• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <limits.h>
12 #include <math.h>
13 #include <stdio.h>
14 
15 #include "./vpx_dsp_rtcd.h"
16 #include "./vpx_scale_rtcd.h"
17 
18 #include "vpx_dsp/vpx_dsp_common.h"
19 #include "vpx_mem/vpx_mem.h"
20 #include "vpx_ports/mem.h"
21 #include "vpx_ports/system_state.h"
22 #include "vpx_scale/vpx_scale.h"
23 #include "vpx_scale/yv12config.h"
24 
25 #include "vp9/common/vp9_entropymv.h"
26 #include "vp9/common/vp9_quant_common.h"
27 #include "vp9/common/vp9_reconinter.h"  // vp9_setup_dst_planes()
28 #include "vp9/encoder/vp9_aq_variance.h"
29 #include "vp9/encoder/vp9_block.h"
30 #include "vp9/encoder/vp9_encodeframe.h"
31 #include "vp9/encoder/vp9_encodemb.h"
32 #include "vp9/encoder/vp9_encodemv.h"
33 #include "vp9/encoder/vp9_encoder.h"
34 #include "vp9/encoder/vp9_ethread.h"
35 #include "vp9/encoder/vp9_extend.h"
36 #include "vp9/encoder/vp9_firstpass.h"
37 #include "vp9/encoder/vp9_mcomp.h"
38 #include "vp9/encoder/vp9_quantize.h"
39 #include "vp9/encoder/vp9_rd.h"
40 #include "vpx_dsp/variance.h"
41 
42 #define OUTPUT_FPF 0
43 #define ARF_STATS_OUTPUT 0
44 #define COMPLEXITY_STATS_OUTPUT 0
45 
46 #define FIRST_PASS_Q 10.0
47 #define NORMAL_BOOST 100
48 #define MIN_ARF_GF_BOOST 250
49 #define MIN_DECAY_FACTOR 0.01
50 #define NEW_MV_MODE_PENALTY 32
51 #define DARK_THRESH 64
52 #define LOW_I_THRESH 24000
53 
54 #define NCOUNT_INTRA_THRESH 8192
55 #define NCOUNT_INTRA_FACTOR 3
56 
57 #define INTRA_PART 0.005
58 #define DEFAULT_DECAY_LIMIT 0.75
59 #define LOW_SR_DIFF_TRHESH 0.1
60 #define LOW_CODED_ERR_PER_MB 10.0
61 #define NCOUNT_FRAME_II_THRESH 6.0
62 #define BASELINE_ERR_PER_MB 12500.0
63 #define GF_MAX_FRAME_BOOST 96.0
64 
65 #ifdef AGGRESSIVE_VBR
66 #define KF_MIN_FRAME_BOOST 40.0
67 #define KF_MAX_FRAME_BOOST 80.0
68 #define MAX_KF_TOT_BOOST 4800
69 #else
70 #define KF_MIN_FRAME_BOOST 40.0
71 #define KF_MAX_FRAME_BOOST 96.0
72 #define MAX_KF_TOT_BOOST 5400
73 #endif
74 
75 #define DEFAULT_ZM_FACTOR 0.5
76 #define MINQ_ADJ_LIMIT 48
77 #define MINQ_ADJ_LIMIT_CQ 20
78 #define HIGH_UNDERSHOOT_RATIO 2
79 #define AV_WQ_FACTOR 4.0
80 
81 #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001)
82 
83 #if ARF_STATS_OUTPUT
84 unsigned int arf_count = 0;
85 #endif
86 
87 // Resets the first pass file to the given position using a relative seek from
88 // the current position.
reset_fpf_position(TWO_PASS * p,const FIRSTPASS_STATS * position)89 static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) {
90   p->stats_in = position;
91 }
92 
93 // Read frame stats at an offset from the current position.
read_frame_stats(const TWO_PASS * p,int offset)94 static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
95   if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
96       (offset < 0 && p->stats_in + offset < p->stats_in_start)) {
97     return NULL;
98   }
99 
100   return &p->stats_in[offset];
101 }
102 
input_stats(TWO_PASS * p,FIRSTPASS_STATS * fps)103 static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
104   if (p->stats_in >= p->stats_in_end) return EOF;
105 
106   *fps = *p->stats_in;
107   ++p->stats_in;
108   return 1;
109 }
110 
output_stats(FIRSTPASS_STATS * stats)111 static void output_stats(FIRSTPASS_STATS *stats) {
112   (void)stats;
113 // TEMP debug code
114 #if OUTPUT_FPF
115   {
116     FILE *fpfile;
117     fpfile = fopen("firstpass.stt", "a");
118 
119     fprintf(fpfile,
120             "%12.0lf %12.4lf %12.2lf %12.2lf %12.2lf %12.0lf %12.4lf %12.4lf"
121             "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
122             "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.0lf %12.4lf %12.0lf"
123             "%12.4lf"
124             "\n",
125             stats->frame, stats->weight, stats->intra_error, stats->coded_error,
126             stats->sr_coded_error, stats->frame_noise_energy, stats->pcnt_inter,
127             stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral,
128             stats->pcnt_intra_low, stats->pcnt_intra_high,
129             stats->intra_skip_pct, stats->intra_smooth_pct,
130             stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr,
131             stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
132             stats->MVcv, stats->mv_in_out_count, stats->count, stats->duration);
133     fclose(fpfile);
134   }
135 #endif
136 }
137 
zero_stats(FIRSTPASS_STATS * section)138 static void zero_stats(FIRSTPASS_STATS *section) {
139   section->frame = 0.0;
140   section->weight = 0.0;
141   section->intra_error = 0.0;
142   section->coded_error = 0.0;
143   section->sr_coded_error = 0.0;
144   section->frame_noise_energy = 0.0;
145   section->pcnt_inter = 0.0;
146   section->pcnt_motion = 0.0;
147   section->pcnt_second_ref = 0.0;
148   section->pcnt_neutral = 0.0;
149   section->intra_skip_pct = 0.0;
150   section->intra_smooth_pct = 0.0;
151   section->pcnt_intra_low = 0.0;
152   section->pcnt_intra_high = 0.0;
153   section->inactive_zone_rows = 0.0;
154   section->inactive_zone_cols = 0.0;
155   section->new_mv_count = 0.0;
156   section->MVr = 0.0;
157   section->mvr_abs = 0.0;
158   section->MVc = 0.0;
159   section->mvc_abs = 0.0;
160   section->MVrv = 0.0;
161   section->MVcv = 0.0;
162   section->mv_in_out_count = 0.0;
163   section->count = 0.0;
164   section->duration = 1.0;
165   section->spatial_layer_id = 0;
166 }
167 
accumulate_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)168 static void accumulate_stats(FIRSTPASS_STATS *section,
169                              const FIRSTPASS_STATS *frame) {
170   section->frame += frame->frame;
171   section->weight += frame->weight;
172   section->spatial_layer_id = frame->spatial_layer_id;
173   section->intra_error += frame->intra_error;
174   section->coded_error += frame->coded_error;
175   section->sr_coded_error += frame->sr_coded_error;
176   section->frame_noise_energy += frame->frame_noise_energy;
177   section->pcnt_inter += frame->pcnt_inter;
178   section->pcnt_motion += frame->pcnt_motion;
179   section->pcnt_second_ref += frame->pcnt_second_ref;
180   section->pcnt_neutral += frame->pcnt_neutral;
181   section->intra_skip_pct += frame->intra_skip_pct;
182   section->intra_smooth_pct += frame->intra_smooth_pct;
183   section->pcnt_intra_low += frame->pcnt_intra_low;
184   section->pcnt_intra_high += frame->pcnt_intra_high;
185   section->inactive_zone_rows += frame->inactive_zone_rows;
186   section->inactive_zone_cols += frame->inactive_zone_cols;
187   section->new_mv_count += frame->new_mv_count;
188   section->MVr += frame->MVr;
189   section->mvr_abs += frame->mvr_abs;
190   section->MVc += frame->MVc;
191   section->mvc_abs += frame->mvc_abs;
192   section->MVrv += frame->MVrv;
193   section->MVcv += frame->MVcv;
194   section->mv_in_out_count += frame->mv_in_out_count;
195   section->count += frame->count;
196   section->duration += frame->duration;
197 }
198 
subtract_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)199 static void subtract_stats(FIRSTPASS_STATS *section,
200                            const FIRSTPASS_STATS *frame) {
201   section->frame -= frame->frame;
202   section->weight -= frame->weight;
203   section->intra_error -= frame->intra_error;
204   section->coded_error -= frame->coded_error;
205   section->sr_coded_error -= frame->sr_coded_error;
206   section->frame_noise_energy -= frame->frame_noise_energy;
207   section->pcnt_inter -= frame->pcnt_inter;
208   section->pcnt_motion -= frame->pcnt_motion;
209   section->pcnt_second_ref -= frame->pcnt_second_ref;
210   section->pcnt_neutral -= frame->pcnt_neutral;
211   section->intra_skip_pct -= frame->intra_skip_pct;
212   section->intra_smooth_pct -= frame->intra_smooth_pct;
213   section->pcnt_intra_low -= frame->pcnt_intra_low;
214   section->pcnt_intra_high -= frame->pcnt_intra_high;
215   section->inactive_zone_rows -= frame->inactive_zone_rows;
216   section->inactive_zone_cols -= frame->inactive_zone_cols;
217   section->new_mv_count -= frame->new_mv_count;
218   section->MVr -= frame->MVr;
219   section->mvr_abs -= frame->mvr_abs;
220   section->MVc -= frame->MVc;
221   section->mvc_abs -= frame->mvc_abs;
222   section->MVrv -= frame->MVrv;
223   section->MVcv -= frame->MVcv;
224   section->mv_in_out_count -= frame->mv_in_out_count;
225   section->count -= frame->count;
226   section->duration -= frame->duration;
227 }
228 
229 // Calculate an active area of the image that discounts formatting
230 // bars and partially discounts other 0 energy areas.
231 #define MIN_ACTIVE_AREA 0.5
232 #define MAX_ACTIVE_AREA 1.0
calculate_active_area(const FRAME_INFO * frame_info,const FIRSTPASS_STATS * this_frame)233 static double calculate_active_area(const FRAME_INFO *frame_info,
234                                     const FIRSTPASS_STATS *this_frame) {
235   double active_pct;
236 
237   active_pct =
238       1.0 -
239       ((this_frame->intra_skip_pct / 2) +
240        ((this_frame->inactive_zone_rows * 2) / (double)frame_info->mb_rows));
241   return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA);
242 }
243 
244 // Get the average weighted error for the clip (or corpus)
get_distribution_av_err(VP9_COMP * cpi,TWO_PASS * const twopass)245 static double get_distribution_av_err(VP9_COMP *cpi, TWO_PASS *const twopass) {
246   const double av_weight =
247       twopass->total_stats.weight / twopass->total_stats.count;
248 
249   if (cpi->oxcf.vbr_corpus_complexity)
250     return av_weight * twopass->mean_mod_score;
251   else
252     return (twopass->total_stats.coded_error * av_weight) /
253            twopass->total_stats.count;
254 }
255 
256 #define ACT_AREA_CORRECTION 0.5
257 // Calculate a modified Error used in distributing bits between easier and
258 // harder frames.
calculate_mod_frame_score(const VP9_COMP * cpi,const VP9EncoderConfig * oxcf,const FIRSTPASS_STATS * this_frame,const double av_err)259 static double calculate_mod_frame_score(const VP9_COMP *cpi,
260                                         const VP9EncoderConfig *oxcf,
261                                         const FIRSTPASS_STATS *this_frame,
262                                         const double av_err) {
263   double modified_score =
264       av_err * pow(this_frame->coded_error * this_frame->weight /
265                        DOUBLE_DIVIDE_CHECK(av_err),
266                    oxcf->two_pass_vbrbias / 100.0);
267 
268   // Correction for active area. Frames with a reduced active area
269   // (eg due to formatting bars) have a higher error per mb for the
270   // remaining active MBs. The correction here assumes that coding
271   // 0.5N blocks of complexity 2X is a little easier than coding N
272   // blocks of complexity X.
273   modified_score *= pow(calculate_active_area(&cpi->frame_info, this_frame),
274                         ACT_AREA_CORRECTION);
275 
276   return modified_score;
277 }
278 
calc_norm_frame_score(const VP9EncoderConfig * oxcf,const FRAME_INFO * frame_info,const FIRSTPASS_STATS * this_frame,double mean_mod_score,double av_err)279 static double calc_norm_frame_score(const VP9EncoderConfig *oxcf,
280                                     const FRAME_INFO *frame_info,
281                                     const FIRSTPASS_STATS *this_frame,
282                                     double mean_mod_score, double av_err) {
283   double modified_score =
284       av_err * pow(this_frame->coded_error * this_frame->weight /
285                        DOUBLE_DIVIDE_CHECK(av_err),
286                    oxcf->two_pass_vbrbias / 100.0);
287 
288   const double min_score = (double)(oxcf->two_pass_vbrmin_section) / 100.0;
289   const double max_score = (double)(oxcf->two_pass_vbrmax_section) / 100.0;
290 
291   // Correction for active area. Frames with a reduced active area
292   // (eg due to formatting bars) have a higher error per mb for the
293   // remaining active MBs. The correction here assumes that coding
294   // 0.5N blocks of complexity 2X is a little easier than coding N
295   // blocks of complexity X.
296   modified_score *=
297       pow(calculate_active_area(frame_info, this_frame), ACT_AREA_CORRECTION);
298 
299   // Normalize to a midpoint score.
300   modified_score /= DOUBLE_DIVIDE_CHECK(mean_mod_score);
301   return fclamp(modified_score, min_score, max_score);
302 }
303 
calculate_norm_frame_score(const VP9_COMP * cpi,const TWO_PASS * twopass,const VP9EncoderConfig * oxcf,const FIRSTPASS_STATS * this_frame,const double av_err)304 static double calculate_norm_frame_score(const VP9_COMP *cpi,
305                                          const TWO_PASS *twopass,
306                                          const VP9EncoderConfig *oxcf,
307                                          const FIRSTPASS_STATS *this_frame,
308                                          const double av_err) {
309   return calc_norm_frame_score(oxcf, &cpi->frame_info, this_frame,
310                                twopass->mean_mod_score, av_err);
311 }
312 
313 // This function returns the maximum target rate per frame.
frame_max_bits(const RATE_CONTROL * rc,const VP9EncoderConfig * oxcf)314 static int frame_max_bits(const RATE_CONTROL *rc,
315                           const VP9EncoderConfig *oxcf) {
316   int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
317                       (int64_t)oxcf->two_pass_vbrmax_section) /
318                      100;
319   if (max_bits < 0)
320     max_bits = 0;
321   else if (max_bits > rc->max_frame_bandwidth)
322     max_bits = rc->max_frame_bandwidth;
323 
324   return (int)max_bits;
325 }
326 
vp9_init_first_pass(VP9_COMP * cpi)327 void vp9_init_first_pass(VP9_COMP *cpi) {
328   zero_stats(&cpi->twopass.total_stats);
329 }
330 
vp9_end_first_pass(VP9_COMP * cpi)331 void vp9_end_first_pass(VP9_COMP *cpi) {
332   output_stats(&cpi->twopass.total_stats);
333   cpi->twopass.first_pass_done = 1;
334   vpx_free(cpi->twopass.fp_mb_float_stats);
335   cpi->twopass.fp_mb_float_stats = NULL;
336 }
337 
get_block_variance_fn(BLOCK_SIZE bsize)338 static vpx_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
339   switch (bsize) {
340     case BLOCK_8X8: return vpx_mse8x8;
341     case BLOCK_16X8: return vpx_mse16x8;
342     case BLOCK_8X16: return vpx_mse8x16;
343     default: return vpx_mse16x16;
344   }
345 }
346 
get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref)347 static unsigned int get_prediction_error(BLOCK_SIZE bsize,
348                                          const struct buf_2d *src,
349                                          const struct buf_2d *ref) {
350   unsigned int sse;
351   const vpx_variance_fn_t fn = get_block_variance_fn(bsize);
352   fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
353   return sse;
354 }
355 
356 #if CONFIG_VP9_HIGHBITDEPTH
highbd_get_block_variance_fn(BLOCK_SIZE bsize,int bd)357 static vpx_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
358                                                       int bd) {
359   switch (bd) {
360     default:
361       switch (bsize) {
362         case BLOCK_8X8: return vpx_highbd_8_mse8x8;
363         case BLOCK_16X8: return vpx_highbd_8_mse16x8;
364         case BLOCK_8X16: return vpx_highbd_8_mse8x16;
365         default: return vpx_highbd_8_mse16x16;
366       }
367     case 10:
368       switch (bsize) {
369         case BLOCK_8X8: return vpx_highbd_10_mse8x8;
370         case BLOCK_16X8: return vpx_highbd_10_mse16x8;
371         case BLOCK_8X16: return vpx_highbd_10_mse8x16;
372         default: return vpx_highbd_10_mse16x16;
373       }
374     case 12:
375       switch (bsize) {
376         case BLOCK_8X8: return vpx_highbd_12_mse8x8;
377         case BLOCK_16X8: return vpx_highbd_12_mse16x8;
378         case BLOCK_8X16: return vpx_highbd_12_mse8x16;
379         default: return vpx_highbd_12_mse16x16;
380       }
381   }
382 }
383 
highbd_get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref,int bd)384 static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
385                                                 const struct buf_2d *src,
386                                                 const struct buf_2d *ref,
387                                                 int bd) {
388   unsigned int sse;
389   const vpx_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
390   fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
391   return sse;
392 }
393 #endif  // CONFIG_VP9_HIGHBITDEPTH
394 
395 // Refine the motion search range according to the frame dimension
396 // for first pass test.
get_search_range(const VP9_COMP * cpi)397 static int get_search_range(const VP9_COMP *cpi) {
398   int sr = 0;
399   const int dim = VPXMIN(cpi->initial_width, cpi->initial_height);
400 
401   while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr;
402   return sr;
403 }
404 
405 // Reduce limits to keep the motion search within MV_MAX of ref_mv. Not doing
406 // this can be problematic for big videos (8K) and may cause assert failure
407 // (or memory violation) in mv_cost. Limits are only modified if they would
408 // be non-empty. Returns 1 if limits are non-empty.
intersect_limits_with_mv_max(MvLimits * mv_limits,const MV * ref_mv)409 static int intersect_limits_with_mv_max(MvLimits *mv_limits, const MV *ref_mv) {
410   const int row_min =
411       VPXMAX(mv_limits->row_min, (ref_mv->row + 7 - MV_MAX) >> 3);
412   const int row_max =
413       VPXMIN(mv_limits->row_max, (ref_mv->row - 1 + MV_MAX) >> 3);
414   const int col_min =
415       VPXMAX(mv_limits->col_min, (ref_mv->col + 7 - MV_MAX) >> 3);
416   const int col_max =
417       VPXMIN(mv_limits->col_max, (ref_mv->col - 1 + MV_MAX) >> 3);
418   if (row_min > row_max || col_min > col_max) {
419     return 0;
420   }
421   mv_limits->row_min = row_min;
422   mv_limits->row_max = row_max;
423   mv_limits->col_min = col_min;
424   mv_limits->col_max = col_max;
425   return 1;
426 }
427 
first_pass_motion_search(VP9_COMP * cpi,MACROBLOCK * x,const MV * ref_mv,MV * best_mv,int * best_motion_err)428 static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
429                                      const MV *ref_mv, MV *best_mv,
430                                      int *best_motion_err) {
431   MACROBLOCKD *const xd = &x->e_mbd;
432   MV tmp_mv = { 0, 0 };
433   MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 };
434   int num00, tmp_err, n;
435   const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
436   vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
437   const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
438   MV center_mv_full = ref_mv_full;
439   unsigned int start_mv_sad;
440   vp9_sad_fn_ptr_t sad_fn_ptr;
441 
442   int step_param = 3;
443   int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
444   const int sr = get_search_range(cpi);
445   const MvLimits tmp_mv_limits = x->mv_limits;
446   step_param += sr;
447   further_steps -= sr;
448 
449   if (!intersect_limits_with_mv_max(&x->mv_limits, ref_mv)) {
450     return;
451   }
452 
453   // Override the default variance function to use MSE.
454   v_fn_ptr.vf = get_block_variance_fn(bsize);
455 #if CONFIG_VP9_HIGHBITDEPTH
456   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
457     v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd);
458   }
459 #endif  // CONFIG_VP9_HIGHBITDEPTH
460 
461   // Calculate SAD of the start mv
462   clamp_mv(&ref_mv_full, x->mv_limits.col_min, x->mv_limits.col_max,
463            x->mv_limits.row_min, x->mv_limits.row_max);
464   start_mv_sad = get_start_mv_sad(x, &ref_mv_full, &center_mv_full,
465                                   cpi->fn_ptr[bsize].sdf, x->sadperbit16);
466   sad_fn_ptr.sdf = cpi->fn_ptr[bsize].sdf;
467   sad_fn_ptr.sdx4df = cpi->fn_ptr[bsize].sdx4df;
468 
469   // Center the initial step/diamond search on best mv.
470   tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, start_mv_sad,
471                                     &tmp_mv, step_param, x->sadperbit16, &num00,
472                                     &sad_fn_ptr, ref_mv);
473   if (tmp_err < INT_MAX)
474     tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
475   if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty;
476 
477   if (tmp_err < *best_motion_err) {
478     *best_motion_err = tmp_err;
479     *best_mv = tmp_mv;
480   }
481 
482   // Carry out further step/diamond searches as necessary.
483   n = num00;
484   num00 = 0;
485 
486   while (n < further_steps) {
487     ++n;
488 
489     if (num00) {
490       --num00;
491     } else {
492       tmp_err = cpi->diamond_search_sad(
493           x, &cpi->ss_cfg, &ref_mv_full, start_mv_sad, &tmp_mv, step_param + n,
494           x->sadperbit16, &num00, &sad_fn_ptr, ref_mv);
495       if (tmp_err < INT_MAX)
496         tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
497       if (tmp_err < INT_MAX - new_mv_mode_penalty)
498         tmp_err += new_mv_mode_penalty;
499 
500       if (tmp_err < *best_motion_err) {
501         *best_motion_err = tmp_err;
502         *best_mv = tmp_mv;
503       }
504     }
505   }
506   x->mv_limits = tmp_mv_limits;
507 }
508 
get_bsize(const VP9_COMMON * cm,int mb_row,int mb_col)509 static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) {
510   if (2 * mb_col + 1 < cm->mi_cols) {
511     return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16 : BLOCK_16X8;
512   } else {
513     return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16 : BLOCK_8X8;
514   }
515 }
516 
find_fp_qindex(vpx_bit_depth_t bit_depth)517 static int find_fp_qindex(vpx_bit_depth_t bit_depth) {
518   int i;
519 
520   for (i = 0; i < QINDEX_RANGE; ++i)
521     if (vp9_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break;
522 
523   if (i == QINDEX_RANGE) i--;
524 
525   return i;
526 }
527 
set_first_pass_params(VP9_COMP * cpi)528 static void set_first_pass_params(VP9_COMP *cpi) {
529   VP9_COMMON *const cm = &cpi->common;
530   if (!cpi->refresh_alt_ref_frame &&
531       (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) {
532     cm->frame_type = KEY_FRAME;
533   } else {
534     cm->frame_type = INTER_FRAME;
535   }
536   // Do not use periodic key frames.
537   cpi->rc.frames_to_key = INT_MAX;
538 }
539 
540 // Scale an sse threshold to account for 8/10/12 bit.
scale_sse_threshold(VP9_COMMON * cm,int thresh)541 static int scale_sse_threshold(VP9_COMMON *cm, int thresh) {
542   int ret_val = thresh;
543 #if CONFIG_VP9_HIGHBITDEPTH
544   if (cm->use_highbitdepth) {
545     switch (cm->bit_depth) {
546       case VPX_BITS_8: ret_val = thresh; break;
547       case VPX_BITS_10: ret_val = thresh << 4; break;
548       default:
549         assert(cm->bit_depth == VPX_BITS_12);
550         ret_val = thresh << 8;
551         break;
552     }
553   }
554 #else
555   (void)cm;
556 #endif  // CONFIG_VP9_HIGHBITDEPTH
557   return ret_val;
558 }
559 
560 // This threshold is used to track blocks where to all intents and purposes
561 // the intra prediction error 0. Though the metric we test against
562 // is technically a sse we are mainly interested in blocks where all the pixels
563 // in the 8 bit domain have an error of <= 1 (where error = sse) so a
564 // linear scaling for 10 and 12 bit gives similar results.
565 #define UL_INTRA_THRESH 50
get_ul_intra_threshold(VP9_COMMON * cm)566 static int get_ul_intra_threshold(VP9_COMMON *cm) {
567   int ret_val = UL_INTRA_THRESH;
568 #if CONFIG_VP9_HIGHBITDEPTH
569   if (cm->use_highbitdepth) {
570     switch (cm->bit_depth) {
571       case VPX_BITS_8: ret_val = UL_INTRA_THRESH; break;
572       case VPX_BITS_10: ret_val = UL_INTRA_THRESH << 2; break;
573       default:
574         assert(cm->bit_depth == VPX_BITS_12);
575         ret_val = UL_INTRA_THRESH << 4;
576         break;
577     }
578   }
579 #else
580   (void)cm;
581 #endif  // CONFIG_VP9_HIGHBITDEPTH
582   return ret_val;
583 }
584 
585 #define SMOOTH_INTRA_THRESH 4000
get_smooth_intra_threshold(VP9_COMMON * cm)586 static int get_smooth_intra_threshold(VP9_COMMON *cm) {
587   int ret_val = SMOOTH_INTRA_THRESH;
588 #if CONFIG_VP9_HIGHBITDEPTH
589   if (cm->use_highbitdepth) {
590     switch (cm->bit_depth) {
591       case VPX_BITS_8: ret_val = SMOOTH_INTRA_THRESH; break;
592       case VPX_BITS_10: ret_val = SMOOTH_INTRA_THRESH << 4; break;
593       default:
594         assert(cm->bit_depth == VPX_BITS_12);
595         ret_val = SMOOTH_INTRA_THRESH << 8;
596         break;
597     }
598   }
599 #else
600   (void)cm;
601 #endif  // CONFIG_VP9_HIGHBITDEPTH
602   return ret_val;
603 }
604 
605 #define FP_DN_THRESH 8
606 #define FP_MAX_DN_THRESH 24
607 #define KERNEL_SIZE 3
608 
609 // Baseline Kernel weights for first pass noise metric
610 static uint8_t fp_dn_kernel_3[KERNEL_SIZE * KERNEL_SIZE] = { 1, 2, 1, 2, 4,
611                                                              2, 1, 2, 1 };
612 
613 // Estimate noise at a single point based on the impact of a spatial kernel
614 // on the point value
fp_estimate_point_noise(uint8_t * src_ptr,const int stride)615 static int fp_estimate_point_noise(uint8_t *src_ptr, const int stride) {
616   int sum_weight = 0;
617   int sum_val = 0;
618   int i, j;
619   int max_diff = 0;
620   int diff;
621   int dn_diff;
622   uint8_t *tmp_ptr;
623   uint8_t *kernel_ptr;
624   uint8_t dn_val;
625   uint8_t centre_val = *src_ptr;
626 
627   kernel_ptr = fp_dn_kernel_3;
628 
629   // Apply the kernel
630   tmp_ptr = src_ptr - stride - 1;
631   for (i = 0; i < KERNEL_SIZE; ++i) {
632     for (j = 0; j < KERNEL_SIZE; ++j) {
633       diff = abs((int)centre_val - (int)tmp_ptr[j]);
634       max_diff = VPXMAX(max_diff, diff);
635       if (diff <= FP_DN_THRESH) {
636         sum_weight += *kernel_ptr;
637         sum_val += (int)tmp_ptr[j] * (int)*kernel_ptr;
638       }
639       ++kernel_ptr;
640     }
641     tmp_ptr += stride;
642   }
643 
644   if (max_diff < FP_MAX_DN_THRESH)
645     // Update the source value with the new filtered value
646     dn_val = (sum_val + (sum_weight >> 1)) / sum_weight;
647   else
648     dn_val = *src_ptr;
649 
650   // return the noise energy as the square of the difference between the
651   // denoised and raw value.
652   dn_diff = (int)*src_ptr - (int)dn_val;
653   return dn_diff * dn_diff;
654 }
655 #if CONFIG_VP9_HIGHBITDEPTH
fp_highbd_estimate_point_noise(uint8_t * src_ptr,const int stride)656 static int fp_highbd_estimate_point_noise(uint8_t *src_ptr, const int stride) {
657   int sum_weight = 0;
658   int sum_val = 0;
659   int i, j;
660   int max_diff = 0;
661   int diff;
662   int dn_diff;
663   uint8_t *tmp_ptr;
664   uint16_t *tmp_ptr16;
665   uint8_t *kernel_ptr;
666   uint16_t dn_val;
667   uint16_t centre_val = *CONVERT_TO_SHORTPTR(src_ptr);
668 
669   kernel_ptr = fp_dn_kernel_3;
670 
671   // Apply the kernel
672   tmp_ptr = src_ptr - stride - 1;
673   for (i = 0; i < KERNEL_SIZE; ++i) {
674     tmp_ptr16 = CONVERT_TO_SHORTPTR(tmp_ptr);
675     for (j = 0; j < KERNEL_SIZE; ++j) {
676       diff = abs((int)centre_val - (int)tmp_ptr16[j]);
677       max_diff = VPXMAX(max_diff, diff);
678       if (diff <= FP_DN_THRESH) {
679         sum_weight += *kernel_ptr;
680         sum_val += (int)tmp_ptr16[j] * (int)*kernel_ptr;
681       }
682       ++kernel_ptr;
683     }
684     tmp_ptr += stride;
685   }
686 
687   if (max_diff < FP_MAX_DN_THRESH)
688     // Update the source value with the new filtered value
689     dn_val = (sum_val + (sum_weight >> 1)) / sum_weight;
690   else
691     dn_val = *CONVERT_TO_SHORTPTR(src_ptr);
692 
693   // return the noise energy as the square of the difference between the
694   // denoised and raw value.
695   dn_diff = (int)(*CONVERT_TO_SHORTPTR(src_ptr)) - (int)dn_val;
696   return dn_diff * dn_diff;
697 }
698 #endif
699 
700 // Estimate noise for a block.
fp_estimate_block_noise(MACROBLOCK * x,BLOCK_SIZE bsize)701 static int fp_estimate_block_noise(MACROBLOCK *x, BLOCK_SIZE bsize) {
702 #if CONFIG_VP9_HIGHBITDEPTH
703   MACROBLOCKD *xd = &x->e_mbd;
704 #endif
705   uint8_t *src_ptr = &x->plane[0].src.buf[0];
706   const int width = num_4x4_blocks_wide_lookup[bsize] * 4;
707   const int height = num_4x4_blocks_high_lookup[bsize] * 4;
708   int w, h;
709   int stride = x->plane[0].src.stride;
710   int block_noise = 0;
711 
712   // Sampled points to reduce cost overhead.
713   for (h = 0; h < height; h += 2) {
714     for (w = 0; w < width; w += 2) {
715 #if CONFIG_VP9_HIGHBITDEPTH
716       if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
717         block_noise += fp_highbd_estimate_point_noise(src_ptr, stride);
718       else
719         block_noise += fp_estimate_point_noise(src_ptr, stride);
720 #else
721       block_noise += fp_estimate_point_noise(src_ptr, stride);
722 #endif
723       ++src_ptr;
724     }
725     src_ptr += (stride - width);
726   }
727   return block_noise << 2;  // Scale << 2 to account for sampling.
728 }
729 
730 // This function is called to test the functionality of row based
731 // multi-threading in unit tests for bit-exactness
accumulate_floating_point_stats(VP9_COMP * cpi,TileDataEnc * first_tile_col)732 static void accumulate_floating_point_stats(VP9_COMP *cpi,
733                                             TileDataEnc *first_tile_col) {
734   VP9_COMMON *const cm = &cpi->common;
735   int mb_row, mb_col;
736   first_tile_col->fp_data.intra_factor = 0;
737   first_tile_col->fp_data.brightness_factor = 0;
738   first_tile_col->fp_data.neutral_count = 0;
739   for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
740     for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
741       const int mb_index = mb_row * cm->mb_cols + mb_col;
742       first_tile_col->fp_data.intra_factor +=
743           cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor;
744       first_tile_col->fp_data.brightness_factor +=
745           cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor;
746       first_tile_col->fp_data.neutral_count +=
747           cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count;
748     }
749   }
750 }
751 
first_pass_stat_calc(VP9_COMP * cpi,FIRSTPASS_STATS * fps,FIRSTPASS_DATA * fp_acc_data)752 static void first_pass_stat_calc(VP9_COMP *cpi, FIRSTPASS_STATS *fps,
753                                  FIRSTPASS_DATA *fp_acc_data) {
754   VP9_COMMON *const cm = &cpi->common;
755   // The minimum error here insures some bit allocation to frames even
756   // in static regions. The allocation per MB declines for larger formats
757   // where the typical "real" energy per MB also falls.
758   // Initial estimate here uses sqrt(mbs) to define the min_err, where the
759   // number of mbs is proportional to the image area.
760   const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
761                                                              : cpi->common.MBs;
762   const double min_err = 200 * sqrt(num_mbs);
763 
764   // Clamp the image start to rows/2. This number of rows is discarded top
765   // and bottom as dead data so rows / 2 means the frame is blank.
766   if ((fp_acc_data->image_data_start_row > cm->mb_rows / 2) ||
767       (fp_acc_data->image_data_start_row == INVALID_ROW)) {
768     fp_acc_data->image_data_start_row = cm->mb_rows / 2;
769   }
770   // Exclude any image dead zone
771   if (fp_acc_data->image_data_start_row > 0) {
772     fp_acc_data->intra_skip_count =
773         VPXMAX(0, fp_acc_data->intra_skip_count -
774                       (fp_acc_data->image_data_start_row * cm->mb_cols * 2));
775   }
776 
777   fp_acc_data->intra_factor = fp_acc_data->intra_factor / (double)num_mbs;
778   fp_acc_data->brightness_factor =
779       fp_acc_data->brightness_factor / (double)num_mbs;
780   fps->weight = fp_acc_data->intra_factor * fp_acc_data->brightness_factor;
781 
782   fps->frame = cm->current_video_frame;
783   fps->spatial_layer_id = cpi->svc.spatial_layer_id;
784 
785   fps->coded_error =
786       ((double)(fp_acc_data->coded_error >> 8) + min_err) / num_mbs;
787   fps->sr_coded_error =
788       ((double)(fp_acc_data->sr_coded_error >> 8) + min_err) / num_mbs;
789   fps->intra_error =
790       ((double)(fp_acc_data->intra_error >> 8) + min_err) / num_mbs;
791 
792   fps->frame_noise_energy =
793       (double)(fp_acc_data->frame_noise_energy) / (double)num_mbs;
794   fps->count = 1.0;
795   fps->pcnt_inter = (double)(fp_acc_data->intercount) / num_mbs;
796   fps->pcnt_second_ref = (double)(fp_acc_data->second_ref_count) / num_mbs;
797   fps->pcnt_neutral = (double)(fp_acc_data->neutral_count) / num_mbs;
798   fps->pcnt_intra_low = (double)(fp_acc_data->intra_count_low) / num_mbs;
799   fps->pcnt_intra_high = (double)(fp_acc_data->intra_count_high) / num_mbs;
800   fps->intra_skip_pct = (double)(fp_acc_data->intra_skip_count) / num_mbs;
801   fps->intra_smooth_pct = (double)(fp_acc_data->intra_smooth_count) / num_mbs;
802   fps->inactive_zone_rows = (double)(fp_acc_data->image_data_start_row);
803   // Currently set to 0 as most issues relate to letter boxing.
804   fps->inactive_zone_cols = (double)0;
805 
806   if (fp_acc_data->mvcount > 0) {
807     fps->new_mv_count = (double)(fp_acc_data->new_mv_count) / num_mbs;
808     fps->MVr = (double)(fp_acc_data->sum_mvr) / fp_acc_data->mvcount;
809     fps->mvr_abs = (double)(fp_acc_data->sum_mvr_abs) / fp_acc_data->mvcount;
810     fps->MVc = (double)(fp_acc_data->sum_mvc) / fp_acc_data->mvcount;
811     fps->mvc_abs = (double)(fp_acc_data->sum_mvc_abs) / fp_acc_data->mvcount;
812     fps->MVrv = ((double)(fp_acc_data->sum_mvrs) -
813                  ((double)(fp_acc_data->sum_mvr) * (fp_acc_data->sum_mvr) /
814                   fp_acc_data->mvcount)) /
815                 fp_acc_data->mvcount;
816     fps->MVcv = ((double)(fp_acc_data->sum_mvcs) -
817                  ((double)(fp_acc_data->sum_mvc) * (fp_acc_data->sum_mvc) /
818                   fp_acc_data->mvcount)) /
819                 fp_acc_data->mvcount;
820     fps->mv_in_out_count =
821         (double)(fp_acc_data->sum_in_vectors) / (fp_acc_data->mvcount * 2);
822     fps->pcnt_motion = (double)(fp_acc_data->mvcount) / num_mbs;
823   } else {
824     fps->new_mv_count = 0.0;
825     fps->MVr = 0.0;
826     fps->mvr_abs = 0.0;
827     fps->MVc = 0.0;
828     fps->mvc_abs = 0.0;
829     fps->MVrv = 0.0;
830     fps->MVcv = 0.0;
831     fps->mv_in_out_count = 0.0;
832     fps->pcnt_motion = 0.0;
833   }
834 }
835 
accumulate_fp_mb_row_stat(TileDataEnc * this_tile,FIRSTPASS_DATA * fp_acc_data)836 static void accumulate_fp_mb_row_stat(TileDataEnc *this_tile,
837                                       FIRSTPASS_DATA *fp_acc_data) {
838   this_tile->fp_data.intra_factor += fp_acc_data->intra_factor;
839   this_tile->fp_data.brightness_factor += fp_acc_data->brightness_factor;
840   this_tile->fp_data.coded_error += fp_acc_data->coded_error;
841   this_tile->fp_data.sr_coded_error += fp_acc_data->sr_coded_error;
842   this_tile->fp_data.frame_noise_energy += fp_acc_data->frame_noise_energy;
843   this_tile->fp_data.intra_error += fp_acc_data->intra_error;
844   this_tile->fp_data.intercount += fp_acc_data->intercount;
845   this_tile->fp_data.second_ref_count += fp_acc_data->second_ref_count;
846   this_tile->fp_data.neutral_count += fp_acc_data->neutral_count;
847   this_tile->fp_data.intra_count_low += fp_acc_data->intra_count_low;
848   this_tile->fp_data.intra_count_high += fp_acc_data->intra_count_high;
849   this_tile->fp_data.intra_skip_count += fp_acc_data->intra_skip_count;
850   this_tile->fp_data.new_mv_count += fp_acc_data->new_mv_count;
851   this_tile->fp_data.mvcount += fp_acc_data->mvcount;
852   this_tile->fp_data.sum_mvr += fp_acc_data->sum_mvr;
853   this_tile->fp_data.sum_mvr_abs += fp_acc_data->sum_mvr_abs;
854   this_tile->fp_data.sum_mvc += fp_acc_data->sum_mvc;
855   this_tile->fp_data.sum_mvc_abs += fp_acc_data->sum_mvc_abs;
856   this_tile->fp_data.sum_mvrs += fp_acc_data->sum_mvrs;
857   this_tile->fp_data.sum_mvcs += fp_acc_data->sum_mvcs;
858   this_tile->fp_data.sum_in_vectors += fp_acc_data->sum_in_vectors;
859   this_tile->fp_data.intra_smooth_count += fp_acc_data->intra_smooth_count;
860   this_tile->fp_data.image_data_start_row =
861       VPXMIN(this_tile->fp_data.image_data_start_row,
862              fp_acc_data->image_data_start_row) == INVALID_ROW
863           ? VPXMAX(this_tile->fp_data.image_data_start_row,
864                    fp_acc_data->image_data_start_row)
865           : VPXMIN(this_tile->fp_data.image_data_start_row,
866                    fp_acc_data->image_data_start_row);
867 }
868 
869 #if CONFIG_RATE_CTRL
store_fp_motion_vector(VP9_COMP * cpi,const MV * mv,const int mb_row,const int mb_col,MV_REFERENCE_FRAME frame_type,const int mv_idx)870 static void store_fp_motion_vector(VP9_COMP *cpi, const MV *mv,
871                                    const int mb_row, const int mb_col,
872                                    MV_REFERENCE_FRAME frame_type,
873                                    const int mv_idx) {
874   VP9_COMMON *const cm = &cpi->common;
875   const int mb_index = mb_row * cm->mb_cols + mb_col;
876   MOTION_VECTOR_INFO *this_motion_vector_info =
877       &cpi->fp_motion_vector_info[mb_index];
878   this_motion_vector_info->ref_frame[mv_idx] = frame_type;
879   if (frame_type != INTRA_FRAME) {
880     this_motion_vector_info->mv[mv_idx].as_mv = *mv;
881   }
882 }
883 #endif  // CONFIG_RATE_CTRL
884 
885 #define NZ_MOTION_PENALTY 128
886 #define INTRA_MODE_PENALTY 1024
vp9_first_pass_encode_tile_mb_row(VP9_COMP * cpi,ThreadData * td,FIRSTPASS_DATA * fp_acc_data,TileDataEnc * tile_data,MV * best_ref_mv,int mb_row)887 void vp9_first_pass_encode_tile_mb_row(VP9_COMP *cpi, ThreadData *td,
888                                        FIRSTPASS_DATA *fp_acc_data,
889                                        TileDataEnc *tile_data, MV *best_ref_mv,
890                                        int mb_row) {
891   int mb_col;
892   MACROBLOCK *const x = &td->mb;
893   VP9_COMMON *const cm = &cpi->common;
894   MACROBLOCKD *const xd = &x->e_mbd;
895   TileInfo tile = tile_data->tile_info;
896   const int mb_col_start = ROUND_POWER_OF_TWO(tile.mi_col_start, 1);
897   const int mb_col_end = ROUND_POWER_OF_TWO(tile.mi_col_end, 1);
898   struct macroblock_plane *const p = x->plane;
899   struct macroblockd_plane *const pd = xd->plane;
900   const PICK_MODE_CONTEXT *ctx = &td->pc_root->none;
901   int i, c;
902   int num_mb_cols = get_num_cols(tile_data->tile_info, 1);
903 
904   int recon_yoffset, recon_uvoffset;
905   const int intrapenalty = INTRA_MODE_PENALTY;
906   const MV zero_mv = { 0, 0 };
907   int recon_y_stride, recon_uv_stride, uv_mb_height;
908 
909   YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
910   YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
911   YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
912   const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
913 
914   MODE_INFO mi_above, mi_left;
915 
916   double mb_intra_factor;
917   double mb_brightness_factor;
918   double mb_neutral_count;
919   int scaled_low_intra_thresh = scale_sse_threshold(cm, LOW_I_THRESH);
920 
921   MV *first_top_mv = &tile_data->firstpass_top_mv;
922   MV last_nonzero_mv = { 0, 0 };
923 
924   // First pass code requires valid last and new frame buffers.
925   assert(new_yv12 != NULL);
926   assert(frame_is_intra_only(cm) || (lst_yv12 != NULL));
927 
928   xd->mi = cm->mi_grid_visible + xd->mi_stride * (mb_row << 1) + mb_col_start;
929   xd->mi[0] = cm->mi + xd->mi_stride * (mb_row << 1) + mb_col_start;
930 
931   for (i = 0; i < MAX_MB_PLANE; ++i) {
932     p[i].coeff = ctx->coeff_pbuf[i][1];
933     p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
934     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
935     p[i].eobs = ctx->eobs_pbuf[i][1];
936   }
937 
938   recon_y_stride = new_yv12->y_stride;
939   recon_uv_stride = new_yv12->uv_stride;
940   uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
941 
942   // Reset above block coeffs.
943   recon_yoffset = (mb_row * recon_y_stride * 16) + mb_col_start * 16;
944   recon_uvoffset =
945       (mb_row * recon_uv_stride * uv_mb_height) + mb_col_start * uv_mb_height;
946 
947   // Set up limit values for motion vectors to prevent them extending
948   // outside the UMV borders.
949   x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
950   x->mv_limits.row_max =
951       ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16;
952 
953   for (mb_col = mb_col_start, c = 0; mb_col < mb_col_end; ++mb_col, c++) {
954     int this_error;
955     int this_intra_error;
956     const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
957     const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
958     double log_intra;
959     int level_sample;
960     const int mb_index = mb_row * cm->mb_cols + mb_col;
961 
962     (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, mb_row, c);
963 
964     if (mb_col == mb_col_start) {
965       last_nonzero_mv = *first_top_mv;
966     }
967 
968     // Adjust to the next column of MBs.
969     x->plane[0].src.buf = cpi->Source->y_buffer +
970                           mb_row * 16 * x->plane[0].src.stride + mb_col * 16;
971     x->plane[1].src.buf = cpi->Source->u_buffer +
972                           mb_row * uv_mb_height * x->plane[1].src.stride +
973                           mb_col * uv_mb_height;
974     x->plane[2].src.buf = cpi->Source->v_buffer +
975                           mb_row * uv_mb_height * x->plane[1].src.stride +
976                           mb_col * uv_mb_height;
977 
978     vpx_clear_system_state();
979 
980     xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
981     xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
982     xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
983     xd->mi[0]->sb_type = bsize;
984     xd->mi[0]->ref_frame[0] = INTRA_FRAME;
985     set_mi_row_col(xd, &tile, mb_row << 1, num_8x8_blocks_high_lookup[bsize],
986                    mb_col << 1, num_8x8_blocks_wide_lookup[bsize], cm->mi_rows,
987                    cm->mi_cols);
988     // Are edges available for intra prediction?
989     // Since the firstpass does not populate the mi_grid_visible,
990     // above_mi/left_mi must be overwritten with a nonzero value when edges
991     // are available.  Required by vp9_predict_intra_block().
992     xd->above_mi = (mb_row != 0) ? &mi_above : NULL;
993     xd->left_mi = ((mb_col << 1) > tile.mi_col_start) ? &mi_left : NULL;
994 
995     // Do intra 16x16 prediction.
996     x->skip_encode = 0;
997     x->fp_src_pred = 0;
998     // Do intra prediction based on source pixels for tile boundaries
999     if (mb_col == mb_col_start && mb_col != 0) {
1000       xd->left_mi = &mi_left;
1001       x->fp_src_pred = 1;
1002     }
1003     xd->mi[0]->mode = DC_PRED;
1004     xd->mi[0]->tx_size =
1005         use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
1006     // Fix - zero the 16x16 block first. This ensures correct this_error for
1007     // block sizes smaller than 16x16.
1008     vp9_zero_array(x->plane[0].src_diff, 256);
1009     vp9_encode_intra_block_plane(x, bsize, 0, 0);
1010     this_error = vpx_get_mb_ss(x->plane[0].src_diff);
1011     this_intra_error = this_error;
1012 
1013     // Keep a record of blocks that have very low intra error residual
1014     // (i.e. are in effect completely flat and untextured in the intra
1015     // domain). In natural videos this is uncommon, but it is much more
1016     // common in animations, graphics and screen content, so may be used
1017     // as a signal to detect these types of content.
1018     if (this_error < get_ul_intra_threshold(cm)) {
1019       ++(fp_acc_data->intra_skip_count);
1020     } else if ((mb_col > 0) &&
1021                (fp_acc_data->image_data_start_row == INVALID_ROW)) {
1022       fp_acc_data->image_data_start_row = mb_row;
1023     }
1024 
1025     // Blocks that are mainly smooth in the intra domain.
1026     // Some special accounting for CQ but also these are better for testing
1027     // noise levels.
1028     if (this_error < get_smooth_intra_threshold(cm)) {
1029       ++(fp_acc_data->intra_smooth_count);
1030     }
1031 
1032     // Special case noise measurement for first frame.
1033     if (cm->current_video_frame == 0) {
1034       if (this_intra_error < scale_sse_threshold(cm, LOW_I_THRESH)) {
1035         fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize);
1036       } else {
1037         fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
1038       }
1039     }
1040 
1041 #if CONFIG_VP9_HIGHBITDEPTH
1042     if (cm->use_highbitdepth) {
1043       switch (cm->bit_depth) {
1044         case VPX_BITS_8: break;
1045         case VPX_BITS_10: this_error >>= 4; break;
1046         default:
1047           assert(cm->bit_depth == VPX_BITS_12);
1048           this_error >>= 8;
1049           break;
1050       }
1051     }
1052 #endif  // CONFIG_VP9_HIGHBITDEPTH
1053 
1054     vpx_clear_system_state();
1055     log_intra = log(this_error + 1.0);
1056     if (log_intra < 10.0) {
1057       mb_intra_factor = 1.0 + ((10.0 - log_intra) * 0.05);
1058       fp_acc_data->intra_factor += mb_intra_factor;
1059       if (cpi->row_mt_bit_exact)
1060         cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor =
1061             mb_intra_factor;
1062     } else {
1063       fp_acc_data->intra_factor += 1.0;
1064       if (cpi->row_mt_bit_exact)
1065         cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor = 1.0;
1066     }
1067 
1068 #if CONFIG_VP9_HIGHBITDEPTH
1069     if (cm->use_highbitdepth)
1070       level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
1071     else
1072       level_sample = x->plane[0].src.buf[0];
1073 #else
1074     level_sample = x->plane[0].src.buf[0];
1075 #endif
1076     if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) {
1077       mb_brightness_factor = 1.0 + (0.01 * (DARK_THRESH - level_sample));
1078       fp_acc_data->brightness_factor += mb_brightness_factor;
1079       if (cpi->row_mt_bit_exact)
1080         cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor =
1081             mb_brightness_factor;
1082     } else {
1083       fp_acc_data->brightness_factor += 1.0;
1084       if (cpi->row_mt_bit_exact)
1085         cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor =
1086             1.0;
1087     }
1088 
1089     // Intrapenalty below deals with situations where the intra and inter
1090     // error scores are very low (e.g. a plain black frame).
1091     // We do not have special cases in first pass for 0,0 and nearest etc so
1092     // all inter modes carry an overhead cost estimate for the mv.
1093     // When the error score is very low this causes us to pick all or lots of
1094     // INTRA modes and throw lots of key frames.
1095     // This penalty adds a cost matching that of a 0,0 mv to the intra case.
1096     this_error += intrapenalty;
1097 
1098     // Accumulate the intra error.
1099     fp_acc_data->intra_error += (int64_t)this_error;
1100 
1101     // Set up limit values for motion vectors to prevent them extending
1102     // outside the UMV borders.
1103     x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
1104     x->mv_limits.col_max =
1105         ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
1106 
1107     // Other than for intra-only frame do a motion search.
1108     if (!frame_is_intra_only(cm)) {
1109       int tmp_err, motion_error, this_motion_error, raw_motion_error;
1110       // Assume 0,0 motion with no mv overhead.
1111       MV mv = { 0, 0 }, tmp_mv = { 0, 0 };
1112       struct buf_2d unscaled_last_source_buf_2d;
1113       vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
1114 
1115 #if CONFIG_RATE_CTRL
1116       if (cpi->oxcf.use_simple_encode_api) {
1117         // Store zero mv as default
1118         store_fp_motion_vector(cpi, &mv, mb_row, mb_col, LAST_FRAME, 0);
1119       }
1120 #endif  // CONFIG_RAGE_CTRL
1121 
1122       xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
1123 #if CONFIG_VP9_HIGHBITDEPTH
1124       if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1125         motion_error = highbd_get_prediction_error(
1126             bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
1127         this_motion_error = highbd_get_prediction_error(
1128             bsize, &x->plane[0].src, &xd->plane[0].pre[0], 8);
1129       } else {
1130         motion_error =
1131             get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
1132         this_motion_error = motion_error;
1133       }
1134 #else
1135       motion_error =
1136           get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
1137       this_motion_error = motion_error;
1138 #endif  // CONFIG_VP9_HIGHBITDEPTH
1139 
1140       // Compute the motion error of the 0,0 motion using the last source
1141       // frame as the reference. Skip the further motion search on
1142       // reconstructed frame if this error is very small.
1143       unscaled_last_source_buf_2d.buf =
1144           cpi->unscaled_last_source->y_buffer + recon_yoffset;
1145       unscaled_last_source_buf_2d.stride = cpi->unscaled_last_source->y_stride;
1146 #if CONFIG_VP9_HIGHBITDEPTH
1147       if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1148         raw_motion_error = highbd_get_prediction_error(
1149             bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd);
1150       } else {
1151         raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
1152                                                 &unscaled_last_source_buf_2d);
1153       }
1154 #else
1155       raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
1156                                               &unscaled_last_source_buf_2d);
1157 #endif  // CONFIG_VP9_HIGHBITDEPTH
1158 
1159       if (raw_motion_error > NZ_MOTION_PENALTY) {
1160         // Test last reference frame using the previous best mv as the
1161         // starting point (best reference) for the search.
1162         first_pass_motion_search(cpi, x, best_ref_mv, &mv, &motion_error);
1163 
1164         v_fn_ptr.vf = get_block_variance_fn(bsize);
1165 #if CONFIG_VP9_HIGHBITDEPTH
1166         if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1167           v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, 8);
1168         }
1169 #endif  // CONFIG_VP9_HIGHBITDEPTH
1170         this_motion_error =
1171             vp9_get_mvpred_var(x, &mv, best_ref_mv, &v_fn_ptr, 0);
1172 
1173         // If the current best reference mv is not centered on 0,0 then do a
1174         // 0,0 based search as well.
1175         if (!is_zero_mv(best_ref_mv)) {
1176           tmp_err = INT_MAX;
1177           first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err);
1178 
1179           if (tmp_err < motion_error) {
1180             motion_error = tmp_err;
1181             mv = tmp_mv;
1182             this_motion_error =
1183                 vp9_get_mvpred_var(x, &tmp_mv, &zero_mv, &v_fn_ptr, 0);
1184           }
1185         }
1186 #if CONFIG_RATE_CTRL
1187         if (cpi->oxcf.use_simple_encode_api) {
1188           store_fp_motion_vector(cpi, &mv, mb_row, mb_col, LAST_FRAME, 0);
1189         }
1190 #endif  // CONFIG_RAGE_CTRL
1191 
1192         // Search in an older reference frame.
1193         if ((cm->current_video_frame > 1) && gld_yv12 != NULL) {
1194           // Assume 0,0 motion with no mv overhead.
1195           int gf_motion_error;
1196 
1197           xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
1198 #if CONFIG_VP9_HIGHBITDEPTH
1199           if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1200             gf_motion_error = highbd_get_prediction_error(
1201                 bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
1202           } else {
1203             gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
1204                                                    &xd->plane[0].pre[0]);
1205           }
1206 #else
1207           gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
1208                                                  &xd->plane[0].pre[0]);
1209 #endif  // CONFIG_VP9_HIGHBITDEPTH
1210 
1211           first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &gf_motion_error);
1212 #if CONFIG_RATE_CTRL
1213           if (cpi->oxcf.use_simple_encode_api) {
1214             store_fp_motion_vector(cpi, &tmp_mv, mb_row, mb_col, GOLDEN_FRAME,
1215                                    1);
1216           }
1217 #endif  // CONFIG_RAGE_CTRL
1218 
1219           if (gf_motion_error < motion_error && gf_motion_error < this_error)
1220             ++(fp_acc_data->second_ref_count);
1221 
1222           // Reset to last frame as reference buffer.
1223           xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
1224           xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
1225           xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
1226 
1227           // In accumulating a score for the older reference frame take the
1228           // best of the motion predicted score and the intra coded error
1229           // (just as will be done for) accumulation of "coded_error" for
1230           // the last frame.
1231           if (gf_motion_error < this_error)
1232             fp_acc_data->sr_coded_error += gf_motion_error;
1233           else
1234             fp_acc_data->sr_coded_error += this_error;
1235         } else {
1236           fp_acc_data->sr_coded_error += motion_error;
1237         }
1238       } else {
1239         fp_acc_data->sr_coded_error += motion_error;
1240       }
1241 
1242       // Start by assuming that intra mode is best.
1243       best_ref_mv->row = 0;
1244       best_ref_mv->col = 0;
1245 
1246       if (motion_error <= this_error) {
1247         vpx_clear_system_state();
1248 
1249         // Keep a count of cases where the inter and intra were very close
1250         // and very low. This helps with scene cut detection for example in
1251         // cropped clips with black bars at the sides or top and bottom.
1252         if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
1253             (this_error < (2 * intrapenalty))) {
1254           fp_acc_data->neutral_count += 1.0;
1255           if (cpi->row_mt_bit_exact)
1256             cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count =
1257                 1.0;
1258           // Also track cases where the intra is not much worse than the inter
1259           // and use this in limiting the GF/arf group length.
1260         } else if ((this_error > NCOUNT_INTRA_THRESH) &&
1261                    (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
1262           mb_neutral_count =
1263               (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error);
1264           fp_acc_data->neutral_count += mb_neutral_count;
1265           if (cpi->row_mt_bit_exact)
1266             cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count =
1267                 mb_neutral_count;
1268         }
1269 
1270         mv.row *= 8;
1271         mv.col *= 8;
1272         this_error = motion_error;
1273         xd->mi[0]->mode = NEWMV;
1274         xd->mi[0]->mv[0].as_mv = mv;
1275         xd->mi[0]->tx_size = TX_4X4;
1276         xd->mi[0]->ref_frame[0] = LAST_FRAME;
1277         xd->mi[0]->ref_frame[1] = NO_REF_FRAME;
1278         vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize);
1279         vp9_encode_sby_pass1(x, bsize);
1280         fp_acc_data->sum_mvr += mv.row;
1281         fp_acc_data->sum_mvr_abs += abs(mv.row);
1282         fp_acc_data->sum_mvc += mv.col;
1283         fp_acc_data->sum_mvc_abs += abs(mv.col);
1284         fp_acc_data->sum_mvrs += mv.row * mv.row;
1285         fp_acc_data->sum_mvcs += mv.col * mv.col;
1286         ++(fp_acc_data->intercount);
1287 
1288         *best_ref_mv = mv;
1289 
1290         if (!is_zero_mv(&mv)) {
1291           ++(fp_acc_data->mvcount);
1292           if (!is_equal_mv(&mv, &last_nonzero_mv)) {
1293             ++(fp_acc_data->new_mv_count);
1294           }
1295           last_nonzero_mv = mv;
1296 
1297           // Does the row vector point inwards or outwards?
1298           if (mb_row < cm->mb_rows / 2) {
1299             if (mv.row > 0)
1300               --(fp_acc_data->sum_in_vectors);
1301             else if (mv.row < 0)
1302               ++(fp_acc_data->sum_in_vectors);
1303           } else if (mb_row > cm->mb_rows / 2) {
1304             if (mv.row > 0)
1305               ++(fp_acc_data->sum_in_vectors);
1306             else if (mv.row < 0)
1307               --(fp_acc_data->sum_in_vectors);
1308           }
1309 
1310           // Does the col vector point inwards or outwards?
1311           if (mb_col < cm->mb_cols / 2) {
1312             if (mv.col > 0)
1313               --(fp_acc_data->sum_in_vectors);
1314             else if (mv.col < 0)
1315               ++(fp_acc_data->sum_in_vectors);
1316           } else if (mb_col > cm->mb_cols / 2) {
1317             if (mv.col > 0)
1318               ++(fp_acc_data->sum_in_vectors);
1319             else if (mv.col < 0)
1320               --(fp_acc_data->sum_in_vectors);
1321           }
1322         }
1323         if (this_intra_error < scaled_low_intra_thresh) {
1324           fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize);
1325         } else {
1326           fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
1327         }
1328       } else {  // Intra < inter error
1329         if (this_intra_error < scaled_low_intra_thresh) {
1330           fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize);
1331           if (this_motion_error < scaled_low_intra_thresh) {
1332             fp_acc_data->intra_count_low += 1.0;
1333           } else {
1334             fp_acc_data->intra_count_high += 1.0;
1335           }
1336         } else {
1337           fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
1338           fp_acc_data->intra_count_high += 1.0;
1339         }
1340       }
1341     } else {
1342       fp_acc_data->sr_coded_error += (int64_t)this_error;
1343 #if CONFIG_RATE_CTRL
1344       if (cpi->oxcf.use_simple_encode_api) {
1345         store_fp_motion_vector(cpi, NULL, mb_row, mb_col, INTRA_FRAME, 0);
1346       }
1347 #endif  // CONFIG_RAGE_CTRL
1348     }
1349     fp_acc_data->coded_error += (int64_t)this_error;
1350 
1351     if (mb_col == mb_col_start) {
1352       *first_top_mv = last_nonzero_mv;
1353     }
1354     recon_yoffset += 16;
1355     recon_uvoffset += uv_mb_height;
1356 
1357     // Accumulate row level stats to the corresponding tile stats
1358     if (cpi->row_mt && mb_col == mb_col_end - 1)
1359       accumulate_fp_mb_row_stat(tile_data, fp_acc_data);
1360 
1361     (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, mb_row, c,
1362                                     num_mb_cols);
1363   }
1364   vpx_clear_system_state();
1365 }
1366 
first_pass_encode(VP9_COMP * cpi,FIRSTPASS_DATA * fp_acc_data)1367 static void first_pass_encode(VP9_COMP *cpi, FIRSTPASS_DATA *fp_acc_data) {
1368   VP9_COMMON *const cm = &cpi->common;
1369   int mb_row;
1370   TileDataEnc tile_data;
1371   TileInfo *tile = &tile_data.tile_info;
1372   MV zero_mv = { 0, 0 };
1373   MV best_ref_mv;
1374   // Tiling is ignored in the first pass.
1375   vp9_tile_init(tile, cm, 0, 0);
1376   tile_data.firstpass_top_mv = zero_mv;
1377 #if CONFIG_RATE_CTRL
1378   if (cpi->oxcf.use_simple_encode_api) {
1379     fp_motion_vector_info_reset(cpi->frame_info.frame_width,
1380                                 cpi->frame_info.frame_height,
1381                                 cpi->fp_motion_vector_info);
1382   }
1383 #endif
1384 
1385   for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
1386     best_ref_mv = zero_mv;
1387     vp9_first_pass_encode_tile_mb_row(cpi, &cpi->td, fp_acc_data, &tile_data,
1388                                       &best_ref_mv, mb_row);
1389   }
1390 }
1391 
vp9_first_pass(VP9_COMP * cpi,const struct lookahead_entry * source)1392 void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) {
1393   MACROBLOCK *const x = &cpi->td.mb;
1394   VP9_COMMON *const cm = &cpi->common;
1395   MACROBLOCKD *const xd = &x->e_mbd;
1396   TWO_PASS *twopass = &cpi->twopass;
1397 
1398   YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
1399   YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
1400   YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
1401   const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
1402 
1403   BufferPool *const pool = cm->buffer_pool;
1404 
1405   FIRSTPASS_DATA fp_temp_data;
1406   FIRSTPASS_DATA *fp_acc_data = &fp_temp_data;
1407 
1408   vpx_clear_system_state();
1409   vp9_zero(fp_temp_data);
1410   fp_acc_data->image_data_start_row = INVALID_ROW;
1411 
1412   // First pass code requires valid last and new frame buffers.
1413   assert(new_yv12 != NULL);
1414   assert(frame_is_intra_only(cm) || (lst_yv12 != NULL));
1415 
1416   set_first_pass_params(cpi);
1417   vp9_set_quantizer(cpi, find_fp_qindex(cm->bit_depth));
1418 
1419   vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
1420 
1421   vp9_setup_src_planes(x, cpi->Source, 0, 0);
1422   vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0);
1423 
1424   if (!frame_is_intra_only(cm)) {
1425     vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
1426   }
1427 
1428   xd->mi = cm->mi_grid_visible;
1429   xd->mi[0] = cm->mi;
1430 
1431   vp9_frame_init_quantizer(cpi);
1432 
1433   x->skip_recode = 0;
1434 
1435   vp9_init_mv_probs(cm);
1436   vp9_initialize_rd_consts(cpi);
1437 
1438   cm->log2_tile_rows = 0;
1439 
1440   if (cpi->row_mt_bit_exact && cpi->twopass.fp_mb_float_stats == NULL)
1441     CHECK_MEM_ERROR(
1442         &cm->error, cpi->twopass.fp_mb_float_stats,
1443         vpx_calloc(cm->MBs * sizeof(*cpi->twopass.fp_mb_float_stats), 1));
1444 
1445   {
1446     FIRSTPASS_STATS fps;
1447     TileDataEnc *first_tile_col;
1448     if (!cpi->row_mt) {
1449       cm->log2_tile_cols = 0;
1450       cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy;
1451       cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy;
1452       first_pass_encode(cpi, fp_acc_data);
1453       first_pass_stat_calc(cpi, &fps, fp_acc_data);
1454     } else {
1455       cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read;
1456       cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write;
1457       if (cpi->row_mt_bit_exact) {
1458         cm->log2_tile_cols = 0;
1459         vp9_zero_array(cpi->twopass.fp_mb_float_stats, cm->MBs);
1460       }
1461       vp9_encode_fp_row_mt(cpi);
1462       first_tile_col = &cpi->tile_data[0];
1463       if (cpi->row_mt_bit_exact)
1464         accumulate_floating_point_stats(cpi, first_tile_col);
1465       first_pass_stat_calc(cpi, &fps, &(first_tile_col->fp_data));
1466     }
1467 
1468     // Don't allow a value of 0 for duration.
1469     // (Section duration is also defaulted to minimum of 1.0).
1470     fps.duration = VPXMAX(1.0, (double)(source->ts_end - source->ts_start));
1471 
1472     // Don't want to do output stats with a stack variable!
1473     twopass->this_frame_stats = fps;
1474     output_stats(&twopass->this_frame_stats);
1475     accumulate_stats(&twopass->total_stats, &fps);
1476   }
1477 
1478   // Copy the previous Last Frame back into gf and arf buffers if
1479   // the prediction is good enough... but also don't allow it to lag too far.
1480   if ((twopass->sr_update_lag > 3) ||
1481       ((cm->current_video_frame > 0) &&
1482        (twopass->this_frame_stats.pcnt_inter > 0.20) &&
1483        ((twopass->this_frame_stats.intra_error /
1484          DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
1485     if (gld_yv12 != NULL) {
1486       ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
1487                  cm->ref_frame_map[cpi->lst_fb_idx]);
1488     }
1489     twopass->sr_update_lag = 1;
1490   } else {
1491     ++twopass->sr_update_lag;
1492   }
1493 
1494   vpx_extend_frame_borders(new_yv12);
1495 
1496   // The frame we just compressed now becomes the last frame.
1497   ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
1498              cm->new_fb_idx);
1499 
1500   // Special case for the first frame. Copy into the GF buffer as a second
1501   // reference.
1502   if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX) {
1503     ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
1504                cm->ref_frame_map[cpi->lst_fb_idx]);
1505   }
1506 
1507   // In the first pass, every frame is considered as a show frame.
1508   update_frame_indexes(cm, /*show_frame=*/1);
1509   if (cpi->use_svc) vp9_inc_frame_in_layer(cpi);
1510 }
1511 
1512 static const double q_pow_term[(QINDEX_RANGE >> 5) + 1] = { 0.65, 0.70, 0.75,
1513                                                             0.85, 0.90, 0.90,
1514                                                             0.90, 1.00, 1.25 };
1515 
calc_correction_factor(double err_per_mb,double err_divisor,int q)1516 static double calc_correction_factor(double err_per_mb, double err_divisor,
1517                                      int q) {
1518   const double error_term = err_per_mb / DOUBLE_DIVIDE_CHECK(err_divisor);
1519   const int index = q >> 5;
1520   double power_term;
1521 
1522   assert((index >= 0) && (index < (QINDEX_RANGE >> 5)));
1523 
1524   // Adjustment based on quantizer to the power term.
1525   power_term =
1526       q_pow_term[index] +
1527       (((q_pow_term[index + 1] - q_pow_term[index]) * (q % 32)) / 32.0);
1528 
1529   // Calculate correction factor.
1530   if (power_term < 1.0) assert(error_term >= 0.0);
1531 
1532   return fclamp(pow(error_term, power_term), 0.05, 5.0);
1533 }
1534 
wq_err_divisor(VP9_COMP * cpi)1535 static double wq_err_divisor(VP9_COMP *cpi) {
1536   const VP9_COMMON *const cm = &cpi->common;
1537   unsigned int screen_area = (cm->width * cm->height);
1538 
1539   // Use a different error per mb factor for calculating boost for
1540   //  different formats.
1541   if (screen_area <= 640 * 360) {
1542     return 115.0;
1543   } else if (screen_area < 1280 * 720) {
1544     return 125.0;
1545   } else if (screen_area <= 1920 * 1080) {
1546     return 130.0;
1547   } else if (screen_area < 3840 * 2160) {
1548     return 150.0;
1549   }
1550 
1551   // Fall through to here only for 4K and above.
1552   return 200.0;
1553 }
1554 
1555 #define NOISE_FACTOR_MIN 0.9
1556 #define NOISE_FACTOR_MAX 1.1
get_twopass_worst_quality(VP9_COMP * cpi,const double section_err,double inactive_zone,double section_noise,int section_target_bandwidth)1557 static int get_twopass_worst_quality(VP9_COMP *cpi, const double section_err,
1558                                      double inactive_zone, double section_noise,
1559                                      int section_target_bandwidth) {
1560   const RATE_CONTROL *const rc = &cpi->rc;
1561   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1562   TWO_PASS *const twopass = &cpi->twopass;
1563   double last_group_rate_err;
1564 
1565   // Clamp the target rate to VBR min / max limts.
1566   const int target_rate =
1567       vp9_rc_clamp_pframe_target_size(cpi, section_target_bandwidth);
1568   double noise_factor = pow((section_noise / SECTION_NOISE_DEF), 0.5);
1569   noise_factor = fclamp(noise_factor, NOISE_FACTOR_MIN, NOISE_FACTOR_MAX);
1570   inactive_zone = fclamp(inactive_zone, 0.0, 1.0);
1571 
1572 // TODO(jimbankoski): remove #if here or below when this has been
1573 // well tested.
1574 #if CONFIG_ALWAYS_ADJUST_BPM
1575   // based on recent history adjust expectations of bits per macroblock.
1576   last_group_rate_err =
1577       (double)twopass->rolling_arf_group_actual_bits /
1578       DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits);
1579   last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err));
1580   twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0;
1581   twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor));
1582 #endif
1583 
1584   if (target_rate <= 0) {
1585     return rc->worst_quality;  // Highest value allowed
1586   } else {
1587     const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
1588                             ? cpi->initial_mbs
1589                             : cpi->common.MBs;
1590     const double active_pct = VPXMAX(0.01, 1.0 - inactive_zone);
1591     const int active_mbs = (int)VPXMAX(1, (double)num_mbs * active_pct);
1592     const double av_err_per_mb = section_err / active_pct;
1593     const double speed_term = 1.0 + 0.04 * oxcf->speed;
1594     const int target_norm_bits_per_mb =
1595         (int)(((uint64_t)target_rate << BPER_MB_NORMBITS) / active_mbs);
1596     int q;
1597 
1598 // TODO(jimbankoski): remove #if here or above when this has been
1599 // well tested.
1600 #if !CONFIG_ALWAYS_ADJUST_BPM
1601     // based on recent history adjust expectations of bits per macroblock.
1602     last_group_rate_err =
1603         (double)twopass->rolling_arf_group_actual_bits /
1604         DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits);
1605     last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err));
1606     twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0;
1607     twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor));
1608 #endif
1609 
1610     // Try and pick a max Q that will be high enough to encode the
1611     // content at the given rate.
1612     for (q = rc->best_quality; q < rc->worst_quality; ++q) {
1613       const double factor =
1614           calc_correction_factor(av_err_per_mb, wq_err_divisor(cpi), q);
1615       const int bits_per_mb = vp9_rc_bits_per_mb(
1616           INTER_FRAME, q,
1617           factor * speed_term * cpi->twopass.bpm_factor * noise_factor,
1618           cpi->common.bit_depth);
1619       if (bits_per_mb <= target_norm_bits_per_mb) break;
1620     }
1621 
1622     // Restriction on active max q for constrained quality mode.
1623     if (cpi->oxcf.rc_mode == VPX_CQ) q = VPXMAX(q, oxcf->cq_level);
1624     return q;
1625   }
1626 }
1627 
setup_rf_level_maxq(VP9_COMP * cpi)1628 static void setup_rf_level_maxq(VP9_COMP *cpi) {
1629   int i;
1630   RATE_CONTROL *const rc = &cpi->rc;
1631   for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) {
1632     int qdelta = vp9_frame_type_qdelta(cpi, i, rc->worst_quality);
1633     rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality);
1634   }
1635 }
1636 
init_subsampling(VP9_COMP * cpi)1637 static void init_subsampling(VP9_COMP *cpi) {
1638   const VP9_COMMON *const cm = &cpi->common;
1639   RATE_CONTROL *const rc = &cpi->rc;
1640   const int w = cm->width;
1641   const int h = cm->height;
1642   int i;
1643 
1644   for (i = 0; i < FRAME_SCALE_STEPS; ++i) {
1645     // Note: Frames with odd-sized dimensions may result from this scaling.
1646     rc->frame_width[i] = (w * 16) / frame_scale_factor[i];
1647     rc->frame_height[i] = (h * 16) / frame_scale_factor[i];
1648   }
1649 
1650   setup_rf_level_maxq(cpi);
1651 }
1652 
calculate_coded_size(VP9_COMP * cpi,int * scaled_frame_width,int * scaled_frame_height)1653 void calculate_coded_size(VP9_COMP *cpi, int *scaled_frame_width,
1654                           int *scaled_frame_height) {
1655   RATE_CONTROL *const rc = &cpi->rc;
1656   *scaled_frame_width = rc->frame_width[rc->frame_size_selector];
1657   *scaled_frame_height = rc->frame_height[rc->frame_size_selector];
1658 }
1659 
vp9_init_second_pass(VP9_COMP * cpi)1660 void vp9_init_second_pass(VP9_COMP *cpi) {
1661   VP9EncoderConfig *const oxcf = &cpi->oxcf;
1662   RATE_CONTROL *const rc = &cpi->rc;
1663   TWO_PASS *const twopass = &cpi->twopass;
1664   double frame_rate;
1665   FIRSTPASS_STATS *stats;
1666 
1667   zero_stats(&twopass->total_stats);
1668   zero_stats(&twopass->total_left_stats);
1669 
1670   if (!twopass->stats_in_end) return;
1671 
1672   stats = &twopass->total_stats;
1673 
1674   *stats = *twopass->stats_in_end;
1675   twopass->total_left_stats = *stats;
1676 
1677   // Scan the first pass file and calculate a modified score for each
1678   // frame that is used to distribute bits. The modified score is assumed
1679   // to provide a linear basis for bit allocation. I.e., a frame A with a score
1680   // that is double that of frame B will be allocated 2x as many bits.
1681   {
1682     double modified_score_total = 0.0;
1683     const FIRSTPASS_STATS *s = twopass->stats_in;
1684     double av_err;
1685 
1686     if (oxcf->vbr_corpus_complexity) {
1687       twopass->mean_mod_score = (double)oxcf->vbr_corpus_complexity / 10.0;
1688       av_err = get_distribution_av_err(cpi, twopass);
1689     } else {
1690       av_err = get_distribution_av_err(cpi, twopass);
1691       // The first scan is unclamped and gives a raw average.
1692       while (s < twopass->stats_in_end) {
1693         modified_score_total += calculate_mod_frame_score(cpi, oxcf, s, av_err);
1694         ++s;
1695       }
1696 
1697       // The average error from this first scan is used to define the midpoint
1698       // error for the rate distribution function.
1699       twopass->mean_mod_score =
1700           modified_score_total / DOUBLE_DIVIDE_CHECK(stats->count);
1701     }
1702 
1703     // Second scan using clamps based on the previous cycle average.
1704     // This may modify the total and average somewhat but we don't bother with
1705     // further iterations.
1706     modified_score_total = 0.0;
1707     s = twopass->stats_in;
1708     while (s < twopass->stats_in_end) {
1709       modified_score_total +=
1710           calculate_norm_frame_score(cpi, twopass, oxcf, s, av_err);
1711       ++s;
1712     }
1713     twopass->normalized_score_left = modified_score_total;
1714 
1715     // If using Corpus wide VBR mode then update the clip target bandwidth to
1716     // reflect how the clip compares to the rest of the corpus.
1717     if (oxcf->vbr_corpus_complexity) {
1718       oxcf->target_bandwidth =
1719           (int64_t)((double)oxcf->target_bandwidth *
1720                     (twopass->normalized_score_left / stats->count));
1721     }
1722 
1723 #if COMPLEXITY_STATS_OUTPUT
1724     {
1725       FILE *compstats;
1726       compstats = fopen("complexity_stats.stt", "a");
1727       fprintf(compstats, "%10.3lf\n",
1728               twopass->normalized_score_left / stats->count);
1729       fclose(compstats);
1730     }
1731 #endif
1732   }
1733 
1734   frame_rate = 10000000.0 * stats->count / stats->duration;
1735   // Each frame can have a different duration, as the frame rate in the source
1736   // isn't guaranteed to be constant. The frame rate prior to the first frame
1737   // encoded in the second pass is a guess. However, the sum duration is not.
1738   // It is calculated based on the actual durations of all frames from the
1739   // first pass.
1740   vp9_new_framerate(cpi, frame_rate);
1741   twopass->bits_left =
1742       (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0);
1743 
1744   // This variable monitors how far behind the second ref update is lagging.
1745   twopass->sr_update_lag = 1;
1746 
1747   // Reset the vbr bits off target counters
1748   rc->vbr_bits_off_target = 0;
1749   rc->vbr_bits_off_target_fast = 0;
1750   rc->rate_error_estimate = 0;
1751 
1752   // Static sequence monitor variables.
1753   twopass->kf_zeromotion_pct = 100;
1754   twopass->last_kfgroup_zeromotion_pct = 100;
1755 
1756   // Initialize bits per macro_block estimate correction factor.
1757   twopass->bpm_factor = 1.0;
1758   // Initialize actual and target bits counters for ARF groups so that
1759   // at the start we have a neutral bpm adjustment.
1760   twopass->rolling_arf_group_target_bits = 1;
1761   twopass->rolling_arf_group_actual_bits = 1;
1762 
1763   if (oxcf->resize_mode != RESIZE_NONE) {
1764     init_subsampling(cpi);
1765   }
1766 
1767   // Initialize the arnr strangth adjustment to 0
1768   twopass->arnr_strength_adjustment = 0;
1769 }
1770 
1771 /* This function considers how the quality of prediction may be deteriorating
1772  * with distance. It compares the coded error for the last frame and the
1773  * second reference frame (usually two frames old) and also applies a factor
1774  * based on the extent of INTRA coding.
1775  *
1776  * The decay factor is then used to reduce the contribution of frames further
1777  * from the alt-ref or golden frame, to the bitrate boost calculation for that
1778  * alt-ref or golden frame.
1779  */
get_sr_decay_rate(const TWO_PASS * const twopass,const FIRSTPASS_STATS * frame)1780 static double get_sr_decay_rate(const TWO_PASS *const twopass,
1781                                 const FIRSTPASS_STATS *frame) {
1782   double sr_diff = (frame->sr_coded_error - frame->coded_error);
1783   double sr_decay = 1.0;
1784 
1785   // Do nothing if the second ref to last frame error difference is
1786   // very small or even negative.
1787   if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
1788     const double sr_diff_part =
1789         twopass->sr_diff_factor * ((sr_diff * 0.25) / frame->intra_error);
1790     double modified_pct_inter = frame->pcnt_inter;
1791     double modified_pcnt_intra;
1792 
1793     if ((frame->coded_error > LOW_CODED_ERR_PER_MB) &&
1794         ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
1795          (double)NCOUNT_FRAME_II_THRESH)) {
1796       modified_pct_inter =
1797           frame->pcnt_inter + frame->pcnt_intra_low - frame->pcnt_neutral;
1798     }
1799     modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
1800 
1801     sr_decay = 1.0 - sr_diff_part - (INTRA_PART * modified_pcnt_intra);
1802   }
1803   return VPXMAX(sr_decay, twopass->sr_default_decay_limit);
1804 }
1805 
1806 // This function gives an estimate of how badly we believe the prediction
1807 // quality is decaying from frame to frame.
get_zero_motion_factor(const TWO_PASS * const twopass,const FIRSTPASS_STATS * frame_stats)1808 static double get_zero_motion_factor(const TWO_PASS *const twopass,
1809                                      const FIRSTPASS_STATS *frame_stats) {
1810   const double zero_motion_pct =
1811       frame_stats->pcnt_inter - frame_stats->pcnt_motion;
1812   double sr_decay = get_sr_decay_rate(twopass, frame_stats);
1813   return VPXMIN(sr_decay, zero_motion_pct);
1814 }
1815 
get_prediction_decay_rate(const TWO_PASS * const twopass,const FIRSTPASS_STATS * frame_stats)1816 static double get_prediction_decay_rate(const TWO_PASS *const twopass,
1817                                         const FIRSTPASS_STATS *frame_stats) {
1818   const double sr_decay_rate = get_sr_decay_rate(twopass, frame_stats);
1819   double zero_motion_factor =
1820       twopass->zm_factor * (frame_stats->pcnt_inter - frame_stats->pcnt_motion);
1821 
1822   // Check that the zero motion factor is valid
1823   assert(zero_motion_factor >= 0.0 && zero_motion_factor <= 1.0);
1824 
1825   return VPXMAX(zero_motion_factor,
1826                 (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
1827 }
1828 
get_show_idx(const TWO_PASS * twopass)1829 static int get_show_idx(const TWO_PASS *twopass) {
1830   return (int)(twopass->stats_in - twopass->stats_in_start);
1831 }
1832 // Function to test for a condition where a complex transition is followed
1833 // by a static section. For example in slide shows where there is a fade
1834 // between slides. This is to help with more optimal kf and gf positioning.
check_transition_to_still(const FIRST_PASS_INFO * first_pass_info,int show_idx,int still_interval)1835 static int check_transition_to_still(const FIRST_PASS_INFO *first_pass_info,
1836                                      int show_idx, int still_interval) {
1837   int j;
1838   int num_frames = fps_get_num_frames(first_pass_info);
1839   if (show_idx + still_interval > num_frames) {
1840     return 0;
1841   }
1842 
1843   // Look ahead a few frames to see if static condition persists...
1844   for (j = 0; j < still_interval; ++j) {
1845     const FIRSTPASS_STATS *stats =
1846         fps_get_frame_stats(first_pass_info, show_idx + j);
1847     if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break;
1848   }
1849 
1850   // Only if it does do we signal a transition to still.
1851   return j == still_interval;
1852 }
1853 
1854 // This function detects a flash through the high relative pcnt_second_ref
1855 // score in the frame following a flash frame. The offset passed in should
1856 // reflect this.
detect_flash_from_frame_stats(const FIRSTPASS_STATS * frame_stats)1857 static int detect_flash_from_frame_stats(const FIRSTPASS_STATS *frame_stats) {
1858   // What we are looking for here is a situation where there is a
1859   // brief break in prediction (such as a flash) but subsequent frames
1860   // are reasonably well predicted by an earlier (pre flash) frame.
1861   // The recovery after a flash is indicated by a high pcnt_second_ref
1862   // usage or a second ref coded error notabley lower than the last
1863   // frame coded error.
1864   if (frame_stats == NULL) {
1865     return 0;
1866   }
1867   return (frame_stats->sr_coded_error < frame_stats->coded_error) ||
1868          ((frame_stats->pcnt_second_ref > frame_stats->pcnt_inter) &&
1869           (frame_stats->pcnt_second_ref >= 0.5));
1870 }
1871 
detect_flash(const TWO_PASS * twopass,int offset)1872 static int detect_flash(const TWO_PASS *twopass, int offset) {
1873   const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
1874   return detect_flash_from_frame_stats(next_frame);
1875 }
1876 
1877 // Update the motion related elements to the GF arf boost calculation.
accumulate_frame_motion_stats(const FIRSTPASS_STATS * stats,double * mv_in_out,double * mv_in_out_accumulator,double * abs_mv_in_out_accumulator,double * mv_ratio_accumulator)1878 static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
1879                                           double *mv_in_out,
1880                                           double *mv_in_out_accumulator,
1881                                           double *abs_mv_in_out_accumulator,
1882                                           double *mv_ratio_accumulator) {
1883   const double pct = stats->pcnt_motion;
1884 
1885   // Accumulate Motion In/Out of frame stats.
1886   *mv_in_out = stats->mv_in_out_count * pct;
1887   *mv_in_out_accumulator += *mv_in_out;
1888   *abs_mv_in_out_accumulator += fabs(*mv_in_out);
1889 
1890   // Accumulate a measure of how uniform (or conversely how random) the motion
1891   // field is (a ratio of abs(mv) / mv).
1892   if (pct > 0.05) {
1893     const double mvr_ratio =
1894         fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
1895     const double mvc_ratio =
1896         fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
1897 
1898     *mv_ratio_accumulator +=
1899         pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs);
1900     *mv_ratio_accumulator +=
1901         pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs);
1902   }
1903 }
1904 
calc_frame_boost(const FRAME_INFO * frame_info,const FIRSTPASS_STATS * this_frame,const TWO_PASS * const twopass,int avg_frame_qindex,double this_frame_mv_in_out)1905 static double calc_frame_boost(const FRAME_INFO *frame_info,
1906                                const FIRSTPASS_STATS *this_frame,
1907                                const TWO_PASS *const twopass,
1908                                int avg_frame_qindex,
1909                                double this_frame_mv_in_out) {
1910   double frame_boost;
1911   const double lq =
1912       vp9_convert_qindex_to_q(avg_frame_qindex, frame_info->bit_depth);
1913   const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5);
1914   const double active_area = calculate_active_area(frame_info, this_frame);
1915 
1916   // Frame booost is based on inter error.
1917   frame_boost = (twopass->err_per_mb * active_area) /
1918                 DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
1919 
1920   // Small adjustment for cases where there is a zoom out
1921   if (this_frame_mv_in_out > 0.0)
1922     frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
1923 
1924   // Q correction and scalling
1925   frame_boost = frame_boost * boost_q_correction;
1926 
1927   return VPXMIN(frame_boost, twopass->gf_frame_max_boost * boost_q_correction);
1928 }
1929 
calc_kf_frame_boost(VP9_COMP * cpi,const FIRSTPASS_STATS * this_frame,double * sr_accumulator,double this_frame_mv_in_out,double zm_factor)1930 static double calc_kf_frame_boost(VP9_COMP *cpi,
1931                                   const FIRSTPASS_STATS *this_frame,
1932                                   double *sr_accumulator,
1933                                   double this_frame_mv_in_out,
1934                                   double zm_factor) {
1935   TWO_PASS *const twopass = &cpi->twopass;
1936   double frame_boost;
1937   const double lq = vp9_convert_qindex_to_q(
1938       cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth);
1939   const double boost_q_correction = VPXMIN((0.50 + (lq * 0.015)), 2.00);
1940   const double active_area =
1941       calculate_active_area(&cpi->frame_info, this_frame);
1942   double max_boost;
1943 
1944   // Frame booost is based on inter error.
1945   frame_boost = (twopass->kf_err_per_mb * active_area) /
1946                 DOUBLE_DIVIDE_CHECK(this_frame->coded_error + *sr_accumulator);
1947 
1948   // Update the accumulator for second ref error difference.
1949   // This is intended to give an indication of how much the coded error is
1950   // increasing over time.
1951   *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error);
1952   *sr_accumulator = VPXMAX(0.0, *sr_accumulator);
1953 
1954   // Small adjustment for cases where there is a zoom out
1955   if (this_frame_mv_in_out > 0.0)
1956     frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
1957 
1958   // Q correction and scaling
1959   // The 40.0 value here is an experimentally derived baseline minimum.
1960   // This value is in line with the minimum per frame boost in the alt_ref
1961   // boost calculation.
1962   frame_boost =
1963       (frame_boost + twopass->kf_frame_min_boost) * boost_q_correction;
1964 
1965   // Maximum allowed boost this frame. May be different for first vs subsequent
1966   // key frames.
1967   max_boost = (cpi->common.current_video_frame == 0)
1968                   ? twopass->kf_frame_max_boost_first
1969                   : twopass->kf_frame_max_boost_subs;
1970   max_boost *= zm_factor * boost_q_correction;
1971 
1972   return VPXMIN(frame_boost, max_boost);
1973 }
1974 
compute_arf_boost(const FRAME_INFO * frame_info,TWO_PASS * const twopass,int arf_show_idx,int f_frames,int b_frames,int avg_frame_qindex)1975 static int compute_arf_boost(const FRAME_INFO *frame_info,
1976                              TWO_PASS *const twopass, int arf_show_idx,
1977                              int f_frames, int b_frames, int avg_frame_qindex) {
1978   const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
1979   int i;
1980   double boost_score = 0.0;
1981   double mv_ratio_accumulator = 0.0;
1982   double decay_accumulator = 1.0;
1983   double this_frame_mv_in_out = 0.0;
1984   double mv_in_out_accumulator = 0.0;
1985   double abs_mv_in_out_accumulator = 0.0;
1986   int arf_boost;
1987   int flash_detected = 0;
1988 
1989   // Search forward from the proposed arf/next gf position.
1990   for (i = 0; i < f_frames; ++i) {
1991     const FIRSTPASS_STATS *this_frame =
1992         fps_get_frame_stats(first_pass_info, arf_show_idx + i);
1993     const FIRSTPASS_STATS *next_frame =
1994         fps_get_frame_stats(first_pass_info, arf_show_idx + i + 1);
1995     if (this_frame == NULL) break;
1996 
1997     // Update the motion related elements to the boost calculation.
1998     accumulate_frame_motion_stats(
1999         this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
2000         &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
2001 
2002     // We want to discount the flash frame itself and the recovery
2003     // frame that follows as both will have poor scores.
2004     flash_detected = detect_flash_from_frame_stats(this_frame) ||
2005                      detect_flash_from_frame_stats(next_frame);
2006 
2007     // Accumulate the effect of prediction quality decay.
2008     if (!flash_detected) {
2009       decay_accumulator *= get_prediction_decay_rate(twopass, this_frame);
2010       decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
2011                               ? MIN_DECAY_FACTOR
2012                               : decay_accumulator;
2013     }
2014     boost_score += decay_accumulator *
2015                    calc_frame_boost(frame_info, this_frame, twopass,
2016                                     avg_frame_qindex, this_frame_mv_in_out);
2017   }
2018 
2019   arf_boost = (int)boost_score;
2020 
2021   // Reset for backward looking loop.
2022   boost_score = 0.0;
2023   mv_ratio_accumulator = 0.0;
2024   decay_accumulator = 1.0;
2025   this_frame_mv_in_out = 0.0;
2026   mv_in_out_accumulator = 0.0;
2027   abs_mv_in_out_accumulator = 0.0;
2028 
2029   // Search backward towards last gf position.
2030   for (i = -1; i >= -b_frames; --i) {
2031     const FIRSTPASS_STATS *this_frame =
2032         fps_get_frame_stats(first_pass_info, arf_show_idx + i);
2033     const FIRSTPASS_STATS *next_frame =
2034         fps_get_frame_stats(first_pass_info, arf_show_idx + i + 1);
2035     if (this_frame == NULL) break;
2036 
2037     // Update the motion related elements to the boost calculation.
2038     accumulate_frame_motion_stats(
2039         this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
2040         &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
2041 
2042     // We want to discount the flash frame itself and the recovery
2043     // frame that follows as both will have poor scores.
2044     flash_detected = detect_flash_from_frame_stats(this_frame) ||
2045                      detect_flash_from_frame_stats(next_frame);
2046 
2047     // Cumulative effect of prediction quality decay.
2048     if (!flash_detected) {
2049       decay_accumulator *= get_prediction_decay_rate(twopass, this_frame);
2050       decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
2051                               ? MIN_DECAY_FACTOR
2052                               : decay_accumulator;
2053     }
2054     boost_score += decay_accumulator *
2055                    calc_frame_boost(frame_info, this_frame, twopass,
2056                                     avg_frame_qindex, this_frame_mv_in_out);
2057   }
2058   arf_boost += (int)boost_score;
2059 
2060   if (arf_boost < ((b_frames + f_frames) * 40))
2061     arf_boost = ((b_frames + f_frames) * 40);
2062   arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST);
2063 
2064   return arf_boost;
2065 }
2066 
calc_arf_boost(VP9_COMP * cpi,int f_frames,int b_frames)2067 static int calc_arf_boost(VP9_COMP *cpi, int f_frames, int b_frames) {
2068   const FRAME_INFO *frame_info = &cpi->frame_info;
2069   TWO_PASS *const twopass = &cpi->twopass;
2070   const int avg_inter_frame_qindex = cpi->rc.avg_frame_qindex[INTER_FRAME];
2071   int arf_show_idx = get_show_idx(twopass);
2072   return compute_arf_boost(frame_info, twopass, arf_show_idx, f_frames,
2073                            b_frames, avg_inter_frame_qindex);
2074 }
2075 
2076 // Calculate a section intra ratio used in setting max loop filter.
calculate_section_intra_ratio(const FIRSTPASS_STATS * begin,const FIRSTPASS_STATS * end,int section_length)2077 static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
2078                                          const FIRSTPASS_STATS *end,
2079                                          int section_length) {
2080   const FIRSTPASS_STATS *s = begin;
2081   double intra_error = 0.0;
2082   double coded_error = 0.0;
2083   int i = 0;
2084 
2085   while (s < end && i < section_length) {
2086     intra_error += s->intra_error;
2087     coded_error += s->coded_error;
2088     ++s;
2089     ++i;
2090   }
2091 
2092   return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
2093 }
2094 
2095 // Calculate the total bits to allocate in this GF/ARF group.
calculate_total_gf_group_bits(VP9_COMP * cpi,double gf_group_err)2096 static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi,
2097                                              double gf_group_err) {
2098   VP9_COMMON *const cm = &cpi->common;
2099   const RATE_CONTROL *const rc = &cpi->rc;
2100   const TWO_PASS *const twopass = &cpi->twopass;
2101   const int max_bits = frame_max_bits(rc, &cpi->oxcf);
2102   int64_t total_group_bits;
2103   const int is_key_frame = frame_is_intra_only(cm);
2104   const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active;
2105   int gop_frames =
2106       rc->baseline_gf_interval + rc->source_alt_ref_pending - arf_active_or_kf;
2107 
2108   // Calculate the bits to be allocated to the group as a whole.
2109   if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0.0)) {
2110     int key_frame_interval = rc->frames_since_key + rc->frames_to_key;
2111     int distance_from_next_key_frame =
2112         rc->frames_to_key -
2113         (rc->baseline_gf_interval + rc->source_alt_ref_pending);
2114     int max_gf_bits_bias = rc->avg_frame_bandwidth;
2115     double gf_interval_bias_bits_normalize_factor =
2116         (double)rc->baseline_gf_interval / 16;
2117     total_group_bits = (int64_t)(twopass->kf_group_bits *
2118                                  (gf_group_err / twopass->kf_group_error_left));
2119     // TODO(ravi): Experiment with different values of max_gf_bits_bias
2120     total_group_bits +=
2121         (int64_t)((double)distance_from_next_key_frame / key_frame_interval *
2122                   max_gf_bits_bias * gf_interval_bias_bits_normalize_factor);
2123   } else {
2124     total_group_bits = 0;
2125   }
2126 
2127   // Clamp odd edge cases.
2128   total_group_bits = (total_group_bits < 0) ? 0
2129                      : (total_group_bits > twopass->kf_group_bits)
2130                          ? twopass->kf_group_bits
2131                          : total_group_bits;
2132 
2133   // Clip based on user supplied data rate variability limit.
2134   if (total_group_bits > (int64_t)max_bits * gop_frames)
2135     total_group_bits = (int64_t)max_bits * gop_frames;
2136 
2137   return total_group_bits;
2138 }
2139 
2140 // Calculate the number bits extra to assign to boosted frames in a group.
calculate_boost_bits(int frame_count,int boost,int64_t total_group_bits)2141 static int calculate_boost_bits(int frame_count, int boost,
2142                                 int64_t total_group_bits) {
2143   int allocation_chunks;
2144 
2145   // return 0 for invalid inputs (could arise e.g. through rounding errors)
2146   if (!boost || (total_group_bits <= 0) || (frame_count < 0)) return 0;
2147 
2148   allocation_chunks = (frame_count * NORMAL_BOOST) + boost;
2149 
2150   // Prevent overflow.
2151   if (boost > 1023) {
2152     int divisor = boost >> 10;
2153     boost /= divisor;
2154     allocation_chunks /= divisor;
2155   }
2156 
2157   // Calculate the number of extra bits for use in the boosted frame or frames.
2158   return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
2159                 0);
2160 }
2161 
2162 // Used in corpus vbr: Calculates the total normalized group complexity score
2163 // for a given number of frames starting at the current position in the stats
2164 // file.
calculate_group_score(VP9_COMP * cpi,double av_score,int frame_count)2165 static double calculate_group_score(VP9_COMP *cpi, double av_score,
2166                                     int frame_count) {
2167   VP9EncoderConfig *const oxcf = &cpi->oxcf;
2168   TWO_PASS *const twopass = &cpi->twopass;
2169   const FIRSTPASS_STATS *s = twopass->stats_in;
2170   double score_total = 0.0;
2171   int i = 0;
2172 
2173   // We don't ever want to return a 0 score here.
2174   if (frame_count == 0) return 1.0;
2175 
2176   while ((i < frame_count) && (s < twopass->stats_in_end)) {
2177     score_total += calculate_norm_frame_score(cpi, twopass, oxcf, s, av_score);
2178     ++s;
2179     ++i;
2180   }
2181 
2182   return score_total;
2183 }
2184 
find_arf_order(VP9_COMP * cpi,GF_GROUP * gf_group,int * index_counter,int depth,int start,int end)2185 static void find_arf_order(VP9_COMP *cpi, GF_GROUP *gf_group,
2186                            int *index_counter, int depth, int start, int end) {
2187   TWO_PASS *twopass = &cpi->twopass;
2188   const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
2189   FIRSTPASS_STATS fpf_frame;
2190   const int mid = (start + end + 1) >> 1;
2191   const int min_frame_interval = 2;
2192   int idx;
2193 
2194   // Process regular P frames
2195   if ((end - start < min_frame_interval) ||
2196       (depth > gf_group->allowed_max_layer_depth)) {
2197     for (idx = start; idx <= end; ++idx) {
2198       gf_group->update_type[*index_counter] = LF_UPDATE;
2199       gf_group->arf_src_offset[*index_counter] = 0;
2200       gf_group->frame_gop_index[*index_counter] = idx;
2201       gf_group->rf_level[*index_counter] = INTER_NORMAL;
2202       gf_group->layer_depth[*index_counter] = depth;
2203       gf_group->gfu_boost[*index_counter] = NORMAL_BOOST;
2204       ++(*index_counter);
2205     }
2206     gf_group->max_layer_depth = VPXMAX(gf_group->max_layer_depth, depth);
2207     return;
2208   }
2209 
2210   assert(abs(mid - start) >= 1 && abs(mid - end) >= 1);
2211 
2212   // Process ARF frame
2213   gf_group->layer_depth[*index_counter] = depth;
2214   gf_group->update_type[*index_counter] = ARF_UPDATE;
2215   gf_group->arf_src_offset[*index_counter] = mid - start;
2216   gf_group->frame_gop_index[*index_counter] = mid;
2217   gf_group->rf_level[*index_counter] = GF_ARF_LOW;
2218 
2219   for (idx = 0; idx <= mid; ++idx)
2220     if (EOF == input_stats(twopass, &fpf_frame)) break;
2221 
2222   gf_group->gfu_boost[*index_counter] =
2223       VPXMAX(MIN_ARF_GF_BOOST,
2224              calc_arf_boost(cpi, end - mid + 1, mid - start) >> depth);
2225 
2226   reset_fpf_position(twopass, start_pos);
2227 
2228   ++(*index_counter);
2229 
2230   find_arf_order(cpi, gf_group, index_counter, depth + 1, start, mid - 1);
2231 
2232   gf_group->update_type[*index_counter] = USE_BUF_FRAME;
2233   gf_group->arf_src_offset[*index_counter] = 0;
2234   gf_group->frame_gop_index[*index_counter] = mid;
2235   gf_group->rf_level[*index_counter] = INTER_NORMAL;
2236   gf_group->layer_depth[*index_counter] = depth;
2237   ++(*index_counter);
2238 
2239   find_arf_order(cpi, gf_group, index_counter, depth + 1, mid + 1, end);
2240 }
2241 
set_gf_overlay_frame_type(GF_GROUP * gf_group,int frame_index,int source_alt_ref_active)2242 static INLINE void set_gf_overlay_frame_type(GF_GROUP *gf_group,
2243                                              int frame_index,
2244                                              int source_alt_ref_active) {
2245   if (source_alt_ref_active) {
2246     gf_group->update_type[frame_index] = OVERLAY_UPDATE;
2247     gf_group->rf_level[frame_index] = INTER_NORMAL;
2248     gf_group->layer_depth[frame_index] = MAX_ARF_LAYERS - 1;
2249     gf_group->gfu_boost[frame_index] = NORMAL_BOOST;
2250   } else {
2251     gf_group->update_type[frame_index] = GF_UPDATE;
2252     gf_group->rf_level[frame_index] = GF_ARF_STD;
2253     gf_group->layer_depth[frame_index] = 0;
2254   }
2255 }
2256 
define_gf_group_structure(VP9_COMP * cpi)2257 static void define_gf_group_structure(VP9_COMP *cpi) {
2258   RATE_CONTROL *const rc = &cpi->rc;
2259   TWO_PASS *const twopass = &cpi->twopass;
2260   GF_GROUP *const gf_group = &twopass->gf_group;
2261   int frame_index = 0;
2262   int key_frame = cpi->common.frame_type == KEY_FRAME;
2263   int layer_depth = 1;
2264   int gop_frames =
2265       rc->baseline_gf_interval - (key_frame || rc->source_alt_ref_pending);
2266 
2267   gf_group->frame_start = cpi->common.current_video_frame;
2268   gf_group->frame_end = gf_group->frame_start + rc->baseline_gf_interval;
2269   gf_group->max_layer_depth = 0;
2270   gf_group->allowed_max_layer_depth = 0;
2271 
2272   // For key frames the frame target rate is already set and it
2273   // is also the golden frame.
2274   // === [frame_index == 0] ===
2275   if (!key_frame)
2276     set_gf_overlay_frame_type(gf_group, frame_index, rc->source_alt_ref_active);
2277 
2278   ++frame_index;
2279 
2280   // === [frame_index == 1] ===
2281   if (rc->source_alt_ref_pending) {
2282     gf_group->update_type[frame_index] = ARF_UPDATE;
2283     gf_group->rf_level[frame_index] = GF_ARF_STD;
2284     gf_group->layer_depth[frame_index] = layer_depth;
2285     gf_group->arf_src_offset[frame_index] =
2286         (unsigned char)(rc->baseline_gf_interval - 1);
2287     gf_group->frame_gop_index[frame_index] = rc->baseline_gf_interval;
2288     gf_group->max_layer_depth = 1;
2289     ++frame_index;
2290     ++layer_depth;
2291     gf_group->allowed_max_layer_depth = cpi->oxcf.enable_auto_arf;
2292   }
2293 
2294   find_arf_order(cpi, gf_group, &frame_index, layer_depth, 1, gop_frames);
2295 
2296   set_gf_overlay_frame_type(gf_group, frame_index, rc->source_alt_ref_pending);
2297   gf_group->arf_src_offset[frame_index] = 0;
2298   gf_group->frame_gop_index[frame_index] = rc->baseline_gf_interval;
2299 
2300   // Set the frame ops number.
2301   gf_group->gf_group_size = frame_index;
2302 }
2303 
allocate_gf_group_bits(VP9_COMP * cpi,int64_t gf_group_bits,int gf_arf_bits)2304 static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
2305                                    int gf_arf_bits) {
2306   VP9EncoderConfig *const oxcf = &cpi->oxcf;
2307   RATE_CONTROL *const rc = &cpi->rc;
2308   TWO_PASS *const twopass = &cpi->twopass;
2309   GF_GROUP *const gf_group = &twopass->gf_group;
2310   FIRSTPASS_STATS frame_stats;
2311   int i;
2312   int frame_index = 0;
2313   int target_frame_size;
2314   int key_frame;
2315   const int max_bits = frame_max_bits(&cpi->rc, oxcf);
2316   int64_t total_group_bits = gf_group_bits;
2317   int mid_frame_idx;
2318   int normal_frames;
2319   int normal_frame_bits;
2320   int last_frame_reduction = 0;
2321   double av_score = 1.0;
2322   double tot_norm_frame_score = 1.0;
2323   double this_frame_score = 1.0;
2324 
2325   // Define the GF structure and specify
2326   int gop_frames = gf_group->gf_group_size;
2327 
2328   key_frame = cpi->common.frame_type == KEY_FRAME;
2329 
2330   // For key frames the frame target rate is already set and it
2331   // is also the golden frame.
2332   // === [frame_index == 0] ===
2333   if (!key_frame) {
2334     gf_group->bit_allocation[frame_index] =
2335         rc->source_alt_ref_active ? 0 : gf_arf_bits;
2336   }
2337 
2338   // Deduct the boost bits for arf (or gf if it is not a key frame)
2339   // from the group total.
2340   if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits;
2341 
2342   ++frame_index;
2343 
2344   // === [frame_index == 1] ===
2345   // Store the bits to spend on the ARF if there is one.
2346   if (rc->source_alt_ref_pending) {
2347     gf_group->bit_allocation[frame_index] = gf_arf_bits;
2348 
2349     ++frame_index;
2350   }
2351 
2352   // Define middle frame
2353   mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1;
2354 
2355   normal_frames = (rc->baseline_gf_interval - 1);
2356   if (normal_frames > 1)
2357     normal_frame_bits = (int)(total_group_bits / normal_frames);
2358   else
2359     normal_frame_bits = (int)total_group_bits;
2360 
2361   gf_group->gfu_boost[1] = rc->gfu_boost;
2362 
2363   if (cpi->multi_layer_arf) {
2364     int idx;
2365     int arf_depth_bits[MAX_ARF_LAYERS] = { 0 };
2366     int arf_depth_count[MAX_ARF_LAYERS] = { 0 };
2367     int arf_depth_boost[MAX_ARF_LAYERS] = { 0 };
2368     int total_arfs = 1;  // Account for the base layer ARF.
2369 
2370     for (idx = 0; idx < gop_frames; ++idx) {
2371       if (gf_group->update_type[idx] == ARF_UPDATE) {
2372         arf_depth_boost[gf_group->layer_depth[idx]] += gf_group->gfu_boost[idx];
2373         ++arf_depth_count[gf_group->layer_depth[idx]];
2374       }
2375     }
2376 
2377     for (idx = 2; idx < MAX_ARF_LAYERS; ++idx) {
2378       if (arf_depth_boost[idx] == 0) break;
2379       arf_depth_bits[idx] = calculate_boost_bits(
2380           rc->baseline_gf_interval - total_arfs - arf_depth_count[idx],
2381           arf_depth_boost[idx], total_group_bits);
2382 
2383       total_group_bits -= arf_depth_bits[idx];
2384       total_arfs += arf_depth_count[idx];
2385     }
2386 
2387     // offset the base layer arf
2388     normal_frames -= (total_arfs - 1);
2389     if (normal_frames > 1)
2390       normal_frame_bits = (int)(total_group_bits / normal_frames);
2391     else
2392       normal_frame_bits = (int)total_group_bits;
2393 
2394     target_frame_size = normal_frame_bits;
2395     target_frame_size =
2396         clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits));
2397 
2398     // The first layer ARF has its bit allocation assigned.
2399     for (idx = frame_index; idx < gop_frames; ++idx) {
2400       switch (gf_group->update_type[idx]) {
2401         case ARF_UPDATE:
2402           gf_group->bit_allocation[idx] =
2403               (int)(((int64_t)arf_depth_bits[gf_group->layer_depth[idx]] *
2404                      gf_group->gfu_boost[idx]) /
2405                     arf_depth_boost[gf_group->layer_depth[idx]]);
2406           break;
2407         case USE_BUF_FRAME: gf_group->bit_allocation[idx] = 0; break;
2408         default: gf_group->bit_allocation[idx] = target_frame_size; break;
2409       }
2410     }
2411     gf_group->bit_allocation[idx] = 0;
2412 
2413     return;
2414   }
2415 
2416   if (oxcf->vbr_corpus_complexity) {
2417     av_score = get_distribution_av_err(cpi, twopass);
2418     tot_norm_frame_score = calculate_group_score(cpi, av_score, normal_frames);
2419   }
2420 
2421   // Allocate bits to the other frames in the group.
2422   for (i = 0; i < normal_frames; ++i) {
2423     if (EOF == input_stats(twopass, &frame_stats)) break;
2424     if (oxcf->vbr_corpus_complexity) {
2425       this_frame_score = calculate_norm_frame_score(cpi, twopass, oxcf,
2426                                                     &frame_stats, av_score);
2427       normal_frame_bits = (int)((double)total_group_bits *
2428                                 (this_frame_score / tot_norm_frame_score));
2429     }
2430 
2431     target_frame_size = normal_frame_bits;
2432     if ((i == (normal_frames - 1)) && (i >= 1)) {
2433       last_frame_reduction = normal_frame_bits / 16;
2434       target_frame_size -= last_frame_reduction;
2435     }
2436 
2437     target_frame_size =
2438         clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits));
2439 
2440     gf_group->bit_allocation[frame_index] = target_frame_size;
2441     ++frame_index;
2442   }
2443 
2444   // Add in some extra bits for the middle frame in the group.
2445   gf_group->bit_allocation[mid_frame_idx] += last_frame_reduction;
2446 
2447   // Note:
2448   // We need to configure the frame at the end of the sequence + 1 that will be
2449   // the start frame for the next group. Otherwise prior to the call to
2450   // vp9_rc_get_second_pass_params() the data will be undefined.
2451 }
2452 
2453 // Adjusts the ARNF filter for a GF group.
adjust_group_arnr_filter(VP9_COMP * cpi,double section_noise,double section_inter,double section_motion)2454 static void adjust_group_arnr_filter(VP9_COMP *cpi, double section_noise,
2455                                      double section_inter,
2456                                      double section_motion) {
2457   TWO_PASS *const twopass = &cpi->twopass;
2458   double section_zeromv = section_inter - section_motion;
2459 
2460   twopass->arnr_strength_adjustment = 0;
2461 
2462   if (section_noise < 150) {
2463     twopass->arnr_strength_adjustment -= 1;
2464     if (section_noise < 75) twopass->arnr_strength_adjustment -= 1;
2465   } else if (section_noise > 250)
2466     twopass->arnr_strength_adjustment += 1;
2467 
2468   if (section_zeromv > 0.50) twopass->arnr_strength_adjustment += 1;
2469 }
2470 
2471 // Analyse and define a gf/arf group.
2472 #define ARF_ABS_ZOOM_THRESH 4.0
2473 
2474 #define MAX_GF_BOOST 5400
2475 
2476 typedef struct RANGE {
2477   int min;
2478   int max;
2479 } RANGE;
2480 
2481 /* get_gop_coding_frame_num() depends on several fields in RATE_CONTROL *rc as
2482  * follows.
2483  * Static fields:
2484  * (The following fields will remain unchanged after initialization of encoder.)
2485  *   rc->static_scene_max_gf_interval
2486  *   rc->min_gf_interval
2487  *   twopass->sr_diff_factor
2488  *   twopass->sr_default_decay_limit
2489  *   twopass->zm_factor
2490  *
2491  * Dynamic fields:
2492  * (The following fields will be updated before or after coding each frame.)
2493  *   rc->frames_to_key
2494  *   rc->frames_since_key
2495  *   rc->source_alt_ref_active
2496  *
2497  * Special case: if CONFIG_RATE_CTRL is true, the external arf indexes will
2498  * determine the arf position.
2499  *
2500  * TODO(angiebird): Separate the dynamic fields and static fields into two
2501  * structs.
2502  */
get_gop_coding_frame_num(int * use_alt_ref,const FRAME_INFO * frame_info,const TWO_PASS * const twopass,const RATE_CONTROL * rc,int gf_start_show_idx,const RANGE * active_gf_interval,double gop_intra_factor,int lag_in_frames,int * end_of_sequence)2503 static int get_gop_coding_frame_num(
2504     int *use_alt_ref, const FRAME_INFO *frame_info,
2505     const TWO_PASS *const twopass, const RATE_CONTROL *rc,
2506     int gf_start_show_idx, const RANGE *active_gf_interval,
2507     double gop_intra_factor, int lag_in_frames, int *end_of_sequence) {
2508   const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
2509   double loop_decay_rate = 1.00;
2510   double mv_ratio_accumulator = 0.0;
2511   double this_frame_mv_in_out = 0.0;
2512   double mv_in_out_accumulator = 0.0;
2513   double abs_mv_in_out_accumulator = 0.0;
2514   double sr_accumulator = 0.0;
2515   // Motion breakout threshold for loop below depends on image size.
2516   double mv_ratio_accumulator_thresh =
2517       (frame_info->frame_height + frame_info->frame_width) / 4.0;
2518   double zero_motion_accumulator = 1.0;
2519   int gop_coding_frames;
2520 
2521   *use_alt_ref = 1;
2522   gop_coding_frames = 0;
2523   while (gop_coding_frames < rc->static_scene_max_gf_interval &&
2524          gop_coding_frames < rc->frames_to_key) {
2525     const FIRSTPASS_STATS *next_next_frame;
2526     const FIRSTPASS_STATS *next_frame;
2527     int flash_detected;
2528     ++gop_coding_frames;
2529 
2530     next_frame = fps_get_frame_stats(first_pass_info,
2531                                      gf_start_show_idx + gop_coding_frames);
2532     if (next_frame == NULL) {
2533       *end_of_sequence = gop_coding_frames == 1 && rc->source_alt_ref_active;
2534       break;
2535     }
2536 
2537     // Test for the case where there is a brief flash but the prediction
2538     // quality back to an earlier frame is then restored.
2539     next_next_frame = fps_get_frame_stats(
2540         first_pass_info, gf_start_show_idx + gop_coding_frames + 1);
2541     flash_detected = detect_flash_from_frame_stats(next_next_frame);
2542 
2543     // Update the motion related elements to the boost calculation.
2544     accumulate_frame_motion_stats(
2545         next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
2546         &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
2547 
2548     // Monitor for static sections.
2549     if ((rc->frames_since_key + gop_coding_frames - 1) > 1) {
2550       zero_motion_accumulator = VPXMIN(
2551           zero_motion_accumulator, get_zero_motion_factor(twopass, next_frame));
2552     }
2553 
2554     // Accumulate the effect of prediction quality decay.
2555     if (!flash_detected) {
2556       double last_loop_decay_rate = loop_decay_rate;
2557       loop_decay_rate = get_prediction_decay_rate(twopass, next_frame);
2558 
2559       // Break clause to detect very still sections after motion. For example,
2560       // a static image after a fade or other transition.
2561       if (gop_coding_frames > rc->min_gf_interval && loop_decay_rate >= 0.999 &&
2562           last_loop_decay_rate < 0.9) {
2563         int still_interval = 5;
2564         if (check_transition_to_still(first_pass_info,
2565                                       gf_start_show_idx + gop_coding_frames,
2566                                       still_interval)) {
2567           *use_alt_ref = 0;
2568           break;
2569         }
2570       }
2571 
2572       // Update the accumulator for second ref error difference.
2573       // This is intended to give an indication of how much the coded error is
2574       // increasing over time.
2575       if (gop_coding_frames == 1) {
2576         sr_accumulator += next_frame->coded_error;
2577       } else {
2578         sr_accumulator +=
2579             (next_frame->sr_coded_error - next_frame->coded_error);
2580       }
2581     }
2582 
2583     // Break out conditions.
2584     // Break at maximum of active_gf_interval->max unless almost totally
2585     // static.
2586     //
2587     // Note that the addition of a test of rc->source_alt_ref_active is
2588     // deliberate. The effect of this is that after a normal altref group even
2589     // if the material is static there will be one normal length GF group
2590     // before allowing longer GF groups. The reason for this is that in cases
2591     // such as slide shows where slides are separated by a complex transition
2592     // such as a fade, the arf group spanning the transition may not be coded
2593     // at a very high quality and hence this frame (with its overlay) is a
2594     // poor golden frame to use for an extended group.
2595     if ((gop_coding_frames >= active_gf_interval->max) &&
2596         ((zero_motion_accumulator < 0.995) || (rc->source_alt_ref_active))) {
2597       break;
2598     }
2599     if (
2600         // Don't break out with a very short interval.
2601         (gop_coding_frames >= active_gf_interval->min) &&
2602         // If possible don't break very close to a kf
2603         ((rc->frames_to_key - gop_coding_frames) >= rc->min_gf_interval) &&
2604         (gop_coding_frames & 0x01) && (!flash_detected) &&
2605         ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
2606          (abs_mv_in_out_accumulator > ARF_ABS_ZOOM_THRESH) ||
2607          (sr_accumulator > gop_intra_factor * next_frame->intra_error))) {
2608       break;
2609     }
2610   }
2611   *use_alt_ref &= zero_motion_accumulator < 0.995;
2612   *use_alt_ref &= gop_coding_frames < lag_in_frames;
2613   *use_alt_ref &= gop_coding_frames >= rc->min_gf_interval;
2614   return gop_coding_frames;
2615 }
2616 
get_active_gf_inverval_range_simple(int min_gf_interval,int arf_active_or_kf,int frames_to_key)2617 static RANGE get_active_gf_inverval_range_simple(int min_gf_interval,
2618                                                  int arf_active_or_kf,
2619                                                  int frames_to_key) {
2620   RANGE active_gf_interval;
2621   active_gf_interval.min = min_gf_interval + arf_active_or_kf + 2;
2622   active_gf_interval.max = 16 + arf_active_or_kf;
2623 
2624   if ((active_gf_interval.max <= frames_to_key) &&
2625       (active_gf_interval.max >= (frames_to_key - min_gf_interval))) {
2626     active_gf_interval.min = frames_to_key / 2;
2627     active_gf_interval.max = frames_to_key / 2;
2628   }
2629   return active_gf_interval;
2630 }
2631 
get_active_gf_inverval_range(const FRAME_INFO * frame_info,const RATE_CONTROL * rc,int arf_active_or_kf,int gf_start_show_idx,int active_worst_quality,int last_boosted_qindex)2632 static RANGE get_active_gf_inverval_range(
2633     const FRAME_INFO *frame_info, const RATE_CONTROL *rc, int arf_active_or_kf,
2634     int gf_start_show_idx, int active_worst_quality, int last_boosted_qindex) {
2635   RANGE active_gf_interval;
2636   int int_max_q = (int)(vp9_convert_qindex_to_q(active_worst_quality,
2637                                                 frame_info->bit_depth));
2638   int q_term = (gf_start_show_idx == 0)
2639                    ? int_max_q / 32
2640                    : (int)(vp9_convert_qindex_to_q(last_boosted_qindex,
2641                                                    frame_info->bit_depth) /
2642                            6);
2643   active_gf_interval.min =
2644       rc->min_gf_interval + arf_active_or_kf + VPXMIN(2, int_max_q / 200);
2645   active_gf_interval.min =
2646       VPXMIN(active_gf_interval.min, rc->max_gf_interval + arf_active_or_kf);
2647 
2648   // The value chosen depends on the active Q range. At low Q we have
2649   // bits to spare and are better with a smaller interval and smaller boost.
2650   // At high Q when there are few bits to spare we are better with a longer
2651   // interval to spread the cost of the GF.
2652   active_gf_interval.max = 11 + arf_active_or_kf + VPXMIN(5, q_term);
2653 
2654   // Force max GF interval to be odd.
2655   active_gf_interval.max = active_gf_interval.max | 0x01;
2656 
2657   // We have: active_gf_interval.min <=
2658   // rc->max_gf_interval + arf_active_or_kf.
2659   if (active_gf_interval.max < active_gf_interval.min) {
2660     active_gf_interval.max = active_gf_interval.min;
2661   } else {
2662     active_gf_interval.max =
2663         VPXMIN(active_gf_interval.max, rc->max_gf_interval + arf_active_or_kf);
2664   }
2665 
2666   // Would the active max drop us out just before the near the next kf?
2667   if ((active_gf_interval.max <= rc->frames_to_key) &&
2668       (active_gf_interval.max >= (rc->frames_to_key - rc->min_gf_interval))) {
2669     active_gf_interval.max = rc->frames_to_key / 2;
2670   }
2671   active_gf_interval.max =
2672       VPXMAX(active_gf_interval.max, active_gf_interval.min);
2673   return active_gf_interval;
2674 }
2675 
get_arf_layers(int multi_layer_arf,int max_layers,int coding_frame_num)2676 static int get_arf_layers(int multi_layer_arf, int max_layers,
2677                           int coding_frame_num) {
2678   assert(max_layers <= MAX_ARF_LAYERS);
2679   if (multi_layer_arf) {
2680     int layers = 0;
2681     int i;
2682     for (i = coding_frame_num; i > 0; i >>= 1) {
2683       ++layers;
2684     }
2685     layers = VPXMIN(max_layers, layers);
2686     return layers;
2687   } else {
2688     return 1;
2689   }
2690 }
2691 
define_gf_group(VP9_COMP * cpi,int gf_start_show_idx)2692 static void define_gf_group(VP9_COMP *cpi, int gf_start_show_idx) {
2693   VP9_COMMON *const cm = &cpi->common;
2694   RATE_CONTROL *const rc = &cpi->rc;
2695   VP9EncoderConfig *const oxcf = &cpi->oxcf;
2696   TWO_PASS *const twopass = &cpi->twopass;
2697   const FRAME_INFO *frame_info = &cpi->frame_info;
2698   const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
2699   const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
2700   int gop_coding_frames;
2701 
2702   double gf_group_err = 0.0;
2703   double gf_group_raw_error = 0.0;
2704   double gf_group_noise = 0.0;
2705   double gf_group_skip_pct = 0.0;
2706   double gf_group_inactive_zone_rows = 0.0;
2707   double gf_group_inter = 0.0;
2708   double gf_group_motion = 0.0;
2709 
2710   int allow_alt_ref = is_altref_enabled(cpi);
2711   int use_alt_ref;
2712 
2713   int64_t gf_group_bits;
2714   int gf_arf_bits;
2715   const int is_key_frame = frame_is_intra_only(cm);
2716   // If this is a key frame or the overlay from a previous arf then
2717   // the error score / cost of this frame has already been accounted for.
2718   const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active;
2719   int is_alt_ref_flash = 0;
2720 
2721   double gop_intra_factor;
2722   int gop_frames;
2723   RANGE active_gf_interval;
2724   // Whether this is at the end of last GOP of this sequence.
2725   int end_of_sequence = 0;
2726 
2727   // Reset the GF group data structures unless this is a key
2728   // frame in which case it will already have been done.
2729   if (is_key_frame == 0) {
2730     vp9_zero(twopass->gf_group);
2731     ++rc->gop_global_index;
2732   } else {
2733     rc->gop_global_index = 0;
2734   }
2735 
2736   vpx_clear_system_state();
2737 
2738   if (oxcf->use_simple_encode_api) {
2739     active_gf_interval = get_active_gf_inverval_range_simple(
2740         rc->min_gf_interval, arf_active_or_kf, rc->frames_to_key);
2741   } else {
2742     active_gf_interval = get_active_gf_inverval_range(
2743         frame_info, rc, arf_active_or_kf, gf_start_show_idx,
2744         twopass->active_worst_quality, rc->last_boosted_qindex);
2745   }
2746 
2747   if (cpi->multi_layer_arf) {
2748     int arf_layers = get_arf_layers(cpi->multi_layer_arf, oxcf->enable_auto_arf,
2749                                     active_gf_interval.max);
2750     gop_intra_factor = 1.0 + 0.25 * arf_layers;
2751   } else {
2752     gop_intra_factor = 1.0;
2753   }
2754 
2755   gop_coding_frames = get_gop_coding_frame_num(
2756       &use_alt_ref, frame_info, twopass, rc, gf_start_show_idx,
2757       &active_gf_interval, gop_intra_factor, cpi->oxcf.lag_in_frames,
2758       &end_of_sequence);
2759   use_alt_ref &= allow_alt_ref;
2760 #if CONFIG_RATE_CTRL
2761   // If the external gop_command is on, we will override the decisions
2762   // of gop_coding_frames and use_alt_ref.
2763   if (cpi->oxcf.use_simple_encode_api) {
2764     const GOP_COMMAND *gop_command = &cpi->encode_command.gop_command;
2765     assert(allow_alt_ref == 1);
2766     if (gop_command->use) {
2767       gop_coding_frames = gop_command_coding_frame_count(gop_command);
2768       use_alt_ref = gop_command->use_alt_ref;
2769     }
2770   }
2771 #endif
2772   // If the external rate control model for GOP is used, the gop decisions
2773   // are overwritten. Specifically, |gop_coding_frames| and |use_alt_ref|
2774   // will be overwritten.
2775   if (cpi->ext_ratectrl.ready &&
2776       (cpi->ext_ratectrl.funcs.rc_type & VPX_RC_GOP) != 0 &&
2777       cpi->ext_ratectrl.funcs.get_gop_decision != NULL && !end_of_sequence) {
2778     vpx_codec_err_t codec_status;
2779     vpx_rc_gop_decision_t gop_decision;
2780     vpx_rc_gop_info_t gop_info;
2781     gop_info.min_gf_interval = rc->min_gf_interval;
2782     gop_info.max_gf_interval = rc->max_gf_interval;
2783     gop_info.active_min_gf_interval = active_gf_interval.min;
2784     gop_info.active_max_gf_interval = active_gf_interval.max;
2785     gop_info.allow_alt_ref = allow_alt_ref;
2786     gop_info.is_key_frame = is_key_frame;
2787     gop_info.last_gop_use_alt_ref = rc->source_alt_ref_active;
2788     gop_info.frames_since_key = rc->frames_since_key;
2789     gop_info.frames_to_key = rc->frames_to_key;
2790     gop_info.lag_in_frames = cpi->oxcf.lag_in_frames;
2791     gop_info.show_index = cm->current_video_frame;
2792     gop_info.coding_index = cm->current_frame_coding_index;
2793     gop_info.gop_global_index = rc->gop_global_index;
2794 
2795     codec_status = vp9_extrc_get_gop_decision(&cpi->ext_ratectrl, &gop_info,
2796                                               &gop_decision);
2797     if (codec_status != VPX_CODEC_OK) {
2798       vpx_internal_error(&cm->error, codec_status,
2799                          "vp9_extrc_get_gop_decision() failed");
2800     }
2801     gop_coding_frames = gop_decision.gop_coding_frames;
2802     use_alt_ref = gop_decision.use_alt_ref;
2803   }
2804 
2805   // Was the group length constrained by the requirement for a new KF?
2806   rc->constrained_gf_group = (gop_coding_frames >= rc->frames_to_key) ? 1 : 0;
2807 
2808   // Should we use the alternate reference frame.
2809   if (use_alt_ref) {
2810     const int f_frames =
2811         (rc->frames_to_key - gop_coding_frames >= gop_coding_frames - 1)
2812             ? gop_coding_frames - 1
2813             : VPXMAX(0, rc->frames_to_key - gop_coding_frames);
2814     const int b_frames = gop_coding_frames - 1;
2815     const int avg_inter_frame_qindex = rc->avg_frame_qindex[INTER_FRAME];
2816     // TODO(angiebird): figure out why arf's location is assigned this way
2817     const int arf_show_idx = VPXMIN(gf_start_show_idx + gop_coding_frames + 1,
2818                                     fps_get_num_frames(first_pass_info));
2819 
2820     // Calculate the boost for alt ref.
2821     rc->gfu_boost =
2822         compute_arf_boost(frame_info, twopass, arf_show_idx, f_frames, b_frames,
2823                           avg_inter_frame_qindex);
2824     rc->source_alt_ref_pending = 1;
2825   } else {
2826     const int f_frames = gop_coding_frames - 1;
2827     const int b_frames = 0;
2828     const int avg_inter_frame_qindex = rc->avg_frame_qindex[INTER_FRAME];
2829     // TODO(angiebird): figure out why arf's location is assigned this way
2830     const int gld_show_idx =
2831         VPXMIN(gf_start_show_idx + 1, fps_get_num_frames(first_pass_info));
2832     const int arf_boost =
2833         compute_arf_boost(frame_info, twopass, gld_show_idx, f_frames, b_frames,
2834                           avg_inter_frame_qindex);
2835     rc->gfu_boost = VPXMIN((int)twopass->gf_max_total_boost, arf_boost);
2836     rc->source_alt_ref_pending = 0;
2837   }
2838 
2839 #define LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR 0.2
2840   rc->arf_active_best_quality_adjustment_factor = 1.0;
2841   rc->arf_increase_active_best_quality = 0;
2842 
2843   if (!is_lossless_requested(&cpi->oxcf)) {
2844     if (rc->frames_since_key >= rc->frames_to_key) {
2845       // Increase the active best quality in the second half of key frame
2846       // interval.
2847       rc->arf_active_best_quality_adjustment_factor =
2848           LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR +
2849           (1.0 - LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR) *
2850               (rc->frames_to_key - gop_coding_frames) /
2851               (VPXMAX(1, ((rc->frames_to_key + rc->frames_since_key) / 2 -
2852                           gop_coding_frames)));
2853       rc->arf_increase_active_best_quality = 1;
2854     } else if ((rc->frames_to_key - gop_coding_frames) > 0) {
2855       // Reduce the active best quality in the first half of key frame interval.
2856       rc->arf_active_best_quality_adjustment_factor =
2857           LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR +
2858           (1.0 - LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR) *
2859               (rc->frames_since_key + gop_coding_frames) /
2860               (VPXMAX(1, (rc->frames_to_key + rc->frames_since_key) / 2 +
2861                              gop_coding_frames));
2862       rc->arf_increase_active_best_quality = -1;
2863     }
2864   }
2865 
2866 #ifdef AGGRESSIVE_VBR
2867   // Limit maximum boost based on interval length.
2868   rc->gfu_boost = VPXMIN((int)rc->gfu_boost, gop_coding_frames * 140);
2869 #else
2870   rc->gfu_boost = VPXMIN((int)rc->gfu_boost, gop_coding_frames * 200);
2871 #endif
2872 
2873   // Cap the ARF boost when perceptual quality AQ mode is enabled. This is
2874   // designed to improve the perceptual quality of high value content and to
2875   // make consistent quality across consecutive frames. It will hurt objective
2876   // quality.
2877   if (oxcf->aq_mode == PERCEPTUAL_AQ)
2878     rc->gfu_boost = VPXMIN(rc->gfu_boost, MIN_ARF_GF_BOOST);
2879 
2880   rc->baseline_gf_interval = gop_coding_frames - rc->source_alt_ref_pending;
2881 
2882   if (rc->source_alt_ref_pending)
2883     is_alt_ref_flash = detect_flash(twopass, rc->baseline_gf_interval);
2884 
2885   {
2886     const double av_err = get_distribution_av_err(cpi, twopass);
2887     const double mean_mod_score = twopass->mean_mod_score;
2888     // If the first frame is a key frame or the overlay from a previous arf then
2889     // the error score / cost of this frame has already been accounted for.
2890     int start_idx = arf_active_or_kf ? 1 : 0;
2891     int j;
2892     for (j = start_idx; j < gop_coding_frames; ++j) {
2893       int show_idx = gf_start_show_idx + j;
2894       const FIRSTPASS_STATS *frame_stats =
2895           fps_get_frame_stats(first_pass_info, show_idx);
2896       // Accumulate error score of frames in this gf group.
2897       gf_group_err += calc_norm_frame_score(oxcf, frame_info, frame_stats,
2898                                             mean_mod_score, av_err);
2899       gf_group_raw_error += frame_stats->coded_error;
2900       gf_group_noise += frame_stats->frame_noise_energy;
2901       gf_group_skip_pct += frame_stats->intra_skip_pct;
2902       gf_group_inactive_zone_rows += frame_stats->inactive_zone_rows;
2903       gf_group_inter += frame_stats->pcnt_inter;
2904       gf_group_motion += frame_stats->pcnt_motion;
2905     }
2906   }
2907 
2908   // Calculate the bits to be allocated to the gf/arf group as a whole
2909   gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
2910 
2911   gop_frames =
2912       rc->baseline_gf_interval + rc->source_alt_ref_pending - arf_active_or_kf;
2913 
2914   // Store the average moise level measured for the group
2915   // TODO(any): Experiment with removal of else condition (gop_frames = 0) so
2916   // that consumption of group noise energy is based on previous gf group
2917   if (gop_frames > 0)
2918     twopass->gf_group.group_noise_energy = (int)(gf_group_noise / gop_frames);
2919   else
2920     twopass->gf_group.group_noise_energy = 0;
2921 
2922   // Calculate an estimate of the maxq needed for the group.
2923   // We are more aggressive about correcting for sections
2924   // where there could be significant overshoot than for easier
2925   // sections where we do not wish to risk creating an overshoot
2926   // of the allocated bit budget.
2927   if ((cpi->oxcf.rc_mode != VPX_Q) && (rc->baseline_gf_interval > 1)) {
2928     const int vbr_group_bits_per_frame = (int)(gf_group_bits / gop_frames);
2929     const double group_av_err = gf_group_raw_error / gop_frames;
2930     const double group_av_noise = gf_group_noise / gop_frames;
2931     const double group_av_skip_pct = gf_group_skip_pct / gop_frames;
2932     const double group_av_inactive_zone = ((gf_group_inactive_zone_rows * 2) /
2933                                            (gop_frames * (double)cm->mb_rows));
2934     int tmp_q = get_twopass_worst_quality(
2935         cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone),
2936         group_av_noise, vbr_group_bits_per_frame);
2937     twopass->active_worst_quality =
2938         (int)((tmp_q + (twopass->active_worst_quality *
2939                         (twopass->active_wq_factor - 1))) /
2940               twopass->active_wq_factor);
2941 
2942 #if CONFIG_ALWAYS_ADJUST_BPM
2943     // Reset rolling actual and target bits counters for ARF groups.
2944     twopass->rolling_arf_group_target_bits = 0;
2945     twopass->rolling_arf_group_actual_bits = 0;
2946 #endif
2947   }
2948 
2949   // Context Adjustment of ARNR filter strength
2950   if (rc->baseline_gf_interval > 1) {
2951     adjust_group_arnr_filter(cpi, (gf_group_noise / gop_frames),
2952                              (gf_group_inter / gop_frames),
2953                              (gf_group_motion / gop_frames));
2954   } else {
2955     twopass->arnr_strength_adjustment = 0;
2956   }
2957 
2958   // Calculate the extra bits to be used for boosted frame(s)
2959   gf_arf_bits = calculate_boost_bits((rc->baseline_gf_interval - 1),
2960                                      rc->gfu_boost, gf_group_bits);
2961 
2962   // Adjust KF group bits and error remaining.
2963   twopass->kf_group_error_left -= gf_group_err;
2964 
2965   // Decide GOP structure.
2966   define_gf_group_structure(cpi);
2967 
2968   // Allocate bits to each of the frames in the GF group.
2969   allocate_gf_group_bits(cpi, gf_group_bits, gf_arf_bits);
2970 
2971   // Reset the file position.
2972   reset_fpf_position(twopass, start_pos);
2973 
2974   // Calculate a section intra ratio used in setting max loop filter.
2975   twopass->section_intra_rating = calculate_section_intra_ratio(
2976       start_pos, twopass->stats_in_end, rc->baseline_gf_interval);
2977 
2978   if (oxcf->resize_mode == RESIZE_DYNAMIC) {
2979     // Default to starting GF groups at normal frame size.
2980     cpi->rc.next_frame_size_selector = UNSCALED;
2981   }
2982 #if !CONFIG_ALWAYS_ADJUST_BPM
2983   // Reset rolling actual and target bits counters for ARF groups.
2984   twopass->rolling_arf_group_target_bits = 0;
2985   twopass->rolling_arf_group_actual_bits = 0;
2986 #endif
2987   rc->preserve_arf_as_gld = rc->preserve_next_arf_as_gld;
2988   rc->preserve_next_arf_as_gld = 0;
2989   // If alt ref frame is flash do not set preserve_arf_as_gld
2990   if (!is_lossless_requested(&cpi->oxcf) && !cpi->use_svc &&
2991       cpi->oxcf.aq_mode == NO_AQ && cpi->multi_layer_arf && !is_alt_ref_flash)
2992     rc->preserve_next_arf_as_gld = 1;
2993 }
2994 
2995 // Intra / Inter threshold very low
2996 #define VERY_LOW_II 1.5
2997 // Clean slide transitions we expect a sharp single frame spike in error.
2998 #define ERROR_SPIKE 5.0
2999 
3000 // Slide show transition detection.
3001 // Tests for case where there is very low error either side of the current frame
3002 // but much higher just for this frame. This can help detect key frames in
3003 // slide shows even where the slides are pictures of different sizes.
3004 // Also requires that intra and inter errors are very similar to help eliminate
3005 // harmful false positives.
3006 // It will not help if the transition is a fade or other multi-frame effect.
slide_transition(const FIRSTPASS_STATS * this_frame,const FIRSTPASS_STATS * last_frame,const FIRSTPASS_STATS * next_frame)3007 static int slide_transition(const FIRSTPASS_STATS *this_frame,
3008                             const FIRSTPASS_STATS *last_frame,
3009                             const FIRSTPASS_STATS *next_frame) {
3010   return (this_frame->intra_error < (this_frame->coded_error * VERY_LOW_II)) &&
3011          (this_frame->coded_error > (last_frame->coded_error * ERROR_SPIKE)) &&
3012          (this_frame->coded_error > (next_frame->coded_error * ERROR_SPIKE));
3013 }
3014 
3015 // This test looks for anomalous changes in the nature of the intra signal
3016 // related to the previous and next frame as an indicator for coding a key
3017 // frame. This test serves to detect some additional scene cuts,
3018 // especially in lowish motion and low contrast sections, that are missed
3019 // by the other tests.
intra_step_transition(const FIRSTPASS_STATS * this_frame,const FIRSTPASS_STATS * last_frame,const FIRSTPASS_STATS * next_frame)3020 static int intra_step_transition(const FIRSTPASS_STATS *this_frame,
3021                                  const FIRSTPASS_STATS *last_frame,
3022                                  const FIRSTPASS_STATS *next_frame) {
3023   double last_ii_ratio;
3024   double this_ii_ratio;
3025   double next_ii_ratio;
3026   double last_pcnt_intra = 1.0 - last_frame->pcnt_inter;
3027   double this_pcnt_intra = 1.0 - this_frame->pcnt_inter;
3028   double next_pcnt_intra = 1.0 - next_frame->pcnt_inter;
3029   double mod_this_intra = this_pcnt_intra + this_frame->pcnt_neutral;
3030 
3031   // Calculate ii ratio for this frame last frame and next frame.
3032   last_ii_ratio =
3033       last_frame->intra_error / DOUBLE_DIVIDE_CHECK(last_frame->coded_error);
3034   this_ii_ratio =
3035       this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
3036   next_ii_ratio =
3037       next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error);
3038 
3039   // Return true the intra/inter ratio for the current frame is
3040   // low but better in the next and previous frame and the relative usage of
3041   // intra in the current frame is markedly higher than the last and next frame.
3042   if ((this_ii_ratio < 2.0) && (last_ii_ratio > 2.25) &&
3043       (next_ii_ratio > 2.25) && (this_pcnt_intra > (3 * last_pcnt_intra)) &&
3044       (this_pcnt_intra > (3 * next_pcnt_intra)) &&
3045       ((this_pcnt_intra > 0.075) || (mod_this_intra > 0.85))) {
3046     return 1;
3047     // Very low inter intra ratio (i.e. not much gain from inter coding), most
3048     // blocks neutral on coding method and better inter prediction either side
3049   } else if ((this_ii_ratio < 1.25) && (mod_this_intra > 0.85) &&
3050              (this_ii_ratio < last_ii_ratio * 0.9) &&
3051              (this_ii_ratio < next_ii_ratio * 0.9)) {
3052     return 1;
3053   } else {
3054     return 0;
3055   }
3056 }
3057 
3058 // Minimum % intra coding observed in first pass (1.0 = 100%)
3059 #define MIN_INTRA_LEVEL 0.25
3060 // Threshold for use of the lagging second reference frame. Scene cuts do not
3061 // usually have a high second ref usage.
3062 #define SECOND_REF_USAGE_THRESH 0.2
3063 // Hard threshold where the first pass chooses intra for almost all blocks.
3064 // In such a case even if the frame is not a scene cut coding a key frame
3065 // may be a good option.
3066 #define VERY_LOW_INTER_THRESH 0.05
3067 // Maximum threshold for the relative ratio of intra error score vs best
3068 // inter error score.
3069 #define KF_II_ERR_THRESHOLD 2.5
3070 #define KF_II_MAX 128.0
3071 #define II_FACTOR 12.5
3072 // Test for very low intra complexity which could cause false key frames
3073 #define V_LOW_INTRA 0.5
3074 
test_candidate_kf(const FIRST_PASS_INFO * first_pass_info,int show_idx)3075 static int test_candidate_kf(const FIRST_PASS_INFO *first_pass_info,
3076                              int show_idx) {
3077   const FIRSTPASS_STATS *last_frame =
3078       fps_get_frame_stats(first_pass_info, show_idx - 1);
3079   const FIRSTPASS_STATS *this_frame =
3080       fps_get_frame_stats(first_pass_info, show_idx);
3081   const FIRSTPASS_STATS *next_frame =
3082       fps_get_frame_stats(first_pass_info, show_idx + 1);
3083   int is_viable_kf = 0;
3084   double pcnt_intra = 1.0 - this_frame->pcnt_inter;
3085 
3086   // Does the frame satisfy the primary criteria of a key frame?
3087   // See above for an explanation of the test criteria.
3088   // If so, then examine how well it predicts subsequent frames.
3089   detect_flash_from_frame_stats(next_frame);
3090   if (!detect_flash_from_frame_stats(this_frame) &&
3091       !detect_flash_from_frame_stats(next_frame) &&
3092       (this_frame->pcnt_second_ref < SECOND_REF_USAGE_THRESH) &&
3093       ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) ||
3094        (slide_transition(this_frame, last_frame, next_frame)) ||
3095        (intra_step_transition(this_frame, last_frame, next_frame)) ||
3096        (((this_frame->coded_error > (next_frame->coded_error * 1.2)) &&
3097          (this_frame->coded_error > (last_frame->coded_error * 1.2))) &&
3098         (pcnt_intra > MIN_INTRA_LEVEL) &&
3099         ((pcnt_intra + this_frame->pcnt_neutral) > 0.5) &&
3100         ((this_frame->intra_error /
3101           DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) <
3102          KF_II_ERR_THRESHOLD)))) {
3103     int i;
3104     double boost_score = 0.0;
3105     double old_boost_score = 0.0;
3106     double decay_accumulator = 1.0;
3107 
3108     // Examine how well the key frame predicts subsequent frames.
3109     for (i = 0; i < 16; ++i) {
3110       const FIRSTPASS_STATS *frame_stats =
3111           fps_get_frame_stats(first_pass_info, show_idx + 1 + i);
3112       double next_iiratio = (II_FACTOR * frame_stats->intra_error /
3113                              DOUBLE_DIVIDE_CHECK(frame_stats->coded_error));
3114 
3115       if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX;
3116 
3117       // Cumulative effect of decay in prediction quality.
3118       if (frame_stats->pcnt_inter > 0.85)
3119         decay_accumulator *= frame_stats->pcnt_inter;
3120       else
3121         decay_accumulator *= (0.85 + frame_stats->pcnt_inter) / 2.0;
3122 
3123       // Keep a running total.
3124       boost_score += (decay_accumulator * next_iiratio);
3125 
3126       // Test various breakout clauses.
3127       if ((frame_stats->pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
3128           (((frame_stats->pcnt_inter - frame_stats->pcnt_neutral) < 0.20) &&
3129            (next_iiratio < 3.0)) ||
3130           ((boost_score - old_boost_score) < 3.0) ||
3131           (frame_stats->intra_error < V_LOW_INTRA)) {
3132         break;
3133       }
3134 
3135       old_boost_score = boost_score;
3136 
3137       // Get the next frame details
3138       if (show_idx + 1 + i == fps_get_num_frames(first_pass_info) - 1) break;
3139     }
3140 
3141     // If there is tolerable prediction for at least the next 3 frames then
3142     // break out else discard this potential key frame and move on
3143     if (boost_score > 30.0 && (i > 3)) {
3144       is_viable_kf = 1;
3145     } else {
3146       is_viable_kf = 0;
3147     }
3148   }
3149 
3150   return is_viable_kf;
3151 }
3152 
3153 #define FRAMES_TO_CHECK_DECAY 8
3154 #define MIN_KF_TOT_BOOST 300
3155 #define DEFAULT_SCAN_FRAMES_FOR_KF_BOOST 32
3156 #define MAX_SCAN_FRAMES_FOR_KF_BOOST 48
3157 #define MIN_SCAN_FRAMES_FOR_KF_BOOST 32
3158 #define KF_ABS_ZOOM_THRESH 6.0
3159 
vp9_get_frames_to_next_key(const VP9EncoderConfig * oxcf,const TWO_PASS * const twopass,int kf_show_idx,int min_gf_interval)3160 int vp9_get_frames_to_next_key(const VP9EncoderConfig *oxcf,
3161                                const TWO_PASS *const twopass, int kf_show_idx,
3162                                int min_gf_interval) {
3163   const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
3164   double recent_loop_decay[FRAMES_TO_CHECK_DECAY];
3165   int j;
3166   int frames_to_key;
3167   int max_frames_to_key = first_pass_info->num_frames - kf_show_idx;
3168   max_frames_to_key = VPXMIN(max_frames_to_key, oxcf->key_freq);
3169 
3170   // Initialize the decay rates for the recent frames to check
3171   for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0;
3172   // Find the next keyframe.
3173   if (!oxcf->auto_key) {
3174     frames_to_key = max_frames_to_key;
3175   } else {
3176     frames_to_key = 1;
3177     while (frames_to_key < max_frames_to_key) {
3178       // Provided that we are not at the end of the file...
3179       if (kf_show_idx + frames_to_key + 1 < first_pass_info->num_frames) {
3180         double loop_decay_rate;
3181         double decay_accumulator;
3182         const FIRSTPASS_STATS *next_frame = fps_get_frame_stats(
3183             first_pass_info, kf_show_idx + frames_to_key + 1);
3184 
3185         // Check for a scene cut.
3186         if (test_candidate_kf(first_pass_info, kf_show_idx + frames_to_key))
3187           break;
3188 
3189         // How fast is the prediction quality decaying?
3190         loop_decay_rate = get_prediction_decay_rate(twopass, next_frame);
3191 
3192         // We want to know something about the recent past... rather than
3193         // as used elsewhere where we are concerned with decay in prediction
3194         // quality since the last GF or KF.
3195         recent_loop_decay[(frames_to_key - 1) % FRAMES_TO_CHECK_DECAY] =
3196             loop_decay_rate;
3197         decay_accumulator = 1.0;
3198         for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j)
3199           decay_accumulator *= recent_loop_decay[j];
3200 
3201         // Special check for transition or high motion followed by a
3202         // static scene.
3203         if ((frames_to_key - 1) > min_gf_interval && loop_decay_rate >= 0.999 &&
3204             decay_accumulator < 0.9) {
3205           int still_interval = oxcf->key_freq - (frames_to_key - 1);
3206           // TODO(angiebird): Figure out why we use "+1" here
3207           int show_idx = kf_show_idx + frames_to_key;
3208           if (check_transition_to_still(first_pass_info, show_idx,
3209                                         still_interval)) {
3210             break;
3211           }
3212         }
3213       }
3214       ++frames_to_key;
3215     }
3216   }
3217   return frames_to_key;
3218 }
3219 
find_next_key_frame(VP9_COMP * cpi,int kf_show_idx)3220 static void find_next_key_frame(VP9_COMP *cpi, int kf_show_idx) {
3221   int i;
3222   RATE_CONTROL *const rc = &cpi->rc;
3223   TWO_PASS *const twopass = &cpi->twopass;
3224   GF_GROUP *const gf_group = &twopass->gf_group;
3225   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
3226   const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
3227   const FRAME_INFO *frame_info = &cpi->frame_info;
3228   const FIRSTPASS_STATS *const start_position = twopass->stats_in;
3229   const FIRSTPASS_STATS *keyframe_stats =
3230       fps_get_frame_stats(first_pass_info, kf_show_idx);
3231   FIRSTPASS_STATS next_frame;
3232   int kf_bits = 0;
3233   int64_t max_kf_bits;
3234   double zero_motion_accumulator = 1.0;
3235   double zero_motion_sum = 0.0;
3236   double zero_motion_avg;
3237   double motion_compensable_sum = 0.0;
3238   double motion_compensable_avg;
3239   int num_frames = 0;
3240   int kf_boost_scan_frames = DEFAULT_SCAN_FRAMES_FOR_KF_BOOST;
3241   double boost_score = 0.0;
3242   double kf_mod_err = 0.0;
3243   double kf_raw_err = 0.0;
3244   double kf_group_err = 0.0;
3245   double sr_accumulator = 0.0;
3246   double abs_mv_in_out_accumulator = 0.0;
3247   const double av_err = get_distribution_av_err(cpi, twopass);
3248   const double mean_mod_score = twopass->mean_mod_score;
3249   vp9_zero(next_frame);
3250 
3251   cpi->common.frame_type = KEY_FRAME;
3252   rc->frames_since_key = 0;
3253 
3254   // Reset the GF group data structures.
3255   vp9_zero(*gf_group);
3256 
3257   // Is this a forced key frame by interval.
3258   rc->this_key_frame_forced = rc->next_key_frame_forced;
3259 
3260   // Clear the alt ref active flag and last group multi arf flags as they
3261   // can never be set for a key frame.
3262   rc->source_alt_ref_active = 0;
3263 
3264   // KF is always a GF so clear frames till next gf counter.
3265   rc->frames_till_gf_update_due = 0;
3266 
3267   rc->frames_to_key = 1;
3268 
3269   twopass->kf_group_bits = 0;          // Total bits available to kf group
3270   twopass->kf_group_error_left = 0.0;  // Group modified error score.
3271 
3272   kf_raw_err = keyframe_stats->intra_error;
3273   kf_mod_err = calc_norm_frame_score(oxcf, frame_info, keyframe_stats,
3274                                      mean_mod_score, av_err);
3275 
3276   rc->frames_to_key = vp9_get_frames_to_next_key(oxcf, twopass, kf_show_idx,
3277                                                  rc->min_gf_interval);
3278 
3279   // If there is a max kf interval set by the user we must obey it.
3280   // We already breakout of the loop above at 2x max.
3281   // This code centers the extra kf if the actual natural interval
3282   // is between 1x and 2x.
3283   if (rc->frames_to_key >= cpi->oxcf.key_freq) {
3284     rc->next_key_frame_forced = 1;
3285   } else {
3286     rc->next_key_frame_forced = 0;
3287   }
3288 
3289   for (i = 0; i < rc->frames_to_key; ++i) {
3290     const FIRSTPASS_STATS *frame_stats =
3291         fps_get_frame_stats(first_pass_info, kf_show_idx + i);
3292     // Accumulate kf group error.
3293     kf_group_err += calc_norm_frame_score(oxcf, frame_info, frame_stats,
3294                                           mean_mod_score, av_err);
3295   }
3296 
3297   // Calculate the number of bits that should be assigned to the kf group.
3298   if (twopass->bits_left > 0 && twopass->normalized_score_left > 0.0) {
3299     // Maximum number of bits for a single normal frame (not key frame).
3300     const int max_bits = frame_max_bits(rc, &cpi->oxcf);
3301 
3302     // Maximum number of bits allocated to the key frame group.
3303     int64_t max_grp_bits;
3304 
3305     // Default allocation based on bits left and relative
3306     // complexity of the section.
3307     twopass->kf_group_bits = (int64_t)(
3308         twopass->bits_left * (kf_group_err / twopass->normalized_score_left));
3309 
3310     // Clip based on maximum per frame rate defined by the user.
3311     max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
3312     if (twopass->kf_group_bits > max_grp_bits)
3313       twopass->kf_group_bits = max_grp_bits;
3314   } else {
3315     twopass->kf_group_bits = 0;
3316   }
3317   twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits);
3318 
3319   // Scan through the kf group collating various stats used to determine
3320   // how many bits to spend on it.
3321   boost_score = 0.0;
3322 
3323   for (i = 0; i < VPXMIN(MAX_SCAN_FRAMES_FOR_KF_BOOST, (rc->frames_to_key - 1));
3324        ++i) {
3325     if (EOF == input_stats(twopass, &next_frame)) break;
3326 
3327     zero_motion_sum += next_frame.pcnt_inter - next_frame.pcnt_motion;
3328     motion_compensable_sum +=
3329         1 - (double)next_frame.coded_error / next_frame.intra_error;
3330     num_frames++;
3331   }
3332 
3333   if (num_frames >= MIN_SCAN_FRAMES_FOR_KF_BOOST) {
3334     zero_motion_avg = zero_motion_sum / num_frames;
3335     motion_compensable_avg = motion_compensable_sum / num_frames;
3336     kf_boost_scan_frames = (int)(VPXMAX(64 * zero_motion_avg - 16,
3337                                         160 * motion_compensable_avg - 112));
3338     kf_boost_scan_frames =
3339         VPXMAX(VPXMIN(kf_boost_scan_frames, MAX_SCAN_FRAMES_FOR_KF_BOOST),
3340                MIN_SCAN_FRAMES_FOR_KF_BOOST);
3341   }
3342   reset_fpf_position(twopass, start_position);
3343 
3344   for (i = 0; i < (rc->frames_to_key - 1); ++i) {
3345     if (EOF == input_stats(twopass, &next_frame)) break;
3346 
3347     // The zero motion test here insures that if we mark a kf group as static
3348     // it is static throughout not just the first KF_BOOST_SCAN_MAX_FRAMES.
3349     // It also allows for a larger boost on long static groups.
3350     if ((i <= kf_boost_scan_frames) || (zero_motion_accumulator >= 0.99)) {
3351       double frame_boost;
3352       double zm_factor;
3353 
3354       // Monitor for static sections.
3355       // First frame in kf group the second ref indicator is invalid.
3356       if (i > 0) {
3357         zero_motion_accumulator =
3358             VPXMIN(zero_motion_accumulator,
3359                    get_zero_motion_factor(twopass, &next_frame));
3360       } else {
3361         zero_motion_accumulator =
3362             next_frame.pcnt_inter - next_frame.pcnt_motion;
3363       }
3364 
3365       // Factor 0.75-1.25 based on how much of frame is static.
3366       zm_factor = (0.75 + (zero_motion_accumulator / 2.0));
3367 
3368       // The second (lagging) ref error is not valid immediately after
3369       // a key frame because either the lag has not built up (in the case of
3370       // the first key frame or it points to a reference before the new key
3371       // frame.
3372       if (i < 2) sr_accumulator = 0.0;
3373       frame_boost =
3374           calc_kf_frame_boost(cpi, &next_frame, &sr_accumulator, 0, zm_factor);
3375 
3376       boost_score += frame_boost;
3377 
3378       // Measure of zoom. Large zoom tends to indicate reduced boost.
3379       abs_mv_in_out_accumulator +=
3380           fabs(next_frame.mv_in_out_count * next_frame.pcnt_motion);
3381 
3382       if ((frame_boost < 25.00) ||
3383           (abs_mv_in_out_accumulator > KF_ABS_ZOOM_THRESH) ||
3384           (sr_accumulator > (kf_raw_err * 1.50)))
3385         break;
3386     } else {
3387       break;
3388     }
3389   }
3390 
3391   reset_fpf_position(twopass, start_position);
3392 
3393   // Store the zero motion percentage
3394   twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
3395 
3396   // Calculate a section intra ratio used in setting max loop filter.
3397   twopass->key_frame_section_intra_rating = calculate_section_intra_ratio(
3398       start_position, twopass->stats_in_end, rc->frames_to_key);
3399 
3400   // Special case for static / slide show content but don't apply
3401   // if the kf group is very short.
3402   if ((zero_motion_accumulator > 0.99) && (rc->frames_to_key > 8)) {
3403     rc->kf_boost = (int)(twopass->kf_max_total_boost);
3404   } else {
3405     // Apply various clamps for min and max oost
3406     rc->kf_boost = VPXMAX((int)boost_score, (rc->frames_to_key * 3));
3407     rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_TOT_BOOST);
3408     rc->kf_boost = VPXMIN(rc->kf_boost, (int)(twopass->kf_max_total_boost));
3409   }
3410 
3411   // Work out how many bits to allocate for the key frame itself.
3412   kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost,
3413                                  twopass->kf_group_bits);
3414   // Based on the spatial complexity, increase the bits allocated to key frame.
3415   kf_bits +=
3416       (int)((twopass->kf_group_bits - kf_bits) * (kf_mod_err / kf_group_err));
3417   max_kf_bits =
3418       twopass->kf_group_bits - (rc->frames_to_key - 1) * FRAME_OVERHEAD_BITS;
3419   max_kf_bits = lclamp(max_kf_bits, 0, INT_MAX);
3420   kf_bits = VPXMIN(kf_bits, (int)max_kf_bits);
3421 
3422   twopass->kf_group_bits -= kf_bits;
3423 
3424   // Save the bits to spend on the key frame.
3425   gf_group->bit_allocation[0] = kf_bits;
3426   gf_group->update_type[0] = KF_UPDATE;
3427   gf_group->rf_level[0] = KF_STD;
3428   gf_group->layer_depth[0] = 0;
3429 
3430   // Note the total error score of the kf group minus the key frame itself.
3431   twopass->kf_group_error_left = (kf_group_err - kf_mod_err);
3432 
3433   // Adjust the count of total modified error left.
3434   // The count of bits left is adjusted elsewhere based on real coded frame
3435   // sizes.
3436   twopass->normalized_score_left -= kf_group_err;
3437 
3438   if (oxcf->resize_mode == RESIZE_DYNAMIC) {
3439     // Default to normal-sized frame on keyframes.
3440     cpi->rc.next_frame_size_selector = UNSCALED;
3441   }
3442 }
3443 
3444 // Configure image size specific vizier parameters.
3445 // Later these will be set via additional command line options
vp9_init_vizier_params(TWO_PASS * const twopass,int screen_area)3446 void vp9_init_vizier_params(TWO_PASS *const twopass, int screen_area) {
3447   // When |use_vizier_rc_params| is 1, we expect the rc parameters below to
3448   // have been initialised on the command line as adjustment factors such
3449   // that a factor of 1.0 will match the default behavior when
3450   // |use_vizier_rc_params| is 0
3451   if (twopass->use_vizier_rc_params) {
3452     twopass->active_wq_factor *= AV_WQ_FACTOR;
3453     twopass->err_per_mb *= BASELINE_ERR_PER_MB;
3454     twopass->sr_default_decay_limit *= DEFAULT_DECAY_LIMIT;
3455     if (twopass->sr_default_decay_limit > 1.0)  // > 1.0 here makes no sense
3456       twopass->sr_default_decay_limit = 1.0;
3457     twopass->sr_diff_factor *= 1.0;
3458     twopass->gf_frame_max_boost *= GF_MAX_FRAME_BOOST;
3459     twopass->gf_max_total_boost *= MAX_GF_BOOST;
3460     // NOTE: In use max boost has precedence over min boost. So even if min is
3461     // somehow set higher than max the final boost value will be clamped to the
3462     // appropriate maximum.
3463     twopass->kf_frame_min_boost *= KF_MIN_FRAME_BOOST;
3464     twopass->kf_frame_max_boost_first *= KF_MAX_FRAME_BOOST;
3465     twopass->kf_frame_max_boost_subs *= KF_MAX_FRAME_BOOST;
3466     twopass->kf_max_total_boost *= MAX_KF_TOT_BOOST;
3467     twopass->zm_factor *= DEFAULT_ZM_FACTOR;
3468     if (twopass->zm_factor > 1.0)  // > 1.0 here makes no sense
3469       twopass->zm_factor = 1.0;
3470 
3471     // Correction for the fact that the kf_err_per_mb_factor default is
3472     // already different for different video formats and ensures that a passed
3473     // in value of 1.0 on the vizier command line will still match the current
3474     // default.
3475     if (screen_area < 1280 * 720) {
3476       twopass->kf_err_per_mb *= 2000.0;
3477     } else if (screen_area < 1920 * 1080) {
3478       twopass->kf_err_per_mb *= 500.0;
3479     } else {
3480       twopass->kf_err_per_mb *= 250.0;
3481     }
3482   } else {
3483     // When |use_vizier_rc_params| is 0, use defaults.
3484     twopass->active_wq_factor = AV_WQ_FACTOR;
3485     twopass->err_per_mb = BASELINE_ERR_PER_MB;
3486     twopass->sr_default_decay_limit = DEFAULT_DECAY_LIMIT;
3487     twopass->sr_diff_factor = 1.0;
3488     twopass->gf_frame_max_boost = GF_MAX_FRAME_BOOST;
3489     twopass->gf_max_total_boost = MAX_GF_BOOST;
3490     twopass->kf_frame_min_boost = KF_MIN_FRAME_BOOST;
3491     twopass->kf_frame_max_boost_first = KF_MAX_FRAME_BOOST;
3492     twopass->kf_frame_max_boost_subs = KF_MAX_FRAME_BOOST;
3493     twopass->kf_max_total_boost = MAX_KF_TOT_BOOST;
3494     twopass->zm_factor = DEFAULT_ZM_FACTOR;
3495 
3496     if (screen_area < 1280 * 720) {
3497       twopass->kf_err_per_mb = 2000.0;
3498     } else if (screen_area < 1920 * 1080) {
3499       twopass->kf_err_per_mb = 500.0;
3500     } else {
3501       twopass->kf_err_per_mb = 250.0;
3502     }
3503   }
3504 }
3505 
vp9_rc_get_second_pass_params(VP9_COMP * cpi)3506 void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
3507   VP9_COMMON *const cm = &cpi->common;
3508   RATE_CONTROL *const rc = &cpi->rc;
3509   TWO_PASS *const twopass = &cpi->twopass;
3510   GF_GROUP *const gf_group = &twopass->gf_group;
3511   FIRSTPASS_STATS this_frame;
3512   const int show_idx = cm->current_video_frame;
3513 
3514   if (cpi->common.current_frame_coding_index == 0 &&
3515       cpi->ext_ratectrl.funcs.send_firstpass_stats != NULL) {
3516     const vpx_codec_err_t codec_status = vp9_extrc_send_firstpass_stats(
3517         &cpi->ext_ratectrl, &cpi->twopass.first_pass_info);
3518     if (codec_status != VPX_CODEC_OK) {
3519       vpx_internal_error(&cm->error, codec_status,
3520                          "vp9_extrc_send_firstpass_stats() failed");
3521     }
3522   }
3523 
3524   if (!twopass->stats_in) return;
3525 
3526   // Configure image size specific vizier parameters
3527   if (cm->current_video_frame == 0) {
3528     unsigned int screen_area = (cm->width * cm->height);
3529 
3530     vp9_init_vizier_params(twopass, screen_area);
3531   }
3532 
3533   // If this is an arf frame then we don't want to read the stats file or
3534   // advance the input pointer as we already have what we need.
3535   if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
3536     int target_rate;
3537 
3538     vp9_zero(this_frame);
3539     this_frame =
3540         cpi->twopass.stats_in_start[cm->current_video_frame +
3541                                     gf_group->arf_src_offset[gf_group->index]];
3542 
3543     vp9_configure_buffer_updates(cpi, gf_group->index);
3544 
3545     target_rate = gf_group->bit_allocation[gf_group->index];
3546     target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
3547     rc->base_frame_target = target_rate;
3548 
3549     cm->frame_type = INTER_FRAME;
3550 
3551     // The multiplication by 256 reverses a scaling factor of (>> 8)
3552     // applied when combining MB error values for the frame.
3553     twopass->mb_av_energy = log((this_frame.intra_error * 256.0) + 1.0);
3554     twopass->mb_smooth_pct = this_frame.intra_smooth_pct;
3555 
3556     return;
3557   }
3558 
3559   vpx_clear_system_state();
3560 
3561   if (cpi->oxcf.rc_mode == VPX_Q) {
3562     twopass->active_worst_quality = cpi->oxcf.cq_level;
3563   } else if (cm->current_video_frame == 0) {
3564     const int frames_left =
3565         (int)(twopass->total_stats.count - cm->current_video_frame);
3566     // Special case code for first frame.
3567     const int section_target_bandwidth =
3568         (int)(twopass->bits_left / frames_left);
3569     const double section_length = twopass->total_left_stats.count;
3570     const double section_error =
3571         twopass->total_left_stats.coded_error / section_length;
3572     const double section_intra_skip =
3573         twopass->total_left_stats.intra_skip_pct / section_length;
3574     const double section_inactive_zone =
3575         (twopass->total_left_stats.inactive_zone_rows * 2) /
3576         ((double)cm->mb_rows * section_length);
3577     const double section_noise =
3578         twopass->total_left_stats.frame_noise_energy / section_length;
3579     int tmp_q;
3580 
3581     tmp_q = get_twopass_worst_quality(
3582         cpi, section_error, section_intra_skip + section_inactive_zone,
3583         section_noise, section_target_bandwidth);
3584 
3585     twopass->active_worst_quality = tmp_q;
3586     twopass->baseline_active_worst_quality = tmp_q;
3587     rc->ni_av_qi = tmp_q;
3588     rc->last_q[INTER_FRAME] = tmp_q;
3589     rc->avg_q = vp9_convert_qindex_to_q(tmp_q, cm->bit_depth);
3590     rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
3591     rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2;
3592     rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME];
3593   }
3594   vp9_zero(this_frame);
3595   if (EOF == input_stats(twopass, &this_frame)) return;
3596 
3597   // Set the frame content type flag.
3598   if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH)
3599     twopass->fr_content_type = FC_GRAPHICS_ANIMATION;
3600   else
3601     twopass->fr_content_type = FC_NORMAL;
3602 
3603   // Keyframe and section processing.
3604   if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) {
3605     // Define next KF group and assign bits to it.
3606     find_next_key_frame(cpi, show_idx);
3607   } else {
3608     cm->frame_type = INTER_FRAME;
3609   }
3610 
3611   // Define a new GF/ARF group. (Should always enter here for key frames).
3612   if (rc->frames_till_gf_update_due == 0) {
3613     define_gf_group(cpi, show_idx);
3614 
3615     rc->frames_till_gf_update_due = rc->baseline_gf_interval;
3616 
3617 #if ARF_STATS_OUTPUT
3618     {
3619       FILE *fpfile;
3620       fpfile = fopen("arf.stt", "a");
3621       ++arf_count;
3622       fprintf(fpfile, "%10d %10ld %10d %10d %10ld %10ld\n",
3623               cm->current_video_frame, rc->frames_till_gf_update_due,
3624               rc->kf_boost, arf_count, rc->gfu_boost, cm->frame_type);
3625 
3626       fclose(fpfile);
3627     }
3628 #endif
3629   }
3630 
3631   vp9_configure_buffer_updates(cpi, gf_group->index);
3632 
3633   rc->base_frame_target = gf_group->bit_allocation[gf_group->index];
3634 
3635   // The multiplication by 256 reverses a scaling factor of (>> 8)
3636   // applied when combining MB error values for the frame.
3637   twopass->mb_av_energy = log((this_frame.intra_error * 256.0) + 1.0);
3638   twopass->mb_smooth_pct = this_frame.intra_smooth_pct;
3639 
3640   // Update the total stats remaining structure.
3641   subtract_stats(&twopass->total_left_stats, &this_frame);
3642 }
3643 
vp9_twopass_postencode_update(VP9_COMP * cpi)3644 void vp9_twopass_postencode_update(VP9_COMP *cpi) {
3645   TWO_PASS *const twopass = &cpi->twopass;
3646   RATE_CONTROL *const rc = &cpi->rc;
3647   VP9_COMMON *const cm = &cpi->common;
3648   const int bits_used = rc->base_frame_target;
3649 
3650   // VBR correction is done through rc->vbr_bits_off_target. Based on the
3651   // sign of this value, a limited % adjustment is made to the target rate
3652   // of subsequent frames, to try and push it back towards 0. This method
3653   // is designed to prevent extreme behaviour at the end of a clip
3654   // or group of frames.
3655   rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
3656   twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0);
3657 
3658   // Target vs actual bits for this arf group.
3659   twopass->rolling_arf_group_target_bits += rc->this_frame_target;
3660   twopass->rolling_arf_group_actual_bits += rc->projected_frame_size;
3661 
3662   // Calculate the pct rc error.
3663   if (rc->total_actual_bits) {
3664     rc->rate_error_estimate =
3665         (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits);
3666     rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100);
3667   } else {
3668     rc->rate_error_estimate = 0;
3669   }
3670 
3671   if (cpi->common.frame_type != KEY_FRAME) {
3672     twopass->kf_group_bits -= bits_used;
3673     twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
3674   }
3675   twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0);
3676 
3677   // Increment the gf group index ready for the next frame.
3678   ++twopass->gf_group.index;
3679 
3680   // If the rate control is drifting consider adjustment to min or maxq.
3681   if ((cpi->oxcf.rc_mode != VPX_Q) && !cpi->rc.is_src_frame_alt_ref) {
3682     const int maxq_adj_limit =
3683         rc->worst_quality - twopass->active_worst_quality;
3684     const int minq_adj_limit =
3685         (cpi->oxcf.rc_mode == VPX_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
3686     int aq_extend_min = 0;
3687     int aq_extend_max = 0;
3688 
3689     // Extend min or Max Q range to account for imbalance from the base
3690     // value when using AQ.
3691     if (cpi->oxcf.aq_mode != NO_AQ && cpi->oxcf.aq_mode != PSNR_AQ &&
3692         cpi->oxcf.aq_mode != PERCEPTUAL_AQ) {
3693       if (cm->seg.aq_av_offset < 0) {
3694         // The balance of the AQ map tends towarda lowering the average Q.
3695         aq_extend_min = 0;
3696         aq_extend_max = VPXMIN(maxq_adj_limit, -cm->seg.aq_av_offset);
3697       } else {
3698         // The balance of the AQ map tends towards raising the average Q.
3699         aq_extend_min = VPXMIN(minq_adj_limit, cm->seg.aq_av_offset);
3700         aq_extend_max = 0;
3701       }
3702     }
3703 
3704     // Undershoot.
3705     if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) {
3706       --twopass->extend_maxq;
3707       if (rc->rolling_target_bits >= rc->rolling_actual_bits)
3708         ++twopass->extend_minq;
3709       // Overshoot.
3710     } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) {
3711       --twopass->extend_minq;
3712       if (rc->rolling_target_bits < rc->rolling_actual_bits)
3713         ++twopass->extend_maxq;
3714     } else {
3715       // Adjustment for extreme local overshoot.
3716       if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
3717           rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
3718         ++twopass->extend_maxq;
3719 
3720       // Unwind undershoot or overshoot adjustment.
3721       if (rc->rolling_target_bits < rc->rolling_actual_bits)
3722         --twopass->extend_minq;
3723       else if (rc->rolling_target_bits > rc->rolling_actual_bits)
3724         --twopass->extend_maxq;
3725     }
3726 
3727     twopass->extend_minq =
3728         clamp(twopass->extend_minq, aq_extend_min, minq_adj_limit);
3729     twopass->extend_maxq =
3730         clamp(twopass->extend_maxq, aq_extend_max, maxq_adj_limit);
3731 
3732     // If there is a big and undexpected undershoot then feed the extra
3733     // bits back in quickly. One situation where this may happen is if a
3734     // frame is unexpectedly almost perfectly predicted by the ARF or GF
3735     // but not very well predcited by the previous frame.
3736     if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
3737       int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
3738       if (rc->projected_frame_size < fast_extra_thresh) {
3739         rc->vbr_bits_off_target_fast +=
3740             fast_extra_thresh - rc->projected_frame_size;
3741         rc->vbr_bits_off_target_fast =
3742             VPXMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
3743 
3744         // Fast adaptation of minQ if necessary to use up the extra bits.
3745         if (rc->avg_frame_bandwidth) {
3746           twopass->extend_minq_fast =
3747               (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
3748         }
3749         twopass->extend_minq_fast = VPXMIN(
3750             twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
3751       } else if (rc->vbr_bits_off_target_fast) {
3752         twopass->extend_minq_fast = VPXMIN(
3753             twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
3754       } else {
3755         twopass->extend_minq_fast = 0;
3756       }
3757     }
3758   }
3759 }
3760 
3761 #if CONFIG_RATE_CTRL
vp9_get_next_group_of_picture(const VP9_COMP * cpi,int * first_is_key_frame,int * use_alt_ref,int * coding_frame_count,int * first_show_idx,int * last_gop_use_alt_ref)3762 void vp9_get_next_group_of_picture(const VP9_COMP *cpi, int *first_is_key_frame,
3763                                    int *use_alt_ref, int *coding_frame_count,
3764                                    int *first_show_idx,
3765                                    int *last_gop_use_alt_ref) {
3766   const GOP_COMMAND *gop_command = &cpi->encode_command.gop_command;
3767   // We make a copy of rc here because we want to get information from the
3768   // encoder without changing its state.
3769   // TODO(angiebird): Avoid copying rc here.
3770   RATE_CONTROL rc = cpi->rc;
3771   const int multi_layer_arf = 0;
3772   const int allow_alt_ref = 1;
3773   // We assume that current_video_frame is updated to the show index of the
3774   // frame we are about to called. Note that current_video_frame is updated at
3775   // the end of encode_frame_to_data_rate().
3776   // TODO(angiebird): Avoid this kind of fragile style.
3777   *first_show_idx = cpi->common.current_video_frame;
3778   *last_gop_use_alt_ref = rc.source_alt_ref_active;
3779 
3780   *first_is_key_frame = 0;
3781   if (rc.frames_to_key == 0) {
3782     rc.frames_to_key = vp9_get_frames_to_next_key(
3783         &cpi->oxcf, &cpi->twopass, *first_show_idx, rc.min_gf_interval);
3784     rc.frames_since_key = 0;
3785     *first_is_key_frame = 1;
3786   }
3787 
3788   if (gop_command->use) {
3789     *coding_frame_count = gop_command_coding_frame_count(gop_command);
3790     *use_alt_ref = gop_command->use_alt_ref;
3791     assert(gop_command->show_frame_count <= rc.frames_to_key);
3792   } else {
3793     *coding_frame_count = vp9_get_gop_coding_frame_count(
3794         &cpi->oxcf, &cpi->twopass, &cpi->frame_info, &rc, *first_show_idx,
3795         multi_layer_arf, allow_alt_ref, *first_is_key_frame,
3796         *last_gop_use_alt_ref, use_alt_ref);
3797   }
3798 }
3799 
vp9_get_gop_coding_frame_count(const VP9EncoderConfig * oxcf,const TWO_PASS * const twopass,const FRAME_INFO * frame_info,const RATE_CONTROL * rc,int show_idx,int multi_layer_arf,int allow_alt_ref,int first_is_key_frame,int last_gop_use_alt_ref,int * use_alt_ref)3800 int vp9_get_gop_coding_frame_count(const VP9EncoderConfig *oxcf,
3801                                    const TWO_PASS *const twopass,
3802                                    const FRAME_INFO *frame_info,
3803                                    const RATE_CONTROL *rc, int show_idx,
3804                                    int multi_layer_arf, int allow_alt_ref,
3805                                    int first_is_key_frame,
3806                                    int last_gop_use_alt_ref, int *use_alt_ref) {
3807   int frame_count;
3808   double gop_intra_factor;
3809   const int arf_active_or_kf = last_gop_use_alt_ref || first_is_key_frame;
3810   RANGE active_gf_interval;
3811   int arf_layers;
3812   int end_of_sequence = 0;
3813   if (oxcf->use_simple_encode_api) {
3814     active_gf_interval = get_active_gf_inverval_range_simple(
3815         rc->min_gf_interval, arf_active_or_kf, rc->frames_to_key);
3816   } else {
3817     active_gf_interval = get_active_gf_inverval_range(
3818         frame_info, rc, arf_active_or_kf, show_idx, /*active_worst_quality=*/0,
3819         /*last_boosted_qindex=*/0);
3820   }
3821 
3822   arf_layers = get_arf_layers(multi_layer_arf, oxcf->enable_auto_arf,
3823                               active_gf_interval.max);
3824   if (multi_layer_arf) {
3825     gop_intra_factor = 1.0 + 0.25 * arf_layers;
3826   } else {
3827     gop_intra_factor = 1.0;
3828   }
3829 
3830   frame_count = get_gop_coding_frame_num(
3831       use_alt_ref, frame_info, twopass, rc, show_idx, &active_gf_interval,
3832       gop_intra_factor, oxcf->lag_in_frames, &end_of_sequence);
3833   *use_alt_ref &= allow_alt_ref;
3834   return frame_count;
3835 }
3836 
3837 // Under CONFIG_RATE_CTRL, once the first_pass_info is ready, the number of
3838 // coding frames (including show frame and alt ref) can be determined.
vp9_get_coding_frame_num(const VP9EncoderConfig * oxcf,const TWO_PASS * const twopass,const FRAME_INFO * frame_info,int multi_layer_arf,int allow_alt_ref)3839 int vp9_get_coding_frame_num(const VP9EncoderConfig *oxcf,
3840                              const TWO_PASS *const twopass,
3841                              const FRAME_INFO *frame_info, int multi_layer_arf,
3842                              int allow_alt_ref) {
3843   const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
3844   int coding_frame_num = 0;
3845   RATE_CONTROL rc;
3846   int gop_coding_frame_count;
3847   int gop_show_frames;
3848   int show_idx = 0;
3849   int last_gop_use_alt_ref = 0;
3850   vp9_rc_init(oxcf, 1, &rc);
3851 
3852   while (show_idx < first_pass_info->num_frames) {
3853     int use_alt_ref;
3854     int first_is_key_frame = 0;
3855     if (rc.frames_to_key == 0) {
3856       rc.frames_to_key = vp9_get_frames_to_next_key(oxcf, twopass, show_idx,
3857                                                     rc.min_gf_interval);
3858       rc.frames_since_key = 0;
3859       first_is_key_frame = 1;
3860     }
3861 
3862     gop_coding_frame_count = vp9_get_gop_coding_frame_count(
3863         oxcf, twopass, frame_info, &rc, show_idx, multi_layer_arf,
3864         allow_alt_ref, first_is_key_frame, last_gop_use_alt_ref, &use_alt_ref);
3865 
3866     rc.source_alt_ref_active = use_alt_ref;
3867     last_gop_use_alt_ref = use_alt_ref;
3868     gop_show_frames = gop_coding_frame_count - use_alt_ref;
3869     rc.frames_to_key -= gop_show_frames;
3870     rc.frames_since_key += gop_show_frames;
3871     show_idx += gop_show_frames;
3872     coding_frame_num += gop_show_frames + use_alt_ref;
3873   }
3874   return coding_frame_num;
3875 }
3876 
vp9_get_key_frame_map(const VP9EncoderConfig * oxcf,const TWO_PASS * const twopass,int * key_frame_map)3877 void vp9_get_key_frame_map(const VP9EncoderConfig *oxcf,
3878                            const TWO_PASS *const twopass, int *key_frame_map) {
3879   const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info;
3880   int show_idx = 0;
3881   RATE_CONTROL rc;
3882   vp9_rc_init(oxcf, 1, &rc);
3883 
3884   // key_frame_map points to an int array with size equal to
3885   // first_pass_info->num_frames, which is also the number of show frames in the
3886   // video.
3887   memset(key_frame_map, 0,
3888          sizeof(*key_frame_map) * first_pass_info->num_frames);
3889   while (show_idx < first_pass_info->num_frames) {
3890     int key_frame_group_size;
3891     key_frame_map[show_idx] = 1;
3892     key_frame_group_size =
3893         vp9_get_frames_to_next_key(oxcf, twopass, show_idx, rc.min_gf_interval);
3894     assert(key_frame_group_size > 0);
3895     show_idx += key_frame_group_size;
3896   }
3897   assert(show_idx == first_pass_info->num_frames);
3898 }
3899 #endif  // CONFIG_RATE_CTRL
3900 
vp9_get_frame_stats(const TWO_PASS * twopass)3901 FIRSTPASS_STATS vp9_get_frame_stats(const TWO_PASS *twopass) {
3902   return twopass->this_frame_stats;
3903 }
vp9_get_total_stats(const TWO_PASS * twopass)3904 FIRSTPASS_STATS vp9_get_total_stats(const TWO_PASS *twopass) {
3905   return twopass->total_stats;
3906 }
3907