1 //===-- Common header for FMA implementations -------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMA_H
10 #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMA_H
11
12 #include "src/__support/CPP/bit.h"
13 #include "src/__support/CPP/type_traits.h"
14 #include "src/__support/FPUtil/FEnvImpl.h"
15 #include "src/__support/FPUtil/FPBits.h"
16 #include "src/__support/FPUtil/rounding_mode.h"
17 #include "src/__support/macros/attributes.h" // LIBC_INLINE
18 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
19 #include "src/__support/uint128.h"
20
21 namespace LIBC_NAMESPACE {
22 namespace fputil {
23 namespace generic {
24
25 template <typename T> LIBC_INLINE T fma(T x, T y, T z);
26
27 // TODO(lntue): Implement fmaf that is correctly rounded to all rounding modes.
28 // The implementation below only is only correct for the default rounding mode,
29 // round-to-nearest tie-to-even.
30 template <> LIBC_INLINE float fma<float>(float x, float y, float z) {
31 // Product is exact.
32 double prod = static_cast<double>(x) * static_cast<double>(y);
33 double z_d = static_cast<double>(z);
34 double sum = prod + z_d;
35 fputil::FPBits<double> bit_prod(prod), bitz(z_d), bit_sum(sum);
36
37 if (!(bit_sum.is_inf_or_nan() || bit_sum.is_zero())) {
38 // Since the sum is computed in double precision, rounding might happen
39 // (for instance, when bitz.exponent > bit_prod.exponent + 5, or
40 // bit_prod.exponent > bitz.exponent + 40). In that case, when we round
41 // the sum back to float, double rounding error might occur.
42 // A concrete example of this phenomenon is as follows:
43 // x = y = 1 + 2^(-12), z = 2^(-53)
44 // The exact value of x*y + z is 1 + 2^(-11) + 2^(-24) + 2^(-53)
45 // So when rounding to float, fmaf(x, y, z) = 1 + 2^(-11) + 2^(-23)
46 // On the other hand, with the default rounding mode,
47 // double(x*y + z) = 1 + 2^(-11) + 2^(-24)
48 // and casting again to float gives us:
49 // float(double(x*y + z)) = 1 + 2^(-11).
50 //
51 // In order to correct this possible double rounding error, first we use
52 // Dekker's 2Sum algorithm to find t such that sum - t = prod + z exactly,
53 // assuming the (default) rounding mode is round-to-the-nearest,
54 // tie-to-even. Moreover, t satisfies the condition that t < eps(sum),
55 // i.e., t.exponent < sum.exponent - 52. So if t is not 0, meaning rounding
56 // occurs when computing the sum, we just need to use t to adjust (any) last
57 // bit of sum, so that the sticky bits used when rounding sum to float are
58 // correct (when it matters).
59 fputil::FPBits<double> t(
60 (bit_prod.get_biased_exponent() >= bitz.get_biased_exponent())
61 ? ((bit_sum.get_val() - bit_prod.get_val()) - bitz.get_val())
62 : ((bit_sum.get_val() - bitz.get_val()) - bit_prod.get_val()));
63
64 // Update sticky bits if t != 0.0 and the least (52 - 23 - 1 = 28) bits are
65 // zero.
66 if (!t.is_zero() && ((bit_sum.get_mantissa() & 0xfff'ffffULL) == 0)) {
67 if (bit_sum.sign() != t.sign()) {
68 bit_sum.set_mantissa(bit_sum.get_mantissa() + 1);
69 } else if (bit_sum.get_mantissa()) {
70 bit_sum.set_mantissa(bit_sum.get_mantissa() - 1);
71 }
72 }
73 }
74
75 return static_cast<float>(bit_sum.get_val());
76 }
77
78 namespace internal {
79
80 // Extract the sticky bits and shift the `mantissa` to the right by
81 // `shift_length`.
shift_mantissa(int shift_length,UInt128 & mant)82 LIBC_INLINE bool shift_mantissa(int shift_length, UInt128 &mant) {
83 if (shift_length >= 128) {
84 mant = 0;
85 return true; // prod_mant is non-zero.
86 }
87 UInt128 mask = (UInt128(1) << shift_length) - 1;
88 bool sticky_bits = (mant & mask) != 0;
89 mant >>= shift_length;
90 return sticky_bits;
91 }
92
93 } // namespace internal
94
95 template <> LIBC_INLINE double fma<double>(double x, double y, double z) {
96 using FPBits = fputil::FPBits<double>;
97
98 if (LIBC_UNLIKELY(x == 0 || y == 0 || z == 0)) {
99 return x * y + z;
100 }
101
102 int x_exp = 0;
103 int y_exp = 0;
104 int z_exp = 0;
105
106 // Normalize denormal inputs.
107 if (LIBC_UNLIKELY(FPBits(x).is_subnormal())) {
108 x_exp -= 52;
109 x *= 0x1.0p+52;
110 }
111 if (LIBC_UNLIKELY(FPBits(y).is_subnormal())) {
112 y_exp -= 52;
113 y *= 0x1.0p+52;
114 }
115 if (LIBC_UNLIKELY(FPBits(z).is_subnormal())) {
116 z_exp -= 52;
117 z *= 0x1.0p+52;
118 }
119
120 FPBits x_bits(x), y_bits(y), z_bits(z);
121 const Sign z_sign = z_bits.sign();
122 Sign prod_sign = (x_bits.sign() == y_bits.sign()) ? Sign::POS : Sign::NEG;
123 x_exp += x_bits.get_biased_exponent();
124 y_exp += y_bits.get_biased_exponent();
125 z_exp += z_bits.get_biased_exponent();
126
127 if (LIBC_UNLIKELY(x_exp == FPBits::MAX_BIASED_EXPONENT ||
128 y_exp == FPBits::MAX_BIASED_EXPONENT ||
129 z_exp == FPBits::MAX_BIASED_EXPONENT))
130 return x * y + z;
131
132 // Extract mantissa and append hidden leading bits.
133 UInt128 x_mant = x_bits.get_explicit_mantissa();
134 UInt128 y_mant = y_bits.get_explicit_mantissa();
135 UInt128 z_mant = z_bits.get_explicit_mantissa();
136
137 // If the exponent of the product x*y > the exponent of z, then no extra
138 // precision beside the entire product x*y is needed. On the other hand, when
139 // the exponent of z >= the exponent of the product x*y, the worst-case that
140 // we need extra precision is when there is cancellation and the most
141 // significant bit of the product is aligned exactly with the second most
142 // significant bit of z:
143 // z : 10aa...a
144 // - prod : 1bb...bb....b
145 // In that case, in order to store the exact result, we need at least
146 // (Length of prod) - (MantissaLength of z) = 2*(52 + 1) - 52 = 54.
147 // Overall, before aligning the mantissas and exponents, we can simply left-
148 // shift the mantissa of z by at least 54, and left-shift the product of x*y
149 // by (that amount - 52). After that, it is enough to align the least
150 // significant bit, given that we keep track of the round and sticky bits
151 // after the least significant bit.
152 // We pick shifting z_mant by 64 bits so that technically we can simply use
153 // the original mantissa as high part when constructing 128-bit z_mant. So the
154 // mantissa of prod will be left-shifted by 64 - 54 = 10 initially.
155
156 UInt128 prod_mant = x_mant * y_mant << 10;
157 int prod_lsb_exp =
158 x_exp + y_exp - (FPBits::EXP_BIAS + 2 * FPBits::FRACTION_LEN + 10);
159
160 z_mant <<= 64;
161 int z_lsb_exp = z_exp - (FPBits::FRACTION_LEN + 64);
162 bool round_bit = false;
163 bool sticky_bits = false;
164 bool z_shifted = false;
165
166 // Align exponents.
167 if (prod_lsb_exp < z_lsb_exp) {
168 sticky_bits = internal::shift_mantissa(z_lsb_exp - prod_lsb_exp, prod_mant);
169 prod_lsb_exp = z_lsb_exp;
170 } else if (z_lsb_exp < prod_lsb_exp) {
171 z_shifted = true;
172 sticky_bits = internal::shift_mantissa(prod_lsb_exp - z_lsb_exp, z_mant);
173 }
174
175 // Perform the addition:
176 // (-1)^prod_sign * prod_mant + (-1)^z_sign * z_mant.
177 // The final result will be stored in prod_sign and prod_mant.
178 if (prod_sign == z_sign) {
179 // Effectively an addition.
180 prod_mant += z_mant;
181 } else {
182 // Subtraction cases.
183 if (prod_mant >= z_mant) {
184 if (z_shifted && sticky_bits) {
185 // Add 1 more to the subtrahend so that the sticky bits remain
186 // positive. This would simplify the rounding logic.
187 ++z_mant;
188 }
189 prod_mant -= z_mant;
190 } else {
191 if (!z_shifted && sticky_bits) {
192 // Add 1 more to the subtrahend so that the sticky bits remain
193 // positive. This would simplify the rounding logic.
194 ++prod_mant;
195 }
196 prod_mant = z_mant - prod_mant;
197 prod_sign = z_sign;
198 }
199 }
200
201 uint64_t result = 0;
202 int r_exp = 0; // Unbiased exponent of the result
203
204 // Normalize the result.
205 if (prod_mant != 0) {
206 uint64_t prod_hi = static_cast<uint64_t>(prod_mant >> 64);
207 int lead_zeros =
208 prod_hi ? cpp::countl_zero(prod_hi)
209 : 64 + cpp::countl_zero(static_cast<uint64_t>(prod_mant));
210 // Move the leading 1 to the most significant bit.
211 prod_mant <<= lead_zeros;
212 // The lower 64 bits are always sticky bits after moving the leading 1 to
213 // the most significant bit.
214 sticky_bits |= (static_cast<uint64_t>(prod_mant) != 0);
215 result = static_cast<uint64_t>(prod_mant >> 64);
216 // Change prod_lsb_exp the be the exponent of the least significant bit of
217 // the result.
218 prod_lsb_exp += 64 - lead_zeros;
219 r_exp = prod_lsb_exp + 63;
220
221 if (r_exp > 0) {
222 // The result is normal. We will shift the mantissa to the right by
223 // 63 - 52 = 11 bits (from the locations of the most significant bit).
224 // Then the rounding bit will correspond the 11th bit, and the lowest
225 // 10 bits are merged into sticky bits.
226 round_bit = (result & 0x0400ULL) != 0;
227 sticky_bits |= (result & 0x03ffULL) != 0;
228 result >>= 11;
229 } else {
230 if (r_exp < -52) {
231 // The result is smaller than 1/2 of the smallest denormal number.
232 sticky_bits = true; // since the result is non-zero.
233 result = 0;
234 } else {
235 // The result is denormal.
236 uint64_t mask = 1ULL << (11 - r_exp);
237 round_bit = (result & mask) != 0;
238 sticky_bits |= (result & (mask - 1)) != 0;
239 if (r_exp > -52)
240 result >>= 12 - r_exp;
241 else
242 result = 0;
243 }
244
245 r_exp = 0;
246 }
247 } else {
248 // Return +0.0 when there is exact cancellation, i.e., x*y == -z exactly.
249 prod_sign = Sign::POS;
250 }
251
252 // Finalize the result.
253 int round_mode = fputil::quick_get_round();
254 if (LIBC_UNLIKELY(r_exp >= FPBits::MAX_BIASED_EXPONENT)) {
255 if ((round_mode == FE_TOWARDZERO) ||
256 (round_mode == FE_UPWARD && prod_sign.is_neg()) ||
257 (round_mode == FE_DOWNWARD && prod_sign.is_pos())) {
258 return FPBits::max_normal(prod_sign).get_val();
259 }
260 return FPBits::inf(prod_sign).get_val();
261 }
262
263 // Remove hidden bit and append the exponent field and sign bit.
264 result = (result & FPBits::FRACTION_MASK) |
265 (static_cast<uint64_t>(r_exp) << FPBits::FRACTION_LEN);
266 if (prod_sign.is_neg()) {
267 result |= FPBits::SIGN_MASK;
268 }
269
270 // Rounding.
271 if (round_mode == FE_TONEAREST) {
272 if (round_bit && (sticky_bits || ((result & 1) != 0)))
273 ++result;
274 } else if ((round_mode == FE_UPWARD && prod_sign.is_pos()) ||
275 (round_mode == FE_DOWNWARD && prod_sign.is_neg())) {
276 if (round_bit || sticky_bits)
277 ++result;
278 }
279
280 return cpp::bit_cast<double>(result);
281 }
282
283 } // namespace generic
284 } // namespace fputil
285 } // namespace LIBC_NAMESPACE
286
287 #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMA_H
288