• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 Google Inc. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //   https://www.apache.org/licenses/LICENSE-2.0
8 //
9 //   Unless required by applicable law or agreed to in writing, software
10 //   distributed under the License is distributed on an "AS IS" BASIS,
11 //   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 //   See the License for the specific language governing permissions and
13 //   limitations under the License.
14 
15 // This file implements the TimeZoneIf interface using the "zoneinfo"
16 // data provided by the IANA Time Zone Database (i.e., the only real game
17 // in town).
18 //
19 // TimeZoneInfo represents the history of UTC-offset changes within a time
20 // zone. Most changes are due to daylight-saving rules, but occasionally
21 // shifts are made to the time-zone's base offset. The database only attempts
22 // to be definitive for times since 1970, so be wary of local-time conversions
23 // before that. Also, rule and zone-boundary changes are made at the whim
24 // of governments, so the conversion of future times needs to be taken with
25 // a grain of salt.
26 //
27 // For more information see tzfile(5), http://www.iana.org/time-zones, or
28 // https://en.wikipedia.org/wiki/Zoneinfo.
29 //
30 // Note that we assume the proleptic Gregorian calendar and 60-second
31 // minutes throughout.
32 
33 #include "time_zone_info.h"
34 
35 #include <algorithm>
36 #include <cassert>
37 #include <chrono>
38 #include <cstdint>
39 #include <cstdio>
40 #include <cstdlib>
41 #include <cstring>
42 #include <fstream>
43 #include <functional>
44 #include <memory>
45 #include <sstream>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 #include "absl/base/config.h"
51 #include "absl/time/internal/cctz/include/cctz/civil_time.h"
52 #include "time_zone_fixed.h"
53 #include "time_zone_posix.h"
54 
55 namespace absl {
56 ABSL_NAMESPACE_BEGIN
57 namespace time_internal {
58 namespace cctz {
59 
60 namespace {
61 
IsLeap(year_t year)62 inline bool IsLeap(year_t year) {
63   return (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0);
64 }
65 
66 // The number of days in non-leap and leap years respectively.
67 const std::int_least32_t kDaysPerYear[2] = {365, 366};
68 
69 // The day offsets of the beginning of each (1-based) month in non-leap and
70 // leap years respectively (e.g., 335 days before December in a leap year).
71 const std::int_least16_t kMonthOffsets[2][1 + 12 + 1] = {
72     {-1, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365},
73     {-1, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366},
74 };
75 
76 // We reject leap-second encoded zoneinfo and so assume 60-second minutes.
77 const std::int_least32_t kSecsPerDay = 24 * 60 * 60;
78 
79 // 400-year chunks always have 146097 days (20871 weeks).
80 const std::int_least64_t kSecsPer400Years = 146097LL * kSecsPerDay;
81 
82 // Like kDaysPerYear[] but scaled up by a factor of kSecsPerDay.
83 const std::int_least32_t kSecsPerYear[2] = {
84     365 * kSecsPerDay,
85     366 * kSecsPerDay,
86 };
87 
88 // Convert a cctz::weekday to a POSIX TZ weekday number (0==Sun, ..., 6=Sat).
ToPosixWeekday(weekday wd)89 inline int ToPosixWeekday(weekday wd) {
90   switch (wd) {
91     case weekday::sunday:
92       return 0;
93     case weekday::monday:
94       return 1;
95     case weekday::tuesday:
96       return 2;
97     case weekday::wednesday:
98       return 3;
99     case weekday::thursday:
100       return 4;
101     case weekday::friday:
102       return 5;
103     case weekday::saturday:
104       return 6;
105   }
106   return 0; /*NOTREACHED*/
107 }
108 
109 // Single-byte, unsigned numeric values are encoded directly.
Decode8(const char * cp)110 inline std::uint_fast8_t Decode8(const char* cp) {
111   return static_cast<std::uint_fast8_t>(*cp) & 0xff;
112 }
113 
114 // Multi-byte, numeric values are encoded using a MSB first,
115 // twos-complement representation. These helpers decode, from
116 // the given address, 4-byte and 8-byte values respectively.
117 // Note: If int_fastXX_t == intXX_t and this machine is not
118 // twos complement, then there will be at least one input value
119 // we cannot represent.
Decode32(const char * cp)120 std::int_fast32_t Decode32(const char* cp) {
121   std::uint_fast32_t v = 0;
122   for (int i = 0; i != (32 / 8); ++i) v = (v << 8) | Decode8(cp++);
123   const std::int_fast32_t s32max = 0x7fffffff;
124   const auto s32maxU = static_cast<std::uint_fast32_t>(s32max);
125   if (v <= s32maxU) return static_cast<std::int_fast32_t>(v);
126   return static_cast<std::int_fast32_t>(v - s32maxU - 1) - s32max - 1;
127 }
128 
Decode64(const char * cp)129 std::int_fast64_t Decode64(const char* cp) {
130   std::uint_fast64_t v = 0;
131   for (int i = 0; i != (64 / 8); ++i) v = (v << 8) | Decode8(cp++);
132   const std::int_fast64_t s64max = 0x7fffffffffffffff;
133   const auto s64maxU = static_cast<std::uint_fast64_t>(s64max);
134   if (v <= s64maxU) return static_cast<std::int_fast64_t>(v);
135   return static_cast<std::int_fast64_t>(v - s64maxU - 1) - s64max - 1;
136 }
137 
138 struct Header {            // counts of:
139   std::size_t timecnt;     // transition times
140   std::size_t typecnt;     // transition types
141   std::size_t charcnt;     // zone abbreviation characters
142   std::size_t leapcnt;     // leap seconds (we expect none)
143   std::size_t ttisstdcnt;  // UTC/local indicators (unused)
144   std::size_t ttisutcnt;   // standard/wall indicators (unused)
145 
146   bool Build(const tzhead& tzh);
147   std::size_t DataLength(std::size_t time_len) const;
148 };
149 
150 // Builds the in-memory header using the raw bytes from the file.
Build(const tzhead & tzh)151 bool Header::Build(const tzhead& tzh) {
152   std::int_fast32_t v;
153   if ((v = Decode32(tzh.tzh_timecnt)) < 0) return false;
154   timecnt = static_cast<std::size_t>(v);
155   if ((v = Decode32(tzh.tzh_typecnt)) < 0) return false;
156   typecnt = static_cast<std::size_t>(v);
157   if ((v = Decode32(tzh.tzh_charcnt)) < 0) return false;
158   charcnt = static_cast<std::size_t>(v);
159   if ((v = Decode32(tzh.tzh_leapcnt)) < 0) return false;
160   leapcnt = static_cast<std::size_t>(v);
161   if ((v = Decode32(tzh.tzh_ttisstdcnt)) < 0) return false;
162   ttisstdcnt = static_cast<std::size_t>(v);
163   if ((v = Decode32(tzh.tzh_ttisutcnt)) < 0) return false;
164   ttisutcnt = static_cast<std::size_t>(v);
165   return true;
166 }
167 
168 // How many bytes of data are associated with this header. The result
169 // depends upon whether this is a section with 4-byte or 8-byte times.
DataLength(std::size_t time_len) const170 std::size_t Header::DataLength(std::size_t time_len) const {
171   std::size_t len = 0;
172   len += (time_len + 1) * timecnt;  // unix_time + type_index
173   len += (4 + 1 + 1) * typecnt;     // utc_offset + is_dst + abbr_index
174   len += 1 * charcnt;               // abbreviations
175   len += (time_len + 4) * leapcnt;  // leap-time + TAI-UTC
176   len += 1 * ttisstdcnt;            // UTC/local indicators
177   len += 1 * ttisutcnt;             // standard/wall indicators
178   return len;
179 }
180 
181 // Does the rule for future transitions call for year-round daylight time?
182 // See tz/zic.c:stringzone() for the details on how such rules are encoded.
AllYearDST(const PosixTimeZone & posix)183 bool AllYearDST(const PosixTimeZone& posix) {
184   if (posix.dst_start.date.fmt != PosixTransition::N) return false;
185   if (posix.dst_start.date.n.day != 0) return false;
186   if (posix.dst_start.time.offset != 0) return false;
187 
188   if (posix.dst_end.date.fmt != PosixTransition::J) return false;
189   if (posix.dst_end.date.j.day != kDaysPerYear[0]) return false;
190   const auto offset = posix.std_offset - posix.dst_offset;
191   if (posix.dst_end.time.offset + offset != kSecsPerDay) return false;
192 
193   return true;
194 }
195 
196 // Generate a year-relative offset for a PosixTransition.
TransOffset(bool leap_year,int jan1_weekday,const PosixTransition & pt)197 std::int_fast64_t TransOffset(bool leap_year, int jan1_weekday,
198                               const PosixTransition& pt) {
199   std::int_fast64_t days = 0;
200   switch (pt.date.fmt) {
201     case PosixTransition::J: {
202       days = pt.date.j.day;
203       if (!leap_year || days < kMonthOffsets[1][3]) days -= 1;
204       break;
205     }
206     case PosixTransition::N: {
207       days = pt.date.n.day;
208       break;
209     }
210     case PosixTransition::M: {
211       const bool last_week = (pt.date.m.week == 5);
212       days = kMonthOffsets[leap_year][pt.date.m.month + last_week];
213       const std::int_fast64_t weekday = (jan1_weekday + days) % 7;
214       if (last_week) {
215         days -= (weekday + 7 - 1 - pt.date.m.weekday) % 7 + 1;
216       } else {
217         days += (pt.date.m.weekday + 7 - weekday) % 7;
218         days += (pt.date.m.week - 1) * 7;
219       }
220       break;
221     }
222   }
223   return (days * kSecsPerDay) + pt.time.offset;
224 }
225 
MakeUnique(const time_point<seconds> & tp)226 inline time_zone::civil_lookup MakeUnique(const time_point<seconds>& tp) {
227   time_zone::civil_lookup cl;
228   cl.kind = time_zone::civil_lookup::UNIQUE;
229   cl.pre = cl.trans = cl.post = tp;
230   return cl;
231 }
232 
MakeUnique(std::int_fast64_t unix_time)233 inline time_zone::civil_lookup MakeUnique(std::int_fast64_t unix_time) {
234   return MakeUnique(FromUnixSeconds(unix_time));
235 }
236 
MakeSkipped(const Transition & tr,const civil_second & cs)237 inline time_zone::civil_lookup MakeSkipped(const Transition& tr,
238                                            const civil_second& cs) {
239   time_zone::civil_lookup cl;
240   cl.kind = time_zone::civil_lookup::SKIPPED;
241   cl.pre = FromUnixSeconds(tr.unix_time - 1 + (cs - tr.prev_civil_sec));
242   cl.trans = FromUnixSeconds(tr.unix_time);
243   cl.post = FromUnixSeconds(tr.unix_time - (tr.civil_sec - cs));
244   return cl;
245 }
246 
MakeRepeated(const Transition & tr,const civil_second & cs)247 inline time_zone::civil_lookup MakeRepeated(const Transition& tr,
248                                             const civil_second& cs) {
249   time_zone::civil_lookup cl;
250   cl.kind = time_zone::civil_lookup::REPEATED;
251   cl.pre = FromUnixSeconds(tr.unix_time - 1 - (tr.prev_civil_sec - cs));
252   cl.trans = FromUnixSeconds(tr.unix_time);
253   cl.post = FromUnixSeconds(tr.unix_time + (cs - tr.civil_sec));
254   return cl;
255 }
256 
YearShift(const civil_second & cs,year_t shift)257 inline civil_second YearShift(const civil_second& cs, year_t shift) {
258   return civil_second(cs.year() + shift, cs.month(), cs.day(), cs.hour(),
259                       cs.minute(), cs.second());
260 }
261 
262 }  // namespace
263 
264 // Find/make a transition type with these attributes.
GetTransitionType(std::int_fast32_t utc_offset,bool is_dst,const std::string & abbr,std::uint_least8_t * index)265 bool TimeZoneInfo::GetTransitionType(std::int_fast32_t utc_offset, bool is_dst,
266                                      const std::string& abbr,
267                                      std::uint_least8_t* index) {
268   std::size_t type_index = 0;
269   std::size_t abbr_index = abbreviations_.size();
270   for (; type_index != transition_types_.size(); ++type_index) {
271     const TransitionType& tt(transition_types_[type_index]);
272     const char* tt_abbr = &abbreviations_[tt.abbr_index];
273     if (tt_abbr == abbr) abbr_index = tt.abbr_index;
274     if (tt.utc_offset == utc_offset && tt.is_dst == is_dst) {
275       if (abbr_index == tt.abbr_index) break;  // reuse
276     }
277   }
278   if (type_index > 255 || abbr_index > 255) {
279     // No index space (8 bits) available for a new type or abbreviation.
280     return false;
281   }
282   if (type_index == transition_types_.size()) {
283     TransitionType& tt(*transition_types_.emplace(transition_types_.end()));
284     tt.utc_offset = static_cast<std::int_least32_t>(utc_offset);
285     tt.is_dst = is_dst;
286     if (abbr_index == abbreviations_.size()) {
287       abbreviations_.append(abbr);
288       abbreviations_.append(1, '\0');
289     }
290     tt.abbr_index = static_cast<std::uint_least8_t>(abbr_index);
291   }
292   *index = static_cast<std::uint_least8_t>(type_index);
293   return true;
294 }
295 
296 // zic(8) can generate no-op transitions when a zone changes rules at an
297 // instant when there is actually no discontinuity.  So we check whether
298 // two transitions have equivalent types (same offset/is_dst/abbr).
EquivTransitions(std::uint_fast8_t tt1_index,std::uint_fast8_t tt2_index) const299 bool TimeZoneInfo::EquivTransitions(std::uint_fast8_t tt1_index,
300                                     std::uint_fast8_t tt2_index) const {
301   if (tt1_index == tt2_index) return true;
302   const TransitionType& tt1(transition_types_[tt1_index]);
303   const TransitionType& tt2(transition_types_[tt2_index]);
304   if (tt1.utc_offset != tt2.utc_offset) return false;
305   if (tt1.is_dst != tt2.is_dst) return false;
306   if (tt1.abbr_index != tt2.abbr_index) return false;
307   return true;
308 }
309 
310 // Use the POSIX-TZ-environment-variable-style string to handle times
311 // in years after the last transition stored in the zoneinfo data.
ExtendTransitions()312 bool TimeZoneInfo::ExtendTransitions() {
313   extended_ = false;
314   if (future_spec_.empty()) return true;  // last transition prevails
315 
316   PosixTimeZone posix;
317   if (!ParsePosixSpec(future_spec_, &posix)) return false;
318 
319   // Find transition type for the future std specification.
320   std::uint_least8_t std_ti;
321   if (!GetTransitionType(posix.std_offset, false, posix.std_abbr, &std_ti))
322     return false;
323 
324   if (posix.dst_abbr.empty()) {  // std only
325     // The future specification should match the last transition, and
326     // that means that handling the future will fall out naturally.
327     return EquivTransitions(transitions_.back().type_index, std_ti);
328   }
329 
330   // Find transition type for the future dst specification.
331   std::uint_least8_t dst_ti;
332   if (!GetTransitionType(posix.dst_offset, true, posix.dst_abbr, &dst_ti))
333     return false;
334 
335   if (AllYearDST(posix)) {  // dst only
336     // The future specification should match the last transition, and
337     // that means that handling the future will fall out naturally.
338     return EquivTransitions(transitions_.back().type_index, dst_ti);
339   }
340 
341   // Extend the transitions for an additional 401 years using the future
342   // specification. Years beyond those can be handled by mapping back to
343   // a cycle-equivalent year within that range. Note that we need 401
344   // (well, at least the first transition in the 401st year) so that the
345   // end of the 400th year is mapped back to an extended year. And first
346   // we may also need two additional transitions for the current year.
347   transitions_.reserve(transitions_.size() + 2 + 401 * 2);
348   extended_ = true;
349 
350   const Transition& last(transitions_.back());
351   const std::int_fast64_t last_time = last.unix_time;
352   const TransitionType& last_tt(transition_types_[last.type_index]);
353   last_year_ = LocalTime(last_time, last_tt).cs.year();
354   bool leap_year = IsLeap(last_year_);
355   const civil_second jan1(last_year_);
356   std::int_fast64_t jan1_time = jan1 - civil_second();
357   int jan1_weekday = ToPosixWeekday(get_weekday(jan1));
358 
359   Transition dst = {0, dst_ti, civil_second(), civil_second()};
360   Transition std = {0, std_ti, civil_second(), civil_second()};
361   for (const year_t limit = last_year_ + 401;; ++last_year_) {
362     auto dst_trans_off = TransOffset(leap_year, jan1_weekday, posix.dst_start);
363     auto std_trans_off = TransOffset(leap_year, jan1_weekday, posix.dst_end);
364     dst.unix_time = jan1_time + dst_trans_off - posix.std_offset;
365     std.unix_time = jan1_time + std_trans_off - posix.dst_offset;
366     const auto* ta = dst.unix_time < std.unix_time ? &dst : &std;
367     const auto* tb = dst.unix_time < std.unix_time ? &std : &dst;
368     if (last_time < tb->unix_time) {
369       if (last_time < ta->unix_time) transitions_.push_back(*ta);
370       transitions_.push_back(*tb);
371     }
372     if (last_year_ == limit) break;
373     jan1_time += kSecsPerYear[leap_year];
374     jan1_weekday = (jan1_weekday + kDaysPerYear[leap_year]) % 7;
375     leap_year = !leap_year && IsLeap(last_year_ + 1);
376   }
377 
378   return true;
379 }
380 
381 namespace {
382 
383 using FilePtr = std::unique_ptr<FILE, int (*)(FILE*)>;
384 
385 // fopen(3) adaptor.
FOpen(const char * path,const char * mode)386 inline FilePtr FOpen(const char* path, const char* mode) {
387 #if defined(_MSC_VER)
388   FILE* fp;
389   if (fopen_s(&fp, path, mode) != 0) fp = nullptr;
390   return FilePtr(fp, fclose);
391 #else
392   // TODO: Enable the close-on-exec flag.
393   return FilePtr(fopen(path, mode), fclose);
394 #endif
395 }
396 
397 // A stdio(3)-backed implementation of ZoneInfoSource.
398 class FileZoneInfoSource : public ZoneInfoSource {
399  public:
400   static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
401 
Read(void * ptr,std::size_t size)402   std::size_t Read(void* ptr, std::size_t size) override {
403     size = std::min(size, len_);
404     std::size_t nread = fread(ptr, 1, size, fp_.get());
405     len_ -= nread;
406     return nread;
407   }
Skip(std::size_t offset)408   int Skip(std::size_t offset) override {
409     offset = std::min(offset, len_);
410     int rc = fseek(fp_.get(), static_cast<long>(offset), SEEK_CUR);
411     if (rc == 0) len_ -= offset;
412     return rc;
413   }
Version() const414   std::string Version() const override {
415     // TODO: It would nice if the zoneinfo data included the tzdb version.
416     return std::string();
417   }
418 
419  protected:
FileZoneInfoSource(FilePtr fp,std::size_t len=std::numeric_limits<std::size_t>::max ())420   explicit FileZoneInfoSource(
421       FilePtr fp, std::size_t len = std::numeric_limits<std::size_t>::max())
422       : fp_(std::move(fp)), len_(len) {}
423 
424  private:
425   FilePtr fp_;
426   std::size_t len_;
427 };
428 
Open(const std::string & name)429 std::unique_ptr<ZoneInfoSource> FileZoneInfoSource::Open(
430     const std::string& name) {
431   // Use of the "file:" prefix is intended for testing purposes only.
432   const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
433 
434   // Map the time-zone name to a path name.
435   std::string path;
436   if (pos == name.size() || name[pos] != '/') {
437     const char* tzdir = "/usr/share/zoneinfo";
438     char* tzdir_env = nullptr;
439 #if defined(_MSC_VER)
440     _dupenv_s(&tzdir_env, nullptr, "TZDIR");
441 #else
442     tzdir_env = std::getenv("TZDIR");
443 #endif
444     if (tzdir_env && *tzdir_env) tzdir = tzdir_env;
445     path += tzdir;
446     path += '/';
447 #if defined(_MSC_VER)
448     free(tzdir_env);
449 #endif
450   }
451   path.append(name, pos, std::string::npos);
452 
453   // Open the zoneinfo file.
454   auto fp = FOpen(path.c_str(), "rb");
455   if (fp == nullptr) return nullptr;
456   return std::unique_ptr<ZoneInfoSource>(new FileZoneInfoSource(std::move(fp)));
457 }
458 
459 class AndroidZoneInfoSource : public FileZoneInfoSource {
460  public:
461   static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
Version() const462   std::string Version() const override { return version_; }
463 
464  private:
AndroidZoneInfoSource(FilePtr fp,std::size_t len,std::string version)465   explicit AndroidZoneInfoSource(FilePtr fp, std::size_t len,
466                                  std::string version)
467       : FileZoneInfoSource(std::move(fp), len), version_(std::move(version)) {}
468   std::string version_;
469 };
470 
Open(const std::string & name)471 std::unique_ptr<ZoneInfoSource> AndroidZoneInfoSource::Open(
472     const std::string& name) {
473   // Use of the "file:" prefix is intended for testing purposes only.
474   const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
475 
476   // See Android's libc/tzcode/bionic.cpp for additional information.
477   for (const char* tzdata : {"/data/misc/zoneinfo/current/tzdata",
478                              "/system/usr/share/zoneinfo/tzdata"}) {
479     auto fp = FOpen(tzdata, "rb");
480     if (fp == nullptr) continue;
481 
482     char hbuf[24];  // covers header.zonetab_offset too
483     if (fread(hbuf, 1, sizeof(hbuf), fp.get()) != sizeof(hbuf)) continue;
484     if (strncmp(hbuf, "tzdata", 6) != 0) continue;
485     const char* vers = (hbuf[11] == '\0') ? hbuf + 6 : "";
486     const std::int_fast32_t index_offset = Decode32(hbuf + 12);
487     const std::int_fast32_t data_offset = Decode32(hbuf + 16);
488     if (index_offset < 0 || data_offset < index_offset) continue;
489     if (fseek(fp.get(), static_cast<long>(index_offset), SEEK_SET) != 0)
490       continue;
491 
492     char ebuf[52];  // covers entry.unused too
493     const std::size_t index_size =
494         static_cast<std::size_t>(data_offset - index_offset);
495     const std::size_t zonecnt = index_size / sizeof(ebuf);
496     if (zonecnt * sizeof(ebuf) != index_size) continue;
497     for (std::size_t i = 0; i != zonecnt; ++i) {
498       if (fread(ebuf, 1, sizeof(ebuf), fp.get()) != sizeof(ebuf)) break;
499       const std::int_fast32_t start = data_offset + Decode32(ebuf + 40);
500       const std::int_fast32_t length = Decode32(ebuf + 44);
501       if (start < 0 || length < 0) break;
502       ebuf[40] = '\0';  // ensure zone name is NUL terminated
503       if (strcmp(name.c_str() + pos, ebuf) == 0) {
504         if (fseek(fp.get(), static_cast<long>(start), SEEK_SET) != 0) break;
505         return std::unique_ptr<ZoneInfoSource>(new AndroidZoneInfoSource(
506             std::move(fp), static_cast<std::size_t>(length), vers));
507       }
508     }
509   }
510 
511   return nullptr;
512 }
513 
514 // A zoneinfo source for use inside Fuchsia components. This attempts to
515 // read zoneinfo files from one of several known paths in a component's
516 // incoming namespace. [Config data][1] is preferred, but package-specific
517 // resources are also supported.
518 //
519 // Fuchsia's implementation supports `FileZoneInfoSource::Version()`.
520 //
521 // [1]:
522 // https://fuchsia.dev/fuchsia-src/development/components/data#using_config_data_in_your_component
523 class FuchsiaZoneInfoSource : public FileZoneInfoSource {
524  public:
525   static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
Version() const526   std::string Version() const override { return version_; }
527 
528  private:
FuchsiaZoneInfoSource(FilePtr fp,std::string version)529   explicit FuchsiaZoneInfoSource(FilePtr fp, std::string version)
530       : FileZoneInfoSource(std::move(fp)), version_(std::move(version)) {}
531   std::string version_;
532 };
533 
Open(const std::string & name)534 std::unique_ptr<ZoneInfoSource> FuchsiaZoneInfoSource::Open(
535     const std::string& name) {
536   // Use of the "file:" prefix is intended for testing purposes only.
537   const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
538 
539   // Prefixes where a Fuchsia component might find zoneinfo files,
540   // in descending order of preference.
541   const auto kTzdataPrefixes = {
542       "/config/data/tzdata/",
543       "/pkg/data/tzdata/",
544       "/data/tzdata/",
545   };
546   const auto kEmptyPrefix = {""};
547   const bool name_absolute = (pos != name.size() && name[pos] == '/');
548   const auto prefixes = name_absolute ? kEmptyPrefix : kTzdataPrefixes;
549 
550   // Fuchsia builds place zoneinfo files at "<prefix><format><name>".
551   for (const std::string prefix : prefixes) {
552     std::string path = prefix;
553     if (!prefix.empty()) path += "zoneinfo/tzif2/";  // format
554     path.append(name, pos, std::string::npos);
555 
556     auto fp = FOpen(path.c_str(), "rb");
557     if (fp == nullptr) continue;
558 
559     std::string version;
560     if (!prefix.empty()) {
561       // Fuchsia builds place the version in "<prefix>revision.txt".
562       std::ifstream version_stream(prefix + "revision.txt");
563       if (version_stream.is_open()) {
564         // revision.txt should contain no newlines, but to be
565         // defensive we read just the first line.
566         std::getline(version_stream, version);
567       }
568     }
569 
570     return std::unique_ptr<ZoneInfoSource>(
571         new FuchsiaZoneInfoSource(std::move(fp), std::move(version)));
572   }
573 
574   return nullptr;
575 }
576 
577 }  // namespace
578 
579 // What (no leap-seconds) UTC+seconds zoneinfo would look like.
ResetToBuiltinUTC(const seconds & offset)580 bool TimeZoneInfo::ResetToBuiltinUTC(const seconds& offset) {
581   transition_types_.resize(1);
582   TransitionType& tt(transition_types_.back());
583   tt.utc_offset = static_cast<std::int_least32_t>(offset.count());
584   tt.is_dst = false;
585   tt.abbr_index = 0;
586 
587   // We temporarily add some redundant, contemporary (2015 through 2025)
588   // transitions for performance reasons.  See TimeZoneInfo::LocalTime().
589   // TODO: Fix the performance issue and remove the extra transitions.
590   transitions_.clear();
591   transitions_.reserve(12);
592   for (const std::int_fast64_t unix_time : {
593            -(1LL << 59),  // a "first half" transition
594            1420070400LL,  // 2015-01-01T00:00:00+00:00
595            1451606400LL,  // 2016-01-01T00:00:00+00:00
596            1483228800LL,  // 2017-01-01T00:00:00+00:00
597            1514764800LL,  // 2018-01-01T00:00:00+00:00
598            1546300800LL,  // 2019-01-01T00:00:00+00:00
599            1577836800LL,  // 2020-01-01T00:00:00+00:00
600            1609459200LL,  // 2021-01-01T00:00:00+00:00
601            1640995200LL,  // 2022-01-01T00:00:00+00:00
602            1672531200LL,  // 2023-01-01T00:00:00+00:00
603            1704067200LL,  // 2024-01-01T00:00:00+00:00
604            1735689600LL,  // 2025-01-01T00:00:00+00:00
605        }) {
606     Transition& tr(*transitions_.emplace(transitions_.end()));
607     tr.unix_time = unix_time;
608     tr.type_index = 0;
609     tr.civil_sec = LocalTime(tr.unix_time, tt).cs;
610     tr.prev_civil_sec = tr.civil_sec - 1;
611   }
612 
613   default_transition_type_ = 0;
614   abbreviations_ = FixedOffsetToAbbr(offset);
615   abbreviations_.append(1, '\0');
616   future_spec_.clear();  // never needed for a fixed-offset zone
617   extended_ = false;
618 
619   tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
620   tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
621 
622   transitions_.shrink_to_fit();
623   return true;
624 }
625 
Load(ZoneInfoSource * zip)626 bool TimeZoneInfo::Load(ZoneInfoSource* zip) {
627   // Read and validate the header.
628   tzhead tzh;
629   if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false;
630   if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
631     return false;
632   Header hdr;
633   if (!hdr.Build(tzh)) return false;
634   std::size_t time_len = 4;
635   if (tzh.tzh_version[0] != '\0') {
636     // Skip the 4-byte data.
637     if (zip->Skip(hdr.DataLength(time_len)) != 0) return false;
638     // Read and validate the header for the 8-byte data.
639     if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false;
640     if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
641       return false;
642     if (tzh.tzh_version[0] == '\0') return false;
643     if (!hdr.Build(tzh)) return false;
644     time_len = 8;
645   }
646   if (hdr.typecnt == 0) return false;
647   if (hdr.leapcnt != 0) {
648     // This code assumes 60-second minutes so we do not want
649     // the leap-second encoded zoneinfo. We could reverse the
650     // compensation, but the "right" encoding is rarely used
651     // so currently we simply reject such data.
652     return false;
653   }
654   if (hdr.ttisstdcnt != 0 && hdr.ttisstdcnt != hdr.typecnt) return false;
655   if (hdr.ttisutcnt != 0 && hdr.ttisutcnt != hdr.typecnt) return false;
656 
657   // Read the data into a local buffer.
658   std::size_t len = hdr.DataLength(time_len);
659   std::vector<char> tbuf(len);
660   if (zip->Read(tbuf.data(), len) != len) return false;
661   const char* bp = tbuf.data();
662 
663   // Decode and validate the transitions.
664   transitions_.reserve(hdr.timecnt + 2);
665   transitions_.resize(hdr.timecnt);
666   for (std::size_t i = 0; i != hdr.timecnt; ++i) {
667     transitions_[i].unix_time = (time_len == 4) ? Decode32(bp) : Decode64(bp);
668     bp += time_len;
669     if (i != 0) {
670       // Check that the transitions are ordered by time (as zic guarantees).
671       if (!Transition::ByUnixTime()(transitions_[i - 1], transitions_[i]))
672         return false;  // out of order
673     }
674   }
675   bool seen_type_0 = false;
676   for (std::size_t i = 0; i != hdr.timecnt; ++i) {
677     transitions_[i].type_index = Decode8(bp++);
678     if (transitions_[i].type_index >= hdr.typecnt) return false;
679     if (transitions_[i].type_index == 0) seen_type_0 = true;
680   }
681 
682   // Decode and validate the transition types.
683   transition_types_.reserve(hdr.typecnt + 2);
684   transition_types_.resize(hdr.typecnt);
685   for (std::size_t i = 0; i != hdr.typecnt; ++i) {
686     transition_types_[i].utc_offset =
687         static_cast<std::int_least32_t>(Decode32(bp));
688     if (transition_types_[i].utc_offset >= kSecsPerDay ||
689         transition_types_[i].utc_offset <= -kSecsPerDay)
690       return false;
691     bp += 4;
692     transition_types_[i].is_dst = (Decode8(bp++) != 0);
693     transition_types_[i].abbr_index = Decode8(bp++);
694     if (transition_types_[i].abbr_index >= hdr.charcnt) return false;
695   }
696 
697   // Determine the before-first-transition type.
698   default_transition_type_ = 0;
699   if (seen_type_0 && hdr.timecnt != 0) {
700     std::uint_fast8_t index = 0;
701     if (transition_types_[0].is_dst) {
702       index = transitions_[0].type_index;
703       while (index != 0 && transition_types_[index].is_dst) --index;
704     }
705     while (index != hdr.typecnt && transition_types_[index].is_dst) ++index;
706     if (index != hdr.typecnt) default_transition_type_ = index;
707   }
708 
709   // Copy all the abbreviations.
710   abbreviations_.reserve(hdr.charcnt + 10);
711   abbreviations_.assign(bp, hdr.charcnt);
712   bp += hdr.charcnt;
713 
714   // Skip the unused portions. We've already dispensed with leap-second
715   // encoded zoneinfo. The ttisstd/ttisgmt indicators only apply when
716   // interpreting a POSIX spec that does not include start/end rules, and
717   // that isn't the case here (see "zic -p").
718   bp += (time_len + 4) * hdr.leapcnt;  // leap-time + TAI-UTC
719   bp += 1 * hdr.ttisstdcnt;            // UTC/local indicators
720   bp += 1 * hdr.ttisutcnt;             // standard/wall indicators
721   assert(bp == tbuf.data() + tbuf.size());
722 
723   future_spec_.clear();
724   if (tzh.tzh_version[0] != '\0') {
725     // Snarf up the NL-enclosed future POSIX spec. Note
726     // that version '3' files utilize an extended format.
727     auto get_char = [](ZoneInfoSource* azip) -> int {
728       unsigned char ch;  // all non-EOF results are positive
729       return (azip->Read(&ch, 1) == 1) ? ch : EOF;
730     };
731     if (get_char(zip) != '\n') return false;
732     for (int c = get_char(zip); c != '\n'; c = get_char(zip)) {
733       if (c == EOF) return false;
734       future_spec_.push_back(static_cast<char>(c));
735     }
736   }
737 
738   // We don't check for EOF so that we're forwards compatible.
739 
740   // If we did not find version information during the standard loading
741   // process (as of tzh_version '3' that is unsupported), then ask the
742   // ZoneInfoSource for any out-of-bound version string it may be privy to.
743   if (version_.empty()) {
744     version_ = zip->Version();
745   }
746 
747   // Trim redundant transitions. zic may have added these to work around
748   // differences between the glibc and reference implementations (see
749   // zic.c:dontmerge) or to avoid bugs in old readers. For us, they just
750   // get in the way when we do future_spec_ extension.
751   while (hdr.timecnt > 1) {
752     if (!EquivTransitions(transitions_[hdr.timecnt - 1].type_index,
753                           transitions_[hdr.timecnt - 2].type_index)) {
754       break;
755     }
756     hdr.timecnt -= 1;
757   }
758   transitions_.resize(hdr.timecnt);
759 
760   // Ensure that there is always a transition in the first half of the
761   // time line (the second half is handled below) so that the signed
762   // difference between a civil_second and the civil_second of its
763   // previous transition is always representable, without overflow.
764   if (transitions_.empty() || transitions_.front().unix_time >= 0) {
765     Transition& tr(*transitions_.emplace(transitions_.begin()));
766     tr.unix_time = -(1LL << 59);  // -18267312070-10-26T17:01:52+00:00
767     tr.type_index = default_transition_type_;
768   }
769 
770   // Extend the transitions using the future specification.
771   if (!ExtendTransitions()) return false;
772 
773   // Ensure that there is always a transition in the second half of the
774   // time line (the first half is handled above) so that the signed
775   // difference between a civil_second and the civil_second of its
776   // previous transition is always representable, without overflow.
777   const Transition& last(transitions_.back());
778   if (last.unix_time < 0) {
779     const std::uint_fast8_t type_index = last.type_index;
780     Transition& tr(*transitions_.emplace(transitions_.end()));
781     tr.unix_time = 2147483647;  // 2038-01-19T03:14:07+00:00
782     tr.type_index = type_index;
783   }
784 
785   // Compute the local civil time for each transition and the preceding
786   // second. These will be used for reverse conversions in MakeTime().
787   const TransitionType* ttp = &transition_types_[default_transition_type_];
788   for (std::size_t i = 0; i != transitions_.size(); ++i) {
789     Transition& tr(transitions_[i]);
790     tr.prev_civil_sec = LocalTime(tr.unix_time, *ttp).cs - 1;
791     ttp = &transition_types_[tr.type_index];
792     tr.civil_sec = LocalTime(tr.unix_time, *ttp).cs;
793     if (i != 0) {
794       // Check that the transitions are ordered by civil time. Essentially
795       // this means that an offset change cannot cross another such change.
796       // No one does this in practice, and we depend on it in MakeTime().
797       if (!Transition::ByCivilTime()(transitions_[i - 1], tr))
798         return false;  // out of order
799     }
800   }
801 
802   // Compute the maximum/minimum civil times that can be converted to a
803   // time_point<seconds> for each of the zone's transition types.
804   for (auto& tt : transition_types_) {
805     tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
806     tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
807   }
808 
809   transitions_.shrink_to_fit();
810   return true;
811 }
812 
Load(const std::string & name)813 bool TimeZoneInfo::Load(const std::string& name) {
814   // We can ensure that the loading of UTC or any other fixed-offset
815   // zone never fails because the simple, fixed-offset state can be
816   // internally generated. Note that this depends on our choice to not
817   // accept leap-second encoded ("right") zoneinfo.
818   auto offset = seconds::zero();
819   if (FixedOffsetFromName(name, &offset)) {
820     return ResetToBuiltinUTC(offset);
821   }
822 
823   // Find and use a ZoneInfoSource to load the named zone.
824   auto zip = cctz_extension::zone_info_source_factory(
825       name, [](const std::string& n) -> std::unique_ptr<ZoneInfoSource> {
826         if (auto z = FileZoneInfoSource::Open(n)) return z;
827         if (auto z = AndroidZoneInfoSource::Open(n)) return z;
828         if (auto z = FuchsiaZoneInfoSource::Open(n)) return z;
829         return nullptr;
830       });
831   return zip != nullptr && Load(zip.get());
832 }
833 
UTC()834 std::unique_ptr<TimeZoneInfo> TimeZoneInfo::UTC() {
835   auto tz = std::unique_ptr<TimeZoneInfo>(new TimeZoneInfo);
836   tz->ResetToBuiltinUTC(seconds::zero());
837   return tz;
838 }
839 
Make(const std::string & name)840 std::unique_ptr<TimeZoneInfo> TimeZoneInfo::Make(const std::string& name) {
841   auto tz = std::unique_ptr<TimeZoneInfo>(new TimeZoneInfo);
842   if (!tz->Load(name)) tz.reset();  // fallback to UTC
843   return tz;
844 }
845 
846 // BreakTime() translation for a particular transition type.
LocalTime(std::int_fast64_t unix_time,const TransitionType & tt) const847 time_zone::absolute_lookup TimeZoneInfo::LocalTime(
848     std::int_fast64_t unix_time, const TransitionType& tt) const {
849   // A civil time in "+offset" looks like (time+offset) in UTC.
850   // Note: We perform two additions in the civil_second domain to
851   // sidestep the chance of overflow in (unix_time + tt.utc_offset).
852   return {(civil_second() + unix_time) + tt.utc_offset, tt.utc_offset,
853           tt.is_dst, &abbreviations_[tt.abbr_index]};
854 }
855 
856 // BreakTime() translation for a particular transition.
LocalTime(std::int_fast64_t unix_time,const Transition & tr) const857 time_zone::absolute_lookup TimeZoneInfo::LocalTime(std::int_fast64_t unix_time,
858                                                    const Transition& tr) const {
859   const TransitionType& tt = transition_types_[tr.type_index];
860   // Note: (unix_time - tr.unix_time) will never overflow as we
861   // have ensured that there is always a "nearby" transition.
862   return {tr.civil_sec + (unix_time - tr.unix_time),  // TODO: Optimize.
863           tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]};
864 }
865 
866 // MakeTime() translation with a conversion-preserving +N * 400-year shift.
TimeLocal(const civil_second & cs,year_t c4_shift) const867 time_zone::civil_lookup TimeZoneInfo::TimeLocal(const civil_second& cs,
868                                                 year_t c4_shift) const {
869   assert(last_year_ - 400 < cs.year() && cs.year() <= last_year_);
870   time_zone::civil_lookup cl = MakeTime(cs);
871   if (c4_shift > seconds::max().count() / kSecsPer400Years) {
872     cl.pre = cl.trans = cl.post = time_point<seconds>::max();
873   } else {
874     const auto offset = seconds(c4_shift * kSecsPer400Years);
875     const auto limit = time_point<seconds>::max() - offset;
876     for (auto* tp : {&cl.pre, &cl.trans, &cl.post}) {
877       if (*tp > limit) {
878         *tp = time_point<seconds>::max();
879       } else {
880         *tp += offset;
881       }
882     }
883   }
884   return cl;
885 }
886 
BreakTime(const time_point<seconds> & tp) const887 time_zone::absolute_lookup TimeZoneInfo::BreakTime(
888     const time_point<seconds>& tp) const {
889   std::int_fast64_t unix_time = ToUnixSeconds(tp);
890   const std::size_t timecnt = transitions_.size();
891   assert(timecnt != 0);  // We always add a transition.
892 
893   if (unix_time < transitions_[0].unix_time) {
894     return LocalTime(unix_time, transition_types_[default_transition_type_]);
895   }
896   if (unix_time >= transitions_[timecnt - 1].unix_time) {
897     // After the last transition. If we extended the transitions using
898     // future_spec_, shift back to a supported year using the 400-year
899     // cycle of calendaric equivalence and then compensate accordingly.
900     if (extended_) {
901       const std::int_fast64_t diff =
902           unix_time - transitions_[timecnt - 1].unix_time;
903       const year_t shift = diff / kSecsPer400Years + 1;
904       const auto d = seconds(shift * kSecsPer400Years);
905       time_zone::absolute_lookup al = BreakTime(tp - d);
906       al.cs = YearShift(al.cs, shift * 400);
907       return al;
908     }
909     return LocalTime(unix_time, transitions_[timecnt - 1]);
910   }
911 
912   const std::size_t hint = local_time_hint_.load(std::memory_order_relaxed);
913   if (0 < hint && hint < timecnt) {
914     if (transitions_[hint - 1].unix_time <= unix_time) {
915       if (unix_time < transitions_[hint].unix_time) {
916         return LocalTime(unix_time, transitions_[hint - 1]);
917       }
918     }
919   }
920 
921   const Transition target = {unix_time, 0, civil_second(), civil_second()};
922   const Transition* begin = &transitions_[0];
923   const Transition* tr = std::upper_bound(begin, begin + timecnt, target,
924                                           Transition::ByUnixTime());
925   local_time_hint_.store(static_cast<std::size_t>(tr - begin),
926                          std::memory_order_relaxed);
927   return LocalTime(unix_time, *--tr);
928 }
929 
MakeTime(const civil_second & cs) const930 time_zone::civil_lookup TimeZoneInfo::MakeTime(const civil_second& cs) const {
931   const std::size_t timecnt = transitions_.size();
932   assert(timecnt != 0);  // We always add a transition.
933 
934   // Find the first transition after our target civil time.
935   const Transition* tr = nullptr;
936   const Transition* begin = &transitions_[0];
937   const Transition* end = begin + timecnt;
938   if (cs < begin->civil_sec) {
939     tr = begin;
940   } else if (cs >= transitions_[timecnt - 1].civil_sec) {
941     tr = end;
942   } else {
943     const std::size_t hint = time_local_hint_.load(std::memory_order_relaxed);
944     if (0 < hint && hint < timecnt) {
945       if (transitions_[hint - 1].civil_sec <= cs) {
946         if (cs < transitions_[hint].civil_sec) {
947           tr = begin + hint;
948         }
949       }
950     }
951     if (tr == nullptr) {
952       const Transition target = {0, 0, cs, civil_second()};
953       tr = std::upper_bound(begin, end, target, Transition::ByCivilTime());
954       time_local_hint_.store(static_cast<std::size_t>(tr - begin),
955                              std::memory_order_relaxed);
956     }
957   }
958 
959   if (tr == begin) {
960     if (tr->prev_civil_sec >= cs) {
961       // Before first transition, so use the default offset.
962       const TransitionType& tt(transition_types_[default_transition_type_]);
963       if (cs < tt.civil_min) return MakeUnique(time_point<seconds>::min());
964       return MakeUnique(cs - (civil_second() + tt.utc_offset));
965     }
966     // tr->prev_civil_sec < cs < tr->civil_sec
967     return MakeSkipped(*tr, cs);
968   }
969 
970   if (tr == end) {
971     if (cs > (--tr)->prev_civil_sec) {
972       // After the last transition. If we extended the transitions using
973       // future_spec_, shift back to a supported year using the 400-year
974       // cycle of calendaric equivalence and then compensate accordingly.
975       if (extended_ && cs.year() > last_year_) {
976         const year_t shift = (cs.year() - last_year_ - 1) / 400 + 1;
977         return TimeLocal(YearShift(cs, shift * -400), shift);
978       }
979       const TransitionType& tt(transition_types_[tr->type_index]);
980       if (cs > tt.civil_max) return MakeUnique(time_point<seconds>::max());
981       return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
982     }
983     // tr->civil_sec <= cs <= tr->prev_civil_sec
984     return MakeRepeated(*tr, cs);
985   }
986 
987   if (tr->prev_civil_sec < cs) {
988     // tr->prev_civil_sec < cs < tr->civil_sec
989     return MakeSkipped(*tr, cs);
990   }
991 
992   if (cs <= (--tr)->prev_civil_sec) {
993     // tr->civil_sec <= cs <= tr->prev_civil_sec
994     return MakeRepeated(*tr, cs);
995   }
996 
997   // In between transitions.
998   return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
999 }
1000 
Version() const1001 std::string TimeZoneInfo::Version() const { return version_; }
1002 
Description() const1003 std::string TimeZoneInfo::Description() const {
1004   std::ostringstream oss;
1005   oss << "#trans=" << transitions_.size();
1006   oss << " #types=" << transition_types_.size();
1007   oss << " spec='" << future_spec_ << "'";
1008   return oss.str();
1009 }
1010 
NextTransition(const time_point<seconds> & tp,time_zone::civil_transition * trans) const1011 bool TimeZoneInfo::NextTransition(const time_point<seconds>& tp,
1012                                   time_zone::civil_transition* trans) const {
1013   if (transitions_.empty()) return false;
1014   const Transition* begin = &transitions_[0];
1015   const Transition* end = begin + transitions_.size();
1016   if (begin->unix_time <= -(1LL << 59)) {
1017     // Do not report the BIG_BANG found in some zoneinfo data as it is
1018     // really a sentinel, not a transition.  See pre-2018f tz/zic.c.
1019     ++begin;
1020   }
1021   std::int_fast64_t unix_time = ToUnixSeconds(tp);
1022   const Transition target = {unix_time, 0, civil_second(), civil_second()};
1023   const Transition* tr =
1024       std::upper_bound(begin, end, target, Transition::ByUnixTime());
1025   for (; tr != end; ++tr) {  // skip no-op transitions
1026     std::uint_fast8_t prev_type_index =
1027         (tr == begin) ? default_transition_type_ : tr[-1].type_index;
1028     if (!EquivTransitions(prev_type_index, tr[0].type_index)) break;
1029   }
1030   // When tr == end we return false, ignoring future_spec_.
1031   if (tr == end) return false;
1032   trans->from = tr->prev_civil_sec + 1;
1033   trans->to = tr->civil_sec;
1034   return true;
1035 }
1036 
PrevTransition(const time_point<seconds> & tp,time_zone::civil_transition * trans) const1037 bool TimeZoneInfo::PrevTransition(const time_point<seconds>& tp,
1038                                   time_zone::civil_transition* trans) const {
1039   if (transitions_.empty()) return false;
1040   const Transition* begin = &transitions_[0];
1041   const Transition* end = begin + transitions_.size();
1042   if (begin->unix_time <= -(1LL << 59)) {
1043     // Do not report the BIG_BANG found in some zoneinfo data as it is
1044     // really a sentinel, not a transition.  See pre-2018f tz/zic.c.
1045     ++begin;
1046   }
1047   std::int_fast64_t unix_time = ToUnixSeconds(tp);
1048   if (FromUnixSeconds(unix_time) != tp) {
1049     if (unix_time == std::numeric_limits<std::int_fast64_t>::max()) {
1050       if (end == begin) return false;  // Ignore future_spec_.
1051       trans->from = (--end)->prev_civil_sec + 1;
1052       trans->to = end->civil_sec;
1053       return true;
1054     }
1055     unix_time += 1;  // ceils
1056   }
1057   const Transition target = {unix_time, 0, civil_second(), civil_second()};
1058   const Transition* tr =
1059       std::lower_bound(begin, end, target, Transition::ByUnixTime());
1060   for (; tr != begin; --tr) {  // skip no-op transitions
1061     std::uint_fast8_t prev_type_index =
1062         (tr - 1 == begin) ? default_transition_type_ : tr[-2].type_index;
1063     if (!EquivTransitions(prev_type_index, tr[-1].type_index)) break;
1064   }
1065   // When tr == end we return the "last" transition, ignoring future_spec_.
1066   if (tr == begin) return false;
1067   trans->from = (--tr)->prev_civil_sec + 1;
1068   trans->to = tr->civil_sec;
1069   return true;
1070 }
1071 
1072 }  // namespace cctz
1073 }  // namespace time_internal
1074 ABSL_NAMESPACE_END
1075 }  // namespace absl
1076