• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2021 Google LLC
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package com.google.ux.material.libmonet.quantize;
18 
19 import com.google.ux.material.libmonet.utils.ColorUtils;
20 
21 /**
22  * Provides conversions needed for K-Means quantization. Converting input to points, and converting
23  * the final state of the K-Means algorithm to colors.
24  */
25 public final class PointProviderLab implements PointProvider {
26   /**
27    * Convert a color represented in ARGB to a 3-element array of L*a*b* coordinates of the color.
28    */
29   @Override
fromInt(int argb)30   public double[] fromInt(int argb) {
31     double[] lab = ColorUtils.labFromArgb(argb);
32     return new double[] {lab[0], lab[1], lab[2]};
33   }
34 
35   /** Convert a 3-element array to a color represented in ARGB. */
36   @Override
toInt(double[] lab)37   public int toInt(double[] lab) {
38     return ColorUtils.argbFromLab(lab[0], lab[1], lab[2]);
39   }
40 
41   /**
42    * Standard CIE 1976 delta E formula also takes the square root, unneeded here. This method is
43    * used by quantization algorithms to compare distance, and the relative ordering is the same,
44    * with or without a square root.
45    *
46    * <p>This relatively minor optimization is helpful because this method is called at least once
47    * for each pixel in an image.
48    */
49   @Override
distance(double[] one, double[] two)50   public double distance(double[] one, double[] two) {
51     double dL = (one[0] - two[0]);
52     double dA = (one[1] - two[1]);
53     double dB = (one[2] - two[2]);
54     return (dL * dL + dA * dA + dB * dB);
55   }
56 }
57