1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // An open-addressing
16 // hashtable with quadratic probing.
17 //
18 // This is a low level hashtable on top of which different interfaces can be
19 // implemented, like flat_hash_set, node_hash_set, string_hash_set, etc.
20 //
21 // The table interface is similar to that of std::unordered_set. Notable
22 // differences are that most member functions support heterogeneous keys when
23 // BOTH the hash and eq functions are marked as transparent. They do so by
24 // providing a typedef called `is_transparent`.
25 //
26 // When heterogeneous lookup is enabled, functions that take key_type act as if
27 // they have an overload set like:
28 //
29 // iterator find(const key_type& key);
30 // template <class K>
31 // iterator find(const K& key);
32 //
33 // size_type erase(const key_type& key);
34 // template <class K>
35 // size_type erase(const K& key);
36 //
37 // std::pair<iterator, iterator> equal_range(const key_type& key);
38 // template <class K>
39 // std::pair<iterator, iterator> equal_range(const K& key);
40 //
41 // When heterogeneous lookup is disabled, only the explicit `key_type` overloads
42 // exist.
43 //
44 // find() also supports passing the hash explicitly:
45 //
46 // iterator find(const key_type& key, size_t hash);
47 // template <class U>
48 // iterator find(const U& key, size_t hash);
49 //
50 // In addition the pointer to element and iterator stability guarantees are
51 // weaker: all iterators and pointers are invalidated after a new element is
52 // inserted.
53 //
54 // IMPLEMENTATION DETAILS
55 //
56 // # Table Layout
57 //
58 // A raw_hash_set's backing array consists of control bytes followed by slots
59 // that may or may not contain objects.
60 //
61 // The layout of the backing array, for `capacity` slots, is thus, as a
62 // pseudo-struct:
63 //
64 // struct BackingArray {
65 // // The number of elements we can insert before growing the capacity.
66 // size_t growth_left;
67 // // Control bytes for the "real" slots.
68 // ctrl_t ctrl[capacity];
69 // // Always `ctrl_t::kSentinel`. This is used by iterators to find when to
70 // // stop and serves no other purpose.
71 // ctrl_t sentinel;
72 // // A copy of the first `kWidth - 1` elements of `ctrl`. This is used so
73 // // that if a probe sequence picks a value near the end of `ctrl`,
74 // // `Group` will have valid control bytes to look at.
75 // ctrl_t clones[kWidth - 1];
76 // // The actual slot data.
77 // slot_type slots[capacity];
78 // };
79 //
80 // The length of this array is computed by `AllocSize()` below.
81 //
82 // Control bytes (`ctrl_t`) are bytes (collected into groups of a
83 // platform-specific size) that define the state of the corresponding slot in
84 // the slot array. Group manipulation is tightly optimized to be as efficient
85 // as possible: SSE and friends on x86, clever bit operations on other arches.
86 //
87 // Group 1 Group 2 Group 3
88 // +---------------+---------------+---------------+
89 // | | | | | | | | | | | | | | | | | | | | | | | | |
90 // +---------------+---------------+---------------+
91 //
92 // Each control byte is either a special value for empty slots, deleted slots
93 // (sometimes called *tombstones*), and a special end-of-table marker used by
94 // iterators, or, if occupied, seven bits (H2) from the hash of the value in the
95 // corresponding slot.
96 //
97 // Storing control bytes in a separate array also has beneficial cache effects,
98 // since more logical slots will fit into a cache line.
99 //
100 // # Hashing
101 //
102 // We compute two separate hashes, `H1` and `H2`, from the hash of an object.
103 // `H1(hash(x))` is an index into `slots`, and essentially the starting point
104 // for the probe sequence. `H2(hash(x))` is a 7-bit value used to filter out
105 // objects that cannot possibly be the one we are looking for.
106 //
107 // # Table operations.
108 //
109 // The key operations are `insert`, `find`, and `erase`.
110 //
111 // Since `insert` and `erase` are implemented in terms of `find`, we describe
112 // `find` first. To `find` a value `x`, we compute `hash(x)`. From
113 // `H1(hash(x))` and the capacity, we construct a `probe_seq` that visits every
114 // group of slots in some interesting order.
115 //
116 // We now walk through these indices. At each index, we select the entire group
117 // starting with that index and extract potential candidates: occupied slots
118 // with a control byte equal to `H2(hash(x))`. If we find an empty slot in the
119 // group, we stop and return an error. Each candidate slot `y` is compared with
120 // `x`; if `x == y`, we are done and return `&y`; otherwise we continue to the
121 // next probe index. Tombstones effectively behave like full slots that never
122 // match the value we're looking for.
123 //
124 // The `H2` bits ensure when we compare a slot to an object with `==`, we are
125 // likely to have actually found the object. That is, the chance is low that
126 // `==` is called and returns `false`. Thus, when we search for an object, we
127 // are unlikely to call `==` many times. This likelyhood can be analyzed as
128 // follows (assuming that H2 is a random enough hash function).
129 //
130 // Let's assume that there are `k` "wrong" objects that must be examined in a
131 // probe sequence. For example, when doing a `find` on an object that is in the
132 // table, `k` is the number of objects between the start of the probe sequence
133 // and the final found object (not including the final found object). The
134 // expected number of objects with an H2 match is then `k/128`. Measurements
135 // and analysis indicate that even at high load factors, `k` is less than 32,
136 // meaning that the number of "false positive" comparisons we must perform is
137 // less than 1/8 per `find`.
138
139 // `insert` is implemented in terms of `unchecked_insert`, which inserts a
140 // value presumed to not be in the table (violating this requirement will cause
141 // the table to behave erratically). Given `x` and its hash `hash(x)`, to insert
142 // it, we construct a `probe_seq` once again, and use it to find the first
143 // group with an unoccupied (empty *or* deleted) slot. We place `x` into the
144 // first such slot in the group and mark it as full with `x`'s H2.
145 //
146 // To `insert`, we compose `unchecked_insert` with `find`. We compute `h(x)` and
147 // perform a `find` to see if it's already present; if it is, we're done. If
148 // it's not, we may decide the table is getting overcrowded (i.e. the load
149 // factor is greater than 7/8 for big tables; `is_small()` tables use a max load
150 // factor of 1); in this case, we allocate a bigger array, `unchecked_insert`
151 // each element of the table into the new array (we know that no insertion here
152 // will insert an already-present value), and discard the old backing array. At
153 // this point, we may `unchecked_insert` the value `x`.
154 //
155 // Below, `unchecked_insert` is partly implemented by `prepare_insert`, which
156 // presents a viable, initialized slot pointee to the caller.
157 //
158 // `erase` is implemented in terms of `erase_at`, which takes an index to a
159 // slot. Given an offset, we simply create a tombstone and destroy its contents.
160 // If we can prove that the slot would not appear in a probe sequence, we can
161 // make the slot as empty, instead. We can prove this by observing that if a
162 // group has any empty slots, it has never been full (assuming we never create
163 // an empty slot in a group with no empties, which this heuristic guarantees we
164 // never do) and find would stop at this group anyways (since it does not probe
165 // beyond groups with empties).
166 //
167 // `erase` is `erase_at` composed with `find`: if we
168 // have a value `x`, we can perform a `find`, and then `erase_at` the resulting
169 // slot.
170 //
171 // To iterate, we simply traverse the array, skipping empty and deleted slots
172 // and stopping when we hit a `kSentinel`.
173
174 #ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
175 #define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
176
177 #include <algorithm>
178 #include <cmath>
179 #include <cstddef>
180 #include <cstdint>
181 #include <cstring>
182 #include <iterator>
183 #include <limits>
184 #include <memory>
185 #include <string>
186 #include <tuple>
187 #include <type_traits>
188 #include <utility>
189
190 #include "absl/base/config.h"
191 #include "absl/base/internal/endian.h"
192 #include "absl/base/internal/raw_logging.h"
193 #include "absl/base/optimization.h"
194 #include "absl/base/port.h"
195 #include "absl/base/prefetch.h"
196 #include "absl/container/internal/common.h"
197 #include "absl/container/internal/compressed_tuple.h"
198 #include "absl/container/internal/container_memory.h"
199 #include "absl/container/internal/hash_policy_traits.h"
200 #include "absl/container/internal/hashtable_debug_hooks.h"
201 #include "absl/container/internal/hashtablez_sampler.h"
202 #include "absl/memory/memory.h"
203 #include "absl/meta/type_traits.h"
204 #include "absl/numeric/bits.h"
205 #include "absl/utility/utility.h"
206
207 #ifdef ABSL_INTERNAL_HAVE_SSE2
208 #include <emmintrin.h>
209 #endif
210
211 #ifdef ABSL_INTERNAL_HAVE_SSSE3
212 #include <tmmintrin.h>
213 #endif
214
215 #ifdef _MSC_VER
216 #include <intrin.h>
217 #endif
218
219 #ifdef ABSL_INTERNAL_HAVE_ARM_NEON
220 #include <arm_neon.h>
221 #endif
222
223 namespace absl {
224 ABSL_NAMESPACE_BEGIN
225 namespace container_internal {
226
227 #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
228 #error ABSL_SWISSTABLE_ENABLE_GENERATIONS cannot be directly set
229 #elif defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
230 defined(ABSL_HAVE_MEMORY_SANITIZER)
231 // When compiled in sanitizer mode, we add generation integers to the backing
232 // array and iterators. In the backing array, we store the generation between
233 // the control bytes and the slots. When iterators are dereferenced, we assert
234 // that the container has not been mutated in a way that could cause iterator
235 // invalidation since the iterator was initialized.
236 #define ABSL_SWISSTABLE_ENABLE_GENERATIONS
237 #endif
238
239 // We use uint8_t so we don't need to worry about padding.
240 using GenerationType = uint8_t;
241
242 // A sentinel value for empty generations. Using 0 makes it easy to constexpr
243 // initialize an array of this value.
SentinelEmptyGeneration()244 constexpr GenerationType SentinelEmptyGeneration() { return 0; }
245
NextGeneration(GenerationType generation)246 constexpr GenerationType NextGeneration(GenerationType generation) {
247 return ++generation == SentinelEmptyGeneration() ? ++generation : generation;
248 }
249
250 #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
SwisstableGenerationsEnabled()251 constexpr bool SwisstableGenerationsEnabled() { return true; }
NumGenerationBytes()252 constexpr size_t NumGenerationBytes() { return sizeof(GenerationType); }
253 #else
SwisstableGenerationsEnabled()254 constexpr bool SwisstableGenerationsEnabled() { return false; }
NumGenerationBytes()255 constexpr size_t NumGenerationBytes() { return 0; }
256 #endif
257
258 template <typename AllocType>
SwapAlloc(AllocType & lhs,AllocType & rhs,std::true_type)259 void SwapAlloc(AllocType& lhs, AllocType& rhs,
260 std::true_type /* propagate_on_container_swap */) {
261 using std::swap;
262 swap(lhs, rhs);
263 }
264 template <typename AllocType>
SwapAlloc(AllocType &,AllocType &,std::false_type)265 void SwapAlloc(AllocType& /*lhs*/, AllocType& /*rhs*/,
266 std::false_type /* propagate_on_container_swap */) {}
267
268 // The state for a probe sequence.
269 //
270 // Currently, the sequence is a triangular progression of the form
271 //
272 // p(i) := Width * (i^2 + i)/2 + hash (mod mask + 1)
273 //
274 // The use of `Width` ensures that each probe step does not overlap groups;
275 // the sequence effectively outputs the addresses of *groups* (although not
276 // necessarily aligned to any boundary). The `Group` machinery allows us
277 // to check an entire group with minimal branching.
278 //
279 // Wrapping around at `mask + 1` is important, but not for the obvious reason.
280 // As described above, the first few entries of the control byte array
281 // are mirrored at the end of the array, which `Group` will find and use
282 // for selecting candidates. However, when those candidates' slots are
283 // actually inspected, there are no corresponding slots for the cloned bytes,
284 // so we need to make sure we've treated those offsets as "wrapping around".
285 //
286 // It turns out that this probe sequence visits every group exactly once if the
287 // number of groups is a power of two, since (i^2+i)/2 is a bijection in
288 // Z/(2^m). See https://en.wikipedia.org/wiki/Quadratic_probing
289 template <size_t Width>
290 class probe_seq {
291 public:
292 // Creates a new probe sequence using `hash` as the initial value of the
293 // sequence and `mask` (usually the capacity of the table) as the mask to
294 // apply to each value in the progression.
probe_seq(size_t hash,size_t mask)295 probe_seq(size_t hash, size_t mask) {
296 assert(((mask + 1) & mask) == 0 && "not a mask");
297 mask_ = mask;
298 offset_ = hash & mask_;
299 }
300
301 // The offset within the table, i.e., the value `p(i)` above.
offset()302 size_t offset() const { return offset_; }
offset(size_t i)303 size_t offset(size_t i) const { return (offset_ + i) & mask_; }
304
next()305 void next() {
306 index_ += Width;
307 offset_ += index_;
308 offset_ &= mask_;
309 }
310 // 0-based probe index, a multiple of `Width`.
index()311 size_t index() const { return index_; }
312
313 private:
314 size_t mask_;
315 size_t offset_;
316 size_t index_ = 0;
317 };
318
319 template <class ContainerKey, class Hash, class Eq>
320 struct RequireUsableKey {
321 template <class PassedKey, class... Args>
322 std::pair<
323 decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())),
324 decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(),
325 std::declval<const PassedKey&>()))>*
326 operator()(const PassedKey&, const Args&...) const;
327 };
328
329 template <class E, class Policy, class Hash, class Eq, class... Ts>
330 struct IsDecomposable : std::false_type {};
331
332 template <class Policy, class Hash, class Eq, class... Ts>
333 struct IsDecomposable<
334 absl::void_t<decltype(Policy::apply(
335 RequireUsableKey<typename Policy::key_type, Hash, Eq>(),
336 std::declval<Ts>()...))>,
337 Policy, Hash, Eq, Ts...> : std::true_type {};
338
339 // TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it.
340 template <class T>
341 constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) {
342 using std::swap;
343 return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
344 }
345 template <class T>
346 constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) {
347 return false;
348 }
349
350 template <typename T>
351 uint32_t TrailingZeros(T x) {
352 ABSL_ASSUME(x != 0);
353 return static_cast<uint32_t>(countr_zero(x));
354 }
355
356 // An abstract bitmask, such as that emitted by a SIMD instruction.
357 //
358 // Specifically, this type implements a simple bitset whose representation is
359 // controlled by `SignificantBits` and `Shift`. `SignificantBits` is the number
360 // of abstract bits in the bitset, while `Shift` is the log-base-two of the
361 // width of an abstract bit in the representation.
362 // This mask provides operations for any number of real bits set in an abstract
363 // bit. To add iteration on top of that, implementation must guarantee no more
364 // than one real bit is set in an abstract bit.
365 template <class T, int SignificantBits, int Shift = 0>
366 class NonIterableBitMask {
367 public:
368 explicit NonIterableBitMask(T mask) : mask_(mask) {}
369
370 explicit operator bool() const { return this->mask_ != 0; }
371
372 // Returns the index of the lowest *abstract* bit set in `self`.
373 uint32_t LowestBitSet() const {
374 return container_internal::TrailingZeros(mask_) >> Shift;
375 }
376
377 // Returns the index of the highest *abstract* bit set in `self`.
378 uint32_t HighestBitSet() const {
379 return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift);
380 }
381
382 // Returns the number of trailing zero *abstract* bits.
383 uint32_t TrailingZeros() const {
384 return container_internal::TrailingZeros(mask_) >> Shift;
385 }
386
387 // Returns the number of leading zero *abstract* bits.
388 uint32_t LeadingZeros() const {
389 constexpr int total_significant_bits = SignificantBits << Shift;
390 constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits;
391 return static_cast<uint32_t>(countl_zero(mask_ << extra_bits)) >> Shift;
392 }
393
394 T mask_;
395 };
396
397 // Mask that can be iterable
398 //
399 // For example, when `SignificantBits` is 16 and `Shift` is zero, this is just
400 // an ordinary 16-bit bitset occupying the low 16 bits of `mask`. When
401 // `SignificantBits` is 8 and `Shift` is 3, abstract bits are represented as
402 // the bytes `0x00` and `0x80`, and it occupies all 64 bits of the bitmask.
403 //
404 // For example:
405 // for (int i : BitMask<uint32_t, 16>(0b101)) -> yields 0, 2
406 // for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3
407 template <class T, int SignificantBits, int Shift = 0>
408 class BitMask : public NonIterableBitMask<T, SignificantBits, Shift> {
409 using Base = NonIterableBitMask<T, SignificantBits, Shift>;
410 static_assert(std::is_unsigned<T>::value, "");
411 static_assert(Shift == 0 || Shift == 3, "");
412
413 public:
414 explicit BitMask(T mask) : Base(mask) {}
415 // BitMask is an iterator over the indices of its abstract bits.
416 using value_type = int;
417 using iterator = BitMask;
418 using const_iterator = BitMask;
419
420 BitMask& operator++() {
421 this->mask_ &= (this->mask_ - 1);
422 return *this;
423 }
424
425 uint32_t operator*() const { return Base::LowestBitSet(); }
426
427 BitMask begin() const { return *this; }
428 BitMask end() const { return BitMask(0); }
429
430 private:
431 friend bool operator==(const BitMask& a, const BitMask& b) {
432 return a.mask_ == b.mask_;
433 }
434 friend bool operator!=(const BitMask& a, const BitMask& b) {
435 return a.mask_ != b.mask_;
436 }
437 };
438
439 using h2_t = uint8_t;
440
441 // The values here are selected for maximum performance. See the static asserts
442 // below for details.
443
444 // A `ctrl_t` is a single control byte, which can have one of four
445 // states: empty, deleted, full (which has an associated seven-bit h2_t value)
446 // and the sentinel. They have the following bit patterns:
447 //
448 // empty: 1 0 0 0 0 0 0 0
449 // deleted: 1 1 1 1 1 1 1 0
450 // full: 0 h h h h h h h // h represents the hash bits.
451 // sentinel: 1 1 1 1 1 1 1 1
452 //
453 // These values are specifically tuned for SSE-flavored SIMD.
454 // The static_asserts below detail the source of these choices.
455 //
456 // We use an enum class so that when strict aliasing is enabled, the compiler
457 // knows ctrl_t doesn't alias other types.
458 enum class ctrl_t : int8_t {
459 kEmpty = -128, // 0b10000000
460 kDeleted = -2, // 0b11111110
461 kSentinel = -1, // 0b11111111
462 };
463 static_assert(
464 (static_cast<int8_t>(ctrl_t::kEmpty) &
465 static_cast<int8_t>(ctrl_t::kDeleted) &
466 static_cast<int8_t>(ctrl_t::kSentinel) & 0x80) != 0,
467 "Special markers need to have the MSB to make checking for them efficient");
468 static_assert(
469 ctrl_t::kEmpty < ctrl_t::kSentinel && ctrl_t::kDeleted < ctrl_t::kSentinel,
470 "ctrl_t::kEmpty and ctrl_t::kDeleted must be smaller than "
471 "ctrl_t::kSentinel to make the SIMD test of IsEmptyOrDeleted() efficient");
472 static_assert(
473 ctrl_t::kSentinel == static_cast<ctrl_t>(-1),
474 "ctrl_t::kSentinel must be -1 to elide loading it from memory into SIMD "
475 "registers (pcmpeqd xmm, xmm)");
476 static_assert(ctrl_t::kEmpty == static_cast<ctrl_t>(-128),
477 "ctrl_t::kEmpty must be -128 to make the SIMD check for its "
478 "existence efficient (psignb xmm, xmm)");
479 static_assert(
480 (~static_cast<int8_t>(ctrl_t::kEmpty) &
481 ~static_cast<int8_t>(ctrl_t::kDeleted) &
482 static_cast<int8_t>(ctrl_t::kSentinel) & 0x7F) != 0,
483 "ctrl_t::kEmpty and ctrl_t::kDeleted must share an unset bit that is not "
484 "shared by ctrl_t::kSentinel to make the scalar test for "
485 "MaskEmptyOrDeleted() efficient");
486 static_assert(ctrl_t::kDeleted == static_cast<ctrl_t>(-2),
487 "ctrl_t::kDeleted must be -2 to make the implementation of "
488 "ConvertSpecialToEmptyAndFullToDeleted efficient");
489
490 // See definition comment for why this is size 32.
491 ABSL_DLL extern const ctrl_t kEmptyGroup[32];
492
493 // Returns a pointer to a control byte group that can be used by empty tables.
494 inline ctrl_t* EmptyGroup() {
495 // Const must be cast away here; no uses of this function will actually write
496 // to it, because it is only used for empty tables.
497 return const_cast<ctrl_t*>(kEmptyGroup + 16);
498 }
499
500 // Returns a pointer to a generation to use for an empty hashtable.
501 GenerationType* EmptyGeneration();
502
503 // Returns whether `generation` is a generation for an empty hashtable that
504 // could be returned by EmptyGeneration().
505 inline bool IsEmptyGeneration(const GenerationType* generation) {
506 return *generation == SentinelEmptyGeneration();
507 }
508
509 // Mixes a randomly generated per-process seed with `hash` and `ctrl` to
510 // randomize insertion order within groups.
511 bool ShouldInsertBackwards(size_t hash, const ctrl_t* ctrl);
512
513 // Returns a per-table, hash salt, which changes on resize. This gets mixed into
514 // H1 to randomize iteration order per-table.
515 //
516 // The seed consists of the ctrl_ pointer, which adds enough entropy to ensure
517 // non-determinism of iteration order in most cases.
518 inline size_t PerTableSalt(const ctrl_t* ctrl) {
519 // The low bits of the pointer have little or no entropy because of
520 // alignment. We shift the pointer to try to use higher entropy bits. A
521 // good number seems to be 12 bits, because that aligns with page size.
522 return reinterpret_cast<uintptr_t>(ctrl) >> 12;
523 }
524 // Extracts the H1 portion of a hash: 57 bits mixed with a per-table salt.
525 inline size_t H1(size_t hash, const ctrl_t* ctrl) {
526 return (hash >> 7) ^ PerTableSalt(ctrl);
527 }
528
529 // Extracts the H2 portion of a hash: the 7 bits not used for H1.
530 //
531 // These are used as an occupied control byte.
532 inline h2_t H2(size_t hash) { return hash & 0x7F; }
533
534 // Helpers for checking the state of a control byte.
535 inline bool IsEmpty(ctrl_t c) { return c == ctrl_t::kEmpty; }
536 inline bool IsFull(ctrl_t c) { return c >= static_cast<ctrl_t>(0); }
537 inline bool IsDeleted(ctrl_t c) { return c == ctrl_t::kDeleted; }
538 inline bool IsEmptyOrDeleted(ctrl_t c) { return c < ctrl_t::kSentinel; }
539
540 #ifdef ABSL_INTERNAL_HAVE_SSE2
541 // Quick reference guide for intrinsics used below:
542 //
543 // * __m128i: An XMM (128-bit) word.
544 //
545 // * _mm_setzero_si128: Returns a zero vector.
546 // * _mm_set1_epi8: Returns a vector with the same i8 in each lane.
547 //
548 // * _mm_subs_epi8: Saturating-subtracts two i8 vectors.
549 // * _mm_and_si128: Ands two i128s together.
550 // * _mm_or_si128: Ors two i128s together.
551 // * _mm_andnot_si128: And-nots two i128s together.
552 //
553 // * _mm_cmpeq_epi8: Component-wise compares two i8 vectors for equality,
554 // filling each lane with 0x00 or 0xff.
555 // * _mm_cmpgt_epi8: Same as above, but using > rather than ==.
556 //
557 // * _mm_loadu_si128: Performs an unaligned load of an i128.
558 // * _mm_storeu_si128: Performs an unaligned store of an i128.
559 //
560 // * _mm_sign_epi8: Retains, negates, or zeroes each i8 lane of the first
561 // argument if the corresponding lane of the second
562 // argument is positive, negative, or zero, respectively.
563 // * _mm_movemask_epi8: Selects the sign bit out of each i8 lane and produces a
564 // bitmask consisting of those bits.
565 // * _mm_shuffle_epi8: Selects i8s from the first argument, using the low
566 // four bits of each i8 lane in the second argument as
567 // indices.
568
569 // https://github.com/abseil/abseil-cpp/issues/209
570 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853
571 // _mm_cmpgt_epi8 is broken under GCC with -funsigned-char
572 // Work around this by using the portable implementation of Group
573 // when using -funsigned-char under GCC.
574 inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) {
575 #if defined(__GNUC__) && !defined(__clang__)
576 if (std::is_unsigned<char>::value) {
577 const __m128i mask = _mm_set1_epi8(0x80);
578 const __m128i diff = _mm_subs_epi8(b, a);
579 return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask);
580 }
581 #endif
582 return _mm_cmpgt_epi8(a, b);
583 }
584
585 struct GroupSse2Impl {
586 static constexpr size_t kWidth = 16; // the number of slots per group
587
588 explicit GroupSse2Impl(const ctrl_t* pos) {
589 ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos));
590 }
591
592 // Returns a bitmask representing the positions of slots that match hash.
593 BitMask<uint32_t, kWidth> Match(h2_t hash) const {
594 auto match = _mm_set1_epi8(static_cast<char>(hash));
595 return BitMask<uint32_t, kWidth>(
596 static_cast<uint32_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))));
597 }
598
599 // Returns a bitmask representing the positions of empty slots.
600 NonIterableBitMask<uint32_t, kWidth> MaskEmpty() const {
601 #ifdef ABSL_INTERNAL_HAVE_SSSE3
602 // This only works because ctrl_t::kEmpty is -128.
603 return NonIterableBitMask<uint32_t, kWidth>(
604 static_cast<uint32_t>(_mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl))));
605 #else
606 auto match = _mm_set1_epi8(static_cast<char>(ctrl_t::kEmpty));
607 return NonIterableBitMask<uint32_t, kWidth>(
608 static_cast<uint32_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))));
609 #endif
610 }
611
612 // Returns a bitmask representing the positions of empty or deleted slots.
613 NonIterableBitMask<uint32_t, kWidth> MaskEmptyOrDeleted() const {
614 auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel));
615 return NonIterableBitMask<uint32_t, kWidth>(static_cast<uint32_t>(
616 _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl))));
617 }
618
619 // Returns the number of trailing empty or deleted elements in the group.
620 uint32_t CountLeadingEmptyOrDeleted() const {
621 auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel));
622 return TrailingZeros(static_cast<uint32_t>(
623 _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1));
624 }
625
626 void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
627 auto msbs = _mm_set1_epi8(static_cast<char>(-128));
628 auto x126 = _mm_set1_epi8(126);
629 #ifdef ABSL_INTERNAL_HAVE_SSSE3
630 auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs);
631 #else
632 auto zero = _mm_setzero_si128();
633 auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl);
634 auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126));
635 #endif
636 _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res);
637 }
638
639 __m128i ctrl;
640 };
641 #endif // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2
642
643 #if defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN)
644 struct GroupAArch64Impl {
645 static constexpr size_t kWidth = 8;
646
647 explicit GroupAArch64Impl(const ctrl_t* pos) {
648 ctrl = vld1_u8(reinterpret_cast<const uint8_t*>(pos));
649 }
650
651 BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
652 uint8x8_t dup = vdup_n_u8(hash);
653 auto mask = vceq_u8(ctrl, dup);
654 constexpr uint64_t msbs = 0x8080808080808080ULL;
655 return BitMask<uint64_t, kWidth, 3>(
656 vget_lane_u64(vreinterpret_u64_u8(mask), 0) & msbs);
657 }
658
659 NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const {
660 uint64_t mask =
661 vget_lane_u64(vreinterpret_u64_u8(vceq_s8(
662 vdup_n_s8(static_cast<int8_t>(ctrl_t::kEmpty)),
663 vreinterpret_s8_u8(ctrl))),
664 0);
665 return NonIterableBitMask<uint64_t, kWidth, 3>(mask);
666 }
667
668 NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const {
669 uint64_t mask =
670 vget_lane_u64(vreinterpret_u64_u8(vcgt_s8(
671 vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)),
672 vreinterpret_s8_u8(ctrl))),
673 0);
674 return NonIterableBitMask<uint64_t, kWidth, 3>(mask);
675 }
676
677 uint32_t CountLeadingEmptyOrDeleted() const {
678 uint64_t mask =
679 vget_lane_u64(vreinterpret_u64_u8(vcle_s8(
680 vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)),
681 vreinterpret_s8_u8(ctrl))),
682 0);
683 // Similar to MaskEmptyorDeleted() but we invert the logic to invert the
684 // produced bitfield. We then count number of trailing zeros.
685 // Clang and GCC optimize countr_zero to rbit+clz without any check for 0,
686 // so we should be fine.
687 return static_cast<uint32_t>(countr_zero(mask)) >> 3;
688 }
689
690 void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
691 uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(ctrl), 0);
692 constexpr uint64_t msbs = 0x8080808080808080ULL;
693 constexpr uint64_t slsbs = 0x0202020202020202ULL;
694 constexpr uint64_t midbs = 0x7e7e7e7e7e7e7e7eULL;
695 auto x = slsbs & (mask >> 6);
696 auto res = (x + midbs) | msbs;
697 little_endian::Store64(dst, res);
698 }
699
700 uint8x8_t ctrl;
701 };
702 #endif // ABSL_INTERNAL_HAVE_ARM_NEON && ABSL_IS_LITTLE_ENDIAN
703
704 struct GroupPortableImpl {
705 static constexpr size_t kWidth = 8;
706
707 explicit GroupPortableImpl(const ctrl_t* pos)
708 : ctrl(little_endian::Load64(pos)) {}
709
710 BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
711 // For the technique, see:
712 // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord
713 // (Determine if a word has a byte equal to n).
714 //
715 // Caveat: there are false positives but:
716 // - they only occur if there is a real match
717 // - they never occur on ctrl_t::kEmpty, ctrl_t::kDeleted, ctrl_t::kSentinel
718 // - they will be handled gracefully by subsequent checks in code
719 //
720 // Example:
721 // v = 0x1716151413121110
722 // hash = 0x12
723 // retval = (v - lsbs) & ~v & msbs = 0x0000000080800000
724 constexpr uint64_t msbs = 0x8080808080808080ULL;
725 constexpr uint64_t lsbs = 0x0101010101010101ULL;
726 auto x = ctrl ^ (lsbs * hash);
727 return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs);
728 }
729
730 NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const {
731 constexpr uint64_t msbs = 0x8080808080808080ULL;
732 return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 6)) &
733 msbs);
734 }
735
736 NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const {
737 constexpr uint64_t msbs = 0x8080808080808080ULL;
738 return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 7)) &
739 msbs);
740 }
741
742 uint32_t CountLeadingEmptyOrDeleted() const {
743 // ctrl | ~(ctrl >> 7) will have the lowest bit set to zero for kEmpty and
744 // kDeleted. We lower all other bits and count number of trailing zeros.
745 constexpr uint64_t bits = 0x0101010101010101ULL;
746 return static_cast<uint32_t>(countr_zero((ctrl | ~(ctrl >> 7)) & bits) >>
747 3);
748 }
749
750 void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
751 constexpr uint64_t msbs = 0x8080808080808080ULL;
752 constexpr uint64_t lsbs = 0x0101010101010101ULL;
753 auto x = ctrl & msbs;
754 auto res = (~x + (x >> 7)) & ~lsbs;
755 little_endian::Store64(dst, res);
756 }
757
758 uint64_t ctrl;
759 };
760
761 #ifdef ABSL_INTERNAL_HAVE_SSE2
762 using Group = GroupSse2Impl;
763 #elif defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN)
764 using Group = GroupAArch64Impl;
765 #else
766 using Group = GroupPortableImpl;
767 #endif
768
769 // When there is an insertion with no reserved growth, we rehash with
770 // probability `min(1, RehashProbabilityConstant() / capacity())`. Using a
771 // constant divided by capacity ensures that inserting N elements is still O(N)
772 // in the average case. Using the constant 16 means that we expect to rehash ~8
773 // times more often than when generations are disabled. We are adding expected
774 // rehash_probability * #insertions/capacity_growth = 16/capacity * ((7/8 -
775 // 7/16) * capacity)/capacity_growth = ~7 extra rehashes per capacity growth.
776 inline size_t RehashProbabilityConstant() { return 16; }
777
778 class CommonFieldsGenerationInfoEnabled {
779 // A sentinel value for reserved_growth_ indicating that we just ran out of
780 // reserved growth on the last insertion. When reserve is called and then
781 // insertions take place, reserved_growth_'s state machine is N, ..., 1,
782 // kReservedGrowthJustRanOut, 0.
783 static constexpr size_t kReservedGrowthJustRanOut =
784 (std::numeric_limits<size_t>::max)();
785
786 public:
787 CommonFieldsGenerationInfoEnabled() = default;
788 CommonFieldsGenerationInfoEnabled(CommonFieldsGenerationInfoEnabled&& that)
789 : reserved_growth_(that.reserved_growth_),
790 reservation_size_(that.reservation_size_),
791 generation_(that.generation_) {
792 that.reserved_growth_ = 0;
793 that.reservation_size_ = 0;
794 that.generation_ = EmptyGeneration();
795 }
796 CommonFieldsGenerationInfoEnabled& operator=(
797 CommonFieldsGenerationInfoEnabled&&) = default;
798
799 // Whether we should rehash on insert in order to detect bugs of using invalid
800 // references. We rehash on the first insertion after reserved_growth_ reaches
801 // 0 after a call to reserve. We also do a rehash with low probability
802 // whenever reserved_growth_ is zero.
803 bool should_rehash_for_bug_detection_on_insert(const ctrl_t* ctrl,
804 size_t capacity) const;
805 void maybe_increment_generation_on_insert() {
806 if (reserved_growth_ == kReservedGrowthJustRanOut) reserved_growth_ = 0;
807
808 if (reserved_growth_ > 0) {
809 if (--reserved_growth_ == 0) reserved_growth_ = kReservedGrowthJustRanOut;
810 } else {
811 *generation_ = NextGeneration(*generation_);
812 }
813 }
814 void reset_reserved_growth(size_t reservation, size_t size) {
815 reserved_growth_ = reservation - size;
816 }
817 size_t reserved_growth() const { return reserved_growth_; }
818 void set_reserved_growth(size_t r) { reserved_growth_ = r; }
819 size_t reservation_size() const { return reservation_size_; }
820 void set_reservation_size(size_t r) { reservation_size_ = r; }
821 GenerationType generation() const { return *generation_; }
822 void set_generation(GenerationType g) { *generation_ = g; }
823 GenerationType* generation_ptr() const { return generation_; }
824 void set_generation_ptr(GenerationType* g) { generation_ = g; }
825
826 private:
827 // The number of insertions remaining that are guaranteed to not rehash due to
828 // a prior call to reserve. Note: we store reserved growth in addition to
829 // reservation size because calls to erase() decrease size_ but don't decrease
830 // reserved growth.
831 size_t reserved_growth_ = 0;
832 // The maximum argument to reserve() since the container was cleared. We need
833 // to keep track of this, in addition to reserved growth, because we reset
834 // reserved growth to this when erase(begin(), end()) is called.
835 size_t reservation_size_ = 0;
836 // Pointer to the generation counter, which is used to validate iterators and
837 // is stored in the backing array between the control bytes and the slots.
838 // Note that we can't store the generation inside the container itself and
839 // keep a pointer to the container in the iterators because iterators must
840 // remain valid when the container is moved.
841 // Note: we could derive this pointer from the control pointer, but it makes
842 // the code more complicated, and there's a benefit in having the sizes of
843 // raw_hash_set in sanitizer mode and non-sanitizer mode a bit more different,
844 // which is that tests are less likely to rely on the size remaining the same.
845 GenerationType* generation_ = EmptyGeneration();
846 };
847
848 class CommonFieldsGenerationInfoDisabled {
849 public:
850 CommonFieldsGenerationInfoDisabled() = default;
851 CommonFieldsGenerationInfoDisabled(CommonFieldsGenerationInfoDisabled&&) =
852 default;
853 CommonFieldsGenerationInfoDisabled& operator=(
854 CommonFieldsGenerationInfoDisabled&&) = default;
855
856 bool should_rehash_for_bug_detection_on_insert(const ctrl_t*, size_t) const {
857 return false;
858 }
859 void maybe_increment_generation_on_insert() {}
860 void reset_reserved_growth(size_t, size_t) {}
861 size_t reserved_growth() const { return 0; }
862 void set_reserved_growth(size_t) {}
863 size_t reservation_size() const { return 0; }
864 void set_reservation_size(size_t) {}
865 GenerationType generation() const { return 0; }
866 void set_generation(GenerationType) {}
867 GenerationType* generation_ptr() const { return nullptr; }
868 void set_generation_ptr(GenerationType*) {}
869 };
870
871 class HashSetIteratorGenerationInfoEnabled {
872 public:
873 HashSetIteratorGenerationInfoEnabled() = default;
874 explicit HashSetIteratorGenerationInfoEnabled(
875 const GenerationType* generation_ptr)
876 : generation_ptr_(generation_ptr), generation_(*generation_ptr) {}
877
878 GenerationType generation() const { return generation_; }
879 void reset_generation() { generation_ = *generation_ptr_; }
880 const GenerationType* generation_ptr() const { return generation_ptr_; }
881 void set_generation_ptr(const GenerationType* ptr) { generation_ptr_ = ptr; }
882
883 private:
884 const GenerationType* generation_ptr_ = EmptyGeneration();
885 GenerationType generation_ = *generation_ptr_;
886 };
887
888 class HashSetIteratorGenerationInfoDisabled {
889 public:
890 HashSetIteratorGenerationInfoDisabled() = default;
891 explicit HashSetIteratorGenerationInfoDisabled(const GenerationType*) {}
892
893 GenerationType generation() const { return 0; }
894 void reset_generation() {}
895 const GenerationType* generation_ptr() const { return nullptr; }
896 void set_generation_ptr(const GenerationType*) {}
897 };
898
899 #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
900 using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoEnabled;
901 using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoEnabled;
902 #else
903 using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoDisabled;
904 using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoDisabled;
905 #endif
906
907 // Returns whether `n` is a valid capacity (i.e., number of slots).
908 //
909 // A valid capacity is a non-zero integer `2^m - 1`.
910 inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; }
911
912 // Computes the offset from the start of the backing allocation of the control
913 // bytes. growth_left is stored at the beginning of the backing array.
914 inline size_t ControlOffset() { return sizeof(size_t); }
915
916 // Returns the number of "cloned control bytes".
917 //
918 // This is the number of control bytes that are present both at the beginning
919 // of the control byte array and at the end, such that we can create a
920 // `Group::kWidth`-width probe window starting from any control byte.
921 constexpr size_t NumClonedBytes() { return Group::kWidth - 1; }
922
923 // Given the capacity of a table, computes the offset (from the start of the
924 // backing allocation) of the generation counter (if it exists).
925 inline size_t GenerationOffset(size_t capacity) {
926 assert(IsValidCapacity(capacity));
927 const size_t num_control_bytes = capacity + 1 + NumClonedBytes();
928 return ControlOffset() + num_control_bytes;
929 }
930
931 // Given the capacity of a table, computes the offset (from the start of the
932 // backing allocation) at which the slots begin.
933 inline size_t SlotOffset(size_t capacity, size_t slot_align) {
934 assert(IsValidCapacity(capacity));
935 return (GenerationOffset(capacity) + NumGenerationBytes() + slot_align - 1) &
936 (~slot_align + 1);
937 }
938
939 // Given the capacity of a table, computes the total size of the backing
940 // array.
941 inline size_t AllocSize(size_t capacity, size_t slot_size, size_t slot_align) {
942 return SlotOffset(capacity, slot_align) + capacity * slot_size;
943 }
944
945 // CommonFields hold the fields in raw_hash_set that do not depend
946 // on template parameters. This allows us to conveniently pass all
947 // of this state to helper functions as a single argument.
948 class CommonFields : public CommonFieldsGenerationInfo {
949 public:
950 CommonFields() = default;
951
952 // Not copyable
953 CommonFields(const CommonFields&) = delete;
954 CommonFields& operator=(const CommonFields&) = delete;
955
956 // Movable
957 CommonFields(CommonFields&& that)
958 : CommonFieldsGenerationInfo(
959 std::move(static_cast<CommonFieldsGenerationInfo&&>(that))),
960 // Explicitly copying fields into "this" and then resetting "that"
961 // fields generates less code then calling absl::exchange per field.
962 control_(that.control()),
963 slots_(that.slot_array()),
964 capacity_(that.capacity()),
965 compressed_tuple_(that.size(), std::move(that.infoz())) {
966 that.set_control(EmptyGroup());
967 that.set_slots(nullptr);
968 that.set_capacity(0);
969 that.set_size(0);
970 }
971 CommonFields& operator=(CommonFields&&) = default;
972
973 ctrl_t* control() const { return control_; }
974 void set_control(ctrl_t* c) { control_ = c; }
975 void* backing_array_start() const {
976 // growth_left is stored before control bytes.
977 assert(reinterpret_cast<uintptr_t>(control()) % alignof(size_t) == 0);
978 return control() - sizeof(size_t);
979 }
980
981 // Note: we can't use slots() because Qt defines "slots" as a macro.
982 void* slot_array() const { return slots_; }
983 void set_slots(void* s) { slots_ = s; }
984
985 // The number of filled slots.
986 size_t size() const { return compressed_tuple_.template get<0>(); }
987 void set_size(size_t s) { compressed_tuple_.template get<0>() = s; }
988
989 // The total number of available slots.
990 size_t capacity() const { return capacity_; }
991 void set_capacity(size_t c) {
992 assert(c == 0 || IsValidCapacity(c));
993 capacity_ = c;
994 }
995
996 // The number of slots we can still fill without needing to rehash.
997 // This is stored in the heap allocation before the control bytes.
998 size_t growth_left() const {
999 return *reinterpret_cast<size_t*>(backing_array_start());
1000 }
1001 void set_growth_left(size_t gl) {
1002 *reinterpret_cast<size_t*>(backing_array_start()) = gl;
1003 }
1004
1005 HashtablezInfoHandle& infoz() { return compressed_tuple_.template get<1>(); }
1006 const HashtablezInfoHandle& infoz() const {
1007 return compressed_tuple_.template get<1>();
1008 }
1009
1010 bool should_rehash_for_bug_detection_on_insert() const {
1011 return CommonFieldsGenerationInfo::
1012 should_rehash_for_bug_detection_on_insert(control(), capacity());
1013 }
1014 void reset_reserved_growth(size_t reservation) {
1015 CommonFieldsGenerationInfo::reset_reserved_growth(reservation, size());
1016 }
1017
1018 // The size of the backing array allocation.
1019 size_t alloc_size(size_t slot_size, size_t slot_align) const {
1020 return AllocSize(capacity(), slot_size, slot_align);
1021 }
1022
1023 // Returns the number of control bytes set to kDeleted. For testing only.
1024 size_t TombstonesCount() const {
1025 return static_cast<size_t>(
1026 std::count(control(), control() + capacity(), ctrl_t::kDeleted));
1027 }
1028
1029 private:
1030 // TODO(b/259599413): Investigate removing some of these fields:
1031 // - control/slots can be derived from each other
1032 // - we can use 6 bits for capacity since it's always a power of two minus 1
1033
1034 // The control bytes (and, also, a pointer near to the base of the backing
1035 // array).
1036 //
1037 // This contains `capacity + 1 + NumClonedBytes()` entries, even
1038 // when the table is empty (hence EmptyGroup).
1039 //
1040 // Note that growth_left is stored immediately before this pointer.
1041 ctrl_t* control_ = EmptyGroup();
1042
1043 // The beginning of the slots, located at `SlotOffset()` bytes after
1044 // `control`. May be null for empty tables.
1045 void* slots_ = nullptr;
1046
1047 size_t capacity_ = 0;
1048
1049 // Bundle together size and HashtablezInfoHandle to ensure EBO for
1050 // HashtablezInfoHandle when sampling is turned off.
1051 absl::container_internal::CompressedTuple<size_t, HashtablezInfoHandle>
1052 compressed_tuple_{0u, HashtablezInfoHandle{}};
1053 };
1054
1055 template <class Policy, class Hash, class Eq, class Alloc>
1056 class raw_hash_set;
1057
1058 // Returns the next valid capacity after `n`.
1059 inline size_t NextCapacity(size_t n) {
1060 assert(IsValidCapacity(n) || n == 0);
1061 return n * 2 + 1;
1062 }
1063
1064 // Applies the following mapping to every byte in the control array:
1065 // * kDeleted -> kEmpty
1066 // * kEmpty -> kEmpty
1067 // * _ -> kDeleted
1068 // PRECONDITION:
1069 // IsValidCapacity(capacity)
1070 // ctrl[capacity] == ctrl_t::kSentinel
1071 // ctrl[i] != ctrl_t::kSentinel for all i < capacity
1072 void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity);
1073
1074 // Converts `n` into the next valid capacity, per `IsValidCapacity`.
1075 inline size_t NormalizeCapacity(size_t n) {
1076 return n ? ~size_t{} >> countl_zero(n) : 1;
1077 }
1078
1079 // General notes on capacity/growth methods below:
1080 // - We use 7/8th as maximum load factor. For 16-wide groups, that gives an
1081 // average of two empty slots per group.
1082 // - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity.
1083 // - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we
1084 // never need to probe (the whole table fits in one group) so we don't need a
1085 // load factor less than 1.
1086
1087 // Given `capacity`, applies the load factor; i.e., it returns the maximum
1088 // number of values we should put into the table before a resizing rehash.
1089 inline size_t CapacityToGrowth(size_t capacity) {
1090 assert(IsValidCapacity(capacity));
1091 // `capacity*7/8`
1092 if (Group::kWidth == 8 && capacity == 7) {
1093 // x-x/8 does not work when x==7.
1094 return 6;
1095 }
1096 return capacity - capacity / 8;
1097 }
1098
1099 // Given `growth`, "unapplies" the load factor to find how large the capacity
1100 // should be to stay within the load factor.
1101 //
1102 // This might not be a valid capacity and `NormalizeCapacity()` should be
1103 // called on this.
1104 inline size_t GrowthToLowerboundCapacity(size_t growth) {
1105 // `growth*8/7`
1106 if (Group::kWidth == 8 && growth == 7) {
1107 // x+(x-1)/7 does not work when x==7.
1108 return 8;
1109 }
1110 return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7);
1111 }
1112
1113 template <class InputIter>
1114 size_t SelectBucketCountForIterRange(InputIter first, InputIter last,
1115 size_t bucket_count) {
1116 if (bucket_count != 0) {
1117 return bucket_count;
1118 }
1119 using InputIterCategory =
1120 typename std::iterator_traits<InputIter>::iterator_category;
1121 if (std::is_base_of<std::random_access_iterator_tag,
1122 InputIterCategory>::value) {
1123 return GrowthToLowerboundCapacity(
1124 static_cast<size_t>(std::distance(first, last)));
1125 }
1126 return 0;
1127 }
1128
1129 constexpr bool SwisstableDebugEnabled() {
1130 #if defined(ABSL_SWISSTABLE_ENABLE_GENERATIONS) || \
1131 ABSL_OPTION_HARDENED == 1 || !defined(NDEBUG)
1132 return true;
1133 #else
1134 return false;
1135 #endif
1136 }
1137
1138 inline void AssertIsFull(const ctrl_t* ctrl, GenerationType generation,
1139 const GenerationType* generation_ptr,
1140 const char* operation) {
1141 if (!SwisstableDebugEnabled()) return;
1142 if (ctrl == nullptr) {
1143 ABSL_INTERNAL_LOG(FATAL,
1144 std::string(operation) + " called on end() iterator.");
1145 }
1146 if (ctrl == EmptyGroup()) {
1147 ABSL_INTERNAL_LOG(FATAL, std::string(operation) +
1148 " called on default-constructed iterator.");
1149 }
1150 if (SwisstableGenerationsEnabled()) {
1151 if (generation != *generation_ptr) {
1152 ABSL_INTERNAL_LOG(FATAL,
1153 std::string(operation) +
1154 " called on invalid iterator. The table could have "
1155 "rehashed since this iterator was initialized.");
1156 }
1157 if (!IsFull(*ctrl)) {
1158 ABSL_INTERNAL_LOG(
1159 FATAL,
1160 std::string(operation) +
1161 " called on invalid iterator. The element was likely erased.");
1162 }
1163 } else {
1164 if (!IsFull(*ctrl)) {
1165 ABSL_INTERNAL_LOG(
1166 FATAL,
1167 std::string(operation) +
1168 " called on invalid iterator. The element might have been erased "
1169 "or the table might have rehashed. Consider running with "
1170 "--config=asan to diagnose rehashing issues.");
1171 }
1172 }
1173 }
1174
1175 // Note that for comparisons, null/end iterators are valid.
1176 inline void AssertIsValidForComparison(const ctrl_t* ctrl,
1177 GenerationType generation,
1178 const GenerationType* generation_ptr) {
1179 if (!SwisstableDebugEnabled()) return;
1180 const bool ctrl_is_valid_for_comparison =
1181 ctrl == nullptr || ctrl == EmptyGroup() || IsFull(*ctrl);
1182 if (SwisstableGenerationsEnabled()) {
1183 if (generation != *generation_ptr) {
1184 ABSL_INTERNAL_LOG(FATAL,
1185 "Invalid iterator comparison. The table could have "
1186 "rehashed since this iterator was initialized.");
1187 }
1188 if (!ctrl_is_valid_for_comparison) {
1189 ABSL_INTERNAL_LOG(
1190 FATAL, "Invalid iterator comparison. The element was likely erased.");
1191 }
1192 } else {
1193 ABSL_HARDENING_ASSERT(
1194 ctrl_is_valid_for_comparison &&
1195 "Invalid iterator comparison. The element might have been erased or "
1196 "the table might have rehashed. Consider running with --config=asan to "
1197 "diagnose rehashing issues.");
1198 }
1199 }
1200
1201 // If the two iterators come from the same container, then their pointers will
1202 // interleave such that ctrl_a <= ctrl_b < slot_a <= slot_b or vice/versa.
1203 // Note: we take slots by reference so that it's not UB if they're uninitialized
1204 // as long as we don't read them (when ctrl is null).
1205 inline bool AreItersFromSameContainer(const ctrl_t* ctrl_a,
1206 const ctrl_t* ctrl_b,
1207 const void* const& slot_a,
1208 const void* const& slot_b) {
1209 // If either control byte is null, then we can't tell.
1210 if (ctrl_a == nullptr || ctrl_b == nullptr) return true;
1211 const void* low_slot = slot_a;
1212 const void* hi_slot = slot_b;
1213 if (ctrl_a > ctrl_b) {
1214 std::swap(ctrl_a, ctrl_b);
1215 std::swap(low_slot, hi_slot);
1216 }
1217 return ctrl_b < low_slot && low_slot <= hi_slot;
1218 }
1219
1220 // Asserts that two iterators come from the same container.
1221 // Note: we take slots by reference so that it's not UB if they're uninitialized
1222 // as long as we don't read them (when ctrl is null).
1223 inline void AssertSameContainer(const ctrl_t* ctrl_a, const ctrl_t* ctrl_b,
1224 const void* const& slot_a,
1225 const void* const& slot_b,
1226 const GenerationType* generation_ptr_a,
1227 const GenerationType* generation_ptr_b) {
1228 if (!SwisstableDebugEnabled()) return;
1229 const bool a_is_default = ctrl_a == EmptyGroup();
1230 const bool b_is_default = ctrl_b == EmptyGroup();
1231 if (a_is_default != b_is_default) {
1232 ABSL_INTERNAL_LOG(
1233 FATAL,
1234 "Invalid iterator comparison. Comparing default-constructed iterator "
1235 "with non-default-constructed iterator.");
1236 }
1237 if (a_is_default && b_is_default) return;
1238
1239 if (SwisstableGenerationsEnabled()) {
1240 if (generation_ptr_a == generation_ptr_b) return;
1241 const bool a_is_empty = IsEmptyGeneration(generation_ptr_a);
1242 const bool b_is_empty = IsEmptyGeneration(generation_ptr_b);
1243 if (a_is_empty != b_is_empty) {
1244 ABSL_INTERNAL_LOG(FATAL,
1245 "Invalid iterator comparison. Comparing iterator from "
1246 "a non-empty hashtable with an iterator from an empty "
1247 "hashtable.");
1248 }
1249 if (a_is_empty && b_is_empty) {
1250 ABSL_INTERNAL_LOG(FATAL,
1251 "Invalid iterator comparison. Comparing iterators from "
1252 "different empty hashtables.");
1253 }
1254 const bool a_is_end = ctrl_a == nullptr;
1255 const bool b_is_end = ctrl_b == nullptr;
1256 if (a_is_end || b_is_end) {
1257 ABSL_INTERNAL_LOG(FATAL,
1258 "Invalid iterator comparison. Comparing iterator with "
1259 "an end() iterator from a different hashtable.");
1260 }
1261 ABSL_INTERNAL_LOG(FATAL,
1262 "Invalid iterator comparison. Comparing non-end() "
1263 "iterators from different hashtables.");
1264 } else {
1265 ABSL_HARDENING_ASSERT(
1266 AreItersFromSameContainer(ctrl_a, ctrl_b, slot_a, slot_b) &&
1267 "Invalid iterator comparison. The iterators may be from different "
1268 "containers or the container might have rehashed. Consider running "
1269 "with --config=asan to diagnose rehashing issues.");
1270 }
1271 }
1272
1273 struct FindInfo {
1274 size_t offset;
1275 size_t probe_length;
1276 };
1277
1278 // Whether a table is "small". A small table fits entirely into a probing
1279 // group, i.e., has a capacity < `Group::kWidth`.
1280 //
1281 // In small mode we are able to use the whole capacity. The extra control
1282 // bytes give us at least one "empty" control byte to stop the iteration.
1283 // This is important to make 1 a valid capacity.
1284 //
1285 // In small mode only the first `capacity` control bytes after the sentinel
1286 // are valid. The rest contain dummy ctrl_t::kEmpty values that do not
1287 // represent a real slot. This is important to take into account on
1288 // `find_first_non_full()`, where we never try
1289 // `ShouldInsertBackwards()` for small tables.
1290 inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; }
1291
1292 // Begins a probing operation on `common.control`, using `hash`.
1293 inline probe_seq<Group::kWidth> probe(const ctrl_t* ctrl, const size_t capacity,
1294 size_t hash) {
1295 return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity);
1296 }
1297 inline probe_seq<Group::kWidth> probe(const CommonFields& common, size_t hash) {
1298 return probe(common.control(), common.capacity(), hash);
1299 }
1300
1301 // Probes an array of control bits using a probe sequence derived from `hash`,
1302 // and returns the offset corresponding to the first deleted or empty slot.
1303 //
1304 // Behavior when the entire table is full is undefined.
1305 //
1306 // NOTE: this function must work with tables having both empty and deleted
1307 // slots in the same group. Such tables appear during `erase()`.
1308 template <typename = void>
1309 inline FindInfo find_first_non_full(const CommonFields& common, size_t hash) {
1310 auto seq = probe(common, hash);
1311 const ctrl_t* ctrl = common.control();
1312 while (true) {
1313 Group g{ctrl + seq.offset()};
1314 auto mask = g.MaskEmptyOrDeleted();
1315 if (mask) {
1316 #if !defined(NDEBUG)
1317 // We want to add entropy even when ASLR is not enabled.
1318 // In debug build we will randomly insert in either the front or back of
1319 // the group.
1320 // TODO(kfm,sbenza): revisit after we do unconditional mixing
1321 if (!is_small(common.capacity()) && ShouldInsertBackwards(hash, ctrl)) {
1322 return {seq.offset(mask.HighestBitSet()), seq.index()};
1323 }
1324 #endif
1325 return {seq.offset(mask.LowestBitSet()), seq.index()};
1326 }
1327 seq.next();
1328 assert(seq.index() <= common.capacity() && "full table!");
1329 }
1330 }
1331
1332 // Extern template for inline function keep possibility of inlining.
1333 // When compiler decided to not inline, no symbols will be added to the
1334 // corresponding translation unit.
1335 extern template FindInfo find_first_non_full(const CommonFields&, size_t);
1336
1337 // Non-inlined version of find_first_non_full for use in less
1338 // performance critical routines.
1339 FindInfo find_first_non_full_outofline(const CommonFields&, size_t);
1340
1341 inline void ResetGrowthLeft(CommonFields& common) {
1342 common.set_growth_left(CapacityToGrowth(common.capacity()) - common.size());
1343 }
1344
1345 // Sets `ctrl` to `{kEmpty, kSentinel, ..., kEmpty}`, marking the entire
1346 // array as marked as empty.
1347 inline void ResetCtrl(CommonFields& common, size_t slot_size) {
1348 const size_t capacity = common.capacity();
1349 ctrl_t* ctrl = common.control();
1350 std::memset(ctrl, static_cast<int8_t>(ctrl_t::kEmpty),
1351 capacity + 1 + NumClonedBytes());
1352 ctrl[capacity] = ctrl_t::kSentinel;
1353 SanitizerPoisonMemoryRegion(common.slot_array(), slot_size * capacity);
1354 ResetGrowthLeft(common);
1355 }
1356
1357 // Sets `ctrl[i]` to `h`.
1358 //
1359 // Unlike setting it directly, this function will perform bounds checks and
1360 // mirror the value to the cloned tail if necessary.
1361 inline void SetCtrl(const CommonFields& common, size_t i, ctrl_t h,
1362 size_t slot_size) {
1363 const size_t capacity = common.capacity();
1364 assert(i < capacity);
1365
1366 auto* slot_i = static_cast<const char*>(common.slot_array()) + i * slot_size;
1367 if (IsFull(h)) {
1368 SanitizerUnpoisonMemoryRegion(slot_i, slot_size);
1369 } else {
1370 SanitizerPoisonMemoryRegion(slot_i, slot_size);
1371 }
1372
1373 ctrl_t* ctrl = common.control();
1374 ctrl[i] = h;
1375 ctrl[((i - NumClonedBytes()) & capacity) + (NumClonedBytes() & capacity)] = h;
1376 }
1377
1378 // Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`.
1379 inline void SetCtrl(const CommonFields& common, size_t i, h2_t h,
1380 size_t slot_size) {
1381 SetCtrl(common, i, static_cast<ctrl_t>(h), slot_size);
1382 }
1383
1384 // growth_left (which is a size_t) is stored with the backing array.
1385 constexpr size_t BackingArrayAlignment(size_t align_of_slot) {
1386 return (std::max)(align_of_slot, alignof(size_t));
1387 }
1388
1389 template <typename Alloc, size_t SizeOfSlot, size_t AlignOfSlot>
1390 ABSL_ATTRIBUTE_NOINLINE void InitializeSlots(CommonFields& c, Alloc alloc) {
1391 assert(c.capacity());
1392 // Folks with custom allocators often make unwarranted assumptions about the
1393 // behavior of their classes vis-a-vis trivial destructability and what
1394 // calls they will or won't make. Avoid sampling for people with custom
1395 // allocators to get us out of this mess. This is not a hard guarantee but
1396 // a workaround while we plan the exact guarantee we want to provide.
1397 const size_t sample_size =
1398 (std::is_same<Alloc, std::allocator<char>>::value &&
1399 c.slot_array() == nullptr)
1400 ? SizeOfSlot
1401 : 0;
1402
1403 const size_t cap = c.capacity();
1404 const size_t alloc_size = AllocSize(cap, SizeOfSlot, AlignOfSlot);
1405 // growth_left (which is a size_t) is stored with the backing array.
1406 char* mem = static_cast<char*>(
1407 Allocate<BackingArrayAlignment(AlignOfSlot)>(&alloc, alloc_size));
1408 const GenerationType old_generation = c.generation();
1409 c.set_generation_ptr(
1410 reinterpret_cast<GenerationType*>(mem + GenerationOffset(cap)));
1411 c.set_generation(NextGeneration(old_generation));
1412 c.set_control(reinterpret_cast<ctrl_t*>(mem + ControlOffset()));
1413 c.set_slots(mem + SlotOffset(cap, AlignOfSlot));
1414 ResetCtrl(c, SizeOfSlot);
1415 if (sample_size) {
1416 c.infoz() = Sample(sample_size);
1417 }
1418 c.infoz().RecordStorageChanged(c.size(), cap);
1419 }
1420
1421 // PolicyFunctions bundles together some information for a particular
1422 // raw_hash_set<T, ...> instantiation. This information is passed to
1423 // type-erased functions that want to do small amounts of type-specific
1424 // work.
1425 struct PolicyFunctions {
1426 size_t slot_size;
1427
1428 // Returns the hash of the pointed-to slot.
1429 size_t (*hash_slot)(void* set, void* slot);
1430
1431 // Transfer the contents of src_slot to dst_slot.
1432 void (*transfer)(void* set, void* dst_slot, void* src_slot);
1433
1434 // Deallocate the backing store from common.
1435 void (*dealloc)(CommonFields& common, const PolicyFunctions& policy);
1436 };
1437
1438 // ClearBackingArray clears the backing array, either modifying it in place,
1439 // or creating a new one based on the value of "reuse".
1440 // REQUIRES: c.capacity > 0
1441 void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy,
1442 bool reuse);
1443
1444 // Type-erased version of raw_hash_set::erase_meta_only.
1445 void EraseMetaOnly(CommonFields& c, ctrl_t* it, size_t slot_size);
1446
1447 // Function to place in PolicyFunctions::dealloc for raw_hash_sets
1448 // that are using std::allocator. This allows us to share the same
1449 // function body for raw_hash_set instantiations that have the
1450 // same slot alignment.
1451 template <size_t AlignOfSlot>
1452 ABSL_ATTRIBUTE_NOINLINE void DeallocateStandard(CommonFields& common,
1453 const PolicyFunctions& policy) {
1454 // Unpoison before returning the memory to the allocator.
1455 SanitizerUnpoisonMemoryRegion(common.slot_array(),
1456 policy.slot_size * common.capacity());
1457
1458 std::allocator<char> alloc;
1459 Deallocate<BackingArrayAlignment(AlignOfSlot)>(
1460 &alloc, common.backing_array_start(),
1461 common.alloc_size(policy.slot_size, AlignOfSlot));
1462 }
1463
1464 // For trivially relocatable types we use memcpy directly. This allows us to
1465 // share the same function body for raw_hash_set instantiations that have the
1466 // same slot size as long as they are relocatable.
1467 template <size_t SizeOfSlot>
1468 ABSL_ATTRIBUTE_NOINLINE void TransferRelocatable(void*, void* dst, void* src) {
1469 memcpy(dst, src, SizeOfSlot);
1470 }
1471
1472 // Type-erased version of raw_hash_set::drop_deletes_without_resize.
1473 void DropDeletesWithoutResize(CommonFields& common,
1474 const PolicyFunctions& policy, void* tmp_space);
1475
1476 // A SwissTable.
1477 //
1478 // Policy: a policy defines how to perform different operations on
1479 // the slots of the hashtable (see hash_policy_traits.h for the full interface
1480 // of policy).
1481 //
1482 // Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The
1483 // functor should accept a key and return size_t as hash. For best performance
1484 // it is important that the hash function provides high entropy across all bits
1485 // of the hash.
1486 //
1487 // Eq: a (possibly polymorphic) functor that compares two keys for equality. It
1488 // should accept two (of possibly different type) keys and return a bool: true
1489 // if they are equal, false if they are not. If two keys compare equal, then
1490 // their hash values as defined by Hash MUST be equal.
1491 //
1492 // Allocator: an Allocator
1493 // [https://en.cppreference.com/w/cpp/named_req/Allocator] with which
1494 // the storage of the hashtable will be allocated and the elements will be
1495 // constructed and destroyed.
1496 template <class Policy, class Hash, class Eq, class Alloc>
1497 class raw_hash_set {
1498 using PolicyTraits = hash_policy_traits<Policy>;
1499 using KeyArgImpl =
1500 KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
1501
1502 public:
1503 using init_type = typename PolicyTraits::init_type;
1504 using key_type = typename PolicyTraits::key_type;
1505 // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user
1506 // code fixes!
1507 using slot_type = typename PolicyTraits::slot_type;
1508 using allocator_type = Alloc;
1509 using size_type = size_t;
1510 using difference_type = ptrdiff_t;
1511 using hasher = Hash;
1512 using key_equal = Eq;
1513 using policy_type = Policy;
1514 using value_type = typename PolicyTraits::value_type;
1515 using reference = value_type&;
1516 using const_reference = const value_type&;
1517 using pointer = typename absl::allocator_traits<
1518 allocator_type>::template rebind_traits<value_type>::pointer;
1519 using const_pointer = typename absl::allocator_traits<
1520 allocator_type>::template rebind_traits<value_type>::const_pointer;
1521
1522 // Alias used for heterogeneous lookup functions.
1523 // `key_arg<K>` evaluates to `K` when the functors are transparent and to
1524 // `key_type` otherwise. It permits template argument deduction on `K` for the
1525 // transparent case.
1526 template <class K>
1527 using key_arg = typename KeyArgImpl::template type<K, key_type>;
1528
1529 private:
1530 // Give an early error when key_type is not hashable/eq.
1531 auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
1532 auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));
1533
1534 using AllocTraits = absl::allocator_traits<allocator_type>;
1535 using SlotAlloc = typename absl::allocator_traits<
1536 allocator_type>::template rebind_alloc<slot_type>;
1537 using SlotAllocTraits = typename absl::allocator_traits<
1538 allocator_type>::template rebind_traits<slot_type>;
1539
1540 static_assert(std::is_lvalue_reference<reference>::value,
1541 "Policy::element() must return a reference");
1542
1543 template <typename T>
1544 struct SameAsElementReference
1545 : std::is_same<typename std::remove_cv<
1546 typename std::remove_reference<reference>::type>::type,
1547 typename std::remove_cv<
1548 typename std::remove_reference<T>::type>::type> {};
1549
1550 // An enabler for insert(T&&): T must be convertible to init_type or be the
1551 // same as [cv] value_type [ref].
1552 // Note: we separate SameAsElementReference into its own type to avoid using
1553 // reference unless we need to. MSVC doesn't seem to like it in some
1554 // cases.
1555 template <class T>
1556 using RequiresInsertable = typename std::enable_if<
1557 absl::disjunction<std::is_convertible<T, init_type>,
1558 SameAsElementReference<T>>::value,
1559 int>::type;
1560
1561 // RequiresNotInit is a workaround for gcc prior to 7.1.
1562 // See https://godbolt.org/g/Y4xsUh.
1563 template <class T>
1564 using RequiresNotInit =
1565 typename std::enable_if<!std::is_same<T, init_type>::value, int>::type;
1566
1567 template <class... Ts>
1568 using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>;
1569
1570 public:
1571 static_assert(std::is_same<pointer, value_type*>::value,
1572 "Allocators with custom pointer types are not supported");
1573 static_assert(std::is_same<const_pointer, const value_type*>::value,
1574 "Allocators with custom pointer types are not supported");
1575
1576 class iterator : private HashSetIteratorGenerationInfo {
1577 friend class raw_hash_set;
1578
1579 public:
1580 using iterator_category = std::forward_iterator_tag;
1581 using value_type = typename raw_hash_set::value_type;
1582 using reference =
1583 absl::conditional_t<PolicyTraits::constant_iterators::value,
1584 const value_type&, value_type&>;
1585 using pointer = absl::remove_reference_t<reference>*;
1586 using difference_type = typename raw_hash_set::difference_type;
1587
1588 iterator() {}
1589
1590 // PRECONDITION: not an end() iterator.
1591 reference operator*() const {
1592 AssertIsFull(ctrl_, generation(), generation_ptr(), "operator*()");
1593 return PolicyTraits::element(slot_);
1594 }
1595
1596 // PRECONDITION: not an end() iterator.
1597 pointer operator->() const {
1598 AssertIsFull(ctrl_, generation(), generation_ptr(), "operator->");
1599 return &operator*();
1600 }
1601
1602 // PRECONDITION: not an end() iterator.
1603 iterator& operator++() {
1604 AssertIsFull(ctrl_, generation(), generation_ptr(), "operator++");
1605 ++ctrl_;
1606 ++slot_;
1607 skip_empty_or_deleted();
1608 return *this;
1609 }
1610 // PRECONDITION: not an end() iterator.
1611 iterator operator++(int) {
1612 auto tmp = *this;
1613 ++*this;
1614 return tmp;
1615 }
1616
1617 friend bool operator==(const iterator& a, const iterator& b) {
1618 AssertIsValidForComparison(a.ctrl_, a.generation(), a.generation_ptr());
1619 AssertIsValidForComparison(b.ctrl_, b.generation(), b.generation_ptr());
1620 AssertSameContainer(a.ctrl_, b.ctrl_, a.slot_, b.slot_,
1621 a.generation_ptr(), b.generation_ptr());
1622 return a.ctrl_ == b.ctrl_;
1623 }
1624 friend bool operator!=(const iterator& a, const iterator& b) {
1625 return !(a == b);
1626 }
1627
1628 private:
1629 iterator(ctrl_t* ctrl, slot_type* slot,
1630 const GenerationType* generation_ptr)
1631 : HashSetIteratorGenerationInfo(generation_ptr),
1632 ctrl_(ctrl),
1633 slot_(slot) {
1634 // This assumption helps the compiler know that any non-end iterator is
1635 // not equal to any end iterator.
1636 ABSL_ASSUME(ctrl != nullptr);
1637 }
1638 // For end() iterators.
1639 explicit iterator(const GenerationType* generation_ptr)
1640 : HashSetIteratorGenerationInfo(generation_ptr), ctrl_(nullptr) {}
1641
1642 // Fixes up `ctrl_` to point to a full by advancing it and `slot_` until
1643 // they reach one.
1644 //
1645 // If a sentinel is reached, we null `ctrl_` out instead.
1646 void skip_empty_or_deleted() {
1647 while (IsEmptyOrDeleted(*ctrl_)) {
1648 uint32_t shift = Group{ctrl_}.CountLeadingEmptyOrDeleted();
1649 ctrl_ += shift;
1650 slot_ += shift;
1651 }
1652 if (ABSL_PREDICT_FALSE(*ctrl_ == ctrl_t::kSentinel)) ctrl_ = nullptr;
1653 }
1654
1655 // We use EmptyGroup() for default-constructed iterators so that they can
1656 // be distinguished from end iterators, which have nullptr ctrl_.
1657 ctrl_t* ctrl_ = EmptyGroup();
1658 // To avoid uninitialized member warnings, put slot_ in an anonymous union.
1659 // The member is not initialized on singleton and end iterators.
1660 union {
1661 slot_type* slot_;
1662 };
1663 };
1664
1665 class const_iterator {
1666 friend class raw_hash_set;
1667
1668 public:
1669 using iterator_category = typename iterator::iterator_category;
1670 using value_type = typename raw_hash_set::value_type;
1671 using reference = typename raw_hash_set::const_reference;
1672 using pointer = typename raw_hash_set::const_pointer;
1673 using difference_type = typename raw_hash_set::difference_type;
1674
1675 const_iterator() = default;
1676 // Implicit construction from iterator.
1677 const_iterator(iterator i) : inner_(std::move(i)) {} // NOLINT
1678
1679 reference operator*() const { return *inner_; }
1680 pointer operator->() const { return inner_.operator->(); }
1681
1682 const_iterator& operator++() {
1683 ++inner_;
1684 return *this;
1685 }
1686 const_iterator operator++(int) { return inner_++; }
1687
1688 friend bool operator==(const const_iterator& a, const const_iterator& b) {
1689 return a.inner_ == b.inner_;
1690 }
1691 friend bool operator!=(const const_iterator& a, const const_iterator& b) {
1692 return !(a == b);
1693 }
1694
1695 private:
1696 const_iterator(const ctrl_t* ctrl, const slot_type* slot,
1697 const GenerationType* gen)
1698 : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot), gen) {
1699 }
1700
1701 iterator inner_;
1702 };
1703
1704 using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>;
1705 using insert_return_type = InsertReturnType<iterator, node_type>;
1706
1707 // Note: can't use `= default` due to non-default noexcept (causes
1708 // problems for some compilers). NOLINTNEXTLINE
1709 raw_hash_set() noexcept(
1710 std::is_nothrow_default_constructible<hasher>::value &&
1711 std::is_nothrow_default_constructible<key_equal>::value &&
1712 std::is_nothrow_default_constructible<allocator_type>::value) {}
1713
1714 ABSL_ATTRIBUTE_NOINLINE explicit raw_hash_set(
1715 size_t bucket_count, const hasher& hash = hasher(),
1716 const key_equal& eq = key_equal(),
1717 const allocator_type& alloc = allocator_type())
1718 : settings_(CommonFields{}, hash, eq, alloc) {
1719 if (bucket_count) {
1720 common().set_capacity(NormalizeCapacity(bucket_count));
1721 initialize_slots();
1722 }
1723 }
1724
1725 raw_hash_set(size_t bucket_count, const hasher& hash,
1726 const allocator_type& alloc)
1727 : raw_hash_set(bucket_count, hash, key_equal(), alloc) {}
1728
1729 raw_hash_set(size_t bucket_count, const allocator_type& alloc)
1730 : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {}
1731
1732 explicit raw_hash_set(const allocator_type& alloc)
1733 : raw_hash_set(0, hasher(), key_equal(), alloc) {}
1734
1735 template <class InputIter>
1736 raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0,
1737 const hasher& hash = hasher(), const key_equal& eq = key_equal(),
1738 const allocator_type& alloc = allocator_type())
1739 : raw_hash_set(SelectBucketCountForIterRange(first, last, bucket_count),
1740 hash, eq, alloc) {
1741 insert(first, last);
1742 }
1743
1744 template <class InputIter>
1745 raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
1746 const hasher& hash, const allocator_type& alloc)
1747 : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {}
1748
1749 template <class InputIter>
1750 raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
1751 const allocator_type& alloc)
1752 : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {}
1753
1754 template <class InputIter>
1755 raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc)
1756 : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {}
1757
1758 // Instead of accepting std::initializer_list<value_type> as the first
1759 // argument like std::unordered_set<value_type> does, we have two overloads
1760 // that accept std::initializer_list<T> and std::initializer_list<init_type>.
1761 // This is advantageous for performance.
1762 //
1763 // // Turns {"abc", "def"} into std::initializer_list<std::string>, then
1764 // // copies the strings into the set.
1765 // std::unordered_set<std::string> s = {"abc", "def"};
1766 //
1767 // // Turns {"abc", "def"} into std::initializer_list<const char*>, then
1768 // // copies the strings into the set.
1769 // absl::flat_hash_set<std::string> s = {"abc", "def"};
1770 //
1771 // The same trick is used in insert().
1772 //
1773 // The enabler is necessary to prevent this constructor from triggering where
1774 // the copy constructor is meant to be called.
1775 //
1776 // absl::flat_hash_set<int> a, b{a};
1777 //
1778 // RequiresNotInit<T> is a workaround for gcc prior to 7.1.
1779 template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
1780 raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0,
1781 const hasher& hash = hasher(), const key_equal& eq = key_equal(),
1782 const allocator_type& alloc = allocator_type())
1783 : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
1784
1785 raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0,
1786 const hasher& hash = hasher(), const key_equal& eq = key_equal(),
1787 const allocator_type& alloc = allocator_type())
1788 : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
1789
1790 template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
1791 raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
1792 const hasher& hash, const allocator_type& alloc)
1793 : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
1794
1795 raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
1796 const hasher& hash, const allocator_type& alloc)
1797 : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
1798
1799 template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
1800 raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
1801 const allocator_type& alloc)
1802 : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
1803
1804 raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
1805 const allocator_type& alloc)
1806 : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
1807
1808 template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
1809 raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc)
1810 : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
1811
1812 raw_hash_set(std::initializer_list<init_type> init,
1813 const allocator_type& alloc)
1814 : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
1815
1816 raw_hash_set(const raw_hash_set& that)
1817 : raw_hash_set(that, AllocTraits::select_on_container_copy_construction(
1818 that.alloc_ref())) {}
1819
1820 raw_hash_set(const raw_hash_set& that, const allocator_type& a)
1821 : raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) {
1822 const size_t size = that.size();
1823 if (size == 0) return;
1824 reserve(size);
1825 // Because the table is guaranteed to be empty, we can do something faster
1826 // than a full `insert`.
1827 for (const auto& v : that) {
1828 const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v);
1829 auto target = find_first_non_full_outofline(common(), hash);
1830 SetCtrl(common(), target.offset, H2(hash), sizeof(slot_type));
1831 emplace_at(target.offset, v);
1832 common().maybe_increment_generation_on_insert();
1833 infoz().RecordInsert(hash, target.probe_length);
1834 }
1835 common().set_size(size);
1836 set_growth_left(growth_left() - size);
1837 }
1838
1839 ABSL_ATTRIBUTE_NOINLINE raw_hash_set(raw_hash_set&& that) noexcept(
1840 std::is_nothrow_copy_constructible<hasher>::value &&
1841 std::is_nothrow_copy_constructible<key_equal>::value &&
1842 std::is_nothrow_copy_constructible<allocator_type>::value)
1843 : // Hash, equality and allocator are copied instead of moved because
1844 // `that` must be left valid. If Hash is std::function<Key>, moving it
1845 // would create a nullptr functor that cannot be called.
1846 settings_(absl::exchange(that.common(), CommonFields{}),
1847 that.hash_ref(), that.eq_ref(), that.alloc_ref()) {}
1848
1849 raw_hash_set(raw_hash_set&& that, const allocator_type& a)
1850 : settings_(CommonFields{}, that.hash_ref(), that.eq_ref(), a) {
1851 if (a == that.alloc_ref()) {
1852 std::swap(common(), that.common());
1853 } else {
1854 reserve(that.size());
1855 // Note: this will copy elements of dense_set and unordered_set instead of
1856 // moving them. This can be fixed if it ever becomes an issue.
1857 for (auto& elem : that) insert(std::move(elem));
1858 }
1859 }
1860
1861 raw_hash_set& operator=(const raw_hash_set& that) {
1862 raw_hash_set tmp(that,
1863 AllocTraits::propagate_on_container_copy_assignment::value
1864 ? that.alloc_ref()
1865 : alloc_ref());
1866 swap(tmp);
1867 return *this;
1868 }
1869
1870 raw_hash_set& operator=(raw_hash_set&& that) noexcept(
1871 absl::allocator_traits<allocator_type>::is_always_equal::value &&
1872 std::is_nothrow_move_assignable<hasher>::value &&
1873 std::is_nothrow_move_assignable<key_equal>::value) {
1874 // TODO(sbenza): We should only use the operations from the noexcept clause
1875 // to make sure we actually adhere to that contract.
1876 // NOLINTNEXTLINE: not returning *this for performance.
1877 return move_assign(
1878 std::move(that),
1879 typename AllocTraits::propagate_on_container_move_assignment());
1880 }
1881
1882 ~raw_hash_set() {
1883 const size_t cap = capacity();
1884 if (!cap) return;
1885 destroy_slots();
1886
1887 // Unpoison before returning the memory to the allocator.
1888 SanitizerUnpoisonMemoryRegion(slot_array(), sizeof(slot_type) * cap);
1889 Deallocate<BackingArrayAlignment(alignof(slot_type))>(
1890 &alloc_ref(), common().backing_array_start(),
1891 AllocSize(cap, sizeof(slot_type), alignof(slot_type)));
1892
1893 infoz().Unregister();
1894 }
1895
1896 iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
1897 auto it = iterator_at(0);
1898 it.skip_empty_or_deleted();
1899 return it;
1900 }
1901 iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND {
1902 return iterator(common().generation_ptr());
1903 }
1904
1905 const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
1906 return const_cast<raw_hash_set*>(this)->begin();
1907 }
1908 const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
1909 return iterator(common().generation_ptr());
1910 }
1911 const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
1912 return begin();
1913 }
1914 const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); }
1915
1916 bool empty() const { return !size(); }
1917 size_t size() const { return common().size(); }
1918 size_t capacity() const { return common().capacity(); }
1919 size_t max_size() const { return (std::numeric_limits<size_t>::max)(); }
1920
1921 ABSL_ATTRIBUTE_REINITIALIZES void clear() {
1922 // Iterating over this container is O(bucket_count()). When bucket_count()
1923 // is much greater than size(), iteration becomes prohibitively expensive.
1924 // For clear() it is more important to reuse the allocated array when the
1925 // container is small because allocation takes comparatively long time
1926 // compared to destruction of the elements of the container. So we pick the
1927 // largest bucket_count() threshold for which iteration is still fast and
1928 // past that we simply deallocate the array.
1929 const size_t cap = capacity();
1930 if (cap == 0) {
1931 // Already guaranteed to be empty; so nothing to do.
1932 } else {
1933 destroy_slots();
1934 ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/cap < 128);
1935 }
1936 common().set_reserved_growth(0);
1937 common().set_reservation_size(0);
1938 }
1939
1940 inline void destroy_slots() {
1941 const size_t cap = capacity();
1942 const ctrl_t* ctrl = control();
1943 slot_type* slot = slot_array();
1944 for (size_t i = 0; i != cap; ++i) {
1945 if (IsFull(ctrl[i])) {
1946 PolicyTraits::destroy(&alloc_ref(), slot + i);
1947 }
1948 }
1949 }
1950
1951 // This overload kicks in when the argument is an rvalue of insertable and
1952 // decomposable type other than init_type.
1953 //
1954 // flat_hash_map<std::string, int> m;
1955 // m.insert(std::make_pair("abc", 42));
1956 // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
1957 // bug.
1958 template <class T, RequiresInsertable<T> = 0, class T2 = T,
1959 typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
1960 T* = nullptr>
1961 std::pair<iterator, bool> insert(T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
1962 return emplace(std::forward<T>(value));
1963 }
1964
1965 // This overload kicks in when the argument is a bitfield or an lvalue of
1966 // insertable and decomposable type.
1967 //
1968 // union { int n : 1; };
1969 // flat_hash_set<int> s;
1970 // s.insert(n);
1971 //
1972 // flat_hash_set<std::string> s;
1973 // const char* p = "hello";
1974 // s.insert(p);
1975 //
1976 template <
1977 class T, RequiresInsertable<const T&> = 0,
1978 typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
1979 std::pair<iterator, bool> insert(const T& value)
1980 ABSL_ATTRIBUTE_LIFETIME_BOUND {
1981 return emplace(value);
1982 }
1983
1984 // This overload kicks in when the argument is an rvalue of init_type. Its
1985 // purpose is to handle brace-init-list arguments.
1986 //
1987 // flat_hash_map<std::string, int> s;
1988 // s.insert({"abc", 42});
1989 std::pair<iterator, bool> insert(init_type&& value)
1990 ABSL_ATTRIBUTE_LIFETIME_BOUND {
1991 return emplace(std::move(value));
1992 }
1993
1994 // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
1995 // bug.
1996 template <class T, RequiresInsertable<T> = 0, class T2 = T,
1997 typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
1998 T* = nullptr>
1999 iterator insert(const_iterator, T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2000 return insert(std::forward<T>(value)).first;
2001 }
2002
2003 template <
2004 class T, RequiresInsertable<const T&> = 0,
2005 typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
2006 iterator insert(const_iterator,
2007 const T& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2008 return insert(value).first;
2009 }
2010
2011 iterator insert(const_iterator,
2012 init_type&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2013 return insert(std::move(value)).first;
2014 }
2015
2016 template <class InputIt>
2017 void insert(InputIt first, InputIt last) {
2018 for (; first != last; ++first) emplace(*first);
2019 }
2020
2021 template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0>
2022 void insert(std::initializer_list<T> ilist) {
2023 insert(ilist.begin(), ilist.end());
2024 }
2025
2026 void insert(std::initializer_list<init_type> ilist) {
2027 insert(ilist.begin(), ilist.end());
2028 }
2029
2030 insert_return_type insert(node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2031 if (!node) return {end(), false, node_type()};
2032 const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node));
2033 auto res = PolicyTraits::apply(
2034 InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))},
2035 elem);
2036 if (res.second) {
2037 CommonAccess::Reset(&node);
2038 return {res.first, true, node_type()};
2039 } else {
2040 return {res.first, false, std::move(node)};
2041 }
2042 }
2043
2044 iterator insert(const_iterator,
2045 node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2046 auto res = insert(std::move(node));
2047 node = std::move(res.node);
2048 return res.position;
2049 }
2050
2051 // This overload kicks in if we can deduce the key from args. This enables us
2052 // to avoid constructing value_type if an entry with the same key already
2053 // exists.
2054 //
2055 // For example:
2056 //
2057 // flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
2058 // // Creates no std::string copies and makes no heap allocations.
2059 // m.emplace("abc", "xyz");
2060 template <class... Args, typename std::enable_if<
2061 IsDecomposable<Args...>::value, int>::type = 0>
2062 std::pair<iterator, bool> emplace(Args&&... args)
2063 ABSL_ATTRIBUTE_LIFETIME_BOUND {
2064 return PolicyTraits::apply(EmplaceDecomposable{*this},
2065 std::forward<Args>(args)...);
2066 }
2067
2068 // This overload kicks in if we cannot deduce the key from args. It constructs
2069 // value_type unconditionally and then either moves it into the table or
2070 // destroys.
2071 template <class... Args, typename std::enable_if<
2072 !IsDecomposable<Args...>::value, int>::type = 0>
2073 std::pair<iterator, bool> emplace(Args&&... args)
2074 ABSL_ATTRIBUTE_LIFETIME_BOUND {
2075 alignas(slot_type) unsigned char raw[sizeof(slot_type)];
2076 slot_type* slot = reinterpret_cast<slot_type*>(&raw);
2077
2078 PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...);
2079 const auto& elem = PolicyTraits::element(slot);
2080 return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem);
2081 }
2082
2083 template <class... Args>
2084 iterator emplace_hint(const_iterator,
2085 Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2086 return emplace(std::forward<Args>(args)...).first;
2087 }
2088
2089 // Extension API: support for lazy emplace.
2090 //
2091 // Looks up key in the table. If found, returns the iterator to the element.
2092 // Otherwise calls `f` with one argument of type `raw_hash_set::constructor`,
2093 // and returns an iterator to the new element.
2094 //
2095 // `f` must abide by several restrictions:
2096 // - it MUST call `raw_hash_set::constructor` with arguments as if a
2097 // `raw_hash_set::value_type` is constructed,
2098 // - it MUST NOT access the container before the call to
2099 // `raw_hash_set::constructor`, and
2100 // - it MUST NOT erase the lazily emplaced element.
2101 // Doing any of these is undefined behavior.
2102 //
2103 // For example:
2104 //
2105 // std::unordered_set<ArenaString> s;
2106 // // Makes ArenaStr even if "abc" is in the map.
2107 // s.insert(ArenaString(&arena, "abc"));
2108 //
2109 // flat_hash_set<ArenaStr> s;
2110 // // Makes ArenaStr only if "abc" is not in the map.
2111 // s.lazy_emplace("abc", [&](const constructor& ctor) {
2112 // ctor(&arena, "abc");
2113 // });
2114 //
2115 // WARNING: This API is currently experimental. If there is a way to implement
2116 // the same thing with the rest of the API, prefer that.
2117 class constructor {
2118 friend class raw_hash_set;
2119
2120 public:
2121 template <class... Args>
2122 void operator()(Args&&... args) const {
2123 assert(*slot_);
2124 PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...);
2125 *slot_ = nullptr;
2126 }
2127
2128 private:
2129 constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {}
2130
2131 allocator_type* alloc_;
2132 slot_type** slot_;
2133 };
2134
2135 template <class K = key_type, class F>
2136 iterator lazy_emplace(const key_arg<K>& key,
2137 F&& f) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2138 auto res = find_or_prepare_insert(key);
2139 if (res.second) {
2140 slot_type* slot = slot_array() + res.first;
2141 std::forward<F>(f)(constructor(&alloc_ref(), &slot));
2142 assert(!slot);
2143 }
2144 return iterator_at(res.first);
2145 }
2146
2147 // Extension API: support for heterogeneous keys.
2148 //
2149 // std::unordered_set<std::string> s;
2150 // // Turns "abc" into std::string.
2151 // s.erase("abc");
2152 //
2153 // flat_hash_set<std::string> s;
2154 // // Uses "abc" directly without copying it into std::string.
2155 // s.erase("abc");
2156 template <class K = key_type>
2157 size_type erase(const key_arg<K>& key) {
2158 auto it = find(key);
2159 if (it == end()) return 0;
2160 erase(it);
2161 return 1;
2162 }
2163
2164 // Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`,
2165 // this method returns void to reduce algorithmic complexity to O(1). The
2166 // iterator is invalidated, so any increment should be done before calling
2167 // erase. In order to erase while iterating across a map, use the following
2168 // idiom (which also works for standard containers):
2169 //
2170 // for (auto it = m.begin(), end = m.end(); it != end;) {
2171 // // `erase()` will invalidate `it`, so advance `it` first.
2172 // auto copy_it = it++;
2173 // if (<pred>) {
2174 // m.erase(copy_it);
2175 // }
2176 // }
2177 void erase(const_iterator cit) { erase(cit.inner_); }
2178
2179 // This overload is necessary because otherwise erase<K>(const K&) would be
2180 // a better match if non-const iterator is passed as an argument.
2181 void erase(iterator it) {
2182 AssertIsFull(it.ctrl_, it.generation(), it.generation_ptr(), "erase()");
2183 PolicyTraits::destroy(&alloc_ref(), it.slot_);
2184 erase_meta_only(it);
2185 }
2186
2187 iterator erase(const_iterator first,
2188 const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2189 // We check for empty first because ClearBackingArray requires that
2190 // capacity() > 0 as a precondition.
2191 if (empty()) return end();
2192 if (first == begin() && last == end()) {
2193 // TODO(ezb): we access control bytes in destroy_slots so it could make
2194 // sense to combine destroy_slots and ClearBackingArray to avoid cache
2195 // misses when the table is large. Note that we also do this in clear().
2196 destroy_slots();
2197 ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/true);
2198 common().set_reserved_growth(common().reservation_size());
2199 return end();
2200 }
2201 while (first != last) {
2202 erase(first++);
2203 }
2204 return last.inner_;
2205 }
2206
2207 // Moves elements from `src` into `this`.
2208 // If the element already exists in `this`, it is left unmodified in `src`.
2209 template <typename H, typename E>
2210 void merge(raw_hash_set<Policy, H, E, Alloc>& src) { // NOLINT
2211 assert(this != &src);
2212 for (auto it = src.begin(), e = src.end(); it != e;) {
2213 auto next = std::next(it);
2214 if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)},
2215 PolicyTraits::element(it.slot_))
2216 .second) {
2217 src.erase_meta_only(it);
2218 }
2219 it = next;
2220 }
2221 }
2222
2223 template <typename H, typename E>
2224 void merge(raw_hash_set<Policy, H, E, Alloc>&& src) {
2225 merge(src);
2226 }
2227
2228 node_type extract(const_iterator position) {
2229 AssertIsFull(position.inner_.ctrl_, position.inner_.generation(),
2230 position.inner_.generation_ptr(), "extract()");
2231 auto node =
2232 CommonAccess::Transfer<node_type>(alloc_ref(), position.inner_.slot_);
2233 erase_meta_only(position);
2234 return node;
2235 }
2236
2237 template <
2238 class K = key_type,
2239 typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0>
2240 node_type extract(const key_arg<K>& key) {
2241 auto it = find(key);
2242 return it == end() ? node_type() : extract(const_iterator{it});
2243 }
2244
2245 void swap(raw_hash_set& that) noexcept(
2246 IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() &&
2247 IsNoThrowSwappable<allocator_type>(
2248 typename AllocTraits::propagate_on_container_swap{})) {
2249 using std::swap;
2250 swap(common(), that.common());
2251 swap(hash_ref(), that.hash_ref());
2252 swap(eq_ref(), that.eq_ref());
2253 SwapAlloc(alloc_ref(), that.alloc_ref(),
2254 typename AllocTraits::propagate_on_container_swap{});
2255 }
2256
2257 void rehash(size_t n) {
2258 if (n == 0 && capacity() == 0) return;
2259 if (n == 0 && size() == 0) {
2260 ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/false);
2261 return;
2262 }
2263
2264 // bitor is a faster way of doing `max` here. We will round up to the next
2265 // power-of-2-minus-1, so bitor is good enough.
2266 auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size()));
2267 // n == 0 unconditionally rehashes as per the standard.
2268 if (n == 0 || m > capacity()) {
2269 resize(m);
2270
2271 // This is after resize, to ensure that we have completed the allocation
2272 // and have potentially sampled the hashtable.
2273 infoz().RecordReservation(n);
2274 }
2275 }
2276
2277 void reserve(size_t n) {
2278 if (n > size() + growth_left()) {
2279 size_t m = GrowthToLowerboundCapacity(n);
2280 resize(NormalizeCapacity(m));
2281
2282 // This is after resize, to ensure that we have completed the allocation
2283 // and have potentially sampled the hashtable.
2284 infoz().RecordReservation(n);
2285 }
2286 common().reset_reserved_growth(n);
2287 common().set_reservation_size(n);
2288 }
2289
2290 // Extension API: support for heterogeneous keys.
2291 //
2292 // std::unordered_set<std::string> s;
2293 // // Turns "abc" into std::string.
2294 // s.count("abc");
2295 //
2296 // ch_set<std::string> s;
2297 // // Uses "abc" directly without copying it into std::string.
2298 // s.count("abc");
2299 template <class K = key_type>
2300 size_t count(const key_arg<K>& key) const {
2301 return find(key) == end() ? 0 : 1;
2302 }
2303
2304 // Issues CPU prefetch instructions for the memory needed to find or insert
2305 // a key. Like all lookup functions, this support heterogeneous keys.
2306 //
2307 // NOTE: This is a very low level operation and should not be used without
2308 // specific benchmarks indicating its importance.
2309 template <class K = key_type>
2310 void prefetch(const key_arg<K>& key) const {
2311 (void)key;
2312 // Avoid probing if we won't be able to prefetch the addresses received.
2313 #ifdef ABSL_HAVE_PREFETCH
2314 prefetch_heap_block();
2315 auto seq = probe(common(), hash_ref()(key));
2316 PrefetchToLocalCache(control() + seq.offset());
2317 PrefetchToLocalCache(slot_array() + seq.offset());
2318 #endif // ABSL_HAVE_PREFETCH
2319 }
2320
2321 // The API of find() has two extensions.
2322 //
2323 // 1. The hash can be passed by the user. It must be equal to the hash of the
2324 // key.
2325 //
2326 // 2. The type of the key argument doesn't have to be key_type. This is so
2327 // called heterogeneous key support.
2328 template <class K = key_type>
2329 iterator find(const key_arg<K>& key,
2330 size_t hash) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2331 auto seq = probe(common(), hash);
2332 slot_type* slot_ptr = slot_array();
2333 const ctrl_t* ctrl = control();
2334 while (true) {
2335 Group g{ctrl + seq.offset()};
2336 for (uint32_t i : g.Match(H2(hash))) {
2337 if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
2338 EqualElement<K>{key, eq_ref()},
2339 PolicyTraits::element(slot_ptr + seq.offset(i)))))
2340 return iterator_at(seq.offset(i));
2341 }
2342 if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return end();
2343 seq.next();
2344 assert(seq.index() <= capacity() && "full table!");
2345 }
2346 }
2347 template <class K = key_type>
2348 iterator find(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2349 prefetch_heap_block();
2350 return find(key, hash_ref()(key));
2351 }
2352
2353 template <class K = key_type>
2354 const_iterator find(const key_arg<K>& key,
2355 size_t hash) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2356 return const_cast<raw_hash_set*>(this)->find(key, hash);
2357 }
2358 template <class K = key_type>
2359 const_iterator find(const key_arg<K>& key) const
2360 ABSL_ATTRIBUTE_LIFETIME_BOUND {
2361 prefetch_heap_block();
2362 return find(key, hash_ref()(key));
2363 }
2364
2365 template <class K = key_type>
2366 bool contains(const key_arg<K>& key) const {
2367 return find(key) != end();
2368 }
2369
2370 template <class K = key_type>
2371 std::pair<iterator, iterator> equal_range(const key_arg<K>& key)
2372 ABSL_ATTRIBUTE_LIFETIME_BOUND {
2373 auto it = find(key);
2374 if (it != end()) return {it, std::next(it)};
2375 return {it, it};
2376 }
2377 template <class K = key_type>
2378 std::pair<const_iterator, const_iterator> equal_range(
2379 const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2380 auto it = find(key);
2381 if (it != end()) return {it, std::next(it)};
2382 return {it, it};
2383 }
2384
2385 size_t bucket_count() const { return capacity(); }
2386 float load_factor() const {
2387 return capacity() ? static_cast<double>(size()) / capacity() : 0.0;
2388 }
2389 float max_load_factor() const { return 1.0f; }
2390 void max_load_factor(float) {
2391 // Does nothing.
2392 }
2393
2394 hasher hash_function() const { return hash_ref(); }
2395 key_equal key_eq() const { return eq_ref(); }
2396 allocator_type get_allocator() const { return alloc_ref(); }
2397
2398 friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) {
2399 if (a.size() != b.size()) return false;
2400 const raw_hash_set* outer = &a;
2401 const raw_hash_set* inner = &b;
2402 if (outer->capacity() > inner->capacity()) std::swap(outer, inner);
2403 for (const value_type& elem : *outer)
2404 if (!inner->has_element(elem)) return false;
2405 return true;
2406 }
2407
2408 friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) {
2409 return !(a == b);
2410 }
2411
2412 template <typename H>
2413 friend typename std::enable_if<H::template is_hashable<value_type>::value,
2414 H>::type
2415 AbslHashValue(H h, const raw_hash_set& s) {
2416 return H::combine(H::combine_unordered(std::move(h), s.begin(), s.end()),
2417 s.size());
2418 }
2419
2420 friend void swap(raw_hash_set& a,
2421 raw_hash_set& b) noexcept(noexcept(a.swap(b))) {
2422 a.swap(b);
2423 }
2424
2425 private:
2426 template <class Container, typename Enabler>
2427 friend struct absl::container_internal::hashtable_debug_internal::
2428 HashtableDebugAccess;
2429
2430 struct FindElement {
2431 template <class K, class... Args>
2432 const_iterator operator()(const K& key, Args&&...) const {
2433 return s.find(key);
2434 }
2435 const raw_hash_set& s;
2436 };
2437
2438 struct HashElement {
2439 template <class K, class... Args>
2440 size_t operator()(const K& key, Args&&...) const {
2441 return h(key);
2442 }
2443 const hasher& h;
2444 };
2445
2446 template <class K1>
2447 struct EqualElement {
2448 template <class K2, class... Args>
2449 bool operator()(const K2& lhs, Args&&...) const {
2450 return eq(lhs, rhs);
2451 }
2452 const K1& rhs;
2453 const key_equal& eq;
2454 };
2455
2456 struct EmplaceDecomposable {
2457 template <class K, class... Args>
2458 std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
2459 auto res = s.find_or_prepare_insert(key);
2460 if (res.second) {
2461 s.emplace_at(res.first, std::forward<Args>(args)...);
2462 }
2463 return {s.iterator_at(res.first), res.second};
2464 }
2465 raw_hash_set& s;
2466 };
2467
2468 template <bool do_destroy>
2469 struct InsertSlot {
2470 template <class K, class... Args>
2471 std::pair<iterator, bool> operator()(const K& key, Args&&...) && {
2472 auto res = s.find_or_prepare_insert(key);
2473 if (res.second) {
2474 PolicyTraits::transfer(&s.alloc_ref(), s.slot_array() + res.first,
2475 &slot);
2476 } else if (do_destroy) {
2477 PolicyTraits::destroy(&s.alloc_ref(), &slot);
2478 }
2479 return {s.iterator_at(res.first), res.second};
2480 }
2481 raw_hash_set& s;
2482 // Constructed slot. Either moved into place or destroyed.
2483 slot_type&& slot;
2484 };
2485
2486 // Erases, but does not destroy, the value pointed to by `it`.
2487 //
2488 // This merely updates the pertinent control byte. This can be used in
2489 // conjunction with Policy::transfer to move the object to another place.
2490 void erase_meta_only(const_iterator it) {
2491 EraseMetaOnly(common(), it.inner_.ctrl_, sizeof(slot_type));
2492 }
2493
2494 // Allocates a backing array for `self` and initializes its control bytes.
2495 // This reads `capacity` and updates all other fields based on the result of
2496 // the allocation.
2497 //
2498 // This does not free the currently held array; `capacity` must be nonzero.
2499 inline void initialize_slots() {
2500 // People are often sloppy with the exact type of their allocator (sometimes
2501 // it has an extra const or is missing the pair, but rebinds made it work
2502 // anyway).
2503 using CharAlloc =
2504 typename absl::allocator_traits<Alloc>::template rebind_alloc<char>;
2505 InitializeSlots<CharAlloc, sizeof(slot_type), alignof(slot_type)>(
2506 common(), CharAlloc(alloc_ref()));
2507 }
2508
2509 ABSL_ATTRIBUTE_NOINLINE void resize(size_t new_capacity) {
2510 assert(IsValidCapacity(new_capacity));
2511 auto* old_ctrl = control();
2512 auto* old_slots = slot_array();
2513 const size_t old_capacity = common().capacity();
2514 common().set_capacity(new_capacity);
2515 initialize_slots();
2516
2517 auto* new_slots = slot_array();
2518 size_t total_probe_length = 0;
2519 for (size_t i = 0; i != old_capacity; ++i) {
2520 if (IsFull(old_ctrl[i])) {
2521 size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
2522 PolicyTraits::element(old_slots + i));
2523 auto target = find_first_non_full(common(), hash);
2524 size_t new_i = target.offset;
2525 total_probe_length += target.probe_length;
2526 SetCtrl(common(), new_i, H2(hash), sizeof(slot_type));
2527 PolicyTraits::transfer(&alloc_ref(), new_slots + new_i, old_slots + i);
2528 }
2529 }
2530 if (old_capacity) {
2531 SanitizerUnpoisonMemoryRegion(old_slots,
2532 sizeof(slot_type) * old_capacity);
2533 Deallocate<BackingArrayAlignment(alignof(slot_type))>(
2534 &alloc_ref(), old_ctrl - ControlOffset(),
2535 AllocSize(old_capacity, sizeof(slot_type), alignof(slot_type)));
2536 }
2537 infoz().RecordRehash(total_probe_length);
2538 }
2539
2540 // Prunes control bytes to remove as many tombstones as possible.
2541 //
2542 // See the comment on `rehash_and_grow_if_necessary()`.
2543 inline void drop_deletes_without_resize() {
2544 // Stack-allocate space for swapping elements.
2545 alignas(slot_type) unsigned char tmp[sizeof(slot_type)];
2546 DropDeletesWithoutResize(common(), GetPolicyFunctions(), tmp);
2547 }
2548
2549 // Called whenever the table *might* need to conditionally grow.
2550 //
2551 // This function is an optimization opportunity to perform a rehash even when
2552 // growth is unnecessary, because vacating tombstones is beneficial for
2553 // performance in the long-run.
2554 void rehash_and_grow_if_necessary() {
2555 const size_t cap = capacity();
2556 if (cap > Group::kWidth &&
2557 // Do these calculations in 64-bit to avoid overflow.
2558 size() * uint64_t{32} <= cap * uint64_t{25}) {
2559 // Squash DELETED without growing if there is enough capacity.
2560 //
2561 // Rehash in place if the current size is <= 25/32 of capacity.
2562 // Rationale for such a high factor: 1) drop_deletes_without_resize() is
2563 // faster than resize, and 2) it takes quite a bit of work to add
2564 // tombstones. In the worst case, seems to take approximately 4
2565 // insert/erase pairs to create a single tombstone and so if we are
2566 // rehashing because of tombstones, we can afford to rehash-in-place as
2567 // long as we are reclaiming at least 1/8 the capacity without doing more
2568 // than 2X the work. (Where "work" is defined to be size() for rehashing
2569 // or rehashing in place, and 1 for an insert or erase.) But rehashing in
2570 // place is faster per operation than inserting or even doubling the size
2571 // of the table, so we actually afford to reclaim even less space from a
2572 // resize-in-place. The decision is to rehash in place if we can reclaim
2573 // at about 1/8th of the usable capacity (specifically 3/28 of the
2574 // capacity) which means that the total cost of rehashing will be a small
2575 // fraction of the total work.
2576 //
2577 // Here is output of an experiment using the BM_CacheInSteadyState
2578 // benchmark running the old case (where we rehash-in-place only if we can
2579 // reclaim at least 7/16*capacity) vs. this code (which rehashes in place
2580 // if we can recover 3/32*capacity).
2581 //
2582 // Note that although in the worst-case number of rehashes jumped up from
2583 // 15 to 190, but the number of operations per second is almost the same.
2584 //
2585 // Abridged output of running BM_CacheInSteadyState benchmark from
2586 // raw_hash_set_benchmark. N is the number of insert/erase operations.
2587 //
2588 // | OLD (recover >= 7/16 | NEW (recover >= 3/32)
2589 // size | N/s LoadFactor NRehashes | N/s LoadFactor NRehashes
2590 // 448 | 145284 0.44 18 | 140118 0.44 19
2591 // 493 | 152546 0.24 11 | 151417 0.48 28
2592 // 538 | 151439 0.26 11 | 151152 0.53 38
2593 // 583 | 151765 0.28 11 | 150572 0.57 50
2594 // 628 | 150241 0.31 11 | 150853 0.61 66
2595 // 672 | 149602 0.33 12 | 150110 0.66 90
2596 // 717 | 149998 0.35 12 | 149531 0.70 129
2597 // 762 | 149836 0.37 13 | 148559 0.74 190
2598 // 807 | 149736 0.39 14 | 151107 0.39 14
2599 // 852 | 150204 0.42 15 | 151019 0.42 15
2600 drop_deletes_without_resize();
2601 } else {
2602 // Otherwise grow the container.
2603 resize(NextCapacity(cap));
2604 }
2605 }
2606
2607 bool has_element(const value_type& elem) const {
2608 size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem);
2609 auto seq = probe(common(), hash);
2610 const ctrl_t* ctrl = control();
2611 while (true) {
2612 Group g{ctrl + seq.offset()};
2613 for (uint32_t i : g.Match(H2(hash))) {
2614 if (ABSL_PREDICT_TRUE(
2615 PolicyTraits::element(slot_array() + seq.offset(i)) == elem))
2616 return true;
2617 }
2618 if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return false;
2619 seq.next();
2620 assert(seq.index() <= capacity() && "full table!");
2621 }
2622 return false;
2623 }
2624
2625 // TODO(alkis): Optimize this assuming *this and that don't overlap.
2626 raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) {
2627 raw_hash_set tmp(std::move(that));
2628 swap(tmp);
2629 return *this;
2630 }
2631 raw_hash_set& move_assign(raw_hash_set&& that, std::false_type) {
2632 raw_hash_set tmp(std::move(that), alloc_ref());
2633 swap(tmp);
2634 return *this;
2635 }
2636
2637 protected:
2638 // Attempts to find `key` in the table; if it isn't found, returns a slot that
2639 // the value can be inserted into, with the control byte already set to
2640 // `key`'s H2.
2641 template <class K>
2642 std::pair<size_t, bool> find_or_prepare_insert(const K& key) {
2643 prefetch_heap_block();
2644 auto hash = hash_ref()(key);
2645 auto seq = probe(common(), hash);
2646 const ctrl_t* ctrl = control();
2647 while (true) {
2648 Group g{ctrl + seq.offset()};
2649 for (uint32_t i : g.Match(H2(hash))) {
2650 if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
2651 EqualElement<K>{key, eq_ref()},
2652 PolicyTraits::element(slot_array() + seq.offset(i)))))
2653 return {seq.offset(i), false};
2654 }
2655 if (ABSL_PREDICT_TRUE(g.MaskEmpty())) break;
2656 seq.next();
2657 assert(seq.index() <= capacity() && "full table!");
2658 }
2659 return {prepare_insert(hash), true};
2660 }
2661
2662 // Given the hash of a value not currently in the table, finds the next
2663 // viable slot index to insert it at.
2664 //
2665 // REQUIRES: At least one non-full slot available.
2666 size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE {
2667 const bool rehash_for_bug_detection =
2668 common().should_rehash_for_bug_detection_on_insert();
2669 if (rehash_for_bug_detection) {
2670 // Move to a different heap allocation in order to detect bugs.
2671 const size_t cap = capacity();
2672 resize(growth_left() > 0 ? cap : NextCapacity(cap));
2673 }
2674 auto target = find_first_non_full(common(), hash);
2675 if (!rehash_for_bug_detection &&
2676 ABSL_PREDICT_FALSE(growth_left() == 0 &&
2677 !IsDeleted(control()[target.offset]))) {
2678 rehash_and_grow_if_necessary();
2679 target = find_first_non_full(common(), hash);
2680 }
2681 common().set_size(common().size() + 1);
2682 set_growth_left(growth_left() - IsEmpty(control()[target.offset]));
2683 SetCtrl(common(), target.offset, H2(hash), sizeof(slot_type));
2684 common().maybe_increment_generation_on_insert();
2685 infoz().RecordInsert(hash, target.probe_length);
2686 return target.offset;
2687 }
2688
2689 // Constructs the value in the space pointed by the iterator. This only works
2690 // after an unsuccessful find_or_prepare_insert() and before any other
2691 // modifications happen in the raw_hash_set.
2692 //
2693 // PRECONDITION: i is an index returned from find_or_prepare_insert(k), where
2694 // k is the key decomposed from `forward<Args>(args)...`, and the bool
2695 // returned by find_or_prepare_insert(k) was true.
2696 // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...).
2697 template <class... Args>
2698 void emplace_at(size_t i, Args&&... args) {
2699 PolicyTraits::construct(&alloc_ref(), slot_array() + i,
2700 std::forward<Args>(args)...);
2701
2702 assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) ==
2703 iterator_at(i) &&
2704 "constructed value does not match the lookup key");
2705 }
2706
2707 iterator iterator_at(size_t i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
2708 return {control() + i, slot_array() + i, common().generation_ptr()};
2709 }
2710 const_iterator iterator_at(size_t i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
2711 return {control() + i, slot_array() + i, common().generation_ptr()};
2712 }
2713
2714 private:
2715 friend struct RawHashSetTestOnlyAccess;
2716
2717 // The number of slots we can still fill without needing to rehash.
2718 //
2719 // This is stored separately due to tombstones: we do not include tombstones
2720 // in the growth capacity, because we'd like to rehash when the table is
2721 // otherwise filled with tombstones: otherwise, probe sequences might get
2722 // unacceptably long without triggering a rehash. Callers can also force a
2723 // rehash via the standard `rehash(0)`, which will recompute this value as a
2724 // side-effect.
2725 //
2726 // See `CapacityToGrowth()`.
2727 size_t growth_left() const { return common().growth_left(); }
2728 void set_growth_left(size_t gl) { return common().set_growth_left(gl); }
2729
2730 // Prefetch the heap-allocated memory region to resolve potential TLB and
2731 // cache misses. This is intended to overlap with execution of calculating the
2732 // hash for a key.
2733 void prefetch_heap_block() const {
2734 #if ABSL_HAVE_BUILTIN(__builtin_prefetch) || defined(__GNUC__)
2735 __builtin_prefetch(control(), 0, 1);
2736 #endif
2737 }
2738
2739 CommonFields& common() { return settings_.template get<0>(); }
2740 const CommonFields& common() const { return settings_.template get<0>(); }
2741
2742 ctrl_t* control() const { return common().control(); }
2743 slot_type* slot_array() const {
2744 return static_cast<slot_type*>(common().slot_array());
2745 }
2746 HashtablezInfoHandle& infoz() { return common().infoz(); }
2747
2748 hasher& hash_ref() { return settings_.template get<1>(); }
2749 const hasher& hash_ref() const { return settings_.template get<1>(); }
2750 key_equal& eq_ref() { return settings_.template get<2>(); }
2751 const key_equal& eq_ref() const { return settings_.template get<2>(); }
2752 allocator_type& alloc_ref() { return settings_.template get<3>(); }
2753 const allocator_type& alloc_ref() const {
2754 return settings_.template get<3>();
2755 }
2756
2757 // Make type-specific functions for this type's PolicyFunctions struct.
2758 static size_t hash_slot_fn(void* set, void* slot) {
2759 auto* h = static_cast<raw_hash_set*>(set);
2760 return PolicyTraits::apply(
2761 HashElement{h->hash_ref()},
2762 PolicyTraits::element(static_cast<slot_type*>(slot)));
2763 }
2764 static void transfer_slot_fn(void* set, void* dst, void* src) {
2765 auto* h = static_cast<raw_hash_set*>(set);
2766 PolicyTraits::transfer(&h->alloc_ref(), static_cast<slot_type*>(dst),
2767 static_cast<slot_type*>(src));
2768 }
2769 // Note: dealloc_fn will only be used if we have a non-standard allocator.
2770 static void dealloc_fn(CommonFields& common, const PolicyFunctions&) {
2771 auto* set = reinterpret_cast<raw_hash_set*>(&common);
2772
2773 // Unpoison before returning the memory to the allocator.
2774 SanitizerUnpoisonMemoryRegion(common.slot_array(),
2775 sizeof(slot_type) * common.capacity());
2776
2777 Deallocate<BackingArrayAlignment(alignof(slot_type))>(
2778 &set->alloc_ref(), common.backing_array_start(),
2779 common.alloc_size(sizeof(slot_type), alignof(slot_type)));
2780 }
2781
2782 static const PolicyFunctions& GetPolicyFunctions() {
2783 static constexpr PolicyFunctions value = {
2784 sizeof(slot_type),
2785 &raw_hash_set::hash_slot_fn,
2786 PolicyTraits::transfer_uses_memcpy()
2787 ? TransferRelocatable<sizeof(slot_type)>
2788 : &raw_hash_set::transfer_slot_fn,
2789 (std::is_same<SlotAlloc, std::allocator<slot_type>>::value
2790 ? &DeallocateStandard<alignof(slot_type)>
2791 : &raw_hash_set::dealloc_fn),
2792 };
2793 return value;
2794 }
2795
2796 // Bundle together CommonFields plus other objects which might be empty.
2797 // CompressedTuple will ensure that sizeof is not affected by any of the empty
2798 // fields that occur after CommonFields.
2799 absl::container_internal::CompressedTuple<CommonFields, hasher, key_equal,
2800 allocator_type>
2801 settings_{CommonFields{}, hasher{}, key_equal{}, allocator_type{}};
2802 };
2803
2804 // Erases all elements that satisfy the predicate `pred` from the container `c`.
2805 template <typename P, typename H, typename E, typename A, typename Predicate>
2806 typename raw_hash_set<P, H, E, A>::size_type EraseIf(
2807 Predicate& pred, raw_hash_set<P, H, E, A>* c) {
2808 const auto initial_size = c->size();
2809 for (auto it = c->begin(), last = c->end(); it != last;) {
2810 if (pred(*it)) {
2811 c->erase(it++);
2812 } else {
2813 ++it;
2814 }
2815 }
2816 return initial_size - c->size();
2817 }
2818
2819 namespace hashtable_debug_internal {
2820 template <typename Set>
2821 struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
2822 using Traits = typename Set::PolicyTraits;
2823 using Slot = typename Traits::slot_type;
2824
2825 static size_t GetNumProbes(const Set& set,
2826 const typename Set::key_type& key) {
2827 size_t num_probes = 0;
2828 size_t hash = set.hash_ref()(key);
2829 auto seq = probe(set.common(), hash);
2830 const ctrl_t* ctrl = set.control();
2831 while (true) {
2832 container_internal::Group g{ctrl + seq.offset()};
2833 for (uint32_t i : g.Match(container_internal::H2(hash))) {
2834 if (Traits::apply(
2835 typename Set::template EqualElement<typename Set::key_type>{
2836 key, set.eq_ref()},
2837 Traits::element(set.slot_array() + seq.offset(i))))
2838 return num_probes;
2839 ++num_probes;
2840 }
2841 if (g.MaskEmpty()) return num_probes;
2842 seq.next();
2843 ++num_probes;
2844 }
2845 }
2846
2847 static size_t AllocatedByteSize(const Set& c) {
2848 size_t capacity = c.capacity();
2849 if (capacity == 0) return 0;
2850 size_t m = AllocSize(capacity, sizeof(Slot), alignof(Slot));
2851
2852 size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
2853 if (per_slot != ~size_t{}) {
2854 m += per_slot * c.size();
2855 } else {
2856 const ctrl_t* ctrl = c.control();
2857 for (size_t i = 0; i != capacity; ++i) {
2858 if (container_internal::IsFull(ctrl[i])) {
2859 m += Traits::space_used(c.slot_array() + i);
2860 }
2861 }
2862 }
2863 return m;
2864 }
2865
2866 static size_t LowerBoundAllocatedByteSize(size_t size) {
2867 size_t capacity = GrowthToLowerboundCapacity(size);
2868 if (capacity == 0) return 0;
2869 size_t m =
2870 AllocSize(NormalizeCapacity(capacity), sizeof(Slot), alignof(Slot));
2871 size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
2872 if (per_slot != ~size_t{}) {
2873 m += per_slot * size;
2874 }
2875 return m;
2876 }
2877 };
2878
2879 } // namespace hashtable_debug_internal
2880 } // namespace container_internal
2881 ABSL_NAMESPACE_END
2882 } // namespace absl
2883
2884 #undef ABSL_SWISSTABLE_ENABLE_GENERATIONS
2885
2886 #endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
2887