• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Single-precision cos function -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/math/cosf.h"
10 #include "sincosf_utils.h"
11 #include "src/__support/FPUtil/BasicOperations.h"
12 #include "src/__support/FPUtil/FEnvImpl.h"
13 #include "src/__support/FPUtil/FPBits.h"
14 #include "src/__support/FPUtil/except_value_utils.h"
15 #include "src/__support/FPUtil/multiply_add.h"
16 #include "src/__support/common.h"
17 #include "src/__support/macros/optimization.h"            // LIBC_UNLIKELY
18 #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
19 
20 #include <errno.h>
21 
22 namespace LIBC_NAMESPACE {
23 
24 // Exceptional cases for cosf.
25 static constexpr size_t N_EXCEPTS = 6;
26 
27 static constexpr fputil::ExceptValues<float, N_EXCEPTS> COSF_EXCEPTS{{
28     // (inputs, RZ output, RU offset, RD offset, RN offset)
29     // x = 0x1.64a032p43, cos(x) = 0x1.9d4ba4p-1 (RZ)
30     {0x55325019, 0x3f4ea5d2, 1, 0, 0},
31     // x = 0x1.4555p51, cos(x) = 0x1.115d7cp-1 (RZ)
32     {0x5922aa80, 0x3f08aebe, 1, 0, 1},
33     // x = 0x1.48a858p54, cos(x) = 0x1.f48148p-2 (RZ)
34     {0x5aa4542c, 0x3efa40a4, 1, 0, 0},
35     // x = 0x1.3170fp63, cos(x) = 0x1.fe2976p-1 (RZ)
36     {0x5f18b878, 0x3f7f14bb, 1, 0, 0},
37     // x = 0x1.2b9622p67, cos(x) = 0x1.f0285cp-1 (RZ)
38     {0x6115cb11, 0x3f78142e, 1, 0, 1},
39     // x = 0x1.ddebdep120, cos(x) = 0x1.114438p-1 (RZ)
40     {0x7beef5ef, 0x3f08a21c, 1, 0, 0},
41 }};
42 
43 LLVM_LIBC_FUNCTION(float, cosf, (float x)) {
44   using FPBits = typename fputil::FPBits<float>;
45 
46   FPBits xbits(x);
47   xbits.set_sign(Sign::POS);
48 
49   uint32_t x_abs = xbits.uintval();
50   double xd = static_cast<double>(xbits.get_val());
51 
52   // Range reduction:
53   // For |x| > pi/16, we perform range reduction as follows:
54   // Find k and y such that:
55   //   x = (k + y) * pi/32
56   //   k is an integer
57   //   |y| < 0.5
58   // For small range (|x| < 2^45 when FMA instructions are available, 2^22
59   // otherwise), this is done by performing:
60   //   k = round(x * 32/pi)
61   //   y = x * 32/pi - k
62   // For large range, we will omit all the higher parts of 16/pi such that the
63   // least significant bits of their full products with x are larger than 63,
64   // since cos((k + y + 64*i) * pi/32) = cos(x + i * 2pi) = cos(x).
65   //
66   // When FMA instructions are not available, we store the digits of 32/pi in
67   // chunks of 28-bit precision.  This will make sure that the products:
68   //   x * THIRTYTWO_OVER_PI_28[i] are all exact.
69   // When FMA instructions are available, we simply store the digits of 32/pi in
70   // chunks of doubles (53-bit of precision).
71   // So when multiplying by the largest values of single precision, the
72   // resulting output should be correct up to 2^(-208 + 128) ~ 2^-80.  By the
73   // worst-case analysis of range reduction, |y| >= 2^-38, so this should give
74   // us more than 40 bits of accuracy. For the worst-case estimation of range
75   // reduction, see for instances:
76   //   Elementary Functions by J-M. Muller, Chapter 11,
77   //   Handbook of Floating-Point Arithmetic by J-M. Muller et. al.,
78   //   Chapter 10.2.
79   //
80   // Once k and y are computed, we then deduce the answer by the cosine of sum
81   // formula:
82   //   cos(x) = cos((k + y)*pi/32)
83   //          = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
84   // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed
85   // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are
86   // computed using degree-7 and degree-6 minimax polynomials generated by
87   // Sollya respectively.
88 
89   // |x| < 0x1.0p-12f
90   if (LIBC_UNLIKELY(x_abs < 0x3980'0000U)) {
91     // When |x| < 2^-12, the relative error of the approximation cos(x) ~ 1
92     // is:
93     //   |cos(x) - 1| < |x^2 / 2| = 2^-25 < epsilon(1)/2.
94     // So the correctly rounded values of cos(x) are:
95     //   = 1 - eps(x) if rounding mode = FE_TOWARDZERO or FE_DOWWARD,
96     //   = 1 otherwise.
97     // To simplify the rounding decision and make it more efficient and to
98     // prevent compiler to perform constant folding, we use
99     //   fma(x, -2^-25, 1) instead.
100     // Note: to use the formula 1 - 2^-25*x to decide the correct rounding, we
101     // do need fma(x, -2^-25, 1) to prevent underflow caused by -2^-25*x when
102     // |x| < 2^-125. For targets without FMA instructions, we simply use
103     // double for intermediate results as it is more efficient than using an
104     // emulated version of FMA.
105 #if defined(LIBC_TARGET_CPU_HAS_FMA)
106     return fputil::multiply_add(xbits.get_val(), -0x1.0p-25f, 1.0f);
107 #else
108     return static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, 1.0));
109 #endif // LIBC_TARGET_CPU_HAS_FMA
110   }
111 
112   if (auto r = COSF_EXCEPTS.lookup(x_abs); LIBC_UNLIKELY(r.has_value()))
113     return r.value();
114 
115   // x is inf or nan.
116   if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) {
117     if (x_abs == 0x7f80'0000U) {
118       fputil::set_errno_if_required(EDOM);
119       fputil::raise_except_if_required(FE_INVALID);
120     }
121     return x + FPBits::quiet_nan().get_val();
122   }
123 
124   // Combine the results with the sine of sum formula:
125   //   cos(x) = cos((k + y)*pi/32)
126   //          = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
127   //          = cosm1_y * cos_k + sin_y * sin_k
128   //          = (cosm1_y * cos_k + cos_k) + sin_y * sin_k
129   double sin_k, cos_k, sin_y, cosm1_y;
130 
131   sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y);
132 
133   return static_cast<float>(fputil::multiply_add(
134       sin_y, -sin_k, fputil::multiply_add(cosm1_y, cos_k, cos_k)));
135 }
136 
137 } // namespace LIBC_NAMESPACE
138