• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // mutex.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20 // most common type of synchronization primitive for facilitating locks on
21 // shared resources. A mutex is used to prevent multiple threads from accessing
22 // and/or writing to a shared resource concurrently.
23 //
24 // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25 // features:
26 //   * Conditional predicates intrinsic to the `Mutex` object
27 //   * Shared/reader locks, in addition to standard exclusive/writer locks
28 //   * Deadlock detection and debug support.
29 //
30 // The following helper classes are also defined within this file:
31 //
32 //  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33 //              write access within the current scope.
34 //
35 //  ReaderMutexLock
36 //            - An RAII wrapper to acquire and release a `Mutex` for shared/read
37 //              access within the current scope.
38 //
39 //  WriterMutexLock
40 //            - Effectively an alias for `MutexLock` above, designed for use in
41 //              distinguishing reader and writer locks within code.
42 //
43 // In addition to simple mutex locks, this file also defines ways to perform
44 // locking under certain conditions.
45 //
46 //  Condition - (Preferred) Used to wait for a particular predicate that
47 //              depends on state protected by the `Mutex` to become true.
48 //  CondVar   - A lower-level variant of `Condition` that relies on
49 //              application code to explicitly signal the `CondVar` when
50 //              a condition has been met.
51 //
52 // See below for more information on using `Condition` or `CondVar`.
53 //
54 // Mutexes and mutex behavior can be quite complicated. The information within
55 // this header file is limited, as a result. Please consult the Mutex guide for
56 // more complete information and examples.
57 
58 #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
59 #define ABSL_SYNCHRONIZATION_MUTEX_H_
60 
61 #include <atomic>
62 #include <cstdint>
63 #include <cstring>
64 #include <iterator>
65 #include <string>
66 
67 #include "absl/base/const_init.h"
68 #include "absl/base/internal/identity.h"
69 #include "absl/base/internal/low_level_alloc.h"
70 #include "absl/base/internal/thread_identity.h"
71 #include "absl/base/internal/tsan_mutex_interface.h"
72 #include "absl/base/port.h"
73 #include "absl/base/thread_annotations.h"
74 #include "absl/synchronization/internal/kernel_timeout.h"
75 #include "absl/synchronization/internal/per_thread_sem.h"
76 #include "absl/time/time.h"
77 
78 namespace absl {
79 ABSL_NAMESPACE_BEGIN
80 
81 class Condition;
82 struct SynchWaitParams;
83 
84 // -----------------------------------------------------------------------------
85 // Mutex
86 // -----------------------------------------------------------------------------
87 //
88 // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
89 // on some resource, typically a variable or data structure with associated
90 // invariants. Proper usage of mutexes prevents concurrent access by different
91 // threads to the same resource.
92 //
93 // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
94 // The `Lock()` operation *acquires* a `Mutex` (in a state known as an
95 // *exclusive* -- or *write* -- lock), and the `Unlock()` operation *releases* a
96 // Mutex. During the span of time between the Lock() and Unlock() operations,
97 // a mutex is said to be *held*. By design, all mutexes support exclusive/write
98 // locks, as this is the most common way to use a mutex.
99 //
100 // Mutex operations are only allowed under certain conditions; otherwise an
101 // operation is "invalid", and disallowed by the API. The conditions concern
102 // both the current state of the mutex and the identity of the threads that
103 // are performing the operations.
104 //
105 // The `Mutex` state machine for basic lock/unlock operations is quite simple:
106 //
107 // |                | Lock()                 | Unlock() |
108 // |----------------+------------------------+----------|
109 // | Free           | Exclusive              | invalid  |
110 // | Exclusive      | blocks, then exclusive | Free     |
111 //
112 // The full conditions are as follows.
113 //
114 // * Calls to `Unlock()` require that the mutex be held, and must be made in the
115 //   same thread that performed the corresponding `Lock()` operation which
116 //   acquired the mutex; otherwise the call is invalid.
117 //
118 // * The mutex being non-reentrant (or non-recursive) means that a call to
119 //   `Lock()` or `TryLock()` must not be made in a thread that already holds the
120 //   mutex; such a call is invalid.
121 //
122 // * In other words, the state of being "held" has both a temporal component
123 //   (from `Lock()` until `Unlock()`) as well as a thread identity component:
124 //   the mutex is held *by a particular thread*.
125 //
126 // An "invalid" operation has undefined behavior. The `Mutex` implementation
127 // is allowed to do anything on an invalid call, including, but not limited to,
128 // crashing with a useful error message, silently succeeding, or corrupting
129 // data structures. In debug mode, the implementation may crash with a useful
130 // error message.
131 //
132 // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
133 // is, however, approximately fair over long periods, and starvation-free for
134 // threads at the same priority.
135 //
136 // The lock/unlock primitives are now annotated with lock annotations
137 // defined in (base/thread_annotations.h). When writing multi-threaded code,
138 // you should use lock annotations whenever possible to document your lock
139 // synchronization policy. Besides acting as documentation, these annotations
140 // also help compilers or static analysis tools to identify and warn about
141 // issues that could potentially result in race conditions and deadlocks.
142 //
143 // For more information about the lock annotations, please see
144 // [Thread Safety
145 // Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) in the Clang
146 // documentation.
147 //
148 // See also `MutexLock`, below, for scoped `Mutex` acquisition.
149 
150 class ABSL_LOCKABLE Mutex {
151  public:
152   // Creates a `Mutex` that is not held by anyone. This constructor is
153   // typically used for Mutexes allocated on the heap or the stack.
154   //
155   // To create `Mutex` instances with static storage duration
156   // (e.g. a namespace-scoped or global variable), see
157   // `Mutex::Mutex(absl::kConstInit)` below instead.
158   Mutex();
159 
160   // Creates a mutex with static storage duration.  A global variable
161   // constructed this way avoids the lifetime issues that can occur on program
162   // startup and shutdown.  (See absl/base/const_init.h.)
163   //
164   // For Mutexes allocated on the heap and stack, instead use the default
165   // constructor, which can interact more fully with the thread sanitizer.
166   //
167   // Example usage:
168   //   namespace foo {
169   //   ABSL_CONST_INIT absl::Mutex mu(absl::kConstInit);
170   //   }
171   explicit constexpr Mutex(absl::ConstInitType);
172 
173   ~Mutex();
174 
175   // Mutex::Lock()
176   //
177   // Blocks the calling thread, if necessary, until this `Mutex` is free, and
178   // then acquires it exclusively. (This lock is also known as a "write lock.")
179   void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
180 
181   // Mutex::Unlock()
182   //
183   // Releases this `Mutex` and returns it from the exclusive/write state to the
184   // free state. Calling thread must hold the `Mutex` exclusively.
185   void Unlock() ABSL_UNLOCK_FUNCTION();
186 
187   // Mutex::TryLock()
188   //
189   // If the mutex can be acquired without blocking, does so exclusively and
190   // returns `true`. Otherwise, returns `false`. Returns `true` with high
191   // probability if the `Mutex` was free.
192   bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
193 
194   // Mutex::AssertHeld()
195   //
196   // Require that the mutex be held exclusively (write mode) by this thread.
197   //
198   // If the mutex is not currently held by this thread, this function may report
199   // an error (typically by crashing with a diagnostic) or it may do nothing.
200   // This function is intended only as a tool to assist debugging; it doesn't
201   // guarantee correctness.
202   void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
203 
204   // ---------------------------------------------------------------------------
205   // Reader-Writer Locking
206   // ---------------------------------------------------------------------------
207 
208   // A Mutex can also be used as a starvation-free reader-writer lock.
209   // Neither read-locks nor write-locks are reentrant/recursive to avoid
210   // potential client programming errors.
211   //
212   // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
213   // `Unlock()` and `TryLock()` methods for use within applications mixing
214   // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
215   // manner can make locking behavior clearer when mixing read and write modes.
216   //
217   // Introducing reader locks necessarily complicates the `Mutex` state
218   // machine somewhat. The table below illustrates the allowed state transitions
219   // of a mutex in such cases. Note that ReaderLock() may block even if the lock
220   // is held in shared mode; this occurs when another thread is blocked on a
221   // call to WriterLock().
222   //
223   // ---------------------------------------------------------------------------
224   //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
225   // ---------------------------------------------------------------------------
226   // State
227   // ---------------------------------------------------------------------------
228   // Free           Exclusive    invalid   Shared(1)              invalid
229   // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
230   // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
231   // Exclusive      blocks       Free      blocks                 invalid
232   // ---------------------------------------------------------------------------
233   //
234   // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
235 
236   // Mutex::ReaderLock()
237   //
238   // Blocks the calling thread, if necessary, until this `Mutex` is either free,
239   // or in shared mode, and then acquires a share of it. Note that
240   // `ReaderLock()` will block if some other thread has an exclusive/writer lock
241   // on the mutex.
242 
243   void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
244 
245   // Mutex::ReaderUnlock()
246   //
247   // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
248   // the free state if this thread holds the last reader lock on the mutex. Note
249   // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
250   void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
251 
252   // Mutex::ReaderTryLock()
253   //
254   // If the mutex can be acquired without blocking, acquires this mutex for
255   // shared access and returns `true`. Otherwise, returns `false`. Returns
256   // `true` with high probability if the `Mutex` was free or shared.
257   bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
258 
259   // Mutex::AssertReaderHeld()
260   //
261   // Require that the mutex be held at least in shared mode (read mode) by this
262   // thread.
263   //
264   // If the mutex is not currently held by this thread, this function may report
265   // an error (typically by crashing with a diagnostic) or it may do nothing.
266   // This function is intended only as a tool to assist debugging; it doesn't
267   // guarantee correctness.
268   void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
269 
270   // Mutex::WriterLock()
271   // Mutex::WriterUnlock()
272   // Mutex::WriterTryLock()
273   //
274   // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
275   //
276   // These methods may be used (along with the complementary `Reader*()`
277   // methods) to distinguish simple exclusive `Mutex` usage (`Lock()`,
278   // etc.) from reader/writer lock usage.
WriterLock()279   void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
280 
WriterUnlock()281   void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
282 
WriterTryLock()283   bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
284     return this->TryLock();
285   }
286 
287   // ---------------------------------------------------------------------------
288   // Conditional Critical Regions
289   // ---------------------------------------------------------------------------
290 
291   // Conditional usage of a `Mutex` can occur using two distinct paradigms:
292   //
293   //   * Use of `Mutex` member functions with `Condition` objects.
294   //   * Use of the separate `CondVar` abstraction.
295   //
296   // In general, prefer use of `Condition` and the `Mutex` member functions
297   // listed below over `CondVar`. When there are multiple threads waiting on
298   // distinctly different conditions, however, a battery of `CondVar`s may be
299   // more efficient. This section discusses use of `Condition` objects.
300   //
301   // `Mutex` contains member functions for performing lock operations only under
302   // certain conditions, of class `Condition`. For correctness, the `Condition`
303   // must return a boolean that is a pure function, only of state protected by
304   // the `Mutex`. The condition must be invariant w.r.t. environmental state
305   // such as thread, cpu id, or time, and must be `noexcept`. The condition will
306   // always be invoked with the mutex held in at least read mode, so you should
307   // not block it for long periods or sleep it on a timer.
308   //
309   // Since a condition must not depend directly on the current time, use
310   // `*WithTimeout()` member function variants to make your condition
311   // effectively true after a given duration, or `*WithDeadline()` variants to
312   // make your condition effectively true after a given time.
313   //
314   // The condition function should have no side-effects aside from debug
315   // logging; as a special exception, the function may acquire other mutexes
316   // provided it releases all those that it acquires.  (This exception was
317   // required to allow logging.)
318 
319   // Mutex::Await()
320   //
321   // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
322   // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
323   // same mode in which it was previously held. If the condition is initially
324   // `true`, `Await()` *may* skip the release/re-acquire step.
325   //
326   // `Await()` requires that this thread holds this `Mutex` in some mode.
327   void Await(const Condition& cond);
328 
329   // Mutex::LockWhen()
330   // Mutex::ReaderLockWhen()
331   // Mutex::WriterLockWhen()
332   //
333   // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
334   // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
335   // logically equivalent to `*Lock(); Await();` though they may have different
336   // performance characteristics.
337   void LockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION();
338 
339   void ReaderLockWhen(const Condition& cond) ABSL_SHARED_LOCK_FUNCTION();
340 
WriterLockWhen(const Condition & cond)341   void WriterLockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
342     this->LockWhen(cond);
343   }
344 
345   // ---------------------------------------------------------------------------
346   // Mutex Variants with Timeouts/Deadlines
347   // ---------------------------------------------------------------------------
348 
349   // Mutex::AwaitWithTimeout()
350   // Mutex::AwaitWithDeadline()
351   //
352   // Unlocks this `Mutex` and blocks until simultaneously:
353   //   - either `cond` is true or the {timeout has expired, deadline has passed}
354   //     and
355   //   - this `Mutex` can be reacquired,
356   // then reacquire this `Mutex` in the same mode in which it was previously
357   // held, returning `true` iff `cond` is `true` on return.
358   //
359   // If the condition is initially `true`, the implementation *may* skip the
360   // release/re-acquire step and return immediately.
361   //
362   // Deadlines in the past are equivalent to an immediate deadline.
363   // Negative timeouts are equivalent to a zero timeout.
364   //
365   // This method requires that this thread holds this `Mutex` in some mode.
366   bool AwaitWithTimeout(const Condition& cond, absl::Duration timeout);
367 
368   bool AwaitWithDeadline(const Condition& cond, absl::Time deadline);
369 
370   // Mutex::LockWhenWithTimeout()
371   // Mutex::ReaderLockWhenWithTimeout()
372   // Mutex::WriterLockWhenWithTimeout()
373   //
374   // Blocks until simultaneously both:
375   //   - either `cond` is `true` or the timeout has expired, and
376   //   - this `Mutex` can be acquired,
377   // then atomically acquires this `Mutex`, returning `true` iff `cond` is
378   // `true` on return.
379   //
380   // Negative timeouts are equivalent to a zero timeout.
381   bool LockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
382       ABSL_EXCLUSIVE_LOCK_FUNCTION();
383   bool ReaderLockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
384       ABSL_SHARED_LOCK_FUNCTION();
WriterLockWhenWithTimeout(const Condition & cond,absl::Duration timeout)385   bool WriterLockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
386       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
387     return this->LockWhenWithTimeout(cond, timeout);
388   }
389 
390   // Mutex::LockWhenWithDeadline()
391   // Mutex::ReaderLockWhenWithDeadline()
392   // Mutex::WriterLockWhenWithDeadline()
393   //
394   // Blocks until simultaneously both:
395   //   - either `cond` is `true` or the deadline has been passed, and
396   //   - this `Mutex` can be acquired,
397   // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
398   // on return.
399   //
400   // Deadlines in the past are equivalent to an immediate deadline.
401   bool LockWhenWithDeadline(const Condition& cond, absl::Time deadline)
402       ABSL_EXCLUSIVE_LOCK_FUNCTION();
403   bool ReaderLockWhenWithDeadline(const Condition& cond, absl::Time deadline)
404       ABSL_SHARED_LOCK_FUNCTION();
WriterLockWhenWithDeadline(const Condition & cond,absl::Time deadline)405   bool WriterLockWhenWithDeadline(const Condition& cond, absl::Time deadline)
406       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
407     return this->LockWhenWithDeadline(cond, deadline);
408   }
409 
410   // ---------------------------------------------------------------------------
411   // Debug Support: Invariant Checking, Deadlock Detection, Logging.
412   // ---------------------------------------------------------------------------
413 
414   // Mutex::EnableInvariantDebugging()
415   //
416   // If `invariant`!=null and if invariant debugging has been enabled globally,
417   // cause `(*invariant)(arg)` to be called at moments when the invariant for
418   // this `Mutex` should hold (for example: just after acquire, just before
419   // release).
420   //
421   // The routine `invariant` should have no side-effects since it is not
422   // guaranteed how many times it will be called; it should check the invariant
423   // and crash if it does not hold. Enabling global invariant debugging may
424   // substantially reduce `Mutex` performance; it should be set only for
425   // non-production runs.  Optimization options may also disable invariant
426   // checks.
427   void EnableInvariantDebugging(void (*invariant)(void*), void* arg);
428 
429   // Mutex::EnableDebugLog()
430   //
431   // Cause all subsequent uses of this `Mutex` to be logged via
432   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
433   // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
434   //
435   // Note: This method substantially reduces `Mutex` performance.
436   void EnableDebugLog(const char* name);
437 
438   // Deadlock detection
439 
440   // Mutex::ForgetDeadlockInfo()
441   //
442   // Forget any deadlock-detection information previously gathered
443   // about this `Mutex`. Call this method in debug mode when the lock ordering
444   // of a `Mutex` changes.
445   void ForgetDeadlockInfo();
446 
447   // Mutex::AssertNotHeld()
448   //
449   // Return immediately if this thread does not hold this `Mutex` in any
450   // mode; otherwise, may report an error (typically by crashing with a
451   // diagnostic), or may return immediately.
452   //
453   // Currently this check is performed only if all of:
454   //    - in debug mode
455   //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
456   //    - number of locks concurrently held by this thread is not large.
457   // are true.
458   void AssertNotHeld() const;
459 
460   // Special cases.
461 
462   // A `MuHow` is a constant that indicates how a lock should be acquired.
463   // Internal implementation detail.  Clients should ignore.
464   typedef const struct MuHowS* MuHow;
465 
466   // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
467   //
468   // Causes the `Mutex` implementation to prepare itself for re-entry caused by
469   // future use of `Mutex` within a fatal signal handler. This method is
470   // intended for use only for last-ditch attempts to log crash information.
471   // It does not guarantee that attempts to use Mutexes within the handler will
472   // not deadlock; it merely makes other faults less likely.
473   //
474   // WARNING:  This routine must be invoked from a signal handler, and the
475   // signal handler must either loop forever or terminate the process.
476   // Attempts to return from (or `longjmp` out of) the signal handler once this
477   // call has been made may cause arbitrary program behaviour including
478   // crashes and deadlocks.
479   static void InternalAttemptToUseMutexInFatalSignalHandler();
480 
481  private:
482   std::atomic<intptr_t> mu_;  // The Mutex state.
483 
484   // Post()/Wait() versus associated PerThreadSem; in class for required
485   // friendship with PerThreadSem.
486   static void IncrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w);
487   static bool DecrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w,
488                                 synchronization_internal::KernelTimeout t);
489 
490   // slow path acquire
491   void LockSlowLoop(SynchWaitParams* waitp, int flags);
492   // wrappers around LockSlowLoop()
493   bool LockSlowWithDeadline(MuHow how, const Condition* cond,
494                             synchronization_internal::KernelTimeout t,
495                             int flags);
496   void LockSlow(MuHow how, const Condition* cond,
497                 int flags) ABSL_ATTRIBUTE_COLD;
498   // slow path release
499   void UnlockSlow(SynchWaitParams* waitp) ABSL_ATTRIBUTE_COLD;
500   // Common code between Await() and AwaitWithTimeout/Deadline()
501   bool AwaitCommon(const Condition& cond,
502                    synchronization_internal::KernelTimeout t);
503   // Attempt to remove thread s from queue.
504   void TryRemove(base_internal::PerThreadSynch* s);
505   // Block a thread on mutex.
506   void Block(base_internal::PerThreadSynch* s);
507   // Wake a thread; return successor.
508   base_internal::PerThreadSynch* Wakeup(base_internal::PerThreadSynch* w);
509 
510   friend class CondVar;   // for access to Trans()/Fer().
511   void Trans(MuHow how);  // used for CondVar->Mutex transfer
512   void Fer(
513       base_internal::PerThreadSynch* w);  // used for CondVar->Mutex transfer
514 
515   // Catch the error of writing Mutex when intending MutexLock.
Mutex(const volatile Mutex *)516   explicit Mutex(const volatile Mutex* /*ignored*/) {}
517 
518   Mutex(const Mutex&) = delete;
519   Mutex& operator=(const Mutex&) = delete;
520 };
521 
522 // -----------------------------------------------------------------------------
523 // Mutex RAII Wrappers
524 // -----------------------------------------------------------------------------
525 
526 // MutexLock
527 //
528 // `MutexLock` is a helper class, which acquires and releases a `Mutex` via
529 // RAII.
530 //
531 // Example:
532 //
533 // Class Foo {
534 //  public:
535 //   Foo::Bar* Baz() {
536 //     MutexLock lock(&mu_);
537 //     ...
538 //     return bar;
539 //   }
540 //
541 // private:
542 //   Mutex mu_;
543 // };
544 class ABSL_SCOPED_LOCKABLE MutexLock {
545  public:
546   // Constructors
547 
548   // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is
549   // guaranteed to be locked when this object is constructed. Requires that
550   // `mu` be dereferenceable.
MutexLock(Mutex * mu)551   explicit MutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
552     this->mu_->Lock();
553   }
554 
555   // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to
556   // the above, the condition given by `cond` is also guaranteed to hold when
557   // this object is constructed.
MutexLock(Mutex * mu,const Condition & cond)558   explicit MutexLock(Mutex* mu, const Condition& cond)
559       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
560       : mu_(mu) {
561     this->mu_->LockWhen(cond);
562   }
563 
564   MutexLock(const MutexLock&) = delete;  // NOLINT(runtime/mutex)
565   MutexLock(MutexLock&&) = delete;       // NOLINT(runtime/mutex)
566   MutexLock& operator=(const MutexLock&) = delete;
567   MutexLock& operator=(MutexLock&&) = delete;
568 
ABSL_UNLOCK_FUNCTION()569   ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
570 
571  private:
572   Mutex* const mu_;
573 };
574 
575 // ReaderMutexLock
576 //
577 // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
578 // releases a shared lock on a `Mutex` via RAII.
579 class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
580  public:
ReaderMutexLock(Mutex * mu)581   explicit ReaderMutexLock(Mutex* mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
582     mu->ReaderLock();
583   }
584 
ReaderMutexLock(Mutex * mu,const Condition & cond)585   explicit ReaderMutexLock(Mutex* mu, const Condition& cond)
586       ABSL_SHARED_LOCK_FUNCTION(mu)
587       : mu_(mu) {
588     mu->ReaderLockWhen(cond);
589   }
590 
591   ReaderMutexLock(const ReaderMutexLock&) = delete;
592   ReaderMutexLock(ReaderMutexLock&&) = delete;
593   ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
594   ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
595 
ABSL_UNLOCK_FUNCTION()596   ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
597 
598  private:
599   Mutex* const mu_;
600 };
601 
602 // WriterMutexLock
603 //
604 // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
605 // releases a write (exclusive) lock on a `Mutex` via RAII.
606 class ABSL_SCOPED_LOCKABLE WriterMutexLock {
607  public:
WriterMutexLock(Mutex * mu)608   explicit WriterMutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
609       : mu_(mu) {
610     mu->WriterLock();
611   }
612 
WriterMutexLock(Mutex * mu,const Condition & cond)613   explicit WriterMutexLock(Mutex* mu, const Condition& cond)
614       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
615       : mu_(mu) {
616     mu->WriterLockWhen(cond);
617   }
618 
619   WriterMutexLock(const WriterMutexLock&) = delete;
620   WriterMutexLock(WriterMutexLock&&) = delete;
621   WriterMutexLock& operator=(const WriterMutexLock&) = delete;
622   WriterMutexLock& operator=(WriterMutexLock&&) = delete;
623 
ABSL_UNLOCK_FUNCTION()624   ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
625 
626  private:
627   Mutex* const mu_;
628 };
629 
630 // -----------------------------------------------------------------------------
631 // Condition
632 // -----------------------------------------------------------------------------
633 //
634 // `Mutex` contains a number of member functions which take a `Condition` as an
635 // argument; clients can wait for conditions to become `true` before attempting
636 // to acquire the mutex. These sections are known as "condition critical"
637 // sections. To use a `Condition`, you simply need to construct it, and use
638 // within an appropriate `Mutex` member function; everything else in the
639 // `Condition` class is an implementation detail.
640 //
641 // A `Condition` is specified as a function pointer which returns a boolean.
642 // `Condition` functions should be pure functions -- their results should depend
643 // only on passed arguments, should not consult any external state (such as
644 // clocks), and should have no side-effects, aside from debug logging. Any
645 // objects that the function may access should be limited to those which are
646 // constant while the mutex is blocked on the condition (e.g. a stack variable),
647 // or objects of state protected explicitly by the mutex.
648 //
649 // No matter which construction is used for `Condition`, the underlying
650 // function pointer / functor / callable must not throw any
651 // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
652 // the face of a throwing `Condition`. (When Abseil is allowed to depend
653 // on C++17, these function pointers will be explicitly marked
654 // `noexcept`; until then this requirement cannot be enforced in the
655 // type system.)
656 //
657 // Note: to use a `Condition`, you need only construct it and pass it to a
658 // suitable `Mutex' member function, such as `Mutex::Await()`, or to the
659 // constructor of one of the scope guard classes.
660 //
661 // Example using LockWhen/Unlock:
662 //
663 //   // assume count_ is not internal reference count
664 //   int count_ ABSL_GUARDED_BY(mu_);
665 //   Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
666 //
667 //   mu_.LockWhen(count_is_zero);
668 //   // ...
669 //   mu_.Unlock();
670 //
671 // Example using a scope guard:
672 //
673 //   {
674 //     MutexLock lock(&mu_, count_is_zero);
675 //     // ...
676 //   }
677 //
678 // When multiple threads are waiting on exactly the same condition, make sure
679 // that they are constructed with the same parameters (same pointer to function
680 // + arg, or same pointer to object + method), so that the mutex implementation
681 // can avoid redundantly evaluating the same condition for each thread.
682 class Condition {
683  public:
684   // A Condition that returns the result of "(*func)(arg)"
685   Condition(bool (*func)(void*), void* arg);
686 
687   // Templated version for people who are averse to casts.
688   //
689   // To use a lambda, prepend it with unary plus, which converts the lambda
690   // into a function pointer:
691   //     Condition(+[](T* t) { return ...; }, arg).
692   //
693   // Note: lambdas in this case must contain no bound variables.
694   //
695   // See class comment for performance advice.
696   template <typename T>
697   Condition(bool (*func)(T*), T* arg);
698 
699   // Same as above, but allows for cases where `arg` comes from a pointer that
700   // is convertible to the function parameter type `T*` but not an exact match.
701   //
702   // For example, the argument might be `X*` but the function takes `const X*`,
703   // or the argument might be `Derived*` while the function takes `Base*`, and
704   // so on for cases where the argument pointer can be implicitly converted.
705   //
706   // Implementation notes: This constructor overload is required in addition to
707   // the one above to allow deduction of `T` from `arg` for cases such as where
708   // a function template is passed as `func`. Also, the dummy `typename = void`
709   // template parameter exists just to work around a MSVC mangling bug.
710   template <typename T, typename = void>
711   Condition(bool (*func)(T*), typename absl::internal::identity<T>::type* arg);
712 
713   // Templated version for invoking a method that returns a `bool`.
714   //
715   // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
716   // `object->Method()`.
717   //
718   // Implementation Note: `absl::internal::identity` is used to allow methods to
719   // come from base classes. A simpler signature like
720   // `Condition(T*, bool (T::*)())` does not suffice.
721   template <typename T>
722   Condition(T* object, bool (absl::internal::identity<T>::type::*method)());
723 
724   // Same as above, for const members
725   template <typename T>
726   Condition(const T* object,
727             bool (absl::internal::identity<T>::type::*method)() const);
728 
729   // A Condition that returns the value of `*cond`
730   explicit Condition(const bool* cond);
731 
732   // Templated version for invoking a functor that returns a `bool`.
733   // This approach accepts pointers to non-mutable lambdas, `std::function`,
734   // the result of` std::bind` and user-defined functors that define
735   // `bool F::operator()() const`.
736   //
737   // Example:
738   //
739   //   auto reached = [this, current]() {
740   //     mu_.AssertReaderHeld();                // For annotalysis.
741   //     return processed_ >= current;
742   //   };
743   //   mu_.Await(Condition(&reached));
744   //
745   // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
746   // the lambda as it may be called when the mutex is being unlocked from a
747   // scope holding only a reader lock, which will make the assertion not
748   // fulfilled and crash the binary.
749 
750   // See class comment for performance advice. In particular, if there
751   // might be more than one waiter for the same condition, make sure
752   // that all waiters construct the condition with the same pointers.
753 
754   // Implementation note: The second template parameter ensures that this
755   // constructor doesn't participate in overload resolution if T doesn't have
756   // `bool operator() const`.
757   template <typename T, typename E = decltype(static_cast<bool (T::*)() const>(
758                             &T::operator()))>
Condition(const T * obj)759   explicit Condition(const T* obj)
760       : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
761 
762   // A Condition that always returns `true`.
763   // kTrue is only useful in a narrow set of circumstances, mostly when
764   // it's passed conditionally. For example:
765   //
766   //   mu.LockWhen(some_flag ? kTrue : SomeOtherCondition);
767   //
768   // Note: {LockWhen,Await}With{Deadline,Timeout} methods with kTrue condition
769   // don't return immediately when the timeout happens, they still block until
770   // the Mutex becomes available. The return value of these methods does
771   // not indicate if the timeout was reached; rather it indicates whether or
772   // not the condition is true.
773   ABSL_CONST_INIT static const Condition kTrue;
774 
775   // Evaluates the condition.
776   bool Eval() const;
777 
778   // Returns `true` if the two conditions are guaranteed to return the same
779   // value if evaluated at the same time, `false` if the evaluation *may* return
780   // different results.
781   //
782   // Two `Condition` values are guaranteed equal if both their `func` and `arg`
783   // components are the same. A null pointer is equivalent to a `true`
784   // condition.
785   static bool GuaranteedEqual(const Condition* a, const Condition* b);
786 
787  private:
788   // Sizing an allocation for a method pointer can be subtle. In the Itanium
789   // specifications, a method pointer has a predictable, uniform size. On the
790   // other hand, MSVC ABI, method pointer sizes vary based on the
791   // inheritance of the class. Specifically, method pointers from classes with
792   // multiple inheritance are bigger than those of classes with single
793   // inheritance. Other variations also exist.
794 
795 #ifndef _MSC_VER
796   // Allocation for a function pointer or method pointer.
797   // The {0} initializer ensures that all unused bytes of this buffer are
798   // always zeroed out.  This is necessary, because GuaranteedEqual() compares
799   // all of the bytes, unaware of which bytes are relevant to a given `eval_`.
800   using MethodPtr = bool (Condition::*)();
801   char callback_[sizeof(MethodPtr)] = {0};
802 #else
803   // It is well known that the larget MSVC pointer-to-member is 24 bytes. This
804   // may be the largest known pointer-to-member of any platform. For this
805   // reason we will allocate 24 bytes for MSVC platform toolchains.
806   char callback_[24] = {0};
807 #endif
808 
809   // Function with which to evaluate callbacks and/or arguments.
810   bool (*eval_)(const Condition*) = nullptr;
811 
812   // Either an argument for a function call or an object for a method call.
813   void* arg_ = nullptr;
814 
815   // Various functions eval_ can point to:
816   static bool CallVoidPtrFunction(const Condition*);
817   template <typename T>
818   static bool CastAndCallFunction(const Condition* c);
819   template <typename T>
820   static bool CastAndCallMethod(const Condition* c);
821 
822   // Helper methods for storing, validating, and reading callback arguments.
823   template <typename T>
StoreCallback(T callback)824   inline void StoreCallback(T callback) {
825     static_assert(
826         sizeof(callback) <= sizeof(callback_),
827         "An overlarge pointer was passed as a callback to Condition.");
828     std::memcpy(callback_, &callback, sizeof(callback));
829   }
830 
831   template <typename T>
ReadCallback(T * callback)832   inline void ReadCallback(T* callback) const {
833     std::memcpy(callback, callback_, sizeof(*callback));
834   }
835 
836   // Used only to create kTrue.
837   constexpr Condition() = default;
838 };
839 
840 // -----------------------------------------------------------------------------
841 // CondVar
842 // -----------------------------------------------------------------------------
843 //
844 // A condition variable, reflecting state evaluated separately outside of the
845 // `Mutex` object, which can be signaled to wake callers.
846 // This class is not normally needed; use `Mutex` member functions such as
847 // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
848 // with many threads and many conditions, `CondVar` may be faster.
849 //
850 // The implementation may deliver signals to any condition variable at
851 // any time, even when no call to `Signal()` or `SignalAll()` is made; as a
852 // result, upon being awoken, you must check the logical condition you have
853 // been waiting upon.
854 //
855 // Examples:
856 //
857 // Usage for a thread waiting for some condition C protected by mutex mu:
858 //       mu.Lock();
859 //       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
860 //       //  C holds; process data
861 //       mu.Unlock();
862 //
863 // Usage to wake T is:
864 //       mu.Lock();
865 //       // process data, possibly establishing C
866 //       if (C) { cv->Signal(); }
867 //       mu.Unlock();
868 //
869 // If C may be useful to more than one waiter, use `SignalAll()` instead of
870 // `Signal()`.
871 //
872 // With this implementation it is efficient to use `Signal()/SignalAll()` inside
873 // the locked region; this usage can make reasoning about your program easier.
874 //
875 class CondVar {
876  public:
877   // A `CondVar` allocated on the heap or on the stack can use the this
878   // constructor.
879   CondVar();
880   ~CondVar();
881 
882   // CondVar::Wait()
883   //
884   // Atomically releases a `Mutex` and blocks on this condition variable.
885   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
886   // spurious wakeup), then reacquires the `Mutex` and returns.
887   //
888   // Requires and ensures that the current thread holds the `Mutex`.
889   void Wait(Mutex* mu);
890 
891   // CondVar::WaitWithTimeout()
892   //
893   // Atomically releases a `Mutex` and blocks on this condition variable.
894   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
895   // spurious wakeup), or until the timeout has expired, then reacquires
896   // the `Mutex` and returns.
897   //
898   // Returns true if the timeout has expired without this `CondVar`
899   // being signalled in any manner. If both the timeout has expired
900   // and this `CondVar` has been signalled, the implementation is free
901   // to return `true` or `false`.
902   //
903   // Requires and ensures that the current thread holds the `Mutex`.
904   bool WaitWithTimeout(Mutex* mu, absl::Duration timeout);
905 
906   // CondVar::WaitWithDeadline()
907   //
908   // Atomically releases a `Mutex` and blocks on this condition variable.
909   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
910   // spurious wakeup), or until the deadline has passed, then reacquires
911   // the `Mutex` and returns.
912   //
913   // Deadlines in the past are equivalent to an immediate deadline.
914   //
915   // Returns true if the deadline has passed without this `CondVar`
916   // being signalled in any manner. If both the deadline has passed
917   // and this `CondVar` has been signalled, the implementation is free
918   // to return `true` or `false`.
919   //
920   // Requires and ensures that the current thread holds the `Mutex`.
921   bool WaitWithDeadline(Mutex* mu, absl::Time deadline);
922 
923   // CondVar::Signal()
924   //
925   // Signal this `CondVar`; wake at least one waiter if one exists.
926   void Signal();
927 
928   // CondVar::SignalAll()
929   //
930   // Signal this `CondVar`; wake all waiters.
931   void SignalAll();
932 
933   // CondVar::EnableDebugLog()
934   //
935   // Causes all subsequent uses of this `CondVar` to be logged via
936   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
937   // Note: this method substantially reduces `CondVar` performance.
938   void EnableDebugLog(const char* name);
939 
940  private:
941   bool WaitCommon(Mutex* mutex, synchronization_internal::KernelTimeout t);
942   void Remove(base_internal::PerThreadSynch* s);
943   void Wakeup(base_internal::PerThreadSynch* w);
944   std::atomic<intptr_t> cv_;  // Condition variable state.
945   CondVar(const CondVar&) = delete;
946   CondVar& operator=(const CondVar&) = delete;
947 };
948 
949 // Variants of MutexLock.
950 //
951 // If you find yourself using one of these, consider instead using
952 // Mutex::Unlock() and/or if-statements for clarity.
953 
954 // MutexLockMaybe
955 //
956 // MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
957 class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
958  public:
MutexLockMaybe(Mutex * mu)959   explicit MutexLockMaybe(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
960       : mu_(mu) {
961     if (this->mu_ != nullptr) {
962       this->mu_->Lock();
963     }
964   }
965 
MutexLockMaybe(Mutex * mu,const Condition & cond)966   explicit MutexLockMaybe(Mutex* mu, const Condition& cond)
967       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
968       : mu_(mu) {
969     if (this->mu_ != nullptr) {
970       this->mu_->LockWhen(cond);
971     }
972   }
973 
ABSL_UNLOCK_FUNCTION()974   ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
975     if (this->mu_ != nullptr) {
976       this->mu_->Unlock();
977     }
978   }
979 
980  private:
981   Mutex* const mu_;
982   MutexLockMaybe(const MutexLockMaybe&) = delete;
983   MutexLockMaybe(MutexLockMaybe&&) = delete;
984   MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
985   MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
986 };
987 
988 // ReleasableMutexLock
989 //
990 // ReleasableMutexLock is like MutexLock, but permits `Release()` of its
991 // mutex before destruction. `Release()` may be called at most once.
992 class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
993  public:
ReleasableMutexLock(Mutex * mu)994   explicit ReleasableMutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
995       : mu_(mu) {
996     this->mu_->Lock();
997   }
998 
ReleasableMutexLock(Mutex * mu,const Condition & cond)999   explicit ReleasableMutexLock(Mutex* mu, const Condition& cond)
1000       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1001       : mu_(mu) {
1002     this->mu_->LockWhen(cond);
1003   }
1004 
ABSL_UNLOCK_FUNCTION()1005   ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
1006     if (this->mu_ != nullptr) {
1007       this->mu_->Unlock();
1008     }
1009   }
1010 
1011   void Release() ABSL_UNLOCK_FUNCTION();
1012 
1013  private:
1014   Mutex* mu_;
1015   ReleasableMutexLock(const ReleasableMutexLock&) = delete;
1016   ReleasableMutexLock(ReleasableMutexLock&&) = delete;
1017   ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
1018   ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
1019 };
1020 
Mutex()1021 inline Mutex::Mutex() : mu_(0) {
1022   ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
1023 }
1024 
Mutex(absl::ConstInitType)1025 inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
1026 
CondVar()1027 inline CondVar::CondVar() : cv_(0) {}
1028 
1029 // static
1030 template <typename T>
CastAndCallMethod(const Condition * c)1031 bool Condition::CastAndCallMethod(const Condition* c) {
1032   T* object = static_cast<T*>(c->arg_);
1033   bool (T::*method_pointer)();
1034   c->ReadCallback(&method_pointer);
1035   return (object->*method_pointer)();
1036 }
1037 
1038 // static
1039 template <typename T>
CastAndCallFunction(const Condition * c)1040 bool Condition::CastAndCallFunction(const Condition* c) {
1041   bool (*function)(T*);
1042   c->ReadCallback(&function);
1043   T* argument = static_cast<T*>(c->arg_);
1044   return (*function)(argument);
1045 }
1046 
1047 template <typename T>
Condition(bool (* func)(T *),T * arg)1048 inline Condition::Condition(bool (*func)(T*), T* arg)
1049     : eval_(&CastAndCallFunction<T>),
1050       arg_(const_cast<void*>(static_cast<const void*>(arg))) {
1051   static_assert(sizeof(&func) <= sizeof(callback_),
1052                 "An overlarge function pointer was passed to Condition.");
1053   StoreCallback(func);
1054 }
1055 
1056 template <typename T, typename>
Condition(bool (* func)(T *),typename absl::internal::identity<T>::type * arg)1057 inline Condition::Condition(bool (*func)(T*),
1058                             typename absl::internal::identity<T>::type* arg)
1059     // Just delegate to the overload above.
1060     : Condition(func, arg) {}
1061 
1062 template <typename T>
Condition(T * object,bool (absl::internal::identity<T>::type::* method)())1063 inline Condition::Condition(T* object,
1064                             bool (absl::internal::identity<T>::type::*method)())
1065     : eval_(&CastAndCallMethod<T>), arg_(object) {
1066   static_assert(sizeof(&method) <= sizeof(callback_),
1067                 "An overlarge method pointer was passed to Condition.");
1068   StoreCallback(method);
1069 }
1070 
1071 template <typename T>
Condition(const T * object,bool (absl::internal::identity<T>::type::* method)()const)1072 inline Condition::Condition(const T* object,
1073                             bool (absl::internal::identity<T>::type::*method)()
1074                                 const)
1075     : eval_(&CastAndCallMethod<T>),
1076       arg_(reinterpret_cast<void*>(const_cast<T*>(object))) {
1077   StoreCallback(method);
1078 }
1079 
1080 // Register hooks for profiling support.
1081 //
1082 // The function pointer registered here will be called whenever a mutex is
1083 // contended.  The callback is given the cycles for which waiting happened (as
1084 // measured by //absl/base/internal/cycleclock.h, and which may not
1085 // be real "cycle" counts.)
1086 //
1087 // There is no ordering guarantee between when the hook is registered and when
1088 // callbacks will begin.  Only a single profiler can be installed in a running
1089 // binary; if this function is called a second time with a different function
1090 // pointer, the value is ignored (and will cause an assertion failure in debug
1091 // mode.)
1092 void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles));
1093 
1094 // Register a hook for Mutex tracing.
1095 //
1096 // The function pointer registered here will be called whenever a mutex is
1097 // contended.  The callback is given an opaque handle to the contended mutex,
1098 // an event name, and the number of wait cycles (as measured by
1099 // //absl/base/internal/cycleclock.h, and which may not be real
1100 // "cycle" counts.)
1101 //
1102 // The only event name currently sent is "slow release".
1103 //
1104 // This has the same ordering and single-use limitations as
1105 // RegisterMutexProfiler() above.
1106 void RegisterMutexTracer(void (*fn)(const char* msg, const void* obj,
1107                                     int64_t wait_cycles));
1108 
1109 // Register a hook for CondVar tracing.
1110 //
1111 // The function pointer registered here will be called here on various CondVar
1112 // events.  The callback is given an opaque handle to the CondVar object and
1113 // a string identifying the event.  This is thread-safe, but only a single
1114 // tracer can be registered.
1115 //
1116 // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
1117 // "SignalAll wakeup".
1118 //
1119 // This has the same ordering and single-use limitations as
1120 // RegisterMutexProfiler() above.
1121 void RegisterCondVarTracer(void (*fn)(const char* msg, const void* cv));
1122 
1123 // EnableMutexInvariantDebugging()
1124 //
1125 // Enable or disable global support for Mutex invariant debugging.  If enabled,
1126 // then invariant predicates can be registered per-Mutex for debug checking.
1127 // See Mutex::EnableInvariantDebugging().
1128 void EnableMutexInvariantDebugging(bool enabled);
1129 
1130 // When in debug mode, and when the feature has been enabled globally, the
1131 // implementation will keep track of lock ordering and complain (or optionally
1132 // crash) if a cycle is detected in the acquired-before graph.
1133 
1134 // Possible modes of operation for the deadlock detector in debug mode.
1135 enum class OnDeadlockCycle {
1136   kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
1137   kReport,  // Report lock cycles to stderr when detected
1138   kAbort,   // Report lock cycles to stderr when detected, then abort
1139 };
1140 
1141 // SetMutexDeadlockDetectionMode()
1142 //
1143 // Enable or disable global support for detection of potential deadlocks
1144 // due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
1145 // lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
1146 // will be maintained internally, and detected cycles will be reported in
1147 // the manner chosen here.
1148 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
1149 
1150 ABSL_NAMESPACE_END
1151 }  // namespace absl
1152 
1153 // In some build configurations we pass --detect-odr-violations to the
1154 // gold linker.  This causes it to flag weak symbol overrides as ODR
1155 // violations.  Because ODR only applies to C++ and not C,
1156 // --detect-odr-violations ignores symbols not mangled with C++ names.
1157 // By changing our extension points to be extern "C", we dodge this
1158 // check.
1159 extern "C" {
1160 void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
1161 }  // extern "C"
1162 
1163 #endif  // ABSL_SYNCHRONIZATION_MUTEX_H_
1164