• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Resizable Monotonic HashTable ---------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIBC_SRC___SUPPORT_HASHTABLE_TABLE_H
10 #define LLVM_LIBC_SRC___SUPPORT_HASHTABLE_TABLE_H
11 
12 #include "include/llvm-libc-types/ENTRY.h"
13 #include "src/__support/CPP/bit.h" // bit_ceil
14 #include "src/__support/CPP/new.h"
15 #include "src/__support/HashTable/bitmask.h"
16 #include "src/__support/hash.h"
17 #include "src/__support/macros/attributes.h"
18 #include "src/__support/macros/optimization.h"
19 #include "src/__support/memory_size.h"
20 #include "src/string/memset.h"
21 #include "src/string/strcmp.h"
22 #include "src/string/strlen.h"
23 #include <stddef.h>
24 #include <stdint.h>
25 
26 namespace LIBC_NAMESPACE {
27 namespace internal {
28 
secondary_hash(uint64_t hash)29 LIBC_INLINE uint8_t secondary_hash(uint64_t hash) {
30   // top 7 bits of the hash.
31   return static_cast<uint8_t>(hash >> 57);
32 }
33 
34 // Probe sequence based on triangular numbers, which is guaranteed (since our
35 // table size is a power of two) to visit every group of elements exactly once.
36 //
37 // A triangular probe has us jump by 1 more group every time. So first we
38 // jump by 1 group (meaning we just continue our linear scan), then 2 groups
39 // (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on.
40 //
41 // If we set sizeof(Group) to be one unit:
42 //               T[k] = sum {1 + 2 + ... + k} = k * (k + 1) / 2
43 // It is provable that T[k] mod 2^m generates a permutation of
44 //                0, 1, 2, 3, ..., 2^m - 2, 2^m - 1
45 // Detailed proof is available at:
46 // https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/
47 struct ProbeSequence {
48   size_t position;
49   size_t stride;
50   size_t entries_mask;
51 
nextProbeSequence52   LIBC_INLINE size_t next() {
53     position += stride;
54     position &= entries_mask;
55     stride += sizeof(Group);
56     return position;
57   }
58 };
59 
60 // The number of entries is at least group width: we do not
61 // need to do the fixup when we set the control bytes.
62 // The number of entries is at least 8: we don't have to worry
63 // about special sizes when check the fullness of the table.
capacity_to_entries(size_t cap)64 LIBC_INLINE size_t capacity_to_entries(size_t cap) {
65   if (8 >= sizeof(Group) && cap < 8)
66     return 8;
67   if (16 >= sizeof(Group) && cap < 15)
68     return 16;
69   if (cap < sizeof(Group))
70     cap = sizeof(Group);
71   // overflow is always checked in allocate()
72   return cpp::bit_ceil(cap * 8 / 7);
73 }
74 
75 // The heap memory layout for N buckets HashTable is as follows:
76 //
77 //             =======================
78 //             |   N * Entry         |
79 //             ======================= <- align boundary
80 //             |   Header            |
81 //             ======================= <- align boundary (for fast resize)
82 //             |   (N + 1) * Byte    |
83 //             =======================
84 //
85 // The trailing group part is to make sure we can always load
86 // a whole group of control bytes.
87 
88 struct HashTable {
89   HashState state;
90   size_t entries_mask;    // number of buckets - 1
91   size_t available_slots; // less than capacity
92 private:
93   // How many entries are there in the table.
num_of_entriesHashTable94   LIBC_INLINE size_t num_of_entries() const { return entries_mask + 1; }
95 
96   // How many entries can we store in the table before resizing.
full_capacityHashTable97   LIBC_INLINE size_t full_capacity() const { return num_of_entries() / 8 * 7; }
98 
99   // The alignment of the whole memory area is the maximum of the alignment
100   // among the following types:
101   // - HashTable
102   // - ENTRY
103   // - Group
table_alignmentHashTable104   LIBC_INLINE constexpr static size_t table_alignment() {
105     size_t left_align = alignof(HashTable) > alignof(ENTRY) ? alignof(HashTable)
106                                                             : alignof(ENTRY);
107     return left_align > alignof(Group) ? left_align : alignof(Group);
108   }
109 
is_fullHashTable110   LIBC_INLINE bool is_full() const { return available_slots == 0; }
111 
offset_from_entriesHashTable112   LIBC_INLINE size_t offset_from_entries() const {
113     size_t entries_size = num_of_entries() * sizeof(ENTRY);
114     return entries_size +
115            SafeMemSize::offset_to(entries_size, table_alignment());
116   }
117 
offset_to_groupsHashTable118   LIBC_INLINE constexpr static size_t offset_to_groups() {
119     size_t header_size = sizeof(HashTable);
120     return header_size + SafeMemSize::offset_to(header_size, table_alignment());
121   }
122 
entryHashTable123   LIBC_INLINE ENTRY &entry(size_t i) {
124     return reinterpret_cast<ENTRY *>(this)[-i - 1];
125   }
126 
entryHashTable127   LIBC_INLINE const ENTRY &entry(size_t i) const {
128     return reinterpret_cast<const ENTRY *>(this)[-i - 1];
129   }
130 
controlHashTable131   LIBC_INLINE uint8_t &control(size_t i) {
132     uint8_t *ptr = reinterpret_cast<uint8_t *>(this) + offset_to_groups();
133     return ptr[i];
134   }
135 
controlHashTable136   LIBC_INLINE const uint8_t &control(size_t i) const {
137     const uint8_t *ptr =
138         reinterpret_cast<const uint8_t *>(this) + offset_to_groups();
139     return ptr[i];
140   }
141 
142   // We duplicate a group of control bytes to the end. Thus, it is possible that
143   // we need to set two control bytes at the same time.
set_ctrlHashTable144   LIBC_INLINE void set_ctrl(size_t index, uint8_t value) {
145     size_t index2 = ((index - sizeof(Group)) & entries_mask) + sizeof(Group);
146     control(index) = value;
147     control(index2) = value;
148   }
149 
findHashTable150   LIBC_INLINE size_t find(const char *key, uint64_t primary) {
151     uint8_t secondary = secondary_hash(primary);
152     ProbeSequence sequence{static_cast<size_t>(primary), 0, entries_mask};
153     while (true) {
154       size_t pos = sequence.next();
155       Group ctrls = Group::load(&control(pos));
156       IteratableBitMask masks = ctrls.match_byte(secondary);
157       for (size_t i : masks) {
158         size_t index = (pos + i) & entries_mask;
159         ENTRY &entry = this->entry(index);
160         if (LIBC_LIKELY(entry.key != nullptr && strcmp(entry.key, key) == 0))
161           return index;
162       }
163       BitMask available = ctrls.mask_available();
164       // Since there is no deletion, the first time we find an available slot
165       // it is also ready to be used as an insertion point. Therefore, we also
166       // return the first available slot we find. If such entry is empty, the
167       // key will be nullptr.
168       if (LIBC_LIKELY(available.any_bit_set())) {
169         size_t index =
170             (pos + available.lowest_set_bit_nonzero()) & entries_mask;
171         return index;
172       }
173     }
174   }
175 
oneshot_hashHashTable176   LIBC_INLINE uint64_t oneshot_hash(const char *key) const {
177     LIBC_NAMESPACE::internal::HashState hasher = state;
178     hasher.update(key, strlen(key));
179     return hasher.finish();
180   }
181 
182   // A fast insertion routine without checking if a key already exists.
183   // Nor does the routine check if the table is full.
184   // This is only to be used in grow() where we insert all existing entries
185   // into a new table. Hence, the requirements are naturally satisfied.
unsafe_insertHashTable186   LIBC_INLINE ENTRY *unsafe_insert(ENTRY item) {
187     uint64_t primary = oneshot_hash(item.key);
188     uint8_t secondary = secondary_hash(primary);
189     ProbeSequence sequence{static_cast<size_t>(primary), 0, entries_mask};
190     while (true) {
191       size_t pos = sequence.next();
192       Group ctrls = Group::load(&control(pos));
193       BitMask available = ctrls.mask_available();
194       if (available.any_bit_set()) {
195         size_t index =
196             (pos + available.lowest_set_bit_nonzero()) & entries_mask;
197         set_ctrl(index, secondary);
198         entry(index).key = item.key;
199         entry(index).data = item.data;
200         available_slots--;
201         return &entry(index);
202       }
203     }
204   }
205 
growHashTable206   LIBC_INLINE HashTable *grow() const {
207     size_t hint = full_capacity() + 1;
208     HashState state = this->state;
209     // migrate to a new random state
210     state.update(&hint, sizeof(hint));
211     HashTable *new_table = allocate(hint, state.finish());
212     // It is safe to call unsafe_insert() because we know that:
213     // - the new table has enough capacity to hold all the entries
214     // - there is no duplicate key in the old table
215     if (new_table != nullptr)
216       for (ENTRY e : *this)
217         new_table->unsafe_insert(e);
218     return new_table;
219   }
220 
insertHashTable221   LIBC_INLINE static ENTRY *insert(HashTable *&table, ENTRY item,
222                                    uint64_t primary) {
223     auto index = table->find(item.key, primary);
224     auto slot = &table->entry(index);
225     // SVr4 and POSIX.1-2001 specify that action is significant only for
226     // unsuccessful searches, so that an ENTER should not do anything
227     // for a successful search.
228     if (slot->key != nullptr)
229       return slot;
230 
231     // if table of full, we try to grow the table
232     if (table->is_full()) {
233       HashTable *new_table = table->grow();
234       // allocation failed, return nullptr to indicate failure
235       if (new_table == nullptr)
236         return nullptr;
237       // resized sccuessfully: clean up the old table and use the new one
238       deallocate(table);
239       table = new_table;
240       // it is still valid to use the fastpath insertion.
241       return table->unsafe_insert(item);
242     }
243 
244     table->set_ctrl(index, secondary_hash(primary));
245     slot->key = item.key;
246     slot->data = item.data;
247     table->available_slots--;
248     return slot;
249   }
250 
251 public:
deallocateHashTable252   LIBC_INLINE static void deallocate(HashTable *table) {
253     if (table) {
254       void *ptr =
255           reinterpret_cast<uint8_t *>(table) - table->offset_from_entries();
256       operator delete(ptr, std::align_val_t{table_alignment()});
257     }
258   }
259 
allocateHashTable260   LIBC_INLINE static HashTable *allocate(size_t capacity, uint64_t randomness) {
261     // check if capacity_to_entries overflows MAX_MEM_SIZE
262     if (capacity > size_t{1} << (8 * sizeof(size_t) - 1 - 3))
263       return nullptr;
264     SafeMemSize entries{capacity_to_entries(capacity)};
265     SafeMemSize entries_size = entries * SafeMemSize{sizeof(ENTRY)};
266     SafeMemSize align_boundary = entries_size.align_up(table_alignment());
267     SafeMemSize ctrl_sizes = entries + SafeMemSize{sizeof(Group)};
268     SafeMemSize header_size{offset_to_groups()};
269     SafeMemSize total_size =
270         (align_boundary + header_size + ctrl_sizes).align_up(table_alignment());
271     if (!total_size.valid())
272       return nullptr;
273     AllocChecker ac;
274 
275     void *mem = operator new(total_size, std::align_val_t{table_alignment()},
276                              ac);
277 
278     HashTable *table = reinterpret_cast<HashTable *>(
279         static_cast<uint8_t *>(mem) + align_boundary);
280     if (ac) {
281       table->entries_mask = entries - 1u;
282       table->available_slots = entries / 8 * 7;
283       table->state = HashState{randomness};
284       memset(&table->control(0), 0x80, ctrl_sizes);
285       memset(mem, 0, table->offset_from_entries());
286     }
287     return table;
288   }
289 
290   struct FullTableIterator {
291     size_t current_offset;
292     size_t remaining;
293     IteratableBitMask current_mask;
294     const HashTable &table;
295 
296     // It is fine to use remaining to represent the iterator:
297     // - this comparison only happens with the same table
298     // - hashtable will not be mutated during the iteration
299     LIBC_INLINE bool operator==(const FullTableIterator &other) const {
300       return remaining == other.remaining;
301     }
302     LIBC_INLINE bool operator!=(const FullTableIterator &other) const {
303       return remaining != other.remaining;
304     }
305 
306     LIBC_INLINE FullTableIterator &operator++() {
307       this->ensure_valid_group();
308       current_mask.remove_lowest_bit();
309       remaining--;
310       return *this;
311     }
312     LIBC_INLINE const ENTRY &operator*() {
313       this->ensure_valid_group();
314       return table.entry(
315           (current_offset + current_mask.lowest_set_bit_nonzero()) &
316           table.entries_mask);
317     }
318 
319   private:
ensure_valid_groupHashTable::FullTableIterator320     LIBC_INLINE void ensure_valid_group() {
321       while (!current_mask.any_bit_set()) {
322         current_offset += sizeof(Group);
323         // It is ensured that the load will only happen at aligned boundaries.
324         current_mask =
325             Group::load_aligned(&table.control(current_offset)).occupied();
326       }
327     }
328   };
329 
330   using value_type = ENTRY;
331   using iterator = FullTableIterator;
beginHashTable332   iterator begin() const {
333     return {0, full_capacity() - available_slots,
334             Group::load_aligned(&control(0)).occupied(), *this};
335   }
endHashTable336   iterator end() const { return {0, 0, {BitMask{0}}, *this}; }
337 
findHashTable338   LIBC_INLINE ENTRY *find(const char *key) {
339     uint64_t primary = oneshot_hash(key);
340     ENTRY &entry = this->entry(find(key, primary));
341     if (entry.key == nullptr)
342       return nullptr;
343     return &entry;
344   }
345 
insertHashTable346   LIBC_INLINE static ENTRY *insert(HashTable *&table, ENTRY item) {
347     uint64_t primary = table->oneshot_hash(item.key);
348     return insert(table, item, primary);
349   }
350 };
351 } // namespace internal
352 } // namespace LIBC_NAMESPACE
353 
354 #endif // LLVM_LIBC_SRC___SUPPORT_HASHTABLE_TABLE_H
355