1 /*
2 * Copyright (c) 2018, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <immintrin.h> // AVX2
13 #include "aom_dsp/x86/mem_sse2.h"
14 #include "aom_dsp/x86/synonyms.h"
15 #include "aom_dsp/x86/synonyms_avx2.h"
16 #include "aom_dsp/x86/transpose_sse2.h"
17
18 #include "config/av1_rtcd.h"
19 #include "av1/common/restoration.h"
20 #include "av1/encoder/pickrst.h"
21
22 #if CONFIG_AV1_HIGHBITDEPTH
acc_stat_highbd_avx2(int64_t * dst,const uint16_t * dgd,const __m256i * shuffle,const __m256i * dgd_ijkl)23 static INLINE void acc_stat_highbd_avx2(int64_t *dst, const uint16_t *dgd,
24 const __m256i *shuffle,
25 const __m256i *dgd_ijkl) {
26 // Load two 128-bit chunks from dgd
27 const __m256i s0 = _mm256_inserti128_si256(
28 _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)dgd)),
29 _mm_loadu_si128((__m128i *)(dgd + 4)), 1);
30 // s0 = [11 10 9 8 7 6 5 4] [7 6 5 4 3 2 1 0] as u16 (values are dgd indices)
31 // The weird order is so the shuffle stays within 128-bit lanes
32
33 // Shuffle 16x u16 values within lanes according to the mask:
34 // [0 1 1 2 2 3 3 4] [0 1 1 2 2 3 3 4]
35 // (Actually we shuffle u8 values as there's no 16-bit shuffle)
36 const __m256i s1 = _mm256_shuffle_epi8(s0, *shuffle);
37 // s1 = [8 7 7 6 6 5 5 4] [4 3 3 2 2 1 1 0] as u16 (values are dgd indices)
38
39 // Multiply 16x 16-bit integers in dgd_ijkl and s1, resulting in 16x 32-bit
40 // integers then horizontally add pairs of these integers resulting in 8x
41 // 32-bit integers
42 const __m256i d0 = _mm256_madd_epi16(*dgd_ijkl, s1);
43 // d0 = [a b c d] [e f g h] as u32
44
45 // Take the lower-half of d0, extend to u64, add it on to dst (H)
46 const __m256i d0l = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 0));
47 // d0l = [a b] [c d] as u64
48 const __m256i dst0 = yy_load_256(dst);
49 yy_store_256(dst, _mm256_add_epi64(d0l, dst0));
50
51 // Take the upper-half of d0, extend to u64, add it on to dst (H)
52 const __m256i d0h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 1));
53 // d0h = [e f] [g h] as u64
54 const __m256i dst1 = yy_load_256(dst + 4);
55 yy_store_256(dst + 4, _mm256_add_epi64(d0h, dst1));
56 }
57
acc_stat_highbd_win7_one_line_avx2(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m256i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN][WIENER_WIN],int64_t M_int[WIENER_WIN][WIENER_WIN],int64_t H_int[WIENER_WIN2][WIENER_WIN * 8])58 static INLINE void acc_stat_highbd_win7_one_line_avx2(
59 const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
60 int dgd_stride, const __m256i *shuffle, int32_t *sumX,
61 int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN],
62 int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
63 int j, k, l;
64 const int wiener_win = WIENER_WIN;
65 // Main loop handles two pixels at a time
66 // We can assume that h_start is even, since it will always be aligned to
67 // a tile edge + some number of restoration units, and both of those will
68 // be 64-pixel aligned.
69 // However, at the edge of the image, h_end may be odd, so we need to handle
70 // that case correctly.
71 assert(h_start % 2 == 0);
72 const int h_end_even = h_end & ~1;
73 const int has_odd_pixel = h_end & 1;
74 for (j = h_start; j < h_end_even; j += 2) {
75 const uint16_t X1 = src[j];
76 const uint16_t X2 = src[j + 1];
77 *sumX += X1 + X2;
78 const uint16_t *dgd_ij = dgd + j;
79 for (k = 0; k < wiener_win; k++) {
80 const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
81 for (l = 0; l < wiener_win; l++) {
82 int64_t *H_ = &H_int[(l * wiener_win + k)][0];
83 const uint16_t D1 = dgd_ijk[l];
84 const uint16_t D2 = dgd_ijk[l + 1];
85 sumY[k][l] += D1 + D2;
86 M_int[k][l] += D1 * X1 + D2 * X2;
87
88 // Load two u16 values from dgd_ijkl combined as a u32,
89 // then broadcast to 8x u32 slots of a 256
90 const __m256i dgd_ijkl = _mm256_set1_epi32(loadu_int32(dgd_ijk + l));
91 // dgd_ijkl = [y x y x y x y x] [y x y x y x y x] where each is a u16
92
93 acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
94 &dgd_ijkl);
95 acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
96 &dgd_ijkl);
97 acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
98 &dgd_ijkl);
99 acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
100 &dgd_ijkl);
101 acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
102 &dgd_ijkl);
103 acc_stat_highbd_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
104 &dgd_ijkl);
105 acc_stat_highbd_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
106 &dgd_ijkl);
107 }
108 }
109 }
110 // If the width is odd, add in the final pixel
111 if (has_odd_pixel) {
112 const uint16_t X1 = src[j];
113 *sumX += X1;
114 const uint16_t *dgd_ij = dgd + j;
115 for (k = 0; k < wiener_win; k++) {
116 const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
117 for (l = 0; l < wiener_win; l++) {
118 int64_t *H_ = &H_int[(l * wiener_win + k)][0];
119 const uint16_t D1 = dgd_ijk[l];
120 sumY[k][l] += D1;
121 M_int[k][l] += D1 * X1;
122
123 // The `acc_stat_highbd_avx2` function wants its input to have
124 // interleaved copies of two pixels, but we only have one. However, the
125 // pixels are (effectively) used as inputs to a multiply-accumulate. So
126 // if we set the extra pixel slot to 0, then it is effectively ignored.
127 const __m256i dgd_ijkl = _mm256_set1_epi32((int)D1);
128
129 acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
130 &dgd_ijkl);
131 acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
132 &dgd_ijkl);
133 acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
134 &dgd_ijkl);
135 acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
136 &dgd_ijkl);
137 acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
138 &dgd_ijkl);
139 acc_stat_highbd_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
140 &dgd_ijkl);
141 acc_stat_highbd_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
142 &dgd_ijkl);
143 }
144 }
145 }
146 }
147
compute_stats_highbd_win7_opt_avx2(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)148 static INLINE void compute_stats_highbd_win7_opt_avx2(
149 const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
150 int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
151 int64_t *H, aom_bit_depth_t bit_depth) {
152 int i, j, k, l, m, n;
153 const int wiener_win = WIENER_WIN;
154 const int pixel_count = (h_end - h_start) * (v_end - v_start);
155 const int wiener_win2 = wiener_win * wiener_win;
156 const int wiener_halfwin = (wiener_win >> 1);
157 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
158 const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
159 const uint16_t avg =
160 find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
161
162 int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } };
163 DECLARE_ALIGNED(32, int64_t, H_int[WIENER_WIN2][WIENER_WIN * 8]) = { { 0 } };
164 int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
165 int32_t sumX = 0;
166 const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
167
168 const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data);
169 for (j = v_start; j < v_end; j += 64) {
170 const int vert_end = AOMMIN(64, v_end - j) + j;
171 for (i = j; i < vert_end; i++) {
172 acc_stat_highbd_win7_one_line_avx2(
173 dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
174 dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
175 }
176 }
177
178 uint8_t bit_depth_divider = 1;
179 if (bit_depth == AOM_BITS_12)
180 bit_depth_divider = 16;
181 else if (bit_depth == AOM_BITS_10)
182 bit_depth_divider = 4;
183
184 const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
185 for (k = 0; k < wiener_win; k++) {
186 for (l = 0; l < wiener_win; l++) {
187 const int32_t idx0 = l * wiener_win + k;
188 M[idx0] = (M_int[k][l] +
189 (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
190 bit_depth_divider;
191 int64_t *H_ = H + idx0 * wiener_win2;
192 int64_t *H_int_ = &H_int[idx0][0];
193 for (m = 0; m < wiener_win; m++) {
194 for (n = 0; n < wiener_win; n++) {
195 H_[m * wiener_win + n] =
196 (H_int_[n * 8 + m] +
197 (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
198 bit_depth_divider;
199 }
200 }
201 }
202 }
203 }
204
acc_stat_highbd_win5_one_line_avx2(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m256i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8])205 static INLINE void acc_stat_highbd_win5_one_line_avx2(
206 const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
207 int dgd_stride, const __m256i *shuffle, int32_t *sumX,
208 int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
209 int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
210 int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
211 int j, k, l;
212 const int wiener_win = WIENER_WIN_CHROMA;
213 // Main loop handles two pixels at a time
214 // We can assume that h_start is even, since it will always be aligned to
215 // a tile edge + some number of restoration units, and both of those will
216 // be 64-pixel aligned.
217 // However, at the edge of the image, h_end may be odd, so we need to handle
218 // that case correctly.
219 assert(h_start % 2 == 0);
220 const int h_end_even = h_end & ~1;
221 const int has_odd_pixel = h_end & 1;
222 for (j = h_start; j < h_end_even; j += 2) {
223 const uint16_t X1 = src[j];
224 const uint16_t X2 = src[j + 1];
225 *sumX += X1 + X2;
226 const uint16_t *dgd_ij = dgd + j;
227 for (k = 0; k < wiener_win; k++) {
228 const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
229 for (l = 0; l < wiener_win; l++) {
230 int64_t *H_ = &H_int[(l * wiener_win + k)][0];
231 const uint16_t D1 = dgd_ijk[l];
232 const uint16_t D2 = dgd_ijk[l + 1];
233 sumY[k][l] += D1 + D2;
234 M_int[k][l] += D1 * X1 + D2 * X2;
235
236 // Load two u16 values from dgd_ijkl combined as a u32,
237 // then broadcast to 8x u32 slots of a 256
238 const __m256i dgd_ijkl = _mm256_set1_epi32(loadu_int32(dgd_ijk + l));
239 // dgd_ijkl = [x y x y x y x y] [x y x y x y x y] where each is a u16
240
241 acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
242 &dgd_ijkl);
243 acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
244 &dgd_ijkl);
245 acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
246 &dgd_ijkl);
247 acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
248 &dgd_ijkl);
249 acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
250 &dgd_ijkl);
251 }
252 }
253 }
254 // If the width is odd, add in the final pixel
255 if (has_odd_pixel) {
256 const uint16_t X1 = src[j];
257 *sumX += X1;
258 const uint16_t *dgd_ij = dgd + j;
259 for (k = 0; k < wiener_win; k++) {
260 const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
261 for (l = 0; l < wiener_win; l++) {
262 int64_t *H_ = &H_int[(l * wiener_win + k)][0];
263 const uint16_t D1 = dgd_ijk[l];
264 sumY[k][l] += D1;
265 M_int[k][l] += D1 * X1;
266
267 // The `acc_stat_highbd_avx2` function wants its input to have
268 // interleaved copies of two pixels, but we only have one. However, the
269 // pixels are (effectively) used as inputs to a multiply-accumulate. So
270 // if we set the extra pixel slot to 0, then it is effectively ignored.
271 const __m256i dgd_ijkl = _mm256_set1_epi32((int)D1);
272
273 acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
274 &dgd_ijkl);
275 acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
276 &dgd_ijkl);
277 acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
278 &dgd_ijkl);
279 acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
280 &dgd_ijkl);
281 acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
282 &dgd_ijkl);
283 }
284 }
285 }
286 }
287
compute_stats_highbd_win5_opt_avx2(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)288 static INLINE void compute_stats_highbd_win5_opt_avx2(
289 const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
290 int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
291 int64_t *H, aom_bit_depth_t bit_depth) {
292 int i, j, k, l, m, n;
293 const int wiener_win = WIENER_WIN_CHROMA;
294 const int pixel_count = (h_end - h_start) * (v_end - v_start);
295 const int wiener_win2 = wiener_win * wiener_win;
296 const int wiener_halfwin = (wiener_win >> 1);
297 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
298 const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
299 const uint16_t avg =
300 find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
301
302 int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
303 DECLARE_ALIGNED(
304 32, int64_t,
305 H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) = { { 0 } };
306 int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
307 int32_t sumX = 0;
308 const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
309
310 const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data);
311 for (j = v_start; j < v_end; j += 64) {
312 const int vert_end = AOMMIN(64, v_end - j) + j;
313 for (i = j; i < vert_end; i++) {
314 acc_stat_highbd_win5_one_line_avx2(
315 dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
316 dgd_stride, &shuffle, &sumX, sumY, M_int64, H_int64);
317 }
318 }
319
320 uint8_t bit_depth_divider = 1;
321 if (bit_depth == AOM_BITS_12)
322 bit_depth_divider = 16;
323 else if (bit_depth == AOM_BITS_10)
324 bit_depth_divider = 4;
325
326 const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
327 for (k = 0; k < wiener_win; k++) {
328 for (l = 0; l < wiener_win; l++) {
329 const int32_t idx0 = l * wiener_win + k;
330 M[idx0] = (M_int64[k][l] +
331 (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
332 bit_depth_divider;
333 int64_t *H_ = H + idx0 * wiener_win2;
334 int64_t *H_int_ = &H_int64[idx0][0];
335 for (m = 0; m < wiener_win; m++) {
336 for (n = 0; n < wiener_win; n++) {
337 H_[m * wiener_win + n] =
338 (H_int_[n * 8 + m] +
339 (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
340 bit_depth_divider;
341 }
342 }
343 }
344 }
345 }
346
av1_compute_stats_highbd_avx2(int wiener_win,const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)347 void av1_compute_stats_highbd_avx2(int wiener_win, const uint8_t *dgd8,
348 const uint8_t *src8, int h_start, int h_end,
349 int v_start, int v_end, int dgd_stride,
350 int src_stride, int64_t *M, int64_t *H,
351 aom_bit_depth_t bit_depth) {
352 if (wiener_win == WIENER_WIN) {
353 compute_stats_highbd_win7_opt_avx2(dgd8, src8, h_start, h_end, v_start,
354 v_end, dgd_stride, src_stride, M, H,
355 bit_depth);
356 } else if (wiener_win == WIENER_WIN_CHROMA) {
357 compute_stats_highbd_win5_opt_avx2(dgd8, src8, h_start, h_end, v_start,
358 v_end, dgd_stride, src_stride, M, H,
359 bit_depth);
360 } else {
361 av1_compute_stats_highbd_c(wiener_win, dgd8, src8, h_start, h_end, v_start,
362 v_end, dgd_stride, src_stride, M, H, bit_depth);
363 }
364 }
365 #endif // CONFIG_AV1_HIGHBITDEPTH
366
madd_and_accum_avx2(__m256i src,__m256i dgd,__m256i * sum)367 static INLINE void madd_and_accum_avx2(__m256i src, __m256i dgd, __m256i *sum) {
368 *sum = _mm256_add_epi32(*sum, _mm256_madd_epi16(src, dgd));
369 }
370
convert_and_add_avx2(__m256i src)371 static INLINE __m256i convert_and_add_avx2(__m256i src) {
372 const __m256i s0 = _mm256_cvtepi32_epi64(_mm256_castsi256_si128(src));
373 const __m256i s1 = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(src, 1));
374 return _mm256_add_epi64(s0, s1);
375 }
376
hadd_four_32_to_64_avx2(__m256i src0,__m256i src1,__m256i * src2,__m256i * src3)377 static INLINE __m256i hadd_four_32_to_64_avx2(__m256i src0, __m256i src1,
378 __m256i *src2, __m256i *src3) {
379 // 00 01 10 11 02 03 12 13
380 const __m256i s_0 = _mm256_hadd_epi32(src0, src1);
381 // 20 21 30 31 22 23 32 33
382 const __m256i s_1 = _mm256_hadd_epi32(*src2, *src3);
383 // 00+01 10+11 20+21 30+31 02+03 12+13 22+23 32+33
384 const __m256i s_2 = _mm256_hadd_epi32(s_0, s_1);
385 return convert_and_add_avx2(s_2);
386 }
387
add_64bit_lvl_avx2(__m256i src0,__m256i src1)388 static INLINE __m128i add_64bit_lvl_avx2(__m256i src0, __m256i src1) {
389 // 00 10 02 12
390 const __m256i t0 = _mm256_unpacklo_epi64(src0, src1);
391 // 01 11 03 13
392 const __m256i t1 = _mm256_unpackhi_epi64(src0, src1);
393 // 00+01 10+11 02+03 12+13
394 const __m256i sum = _mm256_add_epi64(t0, t1);
395 // 00+01 10+11
396 const __m128i sum0 = _mm256_castsi256_si128(sum);
397 // 02+03 12+13
398 const __m128i sum1 = _mm256_extracti128_si256(sum, 1);
399 // 00+01+02+03 10+11+12+13
400 return _mm_add_epi64(sum0, sum1);
401 }
402
convert_32_to_64_add_avx2(__m256i src0,__m256i src1)403 static INLINE __m128i convert_32_to_64_add_avx2(__m256i src0, __m256i src1) {
404 // 00 01 02 03
405 const __m256i s0 = convert_and_add_avx2(src0);
406 // 10 11 12 13
407 const __m256i s1 = convert_and_add_avx2(src1);
408 return add_64bit_lvl_avx2(s0, s1);
409 }
410
calc_sum_of_register(__m256i src)411 static INLINE int32_t calc_sum_of_register(__m256i src) {
412 const __m128i src_l = _mm256_castsi256_si128(src);
413 const __m128i src_h = _mm256_extracti128_si256(src, 1);
414 const __m128i sum = _mm_add_epi32(src_l, src_h);
415 const __m128i dst0 = _mm_add_epi32(sum, _mm_srli_si128(sum, 8));
416 const __m128i dst1 = _mm_add_epi32(dst0, _mm_srli_si128(dst0, 4));
417 return _mm_cvtsi128_si32(dst1);
418 }
419
transpose_64bit_4x4_avx2(const __m256i * const src,__m256i * const dst)420 static INLINE void transpose_64bit_4x4_avx2(const __m256i *const src,
421 __m256i *const dst) {
422 // Unpack 64 bit elements. Goes from:
423 // src[0]: 00 01 02 03
424 // src[1]: 10 11 12 13
425 // src[2]: 20 21 22 23
426 // src[3]: 30 31 32 33
427 // to:
428 // reg0: 00 10 02 12
429 // reg1: 20 30 22 32
430 // reg2: 01 11 03 13
431 // reg3: 21 31 23 33
432 const __m256i reg0 = _mm256_unpacklo_epi64(src[0], src[1]);
433 const __m256i reg1 = _mm256_unpacklo_epi64(src[2], src[3]);
434 const __m256i reg2 = _mm256_unpackhi_epi64(src[0], src[1]);
435 const __m256i reg3 = _mm256_unpackhi_epi64(src[2], src[3]);
436
437 // Unpack 64 bit elements resulting in:
438 // dst[0]: 00 10 20 30
439 // dst[1]: 01 11 21 31
440 // dst[2]: 02 12 22 32
441 // dst[3]: 03 13 23 33
442 dst[0] = _mm256_inserti128_si256(reg0, _mm256_castsi256_si128(reg1), 1);
443 dst[1] = _mm256_inserti128_si256(reg2, _mm256_castsi256_si128(reg3), 1);
444 dst[2] = _mm256_inserti128_si256(reg1, _mm256_extracti128_si256(reg0, 1), 0);
445 dst[3] = _mm256_inserti128_si256(reg3, _mm256_extracti128_si256(reg2, 1), 0);
446 }
447
448 // When we load 32 values of int8_t type and need less than 32 values for
449 // processing, the below mask is used to make the extra values zero.
450 static const int8_t mask_8bit[32] = {
451 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 16 bytes
452 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 16 bytes
453 };
454
455 // When we load 16 values of int16_t type and need less than 16 values for
456 // processing, the below mask is used to make the extra values zero.
457 static const int16_t mask_16bit[32] = {
458 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 16 bytes
459 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 16 bytes
460 };
461
calc_dgd_buf_avg_avx2(const uint8_t * src,int32_t h_start,int32_t h_end,int32_t v_start,int32_t v_end,int32_t stride)462 static INLINE uint8_t calc_dgd_buf_avg_avx2(const uint8_t *src, int32_t h_start,
463 int32_t h_end, int32_t v_start,
464 int32_t v_end, int32_t stride) {
465 const uint8_t *src_temp = src + v_start * stride + h_start;
466 const __m256i zero = _mm256_setzero_si256();
467 const int32_t width = h_end - h_start;
468 const int32_t height = v_end - v_start;
469 const int32_t wd_beyond_mul32 = width & 31;
470 const int32_t wd_mul32 = width - wd_beyond_mul32;
471 __m128i mask_low, mask_high;
472 __m256i ss = zero;
473
474 // When width is not multiple of 32, it still loads 32 and to make the data
475 // which is extra (beyond required) as zero using the below mask.
476 if (wd_beyond_mul32 >= 16) {
477 mask_low = _mm_set1_epi8(-1);
478 mask_high = _mm_loadu_si128((__m128i *)(&mask_8bit[32 - wd_beyond_mul32]));
479 } else {
480 mask_low = _mm_loadu_si128((__m128i *)(&mask_8bit[16 - wd_beyond_mul32]));
481 mask_high = _mm_setzero_si128();
482 }
483 const __m256i mask =
484 _mm256_inserti128_si256(_mm256_castsi128_si256(mask_low), mask_high, 1);
485
486 int32_t proc_ht = 0;
487 do {
488 // Process width in multiple of 32.
489 int32_t proc_wd = 0;
490 while (proc_wd < wd_mul32) {
491 const __m256i s_0 = _mm256_loadu_si256((__m256i *)(src_temp + proc_wd));
492 const __m256i sad_0 = _mm256_sad_epu8(s_0, zero);
493 ss = _mm256_add_epi32(ss, sad_0);
494 proc_wd += 32;
495 }
496
497 // Process the remaining width.
498 if (wd_beyond_mul32) {
499 const __m256i s_0 = _mm256_loadu_si256((__m256i *)(src_temp + proc_wd));
500 const __m256i s_m_0 = _mm256_and_si256(s_0, mask);
501 const __m256i sad_0 = _mm256_sad_epu8(s_m_0, zero);
502 ss = _mm256_add_epi32(ss, sad_0);
503 }
504 src_temp += stride;
505 proc_ht++;
506 } while (proc_ht < height);
507
508 const uint32_t sum = calc_sum_of_register(ss);
509 const uint8_t avg = sum / (width * height);
510 return avg;
511 }
512
513 // Fill (src-avg) or (dgd-avg) buffers. Note that when n = (width % 16) is not
514 // 0, it writes (16 - n) more data than required.
sub_avg_block_avx2(const uint8_t * src,int32_t src_stride,uint8_t avg,int32_t width,int32_t height,int16_t * dst,int32_t dst_stride,int use_downsampled_wiener_stats)515 static INLINE void sub_avg_block_avx2(const uint8_t *src, int32_t src_stride,
516 uint8_t avg, int32_t width,
517 int32_t height, int16_t *dst,
518 int32_t dst_stride,
519 int use_downsampled_wiener_stats) {
520 const __m256i avg_reg = _mm256_set1_epi16(avg);
521
522 int32_t proc_ht = 0;
523 do {
524 int ds_factor =
525 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
526 if (use_downsampled_wiener_stats &&
527 (height - proc_ht < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
528 ds_factor = height - proc_ht;
529 }
530
531 int32_t proc_wd = 0;
532 while (proc_wd < width) {
533 const __m128i s = _mm_loadu_si128((__m128i *)(src + proc_wd));
534 const __m256i ss = _mm256_cvtepu8_epi16(s);
535 const __m256i d = _mm256_sub_epi16(ss, avg_reg);
536 _mm256_storeu_si256((__m256i *)(dst + proc_wd), d);
537 proc_wd += 16;
538 }
539
540 src += ds_factor * src_stride;
541 dst += ds_factor * dst_stride;
542 proc_ht += ds_factor;
543 } while (proc_ht < height);
544 }
545
546 // Fills lower-triangular elements of H buffer from upper triangular elements of
547 // the same
fill_lower_triag_elements_avx2(const int32_t wiener_win2,int64_t * const H)548 static INLINE void fill_lower_triag_elements_avx2(const int32_t wiener_win2,
549 int64_t *const H) {
550 for (int32_t i = 0; i < wiener_win2 - 1; i += 4) {
551 __m256i in[4], out[4];
552
553 in[0] = _mm256_loadu_si256((__m256i *)(H + (i + 0) * wiener_win2 + i + 1));
554 in[1] = _mm256_loadu_si256((__m256i *)(H + (i + 1) * wiener_win2 + i + 1));
555 in[2] = _mm256_loadu_si256((__m256i *)(H + (i + 2) * wiener_win2 + i + 1));
556 in[3] = _mm256_loadu_si256((__m256i *)(H + (i + 3) * wiener_win2 + i + 1));
557
558 transpose_64bit_4x4_avx2(in, out);
559
560 _mm_storel_epi64((__m128i *)(H + (i + 1) * wiener_win2 + i),
561 _mm256_castsi256_si128(out[0]));
562 _mm_storeu_si128((__m128i *)(H + (i + 2) * wiener_win2 + i),
563 _mm256_castsi256_si128(out[1]));
564 _mm256_storeu_si256((__m256i *)(H + (i + 3) * wiener_win2 + i), out[2]);
565 _mm256_storeu_si256((__m256i *)(H + (i + 4) * wiener_win2 + i), out[3]);
566
567 for (int32_t j = i + 5; j < wiener_win2; j += 4) {
568 in[0] = _mm256_loadu_si256((__m256i *)(H + (i + 0) * wiener_win2 + j));
569 in[1] = _mm256_loadu_si256((__m256i *)(H + (i + 1) * wiener_win2 + j));
570 in[2] = _mm256_loadu_si256((__m256i *)(H + (i + 2) * wiener_win2 + j));
571 in[3] = _mm256_loadu_si256((__m256i *)(H + (i + 3) * wiener_win2 + j));
572
573 transpose_64bit_4x4_avx2(in, out);
574
575 _mm256_storeu_si256((__m256i *)(H + (j + 0) * wiener_win2 + i), out[0]);
576 _mm256_storeu_si256((__m256i *)(H + (j + 1) * wiener_win2 + i), out[1]);
577 _mm256_storeu_si256((__m256i *)(H + (j + 2) * wiener_win2 + i), out[2]);
578 _mm256_storeu_si256((__m256i *)(H + (j + 3) * wiener_win2 + i), out[3]);
579 }
580 }
581 }
582
583 // Fill H buffer based on loop_count.
584 #define INIT_H_VALUES(d, loop_count) \
585 for (int g = 0; g < (loop_count); g++) { \
586 const __m256i dgd0 = \
587 _mm256_loadu_si256((__m256i *)((d) + (g * d_stride))); \
588 madd_and_accum_avx2(dgd_mul_df, dgd0, &sum_h[g]); \
589 }
590
591 // Fill M & H buffer.
592 #define INIT_MH_VALUES(d) \
593 for (int g = 0; g < wiener_win; g++) { \
594 const __m256i dgds_0 = \
595 _mm256_loadu_si256((__m256i *)((d) + (g * d_stride))); \
596 madd_and_accum_avx2(src_mul_df, dgds_0, &sum_m[g]); \
597 madd_and_accum_avx2(dgd_mul_df, dgds_0, &sum_h[g]); \
598 }
599
600 // Update the dgd pointers appropriately.
601 #define INITIALIZATION(wiener_window_sz) \
602 j = i / (wiener_window_sz); \
603 const int16_t *d_window = d + j; \
604 const int16_t *d_current_row = \
605 d + j + ((i % (wiener_window_sz)) * d_stride); \
606 int proc_ht = v_start; \
607 downsample_factor = \
608 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; \
609 __m256i sum_h[wiener_window_sz]; \
610 memset(sum_h, 0, sizeof(sum_h));
611
612 // Update the downsample factor appropriately.
613 #define UPDATE_DOWNSAMPLE_FACTOR \
614 int proc_wd = 0; \
615 if (use_downsampled_wiener_stats && \
616 ((v_end - proc_ht) < WIENER_STATS_DOWNSAMPLE_FACTOR)) { \
617 downsample_factor = v_end - proc_ht; \
618 } \
619 const __m256i df_reg = _mm256_set1_epi16(downsample_factor);
620
621 #define CALCULATE_REMAINING_H_WIN5 \
622 while (j < wiener_win) { \
623 d_window = d; \
624 d_current_row = d + (i / wiener_win) + ((i % wiener_win) * d_stride); \
625 const __m256i zero = _mm256_setzero_si256(); \
626 sum_h[0] = zero; \
627 sum_h[1] = zero; \
628 sum_h[2] = zero; \
629 sum_h[3] = zero; \
630 sum_h[4] = zero; \
631 \
632 proc_ht = v_start; \
633 downsample_factor = \
634 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; \
635 do { \
636 UPDATE_DOWNSAMPLE_FACTOR; \
637 \
638 /* Process the amount of width multiple of 16.*/ \
639 while (proc_wd < wd_mul16) { \
640 const __m256i dgd = \
641 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); \
642 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); \
643 INIT_H_VALUES(d_window + j + proc_wd, 5) \
644 \
645 proc_wd += 16; \
646 }; \
647 \
648 /* Process the remaining width here. */ \
649 if (wd_beyond_mul16) { \
650 const __m256i dgd = \
651 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); \
652 const __m256i dgd_mask = _mm256_and_si256(dgd, mask); \
653 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); \
654 INIT_H_VALUES(d_window + j + proc_wd, 5) \
655 } \
656 proc_ht += downsample_factor; \
657 d_window += downsample_factor * d_stride; \
658 d_current_row += downsample_factor * d_stride; \
659 } while (proc_ht < v_end); \
660 const __m256i s_h0 = \
661 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); \
662 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)), \
663 s_h0); \
664 const __m256i s_m_h = convert_and_add_avx2(sum_h[4]); \
665 const __m128i s_m_h0 = add_64bit_lvl_avx2(s_m_h, s_m_h); \
666 _mm_storel_epi64( \
667 (__m128i *)(H + (i * wiener_win2) + (wiener_win * j) + 4), s_m_h0); \
668 j++; \
669 }
670
671 #define CALCULATE_REMAINING_H_WIN7 \
672 while (j < wiener_win) { \
673 d_window = d; \
674 d_current_row = d + (i / wiener_win) + ((i % wiener_win) * d_stride); \
675 const __m256i zero = _mm256_setzero_si256(); \
676 sum_h[0] = zero; \
677 sum_h[1] = zero; \
678 sum_h[2] = zero; \
679 sum_h[3] = zero; \
680 sum_h[4] = zero; \
681 sum_h[5] = zero; \
682 sum_h[6] = zero; \
683 \
684 proc_ht = v_start; \
685 downsample_factor = \
686 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; \
687 do { \
688 UPDATE_DOWNSAMPLE_FACTOR; \
689 \
690 /* Process the amount of width multiple of 16.*/ \
691 while (proc_wd < wd_mul16) { \
692 const __m256i dgd = \
693 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); \
694 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); \
695 INIT_H_VALUES(d_window + j + proc_wd, 7) \
696 \
697 proc_wd += 16; \
698 }; \
699 \
700 /* Process the remaining width here. */ \
701 if (wd_beyond_mul16) { \
702 const __m256i dgd = \
703 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); \
704 const __m256i dgd_mask = _mm256_and_si256(dgd, mask); \
705 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); \
706 INIT_H_VALUES(d_window + j + proc_wd, 7) \
707 } \
708 proc_ht += downsample_factor; \
709 d_window += downsample_factor * d_stride; \
710 d_current_row += downsample_factor * d_stride; \
711 } while (proc_ht < v_end); \
712 const __m256i s_h1 = \
713 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); \
714 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)), \
715 s_h1); \
716 const __m256i s_h2 = \
717 hadd_four_32_to_64_avx2(sum_h[4], sum_h[5], &sum_h[6], &sum_h[6]); \
718 _mm256_storeu_si256( \
719 (__m256i *)(H + (i * wiener_win2) + (wiener_win * j) + 4), s_h2); \
720 j++; \
721 }
722
723 // The buffers H(auto-covariance) and M(cross-correlation) are used to estimate
724 // the filter tap values required for wiener filtering. Here, the buffer H is of
725 // size ((wiener_window_size^2)*(wiener_window_size^2)) and M is of size
726 // (wiener_window_size*wiener_window_size). H is a symmetric matrix where the
727 // value above the diagonal (upper triangle) are equal to the values below the
728 // diagonal (lower triangle). The calculation of elements/stats of H(upper
729 // triangle) and M is done in steps as described below where each step fills
730 // specific values of H and M.
731 // Once the upper triangular elements of H matrix are derived, the same will be
732 // copied to lower triangular using the function
733 // fill_lower_triag_elements_avx2().
734 // Example: Wiener window size =
735 // WIENER_WIN_CHROMA (5) M buffer = [M0 M1 M2 ---- M23 M24] H buffer = Hxy
736 // (x-row, y-column) [H00 H01 H02 ---- H023 H024] [H10 H11 H12 ---- H123 H124]
737 // [H30 H31 H32 ---- H323 H324]
738 // [H40 H41 H42 ---- H423 H424]
739 // [H50 H51 H52 ---- H523 H524]
740 // [H60 H61 H62 ---- H623 H624]
741 // ||
742 // ||
743 // [H230 H231 H232 ---- H2323 H2324]
744 // [H240 H241 H242 ---- H2423 H2424]
745 // In Step 1, whole M buffers (i.e., M0 to M24) and the first row of H (i.e.,
746 // H00 to H024) is filled. The remaining rows of H buffer are filled through
747 // steps 2 to 6.
compute_stats_win5_avx2(const int16_t * const d,int32_t d_stride,const int16_t * const s,int32_t s_stride,int32_t width,int v_start,int v_end,int64_t * const M,int64_t * const H,int use_downsampled_wiener_stats)748 static void compute_stats_win5_avx2(const int16_t *const d, int32_t d_stride,
749 const int16_t *const s, int32_t s_stride,
750 int32_t width, int v_start, int v_end,
751 int64_t *const M, int64_t *const H,
752 int use_downsampled_wiener_stats) {
753 const int32_t wiener_win = WIENER_WIN_CHROMA;
754 const int32_t wiener_win2 = wiener_win * wiener_win;
755 // Amount of width which is beyond multiple of 16. This case is handled
756 // appropriately to process only the required width towards the end.
757 const int32_t wd_mul16 = width & ~15;
758 const int32_t wd_beyond_mul16 = width - wd_mul16;
759 const __m256i mask =
760 _mm256_loadu_si256((__m256i *)(&mask_16bit[16 - wd_beyond_mul16]));
761 int downsample_factor;
762
763 // Step 1: Full M (i.e., M0 to M24) and first row H (i.e., H00 to H024)
764 // values are filled here. Here, the loop over 'j' is executed for values 0
765 // to 4 (wiener_win-1). When the loop executed for a specific 'j', 5 values of
766 // M and H are filled as shown below.
767 // j=0: M0-M4 and H00-H04, j=1: M5-M9 and H05-H09 are filled etc,.
768 int j = 0;
769 do {
770 const int16_t *s_t = s;
771 const int16_t *d_t = d;
772 __m256i sum_m[WIENER_WIN_CHROMA] = { _mm256_setzero_si256() };
773 __m256i sum_h[WIENER_WIN_CHROMA] = { _mm256_setzero_si256() };
774 downsample_factor =
775 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
776 int proc_ht = v_start;
777 do {
778 UPDATE_DOWNSAMPLE_FACTOR
779
780 // Process the amount of width multiple of 16.
781 while (proc_wd < wd_mul16) {
782 const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd));
783 const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd));
784 const __m256i src_mul_df = _mm256_mullo_epi16(src, df_reg);
785 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
786 INIT_MH_VALUES(d_t + j + proc_wd)
787
788 proc_wd += 16;
789 }
790
791 // Process the remaining width here.
792 if (wd_beyond_mul16) {
793 const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd));
794 const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd));
795 const __m256i src_mask = _mm256_and_si256(src, mask);
796 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
797 const __m256i src_mul_df = _mm256_mullo_epi16(src_mask, df_reg);
798 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
799 INIT_MH_VALUES(d_t + j + proc_wd)
800 }
801 proc_ht += downsample_factor;
802 s_t += downsample_factor * s_stride;
803 d_t += downsample_factor * d_stride;
804 } while (proc_ht < v_end);
805
806 const __m256i s_m =
807 hadd_four_32_to_64_avx2(sum_m[0], sum_m[1], &sum_m[2], &sum_m[3]);
808 const __m128i s_m_h = convert_32_to_64_add_avx2(sum_m[4], sum_h[4]);
809 _mm256_storeu_si256((__m256i *)(M + wiener_win * j), s_m);
810 _mm_storel_epi64((__m128i *)&M[wiener_win * j + 4], s_m_h);
811
812 const __m256i s_h =
813 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
814 _mm256_storeu_si256((__m256i *)(H + wiener_win * j), s_h);
815 _mm_storeh_epi64((__m128i *)&H[wiener_win * j + 4], s_m_h);
816 } while (++j < wiener_win);
817
818 // The below steps are designed to fill remaining rows of H buffer. Here, aim
819 // is to fill only upper triangle elements correspond to each row and lower
820 // triangle elements are copied from upper-triangle elements. Also, as
821 // mentioned in Step 1, the core function is designed to fill 5
822 // elements/stats/values of H buffer.
823 //
824 // Step 2: Here, the rows 1, 6, 11, 16 and 21 are filled. As we need to fill
825 // only upper-triangle elements, H10 from row1, H60-H64 and H65 from row6,etc,
826 // are need not be filled. As the core function process 5 values, in first
827 // iteration of 'j' only 4 values to be filled i.e., H11-H14 from row1,H66-H69
828 // from row6, etc.
829 for (int i = 1; i < wiener_win2; i += wiener_win) {
830 // Update the dgd pointers appropriately and also derive the 'j'th iteration
831 // from where the H buffer filling needs to be started.
832 INITIALIZATION(WIENER_WIN_CHROMA)
833
834 do {
835 UPDATE_DOWNSAMPLE_FACTOR
836
837 // Process the amount of width multiple of 16.
838 while (proc_wd < wd_mul16) {
839 const __m256i dgd =
840 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
841 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
842 INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 4)
843
844 proc_wd += 16;
845 }
846
847 // Process the remaining width here.
848 if (wd_beyond_mul16) {
849 const __m256i dgd =
850 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
851 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
852 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
853 INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 4)
854 }
855 proc_ht += downsample_factor;
856 d_window += downsample_factor * d_stride;
857 d_current_row += downsample_factor * d_stride;
858 } while (proc_ht < v_end);
859 const __m256i s_h =
860 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
861 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
862
863 // process the remaining 'j' iterations.
864 j++;
865 CALCULATE_REMAINING_H_WIN5
866 }
867
868 // Step 3: Here, the rows 2, 7, 12, 17 and 22 are filled. As we need to fill
869 // only upper-triangle elements, H20-H21 from row2, H70-H74 and H75-H76 from
870 // row7, etc, are need not be filled. As the core function process 5 values,
871 // in first iteration of 'j' only 3 values to be filled i.e., H22-H24 from
872 // row2, H77-H79 from row7, etc.
873 for (int i = 2; i < wiener_win2; i += wiener_win) {
874 // Update the dgd pointers appropriately and also derive the 'j'th iteration
875 // from where the H buffer filling needs to be started.
876 INITIALIZATION(WIENER_WIN_CHROMA)
877
878 do {
879 UPDATE_DOWNSAMPLE_FACTOR
880
881 // Process the amount of width multiple of 16.
882 while (proc_wd < wd_mul16) {
883 const __m256i dgd =
884 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
885 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
886 INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 3)
887
888 proc_wd += 16;
889 }
890
891 // Process the remaining width here.
892 if (wd_beyond_mul16) {
893 const __m256i dgd =
894 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
895 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
896 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
897 INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 3)
898 }
899 proc_ht += downsample_factor;
900 d_window += downsample_factor * d_stride;
901 d_current_row += downsample_factor * d_stride;
902 } while (proc_ht < v_end);
903 const __m256i s_h =
904 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
905 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
906
907 // process the remaining 'j' iterations.
908 j++;
909 CALCULATE_REMAINING_H_WIN5
910 }
911
912 // Step 4: Here, the rows 3, 8, 13, 18 and 23 are filled. As we need to fill
913 // only upper-triangle elements, H30-H32 from row3, H80-H84 and H85-H87 from
914 // row8, etc, are need not be filled. As the core function process 5 values,
915 // in first iteration of 'j' only 2 values to be filled i.e., H33-H34 from
916 // row3, H88-89 from row8, etc.
917 for (int i = 3; i < wiener_win2; i += wiener_win) {
918 // Update the dgd pointers appropriately and also derive the 'j'th iteration
919 // from where the H buffer filling needs to be started.
920 INITIALIZATION(WIENER_WIN_CHROMA)
921
922 do {
923 UPDATE_DOWNSAMPLE_FACTOR
924
925 // Process the amount of width multiple of 16.
926 while (proc_wd < wd_mul16) {
927 const __m256i dgd =
928 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
929 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
930 INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 2)
931
932 proc_wd += 16;
933 }
934
935 // Process the remaining width here.
936 if (wd_beyond_mul16) {
937 const __m256i dgd =
938 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
939 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
940 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
941 INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 2)
942 }
943 proc_ht += downsample_factor;
944 d_window += downsample_factor * d_stride;
945 d_current_row += downsample_factor * d_stride;
946 } while (proc_ht < v_end);
947 const __m128i s_h = convert_32_to_64_add_avx2(sum_h[0], sum_h[1]);
948 _mm_storeu_si128((__m128i *)(H + (i * wiener_win2) + i), s_h);
949
950 // process the remaining 'j' iterations.
951 j++;
952 CALCULATE_REMAINING_H_WIN5
953 }
954
955 // Step 5: Here, the rows 4, 9, 14, 19 and 24 are filled. As we need to fill
956 // only upper-triangle elements, H40-H43 from row4, H90-H94 and H95-H98 from
957 // row9, etc, are need not be filled. As the core function process 5 values,
958 // in first iteration of 'j' only 1 values to be filled i.e., H44 from row4,
959 // H99 from row9, etc.
960 for (int i = 4; i < wiener_win2; i += wiener_win) {
961 // Update the dgd pointers appropriately and also derive the 'j'th iteration
962 // from where the H buffer filling needs to be started.
963 INITIALIZATION(WIENER_WIN_CHROMA)
964 do {
965 UPDATE_DOWNSAMPLE_FACTOR
966
967 // Process the amount of width multiple of 16.
968 while (proc_wd < wd_mul16) {
969 const __m256i dgd =
970 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
971 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
972 INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 1)
973
974 proc_wd += 16;
975 }
976
977 // Process the remaining width here.
978 if (wd_beyond_mul16) {
979 const __m256i dgd =
980 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
981 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
982 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
983 INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 1)
984 }
985 proc_ht += downsample_factor;
986 d_window += downsample_factor * d_stride;
987 d_current_row += downsample_factor * d_stride;
988 } while (proc_ht < v_end);
989 const __m128i s_h = convert_32_to_64_add_avx2(sum_h[0], sum_h[1]);
990 _mm_storeu_si128((__m128i *)(H + (i * wiener_win2) + i), s_h);
991
992 // process the remaining 'j' iterations.
993 j++;
994 CALCULATE_REMAINING_H_WIN5
995 }
996
997 // Step 6: Here, the rows 5, 10, 15 and 20 are filled. As we need to fill only
998 // upper-triangle elements, H50-H54 from row5, H100-H104 and H105-H109 from
999 // row10,etc, are need not be filled. The first iteration of 'j' fills H55-H59
1000 // from row5 and H1010-H1014 from row10, etc.
1001 for (int i = 5; i < wiener_win2; i += wiener_win) {
1002 // Derive j'th iteration from where the H buffer filling needs to be
1003 // started.
1004 j = i / wiener_win;
1005 int shift = 0;
1006 do {
1007 // Update the dgd pointers appropriately.
1008 int proc_ht = v_start;
1009 const int16_t *d_window = d + (i / wiener_win);
1010 const int16_t *d_current_row =
1011 d + (i / wiener_win) + ((i % wiener_win) * d_stride);
1012 downsample_factor =
1013 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
1014 __m256i sum_h[WIENER_WIN_CHROMA] = { _mm256_setzero_si256() };
1015 do {
1016 UPDATE_DOWNSAMPLE_FACTOR
1017
1018 // Process the amount of width multiple of 16.
1019 while (proc_wd < wd_mul16) {
1020 const __m256i dgd =
1021 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1022 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1023 INIT_H_VALUES(d_window + shift + proc_wd, 5)
1024
1025 proc_wd += 16;
1026 }
1027
1028 // Process the remaining width here.
1029 if (wd_beyond_mul16) {
1030 const __m256i dgd =
1031 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1032 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1033 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1034 INIT_H_VALUES(d_window + shift + proc_wd, 5)
1035 }
1036 proc_ht += downsample_factor;
1037 d_window += downsample_factor * d_stride;
1038 d_current_row += downsample_factor * d_stride;
1039 } while (proc_ht < v_end);
1040
1041 const __m256i s_h =
1042 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1043 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)),
1044 s_h);
1045 const __m256i s_m_h = convert_and_add_avx2(sum_h[4]);
1046 const __m128i s_m_h0 = add_64bit_lvl_avx2(s_m_h, s_m_h);
1047 _mm_storel_epi64(
1048 (__m128i *)(H + (i * wiener_win2) + (wiener_win * j) + 4), s_m_h0);
1049 shift++;
1050 } while (++j < wiener_win);
1051 }
1052
1053 fill_lower_triag_elements_avx2(wiener_win2, H);
1054 }
1055
1056 // The buffers H(auto-covariance) and M(cross-correlation) are used to estimate
1057 // the filter tap values required for wiener filtering. Here, the buffer H is of
1058 // size ((wiener_window_size^2)*(wiener_window_size^2)) and M is of size
1059 // (wiener_window_size*wiener_window_size). H is a symmetric matrix where the
1060 // value above the diagonal (upper triangle) are equal to the values below the
1061 // diagonal (lower triangle). The calculation of elements/stats of H(upper
1062 // triangle) and M is done in steps as described below where each step fills
1063 // specific values of H and M.
1064 // Example:
1065 // Wiener window size = WIENER_WIN (7)
1066 // M buffer = [M0 M1 M2 ---- M47 M48]
1067 // H buffer = Hxy (x-row, y-column)
1068 // [H00 H01 H02 ---- H047 H048]
1069 // [H10 H11 H12 ---- H147 H148]
1070 // [H30 H31 H32 ---- H347 H348]
1071 // [H40 H41 H42 ---- H447 H448]
1072 // [H50 H51 H52 ---- H547 H548]
1073 // [H60 H61 H62 ---- H647 H648]
1074 // ||
1075 // ||
1076 // [H470 H471 H472 ---- H4747 H4748]
1077 // [H480 H481 H482 ---- H4847 H4848]
1078 // In Step 1, whole M buffers (i.e., M0 to M48) and the first row of H (i.e.,
1079 // H00 to H048) is filled. The remaining rows of H buffer are filled through
1080 // steps 2 to 8.
compute_stats_win7_avx2(const int16_t * const d,int32_t d_stride,const int16_t * const s,int32_t s_stride,int32_t width,int v_start,int v_end,int64_t * const M,int64_t * const H,int use_downsampled_wiener_stats)1081 static void compute_stats_win7_avx2(const int16_t *const d, int32_t d_stride,
1082 const int16_t *const s, int32_t s_stride,
1083 int32_t width, int v_start, int v_end,
1084 int64_t *const M, int64_t *const H,
1085 int use_downsampled_wiener_stats) {
1086 const int32_t wiener_win = WIENER_WIN;
1087 const int32_t wiener_win2 = wiener_win * wiener_win;
1088 // Amount of width which is beyond multiple of 16. This case is handled
1089 // appropriately to process only the required width towards the end.
1090 const int32_t wd_mul16 = width & ~15;
1091 const int32_t wd_beyond_mul16 = width - wd_mul16;
1092 const __m256i mask =
1093 _mm256_loadu_si256((__m256i *)(&mask_16bit[16 - wd_beyond_mul16]));
1094 int downsample_factor;
1095
1096 // Step 1: Full M (i.e., M0 to M48) and first row H (i.e., H00 to H048)
1097 // values are filled here. Here, the loop over 'j' is executed for values 0
1098 // to 6. When the loop executed for a specific 'j', 7 values of M and H are
1099 // filled as shown below.
1100 // j=0: M0-M6 and H00-H06, j=1: M7-M13 and H07-H013 are filled etc,.
1101 int j = 0;
1102 do {
1103 const int16_t *s_t = s;
1104 const int16_t *d_t = d;
1105 __m256i sum_m[WIENER_WIN] = { _mm256_setzero_si256() };
1106 __m256i sum_h[WIENER_WIN] = { _mm256_setzero_si256() };
1107 downsample_factor =
1108 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
1109 int proc_ht = v_start;
1110 do {
1111 UPDATE_DOWNSAMPLE_FACTOR
1112
1113 // Process the amount of width multiple of 16.
1114 while (proc_wd < wd_mul16) {
1115 const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd));
1116 const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd));
1117 const __m256i src_mul_df = _mm256_mullo_epi16(src, df_reg);
1118 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1119 INIT_MH_VALUES(d_t + j + proc_wd)
1120
1121 proc_wd += 16;
1122 }
1123
1124 if (wd_beyond_mul16) {
1125 const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd));
1126 const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd));
1127 const __m256i src_mask = _mm256_and_si256(src, mask);
1128 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1129 const __m256i src_mul_df = _mm256_mullo_epi16(src_mask, df_reg);
1130 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1131 INIT_MH_VALUES(d_t + j + proc_wd)
1132 }
1133 proc_ht += downsample_factor;
1134 s_t += downsample_factor * s_stride;
1135 d_t += downsample_factor * d_stride;
1136 } while (proc_ht < v_end);
1137
1138 const __m256i s_m0 =
1139 hadd_four_32_to_64_avx2(sum_m[0], sum_m[1], &sum_m[2], &sum_m[3]);
1140 const __m256i s_m1 =
1141 hadd_four_32_to_64_avx2(sum_m[4], sum_m[5], &sum_m[6], &sum_m[6]);
1142 _mm256_storeu_si256((__m256i *)(M + wiener_win * j + 0), s_m0);
1143 _mm_storeu_si128((__m128i *)(M + wiener_win * j + 4),
1144 _mm256_castsi256_si128(s_m1));
1145 _mm_storel_epi64((__m128i *)&M[wiener_win * j + 6],
1146 _mm256_extracti128_si256(s_m1, 1));
1147
1148 const __m256i sh_0 =
1149 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1150 const __m256i sh_1 =
1151 hadd_four_32_to_64_avx2(sum_h[4], sum_h[5], &sum_h[6], &sum_h[6]);
1152 _mm256_storeu_si256((__m256i *)(H + wiener_win * j + 0), sh_0);
1153 _mm_storeu_si128((__m128i *)(H + wiener_win * j + 4),
1154 _mm256_castsi256_si128(sh_1));
1155 _mm_storel_epi64((__m128i *)&H[wiener_win * j + 6],
1156 _mm256_extracti128_si256(sh_1, 1));
1157 } while (++j < wiener_win);
1158
1159 // The below steps are designed to fill remaining rows of H buffer. Here, aim
1160 // is to fill only upper triangle elements correspond to each row and lower
1161 // triangle elements are copied from upper-triangle elements. Also, as
1162 // mentioned in Step 1, the core function is designed to fill 7
1163 // elements/stats/values of H buffer.
1164 //
1165 // Step 2: Here, the rows 1, 8, 15, 22, 29, 36 and 43 are filled. As we need
1166 // to fill only upper-triangle elements, H10 from row1, H80-H86 and H87 from
1167 // row8, etc. are need not be filled. As the core function process 7 values,
1168 // in first iteration of 'j' only 6 values to be filled i.e., H11-H16 from
1169 // row1 and H88-H813 from row8, etc.
1170 for (int i = 1; i < wiener_win2; i += wiener_win) {
1171 // Update the dgd pointers appropriately and also derive the 'j'th iteration
1172 // from where the H buffer filling needs to be started.
1173 INITIALIZATION(WIENER_WIN)
1174
1175 do {
1176 UPDATE_DOWNSAMPLE_FACTOR
1177
1178 // Process the amount of width multiple of 16.
1179 while (proc_wd < wd_mul16) {
1180 const __m256i dgd =
1181 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1182 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1183 INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 6)
1184
1185 proc_wd += 16;
1186 }
1187
1188 // Process the remaining width here.
1189 if (wd_beyond_mul16) {
1190 const __m256i dgd =
1191 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1192 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1193 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1194 INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 6)
1195 }
1196 proc_ht += downsample_factor;
1197 d_window += downsample_factor * d_stride;
1198 d_current_row += downsample_factor * d_stride;
1199 } while (proc_ht < v_end);
1200 const __m256i s_h =
1201 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1202 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1203 const __m128i s_h0 = convert_32_to_64_add_avx2(sum_h[4], sum_h[5]);
1204 _mm_storeu_si128((__m128i *)(H + (i * wiener_win2) + i + 4), s_h0);
1205
1206 // process the remaining 'j' iterations.
1207 j++;
1208 CALCULATE_REMAINING_H_WIN7
1209 }
1210
1211 // Step 3: Here, the rows 2, 9, 16, 23, 30, 37 and 44 are filled. As we need
1212 // to fill only upper-triangle elements, H20-H21 from row2, H90-H96 and
1213 // H97-H98 from row9, etc. are need not be filled. As the core function
1214 // process 7 values, in first iteration of 'j' only 5 values to be filled
1215 // i.e., H22-H26 from row2 and H99-H913 from row9, etc.
1216 for (int i = 2; i < wiener_win2; i += wiener_win) {
1217 // Update the dgd pointers appropriately and also derive the 'j'th iteration
1218 // from where the H buffer filling needs to be started.
1219 INITIALIZATION(WIENER_WIN)
1220 do {
1221 UPDATE_DOWNSAMPLE_FACTOR
1222
1223 // Process the amount of width multiple of 16.
1224 while (proc_wd < wd_mul16) {
1225 const __m256i dgd =
1226 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1227 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1228 INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 5)
1229
1230 proc_wd += 16;
1231 }
1232
1233 // Process the remaining width here.
1234 if (wd_beyond_mul16) {
1235 const __m256i dgd =
1236 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1237 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1238 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1239 INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 5)
1240 }
1241 proc_ht += downsample_factor;
1242 d_window += downsample_factor * d_stride;
1243 d_current_row += downsample_factor * d_stride;
1244 } while (proc_ht < v_end);
1245 const __m256i s_h =
1246 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1247 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1248 const __m256i s_m_h = convert_and_add_avx2(sum_h[4]);
1249 const __m128i s_m_h0 = add_64bit_lvl_avx2(s_m_h, s_m_h);
1250 _mm_storel_epi64((__m128i *)(H + (i * wiener_win2) + i + 4), s_m_h0);
1251
1252 // process the remaining 'j' iterations.
1253 j++;
1254 CALCULATE_REMAINING_H_WIN7
1255 }
1256
1257 // Step 4: Here, the rows 3, 10, 17, 24, 31, 38 and 45 are filled. As we need
1258 // to fill only upper-triangle elements, H30-H32 from row3, H100-H106 and
1259 // H107-H109 from row10, etc. are need not be filled. As the core function
1260 // process 7 values, in first iteration of 'j' only 4 values to be filled
1261 // i.e., H33-H36 from row3 and H1010-H1013 from row10, etc.
1262 for (int i = 3; i < wiener_win2; i += wiener_win) {
1263 // Update the dgd pointers appropriately and also derive the 'j'th iteration
1264 // from where the H buffer filling needs to be started.
1265 INITIALIZATION(WIENER_WIN)
1266
1267 do {
1268 UPDATE_DOWNSAMPLE_FACTOR
1269
1270 // Process the amount of width multiple of 16.
1271 while (proc_wd < wd_mul16) {
1272 const __m256i dgd =
1273 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1274 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1275 INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 4)
1276
1277 proc_wd += 16;
1278 }
1279
1280 // Process the remaining width here.
1281 if (wd_beyond_mul16) {
1282 const __m256i dgd =
1283 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1284 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1285 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1286 INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 4)
1287 }
1288 proc_ht += downsample_factor;
1289 d_window += downsample_factor * d_stride;
1290 d_current_row += downsample_factor * d_stride;
1291 } while (proc_ht < v_end);
1292 const __m256i s_h =
1293 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1294 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1295
1296 // process the remaining 'j' iterations.
1297 j++;
1298 CALCULATE_REMAINING_H_WIN7
1299 }
1300
1301 // Step 5: Here, the rows 4, 11, 18, 25, 32, 39 and 46 are filled. As we need
1302 // to fill only upper-triangle elements, H40-H43 from row4, H110-H116 and
1303 // H117-H1110 from row10, etc. are need not be filled. As the core function
1304 // process 7 values, in first iteration of 'j' only 3 values to be filled
1305 // i.e., H44-H46 from row4 and H1111-H1113 from row11, etc.
1306 for (int i = 4; i < wiener_win2; i += wiener_win) {
1307 // Update the dgd pointers appropriately and also derive the 'j'th iteration
1308 // from where the H buffer filling needs to be started.
1309 INITIALIZATION(WIENER_WIN)
1310
1311 do {
1312 UPDATE_DOWNSAMPLE_FACTOR
1313
1314 // Process the amount of width multiple of 16.
1315 while (proc_wd < wd_mul16) {
1316 const __m256i dgd =
1317 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1318 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1319 INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 3)
1320
1321 proc_wd += 16;
1322 }
1323
1324 // Process the remaining width here.
1325 if (wd_beyond_mul16) {
1326 const __m256i dgd =
1327 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1328 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1329 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1330 INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 3)
1331 }
1332 proc_ht += downsample_factor;
1333 d_window += downsample_factor * d_stride;
1334 d_current_row += downsample_factor * d_stride;
1335 } while (proc_ht < v_end);
1336 const __m256i s_h =
1337 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1338 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1339
1340 // process the remaining 'j' iterations.
1341 j++;
1342 CALCULATE_REMAINING_H_WIN7
1343 }
1344
1345 // Step 6: Here, the rows 5, 12, 19, 26, 33, 40 and 47 are filled. As we need
1346 // to fill only upper-triangle elements, H50-H54 from row5, H120-H126 and
1347 // H127-H1211 from row12, etc. are need not be filled. As the core function
1348 // process 7 values, in first iteration of 'j' only 2 values to be filled
1349 // i.e., H55-H56 from row5 and H1212-H1213 from row12, etc.
1350 for (int i = 5; i < wiener_win2; i += wiener_win) {
1351 // Update the dgd pointers appropriately and also derive the 'j'th iteration
1352 // from where the H buffer filling needs to be started.
1353 INITIALIZATION(WIENER_WIN)
1354 do {
1355 UPDATE_DOWNSAMPLE_FACTOR
1356
1357 // Process the amount of width multiple of 16.
1358 while (proc_wd < wd_mul16) {
1359 const __m256i dgd =
1360 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1361 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1362 INIT_H_VALUES(d_window + proc_wd + (5 * d_stride), 2)
1363
1364 proc_wd += 16;
1365 }
1366
1367 // Process the remaining width here.
1368 if (wd_beyond_mul16) {
1369 const __m256i dgd =
1370 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1371 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1372 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1373 INIT_H_VALUES(d_window + proc_wd + (5 * d_stride), 2)
1374 }
1375 proc_ht += downsample_factor;
1376 d_window += downsample_factor * d_stride;
1377 d_current_row += downsample_factor * d_stride;
1378 } while (proc_ht < v_end);
1379 const __m256i s_h =
1380 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1381 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1382
1383 // process the remaining 'j' iterations.
1384 j++;
1385 CALCULATE_REMAINING_H_WIN7
1386 }
1387
1388 // Step 7: Here, the rows 6, 13, 20, 27, 34, 41 and 48 are filled. As we need
1389 // to fill only upper-triangle elements, H60-H65 from row6, H130-H136 and
1390 // H137-H1312 from row13, etc. are need not be filled. As the core function
1391 // process 7 values, in first iteration of 'j' only 1 value to be filled
1392 // i.e., H66 from row6 and H1313 from row13, etc.
1393 for (int i = 6; i < wiener_win2; i += wiener_win) {
1394 // Update the dgd pointers appropriately and also derive the 'j'th iteration
1395 // from where the H buffer filling needs to be started.
1396 INITIALIZATION(WIENER_WIN)
1397 do {
1398 UPDATE_DOWNSAMPLE_FACTOR
1399
1400 // Process the amount of width multiple of 16.
1401 while (proc_wd < wd_mul16) {
1402 const __m256i dgd =
1403 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1404 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1405 INIT_H_VALUES(d_window + proc_wd + (6 * d_stride), 1)
1406
1407 proc_wd += 16;
1408 }
1409
1410 // Process the remaining width here.
1411 if (wd_beyond_mul16) {
1412 const __m256i dgd =
1413 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1414 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1415 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1416 INIT_H_VALUES(d_window + proc_wd + (6 * d_stride), 1)
1417 }
1418 proc_ht += downsample_factor;
1419 d_window += downsample_factor * d_stride;
1420 d_current_row += downsample_factor * d_stride;
1421 } while (proc_ht < v_end);
1422 const __m256i s_h =
1423 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1424 xx_storel_64(&H[(i * wiener_win2) + i], _mm256_castsi256_si128(s_h));
1425
1426 // process the remaining 'j' iterations.
1427 j++;
1428 CALCULATE_REMAINING_H_WIN7
1429 }
1430
1431 // Step 8: Here, the rows 7, 14, 21, 28, 35 and 42 are filled. As we need
1432 // to fill only upper-triangle elements, H70-H75 from row7, H140-H146 and
1433 // H147-H1413 from row14, etc. are need not be filled. The first iteration of
1434 // 'j' fills H77-H713 from row7 and H1414-H1420 from row14, etc.
1435 for (int i = 7; i < wiener_win2; i += wiener_win) {
1436 // Derive j'th iteration from where the H buffer filling needs to be
1437 // started.
1438 j = i / wiener_win;
1439 int shift = 0;
1440 do {
1441 // Update the dgd pointers appropriately.
1442 int proc_ht = v_start;
1443 const int16_t *d_window = d + (i / WIENER_WIN);
1444 const int16_t *d_current_row =
1445 d + (i / WIENER_WIN) + ((i % WIENER_WIN) * d_stride);
1446 downsample_factor =
1447 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
1448 __m256i sum_h[WIENER_WIN] = { _mm256_setzero_si256() };
1449 do {
1450 UPDATE_DOWNSAMPLE_FACTOR
1451
1452 // Process the amount of width multiple of 16.
1453 while (proc_wd < wd_mul16) {
1454 const __m256i dgd =
1455 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1456 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1457 INIT_H_VALUES(d_window + shift + proc_wd, 7)
1458
1459 proc_wd += 16;
1460 }
1461
1462 // Process the remaining width here.
1463 if (wd_beyond_mul16) {
1464 const __m256i dgd =
1465 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1466 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1467 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1468 INIT_H_VALUES(d_window + shift + proc_wd, 7)
1469 }
1470 proc_ht += downsample_factor;
1471 d_window += downsample_factor * d_stride;
1472 d_current_row += downsample_factor * d_stride;
1473 } while (proc_ht < v_end);
1474
1475 const __m256i sh_0 =
1476 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1477 const __m256i sh_1 =
1478 hadd_four_32_to_64_avx2(sum_h[4], sum_h[5], &sum_h[6], &sum_h[6]);
1479 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)),
1480 sh_0);
1481 _mm_storeu_si128(
1482 (__m128i *)(H + (i * wiener_win2) + (wiener_win * j) + 4),
1483 _mm256_castsi256_si128(sh_1));
1484 _mm_storel_epi64((__m128i *)&H[(i * wiener_win2) + (wiener_win * j) + 6],
1485 _mm256_extracti128_si256(sh_1, 1));
1486 shift++;
1487 } while (++j < wiener_win);
1488 }
1489
1490 fill_lower_triag_elements_avx2(wiener_win2, H);
1491 }
1492
av1_compute_stats_avx2(int wiener_win,const uint8_t * dgd,const uint8_t * src,int16_t * dgd_avg,int16_t * src_avg,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,int use_downsampled_wiener_stats)1493 void av1_compute_stats_avx2(int wiener_win, const uint8_t *dgd,
1494 const uint8_t *src, int16_t *dgd_avg,
1495 int16_t *src_avg, int h_start, int h_end,
1496 int v_start, int v_end, int dgd_stride,
1497 int src_stride, int64_t *M, int64_t *H,
1498 int use_downsampled_wiener_stats) {
1499 if (wiener_win != WIENER_WIN && wiener_win != WIENER_WIN_CHROMA) {
1500 // Currently, libaom supports Wiener filter processing with window sizes as
1501 // WIENER_WIN_CHROMA(5) and WIENER_WIN(7). For any other window size, SIMD
1502 // support is not facilitated. Hence, invoke C function for the same.
1503 av1_compute_stats_c(wiener_win, dgd, src, dgd_avg, src_avg, h_start, h_end,
1504 v_start, v_end, dgd_stride, src_stride, M, H,
1505 use_downsampled_wiener_stats);
1506 return;
1507 }
1508
1509 const int32_t wiener_halfwin = wiener_win >> 1;
1510 const uint8_t avg =
1511 calc_dgd_buf_avg_avx2(dgd, h_start, h_end, v_start, v_end, dgd_stride);
1512 const int32_t width = h_end - h_start;
1513 const int32_t height = v_end - v_start;
1514 const int32_t d_stride = (width + 2 * wiener_halfwin + 15) & ~15;
1515 const int32_t s_stride = (width + 15) & ~15;
1516
1517 // Based on the sf 'use_downsampled_wiener_stats', process either once for
1518 // UPDATE_DOWNSAMPLE_FACTOR or for each row.
1519 sub_avg_block_avx2(src + v_start * src_stride + h_start, src_stride, avg,
1520 width, height, src_avg, s_stride,
1521 use_downsampled_wiener_stats);
1522
1523 // Compute (dgd-avg) buffer here which is used to fill H buffer.
1524 sub_avg_block_avx2(
1525 dgd + (v_start - wiener_halfwin) * dgd_stride + h_start - wiener_halfwin,
1526 dgd_stride, avg, width + 2 * wiener_halfwin, height + 2 * wiener_halfwin,
1527 dgd_avg, d_stride, 0);
1528 if (wiener_win == WIENER_WIN) {
1529 compute_stats_win7_avx2(dgd_avg, d_stride, src_avg, s_stride, width,
1530 v_start, v_end, M, H, use_downsampled_wiener_stats);
1531 } else if (wiener_win == WIENER_WIN_CHROMA) {
1532 compute_stats_win5_avx2(dgd_avg, d_stride, src_avg, s_stride, width,
1533 v_start, v_end, M, H, use_downsampled_wiener_stats);
1534 }
1535 }
1536
pair_set_epi16(int a,int b)1537 static INLINE __m256i pair_set_epi16(int a, int b) {
1538 return _mm256_set1_epi32(
1539 (int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16)));
1540 }
1541
av1_lowbd_pixel_proj_error_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)1542 int64_t av1_lowbd_pixel_proj_error_avx2(
1543 const uint8_t *src8, int width, int height, int src_stride,
1544 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1545 int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
1546 int i, j, k;
1547 const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
1548 const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1));
1549 __m256i sum64 = _mm256_setzero_si256();
1550 const uint8_t *src = src8;
1551 const uint8_t *dat = dat8;
1552 int64_t err = 0;
1553 if (params->r[0] > 0 && params->r[1] > 0) {
1554 __m256i xq_coeff = pair_set_epi16(xq[0], xq[1]);
1555 for (i = 0; i < height; ++i) {
1556 __m256i sum32 = _mm256_setzero_si256();
1557 for (j = 0; j <= width - 16; j += 16) {
1558 const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
1559 const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
1560 const __m256i flt0_16b = _mm256_permute4x64_epi64(
1561 _mm256_packs_epi32(yy_loadu_256(flt0 + j),
1562 yy_loadu_256(flt0 + j + 8)),
1563 0xd8);
1564 const __m256i flt1_16b = _mm256_permute4x64_epi64(
1565 _mm256_packs_epi32(yy_loadu_256(flt1 + j),
1566 yy_loadu_256(flt1 + j + 8)),
1567 0xd8);
1568 const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS);
1569 const __m256i flt0_0_sub_u = _mm256_sub_epi16(flt0_16b, u0);
1570 const __m256i flt1_0_sub_u = _mm256_sub_epi16(flt1_16b, u0);
1571 const __m256i v0 = _mm256_madd_epi16(
1572 xq_coeff, _mm256_unpacklo_epi16(flt0_0_sub_u, flt1_0_sub_u));
1573 const __m256i v1 = _mm256_madd_epi16(
1574 xq_coeff, _mm256_unpackhi_epi16(flt0_0_sub_u, flt1_0_sub_u));
1575 const __m256i vr0 =
1576 _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift);
1577 const __m256i vr1 =
1578 _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift);
1579 const __m256i e0 = _mm256_sub_epi16(
1580 _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0);
1581 const __m256i err0 = _mm256_madd_epi16(e0, e0);
1582 sum32 = _mm256_add_epi32(sum32, err0);
1583 }
1584 for (k = j; k < width; ++k) {
1585 const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
1586 int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
1587 const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
1588 err += ((int64_t)e * e);
1589 }
1590 dat += dat_stride;
1591 src += src_stride;
1592 flt0 += flt0_stride;
1593 flt1 += flt1_stride;
1594 const __m256i sum64_0 =
1595 _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
1596 const __m256i sum64_1 =
1597 _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
1598 sum64 = _mm256_add_epi64(sum64, sum64_0);
1599 sum64 = _mm256_add_epi64(sum64, sum64_1);
1600 }
1601 } else if (params->r[0] > 0 || params->r[1] > 0) {
1602 const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
1603 const __m256i xq_coeff =
1604 pair_set_epi16(xq_active, -xq_active * (1 << SGRPROJ_RST_BITS));
1605 const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
1606 const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
1607 for (i = 0; i < height; ++i) {
1608 __m256i sum32 = _mm256_setzero_si256();
1609 for (j = 0; j <= width - 16; j += 16) {
1610 const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
1611 const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
1612 const __m256i flt_16b = _mm256_permute4x64_epi64(
1613 _mm256_packs_epi32(yy_loadu_256(flt + j),
1614 yy_loadu_256(flt + j + 8)),
1615 0xd8);
1616 const __m256i v0 =
1617 _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt_16b, d0));
1618 const __m256i v1 =
1619 _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt_16b, d0));
1620 const __m256i vr0 =
1621 _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift);
1622 const __m256i vr1 =
1623 _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift);
1624 const __m256i e0 = _mm256_sub_epi16(
1625 _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0);
1626 const __m256i err0 = _mm256_madd_epi16(e0, e0);
1627 sum32 = _mm256_add_epi32(sum32, err0);
1628 }
1629 for (k = j; k < width; ++k) {
1630 const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
1631 int32_t v = xq_active * (flt[k] - u);
1632 const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
1633 err += ((int64_t)e * e);
1634 }
1635 dat += dat_stride;
1636 src += src_stride;
1637 flt += flt_stride;
1638 const __m256i sum64_0 =
1639 _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
1640 const __m256i sum64_1 =
1641 _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
1642 sum64 = _mm256_add_epi64(sum64, sum64_0);
1643 sum64 = _mm256_add_epi64(sum64, sum64_1);
1644 }
1645 } else {
1646 __m256i sum32 = _mm256_setzero_si256();
1647 for (i = 0; i < height; ++i) {
1648 for (j = 0; j <= width - 16; j += 16) {
1649 const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
1650 const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
1651 const __m256i diff0 = _mm256_sub_epi16(d0, s0);
1652 const __m256i err0 = _mm256_madd_epi16(diff0, diff0);
1653 sum32 = _mm256_add_epi32(sum32, err0);
1654 }
1655 for (k = j; k < width; ++k) {
1656 const int32_t e = (int32_t)(dat[k]) - src[k];
1657 err += ((int64_t)e * e);
1658 }
1659 dat += dat_stride;
1660 src += src_stride;
1661 }
1662 const __m256i sum64_0 =
1663 _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
1664 const __m256i sum64_1 =
1665 _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
1666 sum64 = _mm256_add_epi64(sum64_0, sum64_1);
1667 }
1668 int64_t sum[4];
1669 yy_storeu_256(sum, sum64);
1670 err += sum[0] + sum[1] + sum[2] + sum[3];
1671 return err;
1672 }
1673
1674 // When params->r[0] > 0 and params->r[1] > 0. In this case all elements of
1675 // C and H need to be computed.
calc_proj_params_r0_r1_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1676 static AOM_INLINE void calc_proj_params_r0_r1_avx2(
1677 const uint8_t *src8, int width, int height, int src_stride,
1678 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1679 int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
1680 const int size = width * height;
1681 const uint8_t *src = src8;
1682 const uint8_t *dat = dat8;
1683 __m256i h00, h01, h11, c0, c1;
1684 const __m256i zero = _mm256_setzero_si256();
1685 h01 = h11 = c0 = c1 = h00 = zero;
1686
1687 for (int i = 0; i < height; ++i) {
1688 for (int j = 0; j < width; j += 8) {
1689 const __m256i u_load = _mm256_cvtepu8_epi32(
1690 _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1691 const __m256i s_load = _mm256_cvtepu8_epi32(
1692 _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1693 __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
1694 __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
1695 __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
1696 __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
1697 s = _mm256_sub_epi32(s, d);
1698 f1 = _mm256_sub_epi32(f1, d);
1699 f2 = _mm256_sub_epi32(f2, d);
1700
1701 const __m256i h00_even = _mm256_mul_epi32(f1, f1);
1702 const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1703 _mm256_srli_epi64(f1, 32));
1704 h00 = _mm256_add_epi64(h00, h00_even);
1705 h00 = _mm256_add_epi64(h00, h00_odd);
1706
1707 const __m256i h01_even = _mm256_mul_epi32(f1, f2);
1708 const __m256i h01_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1709 _mm256_srli_epi64(f2, 32));
1710 h01 = _mm256_add_epi64(h01, h01_even);
1711 h01 = _mm256_add_epi64(h01, h01_odd);
1712
1713 const __m256i h11_even = _mm256_mul_epi32(f2, f2);
1714 const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
1715 _mm256_srli_epi64(f2, 32));
1716 h11 = _mm256_add_epi64(h11, h11_even);
1717 h11 = _mm256_add_epi64(h11, h11_odd);
1718
1719 const __m256i c0_even = _mm256_mul_epi32(f1, s);
1720 const __m256i c0_odd =
1721 _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
1722 c0 = _mm256_add_epi64(c0, c0_even);
1723 c0 = _mm256_add_epi64(c0, c0_odd);
1724
1725 const __m256i c1_even = _mm256_mul_epi32(f2, s);
1726 const __m256i c1_odd =
1727 _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
1728 c1 = _mm256_add_epi64(c1, c1_even);
1729 c1 = _mm256_add_epi64(c1, c1_odd);
1730 }
1731 }
1732
1733 __m256i c_low = _mm256_unpacklo_epi64(c0, c1);
1734 const __m256i c_high = _mm256_unpackhi_epi64(c0, c1);
1735 c_low = _mm256_add_epi64(c_low, c_high);
1736 const __m128i c_128bit = _mm_add_epi64(_mm256_extracti128_si256(c_low, 1),
1737 _mm256_castsi256_si128(c_low));
1738
1739 __m256i h0x_low = _mm256_unpacklo_epi64(h00, h01);
1740 const __m256i h0x_high = _mm256_unpackhi_epi64(h00, h01);
1741 h0x_low = _mm256_add_epi64(h0x_low, h0x_high);
1742 const __m128i h0x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h0x_low, 1),
1743 _mm256_castsi256_si128(h0x_low));
1744
1745 // Using the symmetric properties of H, calculations of H[1][0] are not
1746 // needed.
1747 __m256i h1x_low = _mm256_unpacklo_epi64(zero, h11);
1748 const __m256i h1x_high = _mm256_unpackhi_epi64(zero, h11);
1749 h1x_low = _mm256_add_epi64(h1x_low, h1x_high);
1750 const __m128i h1x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h1x_low, 1),
1751 _mm256_castsi256_si128(h1x_low));
1752
1753 xx_storeu_128(C, c_128bit);
1754 xx_storeu_128(H[0], h0x_128bit);
1755 xx_storeu_128(H[1], h1x_128bit);
1756
1757 H[0][0] /= size;
1758 H[0][1] /= size;
1759 H[1][1] /= size;
1760
1761 // Since H is a symmetric matrix
1762 H[1][0] = H[0][1];
1763 C[0] /= size;
1764 C[1] /= size;
1765 }
1766
1767 // When only params->r[0] > 0. In this case only H[0][0] and C[0] are
1768 // non-zero and need to be computed.
calc_proj_params_r0_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int64_t H[2][2],int64_t C[2])1769 static AOM_INLINE void calc_proj_params_r0_avx2(const uint8_t *src8, int width,
1770 int height, int src_stride,
1771 const uint8_t *dat8,
1772 int dat_stride, int32_t *flt0,
1773 int flt0_stride,
1774 int64_t H[2][2], int64_t C[2]) {
1775 const int size = width * height;
1776 const uint8_t *src = src8;
1777 const uint8_t *dat = dat8;
1778 __m256i h00, c0;
1779 const __m256i zero = _mm256_setzero_si256();
1780 c0 = h00 = zero;
1781
1782 for (int i = 0; i < height; ++i) {
1783 for (int j = 0; j < width; j += 8) {
1784 const __m256i u_load = _mm256_cvtepu8_epi32(
1785 _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1786 const __m256i s_load = _mm256_cvtepu8_epi32(
1787 _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1788 __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
1789 __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
1790 __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
1791 s = _mm256_sub_epi32(s, d);
1792 f1 = _mm256_sub_epi32(f1, d);
1793
1794 const __m256i h00_even = _mm256_mul_epi32(f1, f1);
1795 const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1796 _mm256_srli_epi64(f1, 32));
1797 h00 = _mm256_add_epi64(h00, h00_even);
1798 h00 = _mm256_add_epi64(h00, h00_odd);
1799
1800 const __m256i c0_even = _mm256_mul_epi32(f1, s);
1801 const __m256i c0_odd =
1802 _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
1803 c0 = _mm256_add_epi64(c0, c0_even);
1804 c0 = _mm256_add_epi64(c0, c0_odd);
1805 }
1806 }
1807 const __m128i h00_128bit = _mm_add_epi64(_mm256_extracti128_si256(h00, 1),
1808 _mm256_castsi256_si128(h00));
1809 const __m128i h00_val =
1810 _mm_add_epi64(h00_128bit, _mm_srli_si128(h00_128bit, 8));
1811
1812 const __m128i c0_128bit = _mm_add_epi64(_mm256_extracti128_si256(c0, 1),
1813 _mm256_castsi256_si128(c0));
1814 const __m128i c0_val = _mm_add_epi64(c0_128bit, _mm_srli_si128(c0_128bit, 8));
1815
1816 const __m128i c = _mm_unpacklo_epi64(c0_val, _mm256_castsi256_si128(zero));
1817 const __m128i h0x = _mm_unpacklo_epi64(h00_val, _mm256_castsi256_si128(zero));
1818
1819 xx_storeu_128(C, c);
1820 xx_storeu_128(H[0], h0x);
1821
1822 H[0][0] /= size;
1823 C[0] /= size;
1824 }
1825
1826 // When only params->r[1] > 0. In this case only H[1][1] and C[1] are
1827 // non-zero and need to be computed.
calc_proj_params_r1_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1828 static AOM_INLINE void calc_proj_params_r1_avx2(const uint8_t *src8, int width,
1829 int height, int src_stride,
1830 const uint8_t *dat8,
1831 int dat_stride, int32_t *flt1,
1832 int flt1_stride,
1833 int64_t H[2][2], int64_t C[2]) {
1834 const int size = width * height;
1835 const uint8_t *src = src8;
1836 const uint8_t *dat = dat8;
1837 __m256i h11, c1;
1838 const __m256i zero = _mm256_setzero_si256();
1839 c1 = h11 = zero;
1840
1841 for (int i = 0; i < height; ++i) {
1842 for (int j = 0; j < width; j += 8) {
1843 const __m256i u_load = _mm256_cvtepu8_epi32(
1844 _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1845 const __m256i s_load = _mm256_cvtepu8_epi32(
1846 _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1847 __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
1848 __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
1849 __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
1850 s = _mm256_sub_epi32(s, d);
1851 f2 = _mm256_sub_epi32(f2, d);
1852
1853 const __m256i h11_even = _mm256_mul_epi32(f2, f2);
1854 const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
1855 _mm256_srli_epi64(f2, 32));
1856 h11 = _mm256_add_epi64(h11, h11_even);
1857 h11 = _mm256_add_epi64(h11, h11_odd);
1858
1859 const __m256i c1_even = _mm256_mul_epi32(f2, s);
1860 const __m256i c1_odd =
1861 _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
1862 c1 = _mm256_add_epi64(c1, c1_even);
1863 c1 = _mm256_add_epi64(c1, c1_odd);
1864 }
1865 }
1866
1867 const __m128i h11_128bit = _mm_add_epi64(_mm256_extracti128_si256(h11, 1),
1868 _mm256_castsi256_si128(h11));
1869 const __m128i h11_val =
1870 _mm_add_epi64(h11_128bit, _mm_srli_si128(h11_128bit, 8));
1871
1872 const __m128i c1_128bit = _mm_add_epi64(_mm256_extracti128_si256(c1, 1),
1873 _mm256_castsi256_si128(c1));
1874 const __m128i c1_val = _mm_add_epi64(c1_128bit, _mm_srli_si128(c1_128bit, 8));
1875
1876 const __m128i c = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), c1_val);
1877 const __m128i h1x = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), h11_val);
1878
1879 xx_storeu_128(C, c);
1880 xx_storeu_128(H[1], h1x);
1881
1882 H[1][1] /= size;
1883 C[1] /= size;
1884 }
1885
1886 // AVX2 variant of av1_calc_proj_params_c.
av1_calc_proj_params_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2],const sgr_params_type * params)1887 void av1_calc_proj_params_avx2(const uint8_t *src8, int width, int height,
1888 int src_stride, const uint8_t *dat8,
1889 int dat_stride, int32_t *flt0, int flt0_stride,
1890 int32_t *flt1, int flt1_stride, int64_t H[2][2],
1891 int64_t C[2], const sgr_params_type *params) {
1892 if ((params->r[0] > 0) && (params->r[1] > 0)) {
1893 calc_proj_params_r0_r1_avx2(src8, width, height, src_stride, dat8,
1894 dat_stride, flt0, flt0_stride, flt1,
1895 flt1_stride, H, C);
1896 } else if (params->r[0] > 0) {
1897 calc_proj_params_r0_avx2(src8, width, height, src_stride, dat8, dat_stride,
1898 flt0, flt0_stride, H, C);
1899 } else if (params->r[1] > 0) {
1900 calc_proj_params_r1_avx2(src8, width, height, src_stride, dat8, dat_stride,
1901 flt1, flt1_stride, H, C);
1902 }
1903 }
1904
calc_proj_params_r0_r1_high_bd_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1905 static AOM_INLINE void calc_proj_params_r0_r1_high_bd_avx2(
1906 const uint8_t *src8, int width, int height, int src_stride,
1907 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1908 int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
1909 const int size = width * height;
1910 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
1911 const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
1912 __m256i h00, h01, h11, c0, c1;
1913 const __m256i zero = _mm256_setzero_si256();
1914 h01 = h11 = c0 = c1 = h00 = zero;
1915
1916 for (int i = 0; i < height; ++i) {
1917 for (int j = 0; j < width; j += 8) {
1918 const __m256i u_load = _mm256_cvtepu16_epi32(
1919 _mm_load_si128((__m128i *)(dat + i * dat_stride + j)));
1920 const __m256i s_load = _mm256_cvtepu16_epi32(
1921 _mm_load_si128((__m128i *)(src + i * src_stride + j)));
1922 __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
1923 __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
1924 __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
1925 __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
1926 s = _mm256_sub_epi32(s, d);
1927 f1 = _mm256_sub_epi32(f1, d);
1928 f2 = _mm256_sub_epi32(f2, d);
1929
1930 const __m256i h00_even = _mm256_mul_epi32(f1, f1);
1931 const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1932 _mm256_srli_epi64(f1, 32));
1933 h00 = _mm256_add_epi64(h00, h00_even);
1934 h00 = _mm256_add_epi64(h00, h00_odd);
1935
1936 const __m256i h01_even = _mm256_mul_epi32(f1, f2);
1937 const __m256i h01_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1938 _mm256_srli_epi64(f2, 32));
1939 h01 = _mm256_add_epi64(h01, h01_even);
1940 h01 = _mm256_add_epi64(h01, h01_odd);
1941
1942 const __m256i h11_even = _mm256_mul_epi32(f2, f2);
1943 const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
1944 _mm256_srli_epi64(f2, 32));
1945 h11 = _mm256_add_epi64(h11, h11_even);
1946 h11 = _mm256_add_epi64(h11, h11_odd);
1947
1948 const __m256i c0_even = _mm256_mul_epi32(f1, s);
1949 const __m256i c0_odd =
1950 _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
1951 c0 = _mm256_add_epi64(c0, c0_even);
1952 c0 = _mm256_add_epi64(c0, c0_odd);
1953
1954 const __m256i c1_even = _mm256_mul_epi32(f2, s);
1955 const __m256i c1_odd =
1956 _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
1957 c1 = _mm256_add_epi64(c1, c1_even);
1958 c1 = _mm256_add_epi64(c1, c1_odd);
1959 }
1960 }
1961
1962 __m256i c_low = _mm256_unpacklo_epi64(c0, c1);
1963 const __m256i c_high = _mm256_unpackhi_epi64(c0, c1);
1964 c_low = _mm256_add_epi64(c_low, c_high);
1965 const __m128i c_128bit = _mm_add_epi64(_mm256_extracti128_si256(c_low, 1),
1966 _mm256_castsi256_si128(c_low));
1967
1968 __m256i h0x_low = _mm256_unpacklo_epi64(h00, h01);
1969 const __m256i h0x_high = _mm256_unpackhi_epi64(h00, h01);
1970 h0x_low = _mm256_add_epi64(h0x_low, h0x_high);
1971 const __m128i h0x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h0x_low, 1),
1972 _mm256_castsi256_si128(h0x_low));
1973
1974 // Using the symmetric properties of H, calculations of H[1][0] are not
1975 // needed.
1976 __m256i h1x_low = _mm256_unpacklo_epi64(zero, h11);
1977 const __m256i h1x_high = _mm256_unpackhi_epi64(zero, h11);
1978 h1x_low = _mm256_add_epi64(h1x_low, h1x_high);
1979 const __m128i h1x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h1x_low, 1),
1980 _mm256_castsi256_si128(h1x_low));
1981
1982 xx_storeu_128(C, c_128bit);
1983 xx_storeu_128(H[0], h0x_128bit);
1984 xx_storeu_128(H[1], h1x_128bit);
1985
1986 H[0][0] /= size;
1987 H[0][1] /= size;
1988 H[1][1] /= size;
1989
1990 // Since H is a symmetric matrix
1991 H[1][0] = H[0][1];
1992 C[0] /= size;
1993 C[1] /= size;
1994 }
1995
calc_proj_params_r0_high_bd_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int64_t H[2][2],int64_t C[2])1996 static AOM_INLINE void calc_proj_params_r0_high_bd_avx2(
1997 const uint8_t *src8, int width, int height, int src_stride,
1998 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1999 int64_t H[2][2], int64_t C[2]) {
2000 const int size = width * height;
2001 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
2002 const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
2003 __m256i h00, c0;
2004 const __m256i zero = _mm256_setzero_si256();
2005 c0 = h00 = zero;
2006
2007 for (int i = 0; i < height; ++i) {
2008 for (int j = 0; j < width; j += 8) {
2009 const __m256i u_load = _mm256_cvtepu16_epi32(
2010 _mm_load_si128((__m128i *)(dat + i * dat_stride + j)));
2011 const __m256i s_load = _mm256_cvtepu16_epi32(
2012 _mm_load_si128((__m128i *)(src + i * src_stride + j)));
2013 __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
2014 __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
2015 __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
2016 s = _mm256_sub_epi32(s, d);
2017 f1 = _mm256_sub_epi32(f1, d);
2018
2019 const __m256i h00_even = _mm256_mul_epi32(f1, f1);
2020 const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
2021 _mm256_srli_epi64(f1, 32));
2022 h00 = _mm256_add_epi64(h00, h00_even);
2023 h00 = _mm256_add_epi64(h00, h00_odd);
2024
2025 const __m256i c0_even = _mm256_mul_epi32(f1, s);
2026 const __m256i c0_odd =
2027 _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
2028 c0 = _mm256_add_epi64(c0, c0_even);
2029 c0 = _mm256_add_epi64(c0, c0_odd);
2030 }
2031 }
2032 const __m128i h00_128bit = _mm_add_epi64(_mm256_extracti128_si256(h00, 1),
2033 _mm256_castsi256_si128(h00));
2034 const __m128i h00_val =
2035 _mm_add_epi64(h00_128bit, _mm_srli_si128(h00_128bit, 8));
2036
2037 const __m128i c0_128bit = _mm_add_epi64(_mm256_extracti128_si256(c0, 1),
2038 _mm256_castsi256_si128(c0));
2039 const __m128i c0_val = _mm_add_epi64(c0_128bit, _mm_srli_si128(c0_128bit, 8));
2040
2041 const __m128i c = _mm_unpacklo_epi64(c0_val, _mm256_castsi256_si128(zero));
2042 const __m128i h0x = _mm_unpacklo_epi64(h00_val, _mm256_castsi256_si128(zero));
2043
2044 xx_storeu_128(C, c);
2045 xx_storeu_128(H[0], h0x);
2046
2047 H[0][0] /= size;
2048 C[0] /= size;
2049 }
2050
calc_proj_params_r1_high_bd_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])2051 static AOM_INLINE void calc_proj_params_r1_high_bd_avx2(
2052 const uint8_t *src8, int width, int height, int src_stride,
2053 const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride,
2054 int64_t H[2][2], int64_t C[2]) {
2055 const int size = width * height;
2056 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
2057 const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
2058 __m256i h11, c1;
2059 const __m256i zero = _mm256_setzero_si256();
2060 c1 = h11 = zero;
2061
2062 for (int i = 0; i < height; ++i) {
2063 for (int j = 0; j < width; j += 8) {
2064 const __m256i u_load = _mm256_cvtepu16_epi32(
2065 _mm_load_si128((__m128i *)(dat + i * dat_stride + j)));
2066 const __m256i s_load = _mm256_cvtepu16_epi32(
2067 _mm_load_si128((__m128i *)(src + i * src_stride + j)));
2068 __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
2069 __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
2070 __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
2071 s = _mm256_sub_epi32(s, d);
2072 f2 = _mm256_sub_epi32(f2, d);
2073
2074 const __m256i h11_even = _mm256_mul_epi32(f2, f2);
2075 const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
2076 _mm256_srli_epi64(f2, 32));
2077 h11 = _mm256_add_epi64(h11, h11_even);
2078 h11 = _mm256_add_epi64(h11, h11_odd);
2079
2080 const __m256i c1_even = _mm256_mul_epi32(f2, s);
2081 const __m256i c1_odd =
2082 _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
2083 c1 = _mm256_add_epi64(c1, c1_even);
2084 c1 = _mm256_add_epi64(c1, c1_odd);
2085 }
2086 }
2087
2088 const __m128i h11_128bit = _mm_add_epi64(_mm256_extracti128_si256(h11, 1),
2089 _mm256_castsi256_si128(h11));
2090 const __m128i h11_val =
2091 _mm_add_epi64(h11_128bit, _mm_srli_si128(h11_128bit, 8));
2092
2093 const __m128i c1_128bit = _mm_add_epi64(_mm256_extracti128_si256(c1, 1),
2094 _mm256_castsi256_si128(c1));
2095 const __m128i c1_val = _mm_add_epi64(c1_128bit, _mm_srli_si128(c1_128bit, 8));
2096
2097 const __m128i c = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), c1_val);
2098 const __m128i h1x = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), h11_val);
2099
2100 xx_storeu_128(C, c);
2101 xx_storeu_128(H[1], h1x);
2102
2103 H[1][1] /= size;
2104 C[1] /= size;
2105 }
2106
2107 // AVX2 variant of av1_calc_proj_params_high_bd_c.
av1_calc_proj_params_high_bd_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2],const sgr_params_type * params)2108 void av1_calc_proj_params_high_bd_avx2(const uint8_t *src8, int width,
2109 int height, int src_stride,
2110 const uint8_t *dat8, int dat_stride,
2111 int32_t *flt0, int flt0_stride,
2112 int32_t *flt1, int flt1_stride,
2113 int64_t H[2][2], int64_t C[2],
2114 const sgr_params_type *params) {
2115 if ((params->r[0] > 0) && (params->r[1] > 0)) {
2116 calc_proj_params_r0_r1_high_bd_avx2(src8, width, height, src_stride, dat8,
2117 dat_stride, flt0, flt0_stride, flt1,
2118 flt1_stride, H, C);
2119 } else if (params->r[0] > 0) {
2120 calc_proj_params_r0_high_bd_avx2(src8, width, height, src_stride, dat8,
2121 dat_stride, flt0, flt0_stride, H, C);
2122 } else if (params->r[1] > 0) {
2123 calc_proj_params_r1_high_bd_avx2(src8, width, height, src_stride, dat8,
2124 dat_stride, flt1, flt1_stride, H, C);
2125 }
2126 }
2127
2128 #if CONFIG_AV1_HIGHBITDEPTH
av1_highbd_pixel_proj_error_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)2129 int64_t av1_highbd_pixel_proj_error_avx2(
2130 const uint8_t *src8, int width, int height, int src_stride,
2131 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
2132 int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
2133 int i, j, k;
2134 const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
2135 const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1));
2136 __m256i sum64 = _mm256_setzero_si256();
2137 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
2138 const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
2139 int64_t err = 0;
2140 if (params->r[0] > 0 && params->r[1] > 0) { // Both filters are enabled
2141 const __m256i xq0 = _mm256_set1_epi32(xq[0]);
2142 const __m256i xq1 = _mm256_set1_epi32(xq[1]);
2143 for (i = 0; i < height; ++i) {
2144 __m256i sum32 = _mm256_setzero_si256();
2145 for (j = 0; j <= width - 16; j += 16) { // Process 16 pixels at a time
2146 // Load 16 pixels each from source image and corrupted image
2147 const __m256i s0 = yy_loadu_256(src + j);
2148 const __m256i d0 = yy_loadu_256(dat + j);
2149 // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 (indices)
2150
2151 // Shift-up each pixel to match filtered image scaling
2152 const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS);
2153
2154 // Split u0 into two halves and pad each from u16 to i32
2155 const __m256i u0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(u0));
2156 const __m256i u0h =
2157 _mm256_cvtepu16_epi32(_mm256_extracti128_si256(u0, 1));
2158 // u0h, u0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32
2159
2160 // Load 16 pixels from each filtered image
2161 const __m256i flt0l = yy_loadu_256(flt0 + j);
2162 const __m256i flt0h = yy_loadu_256(flt0 + j + 8);
2163 const __m256i flt1l = yy_loadu_256(flt1 + j);
2164 const __m256i flt1h = yy_loadu_256(flt1 + j + 8);
2165 // flt?l, flt?h = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32
2166
2167 // Subtract shifted corrupt image from each filtered image
2168 const __m256i flt0l_subu = _mm256_sub_epi32(flt0l, u0l);
2169 const __m256i flt0h_subu = _mm256_sub_epi32(flt0h, u0h);
2170 const __m256i flt1l_subu = _mm256_sub_epi32(flt1l, u0l);
2171 const __m256i flt1h_subu = _mm256_sub_epi32(flt1h, u0h);
2172
2173 // Multiply basis vectors by appropriate coefficients
2174 const __m256i v0l = _mm256_mullo_epi32(flt0l_subu, xq0);
2175 const __m256i v0h = _mm256_mullo_epi32(flt0h_subu, xq0);
2176 const __m256i v1l = _mm256_mullo_epi32(flt1l_subu, xq1);
2177 const __m256i v1h = _mm256_mullo_epi32(flt1h_subu, xq1);
2178
2179 // Add together the contributions from the two basis vectors
2180 const __m256i vl = _mm256_add_epi32(v0l, v1l);
2181 const __m256i vh = _mm256_add_epi32(v0h, v1h);
2182
2183 // Right-shift v with appropriate rounding
2184 const __m256i vrl =
2185 _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift);
2186 const __m256i vrh =
2187 _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift);
2188 // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0]
2189
2190 // Saturate each i32 to an i16 then combine both halves
2191 // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes
2192 const __m256i vr =
2193 _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8);
2194 // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0]
2195 // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0]
2196
2197 // Add twin-subspace-sgr-filter to corrupt image then subtract source
2198 const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0);
2199
2200 // Calculate squared error and add adjacent values
2201 const __m256i err0 = _mm256_madd_epi16(e0, e0);
2202
2203 sum32 = _mm256_add_epi32(sum32, err0);
2204 }
2205
2206 const __m256i sum32l =
2207 _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
2208 sum64 = _mm256_add_epi64(sum64, sum32l);
2209 const __m256i sum32h =
2210 _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
2211 sum64 = _mm256_add_epi64(sum64, sum32h);
2212
2213 // Process remaining pixels in this row (modulo 16)
2214 for (k = j; k < width; ++k) {
2215 const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
2216 int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
2217 const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
2218 err += ((int64_t)e * e);
2219 }
2220 dat += dat_stride;
2221 src += src_stride;
2222 flt0 += flt0_stride;
2223 flt1 += flt1_stride;
2224 }
2225 } else if (params->r[0] > 0 || params->r[1] > 0) { // Only one filter enabled
2226 const int32_t xq_on = (params->r[0] > 0) ? xq[0] : xq[1];
2227 const __m256i xq_active = _mm256_set1_epi32(xq_on);
2228 const __m256i xq_inactive =
2229 _mm256_set1_epi32(-xq_on * (1 << SGRPROJ_RST_BITS));
2230 const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
2231 const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
2232 for (i = 0; i < height; ++i) {
2233 __m256i sum32 = _mm256_setzero_si256();
2234 for (j = 0; j <= width - 16; j += 16) {
2235 // Load 16 pixels from source image
2236 const __m256i s0 = yy_loadu_256(src + j);
2237 // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
2238
2239 // Load 16 pixels from corrupted image and pad each u16 to i32
2240 const __m256i d0 = yy_loadu_256(dat + j);
2241 const __m256i d0h =
2242 _mm256_cvtepu16_epi32(_mm256_extracti128_si256(d0, 1));
2243 const __m256i d0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(d0));
2244 // d0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
2245 // d0h, d0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
2246
2247 // Load 16 pixels from the filtered image
2248 const __m256i flth = yy_loadu_256(flt + j + 8);
2249 const __m256i fltl = yy_loadu_256(flt + j);
2250 // flth, fltl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
2251
2252 const __m256i flth_xq = _mm256_mullo_epi32(flth, xq_active);
2253 const __m256i fltl_xq = _mm256_mullo_epi32(fltl, xq_active);
2254 const __m256i d0h_xq = _mm256_mullo_epi32(d0h, xq_inactive);
2255 const __m256i d0l_xq = _mm256_mullo_epi32(d0l, xq_inactive);
2256
2257 const __m256i vh = _mm256_add_epi32(flth_xq, d0h_xq);
2258 const __m256i vl = _mm256_add_epi32(fltl_xq, d0l_xq);
2259
2260 // Shift this down with appropriate rounding
2261 const __m256i vrh =
2262 _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift);
2263 const __m256i vrl =
2264 _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift);
2265 // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
2266
2267 // Saturate each i32 to an i16 then combine both halves
2268 // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes
2269 const __m256i vr =
2270 _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8);
2271 // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0] as u16
2272 // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
2273
2274 // Subtract twin-subspace-sgr filtered from source image to get error
2275 const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0);
2276
2277 // Calculate squared error and add adjacent values
2278 const __m256i err0 = _mm256_madd_epi16(e0, e0);
2279
2280 sum32 = _mm256_add_epi32(sum32, err0);
2281 }
2282
2283 const __m256i sum32l =
2284 _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
2285 sum64 = _mm256_add_epi64(sum64, sum32l);
2286 const __m256i sum32h =
2287 _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
2288 sum64 = _mm256_add_epi64(sum64, sum32h);
2289
2290 // Process remaining pixels in this row (modulo 16)
2291 for (k = j; k < width; ++k) {
2292 const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
2293 int32_t v = xq_on * (flt[k] - u);
2294 const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
2295 err += ((int64_t)e * e);
2296 }
2297 dat += dat_stride;
2298 src += src_stride;
2299 flt += flt_stride;
2300 }
2301 } else { // Neither filter is enabled
2302 for (i = 0; i < height; ++i) {
2303 __m256i sum32 = _mm256_setzero_si256();
2304 for (j = 0; j <= width - 32; j += 32) {
2305 // Load 2x16 u16 from source image
2306 const __m256i s0l = yy_loadu_256(src + j);
2307 const __m256i s0h = yy_loadu_256(src + j + 16);
2308
2309 // Load 2x16 u16 from corrupted image
2310 const __m256i d0l = yy_loadu_256(dat + j);
2311 const __m256i d0h = yy_loadu_256(dat + j + 16);
2312
2313 // Subtract corrupted image from source image
2314 const __m256i diffl = _mm256_sub_epi16(d0l, s0l);
2315 const __m256i diffh = _mm256_sub_epi16(d0h, s0h);
2316
2317 // Square error and add adjacent values
2318 const __m256i err0l = _mm256_madd_epi16(diffl, diffl);
2319 const __m256i err0h = _mm256_madd_epi16(diffh, diffh);
2320
2321 sum32 = _mm256_add_epi32(sum32, err0l);
2322 sum32 = _mm256_add_epi32(sum32, err0h);
2323 }
2324
2325 const __m256i sum32l =
2326 _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
2327 sum64 = _mm256_add_epi64(sum64, sum32l);
2328 const __m256i sum32h =
2329 _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
2330 sum64 = _mm256_add_epi64(sum64, sum32h);
2331
2332 // Process remaining pixels (modulu 16)
2333 for (k = j; k < width; ++k) {
2334 const int32_t e = (int32_t)(dat[k]) - src[k];
2335 err += ((int64_t)e * e);
2336 }
2337 dat += dat_stride;
2338 src += src_stride;
2339 }
2340 }
2341
2342 // Sum 4 values from sum64l and sum64h into err
2343 int64_t sum[4];
2344 yy_storeu_256(sum, sum64);
2345 err += sum[0] + sum[1] + sum[2] + sum[3];
2346 return err;
2347 }
2348 #endif // CONFIG_AV1_HIGHBITDEPTH
2349