• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // The Google C++ Testing and Mocking Framework (Google Test)
31 //
32 // This header file declares functions and macros used internally by
33 // Google Test.  They are subject to change without notice.
34 
35 // IWYU pragma: private, include "gtest/gtest.h"
36 // IWYU pragma: friend gtest/.*
37 // IWYU pragma: friend gmock/.*
38 
39 #ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
40 #define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
41 
42 #include "gtest/internal/gtest-port.h"
43 
44 #if GTEST_OS_LINUX
45 #include <stdlib.h>
46 #include <sys/types.h>
47 #include <sys/wait.h>
48 #include <unistd.h>
49 #endif  // GTEST_OS_LINUX
50 
51 #if GTEST_HAS_EXCEPTIONS
52 #include <stdexcept>
53 #endif
54 
55 #include <ctype.h>
56 #include <float.h>
57 #include <string.h>
58 
59 #include <cstdint>
60 #include <iomanip>
61 #include <limits>
62 #include <map>
63 #include <set>
64 #include <string>
65 #include <type_traits>
66 #include <vector>
67 
68 #include "gtest/gtest-message.h"
69 #include "gtest/internal/gtest-filepath.h"
70 #include "gtest/internal/gtest-string.h"
71 #include "gtest/internal/gtest-type-util.h"
72 
73 // Due to C++ preprocessor weirdness, we need double indirection to
74 // concatenate two tokens when one of them is __LINE__.  Writing
75 //
76 //   foo ## __LINE__
77 //
78 // will result in the token foo__LINE__, instead of foo followed by
79 // the current line number.  For more details, see
80 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
81 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
82 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
83 
84 // Stringifies its argument.
85 // Work around a bug in visual studio which doesn't accept code like this:
86 //
87 //   #define GTEST_STRINGIFY_(name) #name
88 //   #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
89 //   MACRO(, x, y)
90 //
91 // Complaining about the argument to GTEST_STRINGIFY_ being empty.
92 // This is allowed by the spec.
93 #define GTEST_STRINGIFY_HELPER_(name, ...) #name
94 #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
95 
96 namespace proto2 {
97 class MessageLite;
98 }
99 
100 namespace testing {
101 
102 // Forward declarations.
103 
104 class AssertionResult;  // Result of an assertion.
105 class Message;          // Represents a failure message.
106 class Test;             // Represents a test.
107 class TestInfo;         // Information about a test.
108 class TestPartResult;   // Result of a test part.
109 class UnitTest;         // A collection of test suites.
110 
111 template <typename T>
112 ::std::string PrintToString(const T& value);
113 
114 namespace internal {
115 
116 struct TraceInfo;    // Information about a trace point.
117 class TestInfoImpl;  // Opaque implementation of TestInfo
118 class UnitTestImpl;  // Opaque implementation of UnitTest
119 
120 // The text used in failure messages to indicate the start of the
121 // stack trace.
122 GTEST_API_ extern const char kStackTraceMarker[];
123 
124 // An IgnoredValue object can be implicitly constructed from ANY value.
125 class IgnoredValue {
126   struct Sink {};
127 
128  public:
129   // This constructor template allows any value to be implicitly
130   // converted to IgnoredValue.  The object has no data member and
131   // doesn't try to remember anything about the argument.  We
132   // deliberately omit the 'explicit' keyword in order to allow the
133   // conversion to be implicit.
134   // Disable the conversion if T already has a magical conversion operator.
135   // Otherwise we get ambiguity.
136   template <typename T,
137             typename std::enable_if<!std::is_convertible<T, Sink>::value,
138                                     int>::type = 0>
IgnoredValue(const T &)139   IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
140 };
141 
142 // Appends the user-supplied message to the Google-Test-generated message.
143 GTEST_API_ std::string AppendUserMessage(const std::string& gtest_msg,
144                                          const Message& user_msg);
145 
146 #if GTEST_HAS_EXCEPTIONS
147 
148 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
149     4275 /* an exported class was derived from a class that was not exported */)
150 
151 // This exception is thrown by (and only by) a failed Google Test
152 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
153 // are enabled).  We derive it from std::runtime_error, which is for
154 // errors presumably detectable only at run time.  Since
155 // std::runtime_error inherits from std::exception, many testing
156 // frameworks know how to extract and print the message inside it.
157 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
158  public:
159   explicit GoogleTestFailureException(const TestPartResult& failure);
160 };
161 
GTEST_DISABLE_MSC_WARNINGS_POP_()162 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
163 
164 #endif  // GTEST_HAS_EXCEPTIONS
165 
166 namespace edit_distance {
167 // Returns the optimal edits to go from 'left' to 'right'.
168 // All edits cost the same, with replace having lower priority than
169 // add/remove.
170 // Simple implementation of the Wagner-Fischer algorithm.
171 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
172 enum EditType { kMatch, kAdd, kRemove, kReplace };
173 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
174     const std::vector<size_t>& left, const std::vector<size_t>& right);
175 
176 // Same as above, but the input is represented as strings.
177 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
178     const std::vector<std::string>& left,
179     const std::vector<std::string>& right);
180 
181 // Create a diff of the input strings in Unified diff format.
182 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
183                                          const std::vector<std::string>& right,
184                                          size_t context = 2);
185 
186 }  // namespace edit_distance
187 
188 // Constructs and returns the message for an equality assertion
189 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
190 //
191 // The first four parameters are the expressions used in the assertion
192 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
193 // where foo is 5 and bar is 6, we have:
194 //
195 //   expected_expression: "foo"
196 //   actual_expression:   "bar"
197 //   expected_value:      "5"
198 //   actual_value:        "6"
199 //
200 // The ignoring_case parameter is true if and only if the assertion is a
201 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
202 // be inserted into the message.
203 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
204                                      const char* actual_expression,
205                                      const std::string& expected_value,
206                                      const std::string& actual_value,
207                                      bool ignoring_case);
208 
209 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
210 GTEST_API_ std::string GetBoolAssertionFailureMessage(
211     const AssertionResult& assertion_result, const char* expression_text,
212     const char* actual_predicate_value, const char* expected_predicate_value);
213 
214 // This template class represents an IEEE floating-point number
215 // (either single-precision or double-precision, depending on the
216 // template parameters).
217 //
218 // The purpose of this class is to do more sophisticated number
219 // comparison.  (Due to round-off error, etc, it's very unlikely that
220 // two floating-points will be equal exactly.  Hence a naive
221 // comparison by the == operation often doesn't work.)
222 //
223 // Format of IEEE floating-point:
224 //
225 //   The most-significant bit being the leftmost, an IEEE
226 //   floating-point looks like
227 //
228 //     sign_bit exponent_bits fraction_bits
229 //
230 //   Here, sign_bit is a single bit that designates the sign of the
231 //   number.
232 //
233 //   For float, there are 8 exponent bits and 23 fraction bits.
234 //
235 //   For double, there are 11 exponent bits and 52 fraction bits.
236 //
237 //   More details can be found at
238 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
239 //
240 // Template parameter:
241 //
242 //   RawType: the raw floating-point type (either float or double)
243 template <typename RawType>
244 class FloatingPoint {
245  public:
246   // Defines the unsigned integer type that has the same size as the
247   // floating point number.
248   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
249 
250   // Constants.
251 
252   // # of bits in a number.
253   static const size_t kBitCount = 8 * sizeof(RawType);
254 
255   // # of fraction bits in a number.
256   static const size_t kFractionBitCount =
257       std::numeric_limits<RawType>::digits - 1;
258 
259   // # of exponent bits in a number.
260   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
261 
262   // The mask for the sign bit.
263   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
264 
265   // The mask for the fraction bits.
266   static const Bits kFractionBitMask = ~static_cast<Bits>(0) >>
267                                        (kExponentBitCount + 1);
268 
269   // The mask for the exponent bits.
270   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
271 
272   // How many ULP's (Units in the Last Place) we want to tolerate when
273   // comparing two numbers.  The larger the value, the more error we
274   // allow.  A 0 value means that two numbers must be exactly the same
275   // to be considered equal.
276   //
277   // The maximum error of a single floating-point operation is 0.5
278   // units in the last place.  On Intel CPU's, all floating-point
279   // calculations are done with 80-bit precision, while double has 64
280   // bits.  Therefore, 4 should be enough for ordinary use.
281   //
282   // See the following article for more details on ULP:
283   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
284   static const uint32_t kMaxUlps = 4;
285 
286   // Constructs a FloatingPoint from a raw floating-point number.
287   //
288   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
289   // around may change its bits, although the new value is guaranteed
290   // to be also a NAN.  Therefore, don't expect this constructor to
291   // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)292   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
293 
294   // Static methods
295 
296   // Reinterprets a bit pattern as a floating-point number.
297   //
298   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)299   static RawType ReinterpretBits(const Bits bits) {
300     FloatingPoint fp(0);
301     fp.u_.bits_ = bits;
302     return fp.u_.value_;
303   }
304 
305   // Returns the floating-point number that represent positive infinity.
Infinity()306   static RawType Infinity() { return ReinterpretBits(kExponentBitMask); }
307 
308   // Returns the maximum representable finite floating-point number.
309   static RawType Max();
310 
311   // Non-static methods
312 
313   // Returns the bits that represents this number.
bits()314   const Bits& bits() const { return u_.bits_; }
315 
316   // Returns the exponent bits of this number.
exponent_bits()317   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
318 
319   // Returns the fraction bits of this number.
fraction_bits()320   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
321 
322   // Returns the sign bit of this number.
sign_bit()323   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
324 
325   // Returns true if and only if this is NAN (not a number).
is_nan()326   bool is_nan() const {
327     // It's a NAN if the exponent bits are all ones and the fraction
328     // bits are not entirely zeros.
329     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
330   }
331 
332   // Returns true if and only if this number is at most kMaxUlps ULP's away
333   // from rhs.  In particular, this function:
334   //
335   //   - returns false if either number is (or both are) NAN.
336   //   - treats really large numbers as almost equal to infinity.
337   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)338   bool AlmostEquals(const FloatingPoint& rhs) const {
339     // The IEEE standard says that any comparison operation involving
340     // a NAN must return false.
341     if (is_nan() || rhs.is_nan()) return false;
342 
343     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <=
344            kMaxUlps;
345   }
346 
347  private:
348   // The data type used to store the actual floating-point number.
349   union FloatingPointUnion {
350     RawType value_;  // The raw floating-point number.
351     Bits bits_;      // The bits that represent the number.
352   };
353 
354   // Converts an integer from the sign-and-magnitude representation to
355   // the biased representation.  More precisely, let N be 2 to the
356   // power of (kBitCount - 1), an integer x is represented by the
357   // unsigned number x + N.
358   //
359   // For instance,
360   //
361   //   -N + 1 (the most negative number representable using
362   //          sign-and-magnitude) is represented by 1;
363   //   0      is represented by N; and
364   //   N - 1  (the biggest number representable using
365   //          sign-and-magnitude) is represented by 2N - 1.
366   //
367   // Read http://en.wikipedia.org/wiki/Signed_number_representations
368   // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)369   static Bits SignAndMagnitudeToBiased(const Bits& sam) {
370     if (kSignBitMask & sam) {
371       // sam represents a negative number.
372       return ~sam + 1;
373     } else {
374       // sam represents a positive number.
375       return kSignBitMask | sam;
376     }
377   }
378 
379   // Given two numbers in the sign-and-magnitude representation,
380   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)381   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits& sam1,
382                                                      const Bits& sam2) {
383     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
384     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
385     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
386   }
387 
388   FloatingPointUnion u_;
389 };
390 
391 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
392 // macro defined by <windows.h>.
393 template <>
Max()394 inline float FloatingPoint<float>::Max() {
395   return FLT_MAX;
396 }
397 template <>
Max()398 inline double FloatingPoint<double>::Max() {
399   return DBL_MAX;
400 }
401 
402 // Typedefs the instances of the FloatingPoint template class that we
403 // care to use.
404 typedef FloatingPoint<float> Float;
405 typedef FloatingPoint<double> Double;
406 
407 // In order to catch the mistake of putting tests that use different
408 // test fixture classes in the same test suite, we need to assign
409 // unique IDs to fixture classes and compare them.  The TypeId type is
410 // used to hold such IDs.  The user should treat TypeId as an opaque
411 // type: the only operation allowed on TypeId values is to compare
412 // them for equality using the == operator.
413 typedef const void* TypeId;
414 
415 template <typename T>
416 class TypeIdHelper {
417  public:
418   // dummy_ must not have a const type.  Otherwise an overly eager
419   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
420   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
421   static bool dummy_;
422 };
423 
424 template <typename T>
425 bool TypeIdHelper<T>::dummy_ = false;
426 
427 // GetTypeId<T>() returns the ID of type T.  Different values will be
428 // returned for different types.  Calling the function twice with the
429 // same type argument is guaranteed to return the same ID.
430 template <typename T>
GetTypeId()431 TypeId GetTypeId() {
432   // The compiler is required to allocate a different
433   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
434   // the template.  Therefore, the address of dummy_ is guaranteed to
435   // be unique.
436   return &(TypeIdHelper<T>::dummy_);
437 }
438 
439 // Returns the type ID of ::testing::Test.  Always call this instead
440 // of GetTypeId< ::testing::Test>() to get the type ID of
441 // ::testing::Test, as the latter may give the wrong result due to a
442 // suspected linker bug when compiling Google Test as a Mac OS X
443 // framework.
444 GTEST_API_ TypeId GetTestTypeId();
445 
446 // Defines the abstract factory interface that creates instances
447 // of a Test object.
448 class TestFactoryBase {
449  public:
~TestFactoryBase()450   virtual ~TestFactoryBase() {}
451 
452   // Creates a test instance to run. The instance is both created and destroyed
453   // within TestInfoImpl::Run()
454   virtual Test* CreateTest() = 0;
455 
456  protected:
TestFactoryBase()457   TestFactoryBase() {}
458 
459  private:
460   TestFactoryBase(const TestFactoryBase&) = delete;
461   TestFactoryBase& operator=(const TestFactoryBase&) = delete;
462 };
463 
464 // This class provides implementation of TeastFactoryBase interface.
465 // It is used in TEST and TEST_F macros.
466 template <class TestClass>
467 class TestFactoryImpl : public TestFactoryBase {
468  public:
CreateTest()469   Test* CreateTest() override { return new TestClass; }
470 };
471 
472 #if GTEST_OS_WINDOWS
473 
474 // Predicate-formatters for implementing the HRESULT checking macros
475 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
476 // We pass a long instead of HRESULT to avoid causing an
477 // include dependency for the HRESULT type.
478 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
479                                             long hr);  // NOLINT
480 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
481                                             long hr);  // NOLINT
482 
483 #endif  // GTEST_OS_WINDOWS
484 
485 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
486 using SetUpTestSuiteFunc = void (*)();
487 using TearDownTestSuiteFunc = void (*)();
488 
489 struct CodeLocation {
CodeLocationCodeLocation490   CodeLocation(const std::string& a_file, int a_line)
491       : file(a_file), line(a_line) {}
492 
493   std::string file;
494   int line;
495 };
496 
497 //  Helper to identify which setup function for TestCase / TestSuite to call.
498 //  Only one function is allowed, either TestCase or TestSute but not both.
499 
500 // Utility functions to help SuiteApiResolver
501 using SetUpTearDownSuiteFuncType = void (*)();
502 
GetNotDefaultOrNull(SetUpTearDownSuiteFuncType a,SetUpTearDownSuiteFuncType def)503 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
504     SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
505   return a == def ? nullptr : a;
506 }
507 
508 template <typename T>
509 //  Note that SuiteApiResolver inherits from T because
510 //  SetUpTestSuite()/TearDownTestSuite() could be protected. This way
511 //  SuiteApiResolver can access them.
512 struct SuiteApiResolver : T {
513   // testing::Test is only forward declared at this point. So we make it a
514   // dependent class for the compiler to be OK with it.
515   using Test =
516       typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
517 
GetSetUpCaseOrSuiteSuiteApiResolver518   static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
519                                                         int line_num) {
520 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
521     SetUpTearDownSuiteFuncType test_case_fp =
522         GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
523     SetUpTearDownSuiteFuncType test_suite_fp =
524         GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
525 
526     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
527         << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
528            "make sure there is only one present at "
529         << filename << ":" << line_num;
530 
531     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
532 #else
533     (void)(filename);
534     (void)(line_num);
535     return &T::SetUpTestSuite;
536 #endif
537   }
538 
GetTearDownCaseOrSuiteSuiteApiResolver539   static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
540                                                            int line_num) {
541 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
542     SetUpTearDownSuiteFuncType test_case_fp =
543         GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
544     SetUpTearDownSuiteFuncType test_suite_fp =
545         GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
546 
547     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
548         << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
549            " please make sure there is only one present at"
550         << filename << ":" << line_num;
551 
552     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
553 #else
554     (void)(filename);
555     (void)(line_num);
556     return &T::TearDownTestSuite;
557 #endif
558   }
559 };
560 
561 // Creates a new TestInfo object and registers it with Google Test;
562 // returns the created object.
563 //
564 // Arguments:
565 //
566 //   test_suite_name:  name of the test suite
567 //   name:             name of the test
568 //   type_param:       the name of the test's type parameter, or NULL if
569 //                     this is not a typed or a type-parameterized test.
570 //   value_param:      text representation of the test's value parameter,
571 //                     or NULL if this is not a type-parameterized test.
572 //   code_location:    code location where the test is defined
573 //   fixture_class_id: ID of the test fixture class
574 //   set_up_tc:        pointer to the function that sets up the test suite
575 //   tear_down_tc:     pointer to the function that tears down the test suite
576 //   factory:          pointer to the factory that creates a test object.
577 //                     The newly created TestInfo instance will assume
578 //                     ownership of the factory object.
579 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
580     const char* test_suite_name, const char* name, const char* type_param,
581     const char* value_param, CodeLocation code_location,
582     TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
583     TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
584 
585 // If *pstr starts with the given prefix, modifies *pstr to be right
586 // past the prefix and returns true; otherwise leaves *pstr unchanged
587 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
588 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
589 
590 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
591 /* class A needs to have dll-interface to be used by clients of class B */)
592 
593 // State of the definition of a type-parameterized test suite.
594 class GTEST_API_ TypedTestSuitePState {
595  public:
TypedTestSuitePState()596   TypedTestSuitePState() : registered_(false) {}
597 
598   // Adds the given test name to defined_test_names_ and return true
599   // if the test suite hasn't been registered; otherwise aborts the
600   // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)601   bool AddTestName(const char* file, int line, const char* case_name,
602                    const char* test_name) {
603     if (registered_) {
604       fprintf(stderr,
605               "%s Test %s must be defined before "
606               "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
607               FormatFileLocation(file, line).c_str(), test_name, case_name);
608       fflush(stderr);
609       posix::Abort();
610     }
611     registered_tests_.insert(
612         ::std::make_pair(test_name, CodeLocation(file, line)));
613     return true;
614   }
615 
TestExists(const std::string & test_name)616   bool TestExists(const std::string& test_name) const {
617     return registered_tests_.count(test_name) > 0;
618   }
619 
GetCodeLocation(const std::string & test_name)620   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
621     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
622     GTEST_CHECK_(it != registered_tests_.end());
623     return it->second;
624   }
625 
626   // Verifies that registered_tests match the test names in
627   // defined_test_names_; returns registered_tests if successful, or
628   // aborts the program otherwise.
629   const char* VerifyRegisteredTestNames(const char* test_suite_name,
630                                         const char* file, int line,
631                                         const char* registered_tests);
632 
633  private:
634   typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
635 
636   bool registered_;
637   RegisteredTestsMap registered_tests_;
638 };
639 
640 //  Legacy API is deprecated but still available
641 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
642 using TypedTestCasePState = TypedTestSuitePState;
643 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
644 
GTEST_DISABLE_MSC_WARNINGS_POP_()645 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
646 
647 // Skips to the first non-space char after the first comma in 'str';
648 // returns NULL if no comma is found in 'str'.
649 inline const char* SkipComma(const char* str) {
650   const char* comma = strchr(str, ',');
651   if (comma == nullptr) {
652     return nullptr;
653   }
654   while (IsSpace(*(++comma))) {
655   }
656   return comma;
657 }
658 
659 // Returns the prefix of 'str' before the first comma in it; returns
660 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)661 inline std::string GetPrefixUntilComma(const char* str) {
662   const char* comma = strchr(str, ',');
663   return comma == nullptr ? str : std::string(str, comma);
664 }
665 
666 // Splits a given string on a given delimiter, populating a given
667 // vector with the fields.
668 void SplitString(const ::std::string& str, char delimiter,
669                  ::std::vector<::std::string>* dest);
670 
671 // The default argument to the template below for the case when the user does
672 // not provide a name generator.
673 struct DefaultNameGenerator {
674   template <typename T>
GetNameDefaultNameGenerator675   static std::string GetName(int i) {
676     return StreamableToString(i);
677   }
678 };
679 
680 template <typename Provided = DefaultNameGenerator>
681 struct NameGeneratorSelector {
682   typedef Provided type;
683 };
684 
685 template <typename NameGenerator>
GenerateNamesRecursively(internal::None,std::vector<std::string> *,int)686 void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
687 
688 template <typename NameGenerator, typename Types>
GenerateNamesRecursively(Types,std::vector<std::string> * result,int i)689 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
690   result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
691   GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
692                                           i + 1);
693 }
694 
695 template <typename NameGenerator, typename Types>
GenerateNames()696 std::vector<std::string> GenerateNames() {
697   std::vector<std::string> result;
698   GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
699   return result;
700 }
701 
702 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
703 // registers a list of type-parameterized tests with Google Test.  The
704 // return value is insignificant - we just need to return something
705 // such that we can call this function in a namespace scope.
706 //
707 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
708 // template parameter.  It's defined in gtest-type-util.h.
709 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
710 class TypeParameterizedTest {
711  public:
712   // 'index' is the index of the test in the type list 'Types'
713   // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
714   // Types).  Valid values for 'index' are [0, N - 1] where N is the
715   // length of Types.
716   static bool Register(const char* prefix, const CodeLocation& code_location,
717                        const char* case_name, const char* test_names, int index,
718                        const std::vector<std::string>& type_names =
719                            GenerateNames<DefaultNameGenerator, Types>()) {
720     typedef typename Types::Head Type;
721     typedef Fixture<Type> FixtureClass;
722     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
723 
724     // First, registers the first type-parameterized test in the type
725     // list.
726     MakeAndRegisterTestInfo(
727         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
728          "/" + type_names[static_cast<size_t>(index)])
729             .c_str(),
730         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
731         GetTypeName<Type>().c_str(),
732         nullptr,  // No value parameter.
733         code_location, GetTypeId<FixtureClass>(),
734         SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
735             code_location.file.c_str(), code_location.line),
736         SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
737             code_location.file.c_str(), code_location.line),
738         new TestFactoryImpl<TestClass>);
739 
740     // Next, recurses (at compile time) with the tail of the type list.
741     return TypeParameterizedTest<Fixture, TestSel,
742                                  typename Types::Tail>::Register(prefix,
743                                                                  code_location,
744                                                                  case_name,
745                                                                  test_names,
746                                                                  index + 1,
747                                                                  type_names);
748   }
749 };
750 
751 // The base case for the compile time recursion.
752 template <GTEST_TEMPLATE_ Fixture, class TestSel>
753 class TypeParameterizedTest<Fixture, TestSel, internal::None> {
754  public:
755   static bool Register(const char* /*prefix*/, const CodeLocation&,
756                        const char* /*case_name*/, const char* /*test_names*/,
757                        int /*index*/,
758                        const std::vector<std::string>& =
759                            std::vector<std::string>() /*type_names*/) {
760     return true;
761   }
762 };
763 
764 GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
765                                                    CodeLocation code_location);
766 GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
767     const char* case_name);
768 
769 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
770 // registers *all combinations* of 'Tests' and 'Types' with Google
771 // Test.  The return value is insignificant - we just need to return
772 // something such that we can call this function in a namespace scope.
773 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
774 class TypeParameterizedTestSuite {
775  public:
776   static bool Register(const char* prefix, CodeLocation code_location,
777                        const TypedTestSuitePState* state, const char* case_name,
778                        const char* test_names,
779                        const std::vector<std::string>& type_names =
780                            GenerateNames<DefaultNameGenerator, Types>()) {
781     RegisterTypeParameterizedTestSuiteInstantiation(case_name);
782     std::string test_name =
783         StripTrailingSpaces(GetPrefixUntilComma(test_names));
784     if (!state->TestExists(test_name)) {
785       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
786               case_name, test_name.c_str(),
787               FormatFileLocation(code_location.file.c_str(), code_location.line)
788                   .c_str());
789       fflush(stderr);
790       posix::Abort();
791     }
792     const CodeLocation& test_location = state->GetCodeLocation(test_name);
793 
794     typedef typename Tests::Head Head;
795 
796     // First, register the first test in 'Test' for each type in 'Types'.
797     TypeParameterizedTest<Fixture, Head, Types>::Register(
798         prefix, test_location, case_name, test_names, 0, type_names);
799 
800     // Next, recurses (at compile time) with the tail of the test list.
801     return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
802                                       Types>::Register(prefix, code_location,
803                                                        state, case_name,
804                                                        SkipComma(test_names),
805                                                        type_names);
806   }
807 };
808 
809 // The base case for the compile time recursion.
810 template <GTEST_TEMPLATE_ Fixture, typename Types>
811 class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
812  public:
813   static bool Register(const char* /*prefix*/, const CodeLocation&,
814                        const TypedTestSuitePState* /*state*/,
815                        const char* /*case_name*/, const char* /*test_names*/,
816                        const std::vector<std::string>& =
817                            std::vector<std::string>() /*type_names*/) {
818     return true;
819   }
820 };
821 
822 // Returns the current OS stack trace as an std::string.
823 //
824 // The maximum number of stack frames to be included is specified by
825 // the gtest_stack_trace_depth flag.  The skip_count parameter
826 // specifies the number of top frames to be skipped, which doesn't
827 // count against the number of frames to be included.
828 //
829 // For example, if Foo() calls Bar(), which in turn calls
830 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
831 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
832 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(UnitTest* unit_test,
833                                                        int skip_count);
834 
835 // Helpers for suppressing warnings on unreachable code or constant
836 // condition.
837 
838 // Always returns true.
839 GTEST_API_ bool AlwaysTrue();
840 
841 // Always returns false.
AlwaysFalse()842 inline bool AlwaysFalse() { return !AlwaysTrue(); }
843 
844 // Helper for suppressing false warning from Clang on a const char*
845 // variable declared in a conditional expression always being NULL in
846 // the else branch.
847 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr848   ConstCharPtr(const char* str) : value(str) {}
849   operator bool() const { return true; }
850   const char* value;
851 };
852 
853 // Helper for declaring std::string within 'if' statement
854 // in pre C++17 build environment.
855 struct TrueWithString {
856   TrueWithString() = default;
TrueWithStringTrueWithString857   explicit TrueWithString(const char* str) : value(str) {}
TrueWithStringTrueWithString858   explicit TrueWithString(const std::string& str) : value(str) {}
859   explicit operator bool() const { return true; }
860   std::string value;
861 };
862 
863 // A simple Linear Congruential Generator for generating random
864 // numbers with a uniform distribution.  Unlike rand() and srand(), it
865 // doesn't use global state (and therefore can't interfere with user
866 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
867 // but it's good enough for our purposes.
868 class GTEST_API_ Random {
869  public:
870   static const uint32_t kMaxRange = 1u << 31;
871 
Random(uint32_t seed)872   explicit Random(uint32_t seed) : state_(seed) {}
873 
Reseed(uint32_t seed)874   void Reseed(uint32_t seed) { state_ = seed; }
875 
876   // Generates a random number from [0, range).  Crashes if 'range' is
877   // 0 or greater than kMaxRange.
878   uint32_t Generate(uint32_t range);
879 
880  private:
881   uint32_t state_;
882   Random(const Random&) = delete;
883   Random& operator=(const Random&) = delete;
884 };
885 
886 // Turns const U&, U&, const U, and U all into U.
887 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
888   typename std::remove_const<typename std::remove_reference<T>::type>::type
889 
890 // HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
891 // that's true if and only if T has methods DebugString() and ShortDebugString()
892 // that return std::string.
893 template <typename T>
894 class HasDebugStringAndShortDebugString {
895  private:
896   template <typename C>
897   static auto CheckDebugString(C*) -> typename std::is_same<
898       std::string, decltype(std::declval<const C>().DebugString())>::type;
899   template <typename>
900   static std::false_type CheckDebugString(...);
901 
902   template <typename C>
903   static auto CheckShortDebugString(C*) -> typename std::is_same<
904       std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
905   template <typename>
906   static std::false_type CheckShortDebugString(...);
907 
908   using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
909   using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
910 
911  public:
912   static constexpr bool value =
913       HasDebugStringType::value && HasShortDebugStringType::value;
914 };
915 
916 template <typename T>
917 constexpr bool HasDebugStringAndShortDebugString<T>::value;
918 
919 // When the compiler sees expression IsContainerTest<C>(0), if C is an
920 // STL-style container class, the first overload of IsContainerTest
921 // will be viable (since both C::iterator* and C::const_iterator* are
922 // valid types and NULL can be implicitly converted to them).  It will
923 // be picked over the second overload as 'int' is a perfect match for
924 // the type of argument 0.  If C::iterator or C::const_iterator is not
925 // a valid type, the first overload is not viable, and the second
926 // overload will be picked.  Therefore, we can determine whether C is
927 // a container class by checking the type of IsContainerTest<C>(0).
928 // The value of the expression is insignificant.
929 //
930 // In C++11 mode we check the existence of a const_iterator and that an
931 // iterator is properly implemented for the container.
932 //
933 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
934 // The reason is that C++ injects the name of a class as a member of the
935 // class itself (e.g. you can refer to class iterator as either
936 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
937 // only, for example, we would mistakenly think that a class named
938 // iterator is an STL container.
939 //
940 // Also note that the simpler approach of overloading
941 // IsContainerTest(typename C::const_iterator*) and
942 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
943 typedef int IsContainer;
944 template <class C,
945           class Iterator = decltype(::std::declval<const C&>().begin()),
946           class = decltype(::std::declval<const C&>().end()),
947           class = decltype(++::std::declval<Iterator&>()),
948           class = decltype(*::std::declval<Iterator>()),
949           class = typename C::const_iterator>
IsContainerTest(int)950 IsContainer IsContainerTest(int /* dummy */) {
951   return 0;
952 }
953 
954 typedef char IsNotContainer;
955 template <class C>
IsContainerTest(long)956 IsNotContainer IsContainerTest(long /* dummy */) {
957   return '\0';
958 }
959 
960 // Trait to detect whether a type T is a hash table.
961 // The heuristic used is that the type contains an inner type `hasher` and does
962 // not contain an inner type `reverse_iterator`.
963 // If the container is iterable in reverse, then order might actually matter.
964 template <typename T>
965 struct IsHashTable {
966  private:
967   template <typename U>
968   static char test(typename U::hasher*, typename U::reverse_iterator*);
969   template <typename U>
970   static int test(typename U::hasher*, ...);
971   template <typename U>
972   static char test(...);
973 
974  public:
975   static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
976 };
977 
978 template <typename T>
979 const bool IsHashTable<T>::value;
980 
981 template <typename C,
982           bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
983 struct IsRecursiveContainerImpl;
984 
985 template <typename C>
986 struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
987 
988 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
989 // obey the same inconsistencies as the IsContainerTest, namely check if
990 // something is a container is relying on only const_iterator in C++11 and
991 // is relying on both const_iterator and iterator otherwise
992 template <typename C>
993 struct IsRecursiveContainerImpl<C, true> {
994   using value_type = decltype(*std::declval<typename C::const_iterator>());
995   using type =
996       std::is_same<typename std::remove_const<
997                        typename std::remove_reference<value_type>::type>::type,
998                    C>;
999 };
1000 
1001 // IsRecursiveContainer<Type> is a unary compile-time predicate that
1002 // evaluates whether C is a recursive container type. A recursive container
1003 // type is a container type whose value_type is equal to the container type
1004 // itself. An example for a recursive container type is
1005 // boost::filesystem::path, whose iterator has a value_type that is equal to
1006 // boost::filesystem::path.
1007 template <typename C>
1008 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
1009 
1010 // Utilities for native arrays.
1011 
1012 // ArrayEq() compares two k-dimensional native arrays using the
1013 // elements' operator==, where k can be any integer >= 0.  When k is
1014 // 0, ArrayEq() degenerates into comparing a single pair of values.
1015 
1016 template <typename T, typename U>
1017 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1018 
1019 // This generic version is used when k is 0.
1020 template <typename T, typename U>
1021 inline bool ArrayEq(const T& lhs, const U& rhs) {
1022   return lhs == rhs;
1023 }
1024 
1025 // This overload is used when k >= 1.
1026 template <typename T, typename U, size_t N>
1027 inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N]) {
1028   return internal::ArrayEq(lhs, N, rhs);
1029 }
1030 
1031 // This helper reduces code bloat.  If we instead put its logic inside
1032 // the previous ArrayEq() function, arrays with different sizes would
1033 // lead to different copies of the template code.
1034 template <typename T, typename U>
1035 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1036   for (size_t i = 0; i != size; i++) {
1037     if (!internal::ArrayEq(lhs[i], rhs[i])) return false;
1038   }
1039   return true;
1040 }
1041 
1042 // Finds the first element in the iterator range [begin, end) that
1043 // equals elem.  Element may be a native array type itself.
1044 template <typename Iter, typename Element>
1045 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1046   for (Iter it = begin; it != end; ++it) {
1047     if (internal::ArrayEq(*it, elem)) return it;
1048   }
1049   return end;
1050 }
1051 
1052 // CopyArray() copies a k-dimensional native array using the elements'
1053 // operator=, where k can be any integer >= 0.  When k is 0,
1054 // CopyArray() degenerates into copying a single value.
1055 
1056 template <typename T, typename U>
1057 void CopyArray(const T* from, size_t size, U* to);
1058 
1059 // This generic version is used when k is 0.
1060 template <typename T, typename U>
1061 inline void CopyArray(const T& from, U* to) {
1062   *to = from;
1063 }
1064 
1065 // This overload is used when k >= 1.
1066 template <typename T, typename U, size_t N>
1067 inline void CopyArray(const T (&from)[N], U (*to)[N]) {
1068   internal::CopyArray(from, N, *to);
1069 }
1070 
1071 // This helper reduces code bloat.  If we instead put its logic inside
1072 // the previous CopyArray() function, arrays with different sizes
1073 // would lead to different copies of the template code.
1074 template <typename T, typename U>
1075 void CopyArray(const T* from, size_t size, U* to) {
1076   for (size_t i = 0; i != size; i++) {
1077     internal::CopyArray(from[i], to + i);
1078   }
1079 }
1080 
1081 // The relation between an NativeArray object (see below) and the
1082 // native array it represents.
1083 // We use 2 different structs to allow non-copyable types to be used, as long
1084 // as RelationToSourceReference() is passed.
1085 struct RelationToSourceReference {};
1086 struct RelationToSourceCopy {};
1087 
1088 // Adapts a native array to a read-only STL-style container.  Instead
1089 // of the complete STL container concept, this adaptor only implements
1090 // members useful for Google Mock's container matchers.  New members
1091 // should be added as needed.  To simplify the implementation, we only
1092 // support Element being a raw type (i.e. having no top-level const or
1093 // reference modifier).  It's the client's responsibility to satisfy
1094 // this requirement.  Element can be an array type itself (hence
1095 // multi-dimensional arrays are supported).
1096 template <typename Element>
1097 class NativeArray {
1098  public:
1099   // STL-style container typedefs.
1100   typedef Element value_type;
1101   typedef Element* iterator;
1102   typedef const Element* const_iterator;
1103 
1104   // Constructs from a native array. References the source.
1105   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1106     InitRef(array, count);
1107   }
1108 
1109   // Constructs from a native array. Copies the source.
1110   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1111     InitCopy(array, count);
1112   }
1113 
1114   // Copy constructor.
1115   NativeArray(const NativeArray& rhs) {
1116     (this->*rhs.clone_)(rhs.array_, rhs.size_);
1117   }
1118 
1119   ~NativeArray() {
1120     if (clone_ != &NativeArray::InitRef) delete[] array_;
1121   }
1122 
1123   // STL-style container methods.
1124   size_t size() const { return size_; }
1125   const_iterator begin() const { return array_; }
1126   const_iterator end() const { return array_ + size_; }
1127   bool operator==(const NativeArray& rhs) const {
1128     return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin());
1129   }
1130 
1131  private:
1132   static_assert(!std::is_const<Element>::value, "Type must not be const");
1133   static_assert(!std::is_reference<Element>::value,
1134                 "Type must not be a reference");
1135 
1136   // Initializes this object with a copy of the input.
1137   void InitCopy(const Element* array, size_t a_size) {
1138     Element* const copy = new Element[a_size];
1139     CopyArray(array, a_size, copy);
1140     array_ = copy;
1141     size_ = a_size;
1142     clone_ = &NativeArray::InitCopy;
1143   }
1144 
1145   // Initializes this object with a reference of the input.
1146   void InitRef(const Element* array, size_t a_size) {
1147     array_ = array;
1148     size_ = a_size;
1149     clone_ = &NativeArray::InitRef;
1150   }
1151 
1152   const Element* array_;
1153   size_t size_;
1154   void (NativeArray::*clone_)(const Element*, size_t);
1155 };
1156 
1157 // Backport of std::index_sequence.
1158 template <size_t... Is>
1159 struct IndexSequence {
1160   using type = IndexSequence;
1161 };
1162 
1163 // Double the IndexSequence, and one if plus_one is true.
1164 template <bool plus_one, typename T, size_t sizeofT>
1165 struct DoubleSequence;
1166 template <size_t... I, size_t sizeofT>
1167 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1168   using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1169 };
1170 template <size_t... I, size_t sizeofT>
1171 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1172   using type = IndexSequence<I..., (sizeofT + I)...>;
1173 };
1174 
1175 // Backport of std::make_index_sequence.
1176 // It uses O(ln(N)) instantiation depth.
1177 template <size_t N>
1178 struct MakeIndexSequenceImpl
1179     : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
1180                      N / 2>::type {};
1181 
1182 template <>
1183 struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
1184 
1185 template <size_t N>
1186 using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
1187 
1188 template <typename... T>
1189 using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
1190 
1191 template <size_t>
1192 struct Ignore {
1193   Ignore(...);  // NOLINT
1194 };
1195 
1196 template <typename>
1197 struct ElemFromListImpl;
1198 template <size_t... I>
1199 struct ElemFromListImpl<IndexSequence<I...>> {
1200   // We make Ignore a template to solve a problem with MSVC.
1201   // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
1202   // MSVC doesn't understand how to deal with that pack expansion.
1203   // Use `0 * I` to have a single instantiation of Ignore.
1204   template <typename R>
1205   static R Apply(Ignore<0 * I>..., R (*)(), ...);
1206 };
1207 
1208 template <size_t N, typename... T>
1209 struct ElemFromList {
1210   using type =
1211       decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
1212           static_cast<T (*)()>(nullptr)...));
1213 };
1214 
1215 struct FlatTupleConstructTag {};
1216 
1217 template <typename... T>
1218 class FlatTuple;
1219 
1220 template <typename Derived, size_t I>
1221 struct FlatTupleElemBase;
1222 
1223 template <typename... T, size_t I>
1224 struct FlatTupleElemBase<FlatTuple<T...>, I> {
1225   using value_type = typename ElemFromList<I, T...>::type;
1226   FlatTupleElemBase() = default;
1227   template <typename Arg>
1228   explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
1229       : value(std::forward<Arg>(t)) {}
1230   value_type value;
1231 };
1232 
1233 template <typename Derived, typename Idx>
1234 struct FlatTupleBase;
1235 
1236 template <size_t... Idx, typename... T>
1237 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1238     : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1239   using Indices = IndexSequence<Idx...>;
1240   FlatTupleBase() = default;
1241   template <typename... Args>
1242   explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
1243       : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
1244                                                 std::forward<Args>(args))... {}
1245 
1246   template <size_t I>
1247   const typename ElemFromList<I, T...>::type& Get() const {
1248     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1249   }
1250 
1251   template <size_t I>
1252   typename ElemFromList<I, T...>::type& Get() {
1253     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1254   }
1255 
1256   template <typename F>
1257   auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1258     return std::forward<F>(f)(Get<Idx>()...);
1259   }
1260 
1261   template <typename F>
1262   auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1263     return std::forward<F>(f)(Get<Idx>()...);
1264   }
1265 };
1266 
1267 // Analog to std::tuple but with different tradeoffs.
1268 // This class minimizes the template instantiation depth, thus allowing more
1269 // elements than std::tuple would. std::tuple has been seen to require an
1270 // instantiation depth of more than 10x the number of elements in some
1271 // implementations.
1272 // FlatTuple and ElemFromList are not recursive and have a fixed depth
1273 // regardless of T...
1274 // MakeIndexSequence, on the other hand, it is recursive but with an
1275 // instantiation depth of O(ln(N)).
1276 template <typename... T>
1277 class FlatTuple
1278     : private FlatTupleBase<FlatTuple<T...>,
1279                             typename MakeIndexSequence<sizeof...(T)>::type> {
1280   using Indices = typename FlatTupleBase<
1281       FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
1282 
1283  public:
1284   FlatTuple() = default;
1285   template <typename... Args>
1286   explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
1287       : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
1288 
1289   using FlatTuple::FlatTupleBase::Apply;
1290   using FlatTuple::FlatTupleBase::Get;
1291 };
1292 
1293 // Utility functions to be called with static_assert to induce deprecation
1294 // warnings.
1295 GTEST_INTERNAL_DEPRECATED(
1296     "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1297     "INSTANTIATE_TEST_SUITE_P")
1298 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1299 
1300 GTEST_INTERNAL_DEPRECATED(
1301     "TYPED_TEST_CASE_P is deprecated, please use "
1302     "TYPED_TEST_SUITE_P")
1303 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1304 
1305 GTEST_INTERNAL_DEPRECATED(
1306     "TYPED_TEST_CASE is deprecated, please use "
1307     "TYPED_TEST_SUITE")
1308 constexpr bool TypedTestCaseIsDeprecated() { return true; }
1309 
1310 GTEST_INTERNAL_DEPRECATED(
1311     "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1312     "REGISTER_TYPED_TEST_SUITE_P")
1313 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1314 
1315 GTEST_INTERNAL_DEPRECATED(
1316     "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1317     "INSTANTIATE_TYPED_TEST_SUITE_P")
1318 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1319 
1320 }  // namespace internal
1321 }  // namespace testing
1322 
1323 namespace std {
1324 // Some standard library implementations use `struct tuple_size` and some use
1325 // `class tuple_size`. Clang warns about the mismatch.
1326 // https://reviews.llvm.org/D55466
1327 #ifdef __clang__
1328 #pragma clang diagnostic push
1329 #pragma clang diagnostic ignored "-Wmismatched-tags"
1330 #endif
1331 template <typename... Ts>
1332 struct tuple_size<testing::internal::FlatTuple<Ts...>>
1333     : std::integral_constant<size_t, sizeof...(Ts)> {};
1334 #ifdef __clang__
1335 #pragma clang diagnostic pop
1336 #endif
1337 }  // namespace std
1338 
1339 #define GTEST_MESSAGE_AT_(file, line, message, result_type)             \
1340   ::testing::internal::AssertHelper(result_type, file, line, message) = \
1341       ::testing::Message()
1342 
1343 #define GTEST_MESSAGE_(message, result_type) \
1344   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1345 
1346 #define GTEST_FATAL_FAILURE_(message) \
1347   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1348 
1349 #define GTEST_NONFATAL_FAILURE_(message) \
1350   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1351 
1352 #define GTEST_SUCCESS_(message) \
1353   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1354 
1355 #define GTEST_SKIP_(message) \
1356   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1357 
1358 // Suppress MSVC warning 4072 (unreachable code) for the code following
1359 // statement if it returns or throws (or doesn't return or throw in some
1360 // situations).
1361 // NOTE: The "else" is important to keep this expansion to prevent a top-level
1362 // "else" from attaching to our "if".
1363 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1364   if (::testing::internal::AlwaysTrue()) {                        \
1365     statement;                                                    \
1366   } else                     /* NOLINT */                         \
1367     static_assert(true, "")  // User must have a semicolon after expansion.
1368 
1369 #if GTEST_HAS_EXCEPTIONS
1370 
1371 namespace testing {
1372 namespace internal {
1373 
1374 class NeverThrown {
1375  public:
1376   const char* what() const noexcept {
1377     return "this exception should never be thrown";
1378   }
1379 };
1380 
1381 }  // namespace internal
1382 }  // namespace testing
1383 
1384 #if GTEST_HAS_RTTI
1385 
1386 #define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
1387 
1388 #else  // GTEST_HAS_RTTI
1389 
1390 #define GTEST_EXCEPTION_TYPE_(e) \
1391   std::string { "an std::exception-derived error" }
1392 
1393 #endif  // GTEST_HAS_RTTI
1394 
1395 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)   \
1396   catch (typename std::conditional<                                            \
1397          std::is_same<typename std::remove_cv<typename std::remove_reference<  \
1398                           expected_exception>::type>::type,                    \
1399                       std::exception>::value,                                  \
1400          const ::testing::internal::NeverThrown&, const std::exception&>::type \
1401              e) {                                                              \
1402     gtest_msg.value = "Expected: " #statement                                  \
1403                       " throws an exception of type " #expected_exception      \
1404                       ".\n  Actual: it throws ";                               \
1405     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                               \
1406     gtest_msg.value += " with description \"";                                 \
1407     gtest_msg.value += e.what();                                               \
1408     gtest_msg.value += "\".";                                                  \
1409     goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);                \
1410   }
1411 
1412 #else  // GTEST_HAS_EXCEPTIONS
1413 
1414 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
1415 
1416 #endif  // GTEST_HAS_EXCEPTIONS
1417 
1418 #define GTEST_TEST_THROW_(statement, expected_exception, fail)              \
1419   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                             \
1420   if (::testing::internal::TrueWithString gtest_msg{}) {                    \
1421     bool gtest_caught_expected = false;                                     \
1422     try {                                                                   \
1423       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);            \
1424     } catch (expected_exception const&) {                                   \
1425       gtest_caught_expected = true;                                         \
1426     }                                                                       \
1427     GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)    \
1428     catch (...) {                                                           \
1429       gtest_msg.value = "Expected: " #statement                             \
1430                         " throws an exception of type " #expected_exception \
1431                         ".\n  Actual: it throws a different type.";         \
1432       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1433     }                                                                       \
1434     if (!gtest_caught_expected) {                                           \
1435       gtest_msg.value = "Expected: " #statement                             \
1436                         " throws an exception of type " #expected_exception \
1437                         ".\n  Actual: it throws nothing.";                  \
1438       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1439     }                                                                       \
1440   } else /*NOLINT*/                                                         \
1441     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__)                   \
1442         : fail(gtest_msg.value.c_str())
1443 
1444 #if GTEST_HAS_EXCEPTIONS
1445 
1446 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                \
1447   catch (std::exception const& e) {                               \
1448     gtest_msg.value = "it throws ";                               \
1449     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                  \
1450     gtest_msg.value += " with description \"";                    \
1451     gtest_msg.value += e.what();                                  \
1452     gtest_msg.value += "\".";                                     \
1453     goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1454   }
1455 
1456 #else  // GTEST_HAS_EXCEPTIONS
1457 
1458 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
1459 
1460 #endif  // GTEST_HAS_EXCEPTIONS
1461 
1462 #define GTEST_TEST_NO_THROW_(statement, fail)                            \
1463   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                          \
1464   if (::testing::internal::TrueWithString gtest_msg{}) {                 \
1465     try {                                                                \
1466       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);         \
1467     }                                                                    \
1468     GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                           \
1469     catch (...) {                                                        \
1470       gtest_msg.value = "it throws.";                                    \
1471       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__);      \
1472     }                                                                    \
1473   } else                                                                 \
1474     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__)              \
1475         : fail(("Expected: " #statement " doesn't throw an exception.\n" \
1476                 "  Actual: " +                                           \
1477                 gtest_msg.value)                                         \
1478                    .c_str())
1479 
1480 #define GTEST_TEST_ANY_THROW_(statement, fail)                       \
1481   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                      \
1482   if (::testing::internal::AlwaysTrue()) {                           \
1483     bool gtest_caught_any = false;                                   \
1484     try {                                                            \
1485       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);     \
1486     } catch (...) {                                                  \
1487       gtest_caught_any = true;                                       \
1488     }                                                                \
1489     if (!gtest_caught_any) {                                         \
1490       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1491     }                                                                \
1492   } else                                                             \
1493     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__)         \
1494         : fail("Expected: " #statement                               \
1495                " throws an exception.\n"                             \
1496                "  Actual: it doesn't.")
1497 
1498 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1499 // either a boolean expression or an AssertionResult. text is a textual
1500 // representation of expression as it was passed into the EXPECT_TRUE.
1501 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1502   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                       \
1503   if (const ::testing::AssertionResult gtest_ar_ =                    \
1504           ::testing::AssertionResult(expression))                     \
1505     ;                                                                 \
1506   else                                                                \
1507     fail(::testing::internal::GetBoolAssertionFailureMessage(         \
1508              gtest_ar_, text, #actual, #expected)                     \
1509              .c_str())
1510 
1511 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail)                          \
1512   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                                \
1513   if (::testing::internal::AlwaysTrue()) {                                     \
1514     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1515     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);                 \
1516     if (gtest_fatal_failure_checker.has_new_fatal_failure()) {                 \
1517       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__);            \
1518     }                                                                          \
1519   } else                                                                       \
1520     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__)                    \
1521         : fail("Expected: " #statement                                         \
1522                " doesn't generate new fatal "                                  \
1523                "failures in the current thread.\n"                             \
1524                "  Actual: it does.")
1525 
1526 // Expands to the name of the class that implements the given test.
1527 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1528   test_suite_name##_##test_name##_Test
1529 
1530 // Helper macro for defining tests.
1531 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)       \
1532   static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1,                 \
1533                 "test_suite_name must not be empty");                          \
1534   static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1,                       \
1535                 "test_name must not be empty");                                \
1536   class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                     \
1537       : public parent_class {                                                  \
1538    public:                                                                     \
1539     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default;            \
1540     ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default;  \
1541     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                         \
1542     (const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete;     \
1543     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=(            \
1544         const GTEST_TEST_CLASS_NAME_(test_suite_name,                          \
1545                                      test_name) &) = delete; /* NOLINT */      \
1546     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                         \
1547     (GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \
1548     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=(            \
1549         GTEST_TEST_CLASS_NAME_(test_suite_name,                                \
1550                                test_name) &&) noexcept = delete; /* NOLINT */  \
1551                                                                                \
1552    private:                                                                    \
1553     void TestBody() override;                                                  \
1554     static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;      \
1555   };                                                                           \
1556                                                                                \
1557   ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,           \
1558                                                     test_name)::test_info_ =   \
1559       ::testing::internal::MakeAndRegisterTestInfo(                            \
1560           #test_suite_name, #test_name, nullptr, nullptr,                      \
1561           ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id),  \
1562           ::testing::internal::SuiteApiResolver<                               \
1563               parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__),          \
1564           ::testing::internal::SuiteApiResolver<                               \
1565               parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__),       \
1566           new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(     \
1567               test_suite_name, test_name)>);                                   \
1568   void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1569 
1570 #endif  // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1571