• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2020, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "av1/common/cfl.h"
13 #include "av1/common/reconintra.h"
14 #include "av1/encoder/block.h"
15 #include "av1/encoder/hybrid_fwd_txfm.h"
16 #include "av1/common/idct.h"
17 #include "av1/encoder/model_rd.h"
18 #include "av1/encoder/random.h"
19 #include "av1/encoder/rdopt_utils.h"
20 #include "av1/encoder/sorting_network.h"
21 #include "av1/encoder/tx_prune_model_weights.h"
22 #include "av1/encoder/tx_search.h"
23 #include "av1/encoder/txb_rdopt.h"
24 
25 #define PROB_THRESH_OFFSET_TX_TYPE 100
26 
27 struct rdcost_block_args {
28   const AV1_COMP *cpi;
29   MACROBLOCK *x;
30   ENTROPY_CONTEXT t_above[MAX_MIB_SIZE];
31   ENTROPY_CONTEXT t_left[MAX_MIB_SIZE];
32   RD_STATS rd_stats;
33   int64_t current_rd;
34   int64_t best_rd;
35   int exit_early;
36   int incomplete_exit;
37   FAST_TX_SEARCH_MODE ftxs_mode;
38   int skip_trellis;
39 };
40 
41 typedef struct {
42   int64_t rd;
43   int txb_entropy_ctx;
44   TX_TYPE tx_type;
45 } TxCandidateInfo;
46 
47 // origin_threshold * 128 / 100
48 static const uint32_t skip_pred_threshold[3][BLOCK_SIZES_ALL] = {
49   {
50       64, 64, 64, 70, 60, 60, 68, 68, 68, 68, 68,
51       68, 68, 68, 68, 68, 64, 64, 70, 70, 68, 68,
52   },
53   {
54       88, 88, 88, 86, 87, 87, 68, 68, 68, 68, 68,
55       68, 68, 68, 68, 68, 88, 88, 86, 86, 68, 68,
56   },
57   {
58       90, 93, 93, 90, 93, 93, 74, 74, 74, 74, 74,
59       74, 74, 74, 74, 74, 90, 90, 90, 90, 74, 74,
60   },
61 };
62 
63 // lookup table for predict_skip_txfm
64 // int max_tx_size = max_txsize_rect_lookup[bsize];
65 // if (tx_size_high[max_tx_size] > 16 || tx_size_wide[max_tx_size] > 16)
66 //   max_tx_size = AOMMIN(max_txsize_lookup[bsize], TX_16X16);
67 static const TX_SIZE max_predict_sf_tx_size[BLOCK_SIZES_ALL] = {
68   TX_4X4,   TX_4X8,   TX_8X4,   TX_8X8,   TX_8X16,  TX_16X8,
69   TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16,
70   TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_4X16,  TX_16X4,
71   TX_8X8,   TX_8X8,   TX_16X16, TX_16X16,
72 };
73 
74 // look-up table for sqrt of number of pixels in a transform block
75 // rounded up to the nearest integer.
76 static const int sqrt_tx_pixels_2d[TX_SIZES_ALL] = { 4,  8,  16, 32, 32, 6,  6,
77                                                      12, 12, 23, 23, 32, 32, 8,
78                                                      8,  16, 16, 23, 23 };
79 
get_block_residue_hash(MACROBLOCK * x,BLOCK_SIZE bsize)80 static INLINE uint32_t get_block_residue_hash(MACROBLOCK *x, BLOCK_SIZE bsize) {
81   const int rows = block_size_high[bsize];
82   const int cols = block_size_wide[bsize];
83   const int16_t *diff = x->plane[0].src_diff;
84   const uint32_t hash =
85       av1_get_crc32c_value(&x->txfm_search_info.mb_rd_record->crc_calculator,
86                            (uint8_t *)diff, 2 * rows * cols);
87   return (hash << 5) + bsize;
88 }
89 
find_mb_rd_info(const MB_RD_RECORD * const mb_rd_record,const int64_t ref_best_rd,const uint32_t hash)90 static INLINE int32_t find_mb_rd_info(const MB_RD_RECORD *const mb_rd_record,
91                                       const int64_t ref_best_rd,
92                                       const uint32_t hash) {
93   int32_t match_index = -1;
94   if (ref_best_rd != INT64_MAX) {
95     for (int i = 0; i < mb_rd_record->num; ++i) {
96       const int index = (mb_rd_record->index_start + i) % RD_RECORD_BUFFER_LEN;
97       // If there is a match in the mb_rd_record, fetch the RD decision and
98       // terminate early.
99       if (mb_rd_record->mb_rd_info[index].hash_value == hash) {
100         match_index = index;
101         break;
102       }
103     }
104   }
105   return match_index;
106 }
107 
fetch_mb_rd_info(int n4,const MB_RD_INFO * const mb_rd_info,RD_STATS * const rd_stats,MACROBLOCK * const x)108 static AOM_INLINE void fetch_mb_rd_info(int n4,
109                                         const MB_RD_INFO *const mb_rd_info,
110                                         RD_STATS *const rd_stats,
111                                         MACROBLOCK *const x) {
112   MACROBLOCKD *const xd = &x->e_mbd;
113   MB_MODE_INFO *const mbmi = xd->mi[0];
114   mbmi->tx_size = mb_rd_info->tx_size;
115   memcpy(x->txfm_search_info.blk_skip, mb_rd_info->blk_skip,
116          sizeof(mb_rd_info->blk_skip[0]) * n4);
117   av1_copy(mbmi->inter_tx_size, mb_rd_info->inter_tx_size);
118   av1_copy_array(xd->tx_type_map, mb_rd_info->tx_type_map, n4);
119   *rd_stats = mb_rd_info->rd_stats;
120 }
121 
av1_pixel_diff_dist(const MACROBLOCK * x,int plane,int blk_row,int blk_col,const BLOCK_SIZE plane_bsize,const BLOCK_SIZE tx_bsize,unsigned int * block_mse_q8)122 int64_t av1_pixel_diff_dist(const MACROBLOCK *x, int plane, int blk_row,
123                             int blk_col, const BLOCK_SIZE plane_bsize,
124                             const BLOCK_SIZE tx_bsize,
125                             unsigned int *block_mse_q8) {
126   int visible_rows, visible_cols;
127   const MACROBLOCKD *xd = &x->e_mbd;
128   get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL,
129                      NULL, &visible_cols, &visible_rows);
130   const int diff_stride = block_size_wide[plane_bsize];
131   const int16_t *diff = x->plane[plane].src_diff;
132 
133   diff += ((blk_row * diff_stride + blk_col) << MI_SIZE_LOG2);
134   uint64_t sse =
135       aom_sum_squares_2d_i16(diff, diff_stride, visible_cols, visible_rows);
136   if (block_mse_q8 != NULL) {
137     if (visible_cols > 0 && visible_rows > 0)
138       *block_mse_q8 =
139           (unsigned int)((256 * sse) / (visible_cols * visible_rows));
140     else
141       *block_mse_q8 = UINT_MAX;
142   }
143   return sse;
144 }
145 
146 // Computes the residual block's SSE and mean on all visible 4x4s in the
147 // transform block
pixel_diff_stats(MACROBLOCK * x,int plane,int blk_row,int blk_col,const BLOCK_SIZE plane_bsize,const BLOCK_SIZE tx_bsize,unsigned int * block_mse_q8,int64_t * per_px_mean,uint64_t * block_var)148 static INLINE int64_t pixel_diff_stats(
149     MACROBLOCK *x, int plane, int blk_row, int blk_col,
150     const BLOCK_SIZE plane_bsize, const BLOCK_SIZE tx_bsize,
151     unsigned int *block_mse_q8, int64_t *per_px_mean, uint64_t *block_var) {
152   int visible_rows, visible_cols;
153   const MACROBLOCKD *xd = &x->e_mbd;
154   get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL,
155                      NULL, &visible_cols, &visible_rows);
156   const int diff_stride = block_size_wide[plane_bsize];
157   const int16_t *diff = x->plane[plane].src_diff;
158 
159   diff += ((blk_row * diff_stride + blk_col) << MI_SIZE_LOG2);
160   uint64_t sse = 0;
161   int sum = 0;
162   sse = aom_sum_sse_2d_i16(diff, diff_stride, visible_cols, visible_rows, &sum);
163   if (visible_cols > 0 && visible_rows > 0) {
164     double norm_factor = 1.0 / (visible_cols * visible_rows);
165     int sign_sum = sum > 0 ? 1 : -1;
166     // Conversion to transform domain
167     *per_px_mean = (int64_t)(norm_factor * abs(sum)) << 7;
168     *per_px_mean = sign_sum * (*per_px_mean);
169     *block_mse_q8 = (unsigned int)(norm_factor * (256 * sse));
170     *block_var = (uint64_t)(sse - (uint64_t)(norm_factor * sum * sum));
171   } else {
172     *block_mse_q8 = UINT_MAX;
173   }
174   return sse;
175 }
176 
177 // Uses simple features on top of DCT coefficients to quickly predict
178 // whether optimal RD decision is to skip encoding the residual.
179 // The sse value is stored in dist.
predict_skip_txfm(MACROBLOCK * x,BLOCK_SIZE bsize,int64_t * dist,int reduced_tx_set)180 static int predict_skip_txfm(MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *dist,
181                              int reduced_tx_set) {
182   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
183   const int bw = block_size_wide[bsize];
184   const int bh = block_size_high[bsize];
185   const MACROBLOCKD *xd = &x->e_mbd;
186   const int16_t dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd);
187 
188   *dist = av1_pixel_diff_dist(x, 0, 0, 0, bsize, bsize, NULL);
189 
190   const int64_t mse = *dist / bw / bh;
191   // Normalized quantizer takes the transform upscaling factor (8 for tx size
192   // smaller than 32) into account.
193   const int16_t normalized_dc_q = dc_q >> 3;
194   const int64_t mse_thresh = (int64_t)normalized_dc_q * normalized_dc_q / 8;
195   // For faster early skip decision, use dist to compare against threshold so
196   // that quality risk is less for the skip=1 decision. Otherwise, use mse
197   // since the fwd_txfm coeff checks will take care of quality
198   // TODO(any): Use dist to return 0 when skip_txfm_level is 1
199   int64_t pred_err = (txfm_params->skip_txfm_level >= 2) ? *dist : mse;
200   // Predict not to skip when error is larger than threshold.
201   if (pred_err > mse_thresh) return 0;
202   // Return as skip otherwise for aggressive early skip
203   else if (txfm_params->skip_txfm_level >= 2)
204     return 1;
205 
206   const int max_tx_size = max_predict_sf_tx_size[bsize];
207   const int tx_h = tx_size_high[max_tx_size];
208   const int tx_w = tx_size_wide[max_tx_size];
209   DECLARE_ALIGNED(32, tran_low_t, coefs[32 * 32]);
210   TxfmParam param;
211   param.tx_type = DCT_DCT;
212   param.tx_size = max_tx_size;
213   param.bd = xd->bd;
214   param.is_hbd = is_cur_buf_hbd(xd);
215   param.lossless = 0;
216   param.tx_set_type = av1_get_ext_tx_set_type(
217       param.tx_size, is_inter_block(xd->mi[0]), reduced_tx_set);
218   const int bd_idx = (xd->bd == 8) ? 0 : ((xd->bd == 10) ? 1 : 2);
219   const uint32_t max_qcoef_thresh = skip_pred_threshold[bd_idx][bsize];
220   const int16_t *src_diff = x->plane[0].src_diff;
221   const int n_coeff = tx_w * tx_h;
222   const int16_t ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd);
223   const uint32_t dc_thresh = max_qcoef_thresh * dc_q;
224   const uint32_t ac_thresh = max_qcoef_thresh * ac_q;
225   for (int row = 0; row < bh; row += tx_h) {
226     for (int col = 0; col < bw; col += tx_w) {
227       av1_fwd_txfm(src_diff + col, coefs, bw, &param);
228       // Operating on TX domain, not pixels; we want the QTX quantizers
229       const uint32_t dc_coef = (((uint32_t)abs(coefs[0])) << 7);
230       if (dc_coef >= dc_thresh) return 0;
231       for (int i = 1; i < n_coeff; ++i) {
232         const uint32_t ac_coef = (((uint32_t)abs(coefs[i])) << 7);
233         if (ac_coef >= ac_thresh) return 0;
234       }
235     }
236     src_diff += tx_h * bw;
237   }
238   return 1;
239 }
240 
241 // Used to set proper context for early termination with skip = 1.
set_skip_txfm(MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t dist)242 static AOM_INLINE void set_skip_txfm(MACROBLOCK *x, RD_STATS *rd_stats,
243                                      BLOCK_SIZE bsize, int64_t dist) {
244   MACROBLOCKD *const xd = &x->e_mbd;
245   MB_MODE_INFO *const mbmi = xd->mi[0];
246   const int n4 = bsize_to_num_blk(bsize);
247   const TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
248   memset(xd->tx_type_map, DCT_DCT, sizeof(xd->tx_type_map[0]) * n4);
249   memset(mbmi->inter_tx_size, tx_size, sizeof(mbmi->inter_tx_size));
250   mbmi->tx_size = tx_size;
251   for (int i = 0; i < n4; ++i)
252     set_blk_skip(x->txfm_search_info.blk_skip, 0, i, 1);
253   rd_stats->skip_txfm = 1;
254   if (is_cur_buf_hbd(xd)) dist = ROUND_POWER_OF_TWO(dist, (xd->bd - 8) * 2);
255   rd_stats->dist = rd_stats->sse = (dist << 4);
256   // Though decision is to make the block as skip based on luma stats,
257   // it is possible that block becomes non skip after chroma rd. In addition
258   // intermediate non skip costs calculated by caller function will be
259   // incorrect, if rate is set as  zero (i.e., if zero_blk_rate is not
260   // accounted). Hence intermediate rate is populated to code the luma tx blks
261   // as skip, the caller function based on final rd decision (i.e., skip vs
262   // non-skip) sets the final rate accordingly. Here the rate populated
263   // corresponds to coding all the tx blocks with zero_blk_rate (based on max tx
264   // size possible) in the current block. Eg: For 128*128 block, rate would be
265   // 4 * zero_blk_rate where zero_blk_rate corresponds to coding of one 64x64 tx
266   // block as 'all zeros'
267   ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
268   ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
269   av1_get_entropy_contexts(bsize, &xd->plane[0], ctxa, ctxl);
270   ENTROPY_CONTEXT *ta = ctxa;
271   ENTROPY_CONTEXT *tl = ctxl;
272   const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
273   TXB_CTX txb_ctx;
274   get_txb_ctx(bsize, tx_size, 0, ta, tl, &txb_ctx);
275   const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][PLANE_TYPE_Y]
276                                 .txb_skip_cost[txb_ctx.txb_skip_ctx][1];
277   rd_stats->rate = zero_blk_rate *
278                    (block_size_wide[bsize] >> tx_size_wide_log2[tx_size]) *
279                    (block_size_high[bsize] >> tx_size_high_log2[tx_size]);
280 }
281 
save_mb_rd_info(int n4,uint32_t hash,const MACROBLOCK * const x,const RD_STATS * const rd_stats,MB_RD_RECORD * mb_rd_record)282 static AOM_INLINE void save_mb_rd_info(int n4, uint32_t hash,
283                                        const MACROBLOCK *const x,
284                                        const RD_STATS *const rd_stats,
285                                        MB_RD_RECORD *mb_rd_record) {
286   int index;
287   if (mb_rd_record->num < RD_RECORD_BUFFER_LEN) {
288     index =
289         (mb_rd_record->index_start + mb_rd_record->num) % RD_RECORD_BUFFER_LEN;
290     ++mb_rd_record->num;
291   } else {
292     index = mb_rd_record->index_start;
293     mb_rd_record->index_start =
294         (mb_rd_record->index_start + 1) % RD_RECORD_BUFFER_LEN;
295   }
296   MB_RD_INFO *const mb_rd_info = &mb_rd_record->mb_rd_info[index];
297   const MACROBLOCKD *const xd = &x->e_mbd;
298   const MB_MODE_INFO *const mbmi = xd->mi[0];
299   mb_rd_info->hash_value = hash;
300   mb_rd_info->tx_size = mbmi->tx_size;
301   memcpy(mb_rd_info->blk_skip, x->txfm_search_info.blk_skip,
302          sizeof(mb_rd_info->blk_skip[0]) * n4);
303   av1_copy(mb_rd_info->inter_tx_size, mbmi->inter_tx_size);
304   av1_copy_array(mb_rd_info->tx_type_map, xd->tx_type_map, n4);
305   mb_rd_info->rd_stats = *rd_stats;
306 }
307 
get_search_init_depth(int mi_width,int mi_height,int is_inter,const SPEED_FEATURES * sf,int tx_size_search_method)308 static int get_search_init_depth(int mi_width, int mi_height, int is_inter,
309                                  const SPEED_FEATURES *sf,
310                                  int tx_size_search_method) {
311   if (tx_size_search_method == USE_LARGESTALL) return MAX_VARTX_DEPTH;
312 
313   if (sf->tx_sf.tx_size_search_lgr_block) {
314     if (mi_width > mi_size_wide[BLOCK_64X64] ||
315         mi_height > mi_size_high[BLOCK_64X64])
316       return MAX_VARTX_DEPTH;
317   }
318 
319   if (is_inter) {
320     return (mi_height != mi_width)
321                ? sf->tx_sf.inter_tx_size_search_init_depth_rect
322                : sf->tx_sf.inter_tx_size_search_init_depth_sqr;
323   } else {
324     return (mi_height != mi_width)
325                ? sf->tx_sf.intra_tx_size_search_init_depth_rect
326                : sf->tx_sf.intra_tx_size_search_init_depth_sqr;
327   }
328 }
329 
330 static AOM_INLINE void select_tx_block(
331     const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
332     TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
333     ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
334     RD_STATS *rd_stats, int64_t prev_level_rd, int64_t ref_best_rd,
335     int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode);
336 
337 // NOTE: CONFIG_COLLECT_RD_STATS has 3 possible values
338 // 0: Do not collect any RD stats
339 // 1: Collect RD stats for transform units
340 // 2: Collect RD stats for partition units
341 #if CONFIG_COLLECT_RD_STATS
342 
get_energy_distribution_fine(const AV1_COMP * cpi,BLOCK_SIZE bsize,const uint8_t * src,int src_stride,const uint8_t * dst,int dst_stride,int need_4th,double * hordist,double * verdist)343 static AOM_INLINE void get_energy_distribution_fine(
344     const AV1_COMP *cpi, BLOCK_SIZE bsize, const uint8_t *src, int src_stride,
345     const uint8_t *dst, int dst_stride, int need_4th, double *hordist,
346     double *verdist) {
347   const int bw = block_size_wide[bsize];
348   const int bh = block_size_high[bsize];
349   unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
350 
351   if (bsize < BLOCK_16X16 || (bsize >= BLOCK_4X16 && bsize <= BLOCK_32X8)) {
352     // Special cases: calculate 'esq' values manually, as we don't have 'vf'
353     // functions for the 16 (very small) sub-blocks of this block.
354     const int w_shift = (bw == 4) ? 0 : (bw == 8) ? 1 : (bw == 16) ? 2 : 3;
355     const int h_shift = (bh == 4) ? 0 : (bh == 8) ? 1 : (bh == 16) ? 2 : 3;
356     assert(bw <= 32);
357     assert(bh <= 32);
358     assert(((bw - 1) >> w_shift) + (((bh - 1) >> h_shift) << 2) == 15);
359     if (cpi->common.seq_params->use_highbitdepth) {
360       const uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
361       const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
362       for (int i = 0; i < bh; ++i)
363         for (int j = 0; j < bw; ++j) {
364           const int index = (j >> w_shift) + ((i >> h_shift) << 2);
365           esq[index] +=
366               (src16[j + i * src_stride] - dst16[j + i * dst_stride]) *
367               (src16[j + i * src_stride] - dst16[j + i * dst_stride]);
368         }
369     } else {
370       for (int i = 0; i < bh; ++i)
371         for (int j = 0; j < bw; ++j) {
372           const int index = (j >> w_shift) + ((i >> h_shift) << 2);
373           esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) *
374                         (src[j + i * src_stride] - dst[j + i * dst_stride]);
375         }
376     }
377   } else {  // Calculate 'esq' values using 'vf' functions on the 16 sub-blocks.
378     const int f_index =
379         (bsize < BLOCK_SIZES) ? bsize - BLOCK_16X16 : bsize - BLOCK_8X16;
380     assert(f_index >= 0 && f_index < BLOCK_SIZES_ALL);
381     const BLOCK_SIZE subsize = (BLOCK_SIZE)f_index;
382     assert(block_size_wide[bsize] == 4 * block_size_wide[subsize]);
383     assert(block_size_high[bsize] == 4 * block_size_high[subsize]);
384     cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[0]);
385     cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
386                                  dst_stride, &esq[1]);
387     cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
388                                  dst_stride, &esq[2]);
389     cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
390                                  dst_stride, &esq[3]);
391     src += bh / 4 * src_stride;
392     dst += bh / 4 * dst_stride;
393 
394     cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[4]);
395     cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
396                                  dst_stride, &esq[5]);
397     cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
398                                  dst_stride, &esq[6]);
399     cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
400                                  dst_stride, &esq[7]);
401     src += bh / 4 * src_stride;
402     dst += bh / 4 * dst_stride;
403 
404     cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[8]);
405     cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
406                                  dst_stride, &esq[9]);
407     cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
408                                  dst_stride, &esq[10]);
409     cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
410                                  dst_stride, &esq[11]);
411     src += bh / 4 * src_stride;
412     dst += bh / 4 * dst_stride;
413 
414     cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[12]);
415     cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
416                                  dst_stride, &esq[13]);
417     cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
418                                  dst_stride, &esq[14]);
419     cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
420                                  dst_stride, &esq[15]);
421   }
422 
423   double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] +
424                  esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] +
425                  esq[12] + esq[13] + esq[14] + esq[15];
426   if (total > 0) {
427     const double e_recip = 1.0 / total;
428     hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip;
429     hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip;
430     hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip;
431     if (need_4th) {
432       hordist[3] = ((double)esq[3] + esq[7] + esq[11] + esq[15]) * e_recip;
433     }
434     verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip;
435     verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip;
436     verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip;
437     if (need_4th) {
438       verdist[3] = ((double)esq[12] + esq[13] + esq[14] + esq[15]) * e_recip;
439     }
440   } else {
441     hordist[0] = verdist[0] = 0.25;
442     hordist[1] = verdist[1] = 0.25;
443     hordist[2] = verdist[2] = 0.25;
444     if (need_4th) {
445       hordist[3] = verdist[3] = 0.25;
446     }
447   }
448 }
449 
get_sse_norm(const int16_t * diff,int stride,int w,int h)450 static double get_sse_norm(const int16_t *diff, int stride, int w, int h) {
451   double sum = 0.0;
452   for (int j = 0; j < h; ++j) {
453     for (int i = 0; i < w; ++i) {
454       const int err = diff[j * stride + i];
455       sum += err * err;
456     }
457   }
458   assert(w > 0 && h > 0);
459   return sum / (w * h);
460 }
461 
get_sad_norm(const int16_t * diff,int stride,int w,int h)462 static double get_sad_norm(const int16_t *diff, int stride, int w, int h) {
463   double sum = 0.0;
464   for (int j = 0; j < h; ++j) {
465     for (int i = 0; i < w; ++i) {
466       sum += abs(diff[j * stride + i]);
467     }
468   }
469   assert(w > 0 && h > 0);
470   return sum / (w * h);
471 }
472 
get_2x2_normalized_sses_and_sads(const AV1_COMP * const cpi,BLOCK_SIZE tx_bsize,const uint8_t * const src,int src_stride,const uint8_t * const dst,int dst_stride,const int16_t * const src_diff,int diff_stride,double * const sse_norm_arr,double * const sad_norm_arr)473 static AOM_INLINE void get_2x2_normalized_sses_and_sads(
474     const AV1_COMP *const cpi, BLOCK_SIZE tx_bsize, const uint8_t *const src,
475     int src_stride, const uint8_t *const dst, int dst_stride,
476     const int16_t *const src_diff, int diff_stride, double *const sse_norm_arr,
477     double *const sad_norm_arr) {
478   const BLOCK_SIZE tx_bsize_half =
479       get_partition_subsize(tx_bsize, PARTITION_SPLIT);
480   if (tx_bsize_half == BLOCK_INVALID) {  // manually calculate stats
481     const int half_width = block_size_wide[tx_bsize] / 2;
482     const int half_height = block_size_high[tx_bsize] / 2;
483     for (int row = 0; row < 2; ++row) {
484       for (int col = 0; col < 2; ++col) {
485         const int16_t *const this_src_diff =
486             src_diff + row * half_height * diff_stride + col * half_width;
487         if (sse_norm_arr) {
488           sse_norm_arr[row * 2 + col] =
489               get_sse_norm(this_src_diff, diff_stride, half_width, half_height);
490         }
491         if (sad_norm_arr) {
492           sad_norm_arr[row * 2 + col] =
493               get_sad_norm(this_src_diff, diff_stride, half_width, half_height);
494         }
495       }
496     }
497   } else {  // use function pointers to calculate stats
498     const int half_width = block_size_wide[tx_bsize_half];
499     const int half_height = block_size_high[tx_bsize_half];
500     const int num_samples_half = half_width * half_height;
501     for (int row = 0; row < 2; ++row) {
502       for (int col = 0; col < 2; ++col) {
503         const uint8_t *const this_src =
504             src + row * half_height * src_stride + col * half_width;
505         const uint8_t *const this_dst =
506             dst + row * half_height * dst_stride + col * half_width;
507 
508         if (sse_norm_arr) {
509           unsigned int this_sse;
510           cpi->ppi->fn_ptr[tx_bsize_half].vf(this_src, src_stride, this_dst,
511                                              dst_stride, &this_sse);
512           sse_norm_arr[row * 2 + col] = (double)this_sse / num_samples_half;
513         }
514 
515         if (sad_norm_arr) {
516           const unsigned int this_sad = cpi->ppi->fn_ptr[tx_bsize_half].sdf(
517               this_src, src_stride, this_dst, dst_stride);
518           sad_norm_arr[row * 2 + col] = (double)this_sad / num_samples_half;
519         }
520       }
521     }
522   }
523 }
524 
525 #if CONFIG_COLLECT_RD_STATS == 1
get_mean(const int16_t * diff,int stride,int w,int h)526 static double get_mean(const int16_t *diff, int stride, int w, int h) {
527   double sum = 0.0;
528   for (int j = 0; j < h; ++j) {
529     for (int i = 0; i < w; ++i) {
530       sum += diff[j * stride + i];
531     }
532   }
533   assert(w > 0 && h > 0);
534   return sum / (w * h);
535 }
PrintTransformUnitStats(const AV1_COMP * const cpi,MACROBLOCK * x,const RD_STATS * const rd_stats,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,TX_TYPE tx_type,int64_t rd)536 static AOM_INLINE void PrintTransformUnitStats(
537     const AV1_COMP *const cpi, MACROBLOCK *x, const RD_STATS *const rd_stats,
538     int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
539     TX_TYPE tx_type, int64_t rd) {
540   if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return;
541 
542   // Generate small sample to restrict output size.
543   static unsigned int seed = 21743;
544   if (lcg_rand16(&seed) % 256 > 0) return;
545 
546   const char output_file[] = "tu_stats.txt";
547   FILE *fout = fopen(output_file, "a");
548   if (!fout) return;
549 
550   const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
551   const MACROBLOCKD *const xd = &x->e_mbd;
552   const int plane = 0;
553   struct macroblock_plane *const p = &x->plane[plane];
554   const struct macroblockd_plane *const pd = &xd->plane[plane];
555   const int txw = tx_size_wide[tx_size];
556   const int txh = tx_size_high[tx_size];
557   const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
558   const int q_step = p->dequant_QTX[1] >> dequant_shift;
559   const int num_samples = txw * txh;
560 
561   const double rate_norm = (double)rd_stats->rate / num_samples;
562   const double dist_norm = (double)rd_stats->dist / num_samples;
563 
564   fprintf(fout, "%g %g", rate_norm, dist_norm);
565 
566   const int src_stride = p->src.stride;
567   const uint8_t *const src =
568       &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];
569   const int dst_stride = pd->dst.stride;
570   const uint8_t *const dst =
571       &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
572   unsigned int sse;
573   cpi->ppi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
574   const double sse_norm = (double)sse / num_samples;
575 
576   const unsigned int sad =
577       cpi->ppi->fn_ptr[tx_bsize].sdf(src, src_stride, dst, dst_stride);
578   const double sad_norm = (double)sad / num_samples;
579 
580   fprintf(fout, " %g %g", sse_norm, sad_norm);
581 
582   const int diff_stride = block_size_wide[plane_bsize];
583   const int16_t *const src_diff =
584       &p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2];
585 
586   double sse_norm_arr[4], sad_norm_arr[4];
587   get_2x2_normalized_sses_and_sads(cpi, tx_bsize, src, src_stride, dst,
588                                    dst_stride, src_diff, diff_stride,
589                                    sse_norm_arr, sad_norm_arr);
590   for (int i = 0; i < 4; ++i) {
591     fprintf(fout, " %g", sse_norm_arr[i]);
592   }
593   for (int i = 0; i < 4; ++i) {
594     fprintf(fout, " %g", sad_norm_arr[i]);
595   }
596 
597   const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type];
598   const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type];
599 
600   fprintf(fout, " %d %d %d %d %d", q_step, tx_size_wide[tx_size],
601           tx_size_high[tx_size], tx_type_1d_row, tx_type_1d_col);
602 
603   int model_rate;
604   int64_t model_dist;
605   model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, tx_bsize, plane, sse, num_samples,
606                                    &model_rate, &model_dist);
607   const double model_rate_norm = (double)model_rate / num_samples;
608   const double model_dist_norm = (double)model_dist / num_samples;
609   fprintf(fout, " %g %g", model_rate_norm, model_dist_norm);
610 
611   const double mean = get_mean(src_diff, diff_stride, txw, txh);
612   float hor_corr, vert_corr;
613   av1_get_horver_correlation_full(src_diff, diff_stride, txw, txh, &hor_corr,
614                                   &vert_corr);
615   fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr);
616 
617   double hdist[4] = { 0 }, vdist[4] = { 0 };
618   get_energy_distribution_fine(cpi, tx_bsize, src, src_stride, dst, dst_stride,
619                                1, hdist, vdist);
620   fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2],
621           hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]);
622 
623   fprintf(fout, " %d %" PRId64, x->rdmult, rd);
624 
625   fprintf(fout, "\n");
626   fclose(fout);
627 }
628 #endif  // CONFIG_COLLECT_RD_STATS == 1
629 
630 #if CONFIG_COLLECT_RD_STATS >= 2
get_sse(const AV1_COMP * cpi,const MACROBLOCK * x)631 static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x) {
632   const AV1_COMMON *cm = &cpi->common;
633   const int num_planes = av1_num_planes(cm);
634   const MACROBLOCKD *xd = &x->e_mbd;
635   const MB_MODE_INFO *mbmi = xd->mi[0];
636   int64_t total_sse = 0;
637   for (int plane = 0; plane < num_planes; ++plane) {
638     const struct macroblock_plane *const p = &x->plane[plane];
639     const struct macroblockd_plane *const pd = &xd->plane[plane];
640     const BLOCK_SIZE bs =
641         get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
642     unsigned int sse;
643 
644     if (plane) continue;
645 
646     cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
647                             pd->dst.stride, &sse);
648     total_sse += sse;
649   }
650   total_sse <<= 4;
651   return total_sse;
652 }
653 
get_est_rate_dist(const TileDataEnc * tile_data,BLOCK_SIZE bsize,int64_t sse,int * est_residue_cost,int64_t * est_dist)654 static int get_est_rate_dist(const TileDataEnc *tile_data, BLOCK_SIZE bsize,
655                              int64_t sse, int *est_residue_cost,
656                              int64_t *est_dist) {
657   const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
658   if (md->ready) {
659     if (sse < md->dist_mean) {
660       *est_residue_cost = 0;
661       *est_dist = sse;
662     } else {
663       *est_dist = (int64_t)round(md->dist_mean);
664       const double est_ld = md->a * sse + md->b;
665       // Clamp estimated rate cost by INT_MAX / 2.
666       // TODO(angiebird@google.com): find better solution than clamping.
667       if (fabs(est_ld) < 1e-2) {
668         *est_residue_cost = INT_MAX / 2;
669       } else {
670         double est_residue_cost_dbl = ((sse - md->dist_mean) / est_ld);
671         if (est_residue_cost_dbl < 0) {
672           *est_residue_cost = 0;
673         } else {
674           *est_residue_cost =
675               (int)AOMMIN((int64_t)round(est_residue_cost_dbl), INT_MAX / 2);
676         }
677       }
678       if (*est_residue_cost <= 0) {
679         *est_residue_cost = 0;
680         *est_dist = sse;
681       }
682     }
683     return 1;
684   }
685   return 0;
686 }
687 
get_highbd_diff_mean(const uint8_t * src8,int src_stride,const uint8_t * dst8,int dst_stride,int w,int h)688 static double get_highbd_diff_mean(const uint8_t *src8, int src_stride,
689                                    const uint8_t *dst8, int dst_stride, int w,
690                                    int h) {
691   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
692   const uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
693   double sum = 0.0;
694   for (int j = 0; j < h; ++j) {
695     for (int i = 0; i < w; ++i) {
696       const int diff = src[j * src_stride + i] - dst[j * dst_stride + i];
697       sum += diff;
698     }
699   }
700   assert(w > 0 && h > 0);
701   return sum / (w * h);
702 }
703 
get_diff_mean(const uint8_t * src,int src_stride,const uint8_t * dst,int dst_stride,int w,int h)704 static double get_diff_mean(const uint8_t *src, int src_stride,
705                             const uint8_t *dst, int dst_stride, int w, int h) {
706   double sum = 0.0;
707   for (int j = 0; j < h; ++j) {
708     for (int i = 0; i < w; ++i) {
709       const int diff = src[j * src_stride + i] - dst[j * dst_stride + i];
710       sum += diff;
711     }
712   }
713   assert(w > 0 && h > 0);
714   return sum / (w * h);
715 }
716 
PrintPredictionUnitStats(const AV1_COMP * const cpi,const TileDataEnc * tile_data,MACROBLOCK * x,const RD_STATS * const rd_stats,BLOCK_SIZE plane_bsize)717 static AOM_INLINE void PrintPredictionUnitStats(const AV1_COMP *const cpi,
718                                                 const TileDataEnc *tile_data,
719                                                 MACROBLOCK *x,
720                                                 const RD_STATS *const rd_stats,
721                                                 BLOCK_SIZE plane_bsize) {
722   if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return;
723 
724   if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 &&
725       (tile_data == NULL ||
726        !tile_data->inter_mode_rd_models[plane_bsize].ready))
727     return;
728   (void)tile_data;
729   // Generate small sample to restrict output size.
730   static unsigned int seed = 95014;
731 
732   if ((lcg_rand16(&seed) % (1 << (14 - num_pels_log2_lookup[plane_bsize]))) !=
733       1)
734     return;
735 
736   const char output_file[] = "pu_stats.txt";
737   FILE *fout = fopen(output_file, "a");
738   if (!fout) return;
739 
740   MACROBLOCKD *const xd = &x->e_mbd;
741   const int plane = 0;
742   struct macroblock_plane *const p = &x->plane[plane];
743   struct macroblockd_plane *pd = &xd->plane[plane];
744   const int diff_stride = block_size_wide[plane_bsize];
745   int bw, bh;
746   get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw,
747                      &bh);
748   const int num_samples = bw * bh;
749   const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
750   const int q_step = p->dequant_QTX[1] >> dequant_shift;
751   const int shift = (xd->bd - 8);
752 
753   const double rate_norm = (double)rd_stats->rate / num_samples;
754   const double dist_norm = (double)rd_stats->dist / num_samples;
755   const double rdcost_norm =
756       (double)RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) / num_samples;
757 
758   fprintf(fout, "%g %g %g", rate_norm, dist_norm, rdcost_norm);
759 
760   const int src_stride = p->src.stride;
761   const uint8_t *const src = p->src.buf;
762   const int dst_stride = pd->dst.stride;
763   const uint8_t *const dst = pd->dst.buf;
764   const int16_t *const src_diff = p->src_diff;
765 
766   int64_t sse = calculate_sse(xd, p, pd, bw, bh);
767   const double sse_norm = (double)sse / num_samples;
768 
769   const unsigned int sad =
770       cpi->ppi->fn_ptr[plane_bsize].sdf(src, src_stride, dst, dst_stride);
771   const double sad_norm =
772       (double)sad / (1 << num_pels_log2_lookup[plane_bsize]);
773 
774   fprintf(fout, " %g %g", sse_norm, sad_norm);
775 
776   double sse_norm_arr[4], sad_norm_arr[4];
777   get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst,
778                                    dst_stride, src_diff, diff_stride,
779                                    sse_norm_arr, sad_norm_arr);
780   if (shift) {
781     for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift));
782     for (int k = 0; k < 4; ++k) sad_norm_arr[k] /= (1 << shift);
783   }
784   for (int i = 0; i < 4; ++i) {
785     fprintf(fout, " %g", sse_norm_arr[i]);
786   }
787   for (int i = 0; i < 4; ++i) {
788     fprintf(fout, " %g", sad_norm_arr[i]);
789   }
790 
791   fprintf(fout, " %d %d %d %d", q_step, x->rdmult, bw, bh);
792 
793   int model_rate;
794   int64_t model_dist;
795   model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, plane_bsize, plane, sse, num_samples,
796                                    &model_rate, &model_dist);
797   const double model_rdcost_norm =
798       (double)RDCOST(x->rdmult, model_rate, model_dist) / num_samples;
799   const double model_rate_norm = (double)model_rate / num_samples;
800   const double model_dist_norm = (double)model_dist / num_samples;
801   fprintf(fout, " %g %g %g", model_rate_norm, model_dist_norm,
802           model_rdcost_norm);
803 
804   double mean;
805   if (is_cur_buf_hbd(xd)) {
806     mean = get_highbd_diff_mean(p->src.buf, p->src.stride, pd->dst.buf,
807                                 pd->dst.stride, bw, bh);
808   } else {
809     mean = get_diff_mean(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
810                          bw, bh);
811   }
812   mean /= (1 << shift);
813   float hor_corr, vert_corr;
814   av1_get_horver_correlation_full(src_diff, diff_stride, bw, bh, &hor_corr,
815                                   &vert_corr);
816   fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr);
817 
818   double hdist[4] = { 0 }, vdist[4] = { 0 };
819   get_energy_distribution_fine(cpi, plane_bsize, src, src_stride, dst,
820                                dst_stride, 1, hdist, vdist);
821   fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2],
822           hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]);
823 
824   if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
825     assert(tile_data->inter_mode_rd_models[plane_bsize].ready);
826     const int64_t overall_sse = get_sse(cpi, x);
827     int est_residue_cost = 0;
828     int64_t est_dist = 0;
829     get_est_rate_dist(tile_data, plane_bsize, overall_sse, &est_residue_cost,
830                       &est_dist);
831     const double est_residue_cost_norm = (double)est_residue_cost / num_samples;
832     const double est_dist_norm = (double)est_dist / num_samples;
833     const double est_rdcost_norm =
834         (double)RDCOST(x->rdmult, est_residue_cost, est_dist) / num_samples;
835     fprintf(fout, " %g %g %g", est_residue_cost_norm, est_dist_norm,
836             est_rdcost_norm);
837   }
838 
839   fprintf(fout, "\n");
840   fclose(fout);
841 }
842 #endif  // CONFIG_COLLECT_RD_STATS >= 2
843 #endif  // CONFIG_COLLECT_RD_STATS
844 
inverse_transform_block_facade(MACROBLOCK * const x,int plane,int block,int blk_row,int blk_col,int eob,int reduced_tx_set)845 static AOM_INLINE void inverse_transform_block_facade(MACROBLOCK *const x,
846                                                       int plane, int block,
847                                                       int blk_row, int blk_col,
848                                                       int eob,
849                                                       int reduced_tx_set) {
850   if (!eob) return;
851   struct macroblock_plane *const p = &x->plane[plane];
852   MACROBLOCKD *const xd = &x->e_mbd;
853   tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
854   const PLANE_TYPE plane_type = get_plane_type(plane);
855   const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
856   const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col,
857                                           tx_size, reduced_tx_set);
858 
859   struct macroblockd_plane *const pd = &xd->plane[plane];
860   const int dst_stride = pd->dst.stride;
861   uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
862   av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
863                               dst_stride, eob, reduced_tx_set);
864 }
865 
recon_intra(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,const TXB_CTX * const txb_ctx,int skip_trellis,TX_TYPE best_tx_type,int do_quant,int * rate_cost,uint16_t best_eob)866 static INLINE void recon_intra(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
867                                int block, int blk_row, int blk_col,
868                                BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
869                                const TXB_CTX *const txb_ctx, int skip_trellis,
870                                TX_TYPE best_tx_type, int do_quant,
871                                int *rate_cost, uint16_t best_eob) {
872   const AV1_COMMON *cm = &cpi->common;
873   MACROBLOCKD *xd = &x->e_mbd;
874   MB_MODE_INFO *mbmi = xd->mi[0];
875   const int is_inter = is_inter_block(mbmi);
876   if (!is_inter && best_eob &&
877       (blk_row + tx_size_high_unit[tx_size] < mi_size_high[plane_bsize] ||
878        blk_col + tx_size_wide_unit[tx_size] < mi_size_wide[plane_bsize])) {
879     // if the quantized coefficients are stored in the dqcoeff buffer, we don't
880     // need to do transform and quantization again.
881     if (do_quant) {
882       TxfmParam txfm_param_intra;
883       QUANT_PARAM quant_param_intra;
884       av1_setup_xform(cm, x, tx_size, best_tx_type, &txfm_param_intra);
885       av1_setup_quant(tx_size, !skip_trellis,
886                       skip_trellis
887                           ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B
888                                                     : AV1_XFORM_QUANT_FP)
889                           : AV1_XFORM_QUANT_FP,
890                       cpi->oxcf.q_cfg.quant_b_adapt, &quant_param_intra);
891       av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, best_tx_type,
892                         &quant_param_intra);
893       av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize,
894                       &txfm_param_intra, &quant_param_intra);
895       if (quant_param_intra.use_optimize_b) {
896         av1_optimize_b(cpi, x, plane, block, tx_size, best_tx_type, txb_ctx,
897                        rate_cost);
898       }
899     }
900 
901     inverse_transform_block_facade(x, plane, block, blk_row, blk_col,
902                                    x->plane[plane].eobs[block],
903                                    cm->features.reduced_tx_set_used);
904 
905     // This may happen because of hash collision. The eob stored in the hash
906     // table is non-zero, but the real eob is zero. We need to make sure tx_type
907     // is DCT_DCT in this case.
908     if (plane == 0 && x->plane[plane].eobs[block] == 0 &&
909         best_tx_type != DCT_DCT) {
910       update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
911     }
912   }
913 }
914 
pixel_dist_visible_only(const AV1_COMP * const cpi,const MACROBLOCK * x,const uint8_t * src,const int src_stride,const uint8_t * dst,const int dst_stride,const BLOCK_SIZE tx_bsize,int txb_rows,int txb_cols,int visible_rows,int visible_cols)915 static unsigned pixel_dist_visible_only(
916     const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src,
917     const int src_stride, const uint8_t *dst, const int dst_stride,
918     const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows,
919     int visible_cols) {
920   unsigned sse;
921 
922   if (txb_rows == visible_rows && txb_cols == visible_cols) {
923     cpi->ppi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
924     return sse;
925   }
926 
927 #if CONFIG_AV1_HIGHBITDEPTH
928   const MACROBLOCKD *xd = &x->e_mbd;
929   if (is_cur_buf_hbd(xd)) {
930     uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride,
931                                              visible_cols, visible_rows);
932     return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2);
933   }
934 #else
935   (void)x;
936 #endif
937   sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols,
938                          visible_rows);
939   return sse;
940 }
941 
942 // Compute the pixel domain distortion from src and dst on all visible 4x4s in
943 // the
944 // transform block.
pixel_dist(const AV1_COMP * const cpi,const MACROBLOCK * x,int plane,const uint8_t * src,const int src_stride,const uint8_t * dst,const int dst_stride,int blk_row,int blk_col,const BLOCK_SIZE plane_bsize,const BLOCK_SIZE tx_bsize)945 static unsigned pixel_dist(const AV1_COMP *const cpi, const MACROBLOCK *x,
946                            int plane, const uint8_t *src, const int src_stride,
947                            const uint8_t *dst, const int dst_stride,
948                            int blk_row, int blk_col,
949                            const BLOCK_SIZE plane_bsize,
950                            const BLOCK_SIZE tx_bsize) {
951   int txb_rows, txb_cols, visible_rows, visible_cols;
952   const MACROBLOCKD *xd = &x->e_mbd;
953 
954   get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize,
955                      &txb_cols, &txb_rows, &visible_cols, &visible_rows);
956   assert(visible_rows > 0);
957   assert(visible_cols > 0);
958 
959   unsigned sse = pixel_dist_visible_only(cpi, x, src, src_stride, dst,
960                                          dst_stride, tx_bsize, txb_rows,
961                                          txb_cols, visible_rows, visible_cols);
962 
963   return sse;
964 }
965 
dist_block_px_domain(const AV1_COMP * cpi,MACROBLOCK * x,int plane,BLOCK_SIZE plane_bsize,int block,int blk_row,int blk_col,TX_SIZE tx_size)966 static INLINE int64_t dist_block_px_domain(const AV1_COMP *cpi, MACROBLOCK *x,
967                                            int plane, BLOCK_SIZE plane_bsize,
968                                            int block, int blk_row, int blk_col,
969                                            TX_SIZE tx_size) {
970   MACROBLOCKD *const xd = &x->e_mbd;
971   const struct macroblock_plane *const p = &x->plane[plane];
972   const uint16_t eob = p->eobs[block];
973   const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
974   const int bsw = block_size_wide[tx_bsize];
975   const int bsh = block_size_high[tx_bsize];
976   const int src_stride = x->plane[plane].src.stride;
977   const int dst_stride = xd->plane[plane].dst.stride;
978   // Scale the transform block index to pixel unit.
979   const int src_idx = (blk_row * src_stride + blk_col) << MI_SIZE_LOG2;
980   const int dst_idx = (blk_row * dst_stride + blk_col) << MI_SIZE_LOG2;
981   const uint8_t *src = &x->plane[plane].src.buf[src_idx];
982   const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx];
983   const tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
984 
985   assert(cpi != NULL);
986   assert(tx_size_wide_log2[0] == tx_size_high_log2[0]);
987 
988   uint8_t *recon;
989   DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]);
990 
991 #if CONFIG_AV1_HIGHBITDEPTH
992   if (is_cur_buf_hbd(xd)) {
993     recon = CONVERT_TO_BYTEPTR(recon16);
994     aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(dst), dst_stride,
995                              CONVERT_TO_SHORTPTR(recon), MAX_TX_SIZE, bsw, bsh);
996   } else {
997     recon = (uint8_t *)recon16;
998     aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh);
999   }
1000 #else
1001   recon = (uint8_t *)recon16;
1002   aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh);
1003 #endif
1004 
1005   const PLANE_TYPE plane_type = get_plane_type(plane);
1006   TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
1007                                     cpi->common.features.reduced_tx_set_used);
1008   av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, recon,
1009                               MAX_TX_SIZE, eob,
1010                               cpi->common.features.reduced_tx_set_used);
1011 
1012   return 16 * pixel_dist(cpi, x, plane, src, src_stride, recon, MAX_TX_SIZE,
1013                          blk_row, blk_col, plane_bsize, tx_bsize);
1014 }
1015 
1016 // pruning thresholds for prune_txk_type and prune_txk_type_separ
1017 static const int prune_factors[5] = { 200, 200, 120, 80, 40 };  // scale 1000
1018 static const int mul_factors[5] = { 80, 80, 70, 50, 30 };       // scale 100
1019 
1020 // R-D costs are sorted in ascending order.
sort_rd(int64_t rds[],int txk[],int len)1021 static INLINE void sort_rd(int64_t rds[], int txk[], int len) {
1022   int i, j, k;
1023 
1024   for (i = 1; i <= len - 1; ++i) {
1025     for (j = 0; j < i; ++j) {
1026       if (rds[j] > rds[i]) {
1027         int64_t temprd;
1028         int tempi;
1029 
1030         temprd = rds[i];
1031         tempi = txk[i];
1032 
1033         for (k = i; k > j; k--) {
1034           rds[k] = rds[k - 1];
1035           txk[k] = txk[k - 1];
1036         }
1037 
1038         rds[j] = temprd;
1039         txk[j] = tempi;
1040         break;
1041       }
1042     }
1043   }
1044 }
1045 
av1_block_error_qm(const tran_low_t * coeff,const tran_low_t * dqcoeff,intptr_t block_size,const qm_val_t * qmatrix,const int16_t * scan,int64_t * ssz)1046 static INLINE int64_t av1_block_error_qm(const tran_low_t *coeff,
1047                                          const tran_low_t *dqcoeff,
1048                                          intptr_t block_size,
1049                                          const qm_val_t *qmatrix,
1050                                          const int16_t *scan, int64_t *ssz) {
1051   int i;
1052   int64_t error = 0, sqcoeff = 0;
1053 
1054   for (i = 0; i < block_size; i++) {
1055     int64_t weight = qmatrix[scan[i]];
1056     int64_t dd = coeff[i] - dqcoeff[i];
1057     dd *= weight;
1058     int64_t cc = coeff[i];
1059     cc *= weight;
1060     // The ranges of coeff and dqcoeff are
1061     //  bd8 : 18 bits (including sign)
1062     //  bd10: 20 bits (including sign)
1063     //  bd12: 22 bits (including sign)
1064     // As AOM_QM_BITS is 5, the intermediate quantities in the calculation
1065     // below should fit in 54 bits, thus no overflow should happen.
1066     error += (dd * dd + (1 << (2 * AOM_QM_BITS - 1))) >> (2 * AOM_QM_BITS);
1067     sqcoeff += (cc * cc + (1 << (2 * AOM_QM_BITS - 1))) >> (2 * AOM_QM_BITS);
1068   }
1069 
1070   *ssz = sqcoeff;
1071   return error;
1072 }
1073 
dist_block_tx_domain(MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,const qm_val_t * qmatrix,const int16_t * scan,int64_t * out_dist,int64_t * out_sse)1074 static INLINE void dist_block_tx_domain(MACROBLOCK *x, int plane, int block,
1075                                         TX_SIZE tx_size,
1076                                         const qm_val_t *qmatrix,
1077                                         const int16_t *scan, int64_t *out_dist,
1078                                         int64_t *out_sse) {
1079   const struct macroblock_plane *const p = &x->plane[plane];
1080   // Transform domain distortion computation is more efficient as it does
1081   // not involve an inverse transform, but it is less accurate.
1082   const int buffer_length = av1_get_max_eob(tx_size);
1083   int64_t this_sse;
1084   // TX-domain results need to shift down to Q2/D10 to match pixel
1085   // domain distortion values which are in Q2^2
1086   int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)) * 2;
1087   const int block_offset = BLOCK_OFFSET(block);
1088   tran_low_t *const coeff = p->coeff + block_offset;
1089   tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
1090 #if CONFIG_AV1_HIGHBITDEPTH
1091   MACROBLOCKD *const xd = &x->e_mbd;
1092   if (is_cur_buf_hbd(xd)) {
1093     // TODO(veluca): handle use_qm_dist_metric for HBD too.
1094     *out_dist = av1_highbd_block_error(coeff, dqcoeff, buffer_length, &this_sse,
1095                                        xd->bd);
1096   } else {
1097 #endif
1098     if (qmatrix == NULL || !x->txfm_search_params.use_qm_dist_metric) {
1099       *out_dist = av1_block_error(coeff, dqcoeff, buffer_length, &this_sse);
1100     } else {
1101       *out_dist = av1_block_error_qm(coeff, dqcoeff, buffer_length, qmatrix,
1102                                      scan, &this_sse);
1103     }
1104 #if CONFIG_AV1_HIGHBITDEPTH
1105   }
1106 #endif
1107 
1108   *out_dist = RIGHT_SIGNED_SHIFT(*out_dist, shift);
1109   *out_sse = RIGHT_SIGNED_SHIFT(this_sse, shift);
1110 }
1111 
prune_txk_type_separ(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,int * txk_map,int16_t allowed_tx_mask,int prune_factor,const TXB_CTX * const txb_ctx,int reduced_tx_set_used,int64_t ref_best_rd,int num_sel)1112 uint16_t prune_txk_type_separ(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
1113                               int block, TX_SIZE tx_size, int blk_row,
1114                               int blk_col, BLOCK_SIZE plane_bsize, int *txk_map,
1115                               int16_t allowed_tx_mask, int prune_factor,
1116                               const TXB_CTX *const txb_ctx,
1117                               int reduced_tx_set_used, int64_t ref_best_rd,
1118                               int num_sel) {
1119   const AV1_COMMON *cm = &cpi->common;
1120   MACROBLOCKD *xd = &x->e_mbd;
1121 
1122   int idx;
1123 
1124   int64_t rds_v[4];
1125   int64_t rds_h[4];
1126   int idx_v[4] = { 0, 1, 2, 3 };
1127   int idx_h[4] = { 0, 1, 2, 3 };
1128   int skip_v[4] = { 0 };
1129   int skip_h[4] = { 0 };
1130   const int idx_map[16] = {
1131     DCT_DCT,      DCT_ADST,      DCT_FLIPADST,      V_DCT,
1132     ADST_DCT,     ADST_ADST,     ADST_FLIPADST,     V_ADST,
1133     FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST,
1134     H_DCT,        H_ADST,        H_FLIPADST,        IDTX
1135   };
1136 
1137   const int sel_pattern_v[16] = {
1138     0, 0, 1, 1, 0, 2, 1, 2, 2, 0, 3, 1, 3, 2, 3, 3
1139   };
1140   const int sel_pattern_h[16] = {
1141     0, 1, 0, 1, 2, 0, 2, 1, 2, 3, 0, 3, 1, 3, 2, 3
1142   };
1143 
1144   QUANT_PARAM quant_param;
1145   TxfmParam txfm_param;
1146   av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
1147   av1_setup_quant(tx_size, 1, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
1148                   &quant_param);
1149   int tx_type;
1150   // to ensure we can try ones even outside of ext_tx_set of current block
1151   // this function should only be called for size < 16
1152   assert(txsize_sqr_up_map[tx_size] <= TX_16X16);
1153   txfm_param.tx_set_type = EXT_TX_SET_ALL16;
1154 
1155   int rate_cost = 0;
1156   int64_t dist = 0, sse = 0;
1157   // evaluate horizontal with vertical DCT
1158   for (idx = 0; idx < 4; ++idx) {
1159     tx_type = idx_map[idx];
1160     txfm_param.tx_type = tx_type;
1161 
1162     av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
1163                       &quant_param);
1164 
1165     av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
1166                     &quant_param);
1167 
1168     const SCAN_ORDER *const scan_order =
1169         get_scan(txfm_param.tx_size, txfm_param.tx_type);
1170     dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
1171                          scan_order->scan, &dist, &sse);
1172 
1173     rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type,
1174                                               txb_ctx, reduced_tx_set_used, 0);
1175 
1176     rds_h[idx] = RDCOST(x->rdmult, rate_cost, dist);
1177 
1178     if ((rds_h[idx] - (rds_h[idx] >> 2)) > ref_best_rd) {
1179       skip_h[idx] = 1;
1180     }
1181   }
1182   sort_rd(rds_h, idx_h, 4);
1183   for (idx = 1; idx < 4; idx++) {
1184     if (rds_h[idx] > rds_h[0] * 1.2) skip_h[idx_h[idx]] = 1;
1185   }
1186 
1187   if (skip_h[idx_h[0]]) return (uint16_t)0xFFFF;
1188 
1189   // evaluate vertical with the best horizontal chosen
1190   rds_v[0] = rds_h[0];
1191   int start_v = 1, end_v = 4;
1192   const int *idx_map_v = idx_map + idx_h[0];
1193 
1194   for (idx = start_v; idx < end_v; ++idx) {
1195     tx_type = idx_map_v[idx_v[idx] * 4];
1196     txfm_param.tx_type = tx_type;
1197 
1198     av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
1199                       &quant_param);
1200 
1201     av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
1202                     &quant_param);
1203 
1204     const SCAN_ORDER *const scan_order =
1205         get_scan(txfm_param.tx_size, txfm_param.tx_type);
1206     dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
1207                          scan_order->scan, &dist, &sse);
1208 
1209     rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type,
1210                                               txb_ctx, reduced_tx_set_used, 0);
1211 
1212     rds_v[idx] = RDCOST(x->rdmult, rate_cost, dist);
1213 
1214     if ((rds_v[idx] - (rds_v[idx] >> 2)) > ref_best_rd) {
1215       skip_v[idx] = 1;
1216     }
1217   }
1218   sort_rd(rds_v, idx_v, 4);
1219   for (idx = 1; idx < 4; idx++) {
1220     if (rds_v[idx] > rds_v[0] * 1.2) skip_v[idx_v[idx]] = 1;
1221   }
1222 
1223   // combine rd_h and rd_v to prune tx candidates
1224   int i_v, i_h;
1225   int64_t rds[16];
1226   int num_cand = 0, last = TX_TYPES - 1;
1227 
1228   for (int i = 0; i < 16; i++) {
1229     i_v = sel_pattern_v[i];
1230     i_h = sel_pattern_h[i];
1231     tx_type = idx_map[idx_v[i_v] * 4 + idx_h[i_h]];
1232     if (!(allowed_tx_mask & (1 << tx_type)) || skip_h[idx_h[i_h]] ||
1233         skip_v[idx_v[i_v]]) {
1234       txk_map[last] = tx_type;
1235       last--;
1236     } else {
1237       txk_map[num_cand] = tx_type;
1238       rds[num_cand] = rds_v[i_v] + rds_h[i_h];
1239       if (rds[num_cand] == 0) rds[num_cand] = 1;
1240       num_cand++;
1241     }
1242   }
1243   sort_rd(rds, txk_map, num_cand);
1244 
1245   uint16_t prune = (uint16_t)(~(1 << txk_map[0]));
1246   num_sel = AOMMIN(num_sel, num_cand);
1247 
1248   for (int i = 1; i < num_sel; i++) {
1249     int64_t factor = 1800 * (rds[i] - rds[0]) / (rds[0]);
1250     if (factor < (int64_t)prune_factor)
1251       prune &= ~(1 << txk_map[i]);
1252     else
1253       break;
1254   }
1255   return prune;
1256 }
1257 
prune_txk_type(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,int * txk_map,uint16_t allowed_tx_mask,int prune_factor,const TXB_CTX * const txb_ctx,int reduced_tx_set_used)1258 uint16_t prune_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
1259                         int block, TX_SIZE tx_size, int blk_row, int blk_col,
1260                         BLOCK_SIZE plane_bsize, int *txk_map,
1261                         uint16_t allowed_tx_mask, int prune_factor,
1262                         const TXB_CTX *const txb_ctx, int reduced_tx_set_used) {
1263   const AV1_COMMON *cm = &cpi->common;
1264   MACROBLOCKD *xd = &x->e_mbd;
1265   int tx_type;
1266 
1267   int64_t rds[TX_TYPES];
1268 
1269   int num_cand = 0;
1270   int last = TX_TYPES - 1;
1271 
1272   TxfmParam txfm_param;
1273   QUANT_PARAM quant_param;
1274   av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
1275   av1_setup_quant(tx_size, 1, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
1276                   &quant_param);
1277 
1278   for (int idx = 0; idx < TX_TYPES; idx++) {
1279     tx_type = idx;
1280     int rate_cost = 0;
1281     int64_t dist = 0, sse = 0;
1282     if (!(allowed_tx_mask & (1 << tx_type))) {
1283       txk_map[last] = tx_type;
1284       last--;
1285       continue;
1286     }
1287     txfm_param.tx_type = tx_type;
1288 
1289     av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
1290                       &quant_param);
1291 
1292     // do txfm and quantization
1293     av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
1294                     &quant_param);
1295     // estimate rate cost
1296     rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type,
1297                                               txb_ctx, reduced_tx_set_used, 0);
1298     // tx domain dist
1299     const SCAN_ORDER *const scan_order =
1300         get_scan(txfm_param.tx_size, txfm_param.tx_type);
1301     dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
1302                          scan_order->scan, &dist, &sse);
1303 
1304     txk_map[num_cand] = tx_type;
1305     rds[num_cand] = RDCOST(x->rdmult, rate_cost, dist);
1306     if (rds[num_cand] == 0) rds[num_cand] = 1;
1307     num_cand++;
1308   }
1309 
1310   if (num_cand == 0) return (uint16_t)0xFFFF;
1311 
1312   sort_rd(rds, txk_map, num_cand);
1313   uint16_t prune = (uint16_t)(~(1 << txk_map[0]));
1314 
1315   // 0 < prune_factor <= 1000 controls aggressiveness
1316   int64_t factor = 0;
1317   for (int idx = 1; idx < num_cand; idx++) {
1318     factor = 1000 * (rds[idx] - rds[0]) / rds[0];
1319     if (factor < (int64_t)prune_factor)
1320       prune &= ~(1 << txk_map[idx]);
1321     else
1322       break;
1323   }
1324   return prune;
1325 }
1326 
1327 // These thresholds were calibrated to provide a certain number of TX types
1328 // pruned by the model on average, i.e. selecting a threshold with index i
1329 // will lead to pruning i+1 TX types on average
1330 static const float *prune_2D_adaptive_thresholds[] = {
1331   // TX_4X4
1332   (float[]){ 0.00549f, 0.01306f, 0.02039f, 0.02747f, 0.03406f, 0.04065f,
1333              0.04724f, 0.05383f, 0.06067f, 0.06799f, 0.07605f, 0.08533f,
1334              0.09778f, 0.11780f },
1335   // TX_8X8
1336   (float[]){ 0.00037f, 0.00183f, 0.00525f, 0.01038f, 0.01697f, 0.02502f,
1337              0.03381f, 0.04333f, 0.05286f, 0.06287f, 0.07434f, 0.08850f,
1338              0.10803f, 0.14124f },
1339   // TX_16X16
1340   (float[]){ 0.01404f, 0.02000f, 0.04211f, 0.05164f, 0.05798f, 0.06335f,
1341              0.06897f, 0.07629f, 0.08875f, 0.11169f },
1342   // TX_32X32
1343   NULL,
1344   // TX_64X64
1345   NULL,
1346   // TX_4X8
1347   (float[]){ 0.00183f, 0.00745f, 0.01428f, 0.02185f, 0.02966f, 0.03723f,
1348              0.04456f, 0.05188f, 0.05920f, 0.06702f, 0.07605f, 0.08704f,
1349              0.10168f, 0.12585f },
1350   // TX_8X4
1351   (float[]){ 0.00085f, 0.00476f, 0.01135f, 0.01892f, 0.02698f, 0.03528f,
1352              0.04358f, 0.05164f, 0.05994f, 0.06848f, 0.07849f, 0.09021f,
1353              0.10583f, 0.13123f },
1354   // TX_8X16
1355   (float[]){ 0.00037f, 0.00232f, 0.00671f, 0.01257f, 0.01965f, 0.02722f,
1356              0.03552f, 0.04382f, 0.05237f, 0.06189f, 0.07336f, 0.08728f,
1357              0.10730f, 0.14221f },
1358   // TX_16X8
1359   (float[]){ 0.00061f, 0.00330f, 0.00818f, 0.01453f, 0.02185f, 0.02966f,
1360              0.03772f, 0.04578f, 0.05383f, 0.06262f, 0.07288f, 0.08582f,
1361              0.10339f, 0.13464f },
1362   // TX_16X32
1363   NULL,
1364   // TX_32X16
1365   NULL,
1366   // TX_32X64
1367   NULL,
1368   // TX_64X32
1369   NULL,
1370   // TX_4X16
1371   (float[]){ 0.00232f, 0.00671f, 0.01257f, 0.01941f, 0.02673f, 0.03430f,
1372              0.04211f, 0.04968f, 0.05750f, 0.06580f, 0.07507f, 0.08655f,
1373              0.10242f, 0.12878f },
1374   // TX_16X4
1375   (float[]){ 0.00110f, 0.00525f, 0.01208f, 0.01990f, 0.02795f, 0.03601f,
1376              0.04358f, 0.05115f, 0.05896f, 0.06702f, 0.07629f, 0.08752f,
1377              0.10217f, 0.12610f },
1378   // TX_8X32
1379   NULL,
1380   // TX_32X8
1381   NULL,
1382   // TX_16X64
1383   NULL,
1384   // TX_64X16
1385   NULL,
1386 };
1387 
get_adaptive_thresholds(TX_SIZE tx_size,TxSetType tx_set_type,TX_TYPE_PRUNE_MODE prune_2d_txfm_mode)1388 static INLINE float get_adaptive_thresholds(
1389     TX_SIZE tx_size, TxSetType tx_set_type,
1390     TX_TYPE_PRUNE_MODE prune_2d_txfm_mode) {
1391   const int prune_aggr_table[5][2] = {
1392     { 4, 1 }, { 6, 3 }, { 9, 6 }, { 9, 6 }, { 12, 9 }
1393   };
1394   int pruning_aggressiveness = 0;
1395   if (tx_set_type == EXT_TX_SET_ALL16)
1396     pruning_aggressiveness =
1397         prune_aggr_table[prune_2d_txfm_mode - TX_TYPE_PRUNE_1][0];
1398   else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT)
1399     pruning_aggressiveness =
1400         prune_aggr_table[prune_2d_txfm_mode - TX_TYPE_PRUNE_1][1];
1401 
1402   return prune_2D_adaptive_thresholds[tx_size][pruning_aggressiveness];
1403 }
1404 
get_energy_distribution_finer(const int16_t * diff,int stride,int bw,int bh,float * hordist,float * verdist)1405 static AOM_INLINE void get_energy_distribution_finer(const int16_t *diff,
1406                                                      int stride, int bw, int bh,
1407                                                      float *hordist,
1408                                                      float *verdist) {
1409   // First compute downscaled block energy values (esq); downscale factors
1410   // are defined by w_shift and h_shift.
1411   unsigned int esq[256];
1412   const int w_shift = bw <= 8 ? 0 : 1;
1413   const int h_shift = bh <= 8 ? 0 : 1;
1414   const int esq_w = bw >> w_shift;
1415   const int esq_h = bh >> h_shift;
1416   const int esq_sz = esq_w * esq_h;
1417   int i, j;
1418   memset(esq, 0, esq_sz * sizeof(esq[0]));
1419   if (w_shift) {
1420     for (i = 0; i < bh; i++) {
1421       unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
1422       const int16_t *cur_diff_row = diff + i * stride;
1423       for (j = 0; j < bw; j += 2) {
1424         cur_esq_row[j >> 1] += (cur_diff_row[j] * cur_diff_row[j] +
1425                                 cur_diff_row[j + 1] * cur_diff_row[j + 1]);
1426       }
1427     }
1428   } else {
1429     for (i = 0; i < bh; i++) {
1430       unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
1431       const int16_t *cur_diff_row = diff + i * stride;
1432       for (j = 0; j < bw; j++) {
1433         cur_esq_row[j] += cur_diff_row[j] * cur_diff_row[j];
1434       }
1435     }
1436   }
1437 
1438   uint64_t total = 0;
1439   for (i = 0; i < esq_sz; i++) total += esq[i];
1440 
1441   // Output hordist and verdist arrays are normalized 1D projections of esq
1442   if (total == 0) {
1443     float hor_val = 1.0f / esq_w;
1444     for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val;
1445     float ver_val = 1.0f / esq_h;
1446     for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val;
1447     return;
1448   }
1449 
1450   const float e_recip = 1.0f / (float)total;
1451   memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0]));
1452   memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0]));
1453   const unsigned int *cur_esq_row;
1454   for (i = 0; i < esq_h - 1; i++) {
1455     cur_esq_row = esq + i * esq_w;
1456     for (j = 0; j < esq_w - 1; j++) {
1457       hordist[j] += (float)cur_esq_row[j];
1458       verdist[i] += (float)cur_esq_row[j];
1459     }
1460     verdist[i] += (float)cur_esq_row[j];
1461   }
1462   cur_esq_row = esq + i * esq_w;
1463   for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j];
1464 
1465   for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip;
1466   for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip;
1467 }
1468 
check_bit_mask(uint16_t mask,int val)1469 static AOM_INLINE bool check_bit_mask(uint16_t mask, int val) {
1470   return mask & (1 << val);
1471 }
1472 
set_bit_mask(uint16_t * mask,int val)1473 static AOM_INLINE void set_bit_mask(uint16_t *mask, int val) {
1474   *mask |= (1 << val);
1475 }
1476 
unset_bit_mask(uint16_t * mask,int val)1477 static AOM_INLINE void unset_bit_mask(uint16_t *mask, int val) {
1478   *mask &= ~(1 << val);
1479 }
1480 
prune_tx_2D(MACROBLOCK * x,BLOCK_SIZE bsize,TX_SIZE tx_size,int blk_row,int blk_col,TxSetType tx_set_type,TX_TYPE_PRUNE_MODE prune_2d_txfm_mode,int * txk_map,uint16_t * allowed_tx_mask)1481 static void prune_tx_2D(MACROBLOCK *x, BLOCK_SIZE bsize, TX_SIZE tx_size,
1482                         int blk_row, int blk_col, TxSetType tx_set_type,
1483                         TX_TYPE_PRUNE_MODE prune_2d_txfm_mode, int *txk_map,
1484                         uint16_t *allowed_tx_mask) {
1485   // This table is used because the search order is different from the enum
1486   // order.
1487   static const int tx_type_table_2D[16] = {
1488     DCT_DCT,      DCT_ADST,      DCT_FLIPADST,      V_DCT,
1489     ADST_DCT,     ADST_ADST,     ADST_FLIPADST,     V_ADST,
1490     FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST,
1491     H_DCT,        H_ADST,        H_FLIPADST,        IDTX
1492   };
1493   if (tx_set_type != EXT_TX_SET_ALL16 &&
1494       tx_set_type != EXT_TX_SET_DTT9_IDTX_1DDCT)
1495     return;
1496 #if CONFIG_NN_V2
1497   NN_CONFIG_V2 *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size];
1498   NN_CONFIG_V2 *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size];
1499 #else
1500   const NN_CONFIG *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size];
1501   const NN_CONFIG *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size];
1502 #endif
1503   if (!nn_config_hor || !nn_config_ver) return;  // Model not established yet.
1504 
1505   float hfeatures[16], vfeatures[16];
1506   float hscores[4], vscores[4];
1507   float scores_2D_raw[16];
1508   const int bw = tx_size_wide[tx_size];
1509   const int bh = tx_size_high[tx_size];
1510   const int hfeatures_num = bw <= 8 ? bw : bw / 2;
1511   const int vfeatures_num = bh <= 8 ? bh : bh / 2;
1512   assert(hfeatures_num <= 16);
1513   assert(vfeatures_num <= 16);
1514 
1515   const struct macroblock_plane *const p = &x->plane[0];
1516   const int diff_stride = block_size_wide[bsize];
1517   const int16_t *diff = p->src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
1518   get_energy_distribution_finer(diff, diff_stride, bw, bh, hfeatures,
1519                                 vfeatures);
1520 
1521   av1_get_horver_correlation_full(diff, diff_stride, bw, bh,
1522                                   &hfeatures[hfeatures_num - 1],
1523                                   &vfeatures[vfeatures_num - 1]);
1524 
1525 #if CONFIG_NN_V2
1526   av1_nn_predict_v2(hfeatures, nn_config_hor, 0, hscores);
1527   av1_nn_predict_v2(vfeatures, nn_config_ver, 0, vscores);
1528 #else
1529   av1_nn_predict(hfeatures, nn_config_hor, 1, hscores);
1530   av1_nn_predict(vfeatures, nn_config_ver, 1, vscores);
1531 #endif
1532 
1533   for (int i = 0; i < 4; i++) {
1534     float *cur_scores_2D = scores_2D_raw + i * 4;
1535     cur_scores_2D[0] = vscores[i] * hscores[0];
1536     cur_scores_2D[1] = vscores[i] * hscores[1];
1537     cur_scores_2D[2] = vscores[i] * hscores[2];
1538     cur_scores_2D[3] = vscores[i] * hscores[3];
1539   }
1540 
1541   assert(TX_TYPES == 16);
1542   // This version of the function only works when there are at most 16 classes.
1543   // So we will need to change the optimization or use av1_nn_softmax instead if
1544   // this ever gets changed.
1545   av1_nn_fast_softmax_16(scores_2D_raw, scores_2D_raw);
1546 
1547   const float score_thresh =
1548       get_adaptive_thresholds(tx_size, tx_set_type, prune_2d_txfm_mode);
1549 
1550   // Always keep the TX type with the highest score, prune all others with
1551   // score below score_thresh.
1552   int max_score_i = 0;
1553   float max_score = 0.0f;
1554   uint16_t allow_bitmask = 0;
1555   float sum_score = 0.0;
1556   // Calculate sum of allowed tx type score and Populate allow bit mask based
1557   // on score_thresh and allowed_tx_mask
1558   int allow_count = 0;
1559   int tx_type_allowed[16] = { TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1560                               TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1561                               TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1562                               TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1563                               TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
1564                               TX_TYPE_INVALID };
1565   float scores_2D[16] = {
1566     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1567   };
1568   for (int tx_idx = 0; tx_idx < TX_TYPES; tx_idx++) {
1569     const int allow_tx_type =
1570         check_bit_mask(*allowed_tx_mask, tx_type_table_2D[tx_idx]);
1571     if (!allow_tx_type) {
1572       continue;
1573     }
1574     if (scores_2D_raw[tx_idx] > max_score) {
1575       max_score = scores_2D_raw[tx_idx];
1576       max_score_i = tx_idx;
1577     }
1578     if (scores_2D_raw[tx_idx] >= score_thresh) {
1579       // Set allow mask based on score_thresh
1580       set_bit_mask(&allow_bitmask, tx_type_table_2D[tx_idx]);
1581 
1582       // Accumulate score of allowed tx type
1583       sum_score += scores_2D_raw[tx_idx];
1584 
1585       scores_2D[allow_count] = scores_2D_raw[tx_idx];
1586       tx_type_allowed[allow_count] = tx_type_table_2D[tx_idx];
1587       allow_count += 1;
1588     }
1589   }
1590   if (!check_bit_mask(allow_bitmask, tx_type_table_2D[max_score_i])) {
1591     // If even the tx_type with max score is pruned, this means that no other
1592     // tx_type is feasible. When this happens, we force enable max_score_i and
1593     // end the search.
1594     set_bit_mask(&allow_bitmask, tx_type_table_2D[max_score_i]);
1595     memcpy(txk_map, tx_type_table_2D, sizeof(tx_type_table_2D));
1596     *allowed_tx_mask = allow_bitmask;
1597     return;
1598   }
1599 
1600   // Sort tx type probability of all types
1601   if (allow_count <= 8) {
1602     av1_sort_fi32_8(scores_2D, tx_type_allowed);
1603   } else {
1604     av1_sort_fi32_16(scores_2D, tx_type_allowed);
1605   }
1606 
1607   // Enable more pruning based on tx type probability and number of allowed tx
1608   // types
1609   if (prune_2d_txfm_mode >= TX_TYPE_PRUNE_4) {
1610     float temp_score = 0.0;
1611     float score_ratio = 0.0;
1612     int tx_idx, tx_count = 0;
1613     const float inv_sum_score = 100 / sum_score;
1614     // Get allowed tx types based on sorted probability score and tx count
1615     for (tx_idx = 0; tx_idx < allow_count; tx_idx++) {
1616       // Skip the tx type which has more than 30% of cumulative
1617       // probability and allowed tx type count is more than 2
1618       if (score_ratio > 30.0 && tx_count >= 2) break;
1619 
1620       assert(check_bit_mask(allow_bitmask, tx_type_allowed[tx_idx]));
1621       // Calculate cumulative probability
1622       temp_score += scores_2D[tx_idx];
1623 
1624       // Calculate percentage of cumulative probability of allowed tx type
1625       score_ratio = temp_score * inv_sum_score;
1626       tx_count++;
1627     }
1628     // Set remaining tx types as pruned
1629     for (; tx_idx < allow_count; tx_idx++)
1630       unset_bit_mask(&allow_bitmask, tx_type_allowed[tx_idx]);
1631   }
1632 
1633   memcpy(txk_map, tx_type_allowed, sizeof(tx_type_table_2D));
1634   *allowed_tx_mask = allow_bitmask;
1635 }
1636 
get_dev(float mean,double x2_sum,int num)1637 static float get_dev(float mean, double x2_sum, int num) {
1638   const float e_x2 = (float)(x2_sum / num);
1639   const float diff = e_x2 - mean * mean;
1640   const float dev = (diff > 0) ? sqrtf(diff) : 0;
1641   return dev;
1642 }
1643 
1644 // Writes the features required by the ML model to predict tx split based on
1645 // mean and standard deviation values of the block and sub-blocks.
1646 // Returns the number of elements written to the output array which is at most
1647 // 12 currently. Hence 'features' buffer should be able to accommodate at least
1648 // 12 elements.
get_mean_dev_features(const int16_t * data,int stride,int bw,int bh,float * features)1649 static AOM_INLINE int get_mean_dev_features(const int16_t *data, int stride,
1650                                             int bw, int bh, float *features) {
1651   const int16_t *const data_ptr = &data[0];
1652   const int subh = (bh >= bw) ? (bh >> 1) : bh;
1653   const int subw = (bw >= bh) ? (bw >> 1) : bw;
1654   const int num = bw * bh;
1655   const int sub_num = subw * subh;
1656   int feature_idx = 2;
1657   int total_x_sum = 0;
1658   int64_t total_x2_sum = 0;
1659   int num_sub_blks = 0;
1660   double mean2_sum = 0.0f;
1661   float dev_sum = 0.0f;
1662 
1663   for (int row = 0; row < bh; row += subh) {
1664     for (int col = 0; col < bw; col += subw) {
1665       int x_sum;
1666       int64_t x2_sum;
1667       // TODO(any): Write a SIMD version. Clear registers.
1668       aom_get_blk_sse_sum(data_ptr + row * stride + col, stride, subw, subh,
1669                           &x_sum, &x2_sum);
1670       total_x_sum += x_sum;
1671       total_x2_sum += x2_sum;
1672 
1673       const float mean = (float)x_sum / sub_num;
1674       const float dev = get_dev(mean, (double)x2_sum, sub_num);
1675       features[feature_idx++] = mean;
1676       features[feature_idx++] = dev;
1677       mean2_sum += (double)(mean * mean);
1678       dev_sum += dev;
1679       num_sub_blks++;
1680     }
1681   }
1682 
1683   const float lvl0_mean = (float)total_x_sum / num;
1684   features[0] = lvl0_mean;
1685   features[1] = get_dev(lvl0_mean, (double)total_x2_sum, num);
1686 
1687   // Deviation of means.
1688   features[feature_idx++] = get_dev(lvl0_mean, mean2_sum, num_sub_blks);
1689   // Mean of deviations.
1690   features[feature_idx++] = dev_sum / num_sub_blks;
1691 
1692   return feature_idx;
1693 }
1694 
ml_predict_tx_split(MACROBLOCK * x,BLOCK_SIZE bsize,int blk_row,int blk_col,TX_SIZE tx_size)1695 static int ml_predict_tx_split(MACROBLOCK *x, BLOCK_SIZE bsize, int blk_row,
1696                                int blk_col, TX_SIZE tx_size) {
1697   const NN_CONFIG *nn_config = av1_tx_split_nnconfig_map[tx_size];
1698   if (!nn_config) return -1;
1699 
1700   const int diff_stride = block_size_wide[bsize];
1701   const int16_t *diff =
1702       x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
1703   const int bw = tx_size_wide[tx_size];
1704   const int bh = tx_size_high[tx_size];
1705 
1706   float features[64] = { 0.0f };
1707   get_mean_dev_features(diff, diff_stride, bw, bh, features);
1708 
1709   float score = 0.0f;
1710   av1_nn_predict(features, nn_config, 1, &score);
1711 
1712   int int_score = (int)(score * 10000);
1713   return clamp(int_score, -80000, 80000);
1714 }
1715 
1716 static INLINE uint16_t
get_tx_mask(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,const TXB_CTX * const txb_ctx,FAST_TX_SEARCH_MODE ftxs_mode,int64_t ref_best_rd,TX_TYPE * allowed_txk_types,int * txk_map)1717 get_tx_mask(const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block,
1718             int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1719             const TXB_CTX *const txb_ctx, FAST_TX_SEARCH_MODE ftxs_mode,
1720             int64_t ref_best_rd, TX_TYPE *allowed_txk_types, int *txk_map) {
1721   const AV1_COMMON *cm = &cpi->common;
1722   MACROBLOCKD *xd = &x->e_mbd;
1723   MB_MODE_INFO *mbmi = xd->mi[0];
1724   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
1725   const int is_inter = is_inter_block(mbmi);
1726   const int fast_tx_search = ftxs_mode & FTXS_DCT_AND_1D_DCT_ONLY;
1727   // if txk_allowed = TX_TYPES, >1 tx types are allowed, else, if txk_allowed <
1728   // TX_TYPES, only that specific tx type is allowed.
1729   TX_TYPE txk_allowed = TX_TYPES;
1730 
1731   const FRAME_UPDATE_TYPE update_type =
1732       get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
1733   int use_actual_frame_probs = 1;
1734   const int *tx_type_probs;
1735 #if CONFIG_FPMT_TEST
1736   use_actual_frame_probs =
1737       (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
1738   if (!use_actual_frame_probs) {
1739     tx_type_probs =
1740         (int *)cpi->ppi->temp_frame_probs.tx_type_probs[update_type][tx_size];
1741   }
1742 #endif
1743   if (use_actual_frame_probs) {
1744     tx_type_probs = cpi->ppi->frame_probs.tx_type_probs[update_type][tx_size];
1745   }
1746 
1747   if ((!is_inter && txfm_params->use_default_intra_tx_type) ||
1748       (is_inter && txfm_params->default_inter_tx_type_prob_thresh == 0)) {
1749     txk_allowed =
1750         get_default_tx_type(0, xd, tx_size, cpi->use_screen_content_tools);
1751   } else if (is_inter &&
1752              txfm_params->default_inter_tx_type_prob_thresh != INT_MAX) {
1753     if (tx_type_probs[DEFAULT_INTER_TX_TYPE] >
1754         txfm_params->default_inter_tx_type_prob_thresh) {
1755       txk_allowed = DEFAULT_INTER_TX_TYPE;
1756     } else {
1757       int force_tx_type = 0;
1758       int max_prob = 0;
1759       const int tx_type_prob_threshold =
1760           txfm_params->default_inter_tx_type_prob_thresh +
1761           PROB_THRESH_OFFSET_TX_TYPE;
1762       for (int i = 1; i < TX_TYPES; i++) {  // find maximum probability.
1763         if (tx_type_probs[i] > max_prob) {
1764           max_prob = tx_type_probs[i];
1765           force_tx_type = i;
1766         }
1767       }
1768       if (max_prob > tx_type_prob_threshold)  // force tx type with max prob.
1769         txk_allowed = force_tx_type;
1770       else if (x->rd_model == LOW_TXFM_RD) {
1771         if (plane == 0) txk_allowed = DCT_DCT;
1772       }
1773     }
1774   } else if (x->rd_model == LOW_TXFM_RD) {
1775     if (plane == 0) txk_allowed = DCT_DCT;
1776   }
1777 
1778   const TxSetType tx_set_type = av1_get_ext_tx_set_type(
1779       tx_size, is_inter, cm->features.reduced_tx_set_used);
1780 
1781   TX_TYPE uv_tx_type = DCT_DCT;
1782   if (plane) {
1783     // tx_type of PLANE_TYPE_UV should be the same as PLANE_TYPE_Y
1784     uv_tx_type = txk_allowed =
1785         av1_get_tx_type(xd, get_plane_type(plane), blk_row, blk_col, tx_size,
1786                         cm->features.reduced_tx_set_used);
1787   }
1788   PREDICTION_MODE intra_dir =
1789       mbmi->filter_intra_mode_info.use_filter_intra
1790           ? fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]
1791           : mbmi->mode;
1792   uint16_t ext_tx_used_flag =
1793       cpi->sf.tx_sf.tx_type_search.use_reduced_intra_txset != 0 &&
1794               tx_set_type == EXT_TX_SET_DTT4_IDTX_1DDCT
1795           ? av1_reduced_intra_tx_used_flag[intra_dir]
1796           : av1_ext_tx_used_flag[tx_set_type];
1797 
1798   if (cpi->sf.tx_sf.tx_type_search.use_reduced_intra_txset == 2)
1799     ext_tx_used_flag &= av1_derived_intra_tx_used_flag[intra_dir];
1800 
1801   if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32 ||
1802       ext_tx_used_flag == 0x0001 ||
1803       (is_inter && cpi->oxcf.txfm_cfg.use_inter_dct_only) ||
1804       (!is_inter && cpi->oxcf.txfm_cfg.use_intra_dct_only)) {
1805     txk_allowed = DCT_DCT;
1806   }
1807 
1808   if (cpi->oxcf.txfm_cfg.enable_flip_idtx == 0)
1809     ext_tx_used_flag &= DCT_ADST_TX_MASK;
1810 
1811   uint16_t allowed_tx_mask = 0;  // 1: allow; 0: skip.
1812   if (txk_allowed < TX_TYPES) {
1813     allowed_tx_mask = 1 << txk_allowed;
1814     allowed_tx_mask &= ext_tx_used_flag;
1815   } else if (fast_tx_search) {
1816     allowed_tx_mask = 0x0c01;  // V_DCT, H_DCT, DCT_DCT
1817     allowed_tx_mask &= ext_tx_used_flag;
1818   } else {
1819     assert(plane == 0);
1820     allowed_tx_mask = ext_tx_used_flag;
1821     int num_allowed = 0;
1822     int i;
1823 
1824     if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats) {
1825       static const int thresh_arr[2][7] = { { 10, 15, 15, 10, 15, 15, 15 },
1826                                             { 10, 17, 17, 10, 17, 17, 17 } };
1827       const int thresh =
1828           thresh_arr[cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats - 1]
1829                     [update_type];
1830       uint16_t prune = 0;
1831       int max_prob = -1;
1832       int max_idx = 0;
1833       for (i = 0; i < TX_TYPES; i++) {
1834         if (tx_type_probs[i] > max_prob && (allowed_tx_mask & (1 << i))) {
1835           max_prob = tx_type_probs[i];
1836           max_idx = i;
1837         }
1838         if (tx_type_probs[i] < thresh) prune |= (1 << i);
1839       }
1840       if ((prune >> max_idx) & 0x01) prune &= ~(1 << max_idx);
1841       allowed_tx_mask &= (~prune);
1842     }
1843     for (i = 0; i < TX_TYPES; i++) {
1844       if (allowed_tx_mask & (1 << i)) num_allowed++;
1845     }
1846     assert(num_allowed > 0);
1847 
1848     if (num_allowed > 2 && cpi->sf.tx_sf.tx_type_search.prune_tx_type_est_rd) {
1849       int pf = prune_factors[txfm_params->prune_2d_txfm_mode];
1850       int mf = mul_factors[txfm_params->prune_2d_txfm_mode];
1851       if (num_allowed <= 7) {
1852         const uint16_t prune =
1853             prune_txk_type(cpi, x, plane, block, tx_size, blk_row, blk_col,
1854                            plane_bsize, txk_map, allowed_tx_mask, pf, txb_ctx,
1855                            cm->features.reduced_tx_set_used);
1856         allowed_tx_mask &= (~prune);
1857       } else {
1858         const int num_sel = (num_allowed * mf + 50) / 100;
1859         const uint16_t prune = prune_txk_type_separ(
1860             cpi, x, plane, block, tx_size, blk_row, blk_col, plane_bsize,
1861             txk_map, allowed_tx_mask, pf, txb_ctx,
1862             cm->features.reduced_tx_set_used, ref_best_rd, num_sel);
1863 
1864         allowed_tx_mask &= (~prune);
1865       }
1866     } else {
1867       assert(num_allowed > 0);
1868       int allowed_tx_count =
1869           (txfm_params->prune_2d_txfm_mode >= TX_TYPE_PRUNE_4) ? 1 : 5;
1870       // !fast_tx_search && txk_end != txk_start && plane == 0
1871       if (txfm_params->prune_2d_txfm_mode >= TX_TYPE_PRUNE_1 && is_inter &&
1872           num_allowed > allowed_tx_count) {
1873         prune_tx_2D(x, plane_bsize, tx_size, blk_row, blk_col, tx_set_type,
1874                     txfm_params->prune_2d_txfm_mode, txk_map, &allowed_tx_mask);
1875       }
1876     }
1877   }
1878 
1879   // Need to have at least one transform type allowed.
1880   if (allowed_tx_mask == 0) {
1881     txk_allowed = (plane ? uv_tx_type : DCT_DCT);
1882     allowed_tx_mask = (1 << txk_allowed);
1883   }
1884 
1885   assert(IMPLIES(txk_allowed < TX_TYPES, allowed_tx_mask == 1 << txk_allowed));
1886   *allowed_txk_types = txk_allowed;
1887   return allowed_tx_mask;
1888 }
1889 
1890 #if CONFIG_RD_DEBUG
update_txb_coeff_cost(RD_STATS * rd_stats,int plane,int txb_coeff_cost)1891 static INLINE void update_txb_coeff_cost(RD_STATS *rd_stats, int plane,
1892                                          int txb_coeff_cost) {
1893   rd_stats->txb_coeff_cost[plane] += txb_coeff_cost;
1894 }
1895 #endif
1896 
cost_coeffs(MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,const TX_TYPE tx_type,const TXB_CTX * const txb_ctx,int reduced_tx_set_used)1897 static INLINE int cost_coeffs(MACROBLOCK *x, int plane, int block,
1898                               TX_SIZE tx_size, const TX_TYPE tx_type,
1899                               const TXB_CTX *const txb_ctx,
1900                               int reduced_tx_set_used) {
1901 #if TXCOEFF_COST_TIMER
1902   struct aom_usec_timer timer;
1903   aom_usec_timer_start(&timer);
1904 #endif
1905   const int cost = av1_cost_coeffs_txb(x, plane, block, tx_size, tx_type,
1906                                        txb_ctx, reduced_tx_set_used);
1907 #if TXCOEFF_COST_TIMER
1908   AV1_COMMON *tmp_cm = (AV1_COMMON *)&cpi->common;
1909   aom_usec_timer_mark(&timer);
1910   const int64_t elapsed_time = aom_usec_timer_elapsed(&timer);
1911   tmp_cm->txcoeff_cost_timer += elapsed_time;
1912   ++tmp_cm->txcoeff_cost_count;
1913 #endif
1914   return cost;
1915 }
1916 
skip_trellis_opt_based_on_satd(MACROBLOCK * x,QUANT_PARAM * quant_param,int plane,int block,TX_SIZE tx_size,int quant_b_adapt,int qstep,unsigned int coeff_opt_satd_threshold,int skip_trellis,int dc_only_blk)1917 static int skip_trellis_opt_based_on_satd(MACROBLOCK *x,
1918                                           QUANT_PARAM *quant_param, int plane,
1919                                           int block, TX_SIZE tx_size,
1920                                           int quant_b_adapt, int qstep,
1921                                           unsigned int coeff_opt_satd_threshold,
1922                                           int skip_trellis, int dc_only_blk) {
1923   if (skip_trellis || (coeff_opt_satd_threshold == UINT_MAX))
1924     return skip_trellis;
1925 
1926   const struct macroblock_plane *const p = &x->plane[plane];
1927   const int block_offset = BLOCK_OFFSET(block);
1928   tran_low_t *const coeff_ptr = p->coeff + block_offset;
1929   const int n_coeffs = av1_get_max_eob(tx_size);
1930   const int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size));
1931   int satd = (dc_only_blk) ? abs(coeff_ptr[0]) : aom_satd(coeff_ptr, n_coeffs);
1932   satd = RIGHT_SIGNED_SHIFT(satd, shift);
1933   satd >>= (x->e_mbd.bd - 8);
1934 
1935   const int skip_block_trellis =
1936       ((uint64_t)satd >
1937        (uint64_t)coeff_opt_satd_threshold * qstep * sqrt_tx_pixels_2d[tx_size]);
1938 
1939   av1_setup_quant(
1940       tx_size, !skip_block_trellis,
1941       skip_block_trellis
1942           ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP)
1943           : AV1_XFORM_QUANT_FP,
1944       quant_b_adapt, quant_param);
1945 
1946   return skip_block_trellis;
1947 }
1948 
1949 // Predict DC only blocks if the residual variance is below a qstep based
1950 // threshold.For such blocks, transform type search is bypassed.
predict_dc_only_block(MACROBLOCK * x,int plane,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,int block,int blk_row,int blk_col,RD_STATS * best_rd_stats,int64_t * block_sse,unsigned int * block_mse_q8,int64_t * per_px_mean,int * dc_only_blk)1951 static INLINE void predict_dc_only_block(
1952     MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1953     int block, int blk_row, int blk_col, RD_STATS *best_rd_stats,
1954     int64_t *block_sse, unsigned int *block_mse_q8, int64_t *per_px_mean,
1955     int *dc_only_blk) {
1956   MACROBLOCKD *xd = &x->e_mbd;
1957   MB_MODE_INFO *mbmi = xd->mi[0];
1958   const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
1959   const int qstep = x->plane[plane].dequant_QTX[1] >> dequant_shift;
1960   uint64_t block_var = UINT64_MAX;
1961   const int dc_qstep = x->plane[plane].dequant_QTX[0] >> 3;
1962   *block_sse = pixel_diff_stats(x, plane, blk_row, blk_col, plane_bsize,
1963                                 txsize_to_bsize[tx_size], block_mse_q8,
1964                                 per_px_mean, &block_var);
1965   assert((*block_mse_q8) != UINT_MAX);
1966   uint64_t var_threshold = (uint64_t)(1.8 * qstep * qstep);
1967   if (is_cur_buf_hbd(xd))
1968     block_var = ROUND_POWER_OF_TWO(block_var, (xd->bd - 8) * 2);
1969 
1970   if (block_var >= var_threshold) return;
1971   const unsigned int predict_dc_level = x->txfm_search_params.predict_dc_level;
1972   assert(predict_dc_level != 0);
1973 
1974   // Prediction of skip block if residual mean and variance are less
1975   // than qstep based threshold
1976   if ((llabs(*per_px_mean) * dc_coeff_scale[tx_size]) < (dc_qstep << 12)) {
1977     // If the normalized mean of residual block is less than the dc qstep and
1978     // the  normalized block variance is less than ac qstep, then the block is
1979     // assumed to be a skip block and its rdcost is updated accordingly.
1980     best_rd_stats->skip_txfm = 1;
1981 
1982     x->plane[plane].eobs[block] = 0;
1983 
1984     if (is_cur_buf_hbd(xd))
1985       *block_sse = ROUND_POWER_OF_TWO((*block_sse), (xd->bd - 8) * 2);
1986 
1987     best_rd_stats->dist = (*block_sse) << 4;
1988     best_rd_stats->sse = best_rd_stats->dist;
1989 
1990     ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
1991     ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
1992     av1_get_entropy_contexts(plane_bsize, &xd->plane[plane], ctxa, ctxl);
1993     ENTROPY_CONTEXT *ta = ctxa;
1994     ENTROPY_CONTEXT *tl = ctxl;
1995     const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
1996     TXB_CTX txb_ctx_tmp;
1997     const PLANE_TYPE plane_type = get_plane_type(plane);
1998     get_txb_ctx(plane_bsize, tx_size, plane, ta, tl, &txb_ctx_tmp);
1999     const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][plane_type]
2000                                   .txb_skip_cost[txb_ctx_tmp.txb_skip_ctx][1];
2001     best_rd_stats->rate = zero_blk_rate;
2002 
2003     best_rd_stats->rdcost =
2004         RDCOST(x->rdmult, best_rd_stats->rate, best_rd_stats->sse);
2005 
2006     x->plane[plane].txb_entropy_ctx[block] = 0;
2007   } else if (predict_dc_level > 1) {
2008     // Predict DC only blocks based on residual variance.
2009     // For chroma plane, this prediction is disabled for intra blocks.
2010     if ((plane == 0) || (plane > 0 && is_inter_block(mbmi))) *dc_only_blk = 1;
2011   }
2012 }
2013 
2014 // Search for the best transform type for a given transform block.
2015 // This function can be used for both inter and intra, both luma and chroma.
search_tx_type(const AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,const TXB_CTX * const txb_ctx,FAST_TX_SEARCH_MODE ftxs_mode,int skip_trellis,int64_t ref_best_rd,RD_STATS * best_rd_stats)2016 static void search_tx_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
2017                            int block, int blk_row, int blk_col,
2018                            BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
2019                            const TXB_CTX *const txb_ctx,
2020                            FAST_TX_SEARCH_MODE ftxs_mode, int skip_trellis,
2021                            int64_t ref_best_rd, RD_STATS *best_rd_stats) {
2022   const AV1_COMMON *cm = &cpi->common;
2023   MACROBLOCKD *xd = &x->e_mbd;
2024   MB_MODE_INFO *mbmi = xd->mi[0];
2025   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
2026   int64_t best_rd = INT64_MAX;
2027   uint16_t best_eob = 0;
2028   TX_TYPE best_tx_type = DCT_DCT;
2029   int rate_cost = 0;
2030   struct macroblock_plane *const p = &x->plane[plane];
2031   tran_low_t *orig_dqcoeff = p->dqcoeff;
2032   tran_low_t *best_dqcoeff = x->dqcoeff_buf;
2033   const int tx_type_map_idx =
2034       plane ? 0 : blk_row * xd->tx_type_map_stride + blk_col;
2035   av1_invalid_rd_stats(best_rd_stats);
2036 
2037   skip_trellis |= !is_trellis_used(cpi->optimize_seg_arr[xd->mi[0]->segment_id],
2038                                    DRY_RUN_NORMAL);
2039 
2040   uint8_t best_txb_ctx = 0;
2041   // txk_allowed = TX_TYPES: >1 tx types are allowed
2042   // txk_allowed < TX_TYPES: only that specific tx type is allowed.
2043   TX_TYPE txk_allowed = TX_TYPES;
2044   int txk_map[TX_TYPES] = {
2045     0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
2046   };
2047   const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
2048   const int qstep = x->plane[plane].dequant_QTX[1] >> dequant_shift;
2049 
2050   const uint8_t txw = tx_size_wide[tx_size];
2051   const uint8_t txh = tx_size_high[tx_size];
2052   int64_t block_sse;
2053   unsigned int block_mse_q8;
2054   int dc_only_blk = 0;
2055   const bool predict_dc_block =
2056       txfm_params->predict_dc_level >= 1 && txw != 64 && txh != 64;
2057   int64_t per_px_mean = INT64_MAX;
2058   if (predict_dc_block) {
2059     predict_dc_only_block(x, plane, plane_bsize, tx_size, block, blk_row,
2060                           blk_col, best_rd_stats, &block_sse, &block_mse_q8,
2061                           &per_px_mean, &dc_only_blk);
2062     if (best_rd_stats->skip_txfm == 1) {
2063       const TX_TYPE tx_type = DCT_DCT;
2064       if (plane == 0) xd->tx_type_map[tx_type_map_idx] = tx_type;
2065       return;
2066     }
2067   } else {
2068     block_sse = av1_pixel_diff_dist(x, plane, blk_row, blk_col, plane_bsize,
2069                                     txsize_to_bsize[tx_size], &block_mse_q8);
2070     assert(block_mse_q8 != UINT_MAX);
2071   }
2072 
2073   // Bit mask to indicate which transform types are allowed in the RD search.
2074   uint16_t tx_mask;
2075 
2076   // Use DCT_DCT transform for DC only block.
2077   if (dc_only_blk || cpi->sf.rt_sf.dct_only_palette_nonrd == 1)
2078     tx_mask = 1 << DCT_DCT;
2079   else
2080     tx_mask = get_tx_mask(cpi, x, plane, block, blk_row, blk_col, plane_bsize,
2081                           tx_size, txb_ctx, ftxs_mode, ref_best_rd,
2082                           &txk_allowed, txk_map);
2083   const uint16_t allowed_tx_mask = tx_mask;
2084 
2085   if (is_cur_buf_hbd(xd)) {
2086     block_sse = ROUND_POWER_OF_TWO(block_sse, (xd->bd - 8) * 2);
2087     block_mse_q8 = ROUND_POWER_OF_TWO(block_mse_q8, (xd->bd - 8) * 2);
2088   }
2089   block_sse *= 16;
2090   // Use mse / qstep^2 based threshold logic to take decision of R-D
2091   // optimization of coeffs. For smaller residuals, coeff optimization
2092   // would be helpful. For larger residuals, R-D optimization may not be
2093   // effective.
2094   // TODO(any): Experiment with variance and mean based thresholds
2095   const int perform_block_coeff_opt =
2096       ((uint64_t)block_mse_q8 <=
2097        (uint64_t)txfm_params->coeff_opt_thresholds[0] * qstep * qstep);
2098   skip_trellis |= !perform_block_coeff_opt;
2099 
2100   // Flag to indicate if distortion should be calculated in transform domain or
2101   // not during iterating through transform type candidates.
2102   // Transform domain distortion is accurate for higher residuals.
2103   // TODO(any): Experiment with variance and mean based thresholds
2104   int use_transform_domain_distortion =
2105       (txfm_params->use_transform_domain_distortion > 0) &&
2106       (block_mse_q8 >= txfm_params->tx_domain_dist_threshold) &&
2107       // Any 64-pt transforms only preserves half the coefficients.
2108       // Therefore transform domain distortion is not valid for these
2109       // transform sizes.
2110       (txsize_sqr_up_map[tx_size] != TX_64X64) &&
2111       // Use pixel domain distortion for DC only blocks
2112       !dc_only_blk;
2113   // Flag to indicate if an extra calculation of distortion in the pixel domain
2114   // should be performed at the end, after the best transform type has been
2115   // decided.
2116   int calc_pixel_domain_distortion_final =
2117       txfm_params->use_transform_domain_distortion == 1 &&
2118       use_transform_domain_distortion && x->rd_model != LOW_TXFM_RD;
2119   if (calc_pixel_domain_distortion_final &&
2120       (txk_allowed < TX_TYPES || allowed_tx_mask == 0x0001))
2121     calc_pixel_domain_distortion_final = use_transform_domain_distortion = 0;
2122 
2123   const uint16_t *eobs_ptr = x->plane[plane].eobs;
2124 
2125   TxfmParam txfm_param;
2126   QUANT_PARAM quant_param;
2127   int skip_trellis_based_on_satd[TX_TYPES] = { 0 };
2128   av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
2129   av1_setup_quant(tx_size, !skip_trellis,
2130                   skip_trellis ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B
2131                                                          : AV1_XFORM_QUANT_FP)
2132                                : AV1_XFORM_QUANT_FP,
2133                   cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
2134 
2135   // Iterate through all transform type candidates.
2136   for (int idx = 0; idx < TX_TYPES; ++idx) {
2137     const TX_TYPE tx_type = (TX_TYPE)txk_map[idx];
2138     if (tx_type == TX_TYPE_INVALID || !check_bit_mask(allowed_tx_mask, tx_type))
2139       continue;
2140     txfm_param.tx_type = tx_type;
2141     if (av1_use_qmatrix(&cm->quant_params, xd, mbmi->segment_id)) {
2142       av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
2143                         &quant_param);
2144     }
2145     if (plane == 0) xd->tx_type_map[tx_type_map_idx] = tx_type;
2146     RD_STATS this_rd_stats;
2147     av1_invalid_rd_stats(&this_rd_stats);
2148 
2149     if (!dc_only_blk)
2150       av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param);
2151     else
2152       av1_xform_dc_only(x, plane, block, &txfm_param, per_px_mean);
2153 
2154     skip_trellis_based_on_satd[tx_type] = skip_trellis_opt_based_on_satd(
2155         x, &quant_param, plane, block, tx_size, cpi->oxcf.q_cfg.quant_b_adapt,
2156         qstep, txfm_params->coeff_opt_thresholds[1], skip_trellis, dc_only_blk);
2157 
2158     av1_quant(x, plane, block, &txfm_param, &quant_param);
2159 
2160     // Calculate rate cost of quantized coefficients.
2161     if (quant_param.use_optimize_b) {
2162       // TODO(aomedia:3209): update Trellis quantization to take into account
2163       // quantization matrices.
2164       av1_optimize_b(cpi, x, plane, block, tx_size, tx_type, txb_ctx,
2165                      &rate_cost);
2166     } else {
2167       rate_cost = cost_coeffs(x, plane, block, tx_size, tx_type, txb_ctx,
2168                               cm->features.reduced_tx_set_used);
2169     }
2170 
2171     // If rd cost based on coeff rate alone is already more than best_rd,
2172     // terminate early.
2173     if (RDCOST(x->rdmult, rate_cost, 0) > best_rd) continue;
2174 
2175     // Calculate distortion.
2176     if (eobs_ptr[block] == 0) {
2177       // When eob is 0, pixel domain distortion is more efficient and accurate.
2178       this_rd_stats.dist = this_rd_stats.sse = block_sse;
2179     } else if (dc_only_blk) {
2180       this_rd_stats.sse = block_sse;
2181       this_rd_stats.dist = dist_block_px_domain(
2182           cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
2183     } else if (use_transform_domain_distortion) {
2184       const SCAN_ORDER *const scan_order =
2185           get_scan(txfm_param.tx_size, txfm_param.tx_type);
2186       dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
2187                            scan_order->scan, &this_rd_stats.dist,
2188                            &this_rd_stats.sse);
2189     } else {
2190       int64_t sse_diff = INT64_MAX;
2191       // high_energy threshold assumes that every pixel within a txfm block
2192       // has a residue energy of at least 25% of the maximum, i.e. 128 * 128
2193       // for 8 bit.
2194       const int64_t high_energy_thresh =
2195           ((int64_t)128 * 128 * tx_size_2d[tx_size]);
2196       const int is_high_energy = (block_sse >= high_energy_thresh);
2197       if (tx_size == TX_64X64 || is_high_energy) {
2198         // Because 3 out 4 quadrants of transform coefficients are forced to
2199         // zero, the inverse transform has a tendency to overflow. sse_diff
2200         // is effectively the energy of those 3 quadrants, here we use it
2201         // to decide if we should do pixel domain distortion. If the energy
2202         // is mostly in first quadrant, then it is unlikely that we have
2203         // overflow issue in inverse transform.
2204         const SCAN_ORDER *const scan_order =
2205             get_scan(txfm_param.tx_size, txfm_param.tx_type);
2206         dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
2207                              scan_order->scan, &this_rd_stats.dist,
2208                              &this_rd_stats.sse);
2209         sse_diff = block_sse - this_rd_stats.sse;
2210       }
2211       if (tx_size != TX_64X64 || !is_high_energy ||
2212           (sse_diff * 2) < this_rd_stats.sse) {
2213         const int64_t tx_domain_dist = this_rd_stats.dist;
2214         this_rd_stats.dist = dist_block_px_domain(
2215             cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
2216         // For high energy blocks, occasionally, the pixel domain distortion
2217         // can be artificially low due to clamping at reconstruction stage
2218         // even when inverse transform output is hugely different from the
2219         // actual residue.
2220         if (is_high_energy && this_rd_stats.dist < tx_domain_dist)
2221           this_rd_stats.dist = tx_domain_dist;
2222       } else {
2223         assert(sse_diff < INT64_MAX);
2224         this_rd_stats.dist += sse_diff;
2225       }
2226       this_rd_stats.sse = block_sse;
2227     }
2228 
2229     this_rd_stats.rate = rate_cost;
2230 
2231     const int64_t rd =
2232         RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
2233 
2234     if (rd < best_rd) {
2235       best_rd = rd;
2236       *best_rd_stats = this_rd_stats;
2237       best_tx_type = tx_type;
2238       best_txb_ctx = x->plane[plane].txb_entropy_ctx[block];
2239       best_eob = x->plane[plane].eobs[block];
2240       // Swap dqcoeff buffers
2241       tran_low_t *const tmp_dqcoeff = best_dqcoeff;
2242       best_dqcoeff = p->dqcoeff;
2243       p->dqcoeff = tmp_dqcoeff;
2244     }
2245 
2246 #if CONFIG_COLLECT_RD_STATS == 1
2247     if (plane == 0) {
2248       PrintTransformUnitStats(cpi, x, &this_rd_stats, blk_row, blk_col,
2249                               plane_bsize, tx_size, tx_type, rd);
2250     }
2251 #endif  // CONFIG_COLLECT_RD_STATS == 1
2252 
2253 #if COLLECT_TX_SIZE_DATA
2254     // Generate small sample to restrict output size.
2255     static unsigned int seed = 21743;
2256     if (lcg_rand16(&seed) % 200 == 0) {
2257       FILE *fp = NULL;
2258 
2259       if (within_border) {
2260         fp = fopen(av1_tx_size_data_output_file, "a");
2261       }
2262 
2263       if (fp) {
2264         // Transform info and RD
2265         const int txb_w = tx_size_wide[tx_size];
2266         const int txb_h = tx_size_high[tx_size];
2267 
2268         // Residue signal.
2269         const int diff_stride = block_size_wide[plane_bsize];
2270         struct macroblock_plane *const p = &x->plane[plane];
2271         const int16_t *src_diff =
2272             &p->src_diff[(blk_row * diff_stride + blk_col) * 4];
2273 
2274         for (int r = 0; r < txb_h; ++r) {
2275           for (int c = 0; c < txb_w; ++c) {
2276             fprintf(fp, "%d,", src_diff[c]);
2277           }
2278           src_diff += diff_stride;
2279         }
2280 
2281         fprintf(fp, "%d,%d,%d,%" PRId64, txb_w, txb_h, tx_type, rd);
2282         fprintf(fp, "\n");
2283         fclose(fp);
2284       }
2285     }
2286 #endif  // COLLECT_TX_SIZE_DATA
2287 
2288     // If the current best RD cost is much worse than the reference RD cost,
2289     // terminate early.
2290     if (cpi->sf.tx_sf.adaptive_txb_search_level) {
2291       if ((best_rd - (best_rd >> cpi->sf.tx_sf.adaptive_txb_search_level)) >
2292           ref_best_rd) {
2293         break;
2294       }
2295     }
2296 
2297     // Terminate transform type search if the block has been quantized to
2298     // all zero.
2299     if (cpi->sf.tx_sf.tx_type_search.skip_tx_search && !best_eob) break;
2300   }
2301 
2302   assert(best_rd != INT64_MAX);
2303 
2304   best_rd_stats->skip_txfm = best_eob == 0;
2305   if (plane == 0) update_txk_array(xd, blk_row, blk_col, tx_size, best_tx_type);
2306   x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx;
2307   x->plane[plane].eobs[block] = best_eob;
2308   skip_trellis = skip_trellis_based_on_satd[best_tx_type];
2309 
2310   // Point dqcoeff to the quantized coefficients corresponding to the best
2311   // transform type, then we can skip transform and quantization, e.g. in the
2312   // final pixel domain distortion calculation and recon_intra().
2313   p->dqcoeff = best_dqcoeff;
2314 
2315   if (calc_pixel_domain_distortion_final && best_eob) {
2316     best_rd_stats->dist = dist_block_px_domain(
2317         cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
2318     best_rd_stats->sse = block_sse;
2319   }
2320 
2321   // Intra mode needs decoded pixels such that the next transform block
2322   // can use them for prediction.
2323   recon_intra(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
2324               txb_ctx, skip_trellis, best_tx_type, 0, &rate_cost, best_eob);
2325   p->dqcoeff = orig_dqcoeff;
2326 }
2327 
2328 // Pick transform type for a luma transform block of tx_size. Note this function
2329 // is used only for inter-predicted blocks.
tx_type_rd(const AV1_COMP * cpi,MACROBLOCK * x,TX_SIZE tx_size,int blk_row,int blk_col,int block,int plane_bsize,TXB_CTX * txb_ctx,RD_STATS * rd_stats,FAST_TX_SEARCH_MODE ftxs_mode,int64_t ref_rdcost)2330 static AOM_INLINE void tx_type_rd(const AV1_COMP *cpi, MACROBLOCK *x,
2331                                   TX_SIZE tx_size, int blk_row, int blk_col,
2332                                   int block, int plane_bsize, TXB_CTX *txb_ctx,
2333                                   RD_STATS *rd_stats,
2334                                   FAST_TX_SEARCH_MODE ftxs_mode,
2335                                   int64_t ref_rdcost) {
2336   assert(is_inter_block(x->e_mbd.mi[0]));
2337   RD_STATS this_rd_stats;
2338   const int skip_trellis = 0;
2339   search_tx_type(cpi, x, 0, block, blk_row, blk_col, plane_bsize, tx_size,
2340                  txb_ctx, ftxs_mode, skip_trellis, ref_rdcost, &this_rd_stats);
2341 
2342   av1_merge_rd_stats(rd_stats, &this_rd_stats);
2343 }
2344 
try_tx_block_no_split(const AV1_COMP * cpi,MACROBLOCK * x,int blk_row,int blk_col,int block,TX_SIZE tx_size,int depth,BLOCK_SIZE plane_bsize,const ENTROPY_CONTEXT * ta,const ENTROPY_CONTEXT * tl,int txfm_partition_ctx,RD_STATS * rd_stats,int64_t ref_best_rd,FAST_TX_SEARCH_MODE ftxs_mode,TxCandidateInfo * no_split)2345 static AOM_INLINE void try_tx_block_no_split(
2346     const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
2347     TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize,
2348     const ENTROPY_CONTEXT *ta, const ENTROPY_CONTEXT *tl,
2349     int txfm_partition_ctx, RD_STATS *rd_stats, int64_t ref_best_rd,
2350     FAST_TX_SEARCH_MODE ftxs_mode, TxCandidateInfo *no_split) {
2351   MACROBLOCKD *const xd = &x->e_mbd;
2352   MB_MODE_INFO *const mbmi = xd->mi[0];
2353   struct macroblock_plane *const p = &x->plane[0];
2354   const int bw = mi_size_wide[plane_bsize];
2355   const ENTROPY_CONTEXT *const pta = ta + blk_col;
2356   const ENTROPY_CONTEXT *const ptl = tl + blk_row;
2357   const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
2358   TXB_CTX txb_ctx;
2359   get_txb_ctx(plane_bsize, tx_size, 0, pta, ptl, &txb_ctx);
2360   const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][PLANE_TYPE_Y]
2361                                 .txb_skip_cost[txb_ctx.txb_skip_ctx][1];
2362   rd_stats->zero_rate = zero_blk_rate;
2363   const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col);
2364   mbmi->inter_tx_size[index] = tx_size;
2365   tx_type_rd(cpi, x, tx_size, blk_row, blk_col, block, plane_bsize, &txb_ctx,
2366              rd_stats, ftxs_mode, ref_best_rd);
2367   assert(rd_stats->rate < INT_MAX);
2368 
2369   const int pick_skip_txfm =
2370       !xd->lossless[mbmi->segment_id] &&
2371       (rd_stats->skip_txfm == 1 ||
2372        RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >=
2373            RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse));
2374   if (pick_skip_txfm) {
2375 #if CONFIG_RD_DEBUG
2376     update_txb_coeff_cost(rd_stats, 0, zero_blk_rate - rd_stats->rate);
2377 #endif  // CONFIG_RD_DEBUG
2378     rd_stats->rate = zero_blk_rate;
2379     rd_stats->dist = rd_stats->sse;
2380     p->eobs[block] = 0;
2381     update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
2382   }
2383   rd_stats->skip_txfm = pick_skip_txfm;
2384   set_blk_skip(x->txfm_search_info.blk_skip, 0, blk_row * bw + blk_col,
2385                pick_skip_txfm);
2386 
2387   if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
2388     rd_stats->rate += x->mode_costs.txfm_partition_cost[txfm_partition_ctx][0];
2389 
2390   no_split->rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
2391   no_split->txb_entropy_ctx = p->txb_entropy_ctx[block];
2392   no_split->tx_type =
2393       xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
2394 }
2395 
try_tx_block_split(const AV1_COMP * cpi,MACROBLOCK * x,int blk_row,int blk_col,int block,TX_SIZE tx_size,int depth,BLOCK_SIZE plane_bsize,ENTROPY_CONTEXT * ta,ENTROPY_CONTEXT * tl,TXFM_CONTEXT * tx_above,TXFM_CONTEXT * tx_left,int txfm_partition_ctx,int64_t no_split_rd,int64_t ref_best_rd,FAST_TX_SEARCH_MODE ftxs_mode,RD_STATS * split_rd_stats)2396 static AOM_INLINE void try_tx_block_split(
2397     const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
2398     TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
2399     ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
2400     int txfm_partition_ctx, int64_t no_split_rd, int64_t ref_best_rd,
2401     FAST_TX_SEARCH_MODE ftxs_mode, RD_STATS *split_rd_stats) {
2402   assert(tx_size < TX_SIZES_ALL);
2403   MACROBLOCKD *const xd = &x->e_mbd;
2404   const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
2405   const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
2406   const int txb_width = tx_size_wide_unit[tx_size];
2407   const int txb_height = tx_size_high_unit[tx_size];
2408   // Transform size after splitting current block.
2409   const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
2410   const int sub_txb_width = tx_size_wide_unit[sub_txs];
2411   const int sub_txb_height = tx_size_high_unit[sub_txs];
2412   const int sub_step = sub_txb_width * sub_txb_height;
2413   const int nblks = (txb_height / sub_txb_height) * (txb_width / sub_txb_width);
2414   assert(nblks > 0);
2415   av1_init_rd_stats(split_rd_stats);
2416   split_rd_stats->rate =
2417       x->mode_costs.txfm_partition_cost[txfm_partition_ctx][1];
2418 
2419   for (int r = 0, blk_idx = 0; r < txb_height; r += sub_txb_height) {
2420     const int offsetr = blk_row + r;
2421     if (offsetr >= max_blocks_high) break;
2422     for (int c = 0; c < txb_width; c += sub_txb_width, ++blk_idx) {
2423       assert(blk_idx < 4);
2424       const int offsetc = blk_col + c;
2425       if (offsetc >= max_blocks_wide) continue;
2426 
2427       RD_STATS this_rd_stats;
2428       int this_cost_valid = 1;
2429       select_tx_block(cpi, x, offsetr, offsetc, block, sub_txs, depth + 1,
2430                       plane_bsize, ta, tl, tx_above, tx_left, &this_rd_stats,
2431                       no_split_rd / nblks, ref_best_rd - split_rd_stats->rdcost,
2432                       &this_cost_valid, ftxs_mode);
2433       if (!this_cost_valid) {
2434         split_rd_stats->rdcost = INT64_MAX;
2435         return;
2436       }
2437       av1_merge_rd_stats(split_rd_stats, &this_rd_stats);
2438       split_rd_stats->rdcost =
2439           RDCOST(x->rdmult, split_rd_stats->rate, split_rd_stats->dist);
2440       if (split_rd_stats->rdcost > ref_best_rd) {
2441         split_rd_stats->rdcost = INT64_MAX;
2442         return;
2443       }
2444       block += sub_step;
2445     }
2446   }
2447 }
2448 
get_var(float mean,double x2_sum,int num)2449 static float get_var(float mean, double x2_sum, int num) {
2450   const float e_x2 = (float)(x2_sum / num);
2451   const float diff = e_x2 - mean * mean;
2452   return diff;
2453 }
2454 
get_blk_var_dev(const int16_t * data,int stride,int bw,int bh,float * dev_of_mean,float * var_of_vars)2455 static AOM_INLINE void get_blk_var_dev(const int16_t *data, int stride, int bw,
2456                                        int bh, float *dev_of_mean,
2457                                        float *var_of_vars) {
2458   const int16_t *const data_ptr = &data[0];
2459   const int subh = (bh >= bw) ? (bh >> 1) : bh;
2460   const int subw = (bw >= bh) ? (bw >> 1) : bw;
2461   const int num = bw * bh;
2462   const int sub_num = subw * subh;
2463   int total_x_sum = 0;
2464   int64_t total_x2_sum = 0;
2465   int blk_idx = 0;
2466   float var_sum = 0.0f;
2467   float mean_sum = 0.0f;
2468   double var2_sum = 0.0f;
2469   double mean2_sum = 0.0f;
2470 
2471   for (int row = 0; row < bh; row += subh) {
2472     for (int col = 0; col < bw; col += subw) {
2473       int x_sum;
2474       int64_t x2_sum;
2475       aom_get_blk_sse_sum(data_ptr + row * stride + col, stride, subw, subh,
2476                           &x_sum, &x2_sum);
2477       total_x_sum += x_sum;
2478       total_x2_sum += x2_sum;
2479 
2480       const float mean = (float)x_sum / sub_num;
2481       const float var = get_var(mean, (double)x2_sum, sub_num);
2482       mean_sum += mean;
2483       mean2_sum += (double)(mean * mean);
2484       var_sum += var;
2485       var2_sum += var * var;
2486       blk_idx++;
2487     }
2488   }
2489 
2490   const float lvl0_mean = (float)total_x_sum / num;
2491   const float block_var = get_var(lvl0_mean, (double)total_x2_sum, num);
2492   mean_sum += lvl0_mean;
2493   mean2_sum += (double)(lvl0_mean * lvl0_mean);
2494   var_sum += block_var;
2495   var2_sum += block_var * block_var;
2496   const float av_mean = mean_sum / 5;
2497 
2498   if (blk_idx > 1) {
2499     // Deviation of means.
2500     *dev_of_mean = get_dev(av_mean, mean2_sum, (blk_idx + 1));
2501     // Variance of variances.
2502     const float mean_var = var_sum / (blk_idx + 1);
2503     *var_of_vars = get_var(mean_var, var2_sum, (blk_idx + 1));
2504   }
2505 }
2506 
prune_tx_split_no_split(MACROBLOCK * x,BLOCK_SIZE bsize,int blk_row,int blk_col,TX_SIZE tx_size,int * try_no_split,int * try_split,int pruning_level)2507 static void prune_tx_split_no_split(MACROBLOCK *x, BLOCK_SIZE bsize,
2508                                     int blk_row, int blk_col, TX_SIZE tx_size,
2509                                     int *try_no_split, int *try_split,
2510                                     int pruning_level) {
2511   const int diff_stride = block_size_wide[bsize];
2512   const int16_t *diff =
2513       x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
2514   const int bw = tx_size_wide[tx_size];
2515   const int bh = tx_size_high[tx_size];
2516   float dev_of_means = 0.0f;
2517   float var_of_vars = 0.0f;
2518 
2519   // This function calculates the deviation of means, and the variance of pixel
2520   // variances of the block as well as it's sub-blocks.
2521   get_blk_var_dev(diff, diff_stride, bw, bh, &dev_of_means, &var_of_vars);
2522   const int dc_q = x->plane[0].dequant_QTX[0] >> 3;
2523   const int ac_q = x->plane[0].dequant_QTX[1] >> 3;
2524   const int no_split_thresh_scales[4] = { 0, 24, 8, 8 };
2525   const int no_split_thresh_scale = no_split_thresh_scales[pruning_level];
2526   const int split_thresh_scales[4] = { 0, 24, 10, 8 };
2527   const int split_thresh_scale = split_thresh_scales[pruning_level];
2528 
2529   if ((dev_of_means <= dc_q) &&
2530       (split_thresh_scale * var_of_vars <= ac_q * ac_q)) {
2531     *try_split = 0;
2532   }
2533   if ((dev_of_means > no_split_thresh_scale * dc_q) &&
2534       (var_of_vars > no_split_thresh_scale * ac_q * ac_q)) {
2535     *try_no_split = 0;
2536   }
2537 }
2538 
2539 // Search for the best transform partition(recursive)/type for a given
2540 // inter-predicted luma block. The obtained transform selection will be saved
2541 // in xd->mi[0], the corresponding RD stats will be saved in rd_stats.
select_tx_block(const AV1_COMP * cpi,MACROBLOCK * x,int blk_row,int blk_col,int block,TX_SIZE tx_size,int depth,BLOCK_SIZE plane_bsize,ENTROPY_CONTEXT * ta,ENTROPY_CONTEXT * tl,TXFM_CONTEXT * tx_above,TXFM_CONTEXT * tx_left,RD_STATS * rd_stats,int64_t prev_level_rd,int64_t ref_best_rd,int * is_cost_valid,FAST_TX_SEARCH_MODE ftxs_mode)2542 static AOM_INLINE void select_tx_block(
2543     const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
2544     TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
2545     ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
2546     RD_STATS *rd_stats, int64_t prev_level_rd, int64_t ref_best_rd,
2547     int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode) {
2548   assert(tx_size < TX_SIZES_ALL);
2549   av1_init_rd_stats(rd_stats);
2550   if (ref_best_rd < 0) {
2551     *is_cost_valid = 0;
2552     return;
2553   }
2554 
2555   MACROBLOCKD *const xd = &x->e_mbd;
2556   assert(blk_row < max_block_high(xd, plane_bsize, 0) &&
2557          blk_col < max_block_wide(xd, plane_bsize, 0));
2558   MB_MODE_INFO *const mbmi = xd->mi[0];
2559   const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row,
2560                                          mbmi->bsize, tx_size);
2561   struct macroblock_plane *const p = &x->plane[0];
2562 
2563   int try_no_split = (cpi->oxcf.txfm_cfg.enable_tx64 ||
2564                       txsize_sqr_up_map[tx_size] != TX_64X64) &&
2565                      (cpi->oxcf.txfm_cfg.enable_rect_tx ||
2566                       tx_size_wide[tx_size] == tx_size_high[tx_size]);
2567   int try_split = tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH;
2568   TxCandidateInfo no_split = { INT64_MAX, 0, TX_TYPES };
2569 
2570   // Prune tx_split and no-split based on sub-block properties.
2571   if (tx_size != TX_4X4 && try_split == 1 && try_no_split == 1 &&
2572       cpi->sf.tx_sf.prune_tx_size_level > 0) {
2573     prune_tx_split_no_split(x, plane_bsize, blk_row, blk_col, tx_size,
2574                             &try_no_split, &try_split,
2575                             cpi->sf.tx_sf.prune_tx_size_level);
2576   }
2577 
2578   if (cpi->sf.rt_sf.skip_tx_no_split_var_based_partition) {
2579     if (x->try_merge_partition && try_split && p->eobs[block]) try_no_split = 0;
2580   }
2581 
2582   // Try using current block as a single transform block without split.
2583   if (try_no_split) {
2584     try_tx_block_no_split(cpi, x, blk_row, blk_col, block, tx_size, depth,
2585                           plane_bsize, ta, tl, ctx, rd_stats, ref_best_rd,
2586                           ftxs_mode, &no_split);
2587 
2588     // Speed features for early termination.
2589     const int search_level = cpi->sf.tx_sf.adaptive_txb_search_level;
2590     if (search_level) {
2591       if ((no_split.rd - (no_split.rd >> (1 + search_level))) > ref_best_rd) {
2592         *is_cost_valid = 0;
2593         return;
2594       }
2595       if (no_split.rd - (no_split.rd >> (2 + search_level)) > prev_level_rd) {
2596         try_split = 0;
2597       }
2598     }
2599     if (cpi->sf.tx_sf.txb_split_cap) {
2600       if (p->eobs[block] == 0) try_split = 0;
2601     }
2602   }
2603 
2604   // ML based speed feature to skip searching for split transform blocks.
2605   if (x->e_mbd.bd == 8 && try_split &&
2606       !(ref_best_rd == INT64_MAX && no_split.rd == INT64_MAX)) {
2607     const int threshold = cpi->sf.tx_sf.tx_type_search.ml_tx_split_thresh;
2608     if (threshold >= 0) {
2609       const int split_score =
2610           ml_predict_tx_split(x, plane_bsize, blk_row, blk_col, tx_size);
2611       if (split_score < -threshold) try_split = 0;
2612     }
2613   }
2614 
2615   RD_STATS split_rd_stats;
2616   split_rd_stats.rdcost = INT64_MAX;
2617   // Try splitting current block into smaller transform blocks.
2618   if (try_split) {
2619     try_tx_block_split(cpi, x, blk_row, blk_col, block, tx_size, depth,
2620                        plane_bsize, ta, tl, tx_above, tx_left, ctx, no_split.rd,
2621                        AOMMIN(no_split.rd, ref_best_rd), ftxs_mode,
2622                        &split_rd_stats);
2623   }
2624 
2625   if (no_split.rd < split_rd_stats.rdcost) {
2626     ENTROPY_CONTEXT *pta = ta + blk_col;
2627     ENTROPY_CONTEXT *ptl = tl + blk_row;
2628     p->txb_entropy_ctx[block] = no_split.txb_entropy_ctx;
2629     av1_set_txb_context(x, 0, block, tx_size, pta, ptl);
2630     txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size,
2631                           tx_size);
2632     for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) {
2633       for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) {
2634         const int index =
2635             av1_get_txb_size_index(plane_bsize, blk_row + idy, blk_col + idx);
2636         mbmi->inter_tx_size[index] = tx_size;
2637       }
2638     }
2639     mbmi->tx_size = tx_size;
2640     update_txk_array(xd, blk_row, blk_col, tx_size, no_split.tx_type);
2641     const int bw = mi_size_wide[plane_bsize];
2642     set_blk_skip(x->txfm_search_info.blk_skip, 0, blk_row * bw + blk_col,
2643                  rd_stats->skip_txfm);
2644   } else {
2645     *rd_stats = split_rd_stats;
2646     if (split_rd_stats.rdcost == INT64_MAX) *is_cost_valid = 0;
2647   }
2648 }
2649 
choose_largest_tx_size(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs)2650 static AOM_INLINE void choose_largest_tx_size(const AV1_COMP *const cpi,
2651                                               MACROBLOCK *x, RD_STATS *rd_stats,
2652                                               int64_t ref_best_rd,
2653                                               BLOCK_SIZE bs) {
2654   MACROBLOCKD *const xd = &x->e_mbd;
2655   MB_MODE_INFO *const mbmi = xd->mi[0];
2656   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
2657   mbmi->tx_size = tx_size_from_tx_mode(bs, txfm_params->tx_mode_search_type);
2658 
2659   // If tx64 is not enabled, we need to go down to the next available size
2660   if (!cpi->oxcf.txfm_cfg.enable_tx64 && cpi->oxcf.txfm_cfg.enable_rect_tx) {
2661     static const TX_SIZE tx_size_max_32[TX_SIZES_ALL] = {
2662       TX_4X4,    // 4x4 transform
2663       TX_8X8,    // 8x8 transform
2664       TX_16X16,  // 16x16 transform
2665       TX_32X32,  // 32x32 transform
2666       TX_32X32,  // 64x64 transform
2667       TX_4X8,    // 4x8 transform
2668       TX_8X4,    // 8x4 transform
2669       TX_8X16,   // 8x16 transform
2670       TX_16X8,   // 16x8 transform
2671       TX_16X32,  // 16x32 transform
2672       TX_32X16,  // 32x16 transform
2673       TX_32X32,  // 32x64 transform
2674       TX_32X32,  // 64x32 transform
2675       TX_4X16,   // 4x16 transform
2676       TX_16X4,   // 16x4 transform
2677       TX_8X32,   // 8x32 transform
2678       TX_32X8,   // 32x8 transform
2679       TX_16X32,  // 16x64 transform
2680       TX_32X16,  // 64x16 transform
2681     };
2682     mbmi->tx_size = tx_size_max_32[mbmi->tx_size];
2683   } else if (cpi->oxcf.txfm_cfg.enable_tx64 &&
2684              !cpi->oxcf.txfm_cfg.enable_rect_tx) {
2685     static const TX_SIZE tx_size_max_square[TX_SIZES_ALL] = {
2686       TX_4X4,    // 4x4 transform
2687       TX_8X8,    // 8x8 transform
2688       TX_16X16,  // 16x16 transform
2689       TX_32X32,  // 32x32 transform
2690       TX_64X64,  // 64x64 transform
2691       TX_4X4,    // 4x8 transform
2692       TX_4X4,    // 8x4 transform
2693       TX_8X8,    // 8x16 transform
2694       TX_8X8,    // 16x8 transform
2695       TX_16X16,  // 16x32 transform
2696       TX_16X16,  // 32x16 transform
2697       TX_32X32,  // 32x64 transform
2698       TX_32X32,  // 64x32 transform
2699       TX_4X4,    // 4x16 transform
2700       TX_4X4,    // 16x4 transform
2701       TX_8X8,    // 8x32 transform
2702       TX_8X8,    // 32x8 transform
2703       TX_16X16,  // 16x64 transform
2704       TX_16X16,  // 64x16 transform
2705     };
2706     mbmi->tx_size = tx_size_max_square[mbmi->tx_size];
2707   } else if (!cpi->oxcf.txfm_cfg.enable_tx64 &&
2708              !cpi->oxcf.txfm_cfg.enable_rect_tx) {
2709     static const TX_SIZE tx_size_max_32_square[TX_SIZES_ALL] = {
2710       TX_4X4,    // 4x4 transform
2711       TX_8X8,    // 8x8 transform
2712       TX_16X16,  // 16x16 transform
2713       TX_32X32,  // 32x32 transform
2714       TX_32X32,  // 64x64 transform
2715       TX_4X4,    // 4x8 transform
2716       TX_4X4,    // 8x4 transform
2717       TX_8X8,    // 8x16 transform
2718       TX_8X8,    // 16x8 transform
2719       TX_16X16,  // 16x32 transform
2720       TX_16X16,  // 32x16 transform
2721       TX_32X32,  // 32x64 transform
2722       TX_32X32,  // 64x32 transform
2723       TX_4X4,    // 4x16 transform
2724       TX_4X4,    // 16x4 transform
2725       TX_8X8,    // 8x32 transform
2726       TX_8X8,    // 32x8 transform
2727       TX_16X16,  // 16x64 transform
2728       TX_16X16,  // 64x16 transform
2729     };
2730 
2731     mbmi->tx_size = tx_size_max_32_square[mbmi->tx_size];
2732   }
2733 
2734   const int skip_ctx = av1_get_skip_txfm_context(xd);
2735   const int no_skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][0];
2736   const int skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][1];
2737   // Skip RDcost is used only for Inter blocks
2738   const int64_t skip_txfm_rd =
2739       is_inter_block(mbmi) ? RDCOST(x->rdmult, skip_txfm_rate, 0) : INT64_MAX;
2740   const int64_t no_skip_txfm_rd = RDCOST(x->rdmult, no_skip_txfm_rate, 0);
2741   const int skip_trellis = 0;
2742   av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd,
2743                        AOMMIN(no_skip_txfm_rd, skip_txfm_rd), AOM_PLANE_Y, bs,
2744                        mbmi->tx_size, FTXS_NONE, skip_trellis);
2745 }
2746 
choose_smallest_tx_size(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs)2747 static AOM_INLINE void choose_smallest_tx_size(const AV1_COMP *const cpi,
2748                                                MACROBLOCK *x,
2749                                                RD_STATS *rd_stats,
2750                                                int64_t ref_best_rd,
2751                                                BLOCK_SIZE bs) {
2752   MACROBLOCKD *const xd = &x->e_mbd;
2753   MB_MODE_INFO *const mbmi = xd->mi[0];
2754 
2755   mbmi->tx_size = TX_4X4;
2756   // TODO(any) : Pass this_rd based on skip/non-skip cost
2757   const int skip_trellis = 0;
2758   av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, 0, bs, mbmi->tx_size,
2759                        FTXS_NONE, skip_trellis);
2760 }
2761 
2762 #if !CONFIG_REALTIME_ONLY
ml_predict_intra_tx_depth_prune(MACROBLOCK * x,int blk_row,int blk_col,BLOCK_SIZE bsize,TX_SIZE tx_size)2763 static void ml_predict_intra_tx_depth_prune(MACROBLOCK *x, int blk_row,
2764                                             int blk_col, BLOCK_SIZE bsize,
2765                                             TX_SIZE tx_size) {
2766   const MACROBLOCKD *const xd = &x->e_mbd;
2767   const MB_MODE_INFO *const mbmi = xd->mi[0];
2768 
2769   // Disable the pruning logic using NN model for the following cases:
2770   // 1) Lossless coding as only 4x4 transform is evaluated in this case
2771   // 2) When transform and current block sizes do not match as the features are
2772   // obtained over the current block
2773   // 3) When operating bit-depth is not 8-bit as the input features are not
2774   // scaled according to bit-depth.
2775   if (xd->lossless[mbmi->segment_id] || txsize_to_bsize[tx_size] != bsize ||
2776       xd->bd != 8)
2777     return;
2778 
2779   // Currently NN model based pruning is supported only when largest transform
2780   // size is 8x8
2781   if (tx_size != TX_8X8) return;
2782 
2783   // Neural network model is a sequential neural net and was trained using SGD
2784   // optimizer. The model can be further improved in terms of speed/quality by
2785   // considering the following experiments:
2786   // 1) Generate ML model by training with balanced data for different learning
2787   // rates and optimizers.
2788   // 2) Experiment with ML model by adding features related to the statistics of
2789   // top and left pixels to capture the accuracy of reconstructed neighbouring
2790   // pixels for 4x4 blocks numbered 1, 2, 3 in 8x8 block, source variance of 4x4
2791   // sub-blocks, etc.
2792   // 3) Generate ML models for transform blocks other than 8x8.
2793   const NN_CONFIG *const nn_config = &av1_intra_tx_split_nnconfig_8x8;
2794   const float *const intra_tx_prune_thresh = av1_intra_tx_prune_nn_thresh_8x8;
2795 
2796   float features[NUM_INTRA_TX_SPLIT_FEATURES] = { 0.0f };
2797   const int diff_stride = block_size_wide[bsize];
2798 
2799   const int16_t *diff = x->plane[0].src_diff + MI_SIZE * blk_row * diff_stride +
2800                         MI_SIZE * blk_col;
2801   const int bw = tx_size_wide[tx_size];
2802   const int bh = tx_size_high[tx_size];
2803 
2804   int feature_idx = get_mean_dev_features(diff, diff_stride, bw, bh, features);
2805 
2806   features[feature_idx++] = log1pf((float)x->source_variance);
2807 
2808   const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
2809   const float log_dc_q_square = log1pf((float)(dc_q * dc_q) / 256.0f);
2810   features[feature_idx++] = log_dc_q_square;
2811   assert(feature_idx == NUM_INTRA_TX_SPLIT_FEATURES);
2812   for (int i = 0; i < NUM_INTRA_TX_SPLIT_FEATURES; i++) {
2813     features[i] = (features[i] - av1_intra_tx_split_8x8_mean[i]) /
2814                   av1_intra_tx_split_8x8_std[i];
2815   }
2816 
2817   float score;
2818   av1_nn_predict(features, nn_config, 1, &score);
2819 
2820   TxfmSearchParams *const txfm_params = &x->txfm_search_params;
2821   if (score <= intra_tx_prune_thresh[0])
2822     txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_SPLIT;
2823   else if (score > intra_tx_prune_thresh[1])
2824     txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_LARGEST;
2825 }
2826 #endif  // !CONFIG_REALTIME_ONLY
2827 
2828 // Search for the best uniform transform size and type for current coding block.
choose_tx_size_type_from_rd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs)2829 static AOM_INLINE void choose_tx_size_type_from_rd(const AV1_COMP *const cpi,
2830                                                    MACROBLOCK *x,
2831                                                    RD_STATS *rd_stats,
2832                                                    int64_t ref_best_rd,
2833                                                    BLOCK_SIZE bs) {
2834   av1_invalid_rd_stats(rd_stats);
2835 
2836   MACROBLOCKD *const xd = &x->e_mbd;
2837   MB_MODE_INFO *const mbmi = xd->mi[0];
2838   TxfmSearchParams *const txfm_params = &x->txfm_search_params;
2839   const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bs];
2840   const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT;
2841   int start_tx;
2842   // The split depth can be at most MAX_TX_DEPTH, so the init_depth controls
2843   // how many times of splitting is allowed during the RD search.
2844   int init_depth;
2845 
2846   if (tx_select) {
2847     start_tx = max_rect_tx_size;
2848     init_depth = get_search_init_depth(mi_size_wide[bs], mi_size_high[bs],
2849                                        is_inter_block(mbmi), &cpi->sf,
2850                                        txfm_params->tx_size_search_method);
2851     if (init_depth == MAX_TX_DEPTH && !cpi->oxcf.txfm_cfg.enable_tx64 &&
2852         txsize_sqr_up_map[start_tx] == TX_64X64) {
2853       start_tx = sub_tx_size_map[start_tx];
2854     }
2855   } else {
2856     const TX_SIZE chosen_tx_size =
2857         tx_size_from_tx_mode(bs, txfm_params->tx_mode_search_type);
2858     start_tx = chosen_tx_size;
2859     init_depth = MAX_TX_DEPTH;
2860   }
2861 
2862   const int skip_trellis = 0;
2863   uint8_t best_txk_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
2864   uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
2865   TX_SIZE best_tx_size = max_rect_tx_size;
2866   int64_t best_rd = INT64_MAX;
2867   const int num_blks = bsize_to_num_blk(bs);
2868   x->rd_model = FULL_TXFM_RD;
2869   int64_t rd[MAX_TX_DEPTH + 1] = { INT64_MAX, INT64_MAX, INT64_MAX };
2870   TxfmSearchInfo *txfm_info = &x->txfm_search_info;
2871   for (int tx_size = start_tx, depth = init_depth; depth <= MAX_TX_DEPTH;
2872        depth++, tx_size = sub_tx_size_map[tx_size]) {
2873     if ((!cpi->oxcf.txfm_cfg.enable_tx64 &&
2874          txsize_sqr_up_map[tx_size] == TX_64X64) ||
2875         (!cpi->oxcf.txfm_cfg.enable_rect_tx &&
2876          tx_size_wide[tx_size] != tx_size_high[tx_size])) {
2877       continue;
2878     }
2879 
2880 #if !CONFIG_REALTIME_ONLY
2881     if (txfm_params->nn_prune_depths_for_intra_tx == TX_PRUNE_SPLIT) break;
2882 
2883     // Set the flag to enable the evaluation of NN classifier to prune transform
2884     // depths. As the features are based on intra residual information of
2885     // largest transform, the evaluation of NN model is enabled only for this
2886     // case.
2887     txfm_params->enable_nn_prune_intra_tx_depths =
2888         (cpi->sf.tx_sf.prune_intra_tx_depths_using_nn && tx_size == start_tx);
2889 #endif
2890 
2891     RD_STATS this_rd_stats;
2892     // When the speed feature use_rd_based_breakout_for_intra_tx_search is
2893     // enabled, use the known minimum best_rd for early termination.
2894     const int64_t rd_thresh =
2895         cpi->sf.tx_sf.use_rd_based_breakout_for_intra_tx_search
2896             ? AOMMIN(ref_best_rd, best_rd)
2897             : ref_best_rd;
2898     rd[depth] = av1_uniform_txfm_yrd(cpi, x, &this_rd_stats, rd_thresh, bs,
2899                                      tx_size, FTXS_NONE, skip_trellis);
2900     if (rd[depth] < best_rd) {
2901       av1_copy_array(best_blk_skip, txfm_info->blk_skip, num_blks);
2902       av1_copy_array(best_txk_type_map, xd->tx_type_map, num_blks);
2903       best_tx_size = tx_size;
2904       best_rd = rd[depth];
2905       *rd_stats = this_rd_stats;
2906     }
2907     if (tx_size == TX_4X4) break;
2908     // If we are searching three depths, prune the smallest size depending
2909     // on rd results for the first two depths for low contrast blocks.
2910     if (depth > init_depth && depth != MAX_TX_DEPTH &&
2911         x->source_variance < 256) {
2912       if (rd[depth - 1] != INT64_MAX && rd[depth] > rd[depth - 1]) break;
2913     }
2914   }
2915 
2916   if (rd_stats->rate != INT_MAX) {
2917     mbmi->tx_size = best_tx_size;
2918     av1_copy_array(xd->tx_type_map, best_txk_type_map, num_blks);
2919     av1_copy_array(txfm_info->blk_skip, best_blk_skip, num_blks);
2920   }
2921 
2922 #if !CONFIG_REALTIME_ONLY
2923   // Reset the flags to avoid any unintentional evaluation of NN model and
2924   // consumption of prune depths.
2925   txfm_params->enable_nn_prune_intra_tx_depths = false;
2926   txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_NONE;
2927 #endif
2928 }
2929 
2930 // Search for the best transform type for the given transform block in the
2931 // given plane/channel, and calculate the corresponding RD cost.
block_rd_txfm(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)2932 static AOM_INLINE void block_rd_txfm(int plane, int block, int blk_row,
2933                                      int blk_col, BLOCK_SIZE plane_bsize,
2934                                      TX_SIZE tx_size, void *arg) {
2935   struct rdcost_block_args *args = arg;
2936   if (args->exit_early) {
2937     args->incomplete_exit = 1;
2938     return;
2939   }
2940 
2941   MACROBLOCK *const x = args->x;
2942   MACROBLOCKD *const xd = &x->e_mbd;
2943   const int is_inter = is_inter_block(xd->mi[0]);
2944   const AV1_COMP *cpi = args->cpi;
2945   ENTROPY_CONTEXT *a = args->t_above + blk_col;
2946   ENTROPY_CONTEXT *l = args->t_left + blk_row;
2947   const AV1_COMMON *cm = &cpi->common;
2948   RD_STATS this_rd_stats;
2949   av1_init_rd_stats(&this_rd_stats);
2950 
2951   if (!is_inter) {
2952     av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
2953     av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
2954 #if !CONFIG_REALTIME_ONLY
2955     const TxfmSearchParams *const txfm_params = &x->txfm_search_params;
2956     if (txfm_params->enable_nn_prune_intra_tx_depths) {
2957       ml_predict_intra_tx_depth_prune(x, blk_row, blk_col, plane_bsize,
2958                                       tx_size);
2959       if (txfm_params->nn_prune_depths_for_intra_tx == TX_PRUNE_LARGEST) {
2960         av1_invalid_rd_stats(&args->rd_stats);
2961         args->exit_early = 1;
2962         return;
2963       }
2964     }
2965 #endif
2966   }
2967 
2968   TXB_CTX txb_ctx;
2969   get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
2970   search_tx_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
2971                  &txb_ctx, args->ftxs_mode, args->skip_trellis,
2972                  args->best_rd - args->current_rd, &this_rd_stats);
2973 
2974   if (plane == AOM_PLANE_Y && xd->cfl.store_y) {
2975     assert(!is_inter || plane_bsize < BLOCK_8X8);
2976     cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize);
2977   }
2978 
2979 #if CONFIG_RD_DEBUG
2980   update_txb_coeff_cost(&this_rd_stats, plane, this_rd_stats.rate);
2981 #endif  // CONFIG_RD_DEBUG
2982   av1_set_txb_context(x, plane, block, tx_size, a, l);
2983 
2984   const int blk_idx =
2985       blk_row * (block_size_wide[plane_bsize] >> MI_SIZE_LOG2) + blk_col;
2986 
2987   TxfmSearchInfo *txfm_info = &x->txfm_search_info;
2988   if (plane == 0)
2989     set_blk_skip(txfm_info->blk_skip, plane, blk_idx,
2990                  x->plane[plane].eobs[block] == 0);
2991   else
2992     set_blk_skip(txfm_info->blk_skip, plane, blk_idx, 0);
2993 
2994   int64_t rd;
2995   if (is_inter) {
2996     const int64_t no_skip_txfm_rd =
2997         RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
2998     const int64_t skip_txfm_rd = RDCOST(x->rdmult, 0, this_rd_stats.sse);
2999     rd = AOMMIN(no_skip_txfm_rd, skip_txfm_rd);
3000     this_rd_stats.skip_txfm &= !x->plane[plane].eobs[block];
3001   } else {
3002     // Signal non-skip_txfm for Intra blocks
3003     rd = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
3004     this_rd_stats.skip_txfm = 0;
3005   }
3006 
3007   av1_merge_rd_stats(&args->rd_stats, &this_rd_stats);
3008 
3009   args->current_rd += rd;
3010   if (args->current_rd > args->best_rd) args->exit_early = 1;
3011 }
3012 
av1_estimate_txfm_yrd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs,TX_SIZE tx_size)3013 int64_t av1_estimate_txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
3014                               RD_STATS *rd_stats, int64_t ref_best_rd,
3015                               BLOCK_SIZE bs, TX_SIZE tx_size) {
3016   MACROBLOCKD *const xd = &x->e_mbd;
3017   MB_MODE_INFO *const mbmi = xd->mi[0];
3018   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3019   const ModeCosts *mode_costs = &x->mode_costs;
3020   const int is_inter = is_inter_block(mbmi);
3021   const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
3022                         block_signals_txsize(mbmi->bsize);
3023   int tx_size_rate = 0;
3024   if (tx_select) {
3025     const int ctx = txfm_partition_context(
3026         xd->above_txfm_context, xd->left_txfm_context, mbmi->bsize, tx_size);
3027     tx_size_rate = mode_costs->txfm_partition_cost[ctx][0];
3028   }
3029   const int skip_ctx = av1_get_skip_txfm_context(xd);
3030   const int no_skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][0];
3031   const int skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][1];
3032   const int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_rate, 0);
3033   const int64_t no_this_rd =
3034       RDCOST(x->rdmult, no_skip_txfm_rate + tx_size_rate, 0);
3035   mbmi->tx_size = tx_size;
3036 
3037   const uint8_t txw_unit = tx_size_wide_unit[tx_size];
3038   const uint8_t txh_unit = tx_size_high_unit[tx_size];
3039   const int step = txw_unit * txh_unit;
3040   const int max_blocks_wide = max_block_wide(xd, bs, 0);
3041   const int max_blocks_high = max_block_high(xd, bs, 0);
3042 
3043   struct rdcost_block_args args;
3044   av1_zero(args);
3045   args.x = x;
3046   args.cpi = cpi;
3047   args.best_rd = ref_best_rd;
3048   args.current_rd = AOMMIN(no_this_rd, skip_txfm_rd);
3049   av1_init_rd_stats(&args.rd_stats);
3050   av1_get_entropy_contexts(bs, &xd->plane[0], args.t_above, args.t_left);
3051   int i = 0;
3052   for (int blk_row = 0; blk_row < max_blocks_high && !args.incomplete_exit;
3053        blk_row += txh_unit) {
3054     for (int blk_col = 0; blk_col < max_blocks_wide; blk_col += txw_unit) {
3055       RD_STATS this_rd_stats;
3056       av1_init_rd_stats(&this_rd_stats);
3057 
3058       if (args.exit_early) {
3059         args.incomplete_exit = 1;
3060         break;
3061       }
3062 
3063       ENTROPY_CONTEXT *a = args.t_above + blk_col;
3064       ENTROPY_CONTEXT *l = args.t_left + blk_row;
3065       TXB_CTX txb_ctx;
3066       get_txb_ctx(bs, tx_size, 0, a, l, &txb_ctx);
3067 
3068       TxfmParam txfm_param;
3069       QUANT_PARAM quant_param;
3070       av1_setup_xform(&cpi->common, x, tx_size, DCT_DCT, &txfm_param);
3071       av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, 0, &quant_param);
3072 
3073       av1_xform(x, 0, i, blk_row, blk_col, bs, &txfm_param);
3074       av1_quant(x, 0, i, &txfm_param, &quant_param);
3075 
3076       this_rd_stats.rate =
3077           cost_coeffs(x, 0, i, tx_size, txfm_param.tx_type, &txb_ctx, 0);
3078 
3079       const SCAN_ORDER *const scan_order =
3080           get_scan(txfm_param.tx_size, txfm_param.tx_type);
3081       dist_block_tx_domain(x, 0, i, tx_size, quant_param.qmatrix,
3082                            scan_order->scan, &this_rd_stats.dist,
3083                            &this_rd_stats.sse);
3084 
3085       const int64_t no_skip_txfm_rd =
3086           RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
3087       const int64_t skip_rd = RDCOST(x->rdmult, 0, this_rd_stats.sse);
3088 
3089       this_rd_stats.skip_txfm &= !x->plane[0].eobs[i];
3090 
3091       av1_merge_rd_stats(&args.rd_stats, &this_rd_stats);
3092       args.current_rd += AOMMIN(no_skip_txfm_rd, skip_rd);
3093 
3094       if (args.current_rd > ref_best_rd) {
3095         args.exit_early = 1;
3096         break;
3097       }
3098 
3099       av1_set_txb_context(x, 0, i, tx_size, a, l);
3100       i += step;
3101     }
3102   }
3103 
3104   if (args.incomplete_exit) av1_invalid_rd_stats(&args.rd_stats);
3105 
3106   *rd_stats = args.rd_stats;
3107   if (rd_stats->rate == INT_MAX) return INT64_MAX;
3108 
3109   int64_t rd;
3110   // rdstats->rate should include all the rate except skip/non-skip cost as the
3111   // same is accounted in the caller functions after rd evaluation of all
3112   // planes. However the decisions should be done after considering the
3113   // skip/non-skip header cost
3114   if (rd_stats->skip_txfm && is_inter) {
3115     rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
3116   } else {
3117     // Intra blocks are always signalled as non-skip
3118     rd = RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate + tx_size_rate,
3119                 rd_stats->dist);
3120     rd_stats->rate += tx_size_rate;
3121   }
3122   // Check if forcing the block to skip transform leads to smaller RD cost.
3123   if (is_inter && !rd_stats->skip_txfm && !xd->lossless[mbmi->segment_id]) {
3124     int64_t temp_skip_txfm_rd =
3125         RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
3126     if (temp_skip_txfm_rd <= rd) {
3127       rd = temp_skip_txfm_rd;
3128       rd_stats->rate = 0;
3129       rd_stats->dist = rd_stats->sse;
3130       rd_stats->skip_txfm = 1;
3131     }
3132   }
3133 
3134   return rd;
3135 }
3136 
av1_uniform_txfm_yrd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,int64_t ref_best_rd,BLOCK_SIZE bs,TX_SIZE tx_size,FAST_TX_SEARCH_MODE ftxs_mode,int skip_trellis)3137 int64_t av1_uniform_txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
3138                              RD_STATS *rd_stats, int64_t ref_best_rd,
3139                              BLOCK_SIZE bs, TX_SIZE tx_size,
3140                              FAST_TX_SEARCH_MODE ftxs_mode, int skip_trellis) {
3141   assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs)));
3142   MACROBLOCKD *const xd = &x->e_mbd;
3143   MB_MODE_INFO *const mbmi = xd->mi[0];
3144   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3145   const ModeCosts *mode_costs = &x->mode_costs;
3146   const int is_inter = is_inter_block(mbmi);
3147   const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
3148                         block_signals_txsize(mbmi->bsize);
3149   int tx_size_rate = 0;
3150   if (tx_select) {
3151     const int ctx = txfm_partition_context(
3152         xd->above_txfm_context, xd->left_txfm_context, mbmi->bsize, tx_size);
3153     tx_size_rate = is_inter ? mode_costs->txfm_partition_cost[ctx][0]
3154                             : tx_size_cost(x, bs, tx_size);
3155   }
3156   const int skip_ctx = av1_get_skip_txfm_context(xd);
3157   const int no_skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][0];
3158   const int skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][1];
3159   const int64_t skip_txfm_rd =
3160       is_inter ? RDCOST(x->rdmult, skip_txfm_rate, 0) : INT64_MAX;
3161   const int64_t no_this_rd =
3162       RDCOST(x->rdmult, no_skip_txfm_rate + tx_size_rate, 0);
3163 
3164   mbmi->tx_size = tx_size;
3165   av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd,
3166                        AOMMIN(no_this_rd, skip_txfm_rd), AOM_PLANE_Y, bs,
3167                        tx_size, ftxs_mode, skip_trellis);
3168   if (rd_stats->rate == INT_MAX) return INT64_MAX;
3169 
3170   int64_t rd;
3171   // rdstats->rate should include all the rate except skip/non-skip cost as the
3172   // same is accounted in the caller functions after rd evaluation of all
3173   // planes. However the decisions should be done after considering the
3174   // skip/non-skip header cost
3175   if (rd_stats->skip_txfm && is_inter) {
3176     rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
3177   } else {
3178     // Intra blocks are always signalled as non-skip
3179     rd = RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate + tx_size_rate,
3180                 rd_stats->dist);
3181     rd_stats->rate += tx_size_rate;
3182   }
3183   // Check if forcing the block to skip transform leads to smaller RD cost.
3184   if (is_inter && !rd_stats->skip_txfm && !xd->lossless[mbmi->segment_id]) {
3185     int64_t temp_skip_txfm_rd =
3186         RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
3187     if (temp_skip_txfm_rd <= rd) {
3188       rd = temp_skip_txfm_rd;
3189       rd_stats->rate = 0;
3190       rd_stats->dist = rd_stats->sse;
3191       rd_stats->skip_txfm = 1;
3192     }
3193   }
3194 
3195   return rd;
3196 }
3197 
3198 // Search for the best transform type for a luma inter-predicted block, given
3199 // the transform block partitions.
3200 // This function is used only when some speed features are enabled.
tx_block_yrd(const AV1_COMP * cpi,MACROBLOCK * x,int blk_row,int blk_col,int block,TX_SIZE tx_size,BLOCK_SIZE plane_bsize,int depth,ENTROPY_CONTEXT * above_ctx,ENTROPY_CONTEXT * left_ctx,TXFM_CONTEXT * tx_above,TXFM_CONTEXT * tx_left,int64_t ref_best_rd,RD_STATS * rd_stats,FAST_TX_SEARCH_MODE ftxs_mode)3201 static AOM_INLINE void tx_block_yrd(
3202     const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
3203     TX_SIZE tx_size, BLOCK_SIZE plane_bsize, int depth,
3204     ENTROPY_CONTEXT *above_ctx, ENTROPY_CONTEXT *left_ctx,
3205     TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, int64_t ref_best_rd,
3206     RD_STATS *rd_stats, FAST_TX_SEARCH_MODE ftxs_mode) {
3207   assert(tx_size < TX_SIZES_ALL);
3208   MACROBLOCKD *const xd = &x->e_mbd;
3209   MB_MODE_INFO *const mbmi = xd->mi[0];
3210   assert(is_inter_block(mbmi));
3211   const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
3212   const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
3213 
3214   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
3215 
3216   const TX_SIZE plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index(
3217       plane_bsize, blk_row, blk_col)];
3218   const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row,
3219                                          mbmi->bsize, tx_size);
3220 
3221   av1_init_rd_stats(rd_stats);
3222   if (tx_size == plane_tx_size) {
3223     ENTROPY_CONTEXT *ta = above_ctx + blk_col;
3224     ENTROPY_CONTEXT *tl = left_ctx + blk_row;
3225     const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
3226     TXB_CTX txb_ctx;
3227     get_txb_ctx(plane_bsize, tx_size, 0, ta, tl, &txb_ctx);
3228 
3229     const int zero_blk_rate =
3230         x->coeff_costs.coeff_costs[txs_ctx][get_plane_type(0)]
3231             .txb_skip_cost[txb_ctx.txb_skip_ctx][1];
3232     rd_stats->zero_rate = zero_blk_rate;
3233     tx_type_rd(cpi, x, tx_size, blk_row, blk_col, block, plane_bsize, &txb_ctx,
3234                rd_stats, ftxs_mode, ref_best_rd);
3235     const int mi_width = mi_size_wide[plane_bsize];
3236     TxfmSearchInfo *txfm_info = &x->txfm_search_info;
3237     if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >=
3238             RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) ||
3239         rd_stats->skip_txfm == 1) {
3240       rd_stats->rate = zero_blk_rate;
3241       rd_stats->dist = rd_stats->sse;
3242       rd_stats->skip_txfm = 1;
3243       set_blk_skip(txfm_info->blk_skip, 0, blk_row * mi_width + blk_col, 1);
3244       x->plane[0].eobs[block] = 0;
3245       x->plane[0].txb_entropy_ctx[block] = 0;
3246       update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
3247     } else {
3248       rd_stats->skip_txfm = 0;
3249       set_blk_skip(txfm_info->blk_skip, 0, blk_row * mi_width + blk_col, 0);
3250     }
3251     if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
3252       rd_stats->rate += x->mode_costs.txfm_partition_cost[ctx][0];
3253     av1_set_txb_context(x, 0, block, tx_size, ta, tl);
3254     txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size,
3255                           tx_size);
3256   } else {
3257     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
3258     const int txb_width = tx_size_wide_unit[sub_txs];
3259     const int txb_height = tx_size_high_unit[sub_txs];
3260     const int step = txb_height * txb_width;
3261     const int row_end =
3262         AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
3263     const int col_end =
3264         AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
3265     RD_STATS pn_rd_stats;
3266     int64_t this_rd = 0;
3267     assert(txb_width > 0 && txb_height > 0);
3268 
3269     for (int row = 0; row < row_end; row += txb_height) {
3270       const int offsetr = blk_row + row;
3271       for (int col = 0; col < col_end; col += txb_width) {
3272         const int offsetc = blk_col + col;
3273 
3274         av1_init_rd_stats(&pn_rd_stats);
3275         tx_block_yrd(cpi, x, offsetr, offsetc, block, sub_txs, plane_bsize,
3276                      depth + 1, above_ctx, left_ctx, tx_above, tx_left,
3277                      ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode);
3278         if (pn_rd_stats.rate == INT_MAX) {
3279           av1_invalid_rd_stats(rd_stats);
3280           return;
3281         }
3282         av1_merge_rd_stats(rd_stats, &pn_rd_stats);
3283         this_rd += RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist);
3284         block += step;
3285       }
3286     }
3287 
3288     if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
3289       rd_stats->rate += x->mode_costs.txfm_partition_cost[ctx][1];
3290   }
3291 }
3292 
3293 // search for tx type with tx sizes already decided for a inter-predicted luma
3294 // partition block. It's used only when some speed features are enabled.
3295 // Return value 0: early termination triggered, no valid rd cost available;
3296 //              1: rd cost values are valid.
inter_block_yrd(const AV1_COMP * cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t ref_best_rd,FAST_TX_SEARCH_MODE ftxs_mode)3297 static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
3298                            RD_STATS *rd_stats, BLOCK_SIZE bsize,
3299                            int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode) {
3300   if (ref_best_rd < 0) {
3301     av1_invalid_rd_stats(rd_stats);
3302     return 0;
3303   }
3304 
3305   av1_init_rd_stats(rd_stats);
3306 
3307   MACROBLOCKD *const xd = &x->e_mbd;
3308   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3309   const struct macroblockd_plane *const pd = &xd->plane[0];
3310   const int mi_width = mi_size_wide[bsize];
3311   const int mi_height = mi_size_high[bsize];
3312   const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
3313   const int bh = tx_size_high_unit[max_tx_size];
3314   const int bw = tx_size_wide_unit[max_tx_size];
3315   const int step = bw * bh;
3316   const int init_depth = get_search_init_depth(
3317       mi_width, mi_height, 1, &cpi->sf, txfm_params->tx_size_search_method);
3318   ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
3319   ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
3320   TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
3321   TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
3322   av1_get_entropy_contexts(bsize, pd, ctxa, ctxl);
3323   memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width);
3324   memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height);
3325 
3326   int64_t this_rd = 0;
3327   for (int idy = 0, block = 0; idy < mi_height; idy += bh) {
3328     for (int idx = 0; idx < mi_width; idx += bw) {
3329       RD_STATS pn_rd_stats;
3330       av1_init_rd_stats(&pn_rd_stats);
3331       tx_block_yrd(cpi, x, idy, idx, block, max_tx_size, bsize, init_depth,
3332                    ctxa, ctxl, tx_above, tx_left, ref_best_rd - this_rd,
3333                    &pn_rd_stats, ftxs_mode);
3334       if (pn_rd_stats.rate == INT_MAX) {
3335         av1_invalid_rd_stats(rd_stats);
3336         return 0;
3337       }
3338       av1_merge_rd_stats(rd_stats, &pn_rd_stats);
3339       this_rd +=
3340           AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist),
3341                  RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse));
3342       block += step;
3343     }
3344   }
3345 
3346   const int skip_ctx = av1_get_skip_txfm_context(xd);
3347   const int no_skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][0];
3348   const int skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][1];
3349   const int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
3350   this_rd =
3351       RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate, rd_stats->dist);
3352   if (skip_txfm_rd < this_rd) {
3353     this_rd = skip_txfm_rd;
3354     rd_stats->rate = 0;
3355     rd_stats->dist = rd_stats->sse;
3356     rd_stats->skip_txfm = 1;
3357   }
3358 
3359   const int is_cost_valid = this_rd > ref_best_rd;
3360   if (!is_cost_valid) {
3361     // reset cost value
3362     av1_invalid_rd_stats(rd_stats);
3363   }
3364   return is_cost_valid;
3365 }
3366 
3367 // Search for the best transform size and type for current inter-predicted
3368 // luma block with recursive transform block partitioning. The obtained
3369 // transform selection will be saved in xd->mi[0], the corresponding RD stats
3370 // will be saved in rd_stats. The returned value is the corresponding RD cost.
select_tx_size_and_type(const AV1_COMP * cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t ref_best_rd)3371 static int64_t select_tx_size_and_type(const AV1_COMP *cpi, MACROBLOCK *x,
3372                                        RD_STATS *rd_stats, BLOCK_SIZE bsize,
3373                                        int64_t ref_best_rd) {
3374   MACROBLOCKD *const xd = &x->e_mbd;
3375   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3376   assert(is_inter_block(xd->mi[0]));
3377   assert(bsize < BLOCK_SIZES_ALL);
3378   const int fast_tx_search = txfm_params->tx_size_search_method > USE_FULL_RD;
3379   int64_t rd_thresh = ref_best_rd;
3380   if (rd_thresh == 0) {
3381     av1_invalid_rd_stats(rd_stats);
3382     return INT64_MAX;
3383   }
3384   if (fast_tx_search && rd_thresh < INT64_MAX) {
3385     if (INT64_MAX - rd_thresh > (rd_thresh >> 3)) rd_thresh += (rd_thresh >> 3);
3386   }
3387   assert(rd_thresh > 0);
3388   const FAST_TX_SEARCH_MODE ftxs_mode =
3389       fast_tx_search ? FTXS_DCT_AND_1D_DCT_ONLY : FTXS_NONE;
3390   const struct macroblockd_plane *const pd = &xd->plane[0];
3391   assert(bsize < BLOCK_SIZES_ALL);
3392   const int mi_width = mi_size_wide[bsize];
3393   const int mi_height = mi_size_high[bsize];
3394   ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
3395   ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
3396   TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
3397   TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
3398   av1_get_entropy_contexts(bsize, pd, ctxa, ctxl);
3399   memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width);
3400   memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height);
3401   const int init_depth = get_search_init_depth(
3402       mi_width, mi_height, 1, &cpi->sf, txfm_params->tx_size_search_method);
3403   const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
3404   const int bh = tx_size_high_unit[max_tx_size];
3405   const int bw = tx_size_wide_unit[max_tx_size];
3406   const int step = bw * bh;
3407   const int skip_ctx = av1_get_skip_txfm_context(xd);
3408   const int no_skip_txfm_cost = x->mode_costs.skip_txfm_cost[skip_ctx][0];
3409   const int skip_txfm_cost = x->mode_costs.skip_txfm_cost[skip_ctx][1];
3410   int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_cost, 0);
3411   int64_t no_skip_txfm_rd = RDCOST(x->rdmult, no_skip_txfm_cost, 0);
3412   int block = 0;
3413 
3414   av1_init_rd_stats(rd_stats);
3415   for (int idy = 0; idy < max_block_high(xd, bsize, 0); idy += bh) {
3416     for (int idx = 0; idx < max_block_wide(xd, bsize, 0); idx += bw) {
3417       const int64_t best_rd_sofar =
3418           (rd_thresh == INT64_MAX)
3419               ? INT64_MAX
3420               : (rd_thresh - (AOMMIN(skip_txfm_rd, no_skip_txfm_rd)));
3421       int is_cost_valid = 1;
3422       RD_STATS pn_rd_stats;
3423       // Search for the best transform block size and type for the sub-block.
3424       select_tx_block(cpi, x, idy, idx, block, max_tx_size, init_depth, bsize,
3425                       ctxa, ctxl, tx_above, tx_left, &pn_rd_stats, INT64_MAX,
3426                       best_rd_sofar, &is_cost_valid, ftxs_mode);
3427       if (!is_cost_valid || pn_rd_stats.rate == INT_MAX) {
3428         av1_invalid_rd_stats(rd_stats);
3429         return INT64_MAX;
3430       }
3431       av1_merge_rd_stats(rd_stats, &pn_rd_stats);
3432       skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse);
3433       no_skip_txfm_rd =
3434           RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_cost, rd_stats->dist);
3435       block += step;
3436     }
3437   }
3438 
3439   if (rd_stats->rate == INT_MAX) return INT64_MAX;
3440 
3441   rd_stats->skip_txfm = (skip_txfm_rd <= no_skip_txfm_rd);
3442 
3443   // If fast_tx_search is true, only DCT and 1D DCT were tested in
3444   // select_inter_block_yrd() above. Do a better search for tx type with
3445   // tx sizes already decided.
3446   if (fast_tx_search && cpi->sf.tx_sf.refine_fast_tx_search_results) {
3447     if (!inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, FTXS_NONE))
3448       return INT64_MAX;
3449   }
3450 
3451   int64_t final_rd;
3452   if (rd_stats->skip_txfm) {
3453     final_rd = RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse);
3454   } else {
3455     final_rd =
3456         RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_cost, rd_stats->dist);
3457     if (!xd->lossless[xd->mi[0]->segment_id]) {
3458       final_rd =
3459           AOMMIN(final_rd, RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse));
3460     }
3461   }
3462 
3463   return final_rd;
3464 }
3465 
3466 // Return 1 to terminate transform search early. The decision is made based on
3467 // the comparison with the reference RD cost and the model-estimated RD cost.
model_based_tx_search_prune(const AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int64_t ref_best_rd)3468 static AOM_INLINE int model_based_tx_search_prune(const AV1_COMP *cpi,
3469                                                   MACROBLOCK *x,
3470                                                   BLOCK_SIZE bsize,
3471                                                   int64_t ref_best_rd) {
3472   const int level = cpi->sf.tx_sf.model_based_prune_tx_search_level;
3473   assert(level >= 0 && level <= 2);
3474   int model_rate;
3475   int64_t model_dist;
3476   uint8_t model_skip;
3477   MACROBLOCKD *const xd = &x->e_mbd;
3478   model_rd_sb_fn[MODELRD_TYPE_TX_SEARCH_PRUNE](
3479       cpi, bsize, x, xd, 0, 0, &model_rate, &model_dist, &model_skip, NULL,
3480       NULL, NULL, NULL);
3481   if (model_skip) return 0;
3482   const int64_t model_rd = RDCOST(x->rdmult, model_rate, model_dist);
3483   // TODO(debargha, urvang): Improve the model and make the check below
3484   // tighter.
3485   static const int prune_factor_by8[] = { 3, 5 };
3486   const int factor = prune_factor_by8[level - 1];
3487   return ((model_rd * factor) >> 3) > ref_best_rd;
3488 }
3489 
av1_pick_recursive_tx_size_type_yrd(const AV1_COMP * cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t ref_best_rd)3490 void av1_pick_recursive_tx_size_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
3491                                          RD_STATS *rd_stats, BLOCK_SIZE bsize,
3492                                          int64_t ref_best_rd) {
3493   MACROBLOCKD *const xd = &x->e_mbd;
3494   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
3495   assert(is_inter_block(xd->mi[0]));
3496 
3497   av1_invalid_rd_stats(rd_stats);
3498 
3499   // If modeled RD cost is a lot worse than the best so far, terminate early.
3500   if (cpi->sf.tx_sf.model_based_prune_tx_search_level &&
3501       ref_best_rd != INT64_MAX) {
3502     if (model_based_tx_search_prune(cpi, x, bsize, ref_best_rd)) return;
3503   }
3504 
3505   // Hashing based speed feature. If the hash of the prediction residue block is
3506   // found in the hash table, use previous search results and terminate early.
3507   uint32_t hash = 0;
3508   MB_RD_RECORD *mb_rd_record = NULL;
3509   const int mi_row = x->e_mbd.mi_row;
3510   const int mi_col = x->e_mbd.mi_col;
3511   const int within_border =
3512       mi_row >= xd->tile.mi_row_start &&
3513       (mi_row + mi_size_high[bsize] < xd->tile.mi_row_end) &&
3514       mi_col >= xd->tile.mi_col_start &&
3515       (mi_col + mi_size_wide[bsize] < xd->tile.mi_col_end);
3516   const int is_mb_rd_hash_enabled =
3517       (within_border && cpi->sf.rd_sf.use_mb_rd_hash);
3518   const int n4 = bsize_to_num_blk(bsize);
3519   if (is_mb_rd_hash_enabled) {
3520     hash = get_block_residue_hash(x, bsize);
3521     mb_rd_record = x->txfm_search_info.mb_rd_record;
3522     const int match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash);
3523     if (match_index != -1) {
3524       MB_RD_INFO *mb_rd_info = &mb_rd_record->mb_rd_info[match_index];
3525       fetch_mb_rd_info(n4, mb_rd_info, rd_stats, x);
3526       return;
3527     }
3528   }
3529 
3530   // If we predict that skip is the optimal RD decision - set the respective
3531   // context and terminate early.
3532   int64_t dist;
3533   if (txfm_params->skip_txfm_level &&
3534       predict_skip_txfm(x, bsize, &dist,
3535                         cpi->common.features.reduced_tx_set_used)) {
3536     set_skip_txfm(x, rd_stats, bsize, dist);
3537     // Save the RD search results into mb_rd_record.
3538     if (is_mb_rd_hash_enabled)
3539       save_mb_rd_info(n4, hash, x, rd_stats, mb_rd_record);
3540     return;
3541   }
3542 #if CONFIG_SPEED_STATS
3543   ++x->txfm_search_info.tx_search_count;
3544 #endif  // CONFIG_SPEED_STATS
3545 
3546   const int64_t rd =
3547       select_tx_size_and_type(cpi, x, rd_stats, bsize, ref_best_rd);
3548 
3549   if (rd == INT64_MAX) {
3550     // We should always find at least one candidate unless ref_best_rd is less
3551     // than INT64_MAX (in which case, all the calls to select_tx_size_fix_type
3552     // might have failed to find something better)
3553     assert(ref_best_rd != INT64_MAX);
3554     av1_invalid_rd_stats(rd_stats);
3555     return;
3556   }
3557 
3558   // Save the RD search results into mb_rd_record.
3559   if (is_mb_rd_hash_enabled) {
3560     assert(mb_rd_record != NULL);
3561     save_mb_rd_info(n4, hash, x, rd_stats, mb_rd_record);
3562   }
3563 }
3564 
av1_pick_uniform_tx_size_type_yrd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bs,int64_t ref_best_rd)3565 void av1_pick_uniform_tx_size_type_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
3566                                        RD_STATS *rd_stats, BLOCK_SIZE bs,
3567                                        int64_t ref_best_rd) {
3568   MACROBLOCKD *const xd = &x->e_mbd;
3569   MB_MODE_INFO *const mbmi = xd->mi[0];
3570   const TxfmSearchParams *tx_params = &x->txfm_search_params;
3571   assert(bs == mbmi->bsize);
3572   const int is_inter = is_inter_block(mbmi);
3573   const int mi_row = xd->mi_row;
3574   const int mi_col = xd->mi_col;
3575 
3576   av1_init_rd_stats(rd_stats);
3577 
3578   // Hashing based speed feature for inter blocks. If the hash of the residue
3579   // block is found in the table, use previously saved search results and
3580   // terminate early.
3581   uint32_t hash = 0;
3582   MB_RD_RECORD *mb_rd_record = NULL;
3583   const int num_blks = bsize_to_num_blk(bs);
3584   if (is_inter && cpi->sf.rd_sf.use_mb_rd_hash) {
3585     const int within_border =
3586         mi_row >= xd->tile.mi_row_start &&
3587         (mi_row + mi_size_high[bs] < xd->tile.mi_row_end) &&
3588         mi_col >= xd->tile.mi_col_start &&
3589         (mi_col + mi_size_wide[bs] < xd->tile.mi_col_end);
3590     if (within_border) {
3591       hash = get_block_residue_hash(x, bs);
3592       mb_rd_record = x->txfm_search_info.mb_rd_record;
3593       const int match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash);
3594       if (match_index != -1) {
3595         MB_RD_INFO *mb_rd_info = &mb_rd_record->mb_rd_info[match_index];
3596         fetch_mb_rd_info(num_blks, mb_rd_info, rd_stats, x);
3597         return;
3598       }
3599     }
3600   }
3601 
3602   // If we predict that skip is the optimal RD decision - set the respective
3603   // context and terminate early.
3604   int64_t dist;
3605   if (tx_params->skip_txfm_level && is_inter &&
3606       !xd->lossless[mbmi->segment_id] &&
3607       predict_skip_txfm(x, bs, &dist,
3608                         cpi->common.features.reduced_tx_set_used)) {
3609     // Populate rdstats as per skip decision
3610     set_skip_txfm(x, rd_stats, bs, dist);
3611     // Save the RD search results into mb_rd_record.
3612     if (mb_rd_record) {
3613       save_mb_rd_info(num_blks, hash, x, rd_stats, mb_rd_record);
3614     }
3615     return;
3616   }
3617 
3618   if (xd->lossless[mbmi->segment_id]) {
3619     // Lossless mode can only pick the smallest (4x4) transform size.
3620     choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
3621   } else if (tx_params->tx_size_search_method == USE_LARGESTALL) {
3622     choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
3623   } else {
3624     choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs);
3625   }
3626 
3627   // Save the RD search results into mb_rd_record for possible reuse in future.
3628   if (mb_rd_record) {
3629     save_mb_rd_info(num_blks, hash, x, rd_stats, mb_rd_record);
3630   }
3631 }
3632 
av1_txfm_uvrd(const AV1_COMP * const cpi,MACROBLOCK * x,RD_STATS * rd_stats,BLOCK_SIZE bsize,int64_t ref_best_rd)3633 int av1_txfm_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x, RD_STATS *rd_stats,
3634                   BLOCK_SIZE bsize, int64_t ref_best_rd) {
3635   av1_init_rd_stats(rd_stats);
3636   if (ref_best_rd < 0) return 0;
3637   if (!x->e_mbd.is_chroma_ref) return 1;
3638 
3639   MACROBLOCKD *const xd = &x->e_mbd;
3640   MB_MODE_INFO *const mbmi = xd->mi[0];
3641   struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U];
3642   const int is_inter = is_inter_block(mbmi);
3643   int64_t this_rd = 0, skip_txfm_rd = 0;
3644   const BLOCK_SIZE plane_bsize =
3645       get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
3646 
3647   if (is_inter) {
3648     for (int plane = 1; plane < MAX_MB_PLANE; ++plane)
3649       av1_subtract_plane(x, plane_bsize, plane);
3650   }
3651 
3652   const int skip_trellis = 0;
3653   const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
3654   int is_cost_valid = 1;
3655   for (int plane = 1; plane < MAX_MB_PLANE; ++plane) {
3656     RD_STATS this_rd_stats;
3657     int64_t chroma_ref_best_rd = ref_best_rd;
3658     // For inter blocks, refined ref_best_rd is used for early exit
3659     // For intra blocks, even though current rd crosses ref_best_rd, early
3660     // exit is not recommended as current rd is used for gating subsequent
3661     // modes as well (say, for angular modes)
3662     // TODO(any): Extend the early exit mechanism for intra modes as well
3663     if (cpi->sf.inter_sf.perform_best_rd_based_gating_for_chroma && is_inter &&
3664         chroma_ref_best_rd != INT64_MAX)
3665       chroma_ref_best_rd = ref_best_rd - AOMMIN(this_rd, skip_txfm_rd);
3666     av1_txfm_rd_in_plane(x, cpi, &this_rd_stats, chroma_ref_best_rd, 0, plane,
3667                          plane_bsize, uv_tx_size, FTXS_NONE, skip_trellis);
3668     if (this_rd_stats.rate == INT_MAX) {
3669       is_cost_valid = 0;
3670       break;
3671     }
3672     av1_merge_rd_stats(rd_stats, &this_rd_stats);
3673     this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
3674     skip_txfm_rd = RDCOST(x->rdmult, 0, rd_stats->sse);
3675     if (AOMMIN(this_rd, skip_txfm_rd) > ref_best_rd) {
3676       is_cost_valid = 0;
3677       break;
3678     }
3679   }
3680 
3681   if (!is_cost_valid) {
3682     // reset cost value
3683     av1_invalid_rd_stats(rd_stats);
3684   }
3685 
3686   return is_cost_valid;
3687 }
3688 
av1_txfm_rd_in_plane(MACROBLOCK * x,const AV1_COMP * cpi,RD_STATS * rd_stats,int64_t ref_best_rd,int64_t current_rd,int plane,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,FAST_TX_SEARCH_MODE ftxs_mode,int skip_trellis)3689 void av1_txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi,
3690                           RD_STATS *rd_stats, int64_t ref_best_rd,
3691                           int64_t current_rd, int plane, BLOCK_SIZE plane_bsize,
3692                           TX_SIZE tx_size, FAST_TX_SEARCH_MODE ftxs_mode,
3693                           int skip_trellis) {
3694   assert(IMPLIES(plane == 0, x->e_mbd.mi[0]->tx_size == tx_size));
3695 
3696   if (!cpi->oxcf.txfm_cfg.enable_tx64 &&
3697       txsize_sqr_up_map[tx_size] == TX_64X64) {
3698     av1_invalid_rd_stats(rd_stats);
3699     return;
3700   }
3701 
3702   if (current_rd > ref_best_rd) {
3703     av1_invalid_rd_stats(rd_stats);
3704     return;
3705   }
3706 
3707   MACROBLOCKD *const xd = &x->e_mbd;
3708   const struct macroblockd_plane *const pd = &xd->plane[plane];
3709   struct rdcost_block_args args;
3710   av1_zero(args);
3711   args.x = x;
3712   args.cpi = cpi;
3713   args.best_rd = ref_best_rd;
3714   args.current_rd = current_rd;
3715   args.ftxs_mode = ftxs_mode;
3716   args.skip_trellis = skip_trellis;
3717   av1_init_rd_stats(&args.rd_stats);
3718 
3719   av1_get_entropy_contexts(plane_bsize, pd, args.t_above, args.t_left);
3720   av1_foreach_transformed_block_in_plane(xd, plane_bsize, plane, block_rd_txfm,
3721                                          &args);
3722 
3723   MB_MODE_INFO *const mbmi = xd->mi[0];
3724   const int is_inter = is_inter_block(mbmi);
3725   const int invalid_rd = is_inter ? args.incomplete_exit : args.exit_early;
3726 
3727   if (invalid_rd) {
3728     av1_invalid_rd_stats(rd_stats);
3729   } else {
3730     *rd_stats = args.rd_stats;
3731   }
3732 }
3733 
av1_txfm_search(const AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,RD_STATS * rd_stats,RD_STATS * rd_stats_y,RD_STATS * rd_stats_uv,int mode_rate,int64_t ref_best_rd)3734 int av1_txfm_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
3735                     RD_STATS *rd_stats, RD_STATS *rd_stats_y,
3736                     RD_STATS *rd_stats_uv, int mode_rate, int64_t ref_best_rd) {
3737   MACROBLOCKD *const xd = &x->e_mbd;
3738   TxfmSearchParams *txfm_params = &x->txfm_search_params;
3739   const int skip_ctx = av1_get_skip_txfm_context(xd);
3740   const int skip_txfm_cost[2] = { x->mode_costs.skip_txfm_cost[skip_ctx][0],
3741                                   x->mode_costs.skip_txfm_cost[skip_ctx][1] };
3742   const int64_t min_header_rate =
3743       mode_rate + AOMMIN(skip_txfm_cost[0], skip_txfm_cost[1]);
3744   // Account for minimum skip and non_skip rd.
3745   // Eventually either one of them will be added to mode_rate
3746   const int64_t min_header_rd_possible = RDCOST(x->rdmult, min_header_rate, 0);
3747   if (min_header_rd_possible > ref_best_rd) {
3748     av1_invalid_rd_stats(rd_stats_y);
3749     return 0;
3750   }
3751 
3752   const AV1_COMMON *cm = &cpi->common;
3753   MB_MODE_INFO *const mbmi = xd->mi[0];
3754   const int64_t mode_rd = RDCOST(x->rdmult, mode_rate, 0);
3755   const int64_t rd_thresh =
3756       ref_best_rd == INT64_MAX ? INT64_MAX : ref_best_rd - mode_rd;
3757   av1_init_rd_stats(rd_stats);
3758   av1_init_rd_stats(rd_stats_y);
3759   rd_stats->rate = mode_rate;
3760 
3761   // cost and distortion
3762   av1_subtract_plane(x, bsize, 0);
3763   if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
3764       !xd->lossless[mbmi->segment_id]) {
3765     av1_pick_recursive_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, rd_thresh);
3766 #if CONFIG_COLLECT_RD_STATS == 2
3767     PrintPredictionUnitStats(cpi, tile_data, x, rd_stats_y, bsize);
3768 #endif  // CONFIG_COLLECT_RD_STATS == 2
3769   } else {
3770     av1_pick_uniform_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, rd_thresh);
3771     memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
3772     for (int i = 0; i < xd->height * xd->width; ++i)
3773       set_blk_skip(x->txfm_search_info.blk_skip, 0, i, rd_stats_y->skip_txfm);
3774   }
3775 
3776   if (rd_stats_y->rate == INT_MAX) return 0;
3777 
3778   av1_merge_rd_stats(rd_stats, rd_stats_y);
3779 
3780   const int64_t non_skip_txfm_rdcosty =
3781       RDCOST(x->rdmult, rd_stats->rate + skip_txfm_cost[0], rd_stats->dist);
3782   const int64_t skip_txfm_rdcosty =
3783       RDCOST(x->rdmult, mode_rate + skip_txfm_cost[1], rd_stats->sse);
3784   const int64_t min_rdcosty = AOMMIN(non_skip_txfm_rdcosty, skip_txfm_rdcosty);
3785   if (min_rdcosty > ref_best_rd) return 0;
3786 
3787   av1_init_rd_stats(rd_stats_uv);
3788   const int num_planes = av1_num_planes(cm);
3789   if (num_planes > 1) {
3790     int64_t ref_best_chroma_rd = ref_best_rd;
3791     // Calculate best rd cost possible for chroma
3792     if (cpi->sf.inter_sf.perform_best_rd_based_gating_for_chroma &&
3793         (ref_best_chroma_rd != INT64_MAX)) {
3794       ref_best_chroma_rd = (ref_best_chroma_rd -
3795                             AOMMIN(non_skip_txfm_rdcosty, skip_txfm_rdcosty));
3796     }
3797     const int is_cost_valid_uv =
3798         av1_txfm_uvrd(cpi, x, rd_stats_uv, bsize, ref_best_chroma_rd);
3799     if (!is_cost_valid_uv) return 0;
3800     av1_merge_rd_stats(rd_stats, rd_stats_uv);
3801   }
3802 
3803   int choose_skip_txfm = rd_stats->skip_txfm;
3804   if (!choose_skip_txfm && !xd->lossless[mbmi->segment_id]) {
3805     const int64_t rdcost_no_skip_txfm = RDCOST(
3806         x->rdmult, rd_stats_y->rate + rd_stats_uv->rate + skip_txfm_cost[0],
3807         rd_stats->dist);
3808     const int64_t rdcost_skip_txfm =
3809         RDCOST(x->rdmult, skip_txfm_cost[1], rd_stats->sse);
3810     if (rdcost_no_skip_txfm >= rdcost_skip_txfm) choose_skip_txfm = 1;
3811   }
3812   if (choose_skip_txfm) {
3813     rd_stats_y->rate = 0;
3814     rd_stats_uv->rate = 0;
3815     rd_stats->rate = mode_rate + skip_txfm_cost[1];
3816     rd_stats->dist = rd_stats->sse;
3817     rd_stats_y->dist = rd_stats_y->sse;
3818     rd_stats_uv->dist = rd_stats_uv->sse;
3819     mbmi->skip_txfm = 1;
3820     if (rd_stats->skip_txfm) {
3821       const int64_t tmprd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
3822       if (tmprd > ref_best_rd) return 0;
3823     }
3824   } else {
3825     rd_stats->rate += skip_txfm_cost[0];
3826     mbmi->skip_txfm = 0;
3827   }
3828 
3829   return 1;
3830 }
3831