uv_stride,
377     xd->cur_buf->uv_stride,
378   };
379 
380   const int_interpfilters kernel =
381       av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
382 
383   for (int plane = 0; plane < num_planes; ++plane) {
384     struct macroblockd_plane *pd = &xd->plane[plane];
385     BLOCK_SIZE bsize_plane =
386         av1_ss_size_lookup[txsize_to_bsize[tx_size]][pd->subsampling_x]
387                           [pd->subsampling_y];
388 
389     int dst_buffer_stride = rec_stride_pool[plane];
390     int dst_mb_offset =
391         ((mi_row * MI_SIZE * dst_buffer_stride) >> pd->subsampling_y) +
392         ((mi_col * MI_SIZE) >> pd->subsampling_x);
393     uint8_t *dst_buffer = rec_buffer_pool[plane] + dst_mb_offset;
394     for (int ref = 0; ref < 1 + is_compound; ++ref) {
395       if (!is_inter_mode(best_mode)) {
396         av1_predict_intra_block(
397             xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
398             block_size_wide[bsize_plane], block_size_high[bsize_plane],
399             max_txsize_rect_lookup[bsize_plane], best_mode, 0, 0,
400             FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, dst_buffer,
401             dst_buffer_stride, 0, 0, plane);
402       } else {
403         int_mv best_mv = xd->mi[0]->mv[ref];
404         uint8_t *ref_buffer_pool[MAX_MB_PLANE] = {
405           ref_frame_ptr[ref]->y_buffer,
406           ref_frame_ptr[ref]->u_buffer,
407           ref_frame_ptr[ref]->v_buffer,
408         };
409         InterPredParams inter_pred_params;
410         struct buf_2d ref_buf = {
411           NULL, ref_buffer_pool[plane],
412           plane ? ref_frame_ptr[ref]->uv_width : ref_frame_ptr[ref]->y_width,
413           plane ? ref_frame_ptr[ref]->uv_height : ref_frame_ptr[ref]->y_height,
414           plane ? ref_frame_ptr[ref]->uv_stride : ref_frame_ptr[ref]->y_stride
415         };
416         av1_init_inter_params(&inter_pred_params, block_size_wide[bsize_plane],
417                               block_size_high[bsize_plane],
418                               (mi_row * MI_SIZE) >> pd->subsampling_y,
419                               (mi_col * MI_SIZE) >> pd->subsampling_x,
420                               pd->subsampling_x, pd->subsampling_y, xd->bd,
421                               is_cur_buf_hbd(xd), 0,
422                               xd->block_ref_scale_factors[0], &ref_buf, kernel);
423         if (is_compound) av1_init_comp_mode(&inter_pred_params);
424         inter_pred_params.conv_params = get_conv_params_no_round(
425             ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
426 
427         av1_enc_build_one_inter_predictor(dst_buffer, dst_buffer_stride,
428                                           &best_mv.as_mv, &inter_pred_params);
429       }
430     }
431 
432     int src_stride = src_stride_pool[plane];
433     int src_mb_offset = ((mi_row * MI_SIZE * src_stride) >> pd->subsampling_y) +
434                         ((mi_col * MI_SIZE) >> pd->subsampling_x);
435 
436     int this_rate = 1;
437     int64_t this_recon_error = 1;
438     int64_t sse;
439     txfm_quant_rdcost(
440         x, src_diff, block_size_wide[bsize_plane],
441         src_buffer_pool[plane] + src_mb_offset, src_stride, dst_buffer,
442         dst_buffer_stride, coeff, qcoeff, dqcoeff, block_size_wide[bsize_plane],
443         block_size_high[bsize_plane], max_txsize_rect_lookup[bsize_plane],
444         do_recon, &this_rate, &this_recon_error, &sse);
445 
446 #if CONFIG_BITRATE_ACCURACY
447     if (plane == 0 && tpl_txfm_stats) {
448       // We only collect Y plane's transform coefficient
449       av1_record_tpl_txfm_block(tpl_txfm_stats, coeff);
450     }
451 #endif  // CONFIG_BITRATE_ACCURACY
452 
453     *recon_error += this_recon_error;
454     *pred_error += sse;
455     *rate_cost += this_rate;
456   }
457 }
458 
get_inter_cost(const AV1_COMP * cpi,MACROBLOCKD * xd,const uint8_t * src_mb_buffer,int src_stride,TplBuffers * tpl_tmp_buffers,BLOCK_SIZE bsize,TX_SIZE tx_size,int mi_row,int mi_col,int rf_idx,MV * rfidx_mv,int use_pred_sad)459 static AOM_INLINE int32_t get_inter_cost(const AV1_COMP *cpi, MACROBLOCKD *xd,
460                                          const uint8_t *src_mb_buffer,
461                                          int src_stride,
462                                          TplBuffers *tpl_tmp_buffers,
463                                          BLOCK_SIZE bsize, TX_SIZE tx_size,
464                                          int mi_row, int mi_col, int rf_idx,
465                                          MV *rfidx_mv, int use_pred_sad) {
466   const BitDepthInfo bd_info = get_bit_depth_info(xd);
467   TplParams *tpl_data = &cpi->ppi->tpl_data;
468   const YV12_BUFFER_CONFIG *const ref_frame_ptr =
469       tpl_data->src_ref_frame[rf_idx];
470   int16_t *src_diff = tpl_tmp_buffers->src_diff;
471   tran_low_t *coeff = tpl_tmp_buffers->coeff;
472   const int bw = 4 << mi_size_wide_log2[bsize];
473   const int bh = 4 << mi_size_high_log2[bsize];
474   int32_t inter_cost;
475 
476   if (cpi->sf.tpl_sf.subpel_force_stop != FULL_PEL) {
477     const int_interpfilters kernel =
478         av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
479     uint8_t *predictor8 = tpl_tmp_buffers->predictor8;
480     uint8_t *predictor =
481         is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
482     struct buf_2d ref_buf = { NULL, ref_frame_ptr->y_buffer,
483                               ref_frame_ptr->y_width, ref_frame_ptr->y_height,
484                               ref_frame_ptr->y_stride };
485     InterPredParams inter_pred_params;
486     av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
487                           mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd), 0,
488                           &tpl_data->sf, &ref_buf, kernel);
489     inter_pred_params.conv_params = get_conv_params(0, 0, xd->bd);
490 
491     av1_enc_build_one_inter_predictor(predictor, bw, rfidx_mv,
492                                       &inter_pred_params);
493 
494     if (use_pred_sad) {
495       inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf(src_mb_buffer, src_stride,
496                                                     predictor, bw);
497     } else {
498       inter_cost =
499           tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
500                             predictor, bw, coeff, bw, bh, tx_size);
501     }
502   } else {
503     int ref_mb_offset =
504         mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
505     uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
506     int ref_stride = ref_frame_ptr->y_stride;
507     const FULLPEL_MV fullmv = get_fullmv_from_mv(rfidx_mv);
508     // Since sub-pel motion search is not performed, use the prediction pixels
509     // directly from the reference block ref_mb
510     if (use_pred_sad) {
511       inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf(
512           src_mb_buffer, src_stride,
513           &ref_mb[fullmv.row * ref_stride + fullmv.col], ref_stride);
514     } else {
515       inter_cost =
516           tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
517                             &ref_mb[fullmv.row * ref_stride + fullmv.col],
518                             ref_stride, coeff, bw, bh, tx_size);
519     }
520   }
521   return inter_cost;
522 }
523 
mode_estimation(AV1_COMP * cpi,TplTxfmStats * tpl_txfm_stats,TplBuffers * tpl_tmp_buffers,MACROBLOCK * x,int mi_row,int mi_col,BLOCK_SIZE bsize,TX_SIZE tx_size,TplDepStats * tpl_stats)524 static AOM_INLINE void mode_estimation(AV1_COMP *cpi,
525                                        TplTxfmStats *tpl_txfm_stats,
526                                        TplBuffers *tpl_tmp_buffers,
527                                        MACROBLOCK *x, int mi_row, int mi_col,
528                                        BLOCK_SIZE bsize, TX_SIZE tx_size,
529                                        TplDepStats *tpl_stats) {
530   AV1_COMMON *cm = &cpi->common;
531   const GF_GROUP *gf_group = &cpi->ppi->gf_group;
532   TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
533 
534   (void)gf_group;
535 
536   MACROBLOCKD *xd = &x->e_mbd;
537   const BitDepthInfo bd_info = get_bit_depth_info(xd);
538   TplParams *tpl_data = &cpi->ppi->tpl_data;
539   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
540   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
541 
542   const int bw = 4 << mi_size_wide_log2[bsize];
543   const int bh = 4 << mi_size_high_log2[bsize];
544 
545   int frame_offset = tpl_data->frame_idx - cpi->gf_frame_index;
546 
547   int32_t best_intra_cost = INT32_MAX;
548   int32_t intra_cost;
549   PREDICTION_MODE best_mode = DC_PRED;
550 
551   const int mb_y_offset =
552       mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE;
553   uint8_t *src_mb_buffer = xd->cur_buf->y_buffer + mb_y_offset;
554   const int src_stride = xd->cur_buf->y_stride;
555   const int src_width = xd->cur_buf->y_width;
556 
557   int dst_mb_offset =
558       mi_row * MI_SIZE * tpl_frame->rec_picture->y_stride + mi_col * MI_SIZE;
559   uint8_t *dst_buffer = tpl_frame->rec_picture->y_buffer + dst_mb_offset;
560   int dst_buffer_stride = tpl_frame->rec_picture->y_stride;
561   int use_y_only_rate_distortion = tpl_sf->use_y_only_rate_distortion;
562 
563   uint8_t *rec_buffer_pool[3] = {
564     tpl_frame->rec_picture->y_buffer,
565     tpl_frame->rec_picture->u_buffer,
566     tpl_frame->rec_picture->v_buffer,
567   };
568 
569   const int rec_stride_pool[3] = {
570     tpl_frame->rec_picture->y_stride,
571     tpl_frame->rec_picture->uv_stride,
572     tpl_frame->rec_picture->uv_stride,
573   };
574 
575   for (int plane = 1; plane < MAX_MB_PLANE; ++plane) {
576     struct macroblockd_plane *pd = &xd->plane[plane];
577     pd->subsampling_x = xd->cur_buf->subsampling_x;
578     pd->subsampling_y = xd->cur_buf->subsampling_y;
579   }
580 
581   uint8_t *predictor8 = tpl_tmp_buffers->predictor8;
582   int16_t *src_diff = tpl_tmp_buffers->src_diff;
583   tran_low_t *coeff = tpl_tmp_buffers->coeff;
584   tran_low_t *qcoeff = tpl_tmp_buffers->qcoeff;
585   tran_low_t *dqcoeff = tpl_tmp_buffers->dqcoeff;
586   uint8_t *predictor =
587       is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
588   int64_t recon_error = 1;
589   int64_t pred_error = 1;
590 
591   memset(tpl_stats, 0, sizeof(*tpl_stats));
592   tpl_stats->ref_frame_index[0] = -1;
593   tpl_stats->ref_frame_index[1] = -1;
594 
595   const int mi_width = mi_size_wide[bsize];
596   const int mi_height = mi_size_high[bsize];
597   set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
598                         mi_row, mi_col);
599   set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width,
600                  cm->mi_params.mi_rows, cm->mi_params.mi_cols);
601   set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize],
602                av1_num_planes(cm));
603   xd->mi[0]->bsize = bsize;
604   xd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
605 
606   // Intra prediction search
607   xd->mi[0]->ref_frame[0] = INTRA_FRAME;
608 
609   // Pre-load the bottom left line.
610   if (xd->left_available &&
611       mi_row + tx_size_high_unit[tx_size] < xd->tile.mi_row_end) {
612     if (is_cur_buf_hbd(xd)) {
613       uint16_t *dst = CONVERT_TO_SHORTPTR(dst_buffer);
614       for (int i = 0; i < bw; ++i)
615         dst[(bw + i) * dst_buffer_stride - 1] =
616             dst[(bw - 1) * dst_buffer_stride - 1];
617     } else {
618       for (int i = 0; i < bw; ++i)
619         dst_buffer[(bw + i) * dst_buffer_stride - 1] =
620             dst_buffer[(bw - 1) * dst_buffer_stride - 1];
621     }
622   }
623 
624   // if cpi->sf.tpl_sf.prune_intra_modes is on, then search only DC_PRED,
625   // H_PRED, and V_PRED
626   const PREDICTION_MODE last_intra_mode =
627       tpl_sf->prune_intra_modes ? D45_PRED : INTRA_MODE_END;
628   const SequenceHeader *seq_params = cm->seq_params;
629   for (PREDICTION_MODE mode = INTRA_MODE_START; mode < last_intra_mode;
630        ++mode) {
631     av1_predict_intra_block(xd, seq_params->sb_size,
632                             seq_params->enable_intra_edge_filter,
633                             block_size_wide[bsize], block_size_high[bsize],
634                             tx_size, mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
635                             dst_buffer_stride, predictor, bw, 0, 0, 0);
636 
637     if (tpl_frame->use_pred_sad) {
638       intra_cost = (int32_t)cpi->ppi->fn_ptr[bsize].sdf(
639           src_mb_buffer, src_stride, predictor, bw);
640     } else {
641       intra_cost =
642           tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
643                             predictor, bw, coeff, bw, bh, tx_size);
644     }
645 
646     if (intra_cost < best_intra_cost) {
647       best_intra_cost = intra_cost;
648       best_mode = mode;
649     }
650   }
651   // Calculate SATD of the best intra mode if SAD was used for mode decision
652   // as best_intra_cost is used in ML model to skip intra mode evaluation.
653   if (tpl_frame->use_pred_sad) {
654     av1_predict_intra_block(
655         xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
656         block_size_wide[bsize], block_size_high[bsize], tx_size, best_mode, 0,
657         0, FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, predictor, bw, 0,
658         0, 0);
659     best_intra_cost =
660         tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
661                           predictor, bw, coeff, bw, bh, tx_size);
662   }
663 
664   int rate_cost = 1;
665 
666   if (cpi->use_ducky_encode) {
667     get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
668                         qcoeff, dqcoeff, cm, x, NULL, rec_buffer_pool,
669                         rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
670                         use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
671 
672     tpl_stats->intra_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
673     tpl_stats->intra_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
674     tpl_stats->intra_rate = rate_cost;
675   }
676 
677   if (cpi->third_pass_ctx &&
678       frame_offset < cpi->third_pass_ctx->frame_info_count &&
679       tpl_data->frame_idx < gf_group->size) {
680     double ratio_h, ratio_w;
681     av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
682                              cm->width, &ratio_h, &ratio_w);
683     THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
684         cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
685 
686     PREDICTION_MODE third_pass_mode = this_mi->pred_mode;
687 
688     if (third_pass_mode >= last_intra_mode &&
689         third_pass_mode < INTRA_MODE_END) {
690       av1_predict_intra_block(
691           xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
692           block_size_wide[bsize], block_size_high[bsize], tx_size,
693           third_pass_mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
694           dst_buffer_stride, predictor, bw, 0, 0, 0);
695 
696       intra_cost =
697           tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
698                             predictor, bw, coeff, bw, bh, tx_size);
699 
700       if (intra_cost < best_intra_cost) {
701         best_intra_cost = intra_cost;
702         best_mode = third_pass_mode;
703       }
704     }
705   }
706 
707   // Motion compensated prediction
708   xd->mi[0]->ref_frame[0] = INTRA_FRAME;
709   xd->mi[0]->ref_frame[1] = NONE_FRAME;
710   xd->mi[0]->compound_idx = 1;
711 
712   int best_rf_idx = -1;
713   int_mv best_mv[2];
714   int32_t inter_cost;
715   int32_t best_inter_cost = INT32_MAX;
716   int rf_idx;
717   int_mv single_mv[INTER_REFS_PER_FRAME];
718 
719   best_mv[0].as_int = INVALID_MV;
720   best_mv[1].as_int = INVALID_MV;
721 
722   for (rf_idx = 0; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) {
723     single_mv[rf_idx].as_int = INVALID_MV;
724     if (tpl_data->ref_frame[rf_idx] == NULL ||
725         tpl_data->src_ref_frame[rf_idx] == NULL) {
726       tpl_stats->mv[rf_idx].as_int = INVALID_MV;
727       continue;
728     }
729 
730     const YV12_BUFFER_CONFIG *ref_frame_ptr = tpl_data->src_ref_frame[rf_idx];
731     const int ref_mb_offset =
732         mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
733     uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
734     const int ref_stride = ref_frame_ptr->y_stride;
735     const int ref_width = ref_frame_ptr->y_width;
736 
737     int_mv best_rfidx_mv = { 0 };
738     uint32_t bestsme = UINT32_MAX;
739 
740     center_mv_t center_mvs[4] = { { { 0 }, INT_MAX },
741                                   { { 0 }, INT_MAX },
742                                   { { 0 }, INT_MAX },
743                                   { { 0 }, INT_MAX } };
744     int refmv_count = 1;
745     int idx;
746 
747     if (xd->up_available) {
748       TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
749           mi_row - mi_height, mi_col, tpl_frame->stride, block_mis_log2)];
750       if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
751                        tpl_sf->skip_alike_starting_mv)) {
752         center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
753         ++refmv_count;
754       }
755     }
756 
757     if (xd->left_available) {
758       TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
759           mi_row, mi_col - mi_width, tpl_frame->stride, block_mis_log2)];
760       if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
761                        tpl_sf->skip_alike_starting_mv)) {
762         center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
763         ++refmv_count;
764       }
765     }
766 
767     if (xd->up_available && mi_col + mi_width < xd->tile.mi_col_end) {
768       TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
769           mi_row - mi_height, mi_col + mi_width, tpl_frame->stride,
770           block_mis_log2)];
771       if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
772                        tpl_sf->skip_alike_starting_mv)) {
773         center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
774         ++refmv_count;
775       }
776     }
777 
778     if (cpi->third_pass_ctx &&
779         frame_offset < cpi->third_pass_ctx->frame_info_count &&
780         tpl_data->frame_idx < gf_group->size) {
781       double ratio_h, ratio_w;
782       av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
783                                cm->width, &ratio_h, &ratio_w);
784       THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
785           cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
786 
787       int_mv tp_mv = av1_get_third_pass_adjusted_mv(this_mi, ratio_h, ratio_w,
788                                                     rf_idx + LAST_FRAME);
789       if (tp_mv.as_int != INVALID_MV &&
790           !is_alike_mv(tp_mv, center_mvs + 1, refmv_count - 1,
791                        tpl_sf->skip_alike_starting_mv)) {
792         center_mvs[0].mv = tp_mv;
793       }
794     }
795 
796     // Prune starting mvs
797     if (tpl_sf->prune_starting_mv && refmv_count > 1) {
798       // Get each center mv's sad.
799       for (idx = 0; idx < refmv_count; ++idx) {
800         FULLPEL_MV mv = get_fullmv_from_mv(&center_mvs[idx].mv.as_mv);
801         clamp_fullmv(&mv, &x->mv_limits);
802         center_mvs[idx].sad = (int)cpi->ppi->fn_ptr[bsize].sdf(
803             src_mb_buffer, src_stride, &ref_mb[mv.row * ref_stride + mv.col],
804             ref_stride);
805       }
806 
807       // Rank center_mv using sad.
808       qsort(center_mvs, refmv_count, sizeof(center_mvs[0]), compare_sad);
809 
810       refmv_count = AOMMIN(4 - tpl_sf->prune_starting_mv, refmv_count);
811       // Further reduce number of refmv based on sad difference.
812       if (refmv_count > 1) {
813         int last_sad = center_mvs[refmv_count - 1].sad;
814         int second_to_last_sad = center_mvs[refmv_count - 2].sad;
815         if ((last_sad - second_to_last_sad) * 5 > second_to_last_sad)
816           refmv_count--;
817       }
818     }
819 
820     for (idx = 0; idx < refmv_count; ++idx) {
821       int_mv this_mv;
822       uint32_t thissme = motion_estimation(
823           cpi, x, src_mb_buffer, ref_mb, src_stride, ref_stride, src_width,
824           ref_width, bsize, center_mvs[idx].mv.as_mv, &this_mv);
825 
826       if (thissme < bestsme) {
827         bestsme = thissme;
828         best_rfidx_mv = this_mv;
829       }
830     }
831 
832     tpl_stats->mv[rf_idx].as_int = best_rfidx_mv.as_int;
833     single_mv[rf_idx] = best_rfidx_mv;
834 
835     inter_cost = get_inter_cost(
836         cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size,
837         mi_row, mi_col, rf_idx, &best_rfidx_mv.as_mv, tpl_frame->use_pred_sad);
838     // Store inter cost for each ref frame. This is used to prune inter modes.
839     tpl_stats->pred_error[rf_idx] = AOMMAX(1, inter_cost);
840 
841     if (inter_cost < best_inter_cost) {
842       best_rf_idx = rf_idx;
843 
844       best_inter_cost = inter_cost;
845       best_mv[0].as_int = best_rfidx_mv.as_int;
846     }
847   }
848   // Calculate SATD of the best inter mode if SAD was used for mode decision
849   // as best_inter_cost is used in ML model to skip intra mode evaluation.
850   if (best_inter_cost < INT32_MAX && tpl_frame->use_pred_sad) {
851     assert(best_rf_idx != -1);
852     best_inter_cost = get_inter_cost(
853         cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size,
854         mi_row, mi_col, best_rf_idx, &best_mv[0].as_mv, 0 /* use_pred_sad */);
855   }
856 
857   if (best_rf_idx != -1 && best_inter_cost < best_intra_cost) {
858     best_mode = NEWMV;
859     xd->mi[0]->ref_frame[0] = best_rf_idx + LAST_FRAME;
860     xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
861   }
862 
863   // Start compound predition search.
864   int comp_ref_frames[3][2] = {
865     { 0, 4 },
866     { 0, 6 },
867     { 3, 6 },
868   };
869 
870   int start_rf = 0;
871   int end_rf = 3;
872   if (!tpl_sf->allow_compound_pred) end_rf = 0;
873   if (cpi->third_pass_ctx &&
874       frame_offset < cpi->third_pass_ctx->frame_info_count &&
875       tpl_data->frame_idx < gf_group->size) {
876     double ratio_h, ratio_w;
877     av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height,
878                              cm->width, &ratio_h, &ratio_w);
879     THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
880         cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w);
881 
882     if (this_mi->ref_frame[0] >= LAST_FRAME &&
883         this_mi->ref_frame[1] >= LAST_FRAME) {
884       int found = 0;
885       for (int i = 0; i < 3; i++) {
886         if (comp_ref_frames[i][0] + LAST_FRAME == this_mi->ref_frame[0] &&
887             comp_ref_frames[i][1] + LAST_FRAME == this_mi->ref_frame[1]) {
888           found = 1;
889           break;
890         }
891       }
892       if (!found || !tpl_sf->allow_compound_pred) {
893         comp_ref_frames[2][0] = this_mi->ref_frame[0] - LAST_FRAME;
894         comp_ref_frames[2][1] = this_mi->ref_frame[1] - LAST_FRAME;
895         if (!tpl_sf->allow_compound_pred) {
896           start_rf = 2;
897           end_rf = 3;
898         }
899       }
900     }
901   }
902 
903   xd->mi_row = mi_row;
904   xd->mi_col = mi_col;
905   int best_cmp_rf_idx = -1;
906   const int_interpfilters kernel =
907       av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
908   for (int cmp_rf_idx = start_rf; cmp_rf_idx < end_rf; ++cmp_rf_idx) {
909     int rf_idx0 = comp_ref_frames[cmp_rf_idx][0];
910     int rf_idx1 = comp_ref_frames[cmp_rf_idx][1];
911 
912     if (tpl_data->ref_frame[rf_idx0] == NULL ||
913         tpl_data->src_ref_frame[rf_idx0] == NULL ||
914         tpl_data->ref_frame[rf_idx1] == NULL ||
915         tpl_data->src_ref_frame[rf_idx1] == NULL) {
916       continue;
917     }
918 
919     const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
920       tpl_data->src_ref_frame[rf_idx0],
921       tpl_data->src_ref_frame[rf_idx1],
922     };
923 
924     xd->mi[0]->ref_frame[0] = rf_idx0 + LAST_FRAME;
925     xd->mi[0]->ref_frame[1] = rf_idx1 + LAST_FRAME;
926     xd->mi[0]->mode = NEW_NEWMV;
927     const int8_t ref_frame_type = av1_ref_frame_type(xd->mi[0]->ref_frame);
928     // Set up ref_mv for av1_joint_motion_search().
929     CANDIDATE_MV *this_ref_mv_stack = x->mbmi_ext.ref_mv_stack[ref_frame_type];
930     this_ref_mv_stack[xd->mi[0]->ref_mv_idx].this_mv = single_mv[rf_idx0];
931     this_ref_mv_stack[xd->mi[0]->ref_mv_idx].comp_mv = single_mv[rf_idx1];
932 
933     struct buf_2d yv12_mb[2][MAX_MB_PLANE];
934     for (int i = 0; i < 2; ++i) {
935       av1_setup_pred_block(xd, yv12_mb[i], ref_frame_ptr[i],
936                            xd->block_ref_scale_factors[i],
937                            xd->block_ref_scale_factors[i], MAX_MB_PLANE);
938       for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
939         xd->plane[plane].pre[i] = yv12_mb[i][plane];
940       }
941     }
942 
943     int_mv tmp_mv[2] = { single_mv[rf_idx0], single_mv[rf_idx1] };
944     int rate_mv;
945     av1_joint_motion_search(cpi, x, bsize, tmp_mv, NULL, 0, &rate_mv,
946                             !cpi->sf.mv_sf.disable_second_mv,
947                             NUM_JOINT_ME_REFINE_ITER);
948 
949     for (int ref = 0; ref < 2; ++ref) {
950       struct buf_2d ref_buf = { NULL, ref_frame_ptr[ref]->y_buffer,
951                                 ref_frame_ptr[ref]->y_width,
952                                 ref_frame_ptr[ref]->y_height,
953                                 ref_frame_ptr[ref]->y_stride };
954       InterPredParams inter_pred_params;
955       av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
956                             mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd),
957                             0, &tpl_data->sf, &ref_buf, kernel);
958       av1_init_comp_mode(&inter_pred_params);
959 
960       inter_pred_params.conv_params = get_conv_params_no_round(
961           ref, 0, xd->tmp_conv_dst, MAX_SB_SIZE, 1, xd->bd);
962 
963       av1_enc_build_one_inter_predictor(predictor, bw, &tmp_mv[ref].as_mv,
964                                         &inter_pred_params);
965     }
966     inter_cost =
967         tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
968                           predictor, bw, coeff, bw, bh, tx_size);
969     if (inter_cost < best_inter_cost) {
970       best_cmp_rf_idx = cmp_rf_idx;
971       best_inter_cost = inter_cost;
972       best_mv[0] = tmp_mv[0];
973       best_mv[1] = tmp_mv[1];
974     }
975   }
976 
977   if (best_cmp_rf_idx != -1 && best_inter_cost < best_intra_cost) {
978     best_mode = NEW_NEWMV;
979     const int best_rf_idx0 = comp_ref_frames[best_cmp_rf_idx][0];
980     const int best_rf_idx1 = comp_ref_frames[best_cmp_rf_idx][1];
981     xd->mi[0]->ref_frame[0] = best_rf_idx0 + LAST_FRAME;
982     xd->mi[0]->ref_frame[1] = best_rf_idx1 + LAST_FRAME;
983   }
984 
985   if (best_inter_cost < INT32_MAX && is_inter_mode(best_mode)) {
986     xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
987     xd->mi[0]->mv[1].as_int = best_mv[1].as_int;
988     const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
989       best_cmp_rf_idx >= 0
990           ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
991           : tpl_data->src_ref_frame[best_rf_idx],
992       best_cmp_rf_idx >= 0
993           ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
994           : NULL,
995     };
996     rate_cost = 1;
997     get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
998                         qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
999                         rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1000                         use_y_only_rate_distortion, 0 /*do_recon*/, NULL);
1001     tpl_stats->srcrf_rate = rate_cost;
1002   }
1003 
1004   best_intra_cost = AOMMAX(best_intra_cost, 1);
1005   best_inter_cost = AOMMIN(best_intra_cost, best_inter_cost);
1006   tpl_stats->inter_cost = best_inter_cost;
1007   tpl_stats->intra_cost = best_intra_cost;
1008 
1009   tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
1010   tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
1011 
1012   // Final encode
1013   rate_cost = 0;
1014   const YV12_BUFFER_CONFIG *ref_frame_ptr[2];
1015 
1016   ref_frame_ptr[0] =
1017       best_mode == NEW_NEWMV
1018           ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
1019       : best_rf_idx >= 0 ? tpl_data->ref_frame[best_rf_idx]
1020                          : NULL;
1021   ref_frame_ptr[1] =
1022       best_mode == NEW_NEWMV
1023           ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
1024           : NULL;
1025   get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1026                       qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1027                       rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1028                       use_y_only_rate_distortion, 1 /*do_recon*/,
1029                       tpl_txfm_stats);
1030 
1031   tpl_stats->recrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
1032   tpl_stats->recrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
1033   tpl_stats->recrf_rate = rate_cost;
1034 
1035   if (!is_inter_mode(best_mode)) {
1036     tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
1037     tpl_stats->srcrf_rate = rate_cost;
1038     tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
1039   }
1040 
1041   tpl_stats->recrf_dist = AOMMAX(tpl_stats->srcrf_dist, tpl_stats->recrf_dist);
1042   tpl_stats->recrf_rate = AOMMAX(tpl_stats->srcrf_rate, tpl_stats->recrf_rate);
1043 
1044   if (best_mode == NEW_NEWMV) {
1045     ref_frame_ptr[0] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
1046     ref_frame_ptr[1] =
1047         tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
1048     get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1049                         qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1050                         rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1051                         use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
1052     tpl_stats->cmp_recrf_dist[0] = recon_error << TPL_DEP_COST_SCALE_LOG2;
1053     tpl_stats->cmp_recrf_rate[0] = rate_cost;
1054 
1055     tpl_stats->cmp_recrf_dist[0] =
1056         AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[0]);
1057     tpl_stats->cmp_recrf_rate[0] =
1058         AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[0]);
1059 
1060     tpl_stats->cmp_recrf_dist[0] =
1061         AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[0]);
1062     tpl_stats->cmp_recrf_rate[0] =
1063         AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[0]);
1064 
1065     rate_cost = 0;
1066     ref_frame_ptr[0] =
1067         tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
1068     ref_frame_ptr[1] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
1069     get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
1070                         qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
1071                         rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
1072                         use_y_only_rate_distortion, 1 /*do_recon*/, NULL);
1073     tpl_stats->cmp_recrf_dist[1] = recon_error << TPL_DEP_COST_SCALE_LOG2;
1074     tpl_stats->cmp_recrf_rate[1] = rate_cost;
1075 
1076     tpl_stats->cmp_recrf_dist[1] =
1077         AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[1]);
1078     tpl_stats->cmp_recrf_rate[1] =
1079         AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[1]);
1080 
1081     tpl_stats->cmp_recrf_dist[1] =
1082         AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[1]);
1083     tpl_stats->cmp_recrf_rate[1] =
1084         AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[1]);
1085   }
1086 
1087   if (best_mode == NEWMV) {
1088     tpl_stats->mv[best_rf_idx] = best_mv[0];
1089     tpl_stats->ref_frame_index[0] = best_rf_idx;
1090     tpl_stats->ref_frame_index[1] = NONE_FRAME;
1091   } else if (best_mode == NEW_NEWMV) {
1092     tpl_stats->ref_frame_index[0] = comp_ref_frames[best_cmp_rf_idx][0];
1093     tpl_stats->ref_frame_index[1] = comp_ref_frames[best_cmp_rf_idx][1];
1094     tpl_stats->mv[tpl_stats->ref_frame_index[0]] = best_mv[0];
1095     tpl_stats->mv[tpl_stats->ref_frame_index[1]] = best_mv[1];
1096   }
1097 
1098   for (int idy = 0; idy < mi_height; ++idy) {
1099     for (int idx = 0; idx < mi_width; ++idx) {
1100       if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > idx &&
1101           (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > idy) {
1102         xd->mi[idx + idy * cm->mi_params.mi_stride] = xd->mi[0];
1103       }
1104     }
1105   }
1106 }
1107 
round_floor(int ref_pos,int bsize_pix)1108 static int round_floor(int ref_pos, int bsize_pix) {
1109   int round;
1110   if (ref_pos < 0)
1111     round = -(1 + (-ref_pos - 1) / bsize_pix);
1112   else
1113     round = ref_pos / bsize_pix;
1114 
1115   return round;
1116 }
1117 
av1_get_overlap_area(int row_a,int col_a,int row_b,int col_b,int width,int height)1118 int av1_get_overlap_area(int row_a, int col_a, int row_b, int col_b, int width,
1119                          int height) {
1120   int min_row = AOMMAX(row_a, row_b);
1121   int max_row = AOMMIN(row_a + height, row_b + height);
1122   int min_col = AOMMAX(col_a, col_b);
1123   int max_col = AOMMIN(col_a + width, col_b + width);
1124   if (min_row < max_row && min_col < max_col) {
1125     return (max_row - min_row) * (max_col - min_col);
1126   }
1127   return 0;
1128 }
1129 
av1_tpl_ptr_pos(int mi_row,int mi_col,int stride,uint8_t right_shift)1130 int av1_tpl_ptr_pos(int mi_row, int mi_col, int stride, uint8_t right_shift) {
1131   return (mi_row >> right_shift) * stride + (mi_col >> right_shift);
1132 }
1133 
av1_delta_rate_cost(int64_t delta_rate,int64_t recrf_dist,int64_t srcrf_dist,int pix_num)1134 int64_t av1_delta_rate_cost(int64_t delta_rate, int64_t recrf_dist,
1135                             int64_t srcrf_dist, int pix_num) {
1136   double beta = (double)srcrf_dist / recrf_dist;
1137   int64_t rate_cost = delta_rate;
1138 
1139   if (srcrf_dist <= 128) return rate_cost;
1140 
1141   double dr =
1142       (double)(delta_rate >> (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT)) /
1143       pix_num;
1144 
1145   double log_den = log(beta) / log(2.0) + 2.0 * dr;
1146 
1147   if (log_den > log(10.0) / log(2.0)) {
1148     rate_cost = (int64_t)((log(1.0 / beta) * pix_num) / log(2.0) / 2.0);
1149     rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
1150     return rate_cost;
1151   }
1152 
1153   double num = pow(2.0, log_den);
1154   double den = num * beta + (1 - beta) * beta;
1155 
1156   rate_cost = (int64_t)((pix_num * log(num / den)) / log(2.0) / 2.0);
1157 
1158   rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
1159 
1160   return rate_cost;
1161 }
1162 
tpl_model_update_b(TplParams * const tpl_data,int mi_row,int mi_col,const BLOCK_SIZE bsize,int frame_idx,int ref)1163 static AOM_INLINE void tpl_model_update_b(TplParams *const tpl_data, int mi_row,
1164                                           int mi_col, const BLOCK_SIZE bsize,
1165                                           int frame_idx, int ref) {
1166   TplDepFrame *tpl_frame_ptr = &tpl_data->tpl_frame[frame_idx];
1167   TplDepStats *tpl_ptr = tpl_frame_ptr->tpl_stats_ptr;
1168   TplDepFrame *tpl_frame = tpl_data->tpl_frame;
1169   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
1170   TplDepStats *tpl_stats_ptr = &tpl_ptr[av1_tpl_ptr_pos(
1171       mi_row, mi_col, tpl_frame->stride, block_mis_log2)];
1172 
1173   int is_compound = tpl_stats_ptr->ref_frame_index[1] >= 0;
1174 
1175   if (tpl_stats_ptr->ref_frame_index[ref] < 0) return;
1176   const int ref_frame_index = tpl_stats_ptr->ref_frame_index[ref];
1177   TplDepFrame *ref_tpl_frame =
1178       &tpl_frame[tpl_frame[frame_idx].ref_map_index[ref_frame_index]];
1179   TplDepStats *ref_stats_ptr = ref_tpl_frame->tpl_stats_ptr;
1180 
1181   if (tpl_frame[frame_idx].ref_map_index[ref_frame_index] < 0) return;
1182 
1183   const FULLPEL_MV full_mv =
1184       get_fullmv_from_mv(&tpl_stats_ptr->mv[ref_frame_index].as_mv);
1185   const int ref_pos_row = mi_row * MI_SIZE + full_mv.row;
1186   const int ref_pos_col = mi_col * MI_SIZE + full_mv.col;
1187 
1188   const int bw = 4 << mi_size_wide_log2[bsize];
1189   const int bh = 4 << mi_size_high_log2[bsize];
1190   const int mi_height = mi_size_high[bsize];
1191   const int mi_width = mi_size_wide[bsize];
1192   const int pix_num = bw * bh;
1193 
1194   // top-left on grid block location in pixel
1195   int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh;
1196   int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw;
1197   int block;
1198 
1199   int64_t srcrf_dist = is_compound ? tpl_stats_ptr->cmp_recrf_dist[!ref]
1200                                    : tpl_stats_ptr->srcrf_dist;
1201   int64_t srcrf_rate =
1202       is_compound
1203           ? (tpl_stats_ptr->cmp_recrf_rate[!ref] << TPL_DEP_COST_SCALE_LOG2)
1204           : (tpl_stats_ptr->srcrf_rate << TPL_DEP_COST_SCALE_LOG2);
1205 
1206   int64_t cur_dep_dist = tpl_stats_ptr->recrf_dist - srcrf_dist;
1207   int64_t mc_dep_dist =
1208       (int64_t)(tpl_stats_ptr->mc_dep_dist *
1209                 ((double)(tpl_stats_ptr->recrf_dist - srcrf_dist) /
1210                  tpl_stats_ptr->recrf_dist));
1211   int64_t delta_rate =
1212       (tpl_stats_ptr->recrf_rate << TPL_DEP_COST_SCALE_LOG2) - srcrf_rate;
1213   int64_t mc_dep_rate =
1214       av1_delta_rate_cost(tpl_stats_ptr->mc_dep_rate, tpl_stats_ptr->recrf_dist,
1215                           srcrf_dist, pix_num);
1216 
1217   for (block = 0; block < 4; ++block) {
1218     int grid_pos_row = grid_pos_row_base + bh * (block >> 1);
1219     int grid_pos_col = grid_pos_col_base + bw * (block & 0x01);
1220 
1221     if (grid_pos_row >= 0 && grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE &&
1222         grid_pos_col >= 0 && grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) {
1223       int overlap_area = av1_get_overlap_area(grid_pos_row, grid_pos_col,
1224                                               ref_pos_row, ref_pos_col, bw, bh);
1225       int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height;
1226       int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width;
1227       assert((1 << block_mis_log2) == mi_height);
1228       assert((1 << block_mis_log2) == mi_width);
1229       TplDepStats *des_stats = &ref_stats_ptr[av1_tpl_ptr_pos(
1230           ref_mi_row, ref_mi_col, ref_tpl_frame->stride, block_mis_log2)];
1231       des_stats->mc_dep_dist +=
1232           ((cur_dep_dist + mc_dep_dist) * overlap_area) / pix_num;
1233       des_stats->mc_dep_rate +=
1234           ((delta_rate + mc_dep_rate) * overlap_area) / pix_num;
1235     }
1236   }
1237 }
1238 
tpl_model_update(TplParams * const tpl_data,int mi_row,int mi_col,int frame_idx)1239 static AOM_INLINE void tpl_model_update(TplParams *const tpl_data, int mi_row,
1240                                         int mi_col, int frame_idx) {
1241   const BLOCK_SIZE tpl_stats_block_size =
1242       convert_length_to_bsize(MI_SIZE << tpl_data->tpl_stats_block_mis_log2);
1243   tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
1244                      0);
1245   tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
1246                      1);
1247 }
1248 
tpl_model_store(TplDepStats * tpl_stats_ptr,int mi_row,int mi_col,int stride,const TplDepStats * src_stats,uint8_t block_mis_log2)1249 static AOM_INLINE void tpl_model_store(TplDepStats *tpl_stats_ptr, int mi_row,
1250                                        int mi_col, int stride,
1251                                        const TplDepStats *src_stats,
1252                                        uint8_t block_mis_log2) {
1253   int index = av1_tpl_ptr_pos(mi_row, mi_col, stride, block_mis_log2);
1254   TplDepStats *tpl_ptr = &tpl_stats_ptr[index];
1255   *tpl_ptr = *src_stats;
1256   tpl_ptr->intra_cost = AOMMAX(1, tpl_ptr->intra_cost);
1257   tpl_ptr->inter_cost = AOMMAX(1, tpl_ptr->inter_cost);
1258   tpl_ptr->srcrf_dist = AOMMAX(1, tpl_ptr->srcrf_dist);
1259   tpl_ptr->srcrf_sse = AOMMAX(1, tpl_ptr->srcrf_sse);
1260   tpl_ptr->recrf_dist = AOMMAX(1, tpl_ptr->recrf_dist);
1261   tpl_ptr->srcrf_rate = AOMMAX(1, tpl_ptr->srcrf_rate);
1262   tpl_ptr->recrf_rate = AOMMAX(1, tpl_ptr->recrf_rate);
1263   tpl_ptr->cmp_recrf_dist[0] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[0]);
1264   tpl_ptr->cmp_recrf_dist[1] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[1]);
1265   tpl_ptr->cmp_recrf_rate[0] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[0]);
1266   tpl_ptr->cmp_recrf_rate[1] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[1]);
1267 }
1268 
1269 // Reset the ref and source frame pointers of tpl_data.
tpl_reset_src_ref_frames(TplParams * tpl_data)1270 static AOM_INLINE void tpl_reset_src_ref_frames(TplParams *tpl_data) {
1271   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
1272     tpl_data->ref_frame[i] = NULL;
1273     tpl_data->src_ref_frame[i] = NULL;
1274   }
1275 }
1276 
get_gop_length(const GF_GROUP * gf_group)1277 static AOM_INLINE int get_gop_length(const GF_GROUP *gf_group) {
1278   int gop_length = AOMMIN(gf_group->size, MAX_TPL_FRAME_IDX - 1);
1279   return gop_length;
1280 }
1281 
1282 // Initialize the mc_flow parameters used in computing tpl data.
init_mc_flow_dispenser(AV1_COMP * cpi,int frame_idx,int pframe_qindex)1283 static AOM_INLINE void init_mc_flow_dispenser(AV1_COMP *cpi, int frame_idx,
1284                                               int pframe_qindex) {
1285   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1286   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx];
1287   const YV12_BUFFER_CONFIG *this_frame = tpl_frame->gf_picture;
1288   const YV12_BUFFER_CONFIG *ref_frames_ordered[INTER_REFS_PER_FRAME];
1289   uint32_t ref_frame_display_indices[INTER_REFS_PER_FRAME];
1290   const GF_GROUP *gf_group = &cpi->ppi->gf_group;
1291   TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
1292   int ref_pruning_enabled = is_frame_eligible_for_ref_pruning(
1293       gf_group, cpi->sf.inter_sf.selective_ref_frame,
1294       tpl_sf->prune_ref_frames_in_tpl, frame_idx);
1295   int gop_length = get_gop_length(gf_group);
1296   int ref_frame_flags;
1297   AV1_COMMON *cm = &cpi->common;
1298   int rdmult, idx;
1299   ThreadData *td = &cpi->td;
1300   MACROBLOCK *x = &td->mb;
1301   MACROBLOCKD *xd = &x->e_mbd;
1302   TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
1303   tpl_data->frame_idx = frame_idx;
1304   tpl_reset_src_ref_frames(tpl_data);
1305   av1_tile_init(&xd->tile, cm, 0, 0);
1306 
1307   const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
1308   const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
1309   const FRAME_TYPE frame_type = cm->current_frame.frame_type;
1310 
1311   // Setup scaling factor
1312   av1_setup_scale_factors_for_frame(
1313       &tpl_data->sf, this_frame->y_crop_width, this_frame->y_crop_height,
1314       this_frame->y_crop_width, this_frame->y_crop_height);
1315 
1316   xd->cur_buf = this_frame;
1317 
1318   for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1319     TplDepFrame *tpl_ref_frame =
1320         &tpl_data->tpl_frame[tpl_frame->ref_map_index[idx]];
1321     tpl_data->ref_frame[idx] = tpl_ref_frame->rec_picture;
1322     tpl_data->src_ref_frame[idx] = tpl_ref_frame->gf_picture;
1323     ref_frame_display_indices[idx] = tpl_ref_frame->frame_display_index;
1324   }
1325 
1326   // Store the reference frames based on priority order
1327   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
1328     ref_frames_ordered[i] =
1329         tpl_data->ref_frame[ref_frame_priority_order[i] - 1];
1330   }
1331 
1332   // Work out which reference frame slots may be used.
1333   ref_frame_flags =
1334       get_ref_frame_flags(&cpi->sf, is_one_pass_rt_params(cpi),
1335                           ref_frames_ordered, cpi->ext_flags.ref_frame_flags);
1336 
1337   enforce_max_ref_frames(cpi, &ref_frame_flags, ref_frame_display_indices,
1338                          tpl_frame->frame_display_index);
1339 
1340   // Prune reference frames
1341   for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1342     if ((ref_frame_flags & (1 << idx)) == 0) {
1343       tpl_data->ref_frame[idx] = NULL;
1344     }
1345   }
1346 
1347   // Skip motion estimation w.r.t. reference frames which are not
1348   // considered in RD search, using "selective_ref_frame" speed feature.
1349   // The reference frame pruning is not enabled for frames beyond the gop
1350   // length, as there are fewer reference frames and the reference frames
1351   // differ from the frames considered during RD search.
1352   if (ref_pruning_enabled && (frame_idx < gop_length)) {
1353     for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
1354       const MV_REFERENCE_FRAME refs[2] = { idx + 1, NONE_FRAME };
1355       if (prune_ref_by_selective_ref_frame(cpi, NULL, refs,
1356                                            ref_frame_display_indices)) {
1357         tpl_data->ref_frame[idx] = NULL;
1358       }
1359     }
1360   }
1361 
1362   // Make a temporary mbmi for tpl model
1363   MB_MODE_INFO mbmi;
1364   memset(&mbmi, 0, sizeof(mbmi));
1365   MB_MODE_INFO *mbmi_ptr = &mbmi;
1366   xd->mi = &mbmi_ptr;
1367 
1368   xd->block_ref_scale_factors[0] = &tpl_data->sf;
1369   xd->block_ref_scale_factors[1] = &tpl_data->sf;
1370 
1371   const int base_qindex =
1372       cpi->use_ducky_encode ? gf_group->q_val[frame_idx] : pframe_qindex;
1373   // Get rd multiplier set up.
1374   rdmult = (int)av1_compute_rd_mult(
1375       base_qindex, cm->seq_params->bit_depth,
1376       cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
1377       boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
1378       is_stat_consumption_stage(cpi));
1379 
1380   if (rdmult < 1) rdmult = 1;
1381   av1_set_error_per_bit(&x->errorperbit, rdmult);
1382   av1_set_sad_per_bit(cpi, &x->sadperbit, base_qindex);
1383 
1384   tpl_frame->is_valid = 1;
1385 
1386   cm->quant_params.base_qindex = base_qindex;
1387   av1_frame_init_quantizer(cpi);
1388 
1389   const BitDepthInfo bd_info = get_bit_depth_info(xd);
1390   const FRAME_UPDATE_TYPE update_type =
1391       gf_group->update_type[cpi->gf_frame_index];
1392   tpl_frame->base_rdmult = av1_compute_rd_mult_based_on_qindex(
1393                                bd_info.bit_depth, update_type, base_qindex) /
1394                            6;
1395 
1396   if (cpi->use_ducky_encode)
1397     tpl_frame->base_rdmult = gf_group->rdmult_val[frame_idx];
1398 
1399   av1_init_tpl_txfm_stats(tpl_txfm_stats);
1400 
1401   // Initialize x->mbmi_ext when compound predictions are enabled.
1402   if (tpl_sf->allow_compound_pred) av1_zero(x->mbmi_ext);
1403 
1404   // Set the pointer to null since mbmi is only allocated inside this function.
1405   assert(xd->mi == &mbmi_ptr);
1406   xd->mi = NULL;
1407 
1408   // Tpl module is called before the setting of speed features at frame level.
1409   // Thus, turning off this speed feature for key frame is done here and not
1410   // integrated into the speed feature setting itself.
1411   const int layer_depth_th = (tpl_sf->use_sad_for_mode_decision == 1) ? 5 : 0;
1412   tpl_frame->use_pred_sad =
1413       tpl_sf->use_sad_for_mode_decision &&
1414       gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE &&
1415       gf_group->layer_depth[frame_idx] >= layer_depth_th;
1416 }
1417 
1418 // This function stores the motion estimation dependencies of all the blocks in
1419 // a row
av1_mc_flow_dispenser_row(AV1_COMP * cpi,TplTxfmStats * tpl_txfm_stats,TplBuffers * tpl_tmp_buffers,MACROBLOCK * x,int mi_row,BLOCK_SIZE bsize,TX_SIZE tx_size)1420 void av1_mc_flow_dispenser_row(AV1_COMP *cpi, TplTxfmStats *tpl_txfm_stats,
1421                                TplBuffers *tpl_tmp_buffers, MACROBLOCK *x,
1422                                int mi_row, BLOCK_SIZE bsize, TX_SIZE tx_size) {
1423   AV1_COMMON *const cm = &cpi->common;
1424   MultiThreadInfo *const mt_info = &cpi->mt_info;
1425   AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
1426   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1427   const int mi_width = mi_size_wide[bsize];
1428   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1429   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
1430   MACROBLOCKD *xd = &x->e_mbd;
1431 
1432   const int tplb_cols_in_tile =
1433       ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]);
1434   const int tplb_row = ROUND_POWER_OF_TWO(mi_row, mi_size_high_log2[bsize]);
1435   assert(mi_size_high[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
1436   assert(mi_size_wide[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
1437 
1438   for (int mi_col = 0, tplb_col_in_tile = 0; mi_col < mi_params->mi_cols;
1439        mi_col += mi_width, tplb_col_in_tile++) {
1440     (*tpl_row_mt->sync_read_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
1441                                  tplb_col_in_tile);
1442 
1443 #if CONFIG_MULTITHREAD
1444     if (mt_info->num_workers > 1) {
1445       pthread_mutex_lock(tpl_row_mt->mutex_);
1446       const bool tpl_mt_exit = tpl_row_mt->tpl_mt_exit;
1447       pthread_mutex_unlock(tpl_row_mt->mutex_);
1448       // Exit in case any worker has encountered an error.
1449       if (tpl_mt_exit) return;
1450     }
1451 #endif
1452 
1453     TplDepStats tpl_stats;
1454 
1455     // Motion estimation column boundary
1456     av1_set_mv_col_limits(mi_params, &x->mv_limits, mi_col, mi_width,
1457                           tpl_data->border_in_pixels);
1458     xd->mb_to_left_edge = -GET_MV_SUBPEL(mi_col * MI_SIZE);
1459     xd->mb_to_right_edge =
1460         GET_MV_SUBPEL(mi_params->mi_cols - mi_width - mi_col);
1461     mode_estimation(cpi, tpl_txfm_stats, tpl_tmp_buffers, x, mi_row, mi_col,
1462                     bsize, tx_size, &tpl_stats);
1463 
1464     // Motion flow dependency dispenser.
1465     tpl_model_store(tpl_frame->tpl_stats_ptr, mi_row, mi_col, tpl_frame->stride,
1466                     &tpl_stats, tpl_data->tpl_stats_block_mis_log2);
1467     (*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
1468                                   tplb_col_in_tile, tplb_cols_in_tile);
1469   }
1470 }
1471 
mc_flow_dispenser(AV1_COMP * cpi)1472 static AOM_INLINE void mc_flow_dispenser(AV1_COMP *cpi) {
1473   AV1_COMMON *cm = &cpi->common;
1474   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1475   ThreadData *td = &cpi->td;
1476   MACROBLOCK *x = &td->mb;
1477   MACROBLOCKD *xd = &x->e_mbd;
1478   const BLOCK_SIZE bsize =
1479       convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
1480   const TX_SIZE tx_size = max_txsize_lookup[bsize];
1481   const int mi_height = mi_size_high[bsize];
1482   for (int mi_row = 0; mi_row < mi_params->mi_rows; mi_row += mi_height) {
1483     // Motion estimation row boundary
1484     av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
1485                           cpi->ppi->tpl_data.border_in_pixels);
1486     xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1487     xd->mb_to_bottom_edge =
1488         GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
1489     av1_mc_flow_dispenser_row(cpi, &td->tpl_txfm_stats, &td->tpl_tmp_buffers, x,
1490                               mi_row, bsize, tx_size);
1491   }
1492 }
1493 
mc_flow_synthesizer(TplParams * tpl_data,int frame_idx,int mi_rows,int mi_cols)1494 static void mc_flow_synthesizer(TplParams *tpl_data, int frame_idx, int mi_rows,
1495                                 int mi_cols) {
1496   if (!frame_idx) {
1497     return;
1498   }
1499   const BLOCK_SIZE bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
1500   const int mi_height = mi_size_high[bsize];
1501   const int mi_width = mi_size_wide[bsize];
1502   assert(mi_height == (1 << tpl_data->tpl_stats_block_mis_log2));
1503   assert(mi_width == (1 << tpl_data->tpl_stats_block_mis_log2));
1504 
1505   for (int mi_row = 0; mi_row < mi_rows; mi_row += mi_height) {
1506     for (int mi_col = 0; mi_col < mi_cols; mi_col += mi_width) {
1507       tpl_model_update(tpl_data, mi_row, mi_col, frame_idx);
1508     }
1509   }
1510 }
1511 
init_gop_frames_for_tpl(AV1_COMP * cpi,const EncodeFrameParams * const init_frame_params,GF_GROUP * gf_group,int * tpl_group_frames,int * pframe_qindex)1512 static AOM_INLINE void init_gop_frames_for_tpl(
1513     AV1_COMP *cpi, const EncodeFrameParams *const init_frame_params,
1514     GF_GROUP *gf_group, int *tpl_group_frames, int *pframe_qindex) {
1515   AV1_COMMON *cm = &cpi->common;
1516   assert(cpi->gf_frame_index == 0);
1517   *pframe_qindex = 0;
1518 
1519   RefFrameMapPair ref_frame_map_pairs[REF_FRAMES];
1520   init_ref_map_pair(cpi, ref_frame_map_pairs);
1521 
1522   int remapped_ref_idx[REF_FRAMES];
1523 
1524   EncodeFrameParams frame_params = *init_frame_params;
1525   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1526 
1527   int ref_picture_map[REF_FRAMES];
1528 
1529   for (int i = 0; i < REF_FRAMES; ++i) {
1530     if (frame_params.frame_type == KEY_FRAME) {
1531       tpl_data->tpl_frame[-i - 1].gf_picture = NULL;
1532       tpl_data->tpl_frame[-i - 1].rec_picture = NULL;
1533       tpl_data->tpl_frame[-i - 1].frame_display_index = 0;
1534     } else {
1535       tpl_data->tpl_frame[-i - 1].gf_picture = &cm->ref_frame_map[i]->buf;
1536       tpl_data->tpl_frame[-i - 1].rec_picture = &cm->ref_frame_map[i]->buf;
1537       tpl_data->tpl_frame[-i - 1].frame_display_index =
1538           cm->ref_frame_map[i]->display_order_hint;
1539     }
1540 
1541     ref_picture_map[i] = -i - 1;
1542   }
1543 
1544   *tpl_group_frames = 0;
1545 
1546   int gf_index;
1547   int process_frame_count = 0;
1548   const int gop_length = get_gop_length(gf_group);
1549 
1550   for (gf_index = 0; gf_index < gop_length; ++gf_index) {
1551     TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
1552     FRAME_UPDATE_TYPE frame_update_type = gf_group->update_type[gf_index];
1553     int lookahead_index =
1554         gf_group->cur_frame_idx[gf_index] + gf_group->arf_src_offset[gf_index];
1555     frame_params.show_frame = frame_update_type != ARF_UPDATE &&
1556                               frame_update_type != INTNL_ARF_UPDATE;
1557     frame_params.show_existing_frame =
1558         frame_update_type == INTNL_OVERLAY_UPDATE ||
1559         frame_update_type == OVERLAY_UPDATE;
1560     frame_params.frame_type = gf_group->frame_type[gf_index];
1561 
1562     if (frame_update_type == LF_UPDATE)
1563       *pframe_qindex = gf_group->q_val[gf_index];
1564 
1565     const struct lookahead_entry *buf = av1_lookahead_peek(
1566         cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);
1567     if (buf == NULL) break;
1568     tpl_frame->gf_picture = &buf->img;
1569 
1570     // Use filtered frame buffer if available. This will make tpl stats more
1571     // precise.
1572     FRAME_DIFF frame_diff;
1573     const YV12_BUFFER_CONFIG *tf_buf =
1574         av1_tf_info_get_filtered_buf(&cpi->ppi->tf_info, gf_index, &frame_diff);
1575     if (tf_buf != NULL) {
1576       tpl_frame->gf_picture = tf_buf;
1577     }
1578 
1579     // 'cm->current_frame.frame_number' is the display number
1580     // of the current frame.
1581     // 'lookahead_index' is frame offset within the gf group.
1582     // 'lookahead_index + cm->current_frame.frame_number'
1583     // is the display index of the frame.
1584     tpl_frame->frame_display_index =
1585         lookahead_index + cm->current_frame.frame_number;
1586     assert(buf->display_idx ==
1587            cpi->frame_index_set.show_frame_count + lookahead_index);
1588 
1589     if (frame_update_type != OVERLAY_UPDATE &&
1590         frame_update_type != INTNL_OVERLAY_UPDATE) {
1591       tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
1592       tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
1593       ++process_frame_count;
1594     }
1595     const int true_disp = (int)(tpl_frame->frame_display_index);
1596 
1597     av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0,
1598                        remapped_ref_idx);
1599 
1600     int refresh_mask =
1601         av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
1602                                     gf_index, true_disp, ref_frame_map_pairs);
1603 
1604     // Make the frames marked as is_frame_non_ref to non-reference frames.
1605     if (cpi->ppi->gf_group.is_frame_non_ref[gf_index]) refresh_mask = 0;
1606 
1607     int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
1608 
1609     if (refresh_frame_map_index < REF_FRAMES &&
1610         refresh_frame_map_index != INVALID_IDX) {
1611       ref_frame_map_pairs[refresh_frame_map_index].disp_order =
1612           AOMMAX(0, true_disp);
1613       ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
1614           get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
1615                              cpi->ppi->gf_group.max_layer_depth);
1616     }
1617 
1618     for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
1619       tpl_frame->ref_map_index[i - LAST_FRAME] =
1620           ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
1621 
1622     if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
1623 
1624     ++*tpl_group_frames;
1625   }
1626 
1627   const int tpl_extend = cpi->oxcf.gf_cfg.lag_in_frames - MAX_GF_INTERVAL;
1628   int extend_frame_count = 0;
1629   int extend_frame_length = AOMMIN(
1630       tpl_extend, cpi->rc.frames_to_key - cpi->ppi->p_rc.baseline_gf_interval);
1631 
1632   int frame_display_index = gf_group->cur_frame_idx[gop_length - 1] +
1633                             gf_group->arf_src_offset[gop_length - 1] + 1;
1634 
1635   for (;
1636        gf_index < MAX_TPL_FRAME_IDX && extend_frame_count < extend_frame_length;
1637        ++gf_index) {
1638     TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
1639     FRAME_UPDATE_TYPE frame_update_type = LF_UPDATE;
1640     frame_params.show_frame = frame_update_type != ARF_UPDATE &&
1641                               frame_update_type != INTNL_ARF_UPDATE;
1642     frame_params.show_existing_frame =
1643         frame_update_type == INTNL_OVERLAY_UPDATE;
1644     frame_params.frame_type = INTER_FRAME;
1645 
1646     int lookahead_index = frame_display_index;
1647     struct lookahead_entry *buf = av1_lookahead_peek(
1648         cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);
1649 
1650     if (buf == NULL) break;
1651 
1652     tpl_frame->gf_picture = &buf->img;
1653     tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
1654     tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
1655     // 'cm->current_frame.frame_number' is the display number
1656     // of the current frame.
1657     // 'frame_display_index' is frame offset within the gf group.
1658     // 'frame_display_index + cm->current_frame.frame_number'
1659     // is the display index of the frame.
1660     tpl_frame->frame_display_index =
1661         frame_display_index + cm->current_frame.frame_number;
1662 
1663     ++process_frame_count;
1664 
1665     gf_group->update_type[gf_index] = LF_UPDATE;
1666 
1667 #if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
1668     if (cpi->oxcf.pass == AOM_RC_SECOND_PASS) {
1669       if (cpi->oxcf.rc_cfg.mode == AOM_Q) {
1670         *pframe_qindex = cpi->oxcf.rc_cfg.cq_level;
1671       } else if (cpi->oxcf.rc_cfg.mode == AOM_VBR) {
1672         // TODO(angiebird): Find a more adaptive method to decide pframe_qindex
1673         // override the pframe_qindex in the second pass when bitrate accuracy
1674         // is on. We found that setting this pframe_qindex make the tpl stats
1675         // more stable.
1676         *pframe_qindex = 128;
1677       }
1678     }
1679 #endif  // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS
1680     gf_group->q_val[gf_index] = *pframe_qindex;
1681     const int true_disp = (int)(tpl_frame->frame_display_index);
1682     av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0,
1683                        remapped_ref_idx);
1684     int refresh_mask =
1685         av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
1686                                     gf_index, true_disp, ref_frame_map_pairs);
1687     int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
1688 
1689     if (refresh_frame_map_index < REF_FRAMES &&
1690         refresh_frame_map_index != INVALID_IDX) {
1691       ref_frame_map_pairs[refresh_frame_map_index].disp_order =
1692           AOMMAX(0, true_disp);
1693       ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
1694           get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
1695                              cpi->ppi->gf_group.max_layer_depth);
1696     }
1697 
1698     for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
1699       tpl_frame->ref_map_index[i - LAST_FRAME] =
1700           ref_picture_map[remapped_ref_idx[i - LAST_FRAME]];
1701 
1702     tpl_frame->ref_map_index[ALTREF_FRAME - LAST_FRAME] = -1;
1703     tpl_frame->ref_map_index[LAST3_FRAME - LAST_FRAME] = -1;
1704     tpl_frame->ref_map_index[BWDREF_FRAME - LAST_FRAME] = -1;
1705     tpl_frame->ref_map_index[ALTREF2_FRAME - LAST_FRAME] = -1;
1706 
1707     if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;
1708 
1709     ++*tpl_group_frames;
1710     ++extend_frame_count;
1711     ++frame_display_index;
1712   }
1713 }
1714 
av1_init_tpl_stats(TplParams * const tpl_data)1715 void av1_init_tpl_stats(TplParams *const tpl_data) {
1716   tpl_data->ready = 0;
1717   set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
1718                            &tpl_data->tpl_bsize_1d);
1719   for (int frame_idx = 0; frame_idx < MAX_LENGTH_TPL_FRAME_STATS; ++frame_idx) {
1720     TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
1721     tpl_frame->is_valid = 0;
1722   }
1723   for (int frame_idx = 0; frame_idx < MAX_LAG_BUFFERS; ++frame_idx) {
1724     TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
1725     if (tpl_data->tpl_stats_pool[frame_idx] == NULL) continue;
1726     memset(tpl_data->tpl_stats_pool[frame_idx], 0,
1727            tpl_frame->height * tpl_frame->width *
1728                sizeof(*tpl_frame->tpl_stats_ptr));
1729   }
1730 }
1731 
av1_tpl_stats_ready(const TplParams * tpl_data,int gf_frame_index)1732 int av1_tpl_stats_ready(const TplParams *tpl_data, int gf_frame_index) {
1733   if (tpl_data->ready == 0) {
1734     return 0;
1735   }
1736   if (gf_frame_index >= MAX_TPL_FRAME_IDX) {
1737     // The sub-GOP length exceeds the TPL buffer capacity.
1738     // Hence the TPL related functions are disabled hereafter.
1739     return 0;
1740   }
1741   return tpl_data->tpl_frame[gf_frame_index].is_valid;
1742 }
1743 
eval_gop_length(double * beta,int gop_eval)1744 static AOM_INLINE int eval_gop_length(double *beta, int gop_eval) {
1745   switch (gop_eval) {
1746     case 1:
1747       // Allow larger GOP size if the base layer ARF has higher dependency
1748       // factor than the intermediate ARF and both ARFs have reasonably high
1749       // dependency factors.
1750       return (beta[0] >= beta[1] + 0.7) && beta[0] > 3.0;
1751     case 2:
1752       if ((beta[0] >= beta[1] + 0.4) && beta[0] > 1.6)
1753         return 1;  // Don't shorten the gf interval
1754       else if ((beta[0] < beta[1] + 0.1) || beta[0] <= 1.4)
1755         return 0;  // Shorten the gf interval
1756       else
1757         return 2;  // Cannot decide the gf interval, so redo the
1758                    // tpl stats calculation.
1759     case 3: return beta[0] > 1.1;
1760     default: return 2;
1761   }
1762 }
1763 
1764 // TODO(jingning): Restructure av1_rc_pick_q_and_bounds() to narrow down
1765 // the scope of input arguments.
av1_tpl_preload_rc_estimate(AV1_COMP * cpi,const EncodeFrameParams * const frame_params)1766 void av1_tpl_preload_rc_estimate(AV1_COMP *cpi,
1767                                  const EncodeFrameParams *const frame_params) {
1768   AV1_COMMON *cm = &cpi->common;
1769   GF_GROUP *gf_group = &cpi->ppi->gf_group;
1770   int bottom_index, top_index;
1771   if (cpi->use_ducky_encode) return;
1772 
1773   cm->current_frame.frame_type = frame_params->frame_type;
1774   for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
1775        ++gf_index) {
1776     cm->current_frame.frame_type = gf_group->frame_type[gf_index];
1777     cm->show_frame = gf_group->update_type[gf_index] != ARF_UPDATE &&
1778                      gf_group->update_type[gf_index] != INTNL_ARF_UPDATE;
1779     gf_group->q_val[gf_index] = av1_rc_pick_q_and_bounds(
1780         cpi, cm->width, cm->height, gf_index, &bottom_index, &top_index);
1781   }
1782 }
1783 
skip_tpl_for_frame(const GF_GROUP * gf_group,int frame_idx,int gop_eval,int approx_gop_eval,int reduce_num_frames)1784 static AOM_INLINE int skip_tpl_for_frame(const GF_GROUP *gf_group,
1785                                          int frame_idx, int gop_eval,
1786                                          int approx_gop_eval,
1787                                          int reduce_num_frames) {
1788   // When gop_eval is set to 2, tpl stats calculation is done for ARFs from base
1789   // layer, (base+1) layer and (base+2) layer. When gop_eval is set to 3,
1790   // tpl stats calculation is limited to ARFs from base layer and (base+1)
1791   // layer.
1792   const int num_arf_layers = (gop_eval == 2) ? 3 : 2;
1793   const int gop_length = get_gop_length(gf_group);
1794 
1795   if (gf_group->update_type[frame_idx] == INTNL_OVERLAY_UPDATE ||
1796       gf_group->update_type[frame_idx] == OVERLAY_UPDATE)
1797     return 1;
1798 
1799   // When approx_gop_eval = 1, skip tpl stats calculation for higher layer
1800   // frames and for frames beyond gop length.
1801   if (approx_gop_eval && (gf_group->layer_depth[frame_idx] > num_arf_layers ||
1802                           frame_idx >= gop_length))
1803     return 1;
1804 
1805   if (reduce_num_frames && gf_group->update_type[frame_idx] == LF_UPDATE &&
1806       frame_idx < gop_length)
1807     return 1;
1808 
1809   return 0;
1810 }
1811 
av1_tpl_setup_stats(AV1_COMP * cpi,int gop_eval,const EncodeFrameParams * const frame_params)1812 int av1_tpl_setup_stats(AV1_COMP *cpi, int gop_eval,
1813                         const EncodeFrameParams *const frame_params) {
1814 #if CONFIG_COLLECT_COMPONENT_TIMING
1815   start_timing(cpi, av1_tpl_setup_stats_time);
1816 #endif
1817   assert(cpi->gf_frame_index == 0);
1818   AV1_COMMON *cm = &cpi->common;
1819   MultiThreadInfo *const mt_info = &cpi->mt_info;
1820   AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
1821   GF_GROUP *gf_group = &cpi->ppi->gf_group;
1822   EncodeFrameParams this_frame_params = *frame_params;
1823   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1824   int approx_gop_eval = (gop_eval > 1);
1825 
1826   if (cpi->superres_mode != AOM_SUPERRES_NONE) {
1827     assert(cpi->superres_mode != AOM_SUPERRES_AUTO);
1828     av1_init_tpl_stats(tpl_data);
1829     return 0;
1830   }
1831 
1832   cm->current_frame.frame_type = frame_params->frame_type;
1833   for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
1834        ++gf_index) {
1835     cm->current_frame.frame_type = gf_group->frame_type[gf_index];
1836     av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
1837                                  gf_group->update_type[gf_index],
1838                                  gf_group->refbuf_state[gf_index], 0);
1839 
1840     memcpy(&cpi->refresh_frame, &this_frame_params.refresh_frame,
1841            sizeof(cpi->refresh_frame));
1842   }
1843 
1844   int pframe_qindex;
1845   int tpl_gf_group_frames;
1846   init_gop_frames_for_tpl(cpi, frame_params, gf_group, &tpl_gf_group_frames,
1847                           &pframe_qindex);
1848 
1849   cpi->ppi->p_rc.base_layer_qp = pframe_qindex;
1850 
1851   av1_init_tpl_stats(tpl_data);
1852 
1853   TplBuffers *tpl_tmp_buffers = &cpi->td.tpl_tmp_buffers;
1854   if (!tpl_alloc_temp_buffers(tpl_tmp_buffers, tpl_data->tpl_bsize_1d)) {
1855     aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
1856                        "Error allocating tpl data");
1857   }
1858 
1859   tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read_dummy;
1860   tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write_dummy;
1861 
1862   av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height,
1863                                     cm->width, cm->height);
1864 
1865   if (frame_params->frame_type == KEY_FRAME) {
1866     av1_init_mv_probs(cm);
1867   }
1868   av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv,
1869                     cm->features.allow_high_precision_mv, cpi->td.mb.mv_costs);
1870 
1871   const int num_planes =
1872       cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : av1_num_planes(cm);
1873   // As tpl module is called before the setting of speed features at frame
1874   // level, turning off this speed feature for the first GF group of the
1875   // key-frame interval is done here.
1876   int reduce_num_frames =
1877       cpi->sf.tpl_sf.reduce_num_frames &&
1878       gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE &&
1879       gf_group->max_layer_depth > 2;
1880   // TPL processing is skipped for frames of type LF_UPDATE when
1881   // 'reduce_num_frames' is 1, which affects the r0 calcuation. Thus, a factor
1882   // to adjust r0 is used. The value of 1.6 corresponds to using ~60% of the
1883   // frames in the gf group on an average.
1884   tpl_data->r0_adjust_factor = reduce_num_frames ? 1.6 : 1.0;
1885 
1886   // Backward propagation from tpl_group_frames to 1.
1887   for (int frame_idx = cpi->gf_frame_index; frame_idx < tpl_gf_group_frames;
1888        ++frame_idx) {
1889     if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval,
1890                            reduce_num_frames))
1891       continue;
1892 
1893     init_mc_flow_dispenser(cpi, frame_idx, pframe_qindex);
1894     if (mt_info->num_workers > 1) {
1895       tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read;
1896       tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write;
1897       av1_mc_flow_dispenser_mt(cpi);
1898     } else {
1899       mc_flow_dispenser(cpi);
1900     }
1901 #if CONFIG_BITRATE_ACCURACY
1902     av1_tpl_txfm_stats_update_abs_coeff_mean(&cpi->td.tpl_txfm_stats);
1903     av1_tpl_store_txfm_stats(tpl_data, &cpi->td.tpl_txfm_stats, frame_idx);
1904 #endif  // CONFIG_BITRATE_ACCURACY
1905 #if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY
1906     if (cpi->oxcf.pass == AOM_RC_THIRD_PASS) {
1907       int frame_coding_idx =
1908           av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, frame_idx);
1909       rc_log_frame_stats(&cpi->rc_log, frame_coding_idx,
1910                          &cpi->td.tpl_txfm_stats);
1911     }
1912 #endif  // CONFIG_RATECTRL_LOG
1913 
1914     aom_extend_frame_borders(tpl_data->tpl_frame[frame_idx].rec_picture,
1915                              num_planes);
1916   }
1917 
1918   for (int frame_idx = tpl_gf_group_frames - 1;
1919        frame_idx >= cpi->gf_frame_index; --frame_idx) {
1920     if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval,
1921                            reduce_num_frames))
1922       continue;
1923 
1924     mc_flow_synthesizer(tpl_data, frame_idx, cm->mi_params.mi_rows,
1925                         cm->mi_params.mi_cols);
1926   }
1927 
1928   av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
1929                                gf_group->update_type[cpi->gf_frame_index],
1930                                gf_group->update_type[cpi->gf_frame_index], 0);
1931   cm->current_frame.frame_type = frame_params->frame_type;
1932   cm->show_frame = frame_params->show_frame;
1933 
1934 #if CONFIG_COLLECT_COMPONENT_TIMING
1935   // Record the time if the function returns.
1936   if (cpi->common.tiles.large_scale || gf_group->max_layer_depth_allowed == 0 ||
1937       !gop_eval)
1938     end_timing(cpi, av1_tpl_setup_stats_time);
1939 #endif
1940 
1941   tpl_dealloc_temp_buffers(tpl_tmp_buffers);
1942 
1943   if (!approx_gop_eval) {
1944     tpl_data->ready = 1;
1945   }
1946   if (cpi->common.tiles.large_scale) return 0;
1947   if (gf_group->max_layer_depth_allowed == 0) return 1;
1948   if (!gop_eval) return 0;
1949   assert(gf_group->arf_index >= 0);
1950 
1951   double beta[2] = { 0.0 };
1952   const int frame_idx_0 = gf_group->arf_index;
1953   const int frame_idx_1 =
1954       AOMMIN(tpl_gf_group_frames - 1, gf_group->arf_index + 1);
1955   beta[0] = av1_tpl_get_frame_importance(tpl_data, frame_idx_0);
1956   beta[1] = av1_tpl_get_frame_importance(tpl_data, frame_idx_1);
1957 #if CONFIG_COLLECT_COMPONENT_TIMING
1958   end_timing(cpi, av1_tpl_setup_stats_time);
1959 #endif
1960   return eval_gop_length(beta, gop_eval);
1961 }
1962 
av1_tpl_rdmult_setup(AV1_COMP * cpi)1963 void av1_tpl_rdmult_setup(AV1_COMP *cpi) {
1964   const AV1_COMMON *const cm = &cpi->common;
1965   const int tpl_idx = cpi->gf_frame_index;
1966 
1967   assert(
1968       IMPLIES(cpi->ppi->gf_group.size > 0, tpl_idx < cpi->ppi->gf_group.size));
1969 
1970   TplParams *const tpl_data = &cpi->ppi->tpl_data;
1971   const TplDepFrame *const tpl_frame = &tpl_data->tpl_frame[tpl_idx];
1972 
1973   if (!tpl_frame->is_valid) return;
1974 
1975   const TplDepStats *const tpl_stats = tpl_frame->tpl_stats_ptr;
1976   const int tpl_stride = tpl_frame->stride;
1977   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
1978 
1979   const int block_size = BLOCK_16X16;
1980   const int num_mi_w = mi_size_wide[block_size];
1981   const int num_mi_h = mi_size_high[block_size];
1982   const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
1983   const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
1984   const double c = 1.2;
1985   const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
1986 
1987   // Loop through each 'block_size' X 'block_size' block.
1988   for (int row = 0; row < num_rows; row++) {
1989     for (int col = 0; col < num_cols; col++) {
1990       double intra_cost = 0.0, mc_dep_cost = 0.0;
1991       // Loop through each mi block.
1992       for (int mi_row = row * num_mi_h; mi_row < (row + 1) * num_mi_h;
1993            mi_row += step) {
1994         for (int mi_col = col * num_mi_w; mi_col < (col + 1) * num_mi_w;
1995              mi_col += step) {
1996           if (mi_row >= cm->mi_params.mi_rows || mi_col >= mi_cols_sr) continue;
1997           const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
1998               mi_row, mi_col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
1999           int64_t mc_dep_delta =
2000               RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
2001                      this_stats->mc_dep_dist);
2002           intra_cost += (double)(this_stats->recrf_dist << RDDIV_BITS);
2003           mc_dep_cost +=
2004               (double)(this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
2005         }
2006       }
2007       const double rk = intra_cost / mc_dep_cost;
2008       const int index = row * num_cols + col;
2009       cpi->tpl_rdmult_scaling_factors[index] = rk / cpi->rd.r0 + c;
2010     }
2011   }
2012 }
2013 
av1_tpl_rdmult_setup_sb(AV1_COMP * cpi,MACROBLOCK * const x,BLOCK_SIZE sb_size,int mi_row,int mi_col)2014 void av1_tpl_rdmult_setup_sb(AV1_COMP *cpi, MACROBLOCK *const x,
2015                              BLOCK_SIZE sb_size, int mi_row, int mi_col) {
2016   AV1_COMMON *const cm = &cpi->common;
2017   GF_GROUP *gf_group = &cpi->ppi->gf_group;
2018   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
2019                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
2020   const int tpl_idx = cpi->gf_frame_index;
2021 
2022   const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
2023   const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
2024   const FRAME_TYPE frame_type = cm->current_frame.frame_type;
2025 
2026   if (tpl_idx >= MAX_TPL_FRAME_IDX) return;
2027   TplDepFrame *tpl_frame = &cpi->ppi->tpl_data.tpl_frame[tpl_idx];
2028   if (!tpl_frame->is_valid) return;
2029   if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return;
2030   if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return;
2031 
2032   const int mi_col_sr =
2033       coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
2034   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
2035   const int sb_mi_width_sr = coded_to_superres_mi(
2036       mi_size_wide[sb_size], cm->superres_scale_denominator);
2037 
2038   const int bsize_base = BLOCK_16X16;
2039   const int num_mi_w = mi_size_wide[bsize_base];
2040   const int num_mi_h = mi_size_high[bsize_base];
2041   const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
2042   const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
2043   const int num_bcols = (sb_mi_width_sr + num_mi_w - 1) / num_mi_w;
2044   const int num_brows = (mi_size_high[sb_size] + num_mi_h - 1) / num_mi_h;
2045   int row, col;
2046 
2047   double base_block_count = 0.0;
2048   double log_sum = 0.0;
2049 
2050   for (row = mi_row / num_mi_w;
2051        row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
2052     for (col = mi_col_sr / num_mi_h;
2053          col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
2054       const int index = row * num_cols + col;
2055       log_sum += log(cpi->tpl_rdmult_scaling_factors[index]);
2056       base_block_count += 1.0;
2057     }
2058   }
2059 
2060   const CommonQuantParams *quant_params = &cm->quant_params;
2061 
2062   const int orig_qindex_rdmult =
2063       quant_params->base_qindex + quant_params->y_dc_delta_q;
2064   const int orig_rdmult = av1_compute_rd_mult(
2065       orig_qindex_rdmult, cm->seq_params->bit_depth,
2066       cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
2067       boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
2068       is_stat_consumption_stage(cpi));
2069 
2070   const int new_qindex_rdmult = quant_params->base_qindex +
2071                                 x->rdmult_delta_qindex +
2072                                 quant_params->y_dc_delta_q;
2073   const int new_rdmult = av1_compute_rd_mult(
2074       new_qindex_rdmult, cm->seq_params->bit_depth,
2075       cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
2076       boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
2077       is_stat_consumption_stage(cpi));
2078 
2079   const double scaling_factor = (double)new_rdmult / (double)orig_rdmult;
2080 
2081   double scale_adj = log(scaling_factor) - log_sum / base_block_count;
2082   scale_adj = exp_bounded(scale_adj);
2083 
2084   for (row = mi_row / num_mi_w;
2085        row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
2086     for (col = mi_col_sr / num_mi_h;
2087          col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
2088       const int index = row * num_cols + col;
2089       cpi->ppi->tpl_sb_rdmult_scaling_factors[index] =
2090           scale_adj * cpi->tpl_rdmult_scaling_factors[index];
2091     }
2092   }
2093 }
2094 
av1_exponential_entropy(double q_step,double b)2095 double av1_exponential_entropy(double q_step, double b) {
2096   b = AOMMAX(b, TPL_EPSILON);
2097   double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
2098   return -log2(1 - z) - z * log2(z) / (1 - z);
2099 }
2100 
av1_laplace_entropy(double q_step,double b,double zero_bin_ratio)2101 double av1_laplace_entropy(double q_step, double b, double zero_bin_ratio) {
2102   // zero bin's size is zero_bin_ratio * q_step
2103   // non-zero bin's size is q_step
2104   b = AOMMAX(b, TPL_EPSILON);
2105   double z = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
2106   double h = av1_exponential_entropy(q_step, b);
2107   double r = -(1 - z) * log2(1 - z) - z * log2(z) + z * (h + 1);
2108   return r;
2109 }
2110 
av1_laplace_estimate_frame_rate(int q_index,int block_count,const double * abs_coeff_mean,int coeff_num)2111 double av1_laplace_estimate_frame_rate(int q_index, int block_count,
2112                                        const double *abs_coeff_mean,
2113                                        int coeff_num) {
2114   double zero_bin_ratio = 2;
2115   double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
2116   double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
2117   double est_rate = 0;
2118   // dc coeff
2119   est_rate += av1_laplace_entropy(dc_q_step, abs_coeff_mean[0], zero_bin_ratio);
2120   // ac coeff
2121   for (int i = 1; i < coeff_num; ++i) {
2122     est_rate +=
2123         av1_laplace_entropy(ac_q_step, abs_coeff_mean[i], zero_bin_ratio);
2124   }
2125   est_rate *= block_count;
2126   return est_rate;
2127 }
2128 
av1_estimate_coeff_entropy(double q_step,double b,double zero_bin_ratio,int qcoeff)2129 double av1_estimate_coeff_entropy(double q_step, double b,
2130                                   double zero_bin_ratio, int qcoeff) {
2131   b = AOMMAX(b, TPL_EPSILON);
2132   int abs_qcoeff = abs(qcoeff);
2133   double z0 = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
2134   if (abs_qcoeff == 0) {
2135     double r = -log2(1 - z0);
2136     return r;
2137   } else {
2138     double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
2139     double r = 1 - log2(z0) - log2(1 - z) - (abs_qcoeff - 1) * log2(z);
2140     return r;
2141   }
2142 }
2143 
av1_estimate_txfm_block_entropy(int q_index,const double * abs_coeff_mean,int * qcoeff_arr,int coeff_num)2144 double av1_estimate_txfm_block_entropy(int q_index,
2145                                        const double *abs_coeff_mean,
2146                                        int *qcoeff_arr, int coeff_num) {
2147   double zero_bin_ratio = 2;
2148   double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
2149   double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
2150   double est_rate = 0;
2151   // dc coeff
2152   est_rate += av1_estimate_coeff_entropy(dc_q_step, abs_coeff_mean[0],
2153                                          zero_bin_ratio, qcoeff_arr[0]);
2154   // ac coeff
2155   for (int i = 1; i < coeff_num; ++i) {
2156     est_rate += av1_estimate_coeff_entropy(ac_q_step, abs_coeff_mean[i],
2157                                            zero_bin_ratio, qcoeff_arr[i]);
2158   }
2159   return est_rate;
2160 }
2161 
2162 #if CONFIG_RD_COMMAND
av1_read_rd_command(const char * filepath,RD_COMMAND * rd_command)2163 void av1_read_rd_command(const char *filepath, RD_COMMAND *rd_command) {
2164   FILE *fptr = fopen(filepath, "r");
2165   fscanf(fptr, "%d", &rd_command->frame_count);
2166   rd_command->frame_index = 0;
2167   for (int i = 0; i < rd_command->frame_count; ++i) {
2168     int option;
2169     fscanf(fptr, "%d", &option);
2170     rd_command->option_ls[i] = (RD_OPTION)option;
2171     if (option == RD_OPTION_SET_Q) {
2172       fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
2173     } else if (option == RD_OPTION_SET_Q_RDMULT) {
2174       fscanf(fptr, "%d", &rd_command->q_index_ls[i]);
2175       fscanf(fptr, "%d", &rd_command->rdmult_ls[i]);
2176     }
2177   }
2178   fclose(fptr);
2179 }
2180 #endif  // CONFIG_RD_COMMAND
2181 
av1_tpl_get_frame_importance(const TplParams * tpl_data,int gf_frame_index)2182 double av1_tpl_get_frame_importance(const TplParams *tpl_data,
2183                                     int gf_frame_index) {
2184   const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_frame_index];
2185   const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
2186 
2187   const int tpl_stride = tpl_frame->stride;
2188   double intra_cost_base = 0;
2189   double mc_dep_cost_base = 0;
2190   double cbcmp_base = 1;
2191   const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
2192 
2193   for (int row = 0; row < tpl_frame->mi_rows; row += step) {
2194     for (int col = 0; col < tpl_frame->mi_cols; col += step) {
2195       const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
2196           row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
2197       double cbcmp = (double)this_stats->srcrf_dist;
2198       const int64_t mc_dep_delta =
2199           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
2200                  this_stats->mc_dep_dist);
2201       double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
2202       dist_scaled = AOMMAX(dist_scaled, 1);
2203       intra_cost_base += log(dist_scaled) * cbcmp;
2204       mc_dep_cost_base += log(dist_scaled + mc_dep_delta) * cbcmp;
2205       cbcmp_base += cbcmp;
2206     }
2207   }
2208   return exp((mc_dep_cost_base - intra_cost_base) / cbcmp_base);
2209 }
2210 
av1_tpl_get_qstep_ratio(const TplParams * tpl_data,int gf_frame_index)2211 double av1_tpl_get_qstep_ratio(const TplParams *tpl_data, int gf_frame_index) {
2212   if (!av1_tpl_stats_ready(tpl_data, gf_frame_index)) {
2213     return 1;
2214   }
2215   const double frame_importance =
2216       av1_tpl_get_frame_importance(tpl_data, gf_frame_index);
2217   return sqrt(1 / frame_importance);
2218 }
2219 
av1_get_q_index_from_qstep_ratio(int leaf_qindex,double qstep_ratio,aom_bit_depth_t bit_depth)2220 int av1_get_q_index_from_qstep_ratio(int leaf_qindex, double qstep_ratio,
2221                                      aom_bit_depth_t bit_depth) {
2222   const double leaf_qstep = av1_dc_quant_QTX(leaf_qindex, 0, bit_depth);
2223   const double target_qstep = leaf_qstep * qstep_ratio;
2224   int qindex = leaf_qindex;
2225   if (qstep_ratio < 1.0) {
2226     for (qindex = leaf_qindex; qindex > 0; --qindex) {
2227       const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth);
2228       if (qstep <= target_qstep) break;
2229     }
2230   } else {
2231     for (qindex = leaf_qindex; qindex <= MAXQ; ++qindex) {
2232       const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth);
2233       if (qstep >= target_qstep) break;
2234     }
2235   }
2236   return qindex;
2237 }
2238 
av1_tpl_get_q_index(const TplParams * tpl_data,int gf_frame_index,int leaf_qindex,aom_bit_depth_t bit_depth)2239 int av1_tpl_get_q_index(const TplParams *tpl_data, int gf_frame_index,
2240                         int leaf_qindex, aom_bit_depth_t bit_depth) {
2241   const double qstep_ratio = av1_tpl_get_qstep_ratio(tpl_data, gf_frame_index);
2242   return av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth);
2243 }
2244 
2245 #if CONFIG_BITRATE_ACCURACY
av1_vbr_rc_init(VBR_RATECTRL_INFO * vbr_rc_info,double total_bit_budget,int show_frame_count)2246 void av1_vbr_rc_init(VBR_RATECTRL_INFO *vbr_rc_info, double total_bit_budget,
2247                      int show_frame_count) {
2248   av1_zero(*vbr_rc_info);
2249   vbr_rc_info->ready = 0;
2250   vbr_rc_info->total_bit_budget = total_bit_budget;
2251   vbr_rc_info->show_frame_count = show_frame_count;
2252   const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.94559, 1,
2253                                                      0.94559, 1,       1,
2254                                                      0.94559 };
2255 
2256   // TODO(angiebird): Based on the previous code, only the scale factor 0.94559
2257   // will be used in most of the cases with --limi=17. Figure out if the
2258   // following scale factors works better.
2259   // const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.12040, 1,
2260   //                                                    1.10199, 1,       1,
2261   //                                                    0.16393 };
2262 
2263   const double mv_scale_factors[FRAME_UPDATE_TYPES] = { 3, 3, 3, 3, 3, 3, 3 };
2264   memcpy(vbr_rc_info->scale_factors, scale_factors,
2265          sizeof(scale_factors[0]) * FRAME_UPDATE_TYPES);
2266   memcpy(vbr_rc_info->mv_scale_factors, mv_scale_factors,
2267          sizeof(mv_scale_factors[0]) * FRAME_UPDATE_TYPES);
2268 
2269   vbr_rc_reset_gop_data(vbr_rc_info);
2270 #if CONFIG_THREE_PASS
2271   // TODO(angiebird): Explain why we use -1 here
2272   vbr_rc_info->cur_gop_idx = -1;
2273   vbr_rc_info->gop_count = 0;
2274   vbr_rc_info->total_frame_count = 0;
2275 #endif  // CONFIG_THREE_PASS
2276 }
2277 
2278 #if CONFIG_THREE_PASS
av1_vbr_rc_frame_coding_idx(const VBR_RATECTRL_INFO * vbr_rc_info,int gf_frame_index)2279 int av1_vbr_rc_frame_coding_idx(const VBR_RATECTRL_INFO *vbr_rc_info,
2280                                 int gf_frame_index) {
2281   int gop_idx = vbr_rc_info->cur_gop_idx;
2282   int gop_start_idx = vbr_rc_info->gop_start_idx_list[gop_idx];
2283   return gop_start_idx + gf_frame_index;
2284 }
2285 
av1_vbr_rc_append_tpl_info(VBR_RATECTRL_INFO * vbr_rc_info,const TPL_INFO * tpl_info)2286 void av1_vbr_rc_append_tpl_info(VBR_RATECTRL_INFO *vbr_rc_info,
2287                                 const TPL_INFO *tpl_info) {
2288   int gop_start_idx = vbr_rc_info->total_frame_count;
2289   vbr_rc_info->gop_start_idx_list[vbr_rc_info->gop_count] = gop_start_idx;
2290   vbr_rc_info->gop_length_list[vbr_rc_info->gop_count] = tpl_info->gf_length;
2291   assert(gop_start_idx + tpl_info->gf_length <= VBR_RC_INFO_MAX_FRAMES);
2292   for (int i = 0; i < tpl_info->gf_length; ++i) {
2293     vbr_rc_info->txfm_stats_list[gop_start_idx + i] =
2294         tpl_info->txfm_stats_list[i];
2295     vbr_rc_info->qstep_ratio_list[gop_start_idx + i] =
2296         tpl_info->qstep_ratio_ls[i];
2297     vbr_rc_info->update_type_list[gop_start_idx + i] =
2298         tpl_info->update_type_list[i];
2299   }
2300   vbr_rc_info->total_frame_count += tpl_info->gf_length;
2301   vbr_rc_info->gop_count++;
2302 }
2303 #endif  // CONFIG_THREE_PASS
2304 
av1_vbr_rc_set_gop_bit_budget(VBR_RATECTRL_INFO * vbr_rc_info,int gop_showframe_count)2305 void av1_vbr_rc_set_gop_bit_budget(VBR_RATECTRL_INFO *vbr_rc_info,
2306                                    int gop_showframe_count) {
2307   vbr_rc_info->gop_showframe_count = gop_showframe_count;
2308   vbr_rc_info->gop_bit_budget = vbr_rc_info->total_bit_budget *
2309                                 gop_showframe_count /
2310                                 vbr_rc_info->show_frame_count;
2311 }
2312 
av1_vbr_rc_compute_q_indices(int base_q_index,int frame_count,const double * qstep_ratio_list,aom_bit_depth_t bit_depth,int * q_index_list)2313 void av1_vbr_rc_compute_q_indices(int base_q_index, int frame_count,
2314                                   const double *qstep_ratio_list,
2315                                   aom_bit_depth_t bit_depth,
2316                                   int *q_index_list) {
2317   for (int i = 0; i < frame_count; ++i) {
2318     q_index_list[i] = av1_get_q_index_from_qstep_ratio(
2319         base_q_index, qstep_ratio_list[i], bit_depth);
2320   }
2321 }
2322 
av1_vbr_rc_info_estimate_gop_bitrate(int base_q_index,aom_bit_depth_t bit_depth,const double * update_type_scale_factors,int frame_count,const FRAME_UPDATE_TYPE * update_type_list,const double * qstep_ratio_list,const TplTxfmStats * stats_list,int * q_index_list,double * estimated_bitrate_byframe)2323 double av1_vbr_rc_info_estimate_gop_bitrate(
2324     int base_q_index, aom_bit_depth_t bit_depth,
2325     const double *update_type_scale_factors, int frame_count,
2326     const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
2327     const TplTxfmStats *stats_list, int *q_index_list,
2328     double *estimated_bitrate_byframe) {
2329   av1_vbr_rc_compute_q_indices(base_q_index, frame_count, qstep_ratio_list,
2330                                bit_depth, q_index_list);
2331   double estimated_gop_bitrate = 0;
2332   for (int frame_index = 0; frame_index < frame_count; frame_index++) {
2333     const TplTxfmStats *frame_stats = &stats_list[frame_index];
2334     double frame_bitrate = 0;
2335     if (frame_stats->ready) {
2336       int q_index = q_index_list[frame_index];
2337 
2338       frame_bitrate = av1_laplace_estimate_frame_rate(
2339           q_index, frame_stats->txfm_block_count, frame_stats->abs_coeff_mean,
2340           frame_stats->coeff_num);
2341     }
2342     FRAME_UPDATE_TYPE update_type = update_type_list[frame_index];
2343     estimated_gop_bitrate +=
2344         frame_bitrate * update_type_scale_factors[update_type];
2345     if (estimated_bitrate_byframe != NULL) {
2346       estimated_bitrate_byframe[frame_index] = frame_bitrate;
2347     }
2348   }
2349   return estimated_gop_bitrate;
2350 }
2351 
av1_vbr_rc_info_estimate_base_q(double bit_budget,aom_bit_depth_t bit_depth,const double * update_type_scale_factors,int frame_count,const FRAME_UPDATE_TYPE * update_type_list,const double * qstep_ratio_list,const TplTxfmStats * stats_list,int * q_index_list,double * estimated_bitrate_byframe)2352 int av1_vbr_rc_info_estimate_base_q(
2353     double bit_budget, aom_bit_depth_t bit_depth,
2354     const double *update_type_scale_factors, int frame_count,
2355     const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list,
2356     const TplTxfmStats *stats_list, int *q_index_list,
2357     double *estimated_bitrate_byframe) {
2358   int q_max = 255;  // Maximum q value.
2359   int q_min = 0;    // Minimum q value.
2360   int q = (q_max + q_min) / 2;
2361 
2362   double q_max_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
2363       q_max, bit_depth, update_type_scale_factors, frame_count,
2364       update_type_list, qstep_ratio_list, stats_list, q_index_list,
2365       estimated_bitrate_byframe);
2366 
2367   double q_min_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
2368       q_min, bit_depth, update_type_scale_factors, frame_count,
2369       update_type_list, qstep_ratio_list, stats_list, q_index_list,
2370       estimated_bitrate_byframe);
2371   while (q_min + 1 < q_max) {
2372     double estimate = av1_vbr_rc_info_estimate_gop_bitrate(
2373         q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
2374         qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
2375     if (estimate > bit_budget) {
2376       q_min = q;
2377       q_min_estimate = estimate;
2378     } else {
2379       q_max = q;
2380       q_max_estimate = estimate;
2381     }
2382     q = (q_max + q_min) / 2;
2383   }
2384   // Pick the estimate that lands closest to the budget.
2385   if (fabs(q_max_estimate - bit_budget) < fabs(q_min_estimate - bit_budget)) {
2386     q = q_max;
2387   } else {
2388     q = q_min;
2389   }
2390   // Update q_index_list and vbr_rc_info.
2391   av1_vbr_rc_info_estimate_gop_bitrate(
2392       q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
2393       qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
2394   return q;
2395 }
av1_vbr_rc_update_q_index_list(VBR_RATECTRL_INFO * vbr_rc_info,const TplParams * tpl_data,const GF_GROUP * gf_group,aom_bit_depth_t bit_depth)2396 void av1_vbr_rc_update_q_index_list(VBR_RATECTRL_INFO *vbr_rc_info,
2397                                     const TplParams *tpl_data,
2398                                     const GF_GROUP *gf_group,
2399                                     aom_bit_depth_t bit_depth) {
2400   vbr_rc_info->q_index_list_ready = 1;
2401   double gop_bit_budget = vbr_rc_info->gop_bit_budget;
2402 
2403   for (int i = 0; i < gf_group->size; i++) {
2404     vbr_rc_info->qstep_ratio_list[i] = av1_tpl_get_qstep_ratio(tpl_data, i);
2405   }
2406 
2407   double mv_bits = 0;
2408   for (int i = 0; i < gf_group->size; i++) {
2409     double frame_mv_bits = 0;
2410     if (av1_tpl_stats_ready(tpl_data, i)) {
2411       TplDepFrame *tpl_frame = &tpl_data->tpl_frame[i];
2412       frame_mv_bits = av1_tpl_compute_frame_mv_entropy(
2413           tpl_frame, tpl_data->tpl_stats_block_mis_log2);
2414       FRAME_UPDATE_TYPE updae_type = gf_group->update_type[i];
2415       mv_bits += frame_mv_bits * vbr_rc_info->mv_scale_factors[updae_type];
2416     }
2417   }
2418 
2419   mv_bits = AOMMIN(mv_bits, 0.6 * gop_bit_budget);
2420   gop_bit_budget -= mv_bits;
2421 
2422   vbr_rc_info->base_q_index = av1_vbr_rc_info_estimate_base_q(
2423       gop_bit_budget, bit_depth, vbr_rc_info->scale_factors, gf_group->size,
2424       gf_group->update_type, vbr_rc_info->qstep_ratio_list,
2425       tpl_data->txfm_stats_list, vbr_rc_info->q_index_list, NULL);
2426 }
2427 
2428 #endif  // CONFIG_BITRATE_ACCURACY
2429 
2430 // Use upper and left neighbor block as the reference MVs.
2431 // Compute the minimum difference between current MV and reference MV.
av1_compute_mv_difference(const TplDepFrame * tpl_frame,int row,int col,int step,int tpl_stride,int right_shift)2432 int_mv av1_compute_mv_difference(const TplDepFrame *tpl_frame, int row, int col,
2433                                  int step, int tpl_stride, int right_shift) {
2434   const TplDepStats *tpl_stats =
2435       &tpl_frame
2436            ->tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_stride, right_shift)];
2437   int_mv current_mv = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2438   int current_mv_magnitude =
2439       abs(current_mv.as_mv.row) + abs(current_mv.as_mv.col);
2440 
2441   // Retrieve the up and left neighbors.
2442   int up_error = INT_MAX;
2443   int_mv up_mv_diff;
2444   if (row - step >= 0) {
2445     tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
2446         row - step, col, tpl_stride, right_shift)];
2447     up_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2448     up_mv_diff.as_mv.row = current_mv.as_mv.row - up_mv_diff.as_mv.row;
2449     up_mv_diff.as_mv.col = current_mv.as_mv.col - up_mv_diff.as_mv.col;
2450     up_error = abs(up_mv_diff.as_mv.row) + abs(up_mv_diff.as_mv.col);
2451   }
2452 
2453   int left_error = INT_MAX;
2454   int_mv left_mv_diff;
2455   if (col - step >= 0) {
2456     tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
2457         row, col - step, tpl_stride, right_shift)];
2458     left_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]];
2459     left_mv_diff.as_mv.row = current_mv.as_mv.row - left_mv_diff.as_mv.row;
2460     left_mv_diff.as_mv.col = current_mv.as_mv.col - left_mv_diff.as_mv.col;
2461     left_error = abs(left_mv_diff.as_mv.row) + abs(left_mv_diff.as_mv.col);
2462   }
2463 
2464   // Return the MV with the minimum distance from current.
2465   if (up_error < left_error && up_error < current_mv_magnitude) {
2466     return up_mv_diff;
2467   } else if (left_error < up_error && left_error < current_mv_magnitude) {
2468     return left_mv_diff;
2469   }
2470   return current_mv;
2471 }
2472 
2473 /* Compute the entropy of motion vectors for a single frame. */
av1_tpl_compute_frame_mv_entropy(const TplDepFrame * tpl_frame,uint8_t right_shift)2474 double av1_tpl_compute_frame_mv_entropy(const TplDepFrame *tpl_frame,
2475                                         uint8_t right_shift) {
2476   if (!tpl_frame->is_valid) {
2477     return 0;
2478   }
2479 
2480   int count_row[500] = { 0 };
2481   int count_col[500] = { 0 };
2482   int n = 0;  // number of MVs to process
2483 
2484   const int tpl_stride = tpl_frame->stride;
2485   const int step = 1 << right_shift;
2486 
2487   for (int row = 0; row < tpl_frame->mi_rows; row += step) {
2488     for (int col = 0; col < tpl_frame->mi_cols; col += step) {
2489       int_mv mv = av1_compute_mv_difference(tpl_frame, row, col, step,
2490                                             tpl_stride, right_shift);
2491       count_row[clamp(mv.as_mv.row, 0, 499)] += 1;
2492       count_col[clamp(mv.as_mv.row, 0, 499)] += 1;
2493       n += 1;
2494     }
2495   }
2496 
2497   // Estimate the bits used using the entropy formula.
2498   double rate_row = 0;
2499   double rate_col = 0;
2500   for (int i = 0; i < 500; i++) {
2501     if (count_row[i] != 0) {
2502       double p = count_row[i] / (double)n;
2503       rate_row += count_row[i] * -log2(p);
2504     }
2505     if (count_col[i] != 0) {
2506       double p = count_col[i] / (double)n;
2507       rate_col += count_col[i] * -log2(p);
2508     }
2509   }
2510 
2511   return rate_row + rate_col;
2512 }
2513