• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <emmintrin.h>
14 #include "aom_dsp/x86/mem_sse2.h"
15 #include "aom_dsp/x86/synonyms.h"
16 
17 #include "config/av1_rtcd.h"
18 #include "av1/common/restoration.h"
19 #include "av1/encoder/pickrst.h"
20 
acc_stat_sse41(int32_t * dst,const uint8_t * src,const __m128i * shuffle,const __m128i * kl)21 static INLINE void acc_stat_sse41(int32_t *dst, const uint8_t *src,
22                                   const __m128i *shuffle, const __m128i *kl) {
23   const __m128i s = _mm_shuffle_epi8(xx_loadu_128(src), *shuffle);
24   const __m128i d0 = _mm_madd_epi16(*kl, _mm_cvtepu8_epi16(s));
25   const __m128i d1 =
26       _mm_madd_epi16(*kl, _mm_cvtepu8_epi16(_mm_srli_si128(s, 8)));
27   const __m128i dst0 = xx_loadu_128(dst);
28   const __m128i dst1 = xx_loadu_128(dst + 4);
29   const __m128i r0 = _mm_add_epi32(dst0, d0);
30   const __m128i r1 = _mm_add_epi32(dst1, d1);
31   xx_storeu_128(dst, r0);
32   xx_storeu_128(dst + 4, r1);
33 }
34 
acc_stat_win7_one_line_sse4_1(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN][WIENER_WIN],int32_t M_int[WIENER_WIN][WIENER_WIN],int32_t H_int[WIENER_WIN2][WIENER_WIN * 8])35 static INLINE void acc_stat_win7_one_line_sse4_1(
36     const uint8_t *dgd, const uint8_t *src, int h_start, int h_end,
37     int dgd_stride, const __m128i *shuffle, int32_t *sumX,
38     int32_t sumY[WIENER_WIN][WIENER_WIN], int32_t M_int[WIENER_WIN][WIENER_WIN],
39     int32_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
40   const int wiener_win = 7;
41   int j, k, l;
42   // Main loop handles two pixels at a time
43   // We can assume that h_start is even, since it will always be aligned to
44   // a tile edge + some number of restoration units, and both of those will
45   // be 64-pixel aligned.
46   // However, at the edge of the image, h_end may be odd, so we need to handle
47   // that case correctly.
48   assert(h_start % 2 == 0);
49   const int h_end_even = h_end & ~1;
50   const int has_odd_pixel = h_end & 1;
51   for (j = h_start; j < h_end_even; j += 2) {
52     const uint8_t *dgd_ij = dgd + j;
53     const uint8_t X1 = src[j];
54     const uint8_t X2 = src[j + 1];
55     *sumX += X1 + X2;
56     for (k = 0; k < wiener_win; k++) {
57       const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
58       for (l = 0; l < wiener_win; l++) {
59         int32_t *H_ = &H_int[(l * wiener_win + k)][0];
60         const uint8_t D1 = dgd_ijk[l];
61         const uint8_t D2 = dgd_ijk[l + 1];
62         sumY[k][l] += D1 + D2;
63         M_int[k][l] += D1 * X1 + D2 * X2;
64 
65         const __m128i kl =
66             _mm_cvtepu8_epi16(_mm_set1_epi16(loadu_int16(dgd_ijk + l)));
67         acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
68         acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
69         acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
70         acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
71         acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
72         acc_stat_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &kl);
73         acc_stat_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &kl);
74       }
75     }
76   }
77   // If the width is odd, add in the final pixel
78   if (has_odd_pixel) {
79     const uint8_t *dgd_ij = dgd + j;
80     const uint8_t X1 = src[j];
81     *sumX += X1;
82     for (k = 0; k < wiener_win; k++) {
83       const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
84       for (l = 0; l < wiener_win; l++) {
85         int32_t *H_ = &H_int[(l * wiener_win + k)][0];
86         const uint8_t D1 = dgd_ijk[l];
87         sumY[k][l] += D1;
88         M_int[k][l] += D1 * X1;
89 
90         // The `acc_stat_sse41` function wants its input to have interleaved
91         // copies of two pixels, but we only have one. However, the pixels
92         // are (effectively) used as inputs to a multiply-accumulate.
93         // So if we set the extra pixel slot to 0, then it is effectively
94         // ignored.
95         const __m128i kl = _mm_cvtepu8_epi16(_mm_set1_epi16((int16_t)D1));
96         acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
97         acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
98         acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
99         acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
100         acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
101         acc_stat_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &kl);
102         acc_stat_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &kl);
103       }
104     }
105   }
106 }
107 
compute_stats_win7_opt_sse4_1(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,int use_downsampled_wiener_stats)108 static INLINE void compute_stats_win7_opt_sse4_1(
109     const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
110     int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H,
111     int use_downsampled_wiener_stats) {
112   int i, j, k, l, m, n;
113   const int wiener_win = WIENER_WIN;
114   const int pixel_count = (h_end - h_start) * (v_end - v_start);
115   const int wiener_win2 = wiener_win * wiener_win;
116   const int wiener_halfwin = (wiener_win >> 1);
117   const uint8_t avg =
118       find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
119 
120   int32_t M_int32[WIENER_WIN][WIENER_WIN] = { { 0 } };
121   int32_t M_int32_row[WIENER_WIN][WIENER_WIN] = { { 0 } };
122   int64_t M_int64[WIENER_WIN][WIENER_WIN] = { { 0 } };
123   int32_t H_int32[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
124   int32_t H_int32_row[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
125   int64_t H_int64[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
126   int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
127   int32_t sumX = 0;
128   const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
129   int downsample_factor =
130       use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
131   int32_t sumX_row = 0;
132   int32_t sumY_row[WIENER_WIN][WIENER_WIN] = { { 0 } };
133 
134   const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data);
135   for (j = v_start; j < v_end; j += 64) {
136     const int vert_end = AOMMIN(64, v_end - j) + j;
137     for (i = j; i < vert_end; i = i + downsample_factor) {
138       if (use_downsampled_wiener_stats &&
139           (vert_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
140         downsample_factor = vert_end - i;
141       }
142       sumX_row = 0;
143       memset(sumY_row, 0, sizeof(int32_t) * WIENER_WIN * WIENER_WIN);
144       memset(M_int32_row, 0, sizeof(int32_t) * WIENER_WIN * WIENER_WIN);
145       memset(H_int32_row, 0, sizeof(int32_t) * WIENER_WIN2 * (WIENER_WIN * 8));
146       acc_stat_win7_one_line_sse4_1(
147           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
148           dgd_stride, &shuffle, &sumX_row, sumY_row, M_int32_row, H_int32_row);
149       sumX += sumX_row * downsample_factor;
150       // Scale M matrix based on the downsampling factor
151       for (k = 0; k < wiener_win; ++k) {
152         for (l = 0; l < wiener_win; ++l) {
153           sumY[k][l] += (sumY_row[k][l] * downsample_factor);
154           M_int32[k][l] += (M_int32_row[k][l] * downsample_factor);
155         }
156       }
157       // Scale H matrix based on the downsampling factor
158       for (k = 0; k < WIENER_WIN2; ++k) {
159         for (l = 0; l < WIENER_WIN * 8; ++l) {
160           H_int32[k][l] += (H_int32_row[k][l] * downsample_factor);
161         }
162       }
163     }
164     for (k = 0; k < wiener_win; ++k) {
165       for (l = 0; l < wiener_win; ++l) {
166         M_int64[k][l] += M_int32[k][l];
167         M_int32[k][l] = 0;
168       }
169     }
170     for (k = 0; k < WIENER_WIN2; ++k) {
171       for (l = 0; l < WIENER_WIN * 8; ++l) {
172         H_int64[k][l] += H_int32[k][l];
173         H_int32[k][l] = 0;
174       }
175     }
176   }
177 
178   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
179   for (k = 0; k < wiener_win; k++) {
180     for (l = 0; l < wiener_win; l++) {
181       const int32_t idx0 = l * wiener_win + k;
182       M[idx0] =
183           M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
184       int64_t *H_ = H + idx0 * wiener_win2;
185       int64_t *H_int_ = &H_int64[idx0][0];
186       for (m = 0; m < wiener_win; m++) {
187         for (n = 0; n < wiener_win; n++) {
188           H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
189                                    (int64_t)avg * (sumY[k][l] + sumY[n][m]);
190         }
191       }
192     }
193   }
194 }
195 
196 #if CONFIG_AV1_HIGHBITDEPTH
acc_stat_highbd_sse41(int64_t * dst,const uint16_t * dgd,const __m128i * shuffle,const __m128i * dgd_ijkl)197 static INLINE void acc_stat_highbd_sse41(int64_t *dst, const uint16_t *dgd,
198                                          const __m128i *shuffle,
199                                          const __m128i *dgd_ijkl) {
200   // Load 256 bits from dgd in two chunks
201   const __m128i s0l = xx_loadu_128(dgd);
202   const __m128i s0h = xx_loadu_128(dgd + 4);
203   // s0l = [7 6 5 4 3 2 1 0] as u16 values (dgd indices)
204   // s0h = [11 10 9 8 7 6 5 4] as u16 values (dgd indices)
205   // (Slightly strange order so we can apply the same shuffle to both halves)
206 
207   // Shuffle the u16 values in each half (actually using 8-bit shuffle mask)
208   const __m128i s1l = _mm_shuffle_epi8(s0l, *shuffle);
209   const __m128i s1h = _mm_shuffle_epi8(s0h, *shuffle);
210   // s1l = [4 3 3 2 2 1 1 0] as u16 values (dgd indices)
211   // s1h = [8 7 7 6 6 5 5 4] as u16 values (dgd indices)
212 
213   // Multiply s1 by dgd_ijkl resulting in 8x u32 values
214   // Horizontally add pairs of u32 resulting in 4x u32
215   const __m128i dl = _mm_madd_epi16(*dgd_ijkl, s1l);
216   const __m128i dh = _mm_madd_epi16(*dgd_ijkl, s1h);
217   // dl = [d c b a] as u32 values
218   // dh = [h g f e] as u32 values
219 
220   // Add these 8x u32 results on to dst in four parts
221   const __m128i dll = _mm_cvtepu32_epi64(dl);
222   const __m128i dlh = _mm_cvtepu32_epi64(_mm_srli_si128(dl, 8));
223   const __m128i dhl = _mm_cvtepu32_epi64(dh);
224   const __m128i dhh = _mm_cvtepu32_epi64(_mm_srli_si128(dh, 8));
225   // dll = [b a] as u64 values, etc.
226 
227   const __m128i rll = _mm_add_epi64(xx_loadu_128(dst), dll);
228   xx_storeu_128(dst, rll);
229   const __m128i rlh = _mm_add_epi64(xx_loadu_128(dst + 2), dlh);
230   xx_storeu_128(dst + 2, rlh);
231   const __m128i rhl = _mm_add_epi64(xx_loadu_128(dst + 4), dhl);
232   xx_storeu_128(dst + 4, rhl);
233   const __m128i rhh = _mm_add_epi64(xx_loadu_128(dst + 6), dhh);
234   xx_storeu_128(dst + 6, rhh);
235 }
236 
acc_stat_highbd_win7_one_line_sse4_1(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN][WIENER_WIN],int64_t M_int[WIENER_WIN][WIENER_WIN],int64_t H_int[WIENER_WIN2][WIENER_WIN * 8])237 static INLINE void acc_stat_highbd_win7_one_line_sse4_1(
238     const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
239     int dgd_stride, const __m128i *shuffle, int32_t *sumX,
240     int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN],
241     int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
242   int j, k, l;
243   const int wiener_win = WIENER_WIN;
244   // Main loop handles two pixels at a time
245   // We can assume that h_start is even, since it will always be aligned to
246   // a tile edge + some number of restoration units, and both of those will
247   // be 64-pixel aligned.
248   // However, at the edge of the image, h_end may be odd, so we need to handle
249   // that case correctly.
250   assert(h_start % 2 == 0);
251   const int h_end_even = h_end & ~1;
252   const int has_odd_pixel = h_end & 1;
253   for (j = h_start; j < h_end_even; j += 2) {
254     const uint16_t X1 = src[j];
255     const uint16_t X2 = src[j + 1];
256     *sumX += X1 + X2;
257     const uint16_t *dgd_ij = dgd + j;
258     for (k = 0; k < wiener_win; k++) {
259       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
260       for (l = 0; l < wiener_win; l++) {
261         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
262         const uint16_t D1 = dgd_ijk[l];
263         const uint16_t D2 = dgd_ijk[l + 1];
264         sumY[k][l] += D1 + D2;
265         M_int[k][l] += D1 * X1 + D2 * X2;
266 
267         // Load two u16 values from dgd as a single u32
268         // Then broadcast to 4x u32 slots of a 128
269         const __m128i dgd_ijkl = _mm_set1_epi32(loadu_int32(dgd_ijk + l));
270         // dgd_ijkl = [y x y x y x y x] as u16
271 
272         acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
273                               &dgd_ijkl);
274         acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
275                               &dgd_ijkl);
276         acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
277                               &dgd_ijkl);
278         acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
279                               &dgd_ijkl);
280         acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
281                               &dgd_ijkl);
282         acc_stat_highbd_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
283                               &dgd_ijkl);
284         acc_stat_highbd_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
285                               &dgd_ijkl);
286       }
287     }
288   }
289   // If the width is odd, add in the final pixel
290   if (has_odd_pixel) {
291     const uint16_t X1 = src[j];
292     *sumX += X1;
293     const uint16_t *dgd_ij = dgd + j;
294     for (k = 0; k < wiener_win; k++) {
295       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
296       for (l = 0; l < wiener_win; l++) {
297         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
298         const uint16_t D1 = dgd_ijk[l];
299         sumY[k][l] += D1;
300         M_int[k][l] += D1 * X1;
301 
302         // The `acc_stat_highbd_sse41` function wants its input to have
303         // interleaved copies of two pixels, but we only have one. However, the
304         // pixels are (effectively) used as inputs to a multiply-accumulate. So
305         // if we set the extra pixel slot to 0, then it is effectively ignored.
306         const __m128i dgd_ijkl = _mm_set1_epi32((int)D1);
307 
308         acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
309                               &dgd_ijkl);
310         acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
311                               &dgd_ijkl);
312         acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
313                               &dgd_ijkl);
314         acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
315                               &dgd_ijkl);
316         acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
317                               &dgd_ijkl);
318         acc_stat_highbd_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
319                               &dgd_ijkl);
320         acc_stat_highbd_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
321                               &dgd_ijkl);
322       }
323     }
324   }
325 }
326 
compute_stats_highbd_win7_opt_sse4_1(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)327 static INLINE void compute_stats_highbd_win7_opt_sse4_1(
328     const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
329     int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
330     int64_t *H, aom_bit_depth_t bit_depth) {
331   int i, j, k, l, m, n;
332   const int wiener_win = WIENER_WIN;
333   const int pixel_count = (h_end - h_start) * (v_end - v_start);
334   const int wiener_win2 = wiener_win * wiener_win;
335   const int wiener_halfwin = (wiener_win >> 1);
336   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
337   const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
338   const uint16_t avg =
339       find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
340 
341   int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } };
342   int64_t H_int[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
343   int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
344   int32_t sumX = 0;
345   const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
346 
347   // Load just half of the 256-bit shuffle control used for the AVX2 version
348   const __m128i shuffle = xx_loadu_128(g_shuffle_stats_highbd_data);
349   for (j = v_start; j < v_end; j += 64) {
350     const int vert_end = AOMMIN(64, v_end - j) + j;
351     for (i = j; i < vert_end; i++) {
352       acc_stat_highbd_win7_one_line_sse4_1(
353           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
354           dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
355     }
356   }
357 
358   uint8_t bit_depth_divider = 1;
359   if (bit_depth == AOM_BITS_12)
360     bit_depth_divider = 16;
361   else if (bit_depth == AOM_BITS_10)
362     bit_depth_divider = 4;
363 
364   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
365   for (k = 0; k < wiener_win; k++) {
366     for (l = 0; l < wiener_win; l++) {
367       const int32_t idx0 = l * wiener_win + k;
368       M[idx0] = (M_int[k][l] +
369                  (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
370                 bit_depth_divider;
371       int64_t *H_ = H + idx0 * wiener_win2;
372       int64_t *H_int_ = &H_int[idx0][0];
373       for (m = 0; m < wiener_win; m++) {
374         for (n = 0; n < wiener_win; n++) {
375           H_[m * wiener_win + n] =
376               (H_int_[n * 8 + m] +
377                (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
378               bit_depth_divider;
379         }
380       }
381     }
382   }
383 }
384 
acc_stat_highbd_win5_one_line_sse4_1(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8])385 static INLINE void acc_stat_highbd_win5_one_line_sse4_1(
386     const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
387     int dgd_stride, const __m128i *shuffle, int32_t *sumX,
388     int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
389     int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
390     int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
391   int j, k, l;
392   const int wiener_win = WIENER_WIN_CHROMA;
393   // Main loop handles two pixels at a time
394   // We can assume that h_start is even, since it will always be aligned to
395   // a tile edge + some number of restoration units, and both of those will
396   // be 64-pixel aligned.
397   // However, at the edge of the image, h_end may be odd, so we need to handle
398   // that case correctly.
399   assert(h_start % 2 == 0);
400   const int h_end_even = h_end & ~1;
401   const int has_odd_pixel = h_end & 1;
402   for (j = h_start; j < h_end_even; j += 2) {
403     const uint16_t X1 = src[j];
404     const uint16_t X2 = src[j + 1];
405     *sumX += X1 + X2;
406     const uint16_t *dgd_ij = dgd + j;
407     for (k = 0; k < wiener_win; k++) {
408       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
409       for (l = 0; l < wiener_win; l++) {
410         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
411         const uint16_t D1 = dgd_ijk[l];
412         const uint16_t D2 = dgd_ijk[l + 1];
413         sumY[k][l] += D1 + D2;
414         M_int[k][l] += D1 * X1 + D2 * X2;
415 
416         // Load two u16 values from dgd as a single u32
417         // then broadcast to 4x u32 slots of a 128
418         const __m128i dgd_ijkl = _mm_set1_epi32(loadu_int32(dgd_ijk + l));
419         // dgd_ijkl = [y x y x y x y x] as u16
420 
421         acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
422                               &dgd_ijkl);
423         acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
424                               &dgd_ijkl);
425         acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
426                               &dgd_ijkl);
427         acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
428                               &dgd_ijkl);
429         acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
430                               &dgd_ijkl);
431       }
432     }
433   }
434   // If the width is odd, add in the final pixel
435   if (has_odd_pixel) {
436     const uint16_t X1 = src[j];
437     *sumX += X1;
438     const uint16_t *dgd_ij = dgd + j;
439     for (k = 0; k < wiener_win; k++) {
440       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
441       for (l = 0; l < wiener_win; l++) {
442         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
443         const uint16_t D1 = dgd_ijk[l];
444         sumY[k][l] += D1;
445         M_int[k][l] += D1 * X1;
446 
447         // The `acc_stat_highbd_sse41` function wants its input to have
448         // interleaved copies of two pixels, but we only have one. However, the
449         // pixels are (effectively) used as inputs to a multiply-accumulate. So
450         // if we set the extra pixel slot to 0, then it is effectively ignored.
451         const __m128i dgd_ijkl = _mm_set1_epi32((int)D1);
452 
453         acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
454                               &dgd_ijkl);
455         acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
456                               &dgd_ijkl);
457         acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
458                               &dgd_ijkl);
459         acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
460                               &dgd_ijkl);
461         acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
462                               &dgd_ijkl);
463       }
464     }
465   }
466 }
467 
compute_stats_highbd_win5_opt_sse4_1(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)468 static INLINE void compute_stats_highbd_win5_opt_sse4_1(
469     const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
470     int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
471     int64_t *H, aom_bit_depth_t bit_depth) {
472   int i, j, k, l, m, n;
473   const int wiener_win = WIENER_WIN_CHROMA;
474   const int pixel_count = (h_end - h_start) * (v_end - v_start);
475   const int wiener_win2 = wiener_win * wiener_win;
476   const int wiener_halfwin = (wiener_win >> 1);
477   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
478   const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
479   const uint16_t avg =
480       find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
481 
482   int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
483   int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
484   int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
485   int32_t sumX = 0;
486   const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
487 
488   // Load just half of the 256-bit shuffle control used for the AVX2 version
489   const __m128i shuffle = xx_loadu_128(g_shuffle_stats_highbd_data);
490   for (j = v_start; j < v_end; j += 64) {
491     const int vert_end = AOMMIN(64, v_end - j) + j;
492     for (i = j; i < vert_end; i++) {
493       acc_stat_highbd_win5_one_line_sse4_1(
494           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
495           dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
496     }
497   }
498 
499   uint8_t bit_depth_divider = 1;
500   if (bit_depth == AOM_BITS_12)
501     bit_depth_divider = 16;
502   else if (bit_depth == AOM_BITS_10)
503     bit_depth_divider = 4;
504 
505   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
506   for (k = 0; k < wiener_win; k++) {
507     for (l = 0; l < wiener_win; l++) {
508       const int32_t idx0 = l * wiener_win + k;
509       M[idx0] = (M_int[k][l] +
510                  (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
511                 bit_depth_divider;
512       int64_t *H_ = H + idx0 * wiener_win2;
513       int64_t *H_int_ = &H_int[idx0][0];
514       for (m = 0; m < wiener_win; m++) {
515         for (n = 0; n < wiener_win; n++) {
516           H_[m * wiener_win + n] =
517               (H_int_[n * 8 + m] +
518                (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
519               bit_depth_divider;
520         }
521       }
522     }
523   }
524 }
525 
av1_compute_stats_highbd_sse4_1(int wiener_win,const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)526 void av1_compute_stats_highbd_sse4_1(int wiener_win, const uint8_t *dgd8,
527                                      const uint8_t *src8, int h_start,
528                                      int h_end, int v_start, int v_end,
529                                      int dgd_stride, int src_stride, int64_t *M,
530                                      int64_t *H, aom_bit_depth_t bit_depth) {
531   if (wiener_win == WIENER_WIN) {
532     compute_stats_highbd_win7_opt_sse4_1(dgd8, src8, h_start, h_end, v_start,
533                                          v_end, dgd_stride, src_stride, M, H,
534                                          bit_depth);
535   } else if (wiener_win == WIENER_WIN_CHROMA) {
536     compute_stats_highbd_win5_opt_sse4_1(dgd8, src8, h_start, h_end, v_start,
537                                          v_end, dgd_stride, src_stride, M, H,
538                                          bit_depth);
539   } else {
540     av1_compute_stats_highbd_c(wiener_win, dgd8, src8, h_start, h_end, v_start,
541                                v_end, dgd_stride, src_stride, M, H, bit_depth);
542   }
543 }
544 #endif  // CONFIG_AV1_HIGHBITDEPTH
545 
acc_stat_win5_one_line_sse4_1(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int32_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int32_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8])546 static INLINE void acc_stat_win5_one_line_sse4_1(
547     const uint8_t *dgd, const uint8_t *src, int h_start, int h_end,
548     int dgd_stride, const __m128i *shuffle, int32_t *sumX,
549     int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
550     int32_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
551     int32_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
552   const int wiener_win = WIENER_WIN_CHROMA;
553   int j, k, l;
554   // Main loop handles two pixels at a time
555   // We can assume that h_start is even, since it will always be aligned to
556   // a tile edge + some number of restoration units, and both of those will
557   // be 64-pixel aligned.
558   // However, at the edge of the image, h_end may be odd, so we need to handle
559   // that case correctly.
560   assert(h_start % 2 == 0);
561   const int h_end_even = h_end & ~1;
562   const int has_odd_pixel = h_end & 1;
563   for (j = h_start; j < h_end_even; j += 2) {
564     const uint8_t *dgd_ij = dgd + j;
565     const uint8_t X1 = src[j];
566     const uint8_t X2 = src[j + 1];
567     *sumX += X1 + X2;
568     for (k = 0; k < wiener_win; k++) {
569       const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
570       for (l = 0; l < wiener_win; l++) {
571         int32_t *H_ = &H_int[(l * wiener_win + k)][0];
572         const uint8_t D1 = dgd_ijk[l];
573         const uint8_t D2 = dgd_ijk[l + 1];
574         sumY[k][l] += D1 + D2;
575         M_int[k][l] += D1 * X1 + D2 * X2;
576 
577         const __m128i kl =
578             _mm_cvtepu8_epi16(_mm_set1_epi16(loadu_int16(dgd_ijk + l)));
579         acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
580         acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
581         acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
582         acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
583         acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
584       }
585     }
586   }
587   // If the width is odd, add in the final pixel
588   if (has_odd_pixel) {
589     const uint8_t *dgd_ij = dgd + j;
590     const uint8_t X1 = src[j];
591     *sumX += X1;
592     for (k = 0; k < wiener_win; k++) {
593       const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
594       for (l = 0; l < wiener_win; l++) {
595         int32_t *H_ = &H_int[(l * wiener_win + k)][0];
596         const uint8_t D1 = dgd_ijk[l];
597         sumY[k][l] += D1;
598         M_int[k][l] += D1 * X1;
599 
600         // The `acc_stat_sse41` function wants its input to have interleaved
601         // copies of two pixels, but we only have one. However, the pixels
602         // are (effectively) used as inputs to a multiply-accumulate.
603         // So if we set the extra pixel slot to 0, then it is effectively
604         // ignored.
605         const __m128i kl = _mm_cvtepu8_epi16(_mm_set1_epi16((int16_t)D1));
606         acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
607         acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
608         acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
609         acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
610         acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
611       }
612     }
613   }
614 }
615 
compute_stats_win5_opt_sse4_1(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,int use_downsampled_wiener_stats)616 static INLINE void compute_stats_win5_opt_sse4_1(
617     const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
618     int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H,
619     int use_downsampled_wiener_stats) {
620   int i, j, k, l, m, n;
621   const int wiener_win = WIENER_WIN_CHROMA;
622   const int pixel_count = (h_end - h_start) * (v_end - v_start);
623   const int wiener_win2 = wiener_win * wiener_win;
624   const int wiener_halfwin = (wiener_win >> 1);
625   const uint8_t avg =
626       find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
627 
628   int32_t M_int32[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
629   int32_t M_int32_row[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
630   int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
631   int32_t H_int32[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
632   int32_t H_int32_row[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
633   int64_t H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
634   int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
635   int32_t sumX = 0;
636   const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
637   int downsample_factor =
638       use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
639   int32_t sumX_row = 0;
640   int32_t sumY_row[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
641 
642   const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data);
643   for (j = v_start; j < v_end; j += 64) {
644     const int vert_end = AOMMIN(64, v_end - j) + j;
645     for (i = j; i < vert_end; i = i + downsample_factor) {
646       if (use_downsampled_wiener_stats &&
647           (vert_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
648         downsample_factor = vert_end - i;
649       }
650       sumX_row = 0;
651       memset(sumY_row, 0,
652              sizeof(int32_t) * WIENER_WIN_CHROMA * WIENER_WIN_CHROMA);
653       memset(M_int32_row, 0,
654              sizeof(int32_t) * WIENER_WIN_CHROMA * WIENER_WIN_CHROMA);
655       memset(H_int32_row, 0,
656              sizeof(int32_t) * WIENER_WIN2_CHROMA * (WIENER_WIN_CHROMA * 8));
657       acc_stat_win5_one_line_sse4_1(
658           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
659           dgd_stride, &shuffle, &sumX_row, sumY_row, M_int32_row, H_int32_row);
660       sumX += sumX_row * downsample_factor;
661       // Scale M matrix based on the downsampling factor
662       for (k = 0; k < wiener_win; ++k) {
663         for (l = 0; l < wiener_win; ++l) {
664           sumY[k][l] += (sumY_row[k][l] * downsample_factor);
665           M_int32[k][l] += (M_int32_row[k][l] * downsample_factor);
666         }
667       }
668       // Scale H matrix based on the downsampling factor
669       for (k = 0; k < WIENER_WIN_CHROMA * WIENER_WIN_CHROMA; ++k) {
670         for (l = 0; l < WIENER_WIN_CHROMA * 8; ++l) {
671           H_int32[k][l] += (H_int32_row[k][l] * downsample_factor);
672         }
673       }
674     }
675     for (k = 0; k < wiener_win; ++k) {
676       for (l = 0; l < wiener_win; ++l) {
677         M_int64[k][l] += M_int32[k][l];
678         M_int32[k][l] = 0;
679       }
680     }
681     for (k = 0; k < WIENER_WIN_CHROMA * WIENER_WIN_CHROMA; ++k) {
682       for (l = 0; l < WIENER_WIN_CHROMA * 8; ++l) {
683         H_int64[k][l] += H_int32[k][l];
684         H_int32[k][l] = 0;
685       }
686     }
687   }
688 
689   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
690   for (k = 0; k < wiener_win; k++) {
691     for (l = 0; l < wiener_win; l++) {
692       const int32_t idx0 = l * wiener_win + k;
693       M[idx0] =
694           M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
695       int64_t *H_ = H + idx0 * wiener_win2;
696       int64_t *H_int_ = &H_int64[idx0][0];
697       for (m = 0; m < wiener_win; m++) {
698         for (n = 0; n < wiener_win; n++) {
699           H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
700                                    (int64_t)avg * (sumY[k][l] + sumY[n][m]);
701         }
702       }
703     }
704   }
705 }
av1_compute_stats_sse4_1(int wiener_win,const uint8_t * dgd,const uint8_t * src,int16_t * dgd_avg,int16_t * src_avg,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,int use_downsampled_wiener_stats)706 void av1_compute_stats_sse4_1(int wiener_win, const uint8_t *dgd,
707                               const uint8_t *src, int16_t *dgd_avg,
708                               int16_t *src_avg, int h_start, int h_end,
709                               int v_start, int v_end, int dgd_stride,
710                               int src_stride, int64_t *M, int64_t *H,
711                               int use_downsampled_wiener_stats) {
712   if (wiener_win == WIENER_WIN) {
713     compute_stats_win7_opt_sse4_1(dgd, src, h_start, h_end, v_start, v_end,
714                                   dgd_stride, src_stride, M, H,
715                                   use_downsampled_wiener_stats);
716   } else if (wiener_win == WIENER_WIN_CHROMA) {
717     compute_stats_win5_opt_sse4_1(dgd, src, h_start, h_end, v_start, v_end,
718                                   dgd_stride, src_stride, M, H,
719                                   use_downsampled_wiener_stats);
720   } else {
721     av1_compute_stats_c(wiener_win, dgd, src, dgd_avg, src_avg, h_start, h_end,
722                         v_start, v_end, dgd_stride, src_stride, M, H,
723                         use_downsampled_wiener_stats);
724   }
725 }
726 
pair_set_epi16(int a,int b)727 static INLINE __m128i pair_set_epi16(int a, int b) {
728   return _mm_set1_epi32((int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16)));
729 }
730 
av1_lowbd_pixel_proj_error_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)731 int64_t av1_lowbd_pixel_proj_error_sse4_1(
732     const uint8_t *src8, int width, int height, int src_stride,
733     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
734     int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
735   int i, j, k;
736   const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
737   const __m128i rounding = _mm_set1_epi32(1 << (shift - 1));
738   __m128i sum64 = _mm_setzero_si128();
739   const uint8_t *src = src8;
740   const uint8_t *dat = dat8;
741   int64_t err = 0;
742   if (params->r[0] > 0 && params->r[1] > 0) {
743     __m128i xq_coeff = pair_set_epi16(xq[0], xq[1]);
744     for (i = 0; i < height; ++i) {
745       __m128i sum32 = _mm_setzero_si128();
746       for (j = 0; j <= width - 8; j += 8) {
747         const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j));
748         const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j));
749         const __m128i flt0_16b =
750             _mm_packs_epi32(xx_loadu_128(flt0 + j), xx_loadu_128(flt0 + j + 4));
751         const __m128i flt1_16b =
752             _mm_packs_epi32(xx_loadu_128(flt1 + j), xx_loadu_128(flt1 + j + 4));
753         const __m128i u0 = _mm_slli_epi16(d0, SGRPROJ_RST_BITS);
754         const __m128i flt0_0_sub_u = _mm_sub_epi16(flt0_16b, u0);
755         const __m128i flt1_0_sub_u = _mm_sub_epi16(flt1_16b, u0);
756         const __m128i v0 = _mm_madd_epi16(
757             xq_coeff, _mm_unpacklo_epi16(flt0_0_sub_u, flt1_0_sub_u));
758         const __m128i v1 = _mm_madd_epi16(
759             xq_coeff, _mm_unpackhi_epi16(flt0_0_sub_u, flt1_0_sub_u));
760         const __m128i vr0 = _mm_srai_epi32(_mm_add_epi32(v0, rounding), shift);
761         const __m128i vr1 = _mm_srai_epi32(_mm_add_epi32(v1, rounding), shift);
762         const __m128i e0 =
763             _mm_sub_epi16(_mm_add_epi16(_mm_packs_epi32(vr0, vr1), d0), s0);
764         const __m128i err0 = _mm_madd_epi16(e0, e0);
765         sum32 = _mm_add_epi32(sum32, err0);
766       }
767       for (k = j; k < width; ++k) {
768         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
769         int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
770         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
771         err += ((int64_t)e * e);
772       }
773       dat += dat_stride;
774       src += src_stride;
775       flt0 += flt0_stride;
776       flt1 += flt1_stride;
777       const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
778       const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
779       sum64 = _mm_add_epi64(sum64, sum64_0);
780       sum64 = _mm_add_epi64(sum64, sum64_1);
781     }
782   } else if (params->r[0] > 0 || params->r[1] > 0) {
783     const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
784     const __m128i xq_coeff =
785         pair_set_epi16(xq_active, -xq_active * (1 << SGRPROJ_RST_BITS));
786     const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
787     const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
788     for (i = 0; i < height; ++i) {
789       __m128i sum32 = _mm_setzero_si128();
790       for (j = 0; j <= width - 8; j += 8) {
791         const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j));
792         const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j));
793         const __m128i flt_16b =
794             _mm_packs_epi32(xx_loadu_128(flt + j), xx_loadu_128(flt + j + 4));
795         const __m128i v0 =
796             _mm_madd_epi16(xq_coeff, _mm_unpacklo_epi16(flt_16b, d0));
797         const __m128i v1 =
798             _mm_madd_epi16(xq_coeff, _mm_unpackhi_epi16(flt_16b, d0));
799         const __m128i vr0 = _mm_srai_epi32(_mm_add_epi32(v0, rounding), shift);
800         const __m128i vr1 = _mm_srai_epi32(_mm_add_epi32(v1, rounding), shift);
801         const __m128i e0 =
802             _mm_sub_epi16(_mm_add_epi16(_mm_packs_epi32(vr0, vr1), d0), s0);
803         const __m128i err0 = _mm_madd_epi16(e0, e0);
804         sum32 = _mm_add_epi32(sum32, err0);
805       }
806       for (k = j; k < width; ++k) {
807         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
808         int32_t v = xq_active * (flt[k] - u);
809         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
810         err += ((int64_t)e * e);
811       }
812       dat += dat_stride;
813       src += src_stride;
814       flt += flt_stride;
815       const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
816       const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
817       sum64 = _mm_add_epi64(sum64, sum64_0);
818       sum64 = _mm_add_epi64(sum64, sum64_1);
819     }
820   } else {
821     __m128i sum32 = _mm_setzero_si128();
822     for (i = 0; i < height; ++i) {
823       for (j = 0; j <= width - 16; j += 16) {
824         const __m128i d = xx_loadu_128(dat + j);
825         const __m128i s = xx_loadu_128(src + j);
826         const __m128i d0 = _mm_cvtepu8_epi16(d);
827         const __m128i d1 = _mm_cvtepu8_epi16(_mm_srli_si128(d, 8));
828         const __m128i s0 = _mm_cvtepu8_epi16(s);
829         const __m128i s1 = _mm_cvtepu8_epi16(_mm_srli_si128(s, 8));
830         const __m128i diff0 = _mm_sub_epi16(d0, s0);
831         const __m128i diff1 = _mm_sub_epi16(d1, s1);
832         const __m128i err0 = _mm_madd_epi16(diff0, diff0);
833         const __m128i err1 = _mm_madd_epi16(diff1, diff1);
834         sum32 = _mm_add_epi32(sum32, err0);
835         sum32 = _mm_add_epi32(sum32, err1);
836       }
837       for (k = j; k < width; ++k) {
838         const int32_t e = (int32_t)(dat[k]) - src[k];
839         err += ((int64_t)e * e);
840       }
841       dat += dat_stride;
842       src += src_stride;
843     }
844     const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
845     const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
846     sum64 = _mm_add_epi64(sum64_0, sum64_1);
847   }
848   int64_t sum[2];
849   xx_storeu_128(sum, sum64);
850   err += sum[0] + sum[1];
851   return err;
852 }
853 
854 // When params->r[0] > 0 and params->r[1] > 0. In this case all elements of
855 // C and H need to be computed.
calc_proj_params_r0_r1_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])856 static AOM_INLINE void calc_proj_params_r0_r1_sse4_1(
857     const uint8_t *src8, int width, int height, int src_stride,
858     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
859     int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
860   const int size = width * height;
861   const uint8_t *src = src8;
862   const uint8_t *dat = dat8;
863   __m128i h00, h01, h11, c0, c1;
864   const __m128i zero = _mm_setzero_si128();
865   h01 = h11 = c0 = c1 = h00 = zero;
866 
867   for (int i = 0; i < height; ++i) {
868     for (int j = 0; j < width; j += 4) {
869       const __m128i u_load = _mm_cvtepu8_epi32(
870           _mm_cvtsi32_si128(*((int *)(dat + i * dat_stride + j))));
871       const __m128i s_load = _mm_cvtepu8_epi32(
872           _mm_cvtsi32_si128(*((int *)(src + i * src_stride + j))));
873       __m128i f1 = _mm_loadu_si128((__m128i *)(flt0 + i * flt0_stride + j));
874       __m128i f2 = _mm_loadu_si128((__m128i *)(flt1 + i * flt1_stride + j));
875       __m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
876       __m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
877       s = _mm_sub_epi32(s, d);
878       f1 = _mm_sub_epi32(f1, d);
879       f2 = _mm_sub_epi32(f2, d);
880 
881       const __m128i h00_even = _mm_mul_epi32(f1, f1);
882       const __m128i h00_odd =
883           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f1, 32));
884       h00 = _mm_add_epi64(h00, h00_even);
885       h00 = _mm_add_epi64(h00, h00_odd);
886 
887       const __m128i h01_even = _mm_mul_epi32(f1, f2);
888       const __m128i h01_odd =
889           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f2, 32));
890       h01 = _mm_add_epi64(h01, h01_even);
891       h01 = _mm_add_epi64(h01, h01_odd);
892 
893       const __m128i h11_even = _mm_mul_epi32(f2, f2);
894       const __m128i h11_odd =
895           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(f2, 32));
896       h11 = _mm_add_epi64(h11, h11_even);
897       h11 = _mm_add_epi64(h11, h11_odd);
898 
899       const __m128i c0_even = _mm_mul_epi32(f1, s);
900       const __m128i c0_odd =
901           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(s, 32));
902       c0 = _mm_add_epi64(c0, c0_even);
903       c0 = _mm_add_epi64(c0, c0_odd);
904 
905       const __m128i c1_even = _mm_mul_epi32(f2, s);
906       const __m128i c1_odd =
907           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(s, 32));
908       c1 = _mm_add_epi64(c1, c1_even);
909       c1 = _mm_add_epi64(c1, c1_odd);
910     }
911   }
912 
913   __m128i c_low = _mm_unpacklo_epi64(c0, c1);
914   const __m128i c_high = _mm_unpackhi_epi64(c0, c1);
915   c_low = _mm_add_epi64(c_low, c_high);
916 
917   __m128i h0x_low = _mm_unpacklo_epi64(h00, h01);
918   const __m128i h0x_high = _mm_unpackhi_epi64(h00, h01);
919   h0x_low = _mm_add_epi64(h0x_low, h0x_high);
920 
921   // Using the symmetric properties of H,  calculations of H[1][0] are not
922   // needed.
923   __m128i h1x_low = _mm_unpacklo_epi64(zero, h11);
924   const __m128i h1x_high = _mm_unpackhi_epi64(zero, h11);
925   h1x_low = _mm_add_epi64(h1x_low, h1x_high);
926 
927   xx_storeu_128(C, c_low);
928   xx_storeu_128(H[0], h0x_low);
929   xx_storeu_128(H[1], h1x_low);
930 
931   H[0][0] /= size;
932   H[0][1] /= size;
933   H[1][1] /= size;
934 
935   // Since H is a symmetric matrix
936   H[1][0] = H[0][1];
937   C[0] /= size;
938   C[1] /= size;
939 }
940 
941 // When only params->r[0] > 0. In this case only H[0][0] and C[0] are
942 // non-zero and need to be computed.
calc_proj_params_r0_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int64_t H[2][2],int64_t C[2])943 static AOM_INLINE void calc_proj_params_r0_sse4_1(
944     const uint8_t *src8, int width, int height, int src_stride,
945     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
946     int64_t H[2][2], int64_t C[2]) {
947   const int size = width * height;
948   const uint8_t *src = src8;
949   const uint8_t *dat = dat8;
950   __m128i h00, c0;
951   const __m128i zero = _mm_setzero_si128();
952   c0 = h00 = zero;
953 
954   for (int i = 0; i < height; ++i) {
955     for (int j = 0; j < width; j += 4) {
956       const __m128i u_load = _mm_cvtepu8_epi32(
957           _mm_cvtsi32_si128(*((int *)(dat + i * dat_stride + j))));
958       const __m128i s_load = _mm_cvtepu8_epi32(
959           _mm_cvtsi32_si128(*((int *)(src + i * src_stride + j))));
960       __m128i f1 = _mm_loadu_si128((__m128i *)(flt0 + i * flt0_stride + j));
961       __m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
962       __m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
963       s = _mm_sub_epi32(s, d);
964       f1 = _mm_sub_epi32(f1, d);
965 
966       const __m128i h00_even = _mm_mul_epi32(f1, f1);
967       const __m128i h00_odd =
968           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f1, 32));
969       h00 = _mm_add_epi64(h00, h00_even);
970       h00 = _mm_add_epi64(h00, h00_odd);
971 
972       const __m128i c0_even = _mm_mul_epi32(f1, s);
973       const __m128i c0_odd =
974           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(s, 32));
975       c0 = _mm_add_epi64(c0, c0_even);
976       c0 = _mm_add_epi64(c0, c0_odd);
977     }
978   }
979   const __m128i h00_val = _mm_add_epi64(h00, _mm_srli_si128(h00, 8));
980 
981   const __m128i c0_val = _mm_add_epi64(c0, _mm_srli_si128(c0, 8));
982 
983   const __m128i c = _mm_unpacklo_epi64(c0_val, zero);
984   const __m128i h0x = _mm_unpacklo_epi64(h00_val, zero);
985 
986   xx_storeu_128(C, c);
987   xx_storeu_128(H[0], h0x);
988 
989   H[0][0] /= size;
990   C[0] /= size;
991 }
992 
993 // When only params->r[1] > 0. In this case only H[1][1] and C[1] are
994 // non-zero and need to be computed.
calc_proj_params_r1_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])995 static AOM_INLINE void calc_proj_params_r1_sse4_1(
996     const uint8_t *src8, int width, int height, int src_stride,
997     const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride,
998     int64_t H[2][2], int64_t C[2]) {
999   const int size = width * height;
1000   const uint8_t *src = src8;
1001   const uint8_t *dat = dat8;
1002   __m128i h11, c1;
1003   const __m128i zero = _mm_setzero_si128();
1004   c1 = h11 = zero;
1005 
1006   for (int i = 0; i < height; ++i) {
1007     for (int j = 0; j < width; j += 4) {
1008       const __m128i u_load = _mm_cvtepu8_epi32(
1009           _mm_cvtsi32_si128(*((int *)(dat + i * dat_stride + j))));
1010       const __m128i s_load = _mm_cvtepu8_epi32(
1011           _mm_cvtsi32_si128(*((int *)(src + i * src_stride + j))));
1012       __m128i f2 = _mm_loadu_si128((__m128i *)(flt1 + i * flt1_stride + j));
1013       __m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
1014       __m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
1015       s = _mm_sub_epi32(s, d);
1016       f2 = _mm_sub_epi32(f2, d);
1017 
1018       const __m128i h11_even = _mm_mul_epi32(f2, f2);
1019       const __m128i h11_odd =
1020           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(f2, 32));
1021       h11 = _mm_add_epi64(h11, h11_even);
1022       h11 = _mm_add_epi64(h11, h11_odd);
1023 
1024       const __m128i c1_even = _mm_mul_epi32(f2, s);
1025       const __m128i c1_odd =
1026           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(s, 32));
1027       c1 = _mm_add_epi64(c1, c1_even);
1028       c1 = _mm_add_epi64(c1, c1_odd);
1029     }
1030   }
1031 
1032   const __m128i h11_val = _mm_add_epi64(h11, _mm_srli_si128(h11, 8));
1033 
1034   const __m128i c1_val = _mm_add_epi64(c1, _mm_srli_si128(c1, 8));
1035 
1036   const __m128i c = _mm_unpacklo_epi64(zero, c1_val);
1037   const __m128i h1x = _mm_unpacklo_epi64(zero, h11_val);
1038 
1039   xx_storeu_128(C, c);
1040   xx_storeu_128(H[1], h1x);
1041 
1042   H[1][1] /= size;
1043   C[1] /= size;
1044 }
1045 
1046 // SSE4.1 variant of av1_calc_proj_params_c.
av1_calc_proj_params_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2],const sgr_params_type * params)1047 void av1_calc_proj_params_sse4_1(const uint8_t *src8, int width, int height,
1048                                  int src_stride, const uint8_t *dat8,
1049                                  int dat_stride, int32_t *flt0, int flt0_stride,
1050                                  int32_t *flt1, int flt1_stride,
1051                                  int64_t H[2][2], int64_t C[2],
1052                                  const sgr_params_type *params) {
1053   if ((params->r[0] > 0) && (params->r[1] > 0)) {
1054     calc_proj_params_r0_r1_sse4_1(src8, width, height, src_stride, dat8,
1055                                   dat_stride, flt0, flt0_stride, flt1,
1056                                   flt1_stride, H, C);
1057   } else if (params->r[0] > 0) {
1058     calc_proj_params_r0_sse4_1(src8, width, height, src_stride, dat8,
1059                                dat_stride, flt0, flt0_stride, H, C);
1060   } else if (params->r[1] > 0) {
1061     calc_proj_params_r1_sse4_1(src8, width, height, src_stride, dat8,
1062                                dat_stride, flt1, flt1_stride, H, C);
1063   }
1064 }
1065 
calc_proj_params_r0_r1_high_bd_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1066 static AOM_INLINE void calc_proj_params_r0_r1_high_bd_sse4_1(
1067     const uint8_t *src8, int width, int height, int src_stride,
1068     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1069     int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
1070   const int size = width * height;
1071   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
1072   const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
1073   __m128i h00, h01, h11, c0, c1;
1074   const __m128i zero = _mm_setzero_si128();
1075   h01 = h11 = c0 = c1 = h00 = zero;
1076 
1077   for (int i = 0; i < height; ++i) {
1078     for (int j = 0; j < width; j += 4) {
1079       const __m128i u_load = _mm_cvtepu16_epi32(
1080           _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1081       const __m128i s_load = _mm_cvtepu16_epi32(
1082           _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1083       __m128i f1 = _mm_loadu_si128((__m128i *)(flt0 + i * flt0_stride + j));
1084       __m128i f2 = _mm_loadu_si128((__m128i *)(flt1 + i * flt1_stride + j));
1085       __m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
1086       __m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
1087       s = _mm_sub_epi32(s, d);
1088       f1 = _mm_sub_epi32(f1, d);
1089       f2 = _mm_sub_epi32(f2, d);
1090 
1091       const __m128i h00_even = _mm_mul_epi32(f1, f1);
1092       const __m128i h00_odd =
1093           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f1, 32));
1094       h00 = _mm_add_epi64(h00, h00_even);
1095       h00 = _mm_add_epi64(h00, h00_odd);
1096 
1097       const __m128i h01_even = _mm_mul_epi32(f1, f2);
1098       const __m128i h01_odd =
1099           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f2, 32));
1100       h01 = _mm_add_epi64(h01, h01_even);
1101       h01 = _mm_add_epi64(h01, h01_odd);
1102 
1103       const __m128i h11_even = _mm_mul_epi32(f2, f2);
1104       const __m128i h11_odd =
1105           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(f2, 32));
1106       h11 = _mm_add_epi64(h11, h11_even);
1107       h11 = _mm_add_epi64(h11, h11_odd);
1108 
1109       const __m128i c0_even = _mm_mul_epi32(f1, s);
1110       const __m128i c0_odd =
1111           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(s, 32));
1112       c0 = _mm_add_epi64(c0, c0_even);
1113       c0 = _mm_add_epi64(c0, c0_odd);
1114 
1115       const __m128i c1_even = _mm_mul_epi32(f2, s);
1116       const __m128i c1_odd =
1117           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(s, 32));
1118       c1 = _mm_add_epi64(c1, c1_even);
1119       c1 = _mm_add_epi64(c1, c1_odd);
1120     }
1121   }
1122 
1123   __m128i c_low = _mm_unpacklo_epi64(c0, c1);
1124   const __m128i c_high = _mm_unpackhi_epi64(c0, c1);
1125   c_low = _mm_add_epi64(c_low, c_high);
1126 
1127   __m128i h0x_low = _mm_unpacklo_epi64(h00, h01);
1128   const __m128i h0x_high = _mm_unpackhi_epi64(h00, h01);
1129   h0x_low = _mm_add_epi64(h0x_low, h0x_high);
1130 
1131   // Using the symmetric properties of H,  calculations of H[1][0] are not
1132   // needed.
1133   __m128i h1x_low = _mm_unpacklo_epi64(zero, h11);
1134   const __m128i h1x_high = _mm_unpackhi_epi64(zero, h11);
1135   h1x_low = _mm_add_epi64(h1x_low, h1x_high);
1136 
1137   xx_storeu_128(C, c_low);
1138   xx_storeu_128(H[0], h0x_low);
1139   xx_storeu_128(H[1], h1x_low);
1140 
1141   H[0][0] /= size;
1142   H[0][1] /= size;
1143   H[1][1] /= size;
1144 
1145   // Since H is a symmetric matrix
1146   H[1][0] = H[0][1];
1147   C[0] /= size;
1148   C[1] /= size;
1149 }
1150 
1151 // When only params->r[0] > 0. In this case only H[0][0] and C[0] are
1152 // non-zero and need to be computed.
calc_proj_params_r0_high_bd_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int64_t H[2][2],int64_t C[2])1153 static AOM_INLINE void calc_proj_params_r0_high_bd_sse4_1(
1154     const uint8_t *src8, int width, int height, int src_stride,
1155     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1156     int64_t H[2][2], int64_t C[2]) {
1157   const int size = width * height;
1158   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
1159   const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
1160   __m128i h00, c0;
1161   const __m128i zero = _mm_setzero_si128();
1162   c0 = h00 = zero;
1163 
1164   for (int i = 0; i < height; ++i) {
1165     for (int j = 0; j < width; j += 4) {
1166       const __m128i u_load = _mm_cvtepu16_epi32(
1167           _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1168       const __m128i s_load = _mm_cvtepu16_epi32(
1169           _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1170       __m128i f1 = _mm_loadu_si128((__m128i *)(flt0 + i * flt0_stride + j));
1171       __m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
1172       __m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
1173       s = _mm_sub_epi32(s, d);
1174       f1 = _mm_sub_epi32(f1, d);
1175 
1176       const __m128i h00_even = _mm_mul_epi32(f1, f1);
1177       const __m128i h00_odd =
1178           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f1, 32));
1179       h00 = _mm_add_epi64(h00, h00_even);
1180       h00 = _mm_add_epi64(h00, h00_odd);
1181 
1182       const __m128i c0_even = _mm_mul_epi32(f1, s);
1183       const __m128i c0_odd =
1184           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(s, 32));
1185       c0 = _mm_add_epi64(c0, c0_even);
1186       c0 = _mm_add_epi64(c0, c0_odd);
1187     }
1188   }
1189   const __m128i h00_val = _mm_add_epi64(h00, _mm_srli_si128(h00, 8));
1190 
1191   const __m128i c0_val = _mm_add_epi64(c0, _mm_srli_si128(c0, 8));
1192 
1193   const __m128i c = _mm_unpacklo_epi64(c0_val, zero);
1194   const __m128i h0x = _mm_unpacklo_epi64(h00_val, zero);
1195 
1196   xx_storeu_128(C, c);
1197   xx_storeu_128(H[0], h0x);
1198 
1199   H[0][0] /= size;
1200   C[0] /= size;
1201 }
1202 
1203 // When only params->r[1] > 0. In this case only H[1][1] and C[1] are
1204 // non-zero and need to be computed.
calc_proj_params_r1_high_bd_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1205 static AOM_INLINE void calc_proj_params_r1_high_bd_sse4_1(
1206     const uint8_t *src8, int width, int height, int src_stride,
1207     const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride,
1208     int64_t H[2][2], int64_t C[2]) {
1209   const int size = width * height;
1210   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
1211   const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
1212   __m128i h11, c1;
1213   const __m128i zero = _mm_setzero_si128();
1214   c1 = h11 = zero;
1215 
1216   for (int i = 0; i < height; ++i) {
1217     for (int j = 0; j < width; j += 4) {
1218       const __m128i u_load = _mm_cvtepu16_epi32(
1219           _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1220       const __m128i s_load = _mm_cvtepu16_epi32(
1221           _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1222       __m128i f2 = _mm_loadu_si128((__m128i *)(flt1 + i * flt1_stride + j));
1223       __m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
1224       __m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
1225       s = _mm_sub_epi32(s, d);
1226       f2 = _mm_sub_epi32(f2, d);
1227 
1228       const __m128i h11_even = _mm_mul_epi32(f2, f2);
1229       const __m128i h11_odd =
1230           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(f2, 32));
1231       h11 = _mm_add_epi64(h11, h11_even);
1232       h11 = _mm_add_epi64(h11, h11_odd);
1233 
1234       const __m128i c1_even = _mm_mul_epi32(f2, s);
1235       const __m128i c1_odd =
1236           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(s, 32));
1237       c1 = _mm_add_epi64(c1, c1_even);
1238       c1 = _mm_add_epi64(c1, c1_odd);
1239     }
1240   }
1241 
1242   const __m128i h11_val = _mm_add_epi64(h11, _mm_srli_si128(h11, 8));
1243 
1244   const __m128i c1_val = _mm_add_epi64(c1, _mm_srli_si128(c1, 8));
1245 
1246   const __m128i c = _mm_unpacklo_epi64(zero, c1_val);
1247   const __m128i h1x = _mm_unpacklo_epi64(zero, h11_val);
1248 
1249   xx_storeu_128(C, c);
1250   xx_storeu_128(H[1], h1x);
1251 
1252   H[1][1] /= size;
1253   C[1] /= size;
1254 }
1255 
1256 // SSE4.1 variant of av1_calc_proj_params_high_bd_c.
av1_calc_proj_params_high_bd_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2],const sgr_params_type * params)1257 void av1_calc_proj_params_high_bd_sse4_1(const uint8_t *src8, int width,
1258                                          int height, int src_stride,
1259                                          const uint8_t *dat8, int dat_stride,
1260                                          int32_t *flt0, int flt0_stride,
1261                                          int32_t *flt1, int flt1_stride,
1262                                          int64_t H[2][2], int64_t C[2],
1263                                          const sgr_params_type *params) {
1264   if ((params->r[0] > 0) && (params->r[1] > 0)) {
1265     calc_proj_params_r0_r1_high_bd_sse4_1(src8, width, height, src_stride, dat8,
1266                                           dat_stride, flt0, flt0_stride, flt1,
1267                                           flt1_stride, H, C);
1268   } else if (params->r[0] > 0) {
1269     calc_proj_params_r0_high_bd_sse4_1(src8, width, height, src_stride, dat8,
1270                                        dat_stride, flt0, flt0_stride, H, C);
1271   } else if (params->r[1] > 0) {
1272     calc_proj_params_r1_high_bd_sse4_1(src8, width, height, src_stride, dat8,
1273                                        dat_stride, flt1, flt1_stride, H, C);
1274   }
1275 }
1276 
1277 #if CONFIG_AV1_HIGHBITDEPTH
av1_highbd_pixel_proj_error_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)1278 int64_t av1_highbd_pixel_proj_error_sse4_1(
1279     const uint8_t *src8, int width, int height, int src_stride,
1280     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1281     int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
1282   int i, j, k;
1283   const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
1284   const __m128i rounding = _mm_set1_epi32(1 << (shift - 1));
1285   __m128i sum64 = _mm_setzero_si128();
1286   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
1287   const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
1288   int64_t err = 0;
1289   if (params->r[0] > 0 && params->r[1] > 0) {  // Both filters are enabled
1290     const __m128i xq0 = _mm_set1_epi32(xq[0]);
1291     const __m128i xq1 = _mm_set1_epi32(xq[1]);
1292 
1293     for (i = 0; i < height; ++i) {
1294       __m128i sum32 = _mm_setzero_si128();
1295       for (j = 0; j <= width - 8; j += 8) {
1296         // Load 8x pixels from source image
1297         const __m128i s0 = xx_loadu_128(src + j);
1298         // s0 = [7 6 5 4 3 2 1 0] as i16 (indices of src[])
1299 
1300         // Load 8x pixels from corrupted image
1301         const __m128i d0 = xx_loadu_128(dat + j);
1302         // d0 = [7 6 5 4 3 2 1 0] as i16 (indices of dat[])
1303 
1304         // Shift each pixel value up by SGRPROJ_RST_BITS
1305         const __m128i u0 = _mm_slli_epi16(d0, SGRPROJ_RST_BITS);
1306 
1307         // Split u0 into two halves and pad each from u16 to i32
1308         const __m128i u0l = _mm_cvtepu16_epi32(u0);
1309         const __m128i u0h = _mm_cvtepu16_epi32(_mm_srli_si128(u0, 8));
1310         // u0h = [7 6 5 4] as i32, u0l = [3 2 1 0] as i32, all dat[] indices
1311 
1312         // Load 8 pixels from first and second filtered images
1313         const __m128i flt0l = xx_loadu_128(flt0 + j);
1314         const __m128i flt0h = xx_loadu_128(flt0 + j + 4);
1315         const __m128i flt1l = xx_loadu_128(flt1 + j);
1316         const __m128i flt1h = xx_loadu_128(flt1 + j + 4);
1317         // flt0 = [7 6 5 4] [3 2 1 0] as i32 (indices of flt0+j)
1318         // flt1 = [7 6 5 4] [3 2 1 0] as i32 (indices of flt1+j)
1319 
1320         // Subtract shifted corrupt image from each filtered image
1321         // This gives our two basis vectors for the projection
1322         const __m128i flt0l_subu = _mm_sub_epi32(flt0l, u0l);
1323         const __m128i flt0h_subu = _mm_sub_epi32(flt0h, u0h);
1324         const __m128i flt1l_subu = _mm_sub_epi32(flt1l, u0l);
1325         const __m128i flt1h_subu = _mm_sub_epi32(flt1h, u0h);
1326         // flt?h_subu = [ f[7]-u[7] f[6]-u[6] f[5]-u[5] f[4]-u[4] ] as i32
1327         // flt?l_subu = [ f[3]-u[3] f[2]-u[2] f[1]-u[1] f[0]-u[0] ] as i32
1328 
1329         // Multiply each basis vector by the corresponding coefficient
1330         const __m128i v0l = _mm_mullo_epi32(flt0l_subu, xq0);
1331         const __m128i v0h = _mm_mullo_epi32(flt0h_subu, xq0);
1332         const __m128i v1l = _mm_mullo_epi32(flt1l_subu, xq1);
1333         const __m128i v1h = _mm_mullo_epi32(flt1h_subu, xq1);
1334 
1335         // Add together the contribution from each scaled basis vector
1336         const __m128i vl = _mm_add_epi32(v0l, v1l);
1337         const __m128i vh = _mm_add_epi32(v0h, v1h);
1338 
1339         // Right-shift v with appropriate rounding
1340         const __m128i vrl = _mm_srai_epi32(_mm_add_epi32(vl, rounding), shift);
1341         const __m128i vrh = _mm_srai_epi32(_mm_add_epi32(vh, rounding), shift);
1342 
1343         // Saturate each i32 value to i16 and combine lower and upper halves
1344         const __m128i vr = _mm_packs_epi32(vrl, vrh);
1345 
1346         // Add twin-subspace-sgr-filter to corrupt image then subtract source
1347         const __m128i e0 = _mm_sub_epi16(_mm_add_epi16(vr, d0), s0);
1348 
1349         // Calculate squared error and add adjacent values
1350         const __m128i err0 = _mm_madd_epi16(e0, e0);
1351 
1352         sum32 = _mm_add_epi32(sum32, err0);
1353       }
1354 
1355       const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
1356       sum64 = _mm_add_epi64(sum64, sum32l);
1357       const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
1358       sum64 = _mm_add_epi64(sum64, sum32h);
1359 
1360       // Process remaining pixels in this row (modulo 8)
1361       for (k = j; k < width; ++k) {
1362         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
1363         int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
1364         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
1365         err += ((int64_t)e * e);
1366       }
1367       dat += dat_stride;
1368       src += src_stride;
1369       flt0 += flt0_stride;
1370       flt1 += flt1_stride;
1371     }
1372   } else if (params->r[0] > 0 || params->r[1] > 0) {  // Only one filter enabled
1373     const int32_t xq_on = (params->r[0] > 0) ? xq[0] : xq[1];
1374     const __m128i xq_active = _mm_set1_epi32(xq_on);
1375     const __m128i xq_inactive =
1376         _mm_set1_epi32(-xq_on * (1 << SGRPROJ_RST_BITS));
1377     const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
1378     const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
1379     for (i = 0; i < height; ++i) {
1380       __m128i sum32 = _mm_setzero_si128();
1381       for (j = 0; j <= width - 8; j += 8) {
1382         // Load 8x pixels from source image
1383         const __m128i s0 = xx_loadu_128(src + j);
1384         // s0 = [7 6 5 4 3 2 1 0] as u16 (indices of src[])
1385 
1386         // Load 8x pixels from corrupted image and pad each u16 to i32
1387         const __m128i d0 = xx_loadu_128(dat + j);
1388         const __m128i d0h = _mm_cvtepu16_epi32(_mm_srli_si128(d0, 8));
1389         const __m128i d0l = _mm_cvtepu16_epi32(d0);
1390         // d0h, d0l = [7 6 5 4], [3 2 1 0] as u32 (indices of dat[])
1391 
1392         // Load 8 pixels from the filtered image
1393         const __m128i flth = xx_loadu_128(flt + j + 4);
1394         const __m128i fltl = xx_loadu_128(flt + j);
1395         // flth, fltl = [7 6 5 4], [3 2 1 0] as i32 (indices of flt+j)
1396 
1397         const __m128i flth_xq = _mm_mullo_epi32(flth, xq_active);
1398         const __m128i fltl_xq = _mm_mullo_epi32(fltl, xq_active);
1399         const __m128i d0h_xq = _mm_mullo_epi32(d0h, xq_inactive);
1400         const __m128i d0l_xq = _mm_mullo_epi32(d0l, xq_inactive);
1401 
1402         const __m128i vh = _mm_add_epi32(flth_xq, d0h_xq);
1403         const __m128i vl = _mm_add_epi32(fltl_xq, d0l_xq);
1404         // vh = [ xq0(f[7]-d[7]) xq0(f[6]-d[6]) xq0(f[5]-d[5]) xq0(f[4]-d[4]) ]
1405         // vl = [ xq0(f[3]-d[3]) xq0(f[2]-d[2]) xq0(f[1]-d[1]) xq0(f[0]-d[0]) ]
1406 
1407         // Shift this down with appropriate rounding
1408         const __m128i vrh = _mm_srai_epi32(_mm_add_epi32(vh, rounding), shift);
1409         const __m128i vrl = _mm_srai_epi32(_mm_add_epi32(vl, rounding), shift);
1410 
1411         // Saturate vr0 and vr1 from i32 to i16 then pack together
1412         const __m128i vr = _mm_packs_epi32(vrl, vrh);
1413 
1414         // Subtract twin-subspace-sgr filtered from source image to get error
1415         const __m128i e0 = _mm_sub_epi16(_mm_add_epi16(vr, d0), s0);
1416 
1417         // Calculate squared error and add adjacent values
1418         const __m128i err0 = _mm_madd_epi16(e0, e0);
1419 
1420         sum32 = _mm_add_epi32(sum32, err0);
1421       }
1422 
1423       const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
1424       sum64 = _mm_add_epi64(sum64, sum32l);
1425       const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
1426       sum64 = _mm_add_epi64(sum64, sum32h);
1427 
1428       // Process remaining pixels in this row (modulo 8)
1429       for (k = j; k < width; ++k) {
1430         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
1431         int32_t v = xq_on * (flt[k] - u);
1432         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
1433         err += ((int64_t)e * e);
1434       }
1435       dat += dat_stride;
1436       src += src_stride;
1437       flt += flt_stride;
1438     }
1439   } else {  // Neither filter is enabled
1440     for (i = 0; i < height; ++i) {
1441       __m128i sum32 = _mm_setzero_si128();
1442       for (j = 0; j <= width - 16; j += 16) {
1443         // Load 2x8 u16 from source image
1444         const __m128i s0 = xx_loadu_128(src + j);
1445         const __m128i s1 = xx_loadu_128(src + j + 8);
1446         // Load 2x8 u16 from corrupted image
1447         const __m128i d0 = xx_loadu_128(dat + j);
1448         const __m128i d1 = xx_loadu_128(dat + j + 8);
1449 
1450         // Subtract corrupted image from source image
1451         const __m128i diff0 = _mm_sub_epi16(d0, s0);
1452         const __m128i diff1 = _mm_sub_epi16(d1, s1);
1453 
1454         // Square error and add adjacent values
1455         const __m128i err0 = _mm_madd_epi16(diff0, diff0);
1456         const __m128i err1 = _mm_madd_epi16(diff1, diff1);
1457 
1458         sum32 = _mm_add_epi32(sum32, err0);
1459         sum32 = _mm_add_epi32(sum32, err1);
1460       }
1461 
1462       const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
1463       sum64 = _mm_add_epi64(sum64, sum32l);
1464       const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
1465       sum64 = _mm_add_epi64(sum64, sum32h);
1466 
1467       // Process remaining pixels (modulu 8)
1468       for (k = j; k < width; ++k) {
1469         const int32_t e = (int32_t)(dat[k]) - src[k];
1470         err += ((int64_t)e * e);
1471       }
1472       dat += dat_stride;
1473       src += src_stride;
1474     }
1475   }
1476 
1477   // Sum 4 values from sum64l and sum64h into err
1478   int64_t sum[2];
1479   xx_storeu_128(sum, sum64);
1480   err += sum[0] + sum[1];
1481   return err;
1482 }
1483 #endif  // CONFIG_AV1_HIGHBITDEPTH
1484