• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: hash.h
17 // -----------------------------------------------------------------------------
18 //
19 #ifndef ABSL_HASH_INTERNAL_HASH_H_
20 #define ABSL_HASH_INTERNAL_HASH_H_
21 
22 #include <algorithm>
23 #include <array>
24 #include <bitset>
25 #include <cmath>
26 #include <cstddef>
27 #include <cstring>
28 #include <deque>
29 #include <forward_list>
30 #include <functional>
31 #include <iterator>
32 #include <limits>
33 #include <list>
34 #include <map>
35 #include <memory>
36 #include <set>
37 #include <string>
38 #include <tuple>
39 #include <type_traits>
40 #include <unordered_map>
41 #include <unordered_set>
42 #include <utility>
43 #include <vector>
44 
45 #include "absl/base/config.h"
46 #include "absl/base/internal/unaligned_access.h"
47 #include "absl/base/port.h"
48 #include "absl/container/fixed_array.h"
49 #include "absl/hash/internal/city.h"
50 #include "absl/hash/internal/low_level_hash.h"
51 #include "absl/meta/type_traits.h"
52 #include "absl/numeric/bits.h"
53 #include "absl/numeric/int128.h"
54 #include "absl/strings/string_view.h"
55 #include "absl/types/optional.h"
56 #include "absl/types/variant.h"
57 #include "absl/utility/utility.h"
58 
59 #ifdef ABSL_HAVE_STD_STRING_VIEW
60 #include <string_view>
61 #endif
62 
63 namespace absl {
64 ABSL_NAMESPACE_BEGIN
65 
66 class HashState;
67 
68 namespace hash_internal {
69 
70 // Internal detail: Large buffers are hashed in smaller chunks.  This function
71 // returns the size of these chunks.
PiecewiseChunkSize()72 constexpr size_t PiecewiseChunkSize() { return 1024; }
73 
74 // PiecewiseCombiner
75 //
76 // PiecewiseCombiner is an internal-only helper class for hashing a piecewise
77 // buffer of `char` or `unsigned char` as though it were contiguous.  This class
78 // provides two methods:
79 //
80 //   H add_buffer(state, data, size)
81 //   H finalize(state)
82 //
83 // `add_buffer` can be called zero or more times, followed by a single call to
84 // `finalize`.  This will produce the same hash expansion as concatenating each
85 // buffer piece into a single contiguous buffer, and passing this to
86 // `H::combine_contiguous`.
87 //
88 //  Example usage:
89 //    PiecewiseCombiner combiner;
90 //    for (const auto& piece : pieces) {
91 //      state = combiner.add_buffer(std::move(state), piece.data, piece.size);
92 //    }
93 //    return combiner.finalize(std::move(state));
94 class PiecewiseCombiner {
95  public:
PiecewiseCombiner()96   PiecewiseCombiner() : position_(0) {}
97   PiecewiseCombiner(const PiecewiseCombiner&) = delete;
98   PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete;
99 
100   // PiecewiseCombiner::add_buffer()
101   //
102   // Appends the given range of bytes to the sequence to be hashed, which may
103   // modify the provided hash state.
104   template <typename H>
105   H add_buffer(H state, const unsigned char* data, size_t size);
106   template <typename H>
add_buffer(H state,const char * data,size_t size)107   H add_buffer(H state, const char* data, size_t size) {
108     return add_buffer(std::move(state),
109                       reinterpret_cast<const unsigned char*>(data), size);
110   }
111 
112   // PiecewiseCombiner::finalize()
113   //
114   // Finishes combining the hash sequence, which may may modify the provided
115   // hash state.
116   //
117   // Once finalize() is called, add_buffer() may no longer be called. The
118   // resulting hash state will be the same as if the pieces passed to
119   // add_buffer() were concatenated into a single flat buffer, and then provided
120   // to H::combine_contiguous().
121   template <typename H>
122   H finalize(H state);
123 
124  private:
125   unsigned char buf_[PiecewiseChunkSize()];
126   size_t position_;
127 };
128 
129 // is_hashable()
130 //
131 // Trait class which returns true if T is hashable by the absl::Hash framework.
132 // Used for the AbslHashValue implementations for composite types below.
133 template <typename T>
134 struct is_hashable;
135 
136 // HashStateBase
137 //
138 // An internal implementation detail that contains common implementation details
139 // for all of the "hash state objects" objects generated by Abseil.  This is not
140 // a public API; users should not create classes that inherit from this.
141 //
142 // A hash state object is the template argument `H` passed to `AbslHashValue`.
143 // It represents an intermediate state in the computation of an unspecified hash
144 // algorithm. `HashStateBase` provides a CRTP style base class for hash state
145 // implementations. Developers adding type support for `absl::Hash` should not
146 // rely on any parts of the state object other than the following member
147 // functions:
148 //
149 //   * HashStateBase::combine()
150 //   * HashStateBase::combine_contiguous()
151 //   * HashStateBase::combine_unordered()
152 //
153 // A derived hash state class of type `H` must provide a public member function
154 // with a signature similar to the following:
155 //
156 //    `static H combine_contiguous(H state, const unsigned char*, size_t)`.
157 //
158 // It must also provide a private template method named RunCombineUnordered.
159 //
160 // A "consumer" is a 1-arg functor returning void.  Its argument is a reference
161 // to an inner hash state object, and it may be called multiple times.  When
162 // called, the functor consumes the entropy from the provided state object,
163 // and resets that object to its empty state.
164 //
165 // A "combiner" is a stateless 2-arg functor returning void.  Its arguments are
166 // an inner hash state object and an ElementStateConsumer functor.  A combiner
167 // uses the provided inner hash state object to hash each element of the
168 // container, passing the inner hash state object to the consumer after hashing
169 // each element.
170 //
171 // Given these definitions, a derived hash state class of type H
172 // must provide a private template method with a signature similar to the
173 // following:
174 //
175 //    `template <typename CombinerT>`
176 //    `static H RunCombineUnordered(H outer_state, CombinerT combiner)`
177 //
178 // This function is responsible for constructing the inner state object and
179 // providing a consumer to the combiner.  It uses side effects of the consumer
180 // and combiner to mix the state of each element in an order-independent manner,
181 // and uses this to return an updated value of `outer_state`.
182 //
183 // This inside-out approach generates efficient object code in the normal case,
184 // but allows us to use stack storage to implement the absl::HashState type
185 // erasure mechanism (avoiding heap allocations while hashing).
186 //
187 // `HashStateBase` will provide a complete implementation for a hash state
188 // object in terms of these two methods.
189 //
190 // Example:
191 //
192 //   // Use CRTP to define your derived class.
193 //   struct MyHashState : HashStateBase<MyHashState> {
194 //       static H combine_contiguous(H state, const unsigned char*, size_t);
195 //       using MyHashState::HashStateBase::combine;
196 //       using MyHashState::HashStateBase::combine_contiguous;
197 //       using MyHashState::HashStateBase::combine_unordered;
198 //     private:
199 //       template <typename CombinerT>
200 //       static H RunCombineUnordered(H state, CombinerT combiner);
201 //   };
202 template <typename H>
203 class HashStateBase {
204  public:
205   // HashStateBase::combine()
206   //
207   // Combines an arbitrary number of values into a hash state, returning the
208   // updated state.
209   //
210   // Each of the value types `T` must be separately hashable by the Abseil
211   // hashing framework.
212   //
213   // NOTE:
214   //
215   //   state = H::combine(std::move(state), value1, value2, value3);
216   //
217   // is guaranteed to produce the same hash expansion as:
218   //
219   //   state = H::combine(std::move(state), value1);
220   //   state = H::combine(std::move(state), value2);
221   //   state = H::combine(std::move(state), value3);
222   template <typename T, typename... Ts>
223   static H combine(H state, const T& value, const Ts&... values);
combine(H state)224   static H combine(H state) { return state; }
225 
226   // HashStateBase::combine_contiguous()
227   //
228   // Combines a contiguous array of `size` elements into a hash state, returning
229   // the updated state.
230   //
231   // NOTE:
232   //
233   //   state = H::combine_contiguous(std::move(state), data, size);
234   //
235   // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
236   // perform internal optimizations).  If you need this guarantee, use the
237   // for-loop instead.
238   template <typename T>
239   static H combine_contiguous(H state, const T* data, size_t size);
240 
241   template <typename I>
242   static H combine_unordered(H state, I begin, I end);
243 
244   using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
245 
246   template <typename T>
247   using is_hashable = absl::hash_internal::is_hashable<T>;
248 
249  private:
250   // Common implementation of the iteration step of a "combiner", as described
251   // above.
252   template <typename I>
253   struct CombineUnorderedCallback {
254     I begin;
255     I end;
256 
257     template <typename InnerH, typename ElementStateConsumer>
operatorCombineUnorderedCallback258     void operator()(InnerH inner_state, ElementStateConsumer cb) {
259       for (; begin != end; ++begin) {
260         inner_state = H::combine(std::move(inner_state), *begin);
261         cb(inner_state);
262       }
263     }
264   };
265 };
266 
267 // is_uniquely_represented
268 //
269 // `is_uniquely_represented<T>` is a trait class that indicates whether `T`
270 // is uniquely represented.
271 //
272 // A type is "uniquely represented" if two equal values of that type are
273 // guaranteed to have the same bytes in their underlying storage. In other
274 // words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
275 // zero. This property cannot be detected automatically, so this trait is false
276 // by default, but can be specialized by types that wish to assert that they are
277 // uniquely represented. This makes them eligible for certain optimizations.
278 //
279 // If you have any doubt whatsoever, do not specialize this template.
280 // The default is completely safe, and merely disables some optimizations
281 // that will not matter for most types. Specializing this template,
282 // on the other hand, can be very hazardous.
283 //
284 // To be uniquely represented, a type must not have multiple ways of
285 // representing the same value; for example, float and double are not
286 // uniquely represented, because they have distinct representations for
287 // +0 and -0. Furthermore, the type's byte representation must consist
288 // solely of user-controlled data, with no padding bits and no compiler-
289 // controlled data such as vptrs or sanitizer metadata. This is usually
290 // very difficult to guarantee, because in most cases the compiler can
291 // insert data and padding bits at its own discretion.
292 //
293 // If you specialize this template for a type `T`, you must do so in the file
294 // that defines that type (or in this file). If you define that specialization
295 // anywhere else, `is_uniquely_represented<T>` could have different meanings
296 // in different places.
297 //
298 // The Enable parameter is meaningless; it is provided as a convenience,
299 // to support certain SFINAE techniques when defining specializations.
300 template <typename T, typename Enable = void>
301 struct is_uniquely_represented : std::false_type {};
302 
303 // is_uniquely_represented<unsigned char>
304 //
305 // unsigned char is a synonym for "byte", so it is guaranteed to be
306 // uniquely represented.
307 template <>
308 struct is_uniquely_represented<unsigned char> : std::true_type {};
309 
310 // is_uniquely_represented for non-standard integral types
311 //
312 // Integral types other than bool should be uniquely represented on any
313 // platform that this will plausibly be ported to.
314 template <typename Integral>
315 struct is_uniquely_represented<
316     Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
317     : std::true_type {};
318 
319 // is_uniquely_represented<bool>
320 //
321 //
322 template <>
323 struct is_uniquely_represented<bool> : std::false_type {};
324 
325 // hash_bytes()
326 //
327 // Convenience function that combines `hash_state` with the byte representation
328 // of `value`.
329 template <typename H, typename T>
330 H hash_bytes(H hash_state, const T& value) {
331   const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
332   return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
333 }
334 
335 // -----------------------------------------------------------------------------
336 // AbslHashValue for Basic Types
337 // -----------------------------------------------------------------------------
338 
339 // Note: Default `AbslHashValue` implementations live in `hash_internal`. This
340 // allows us to block lexical scope lookup when doing an unqualified call to
341 // `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
342 // only be found via ADL.
343 
344 // AbslHashValue() for hashing bool values
345 //
346 // We use SFINAE to ensure that this overload only accepts bool, not types that
347 // are convertible to bool.
348 template <typename H, typename B>
349 typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
350     H hash_state, B value) {
351   return H::combine(std::move(hash_state),
352                     static_cast<unsigned char>(value ? 1 : 0));
353 }
354 
355 // AbslHashValue() for hashing enum values
356 template <typename H, typename Enum>
357 typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
358     H hash_state, Enum e) {
359   // In practice, we could almost certainly just invoke hash_bytes directly,
360   // but it's possible that a sanitizer might one day want to
361   // store data in the unused bits of an enum. To avoid that risk, we
362   // convert to the underlying type before hashing. Hopefully this will get
363   // optimized away; if not, we can reopen discussion with c-toolchain-team.
364   return H::combine(std::move(hash_state),
365                     static_cast<typename std::underlying_type<Enum>::type>(e));
366 }
367 // AbslHashValue() for hashing floating-point values
368 template <typename H, typename Float>
369 typename std::enable_if<std::is_same<Float, float>::value ||
370                             std::is_same<Float, double>::value,
371                         H>::type
372 AbslHashValue(H hash_state, Float value) {
373   return hash_internal::hash_bytes(std::move(hash_state),
374                                    value == 0 ? 0 : value);
375 }
376 
377 // Long double has the property that it might have extra unused bytes in it.
378 // For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
379 // of it. This means we can't use hash_bytes on a long double and have to
380 // convert it to something else first.
381 template <typename H, typename LongDouble>
382 typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
383 AbslHashValue(H hash_state, LongDouble value) {
384   const int category = std::fpclassify(value);
385   switch (category) {
386     case FP_INFINITE:
387       // Add the sign bit to differentiate between +Inf and -Inf
388       hash_state = H::combine(std::move(hash_state), std::signbit(value));
389       break;
390 
391     case FP_NAN:
392     case FP_ZERO:
393     default:
394       // Category is enough for these.
395       break;
396 
397     case FP_NORMAL:
398     case FP_SUBNORMAL:
399       // We can't convert `value` directly to double because this would have
400       // undefined behavior if the value is out of range.
401       // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
402       // guaranteed to be in range for `double`. The truncation is
403       // implementation defined, but that works as long as it is deterministic.
404       int exp;
405       auto mantissa = static_cast<double>(std::frexp(value, &exp));
406       hash_state = H::combine(std::move(hash_state), mantissa, exp);
407   }
408 
409   return H::combine(std::move(hash_state), category);
410 }
411 
412 // AbslHashValue() for hashing pointers
413 template <typename H, typename T>
414 H AbslHashValue(H hash_state, T* ptr) {
415   auto v = reinterpret_cast<uintptr_t>(ptr);
416   // Due to alignment, pointers tend to have low bits as zero, and the next few
417   // bits follow a pattern since they are also multiples of some base value.
418   // Mixing the pointer twice helps prevent stuck low bits for certain alignment
419   // values.
420   return H::combine(std::move(hash_state), v, v);
421 }
422 
423 // AbslHashValue() for hashing nullptr_t
424 template <typename H>
425 H AbslHashValue(H hash_state, std::nullptr_t) {
426   return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
427 }
428 
429 // AbslHashValue() for hashing pointers-to-member
430 template <typename H, typename T, typename C>
431 H AbslHashValue(H hash_state, T C::*ptr) {
432   auto salient_ptm_size = [](std::size_t n) -> std::size_t {
433 #if defined(_MSC_VER)
434     // Pointers-to-member-function on MSVC consist of one pointer plus 0, 1, 2,
435     // or 3 ints. In 64-bit mode, they are 8-byte aligned and thus can contain
436     // padding (namely when they have 1 or 3 ints). The value below is a lower
437     // bound on the number of salient, non-padding bytes that we use for
438     // hashing.
439     if (alignof(T C::*) == alignof(int)) {
440       // No padding when all subobjects have the same size as the total
441       // alignment. This happens in 32-bit mode.
442       return n;
443     } else {
444       // Padding for 1 int (size 16) or 3 ints (size 24).
445       // With 2 ints, the size is 16 with no padding, which we pessimize.
446       return n == 24 ? 20 : n == 16 ? 12 : n;
447     }
448 #else
449   // On other platforms, we assume that pointers-to-members do not have
450   // padding.
451 #ifdef __cpp_lib_has_unique_object_representations
452     static_assert(std::has_unique_object_representations<T C::*>::value);
453 #endif  // __cpp_lib_has_unique_object_representations
454     return n;
455 #endif
456   };
457   return H::combine_contiguous(std::move(hash_state),
458                                reinterpret_cast<unsigned char*>(&ptr),
459                                salient_ptm_size(sizeof ptr));
460 }
461 
462 // -----------------------------------------------------------------------------
463 // AbslHashValue for Composite Types
464 // -----------------------------------------------------------------------------
465 
466 // AbslHashValue() for hashing pairs
467 template <typename H, typename T1, typename T2>
468 typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
469                         H>::type
470 AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
471   return H::combine(std::move(hash_state), p.first, p.second);
472 }
473 
474 // hash_tuple()
475 //
476 // Helper function for hashing a tuple. The third argument should
477 // be an index_sequence running from 0 to tuple_size<Tuple> - 1.
478 template <typename H, typename Tuple, size_t... Is>
479 H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) {
480   return H::combine(std::move(hash_state), std::get<Is>(t)...);
481 }
482 
483 // AbslHashValue for hashing tuples
484 template <typename H, typename... Ts>
485 #if defined(_MSC_VER)
486 // This SFINAE gets MSVC confused under some conditions. Let's just disable it
487 // for now.
488 H
489 #else   // _MSC_VER
490 typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type
491 #endif  // _MSC_VER
492 AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
493   return hash_internal::hash_tuple(std::move(hash_state), t,
494                                    absl::make_index_sequence<sizeof...(Ts)>());
495 }
496 
497 // -----------------------------------------------------------------------------
498 // AbslHashValue for Pointers
499 // -----------------------------------------------------------------------------
500 
501 // AbslHashValue for hashing unique_ptr
502 template <typename H, typename T, typename D>
503 H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
504   return H::combine(std::move(hash_state), ptr.get());
505 }
506 
507 // AbslHashValue for hashing shared_ptr
508 template <typename H, typename T>
509 H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
510   return H::combine(std::move(hash_state), ptr.get());
511 }
512 
513 // -----------------------------------------------------------------------------
514 // AbslHashValue for String-Like Types
515 // -----------------------------------------------------------------------------
516 
517 // AbslHashValue for hashing strings
518 //
519 // All the string-like types supported here provide the same hash expansion for
520 // the same character sequence. These types are:
521 //
522 //  - `absl::Cord`
523 //  - `std::string` (and std::basic_string<T, std::char_traits<T>, A> for
524 //      any allocator A and any T in {char, wchar_t, char16_t, char32_t})
525 //  - `absl::string_view`, `std::string_view`, `std::wstring_view`,
526 //    `std::u16string_view`, and `std::u32_string_view`.
527 //
528 // For simplicity, we currently support only strings built on `char`, `wchar_t`,
529 // `char16_t`, or `char32_t`. This support may be broadened, if necessary, but
530 // with some caution - this overload would misbehave in cases where the traits'
531 // `eq()` member isn't equivalent to `==` on the underlying character type.
532 template <typename H>
533 H AbslHashValue(H hash_state, absl::string_view str) {
534   return H::combine(
535       H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
536       str.size());
537 }
538 
539 // Support std::wstring, std::u16string and std::u32string.
540 template <typename Char, typename Alloc, typename H,
541           typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
542                                        std::is_same<Char, char16_t>::value ||
543                                        std::is_same<Char, char32_t>::value>>
544 H AbslHashValue(
545     H hash_state,
546     const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
547   return H::combine(
548       H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
549       str.size());
550 }
551 
552 #ifdef ABSL_HAVE_STD_STRING_VIEW
553 
554 // Support std::wstring_view, std::u16string_view and std::u32string_view.
555 template <typename Char, typename H,
556           typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
557                                        std::is_same<Char, char16_t>::value ||
558                                        std::is_same<Char, char32_t>::value>>
559 H AbslHashValue(H hash_state, std::basic_string_view<Char> str) {
560   return H::combine(
561       H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
562       str.size());
563 }
564 
565 #endif  // ABSL_HAVE_STD_STRING_VIEW
566 
567 // -----------------------------------------------------------------------------
568 // AbslHashValue for Sequence Containers
569 // -----------------------------------------------------------------------------
570 
571 // AbslHashValue for hashing std::array
572 template <typename H, typename T, size_t N>
573 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
574     H hash_state, const std::array<T, N>& array) {
575   return H::combine_contiguous(std::move(hash_state), array.data(),
576                                array.size());
577 }
578 
579 // AbslHashValue for hashing std::deque
580 template <typename H, typename T, typename Allocator>
581 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
582     H hash_state, const std::deque<T, Allocator>& deque) {
583   // TODO(gromer): investigate a more efficient implementation taking
584   // advantage of the chunk structure.
585   for (const auto& t : deque) {
586     hash_state = H::combine(std::move(hash_state), t);
587   }
588   return H::combine(std::move(hash_state), deque.size());
589 }
590 
591 // AbslHashValue for hashing std::forward_list
592 template <typename H, typename T, typename Allocator>
593 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
594     H hash_state, const std::forward_list<T, Allocator>& list) {
595   size_t size = 0;
596   for (const T& t : list) {
597     hash_state = H::combine(std::move(hash_state), t);
598     ++size;
599   }
600   return H::combine(std::move(hash_state), size);
601 }
602 
603 // AbslHashValue for hashing std::list
604 template <typename H, typename T, typename Allocator>
605 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
606     H hash_state, const std::list<T, Allocator>& list) {
607   for (const auto& t : list) {
608     hash_state = H::combine(std::move(hash_state), t);
609   }
610   return H::combine(std::move(hash_state), list.size());
611 }
612 
613 // AbslHashValue for hashing std::vector
614 //
615 // Do not use this for vector<bool> on platforms that have a working
616 // implementation of std::hash. It does not have a .data(), and a fallback for
617 // std::hash<> is most likely faster.
618 template <typename H, typename T, typename Allocator>
619 typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
620                         H>::type
621 AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
622   return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(),
623                                           vector.size()),
624                     vector.size());
625 }
626 
627 // AbslHashValue special cases for hashing std::vector<bool>
628 
629 #if defined(ABSL_IS_BIG_ENDIAN) && \
630     (defined(__GLIBCXX__) || defined(__GLIBCPP__))
631 
632 // std::hash in libstdc++ does not work correctly with vector<bool> on Big
633 // Endian platforms therefore we need to implement a custom AbslHashValue for
634 // it. More details on the bug:
635 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
636 template <typename H, typename T, typename Allocator>
637 typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
638                         H>::type
639 AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
640   typename H::AbslInternalPiecewiseCombiner combiner;
641   for (const auto& i : vector) {
642     unsigned char c = static_cast<unsigned char>(i);
643     hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
644   }
645   return H::combine(combiner.finalize(std::move(hash_state)), vector.size());
646 }
647 #else
648 // When not working around the libstdc++ bug above, we still have to contend
649 // with the fact that std::hash<vector<bool>> is often poor quality, hashing
650 // directly on the internal words and on no other state.  On these platforms,
651 // vector<bool>{1, 1} and vector<bool>{1, 1, 0} hash to the same value.
652 //
653 // Mixing in the size (as we do in our other vector<> implementations) on top
654 // of the library-provided hash implementation avoids this QOI issue.
655 template <typename H, typename T, typename Allocator>
656 typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
657                         H>::type
658 AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
659   return H::combine(std::move(hash_state),
660                     std::hash<std::vector<T, Allocator>>{}(vector),
661                     vector.size());
662 }
663 #endif
664 
665 // -----------------------------------------------------------------------------
666 // AbslHashValue for Ordered Associative Containers
667 // -----------------------------------------------------------------------------
668 
669 // AbslHashValue for hashing std::map
670 template <typename H, typename Key, typename T, typename Compare,
671           typename Allocator>
672 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
673                         H>::type
674 AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
675   for (const auto& t : map) {
676     hash_state = H::combine(std::move(hash_state), t);
677   }
678   return H::combine(std::move(hash_state), map.size());
679 }
680 
681 // AbslHashValue for hashing std::multimap
682 template <typename H, typename Key, typename T, typename Compare,
683           typename Allocator>
684 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
685                         H>::type
686 AbslHashValue(H hash_state,
687               const std::multimap<Key, T, Compare, Allocator>& map) {
688   for (const auto& t : map) {
689     hash_state = H::combine(std::move(hash_state), t);
690   }
691   return H::combine(std::move(hash_state), map.size());
692 }
693 
694 // AbslHashValue for hashing std::set
695 template <typename H, typename Key, typename Compare, typename Allocator>
696 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
697     H hash_state, const std::set<Key, Compare, Allocator>& set) {
698   for (const auto& t : set) {
699     hash_state = H::combine(std::move(hash_state), t);
700   }
701   return H::combine(std::move(hash_state), set.size());
702 }
703 
704 // AbslHashValue for hashing std::multiset
705 template <typename H, typename Key, typename Compare, typename Allocator>
706 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
707     H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
708   for (const auto& t : set) {
709     hash_state = H::combine(std::move(hash_state), t);
710   }
711   return H::combine(std::move(hash_state), set.size());
712 }
713 
714 // -----------------------------------------------------------------------------
715 // AbslHashValue for Unordered Associative Containers
716 // -----------------------------------------------------------------------------
717 
718 // AbslHashValue for hashing std::unordered_set
719 template <typename H, typename Key, typename Hash, typename KeyEqual,
720           typename Alloc>
721 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
722     H hash_state, const std::unordered_set<Key, Hash, KeyEqual, Alloc>& s) {
723   return H::combine(
724       H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
725       s.size());
726 }
727 
728 // AbslHashValue for hashing std::unordered_multiset
729 template <typename H, typename Key, typename Hash, typename KeyEqual,
730           typename Alloc>
731 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
732     H hash_state,
733     const std::unordered_multiset<Key, Hash, KeyEqual, Alloc>& s) {
734   return H::combine(
735       H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
736       s.size());
737 }
738 
739 // AbslHashValue for hashing std::unordered_set
740 template <typename H, typename Key, typename T, typename Hash,
741           typename KeyEqual, typename Alloc>
742 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
743                         H>::type
744 AbslHashValue(H hash_state,
745               const std::unordered_map<Key, T, Hash, KeyEqual, Alloc>& s) {
746   return H::combine(
747       H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
748       s.size());
749 }
750 
751 // AbslHashValue for hashing std::unordered_multiset
752 template <typename H, typename Key, typename T, typename Hash,
753           typename KeyEqual, typename Alloc>
754 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
755                         H>::type
756 AbslHashValue(H hash_state,
757               const std::unordered_multimap<Key, T, Hash, KeyEqual, Alloc>& s) {
758   return H::combine(
759       H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
760       s.size());
761 }
762 
763 // -----------------------------------------------------------------------------
764 // AbslHashValue for Wrapper Types
765 // -----------------------------------------------------------------------------
766 
767 // AbslHashValue for hashing std::reference_wrapper
768 template <typename H, typename T>
769 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
770     H hash_state, std::reference_wrapper<T> opt) {
771   return H::combine(std::move(hash_state), opt.get());
772 }
773 
774 // AbslHashValue for hashing absl::optional
775 template <typename H, typename T>
776 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
777     H hash_state, const absl::optional<T>& opt) {
778   if (opt) hash_state = H::combine(std::move(hash_state), *opt);
779   return H::combine(std::move(hash_state), opt.has_value());
780 }
781 
782 // VariantVisitor
783 template <typename H>
784 struct VariantVisitor {
785   H&& hash_state;
786   template <typename T>
787   H operator()(const T& t) const {
788     return H::combine(std::move(hash_state), t);
789   }
790 };
791 
792 // AbslHashValue for hashing absl::variant
793 template <typename H, typename... T>
794 typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
795 AbslHashValue(H hash_state, const absl::variant<T...>& v) {
796   if (!v.valueless_by_exception()) {
797     hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
798   }
799   return H::combine(std::move(hash_state), v.index());
800 }
801 
802 // -----------------------------------------------------------------------------
803 // AbslHashValue for Other Types
804 // -----------------------------------------------------------------------------
805 
806 // AbslHashValue for hashing std::bitset is not defined on Little Endian
807 // platforms, for the same reason as for vector<bool> (see std::vector above):
808 // It does not expose the raw bytes, and a fallback to std::hash<> is most
809 // likely faster.
810 
811 #if defined(ABSL_IS_BIG_ENDIAN) && \
812     (defined(__GLIBCXX__) || defined(__GLIBCPP__))
813 // AbslHashValue for hashing std::bitset
814 //
815 // std::hash in libstdc++ does not work correctly with std::bitset on Big Endian
816 // platforms therefore we need to implement a custom AbslHashValue for it. More
817 // details on the bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
818 template <typename H, size_t N>
819 H AbslHashValue(H hash_state, const std::bitset<N>& set) {
820   typename H::AbslInternalPiecewiseCombiner combiner;
821   for (int i = 0; i < N; i++) {
822     unsigned char c = static_cast<unsigned char>(set[i]);
823     hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
824   }
825   return H::combine(combiner.finalize(std::move(hash_state)), N);
826 }
827 #endif
828 
829 // -----------------------------------------------------------------------------
830 
831 // hash_range_or_bytes()
832 //
833 // Mixes all values in the range [data, data+size) into the hash state.
834 // This overload accepts only uniquely-represented types, and hashes them by
835 // hashing the entire range of bytes.
836 template <typename H, typename T>
837 typename std::enable_if<is_uniquely_represented<T>::value, H>::type
838 hash_range_or_bytes(H hash_state, const T* data, size_t size) {
839   const auto* bytes = reinterpret_cast<const unsigned char*>(data);
840   return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
841 }
842 
843 // hash_range_or_bytes()
844 template <typename H, typename T>
845 typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
846 hash_range_or_bytes(H hash_state, const T* data, size_t size) {
847   for (const auto end = data + size; data < end; ++data) {
848     hash_state = H::combine(std::move(hash_state), *data);
849   }
850   return hash_state;
851 }
852 
853 #if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
854     ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
855 #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
856 #else
857 #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
858 #endif
859 
860 // HashSelect
861 //
862 // Type trait to select the appropriate hash implementation to use.
863 // HashSelect::type<T> will give the proper hash implementation, to be invoked
864 // as:
865 //   HashSelect::type<T>::Invoke(state, value)
866 // Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
867 // valid `Invoke` function. Types that are not hashable will have a ::value of
868 // `false`.
869 struct HashSelect {
870  private:
871   struct State : HashStateBase<State> {
872     static State combine_contiguous(State hash_state, const unsigned char*,
873                                     size_t);
874     using State::HashStateBase::combine_contiguous;
875   };
876 
877   struct UniquelyRepresentedProbe {
878     template <typename H, typename T>
879     static auto Invoke(H state, const T& value)
880         -> absl::enable_if_t<is_uniquely_represented<T>::value, H> {
881       return hash_internal::hash_bytes(std::move(state), value);
882     }
883   };
884 
885   struct HashValueProbe {
886     template <typename H, typename T>
887     static auto Invoke(H state, const T& value) -> absl::enable_if_t<
888         std::is_same<H,
889                      decltype(AbslHashValue(std::move(state), value))>::value,
890         H> {
891       return AbslHashValue(std::move(state), value);
892     }
893   };
894 
895   struct LegacyHashProbe {
896 #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
897     template <typename H, typename T>
898     static auto Invoke(H state, const T& value) -> absl::enable_if_t<
899         std::is_convertible<
900             decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
901             size_t>::value,
902         H> {
903       return hash_internal::hash_bytes(
904           std::move(state),
905           ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
906     }
907 #endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
908   };
909 
910   struct StdHashProbe {
911     template <typename H, typename T>
912     static auto Invoke(H state, const T& value)
913         -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
914       return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
915     }
916   };
917 
918   template <typename Hash, typename T>
919   struct Probe : Hash {
920    private:
921     template <typename H, typename = decltype(H::Invoke(
922                               std::declval<State>(), std::declval<const T&>()))>
923     static std::true_type Test(int);
924     template <typename U>
925     static std::false_type Test(char);
926 
927    public:
928     static constexpr bool value = decltype(Test<Hash>(0))::value;
929   };
930 
931  public:
932   // Probe each implementation in order.
933   // disjunction provides short circuiting wrt instantiation.
934   template <typename T>
935   using Apply = absl::disjunction<         //
936       Probe<UniquelyRepresentedProbe, T>,  //
937       Probe<HashValueProbe, T>,            //
938       Probe<LegacyHashProbe, T>,           //
939       Probe<StdHashProbe, T>,              //
940       std::false_type>;
941 };
942 
943 template <typename T>
944 struct is_hashable
945     : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
946 
947 // MixingHashState
948 class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
949   // absl::uint128 is not an alias or a thin wrapper around the intrinsic.
950   // We use the intrinsic when available to improve performance.
951 #ifdef ABSL_HAVE_INTRINSIC_INT128
952   using uint128 = __uint128_t;
953 #else   // ABSL_HAVE_INTRINSIC_INT128
954   using uint128 = absl::uint128;
955 #endif  // ABSL_HAVE_INTRINSIC_INT128
956 
957   static constexpr uint64_t kMul =
958   sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51}
959                       : uint64_t{0x9ddfea08eb382d69};
960 
961   template <typename T>
962   using IntegralFastPath =
963       conjunction<std::is_integral<T>, is_uniquely_represented<T>>;
964 
965  public:
966   // Move only
967   MixingHashState(MixingHashState&&) = default;
968   MixingHashState& operator=(MixingHashState&&) = default;
969 
970   // MixingHashState::combine_contiguous()
971   //
972   // Fundamental base case for hash recursion: mixes the given range of bytes
973   // into the hash state.
974   static MixingHashState combine_contiguous(MixingHashState hash_state,
975                                             const unsigned char* first,
976                                             size_t size) {
977     return MixingHashState(
978         CombineContiguousImpl(hash_state.state_, first, size,
979                               std::integral_constant<int, sizeof(size_t)>{}));
980   }
981   using MixingHashState::HashStateBase::combine_contiguous;
982 
983   // MixingHashState::hash()
984   //
985   // For performance reasons in non-opt mode, we specialize this for
986   // integral types.
987   // Otherwise we would be instantiating and calling dozens of functions for
988   // something that is just one multiplication and a couple xor's.
989   // The result should be the same as running the whole algorithm, but faster.
990   template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
991   static size_t hash(T value) {
992     return static_cast<size_t>(
993         Mix(Seed(), static_cast<std::make_unsigned_t<T>>(value)));
994   }
995 
996   // Overload of MixingHashState::hash()
997   template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
998   static size_t hash(const T& value) {
999     return static_cast<size_t>(combine(MixingHashState{}, value).state_);
1000   }
1001 
1002  private:
1003   // Invoked only once for a given argument; that plus the fact that this is
1004   // move-only ensures that there is only one non-moved-from object.
1005   MixingHashState() : state_(Seed()) {}
1006 
1007   friend class MixingHashState::HashStateBase;
1008 
1009   template <typename CombinerT>
1010   static MixingHashState RunCombineUnordered(MixingHashState state,
1011                                              CombinerT combiner) {
1012     uint64_t unordered_state = 0;
1013     combiner(MixingHashState{}, [&](MixingHashState& inner_state) {
1014       // Add the hash state of the element to the running total, but mix the
1015       // carry bit back into the low bit.  This in intended to avoid losing
1016       // entropy to overflow, especially when unordered_multisets contain
1017       // multiple copies of the same value.
1018       auto element_state = inner_state.state_;
1019       unordered_state += element_state;
1020       if (unordered_state < element_state) {
1021         ++unordered_state;
1022       }
1023       inner_state = MixingHashState{};
1024     });
1025     return MixingHashState::combine(std::move(state), unordered_state);
1026   }
1027 
1028   // Allow the HashState type-erasure implementation to invoke
1029   // RunCombinedUnordered() directly.
1030   friend class absl::HashState;
1031 
1032   // Workaround for MSVC bug.
1033   // We make the type copyable to fix the calling convention, even though we
1034   // never actually copy it. Keep it private to not affect the public API of the
1035   // type.
1036   MixingHashState(const MixingHashState&) = default;
1037 
1038   explicit MixingHashState(uint64_t state) : state_(state) {}
1039 
1040   // Implementation of the base case for combine_contiguous where we actually
1041   // mix the bytes into the state.
1042   // Dispatch to different implementations of the combine_contiguous depending
1043   // on the value of `sizeof(size_t)`.
1044   static uint64_t CombineContiguousImpl(uint64_t state,
1045                                         const unsigned char* first, size_t len,
1046                                         std::integral_constant<int, 4>
1047                                         /* sizeof_size_t */);
1048   static uint64_t CombineContiguousImpl(uint64_t state,
1049                                         const unsigned char* first, size_t len,
1050                                         std::integral_constant<int, 8>
1051                                         /* sizeof_size_t */);
1052 
1053   // Slow dispatch path for calls to CombineContiguousImpl with a size argument
1054   // larger than PiecewiseChunkSize().  Has the same effect as calling
1055   // CombineContiguousImpl() repeatedly with the chunk stride size.
1056   static uint64_t CombineLargeContiguousImpl32(uint64_t state,
1057                                                const unsigned char* first,
1058                                                size_t len);
1059   static uint64_t CombineLargeContiguousImpl64(uint64_t state,
1060                                                const unsigned char* first,
1061                                                size_t len);
1062 
1063   // Reads 9 to 16 bytes from p.
1064   // The least significant 8 bytes are in .first, the rest (zero padded) bytes
1065   // are in .second.
1066   static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
1067                                                  size_t len) {
1068     uint64_t low_mem = absl::base_internal::UnalignedLoad64(p);
1069     uint64_t high_mem = absl::base_internal::UnalignedLoad64(p + len - 8);
1070 #ifdef ABSL_IS_LITTLE_ENDIAN
1071     uint64_t most_significant = high_mem;
1072     uint64_t least_significant = low_mem;
1073 #else
1074     uint64_t most_significant = low_mem;
1075     uint64_t least_significant = high_mem;
1076 #endif
1077     return {least_significant, most_significant};
1078   }
1079 
1080   // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
1081   static uint64_t Read4To8(const unsigned char* p, size_t len) {
1082     uint32_t low_mem = absl::base_internal::UnalignedLoad32(p);
1083     uint32_t high_mem = absl::base_internal::UnalignedLoad32(p + len - 4);
1084 #ifdef ABSL_IS_LITTLE_ENDIAN
1085     uint32_t most_significant = high_mem;
1086     uint32_t least_significant = low_mem;
1087 #else
1088     uint32_t most_significant = low_mem;
1089     uint32_t least_significant = high_mem;
1090 #endif
1091     return (static_cast<uint64_t>(most_significant) << (len - 4) * 8) |
1092            least_significant;
1093   }
1094 
1095   // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
1096   static uint32_t Read1To3(const unsigned char* p, size_t len) {
1097     // The trick used by this implementation is to avoid branches if possible.
1098     unsigned char mem0 = p[0];
1099     unsigned char mem1 = p[len / 2];
1100     unsigned char mem2 = p[len - 1];
1101 #ifdef ABSL_IS_LITTLE_ENDIAN
1102     unsigned char significant2 = mem2;
1103     unsigned char significant1 = mem1;
1104     unsigned char significant0 = mem0;
1105 #else
1106     unsigned char significant2 = mem0;
1107     unsigned char significant1 = len == 2 ? mem0 : mem1;
1108     unsigned char significant0 = mem2;
1109 #endif
1110     return static_cast<uint32_t>(significant0 |                     //
1111                                  (significant1 << (len / 2 * 8)) |  //
1112                                  (significant2 << ((len - 1) * 8)));
1113   }
1114 
1115   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) {
1116     // Though the 128-bit product on AArch64 needs two instructions, it is
1117     // still a good balance between speed and hash quality.
1118     using MultType =
1119         absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>;
1120     // We do the addition in 64-bit space to make sure the 128-bit
1121     // multiplication is fast. If we were to do it as MultType the compiler has
1122     // to assume that the high word is non-zero and needs to perform 2
1123     // multiplications instead of one.
1124     MultType m = state + v;
1125     m *= kMul;
1126     return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2)));
1127   }
1128 
1129   // An extern to avoid bloat on a direct call to LowLevelHash() with fixed
1130   // values for both the seed and salt parameters.
1131   static uint64_t LowLevelHashImpl(const unsigned char* data, size_t len);
1132 
1133   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Hash64(const unsigned char* data,
1134                                                       size_t len) {
1135 #ifdef ABSL_HAVE_INTRINSIC_INT128
1136     return LowLevelHashImpl(data, len);
1137 #else
1138     return hash_internal::CityHash64(reinterpret_cast<const char*>(data), len);
1139 #endif
1140   }
1141 
1142   // Seed()
1143   //
1144   // A non-deterministic seed.
1145   //
1146   // The current purpose of this seed is to generate non-deterministic results
1147   // and prevent having users depend on the particular hash values.
1148   // It is not meant as a security feature right now, but it leaves the door
1149   // open to upgrade it to a true per-process random seed. A true random seed
1150   // costs more and we don't need to pay for that right now.
1151   //
1152   // On platforms with ASLR, we take advantage of it to make a per-process
1153   // random value.
1154   // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
1155   //
1156   // On other platforms this is still going to be non-deterministic but most
1157   // probably per-build and not per-process.
1158   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() {
1159 #if (!defined(__clang__) || __clang_major__ > 11) && \
1160     (!defined(__apple_build_version__) ||            \
1161      __apple_build_version__ >= 19558921)  // Xcode 12
1162     return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&kSeed));
1163 #else
1164     // Workaround the absence of
1165     // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021.
1166     return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed));
1167 #endif
1168   }
1169   static const void* const kSeed;
1170 
1171   uint64_t state_;
1172 };
1173 
1174 // MixingHashState::CombineContiguousImpl()
1175 inline uint64_t MixingHashState::CombineContiguousImpl(
1176     uint64_t state, const unsigned char* first, size_t len,
1177     std::integral_constant<int, 4> /* sizeof_size_t */) {
1178   // For large values we use CityHash, for small ones we just use a
1179   // multiplicative hash.
1180   uint64_t v;
1181   if (len > 8) {
1182     if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
1183       return CombineLargeContiguousImpl32(state, first, len);
1184     }
1185     v = hash_internal::CityHash32(reinterpret_cast<const char*>(first), len);
1186   } else if (len >= 4) {
1187     v = Read4To8(first, len);
1188   } else if (len > 0) {
1189     v = Read1To3(first, len);
1190   } else {
1191     // Empty ranges have no effect.
1192     return state;
1193   }
1194   return Mix(state, v);
1195 }
1196 
1197 // Overload of MixingHashState::CombineContiguousImpl()
1198 inline uint64_t MixingHashState::CombineContiguousImpl(
1199     uint64_t state, const unsigned char* first, size_t len,
1200     std::integral_constant<int, 8> /* sizeof_size_t */) {
1201   // For large values we use LowLevelHash or CityHash depending on the platform,
1202   // for small ones we just use a multiplicative hash.
1203   uint64_t v;
1204   if (len > 16) {
1205     if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
1206       return CombineLargeContiguousImpl64(state, first, len);
1207     }
1208     v = Hash64(first, len);
1209   } else if (len > 8) {
1210     // This hash function was constructed by the ML-driven algorithm discovery
1211     // using reinforcement learning. We fed the agent lots of inputs from
1212     // microbenchmarks, SMHasher, low hamming distance from generated inputs and
1213     // picked up the one that was good on micro and macrobenchmarks.
1214     auto p = Read9To16(first, len);
1215     uint64_t lo = p.first;
1216     uint64_t hi = p.second;
1217     // Rotation by 53 was found to be most often useful when discovering these
1218     // hashing algorithms with ML techniques.
1219     lo = absl::rotr(lo, 53);
1220     state += kMul;
1221     lo += state;
1222     state ^= hi;
1223     uint128 m = state;
1224     m *= lo;
1225     return static_cast<uint64_t>(m ^ (m >> 64));
1226   } else if (len >= 4) {
1227     v = Read4To8(first, len);
1228   } else if (len > 0) {
1229     v = Read1To3(first, len);
1230   } else {
1231     // Empty ranges have no effect.
1232     return state;
1233   }
1234   return Mix(state, v);
1235 }
1236 
1237 struct AggregateBarrier {};
1238 
1239 // HashImpl
1240 
1241 // Add a private base class to make sure this type is not an aggregate.
1242 // Aggregates can be aggregate initialized even if the default constructor is
1243 // deleted.
1244 struct PoisonedHash : private AggregateBarrier {
1245   PoisonedHash() = delete;
1246   PoisonedHash(const PoisonedHash&) = delete;
1247   PoisonedHash& operator=(const PoisonedHash&) = delete;
1248 };
1249 
1250 template <typename T>
1251 struct HashImpl {
1252   size_t operator()(const T& value) const {
1253     return MixingHashState::hash(value);
1254   }
1255 };
1256 
1257 template <typename T>
1258 struct Hash
1259     : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
1260 
1261 template <typename H>
1262 template <typename T, typename... Ts>
1263 H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
1264   return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
1265                         std::move(state), value),
1266                     values...);
1267 }
1268 
1269 // HashStateBase::combine_contiguous()
1270 template <typename H>
1271 template <typename T>
1272 H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
1273   return hash_internal::hash_range_or_bytes(std::move(state), data, size);
1274 }
1275 
1276 // HashStateBase::combine_unordered()
1277 template <typename H>
1278 template <typename I>
1279 H HashStateBase<H>::combine_unordered(H state, I begin, I end) {
1280   return H::RunCombineUnordered(std::move(state),
1281                                 CombineUnorderedCallback<I>{begin, end});
1282 }
1283 
1284 // HashStateBase::PiecewiseCombiner::add_buffer()
1285 template <typename H>
1286 H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
1287                                 size_t size) {
1288   if (position_ + size < PiecewiseChunkSize()) {
1289     // This partial chunk does not fill our existing buffer
1290     memcpy(buf_ + position_, data, size);
1291     position_ += size;
1292     return state;
1293   }
1294 
1295   // If the buffer is partially filled we need to complete the buffer
1296   // and hash it.
1297   if (position_ != 0) {
1298     const size_t bytes_needed = PiecewiseChunkSize() - position_;
1299     memcpy(buf_ + position_, data, bytes_needed);
1300     state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
1301     data += bytes_needed;
1302     size -= bytes_needed;
1303   }
1304 
1305   // Hash whatever chunks we can without copying
1306   while (size >= PiecewiseChunkSize()) {
1307     state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
1308     data += PiecewiseChunkSize();
1309     size -= PiecewiseChunkSize();
1310   }
1311   // Fill the buffer with the remainder
1312   memcpy(buf_, data, size);
1313   position_ = size;
1314   return state;
1315 }
1316 
1317 // HashStateBase::PiecewiseCombiner::finalize()
1318 template <typename H>
1319 H PiecewiseCombiner::finalize(H state) {
1320   // Hash the remainder left in the buffer, which may be empty
1321   return H::combine_contiguous(std::move(state), buf_, position_);
1322 }
1323 
1324 }  // namespace hash_internal
1325 ABSL_NAMESPACE_END
1326 }  // namespace absl
1327 
1328 #endif  // ABSL_HASH_INTERNAL_HASH_H_
1329