1 // Copyright 2020 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <errno.h>
16 #include <stdarg.h>
17 #include <stdio.h>
18
19 #include <cctype>
20 #include <cmath>
21 #include <limits>
22 #include <string>
23 #include <thread> // NOLINT
24
25 #include "gmock/gmock.h"
26 #include "gtest/gtest.h"
27 #include "absl/base/attributes.h"
28 #include "absl/base/internal/raw_logging.h"
29 #include "absl/log/log.h"
30 #include "absl/strings/internal/str_format/bind.h"
31 #include "absl/strings/match.h"
32 #include "absl/types/optional.h"
33
34 namespace absl {
35 ABSL_NAMESPACE_BEGIN
36 namespace str_format_internal {
37 namespace {
38
39 struct NativePrintfTraits {
40 bool hex_float_has_glibc_rounding;
41 bool hex_float_prefers_denormal_repr;
42 bool hex_float_uses_minimal_precision_when_not_specified;
43 bool hex_float_optimizes_leading_digit_bit_count;
44 };
45
46 template <typename T, size_t N>
ArraySize(T (&)[N])47 size_t ArraySize(T (&)[N]) {
48 return N;
49 }
50
LengthModFor(float)51 std::string LengthModFor(float) { return ""; }
LengthModFor(double)52 std::string LengthModFor(double) { return ""; }
LengthModFor(long double)53 std::string LengthModFor(long double) { return "L"; }
LengthModFor(char)54 std::string LengthModFor(char) { return "hh"; }
LengthModFor(signed char)55 std::string LengthModFor(signed char) { return "hh"; }
LengthModFor(unsigned char)56 std::string LengthModFor(unsigned char) { return "hh"; }
LengthModFor(short)57 std::string LengthModFor(short) { return "h"; } // NOLINT
LengthModFor(unsigned short)58 std::string LengthModFor(unsigned short) { return "h"; } // NOLINT
LengthModFor(int)59 std::string LengthModFor(int) { return ""; }
LengthModFor(unsigned)60 std::string LengthModFor(unsigned) { return ""; }
LengthModFor(long)61 std::string LengthModFor(long) { return "l"; } // NOLINT
LengthModFor(unsigned long)62 std::string LengthModFor(unsigned long) { return "l"; } // NOLINT
LengthModFor(long long)63 std::string LengthModFor(long long) { return "ll"; } // NOLINT
LengthModFor(unsigned long long)64 std::string LengthModFor(unsigned long long) { return "ll"; } // NOLINT
65
EscCharImpl(int v)66 std::string EscCharImpl(int v) {
67 if (std::isprint(static_cast<unsigned char>(v))) {
68 return std::string(1, static_cast<char>(v));
69 }
70 char buf[64];
71 int n = snprintf(buf, sizeof(buf), "\\%#.2x",
72 static_cast<unsigned>(v & 0xff));
73 assert(n > 0 && n < sizeof(buf));
74 return std::string(buf, n);
75 }
76
Esc(char v)77 std::string Esc(char v) { return EscCharImpl(v); }
Esc(signed char v)78 std::string Esc(signed char v) { return EscCharImpl(v); }
Esc(unsigned char v)79 std::string Esc(unsigned char v) { return EscCharImpl(v); }
80
81 template <typename T>
Esc(const T & v)82 std::string Esc(const T &v) {
83 std::ostringstream oss;
84 oss << v;
85 return oss.str();
86 }
87
StrAppendV(std::string * dst,const char * format,va_list ap)88 void StrAppendV(std::string *dst, const char *format, va_list ap) {
89 // First try with a small fixed size buffer
90 static const int kSpaceLength = 1024;
91 char space[kSpaceLength];
92
93 // It's possible for methods that use a va_list to invalidate
94 // the data in it upon use. The fix is to make a copy
95 // of the structure before using it and use that copy instead.
96 va_list backup_ap;
97 va_copy(backup_ap, ap);
98 int result = vsnprintf(space, kSpaceLength, format, backup_ap);
99 va_end(backup_ap);
100 if (result < kSpaceLength) {
101 if (result >= 0) {
102 // Normal case -- everything fit.
103 dst->append(space, result);
104 return;
105 }
106 if (result < 0) {
107 // Just an error.
108 return;
109 }
110 }
111
112 // Increase the buffer size to the size requested by vsnprintf,
113 // plus one for the closing \0.
114 int length = result + 1;
115 char *buf = new char[length];
116
117 // Restore the va_list before we use it again
118 va_copy(backup_ap, ap);
119 result = vsnprintf(buf, length, format, backup_ap);
120 va_end(backup_ap);
121
122 if (result >= 0 && result < length) {
123 // It fit
124 dst->append(buf, result);
125 }
126 delete[] buf;
127 }
128
129 void StrAppend(std::string *, const char *, ...) ABSL_PRINTF_ATTRIBUTE(2, 3);
StrAppend(std::string * out,const char * format,...)130 void StrAppend(std::string *out, const char *format, ...) {
131 va_list ap;
132 va_start(ap, format);
133 StrAppendV(out, format, ap);
134 va_end(ap);
135 }
136
137 std::string StrPrint(const char *, ...) ABSL_PRINTF_ATTRIBUTE(1, 2);
StrPrint(const char * format,...)138 std::string StrPrint(const char *format, ...) {
139 va_list ap;
140 va_start(ap, format);
141 std::string result;
142 StrAppendV(&result, format, ap);
143 va_end(ap);
144 return result;
145 }
146
VerifyNativeImplementationImpl()147 NativePrintfTraits VerifyNativeImplementationImpl() {
148 NativePrintfTraits result;
149
150 // >>> hex_float_has_glibc_rounding. To have glibc's rounding behavior we need
151 // to meet three requirements:
152 //
153 // - The threshold for rounding up is 8 (for e.g. MSVC uses 9).
154 // - If the digits lower than than the 8 are non-zero then we round up.
155 // - If the digits lower than the 8 are all zero then we round toward even.
156 //
157 // The numbers below represent all the cases covering {below,at,above} the
158 // threshold (8) with both {zero,non-zero} lower bits and both {even,odd}
159 // preceding digits.
160 const double d0079 = 65657.0; // 0x1.0079p+16
161 const double d0179 = 65913.0; // 0x1.0179p+16
162 const double d0080 = 65664.0; // 0x1.0080p+16
163 const double d0180 = 65920.0; // 0x1.0180p+16
164 const double d0081 = 65665.0; // 0x1.0081p+16
165 const double d0181 = 65921.0; // 0x1.0181p+16
166 result.hex_float_has_glibc_rounding =
167 StartsWith(StrPrint("%.2a", d0079), "0x1.00") &&
168 StartsWith(StrPrint("%.2a", d0179), "0x1.01") &&
169 StartsWith(StrPrint("%.2a", d0080), "0x1.00") &&
170 StartsWith(StrPrint("%.2a", d0180), "0x1.02") &&
171 StartsWith(StrPrint("%.2a", d0081), "0x1.01") &&
172 StartsWith(StrPrint("%.2a", d0181), "0x1.02");
173
174 // >>> hex_float_prefers_denormal_repr. Formatting `denormal` on glibc yields
175 // "0x0.0000000000001p-1022", whereas on std libs that don't use denormal
176 // representation it would either be 0x1p-1074 or 0x1.0000000000000-1074.
177 const double denormal = std::numeric_limits<double>::denorm_min();
178 result.hex_float_prefers_denormal_repr =
179 StartsWith(StrPrint("%a", denormal), "0x0.0000000000001");
180
181 // >>> hex_float_uses_minimal_precision_when_not_specified. Some (non-glibc)
182 // libs will format the following as "0x1.0079000000000p+16".
183 result.hex_float_uses_minimal_precision_when_not_specified =
184 (StrPrint("%a", d0079) == "0x1.0079p+16");
185
186 // >>> hex_float_optimizes_leading_digit_bit_count. The number 1.5, when
187 // formatted by glibc should yield "0x1.8p+0" for `double` and "0xcp-3" for
188 // `long double`, i.e., number of bits in the leading digit is adapted to the
189 // number of bits in the mantissa.
190 const double d_15 = 1.5;
191 const long double ld_15 = 1.5;
192 result.hex_float_optimizes_leading_digit_bit_count =
193 StartsWith(StrPrint("%a", d_15), "0x1.8") &&
194 StartsWith(StrPrint("%La", ld_15), "0xc");
195
196 return result;
197 }
198
VerifyNativeImplementation()199 const NativePrintfTraits &VerifyNativeImplementation() {
200 static NativePrintfTraits native_traits = VerifyNativeImplementationImpl();
201 return native_traits;
202 }
203
204 class FormatConvertTest : public ::testing::Test { };
205
206 template <typename T>
TestStringConvert(const T & str)207 void TestStringConvert(const T& str) {
208 const FormatArgImpl args[] = {FormatArgImpl(str)};
209 struct Expectation {
210 const char *out;
211 const char *fmt;
212 };
213 const Expectation kExpect[] = {
214 {"hello", "%1$s" },
215 {"", "%1$.s" },
216 {"", "%1$.0s" },
217 {"h", "%1$.1s" },
218 {"he", "%1$.2s" },
219 {"hello", "%1$.10s" },
220 {" hello", "%1$6s" },
221 {" he", "%1$5.2s" },
222 {"he ", "%1$-5.2s" },
223 {"hello ", "%1$-6.10s" },
224 };
225 for (const Expectation &e : kExpect) {
226 UntypedFormatSpecImpl format(e.fmt);
227 EXPECT_EQ(e.out, FormatPack(format, absl::MakeSpan(args)));
228 }
229 }
230
TEST_F(FormatConvertTest,BasicString)231 TEST_F(FormatConvertTest, BasicString) {
232 TestStringConvert("hello"); // As char array.
233 TestStringConvert(static_cast<const char*>("hello"));
234 TestStringConvert(std::string("hello"));
235 TestStringConvert(string_view("hello"));
236 #if defined(ABSL_HAVE_STD_STRING_VIEW)
237 TestStringConvert(std::string_view("hello"));
238 #endif // ABSL_HAVE_STD_STRING_VIEW
239 }
240
TEST_F(FormatConvertTest,NullString)241 TEST_F(FormatConvertTest, NullString) {
242 const char* p = nullptr;
243 UntypedFormatSpecImpl format("%s");
244 EXPECT_EQ("", FormatPack(format, {FormatArgImpl(p)}));
245 }
246
TEST_F(FormatConvertTest,StringPrecision)247 TEST_F(FormatConvertTest, StringPrecision) {
248 // We cap at the precision.
249 char c = 'a';
250 const char* p = &c;
251 UntypedFormatSpecImpl format("%.1s");
252 EXPECT_EQ("a", FormatPack(format, {FormatArgImpl(p)}));
253
254 // We cap at the NUL-terminator.
255 p = "ABC";
256 UntypedFormatSpecImpl format2("%.10s");
257 EXPECT_EQ("ABC", FormatPack(format2, {FormatArgImpl(p)}));
258 }
259
260 // Pointer formatting is implementation defined. This checks that the argument
261 // can be matched to `ptr`.
262 MATCHER_P(MatchesPointerString, ptr, "") {
263 if (ptr == nullptr && arg == "(nil)") {
264 return true;
265 }
266 void* parsed = nullptr;
267 if (sscanf(arg.c_str(), "%p", &parsed) != 1) {
268 LOG(FATAL) << "Could not parse " << arg;
269 }
270 return ptr == parsed;
271 }
272
TEST_F(FormatConvertTest,Pointer)273 TEST_F(FormatConvertTest, Pointer) {
274 static int x = 0;
275 const int *xp = &x;
276 char c = 'h';
277 char *mcp = &c;
278 const char *cp = "hi";
279 const char *cnil = nullptr;
280 const int *inil = nullptr;
281 using VoidF = void (*)();
282 VoidF fp = [] {}, fnil = nullptr;
283 volatile char vc;
284 volatile char *vcp = &vc;
285 volatile char *vcnil = nullptr;
286 const FormatArgImpl args_array[] = {
287 FormatArgImpl(xp), FormatArgImpl(cp), FormatArgImpl(inil),
288 FormatArgImpl(cnil), FormatArgImpl(mcp), FormatArgImpl(fp),
289 FormatArgImpl(fnil), FormatArgImpl(vcp), FormatArgImpl(vcnil),
290 };
291 auto args = absl::MakeConstSpan(args_array);
292
293 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%p"), args),
294 MatchesPointerString(&x));
295 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%20p"), args),
296 MatchesPointerString(&x));
297 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%.1p"), args),
298 MatchesPointerString(&x));
299 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%.20p"), args),
300 MatchesPointerString(&x));
301 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%30.20p"), args),
302 MatchesPointerString(&x));
303
304 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-p"), args),
305 MatchesPointerString(&x));
306 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-20p"), args),
307 MatchesPointerString(&x));
308 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-.1p"), args),
309 MatchesPointerString(&x));
310 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%.20p"), args),
311 MatchesPointerString(&x));
312 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-30.20p"), args),
313 MatchesPointerString(&x));
314
315 // const char*
316 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%2$p"), args),
317 MatchesPointerString(cp));
318 // null const int*
319 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%3$p"), args),
320 MatchesPointerString(nullptr));
321 // null const char*
322 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%4$p"), args),
323 MatchesPointerString(nullptr));
324 // nonconst char*
325 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%5$p"), args),
326 MatchesPointerString(mcp));
327
328 // function pointers
329 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%6$p"), args),
330 MatchesPointerString(reinterpret_cast<const void*>(fp)));
331 EXPECT_THAT(
332 FormatPack(UntypedFormatSpecImpl("%8$p"), args),
333 MatchesPointerString(reinterpret_cast<volatile const void *>(vcp)));
334
335 // null function pointers
336 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%7$p"), args),
337 MatchesPointerString(nullptr));
338 EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%9$p"), args),
339 MatchesPointerString(nullptr));
340 }
341
342 struct Cardinal {
343 enum Pos { k1 = 1, k2 = 2, k3 = 3 };
344 enum Neg { kM1 = -1, kM2 = -2, kM3 = -3 };
345 };
346
TEST_F(FormatConvertTest,Enum)347 TEST_F(FormatConvertTest, Enum) {
348 const Cardinal::Pos k3 = Cardinal::k3;
349 const Cardinal::Neg km3 = Cardinal::kM3;
350 const FormatArgImpl args[] = {FormatArgImpl(k3), FormatArgImpl(km3)};
351 UntypedFormatSpecImpl format("%1$d");
352 UntypedFormatSpecImpl format2("%2$d");
353 EXPECT_EQ("3", FormatPack(format, absl::MakeSpan(args)));
354 EXPECT_EQ("-3", FormatPack(format2, absl::MakeSpan(args)));
355 }
356
357 template <typename T>
358 class TypedFormatConvertTest : public FormatConvertTest { };
359
360 TYPED_TEST_SUITE_P(TypedFormatConvertTest);
361
AllFlagCombinations()362 std::vector<std::string> AllFlagCombinations() {
363 const char kFlags[] = {'-', '#', '0', '+', ' '};
364 std::vector<std::string> result;
365 for (size_t fsi = 0; fsi < (1ull << ArraySize(kFlags)); ++fsi) {
366 std::string flag_set;
367 for (size_t fi = 0; fi < ArraySize(kFlags); ++fi)
368 if (fsi & (1ull << fi))
369 flag_set += kFlags[fi];
370 result.push_back(flag_set);
371 }
372 return result;
373 }
374
TYPED_TEST_P(TypedFormatConvertTest,AllIntsWithFlags)375 TYPED_TEST_P(TypedFormatConvertTest, AllIntsWithFlags) {
376 typedef TypeParam T;
377 typedef typename std::make_unsigned<T>::type UnsignedT;
378 using remove_volatile_t = typename std::remove_volatile<T>::type;
379 const T kMin = std::numeric_limits<remove_volatile_t>::min();
380 const T kMax = std::numeric_limits<remove_volatile_t>::max();
381 const T kVals[] = {
382 remove_volatile_t(1),
383 remove_volatile_t(2),
384 remove_volatile_t(3),
385 remove_volatile_t(123),
386 remove_volatile_t(-1),
387 remove_volatile_t(-2),
388 remove_volatile_t(-3),
389 remove_volatile_t(-123),
390 remove_volatile_t(0),
391 kMax - remove_volatile_t(1),
392 kMax,
393 kMin + remove_volatile_t(1),
394 kMin,
395 };
396 const char kConvChars[] = {'d', 'i', 'u', 'o', 'x', 'X'};
397 const std::string kWid[] = {"", "4", "10"};
398 const std::string kPrec[] = {"", ".", ".0", ".4", ".10"};
399
400 const std::vector<std::string> flag_sets = AllFlagCombinations();
401
402 for (size_t vi = 0; vi < ArraySize(kVals); ++vi) {
403 const T val = kVals[vi];
404 SCOPED_TRACE(Esc(val));
405 const FormatArgImpl args[] = {FormatArgImpl(val)};
406 for (size_t ci = 0; ci < ArraySize(kConvChars); ++ci) {
407 const char conv_char = kConvChars[ci];
408 for (size_t fsi = 0; fsi < flag_sets.size(); ++fsi) {
409 const std::string &flag_set = flag_sets[fsi];
410 for (size_t wi = 0; wi < ArraySize(kWid); ++wi) {
411 const std::string &wid = kWid[wi];
412 for (size_t pi = 0; pi < ArraySize(kPrec); ++pi) {
413 const std::string &prec = kPrec[pi];
414
415 const bool is_signed_conv = (conv_char == 'd' || conv_char == 'i');
416 const bool is_unsigned_to_signed =
417 !std::is_signed<T>::value && is_signed_conv;
418 // Don't consider sign-related flags '+' and ' ' when doing
419 // unsigned to signed conversions.
420 if (is_unsigned_to_signed &&
421 flag_set.find_first_of("+ ") != std::string::npos) {
422 continue;
423 }
424
425 std::string new_fmt("%");
426 new_fmt += flag_set;
427 new_fmt += wid;
428 new_fmt += prec;
429 // old and new always agree up to here.
430 std::string old_fmt = new_fmt;
431 new_fmt += conv_char;
432 std::string old_result;
433 if (is_unsigned_to_signed) {
434 // don't expect agreement on unsigned formatted as signed,
435 // as printf can't do that conversion properly. For those
436 // cases, we do expect agreement with printf with a "%u"
437 // and the unsigned equivalent of 'val'.
438 UnsignedT uval = val;
439 old_fmt += LengthModFor(uval);
440 old_fmt += "u";
441 old_result = StrPrint(old_fmt.c_str(), uval);
442 } else {
443 old_fmt += LengthModFor(val);
444 old_fmt += conv_char;
445 old_result = StrPrint(old_fmt.c_str(), val);
446 }
447
448 SCOPED_TRACE(std::string() + " old_fmt: \"" + old_fmt +
449 "\"'"
450 " new_fmt: \"" +
451 new_fmt + "\"");
452 UntypedFormatSpecImpl format(new_fmt);
453 EXPECT_EQ(old_result, FormatPack(format, absl::MakeSpan(args)));
454 }
455 }
456 }
457 }
458 }
459 }
460
TYPED_TEST_P(TypedFormatConvertTest,Char)461 TYPED_TEST_P(TypedFormatConvertTest, Char) {
462 // Pass a bunch of values of type TypeParam to both FormatPack and libc's
463 // vsnprintf("%c", ...) (wrapped in StrPrint) to make sure we get the same
464 // value.
465 typedef TypeParam T;
466 using remove_volatile_t = typename std::remove_volatile<T>::type;
467 std::vector<remove_volatile_t> vals = {
468 remove_volatile_t(1), remove_volatile_t(2), remove_volatile_t(10), //
469 remove_volatile_t(-1), remove_volatile_t(-2), remove_volatile_t(-10), //
470 remove_volatile_t(0),
471 };
472
473 // We'd like to test values near std::numeric_limits::min() and
474 // std::numeric_limits::max(), too, but vsnprintf("%c", ...) can't handle
475 // anything larger than an int. Add in the most extreme values we can without
476 // exceeding that range.
477 static const T kMin =
478 static_cast<remove_volatile_t>(std::numeric_limits<int>::min());
479 static const T kMax =
480 static_cast<remove_volatile_t>(std::numeric_limits<int>::max());
481 vals.insert(vals.end(), {kMin + 1, kMin, kMax - 1, kMax});
482
483 for (const T c : vals) {
484 const FormatArgImpl args[] = {FormatArgImpl(c)};
485 UntypedFormatSpecImpl format("%c");
486 EXPECT_EQ(StrPrint("%c", static_cast<int>(c)),
487 FormatPack(format, absl::MakeSpan(args)));
488 }
489 }
490
491 REGISTER_TYPED_TEST_SUITE_P(TypedFormatConvertTest, AllIntsWithFlags, Char);
492
493 typedef ::testing::Types<
494 int, unsigned, volatile int,
495 short, unsigned short,
496 long, unsigned long,
497 long long, unsigned long long,
498 signed char, unsigned char, char>
499 AllIntTypes;
500 INSTANTIATE_TYPED_TEST_SUITE_P(TypedFormatConvertTestWithAllIntTypes,
501 TypedFormatConvertTest, AllIntTypes);
TEST_F(FormatConvertTest,VectorBool)502 TEST_F(FormatConvertTest, VectorBool) {
503 // Make sure vector<bool>'s values behave as bools.
504 std::vector<bool> v = {true, false};
505 const std::vector<bool> cv = {true, false};
506 EXPECT_EQ("1,0,1,0",
507 FormatPack(UntypedFormatSpecImpl("%d,%d,%d,%d"),
508 absl::Span<const FormatArgImpl>(
509 {FormatArgImpl(v[0]), FormatArgImpl(v[1]),
510 FormatArgImpl(cv[0]), FormatArgImpl(cv[1])})));
511 }
512
513
TEST_F(FormatConvertTest,Int128)514 TEST_F(FormatConvertTest, Int128) {
515 absl::int128 positive = static_cast<absl::int128>(0x1234567890abcdef) * 1979;
516 absl::int128 negative = -positive;
517 absl::int128 max = absl::Int128Max(), min = absl::Int128Min();
518 const FormatArgImpl args[] = {FormatArgImpl(positive),
519 FormatArgImpl(negative), FormatArgImpl(max),
520 FormatArgImpl(min)};
521
522 struct Case {
523 const char* format;
524 const char* expected;
525 } cases[] = {
526 {"%1$d", "2595989796776606496405"},
527 {"%1$30d", " 2595989796776606496405"},
528 {"%1$-30d", "2595989796776606496405 "},
529 {"%1$u", "2595989796776606496405"},
530 {"%1$x", "8cba9876066020f695"},
531 {"%2$d", "-2595989796776606496405"},
532 {"%2$30d", " -2595989796776606496405"},
533 {"%2$-30d", "-2595989796776606496405 "},
534 {"%2$u", "340282366920938460867384810655161715051"},
535 {"%2$x", "ffffffffffffff73456789f99fdf096b"},
536 {"%3$d", "170141183460469231731687303715884105727"},
537 {"%3$u", "170141183460469231731687303715884105727"},
538 {"%3$x", "7fffffffffffffffffffffffffffffff"},
539 {"%4$d", "-170141183460469231731687303715884105728"},
540 {"%4$x", "80000000000000000000000000000000"},
541 };
542
543 for (auto c : cases) {
544 UntypedFormatSpecImpl format(c.format);
545 EXPECT_EQ(c.expected, FormatPack(format, absl::MakeSpan(args)));
546 }
547 }
548
TEST_F(FormatConvertTest,Uint128)549 TEST_F(FormatConvertTest, Uint128) {
550 absl::uint128 v = static_cast<absl::uint128>(0x1234567890abcdef) * 1979;
551 absl::uint128 max = absl::Uint128Max();
552 const FormatArgImpl args[] = {FormatArgImpl(v), FormatArgImpl(max)};
553
554 struct Case {
555 const char* format;
556 const char* expected;
557 } cases[] = {
558 {"%1$d", "2595989796776606496405"},
559 {"%1$30d", " 2595989796776606496405"},
560 {"%1$-30d", "2595989796776606496405 "},
561 {"%1$u", "2595989796776606496405"},
562 {"%1$x", "8cba9876066020f695"},
563 {"%2$d", "340282366920938463463374607431768211455"},
564 {"%2$u", "340282366920938463463374607431768211455"},
565 {"%2$x", "ffffffffffffffffffffffffffffffff"},
566 };
567
568 for (auto c : cases) {
569 UntypedFormatSpecImpl format(c.format);
570 EXPECT_EQ(c.expected, FormatPack(format, absl::MakeSpan(args)));
571 }
572 }
573
574 template <typename Floating>
TestWithMultipleFormatsHelper(const std::vector<Floating> & floats,const std::set<Floating> & skip_verify)575 void TestWithMultipleFormatsHelper(const std::vector<Floating> &floats,
576 const std::set<Floating> &skip_verify) {
577 const NativePrintfTraits &native_traits = VerifyNativeImplementation();
578 // Reserve the space to ensure we don't allocate memory in the output itself.
579 std::string str_format_result;
580 str_format_result.reserve(1 << 20);
581 std::string string_printf_result;
582 string_printf_result.reserve(1 << 20);
583
584 const char *const kFormats[] = {
585 "%", "%.3", "%8.5", "%500", "%.5000", "%.60", "%.30", "%03",
586 "%+", "% ", "%-10", "%#15.3", "%#.0", "%.0", "%1$*2$", "%1$.*2$"};
587
588 for (const char *fmt : kFormats) {
589 for (char f : {'f', 'F', //
590 'g', 'G', //
591 'a', 'A', //
592 'e', 'E'}) {
593 std::string fmt_str = std::string(fmt) + f;
594
595 if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F' &&
596 f != 'a' && f != 'A') {
597 // This particular test takes way too long with snprintf.
598 // Disable for the case we are not implementing natively.
599 continue;
600 }
601
602 if ((f == 'a' || f == 'A') &&
603 !native_traits.hex_float_has_glibc_rounding) {
604 continue;
605 }
606
607 for (Floating d : floats) {
608 if (!native_traits.hex_float_prefers_denormal_repr &&
609 (f == 'a' || f == 'A') && std::fpclassify(d) == FP_SUBNORMAL) {
610 continue;
611 }
612 int i = -10;
613 FormatArgImpl args[2] = {FormatArgImpl(d), FormatArgImpl(i)};
614 UntypedFormatSpecImpl format(fmt_str);
615
616 string_printf_result.clear();
617 StrAppend(&string_printf_result, fmt_str.c_str(), d, i);
618 str_format_result.clear();
619
620 {
621 AppendPack(&str_format_result, format, absl::MakeSpan(args));
622 }
623
624 #ifdef _MSC_VER
625 // MSVC has a different rounding policy than us so we can't test our
626 // implementation against the native one there.
627 continue;
628 #elif defined(__APPLE__)
629 // Apple formats NaN differently (+nan) vs. (nan)
630 if (std::isnan(d)) continue;
631 #endif
632 if (string_printf_result != str_format_result &&
633 skip_verify.find(d) == skip_verify.end()) {
634 // We use ASSERT_EQ here because failures are usually correlated and a
635 // bug would print way too many failed expectations causing the test
636 // to time out.
637 ASSERT_EQ(string_printf_result, str_format_result)
638 << fmt_str << " " << StrPrint("%.18g", d) << " "
639 << StrPrint("%a", d) << " " << StrPrint("%.50f", d);
640 }
641 }
642 }
643 }
644 }
645
TEST_F(FormatConvertTest,Float)646 TEST_F(FormatConvertTest, Float) {
647 std::vector<float> floats = {0.0f,
648 -0.0f,
649 .9999999f,
650 9999999.f,
651 std::numeric_limits<float>::max(),
652 -std::numeric_limits<float>::max(),
653 std::numeric_limits<float>::min(),
654 -std::numeric_limits<float>::min(),
655 std::numeric_limits<float>::lowest(),
656 -std::numeric_limits<float>::lowest(),
657 std::numeric_limits<float>::epsilon(),
658 std::numeric_limits<float>::epsilon() + 1.0f,
659 std::numeric_limits<float>::infinity(),
660 -std::numeric_limits<float>::infinity(),
661 std::nanf("")};
662
663 // Some regression tests.
664 floats.push_back(0.999999989f);
665
666 if (std::numeric_limits<float>::has_denorm != std::denorm_absent) {
667 floats.push_back(std::numeric_limits<float>::denorm_min());
668 floats.push_back(-std::numeric_limits<float>::denorm_min());
669 }
670
671 for (float base :
672 {1.f, 12.f, 123.f, 1234.f, 12345.f, 123456.f, 1234567.f, 12345678.f,
673 123456789.f, 1234567890.f, 12345678901.f, 12345678.f, 12345678.f}) {
674 for (int exp = -123; exp <= 123; ++exp) {
675 for (int sign : {1, -1}) {
676 floats.push_back(sign * std::ldexp(base, exp));
677 }
678 }
679 }
680
681 for (int exp = -300; exp <= 300; ++exp) {
682 const float all_ones_mantissa = 0xffffff;
683 floats.push_back(std::ldexp(all_ones_mantissa, exp));
684 }
685
686 // Remove duplicates to speed up the logic below.
687 std::sort(floats.begin(), floats.end());
688 floats.erase(std::unique(floats.begin(), floats.end()), floats.end());
689
690 TestWithMultipleFormatsHelper(floats, {});
691 }
692
TEST_F(FormatConvertTest,Double)693 TEST_F(FormatConvertTest, Double) {
694 // For values that we know won't match the standard library implementation we
695 // skip verification, but still run the algorithm to catch asserts/sanitizer
696 // bugs.
697 std::set<double> skip_verify;
698 std::vector<double> doubles = {0.0,
699 -0.0,
700 .99999999999999,
701 99999999999999.,
702 std::numeric_limits<double>::max(),
703 -std::numeric_limits<double>::max(),
704 std::numeric_limits<double>::min(),
705 -std::numeric_limits<double>::min(),
706 std::numeric_limits<double>::lowest(),
707 -std::numeric_limits<double>::lowest(),
708 std::numeric_limits<double>::epsilon(),
709 std::numeric_limits<double>::epsilon() + 1,
710 std::numeric_limits<double>::infinity(),
711 -std::numeric_limits<double>::infinity(),
712 std::nan("")};
713
714 // Some regression tests.
715 doubles.push_back(0.99999999999999989);
716
717 if (std::numeric_limits<double>::has_denorm != std::denorm_absent) {
718 doubles.push_back(std::numeric_limits<double>::denorm_min());
719 doubles.push_back(-std::numeric_limits<double>::denorm_min());
720 }
721
722 for (double base :
723 {1., 12., 123., 1234., 12345., 123456., 1234567., 12345678., 123456789.,
724 1234567890., 12345678901., 123456789012., 1234567890123.}) {
725 for (int exp = -123; exp <= 123; ++exp) {
726 for (int sign : {1, -1}) {
727 doubles.push_back(sign * std::ldexp(base, exp));
728 }
729 }
730 }
731
732 // Workaround libc bug.
733 // https://sourceware.org/bugzilla/show_bug.cgi?id=22142
734 const bool gcc_bug_22142 =
735 StrPrint("%f", std::numeric_limits<double>::max()) !=
736 "1797693134862315708145274237317043567980705675258449965989174768031"
737 "5726078002853876058955863276687817154045895351438246423432132688946"
738 "4182768467546703537516986049910576551282076245490090389328944075868"
739 "5084551339423045832369032229481658085593321233482747978262041447231"
740 "68738177180919299881250404026184124858368.000000";
741
742 for (int exp = -300; exp <= 300; ++exp) {
743 const double all_ones_mantissa = 0x1fffffffffffff;
744 doubles.push_back(std::ldexp(all_ones_mantissa, exp));
745 if (gcc_bug_22142) {
746 skip_verify.insert(doubles.back());
747 }
748 }
749
750 if (gcc_bug_22142) {
751 using L = std::numeric_limits<double>;
752 skip_verify.insert(L::max());
753 skip_verify.insert(L::min()); // NOLINT
754 skip_verify.insert(L::denorm_min());
755 skip_verify.insert(-L::max());
756 skip_verify.insert(-L::min()); // NOLINT
757 skip_verify.insert(-L::denorm_min());
758 }
759
760 // Remove duplicates to speed up the logic below.
761 std::sort(doubles.begin(), doubles.end());
762 doubles.erase(std::unique(doubles.begin(), doubles.end()), doubles.end());
763
764 TestWithMultipleFormatsHelper(doubles, skip_verify);
765 }
766
TEST_F(FormatConvertTest,DoubleRound)767 TEST_F(FormatConvertTest, DoubleRound) {
768 std::string s;
769 const auto format = [&](const char *fmt, double d) -> std::string & {
770 s.clear();
771 FormatArgImpl args[1] = {FormatArgImpl(d)};
772 AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
773 #if !defined(_MSC_VER)
774 // MSVC has a different rounding policy than us so we can't test our
775 // implementation against the native one there.
776 EXPECT_EQ(StrPrint(fmt, d), s);
777 #endif // _MSC_VER
778
779 return s;
780 };
781 // All of these values have to be exactly represented.
782 // Otherwise we might not be testing what we think we are testing.
783
784 // These values can fit in a 64bit "fast" representation.
785 const double exact_value = 0.00000000000005684341886080801486968994140625;
786 assert(exact_value == std::pow(2, -44));
787 // Round up at a 5xx.
788 EXPECT_EQ(format("%.13f", exact_value), "0.0000000000001");
789 // Round up at a >5
790 EXPECT_EQ(format("%.14f", exact_value), "0.00000000000006");
791 // Round down at a <5
792 EXPECT_EQ(format("%.16f", exact_value), "0.0000000000000568");
793 // Nine handling
794 EXPECT_EQ(format("%.35f", exact_value),
795 "0.00000000000005684341886080801486969");
796 EXPECT_EQ(format("%.36f", exact_value),
797 "0.000000000000056843418860808014869690");
798 // Round down the last nine.
799 EXPECT_EQ(format("%.37f", exact_value),
800 "0.0000000000000568434188608080148696899");
801 EXPECT_EQ(format("%.10f", 0.000003814697265625), "0.0000038147");
802 // Round up the last nine
803 EXPECT_EQ(format("%.11f", 0.000003814697265625), "0.00000381470");
804 EXPECT_EQ(format("%.12f", 0.000003814697265625), "0.000003814697");
805
806 // Round to even (down)
807 EXPECT_EQ(format("%.43f", exact_value),
808 "0.0000000000000568434188608080148696899414062");
809 // Exact
810 EXPECT_EQ(format("%.44f", exact_value),
811 "0.00000000000005684341886080801486968994140625");
812 // Round to even (up), let make the last digits 75 instead of 25
813 EXPECT_EQ(format("%.43f", exact_value + std::pow(2, -43)),
814 "0.0000000000001705302565824240446090698242188");
815 // Exact, just to check.
816 EXPECT_EQ(format("%.44f", exact_value + std::pow(2, -43)),
817 "0.00000000000017053025658242404460906982421875");
818
819 // This value has to be small enough that it won't fit in the uint128
820 // representation for printing.
821 const double small_exact_value =
822 0.000000000000000000000000000000000000752316384526264005099991383822237233803945956334136013765601092018187046051025390625; // NOLINT
823 assert(small_exact_value == std::pow(2, -120));
824 // Round up at a 5xx.
825 EXPECT_EQ(format("%.37f", small_exact_value),
826 "0.0000000000000000000000000000000000008");
827 // Round down at a <5
828 EXPECT_EQ(format("%.38f", small_exact_value),
829 "0.00000000000000000000000000000000000075");
830 // Round up at a >5
831 EXPECT_EQ(format("%.41f", small_exact_value),
832 "0.00000000000000000000000000000000000075232");
833 // Nine handling
834 EXPECT_EQ(format("%.55f", small_exact_value),
835 "0.0000000000000000000000000000000000007523163845262640051");
836 EXPECT_EQ(format("%.56f", small_exact_value),
837 "0.00000000000000000000000000000000000075231638452626400510");
838 EXPECT_EQ(format("%.57f", small_exact_value),
839 "0.000000000000000000000000000000000000752316384526264005100");
840 EXPECT_EQ(format("%.58f", small_exact_value),
841 "0.0000000000000000000000000000000000007523163845262640051000");
842 // Round down the last nine
843 EXPECT_EQ(format("%.59f", small_exact_value),
844 "0.00000000000000000000000000000000000075231638452626400509999");
845 // Round up the last nine
846 EXPECT_EQ(format("%.79f", small_exact_value),
847 "0.000000000000000000000000000000000000"
848 "7523163845262640050999913838222372338039460");
849
850 // Round to even (down)
851 EXPECT_EQ(format("%.119f", small_exact_value),
852 "0.000000000000000000000000000000000000"
853 "75231638452626400509999138382223723380"
854 "394595633413601376560109201818704605102539062");
855 // Exact
856 EXPECT_EQ(format("%.120f", small_exact_value),
857 "0.000000000000000000000000000000000000"
858 "75231638452626400509999138382223723380"
859 "3945956334136013765601092018187046051025390625");
860 // Round to even (up), let make the last digits 75 instead of 25
861 EXPECT_EQ(format("%.119f", small_exact_value + std::pow(2, -119)),
862 "0.000000000000000000000000000000000002"
863 "25694915357879201529997415146671170141"
864 "183786900240804129680327605456113815307617188");
865 // Exact, just to check.
866 EXPECT_EQ(format("%.120f", small_exact_value + std::pow(2, -119)),
867 "0.000000000000000000000000000000000002"
868 "25694915357879201529997415146671170141"
869 "1837869002408041296803276054561138153076171875");
870 }
871
TEST_F(FormatConvertTest,DoubleRoundA)872 TEST_F(FormatConvertTest, DoubleRoundA) {
873 const NativePrintfTraits &native_traits = VerifyNativeImplementation();
874 std::string s;
875 const auto format = [&](const char *fmt, double d) -> std::string & {
876 s.clear();
877 FormatArgImpl args[1] = {FormatArgImpl(d)};
878 AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
879 if (native_traits.hex_float_has_glibc_rounding) {
880 EXPECT_EQ(StrPrint(fmt, d), s);
881 }
882 return s;
883 };
884
885 // 0x1.00018000p+100
886 const double on_boundary_odd = 1267679614447900152596896153600.0;
887 EXPECT_EQ(format("%.0a", on_boundary_odd), "0x1p+100");
888 EXPECT_EQ(format("%.1a", on_boundary_odd), "0x1.0p+100");
889 EXPECT_EQ(format("%.2a", on_boundary_odd), "0x1.00p+100");
890 EXPECT_EQ(format("%.3a", on_boundary_odd), "0x1.000p+100");
891 EXPECT_EQ(format("%.4a", on_boundary_odd), "0x1.0002p+100"); // round
892 EXPECT_EQ(format("%.5a", on_boundary_odd), "0x1.00018p+100");
893 EXPECT_EQ(format("%.6a", on_boundary_odd), "0x1.000180p+100");
894
895 // 0x1.00028000p-2
896 const double on_boundary_even = 0.250009536743164062500;
897 EXPECT_EQ(format("%.0a", on_boundary_even), "0x1p-2");
898 EXPECT_EQ(format("%.1a", on_boundary_even), "0x1.0p-2");
899 EXPECT_EQ(format("%.2a", on_boundary_even), "0x1.00p-2");
900 EXPECT_EQ(format("%.3a", on_boundary_even), "0x1.000p-2");
901 EXPECT_EQ(format("%.4a", on_boundary_even), "0x1.0002p-2"); // no round
902 EXPECT_EQ(format("%.5a", on_boundary_even), "0x1.00028p-2");
903 EXPECT_EQ(format("%.6a", on_boundary_even), "0x1.000280p-2");
904
905 // 0x1.00018001p+1
906 const double slightly_over = 2.00004577683284878730773925781250;
907 EXPECT_EQ(format("%.0a", slightly_over), "0x1p+1");
908 EXPECT_EQ(format("%.1a", slightly_over), "0x1.0p+1");
909 EXPECT_EQ(format("%.2a", slightly_over), "0x1.00p+1");
910 EXPECT_EQ(format("%.3a", slightly_over), "0x1.000p+1");
911 EXPECT_EQ(format("%.4a", slightly_over), "0x1.0002p+1");
912 EXPECT_EQ(format("%.5a", slightly_over), "0x1.00018p+1");
913 EXPECT_EQ(format("%.6a", slightly_over), "0x1.000180p+1");
914
915 // 0x1.00017fffp+0
916 const double slightly_under = 1.000022887950763106346130371093750;
917 EXPECT_EQ(format("%.0a", slightly_under), "0x1p+0");
918 EXPECT_EQ(format("%.1a", slightly_under), "0x1.0p+0");
919 EXPECT_EQ(format("%.2a", slightly_under), "0x1.00p+0");
920 EXPECT_EQ(format("%.3a", slightly_under), "0x1.000p+0");
921 EXPECT_EQ(format("%.4a", slightly_under), "0x1.0001p+0");
922 EXPECT_EQ(format("%.5a", slightly_under), "0x1.00018p+0");
923 EXPECT_EQ(format("%.6a", slightly_under), "0x1.000180p+0");
924 EXPECT_EQ(format("%.7a", slightly_under), "0x1.0001800p+0");
925
926 // 0x1.1b3829ac28058p+3
927 const double hex_value = 8.85060580848964661981881363317370414733886718750;
928 EXPECT_EQ(format("%.0a", hex_value), "0x1p+3");
929 EXPECT_EQ(format("%.1a", hex_value), "0x1.2p+3");
930 EXPECT_EQ(format("%.2a", hex_value), "0x1.1bp+3");
931 EXPECT_EQ(format("%.3a", hex_value), "0x1.1b4p+3");
932 EXPECT_EQ(format("%.4a", hex_value), "0x1.1b38p+3");
933 EXPECT_EQ(format("%.5a", hex_value), "0x1.1b383p+3");
934 EXPECT_EQ(format("%.6a", hex_value), "0x1.1b382ap+3");
935 EXPECT_EQ(format("%.7a", hex_value), "0x1.1b3829bp+3");
936 EXPECT_EQ(format("%.8a", hex_value), "0x1.1b3829acp+3");
937 EXPECT_EQ(format("%.9a", hex_value), "0x1.1b3829ac3p+3");
938 EXPECT_EQ(format("%.10a", hex_value), "0x1.1b3829ac28p+3");
939 EXPECT_EQ(format("%.11a", hex_value), "0x1.1b3829ac280p+3");
940 EXPECT_EQ(format("%.12a", hex_value), "0x1.1b3829ac2806p+3");
941 EXPECT_EQ(format("%.13a", hex_value), "0x1.1b3829ac28058p+3");
942 EXPECT_EQ(format("%.14a", hex_value), "0x1.1b3829ac280580p+3");
943 EXPECT_EQ(format("%.15a", hex_value), "0x1.1b3829ac2805800p+3");
944 EXPECT_EQ(format("%.16a", hex_value), "0x1.1b3829ac28058000p+3");
945 EXPECT_EQ(format("%.17a", hex_value), "0x1.1b3829ac280580000p+3");
946 EXPECT_EQ(format("%.18a", hex_value), "0x1.1b3829ac2805800000p+3");
947 EXPECT_EQ(format("%.19a", hex_value), "0x1.1b3829ac28058000000p+3");
948 EXPECT_EQ(format("%.20a", hex_value), "0x1.1b3829ac280580000000p+3");
949 EXPECT_EQ(format("%.21a", hex_value), "0x1.1b3829ac2805800000000p+3");
950
951 // 0x1.0818283848586p+3
952 const double hex_value2 = 8.2529488658208371987257123691961169242858886718750;
953 EXPECT_EQ(format("%.0a", hex_value2), "0x1p+3");
954 EXPECT_EQ(format("%.1a", hex_value2), "0x1.1p+3");
955 EXPECT_EQ(format("%.2a", hex_value2), "0x1.08p+3");
956 EXPECT_EQ(format("%.3a", hex_value2), "0x1.082p+3");
957 EXPECT_EQ(format("%.4a", hex_value2), "0x1.0818p+3");
958 EXPECT_EQ(format("%.5a", hex_value2), "0x1.08183p+3");
959 EXPECT_EQ(format("%.6a", hex_value2), "0x1.081828p+3");
960 EXPECT_EQ(format("%.7a", hex_value2), "0x1.0818284p+3");
961 EXPECT_EQ(format("%.8a", hex_value2), "0x1.08182838p+3");
962 EXPECT_EQ(format("%.9a", hex_value2), "0x1.081828385p+3");
963 EXPECT_EQ(format("%.10a", hex_value2), "0x1.0818283848p+3");
964 EXPECT_EQ(format("%.11a", hex_value2), "0x1.08182838486p+3");
965 EXPECT_EQ(format("%.12a", hex_value2), "0x1.081828384858p+3");
966 EXPECT_EQ(format("%.13a", hex_value2), "0x1.0818283848586p+3");
967 EXPECT_EQ(format("%.14a", hex_value2), "0x1.08182838485860p+3");
968 EXPECT_EQ(format("%.15a", hex_value2), "0x1.081828384858600p+3");
969 EXPECT_EQ(format("%.16a", hex_value2), "0x1.0818283848586000p+3");
970 EXPECT_EQ(format("%.17a", hex_value2), "0x1.08182838485860000p+3");
971 EXPECT_EQ(format("%.18a", hex_value2), "0x1.081828384858600000p+3");
972 EXPECT_EQ(format("%.19a", hex_value2), "0x1.0818283848586000000p+3");
973 EXPECT_EQ(format("%.20a", hex_value2), "0x1.08182838485860000000p+3");
974 EXPECT_EQ(format("%.21a", hex_value2), "0x1.081828384858600000000p+3");
975 }
976
TEST_F(FormatConvertTest,LongDoubleRoundA)977 TEST_F(FormatConvertTest, LongDoubleRoundA) {
978 if (std::numeric_limits<long double>::digits % 4 != 0) {
979 // This test doesn't really make sense to run on platforms where a long
980 // double has a different mantissa size (mod 4) than Prod, since then the
981 // leading digit will be formatted differently.
982 return;
983 }
984 const NativePrintfTraits &native_traits = VerifyNativeImplementation();
985 std::string s;
986 const auto format = [&](const char *fmt, long double d) -> std::string & {
987 s.clear();
988 FormatArgImpl args[1] = {FormatArgImpl(d)};
989 AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
990 if (native_traits.hex_float_has_glibc_rounding &&
991 native_traits.hex_float_optimizes_leading_digit_bit_count) {
992 EXPECT_EQ(StrPrint(fmt, d), s);
993 }
994 return s;
995 };
996
997 // 0x8.8p+4
998 const long double on_boundary_even = 136.0;
999 EXPECT_EQ(format("%.0La", on_boundary_even), "0x8p+4");
1000 EXPECT_EQ(format("%.1La", on_boundary_even), "0x8.8p+4");
1001 EXPECT_EQ(format("%.2La", on_boundary_even), "0x8.80p+4");
1002 EXPECT_EQ(format("%.3La", on_boundary_even), "0x8.800p+4");
1003 EXPECT_EQ(format("%.4La", on_boundary_even), "0x8.8000p+4");
1004 EXPECT_EQ(format("%.5La", on_boundary_even), "0x8.80000p+4");
1005 EXPECT_EQ(format("%.6La", on_boundary_even), "0x8.800000p+4");
1006
1007 // 0x9.8p+4
1008 const long double on_boundary_odd = 152.0;
1009 EXPECT_EQ(format("%.0La", on_boundary_odd), "0xap+4");
1010 EXPECT_EQ(format("%.1La", on_boundary_odd), "0x9.8p+4");
1011 EXPECT_EQ(format("%.2La", on_boundary_odd), "0x9.80p+4");
1012 EXPECT_EQ(format("%.3La", on_boundary_odd), "0x9.800p+4");
1013 EXPECT_EQ(format("%.4La", on_boundary_odd), "0x9.8000p+4");
1014 EXPECT_EQ(format("%.5La", on_boundary_odd), "0x9.80000p+4");
1015 EXPECT_EQ(format("%.6La", on_boundary_odd), "0x9.800000p+4");
1016
1017 // 0x8.80001p+24
1018 const long double slightly_over = 142606352.0;
1019 EXPECT_EQ(format("%.0La", slightly_over), "0x9p+24");
1020 EXPECT_EQ(format("%.1La", slightly_over), "0x8.8p+24");
1021 EXPECT_EQ(format("%.2La", slightly_over), "0x8.80p+24");
1022 EXPECT_EQ(format("%.3La", slightly_over), "0x8.800p+24");
1023 EXPECT_EQ(format("%.4La", slightly_over), "0x8.8000p+24");
1024 EXPECT_EQ(format("%.5La", slightly_over), "0x8.80001p+24");
1025 EXPECT_EQ(format("%.6La", slightly_over), "0x8.800010p+24");
1026
1027 // 0x8.7ffffp+24
1028 const long double slightly_under = 142606320.0;
1029 EXPECT_EQ(format("%.0La", slightly_under), "0x8p+24");
1030 EXPECT_EQ(format("%.1La", slightly_under), "0x8.8p+24");
1031 EXPECT_EQ(format("%.2La", slightly_under), "0x8.80p+24");
1032 EXPECT_EQ(format("%.3La", slightly_under), "0x8.800p+24");
1033 EXPECT_EQ(format("%.4La", slightly_under), "0x8.8000p+24");
1034 EXPECT_EQ(format("%.5La", slightly_under), "0x8.7ffffp+24");
1035 EXPECT_EQ(format("%.6La", slightly_under), "0x8.7ffff0p+24");
1036 EXPECT_EQ(format("%.7La", slightly_under), "0x8.7ffff00p+24");
1037
1038 // 0xc.0828384858688000p+128
1039 const long double eights = 4094231060438608800781871108094404067328.0;
1040 EXPECT_EQ(format("%.0La", eights), "0xcp+128");
1041 EXPECT_EQ(format("%.1La", eights), "0xc.1p+128");
1042 EXPECT_EQ(format("%.2La", eights), "0xc.08p+128");
1043 EXPECT_EQ(format("%.3La", eights), "0xc.083p+128");
1044 EXPECT_EQ(format("%.4La", eights), "0xc.0828p+128");
1045 EXPECT_EQ(format("%.5La", eights), "0xc.08284p+128");
1046 EXPECT_EQ(format("%.6La", eights), "0xc.082838p+128");
1047 EXPECT_EQ(format("%.7La", eights), "0xc.0828385p+128");
1048 EXPECT_EQ(format("%.8La", eights), "0xc.08283848p+128");
1049 EXPECT_EQ(format("%.9La", eights), "0xc.082838486p+128");
1050 EXPECT_EQ(format("%.10La", eights), "0xc.0828384858p+128");
1051 EXPECT_EQ(format("%.11La", eights), "0xc.08283848587p+128");
1052 EXPECT_EQ(format("%.12La", eights), "0xc.082838485868p+128");
1053 EXPECT_EQ(format("%.13La", eights), "0xc.0828384858688p+128");
1054 EXPECT_EQ(format("%.14La", eights), "0xc.08283848586880p+128");
1055 EXPECT_EQ(format("%.15La", eights), "0xc.082838485868800p+128");
1056 EXPECT_EQ(format("%.16La", eights), "0xc.0828384858688000p+128");
1057 }
1058
1059 // We don't actually store the results. This is just to exercise the rest of the
1060 // machinery.
1061 struct NullSink {
AbslFormatFlush(NullSink * sink,string_view str)1062 friend void AbslFormatFlush(NullSink *sink, string_view str) {}
1063 };
1064
1065 template <typename... T>
FormatWithNullSink(absl::string_view fmt,const T &...a)1066 bool FormatWithNullSink(absl::string_view fmt, const T &... a) {
1067 NullSink sink;
1068 FormatArgImpl args[] = {FormatArgImpl(a)...};
1069 return FormatUntyped(&sink, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
1070 }
1071
TEST_F(FormatConvertTest,ExtremeWidthPrecision)1072 TEST_F(FormatConvertTest, ExtremeWidthPrecision) {
1073 for (const char *fmt : {"f"}) {
1074 for (double d : {1e-100, 1.0, 1e100}) {
1075 constexpr int max = std::numeric_limits<int>::max();
1076 EXPECT_TRUE(FormatWithNullSink(std::string("%.*") + fmt, max, d));
1077 EXPECT_TRUE(FormatWithNullSink(std::string("%1.*") + fmt, max, d));
1078 EXPECT_TRUE(FormatWithNullSink(std::string("%*") + fmt, max, d));
1079 EXPECT_TRUE(FormatWithNullSink(std::string("%*.*") + fmt, max, max, d));
1080 }
1081 }
1082 }
1083
TEST_F(FormatConvertTest,LongDouble)1084 TEST_F(FormatConvertTest, LongDouble) {
1085 const NativePrintfTraits &native_traits = VerifyNativeImplementation();
1086 const char *const kFormats[] = {"%", "%.3", "%8.5", "%9", "%.5000",
1087 "%.60", "%+", "% ", "%-10"};
1088
1089 std::vector<long double> doubles = {
1090 0.0,
1091 -0.0,
1092 std::numeric_limits<long double>::max(),
1093 -std::numeric_limits<long double>::max(),
1094 std::numeric_limits<long double>::min(),
1095 -std::numeric_limits<long double>::min(),
1096 std::numeric_limits<long double>::infinity(),
1097 -std::numeric_limits<long double>::infinity()};
1098
1099 for (long double base : {1.L, 12.L, 123.L, 1234.L, 12345.L, 123456.L,
1100 1234567.L, 12345678.L, 123456789.L, 1234567890.L,
1101 12345678901.L, 123456789012.L, 1234567890123.L,
1102 // This value is not representable in double, but it
1103 // is in long double that uses the extended format.
1104 // This is to verify that we are not truncating the
1105 // value mistakenly through a double.
1106 10000000000000000.25L}) {
1107 for (int exp : {-1000, -500, 0, 500, 1000}) {
1108 for (int sign : {1, -1}) {
1109 doubles.push_back(sign * std::ldexp(base, exp));
1110 doubles.push_back(sign / std::ldexp(base, exp));
1111 }
1112 }
1113 }
1114
1115 // Regression tests
1116 //
1117 // Using a string literal because not all platforms support hex literals or it
1118 // might be out of range.
1119 doubles.push_back(std::strtold("-0xf.ffffffb5feafffbp-16324L", nullptr));
1120
1121 for (const char *fmt : kFormats) {
1122 for (char f : {'f', 'F', //
1123 'g', 'G', //
1124 'a', 'A', //
1125 'e', 'E'}) {
1126 std::string fmt_str = std::string(fmt) + 'L' + f;
1127
1128 if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F' &&
1129 f != 'a' && f != 'A') {
1130 // This particular test takes way too long with snprintf.
1131 // Disable for the case we are not implementing natively.
1132 continue;
1133 }
1134
1135 if (f == 'a' || f == 'A') {
1136 if (!native_traits.hex_float_has_glibc_rounding ||
1137 !native_traits.hex_float_optimizes_leading_digit_bit_count) {
1138 continue;
1139 }
1140 }
1141
1142 for (auto d : doubles) {
1143 FormatArgImpl arg(d);
1144 UntypedFormatSpecImpl format(fmt_str);
1145 std::string result = FormatPack(format, {&arg, 1});
1146
1147 #ifdef _MSC_VER
1148 // MSVC has a different rounding policy than us so we can't test our
1149 // implementation against the native one there.
1150 continue;
1151 #endif // _MSC_VER
1152
1153 // We use ASSERT_EQ here because failures are usually correlated and a
1154 // bug would print way too many failed expectations causing the test to
1155 // time out.
1156 ASSERT_EQ(StrPrint(fmt_str.c_str(), d), result)
1157 << fmt_str << " " << StrPrint("%.18Lg", d) << " "
1158 << StrPrint("%La", d) << " " << StrPrint("%.1080Lf", d);
1159 }
1160 }
1161 }
1162 }
1163
TEST_F(FormatConvertTest,IntAsDouble)1164 TEST_F(FormatConvertTest, IntAsDouble) {
1165 const NativePrintfTraits &native_traits = VerifyNativeImplementation();
1166 const int kMin = std::numeric_limits<int>::min();
1167 const int kMax = std::numeric_limits<int>::max();
1168 const int ia[] = {
1169 1, 2, 3, 123,
1170 -1, -2, -3, -123,
1171 0, kMax - 1, kMax, kMin + 1, kMin };
1172 for (const int fx : ia) {
1173 SCOPED_TRACE(fx);
1174 const FormatArgImpl args[] = {FormatArgImpl(fx)};
1175 struct Expectation {
1176 int line;
1177 std::string out;
1178 const char *fmt;
1179 };
1180 const double dx = static_cast<double>(fx);
1181 std::vector<Expectation> expect = {
1182 {__LINE__, StrPrint("%f", dx), "%f"},
1183 {__LINE__, StrPrint("%12f", dx), "%12f"},
1184 {__LINE__, StrPrint("%.12f", dx), "%.12f"},
1185 {__LINE__, StrPrint("%.12a", dx), "%.12a"},
1186 };
1187 if (native_traits.hex_float_uses_minimal_precision_when_not_specified) {
1188 Expectation ex = {__LINE__, StrPrint("%12a", dx), "%12a"};
1189 expect.push_back(ex);
1190 }
1191 for (const Expectation &e : expect) {
1192 SCOPED_TRACE(e.line);
1193 SCOPED_TRACE(e.fmt);
1194 UntypedFormatSpecImpl format(e.fmt);
1195 EXPECT_EQ(e.out, FormatPack(format, absl::MakeSpan(args)));
1196 }
1197 }
1198 }
1199
1200 template <typename T>
FormatFails(const char * test_format,T value)1201 bool FormatFails(const char* test_format, T value) {
1202 std::string format_string = std::string("<<") + test_format + ">>";
1203 UntypedFormatSpecImpl format(format_string);
1204
1205 int one = 1;
1206 const FormatArgImpl args[] = {FormatArgImpl(value), FormatArgImpl(one)};
1207 EXPECT_EQ(FormatPack(format, absl::MakeSpan(args)), "")
1208 << "format=" << test_format << " value=" << value;
1209 return FormatPack(format, absl::MakeSpan(args)).empty();
1210 }
1211
TEST_F(FormatConvertTest,ExpectedFailures)1212 TEST_F(FormatConvertTest, ExpectedFailures) {
1213 // Int input
1214 EXPECT_TRUE(FormatFails("%p", 1));
1215 EXPECT_TRUE(FormatFails("%s", 1));
1216 EXPECT_TRUE(FormatFails("%n", 1));
1217
1218 // Double input
1219 EXPECT_TRUE(FormatFails("%p", 1.));
1220 EXPECT_TRUE(FormatFails("%s", 1.));
1221 EXPECT_TRUE(FormatFails("%n", 1.));
1222 EXPECT_TRUE(FormatFails("%c", 1.));
1223 EXPECT_TRUE(FormatFails("%d", 1.));
1224 EXPECT_TRUE(FormatFails("%x", 1.));
1225 EXPECT_TRUE(FormatFails("%*d", 1.));
1226
1227 // String input
1228 EXPECT_TRUE(FormatFails("%n", ""));
1229 EXPECT_TRUE(FormatFails("%c", ""));
1230 EXPECT_TRUE(FormatFails("%d", ""));
1231 EXPECT_TRUE(FormatFails("%x", ""));
1232 EXPECT_TRUE(FormatFails("%f", ""));
1233 EXPECT_TRUE(FormatFails("%*d", ""));
1234 }
1235
1236 // Sanity check to make sure that we are testing what we think we're testing on
1237 // e.g. the x86_64+glibc platform.
TEST_F(FormatConvertTest,GlibcHasCorrectTraits)1238 TEST_F(FormatConvertTest, GlibcHasCorrectTraits) {
1239 #if !defined(__GLIBC__) || !defined(__x86_64__)
1240 return;
1241 #endif
1242 const NativePrintfTraits &native_traits = VerifyNativeImplementation();
1243 // If one of the following tests break then it is either because the above PP
1244 // macro guards failed to exclude a new platform (likely) or because something
1245 // has changed in the implementation of glibc sprintf float formatting
1246 // behavior. If the latter, then the code that computes these flags needs to
1247 // be revisited and/or possibly the StrFormat implementation.
1248 EXPECT_TRUE(native_traits.hex_float_has_glibc_rounding);
1249 EXPECT_TRUE(native_traits.hex_float_prefers_denormal_repr);
1250 EXPECT_TRUE(
1251 native_traits.hex_float_uses_minimal_precision_when_not_specified);
1252 EXPECT_TRUE(native_traits.hex_float_optimizes_leading_digit_bit_count);
1253 }
1254
1255 } // namespace
1256 } // namespace str_format_internal
1257 ABSL_NAMESPACE_END
1258 } // namespace absl
1259