• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Single-precision e^x - 1 function ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/math/expm1f.h"
10 #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
11 #include "src/__support/FPUtil/BasicOperations.h"
12 #include "src/__support/FPUtil/FEnvImpl.h"
13 #include "src/__support/FPUtil/FMA.h"
14 #include "src/__support/FPUtil/FPBits.h"
15 #include "src/__support/FPUtil/PolyEval.h"
16 #include "src/__support/FPUtil/multiply_add.h"
17 #include "src/__support/FPUtil/nearest_integer.h"
18 #include "src/__support/FPUtil/rounding_mode.h"
19 #include "src/__support/common.h"
20 #include "src/__support/macros/optimization.h"            // LIBC_UNLIKELY
21 #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
22 
23 #include <errno.h>
24 
25 namespace LIBC_NAMESPACE {
26 
27 LLVM_LIBC_FUNCTION(float, expm1f, (float x)) {
28   using FPBits = typename fputil::FPBits<float>;
29   FPBits xbits(x);
30 
31   uint32_t x_u = xbits.uintval();
32   uint32_t x_abs = x_u & 0x7fff'ffffU;
33 
34   // Exceptional value
35   if (LIBC_UNLIKELY(x_u == 0x3e35'bec5U)) { // x = 0x1.6b7d8ap-3f
36     int round_mode = fputil::quick_get_round();
37     if (round_mode == FE_TONEAREST || round_mode == FE_UPWARD)
38       return 0x1.8dbe64p-3f;
39     return 0x1.8dbe62p-3f;
40   }
41 
42 #if !defined(LIBC_TARGET_CPU_HAS_FMA)
43   if (LIBC_UNLIKELY(x_u == 0xbdc1'c6cbU)) { // x = -0x1.838d96p-4f
44     int round_mode = fputil::quick_get_round();
45     if (round_mode == FE_TONEAREST || round_mode == FE_DOWNWARD)
46       return -0x1.71c884p-4f;
47     return -0x1.71c882p-4f;
48   }
49 #endif // LIBC_TARGET_CPU_HAS_FMA
50 
51   // When |x| > 25*log(2), or nan
52   if (LIBC_UNLIKELY(x_abs >= 0x418a'a123U)) {
53     // x < log(2^-25)
54     if (xbits.is_neg()) {
55       // exp(-Inf) = 0
56       if (xbits.is_inf())
57         return -1.0f;
58       // exp(nan) = nan
59       if (xbits.is_nan())
60         return x;
61       int round_mode = fputil::quick_get_round();
62       if (round_mode == FE_UPWARD || round_mode == FE_TOWARDZERO)
63         return -0x1.ffff'fep-1f; // -1.0f + 0x1.0p-24f
64       return -1.0f;
65     } else {
66       // x >= 89 or nan
67       if (xbits.uintval() >= 0x42b2'0000) {
68         if (xbits.uintval() < 0x7f80'0000U) {
69           int rounding = fputil::quick_get_round();
70           if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
71             return FPBits::max_normal().get_val();
72 
73           fputil::set_errno_if_required(ERANGE);
74           fputil::raise_except_if_required(FE_OVERFLOW);
75         }
76         return x + FPBits::inf().get_val();
77       }
78     }
79   }
80 
81   // |x| < 2^-4
82   if (x_abs < 0x3d80'0000U) {
83     // |x| < 2^-25
84     if (x_abs < 0x3300'0000U) {
85       // x = -0.0f
86       if (LIBC_UNLIKELY(xbits.uintval() == 0x8000'0000U))
87         return x;
88         // When |x| < 2^-25, the relative error of the approximation e^x - 1 ~ x
89         // is:
90         //   |(e^x - 1) - x| / |e^x - 1| < |x^2| / |x|
91         //                               = |x|
92         //                               < 2^-25
93         //                               < epsilon(1)/2.
94         // So the correctly rounded values of expm1(x) are:
95         //   = x + eps(x) if rounding mode = FE_UPWARD,
96         //                   or (rounding mode = FE_TOWARDZERO and x is
97         //                   negative),
98         //   = x otherwise.
99         // To simplify the rounding decision and make it more efficient, we use
100         //   fma(x, x, x) ~ x + x^2 instead.
101         // Note: to use the formula x + x^2 to decide the correct rounding, we
102         // do need fma(x, x, x) to prevent underflow caused by x*x when |x| <
103         // 2^-76. For targets without FMA instructions, we simply use double for
104         // intermediate results as it is more efficient than using an emulated
105         // version of FMA.
106 #if defined(LIBC_TARGET_CPU_HAS_FMA)
107       return fputil::fma(x, x, x);
108 #else
109       double xd = x;
110       return static_cast<float>(fputil::multiply_add(xd, xd, xd));
111 #endif // LIBC_TARGET_CPU_HAS_FMA
112     }
113 
114     constexpr double COEFFS[] = {0x1p-1,
115                                  0x1.55555555557ddp-3,
116                                  0x1.55555555552fap-5,
117                                  0x1.111110fcd58b7p-7,
118                                  0x1.6c16c1717660bp-10,
119                                  0x1.a0241f0006d62p-13,
120                                  0x1.a01e3f8d3c06p-16};
121 
122     // 2^-25 <= |x| < 2^-4
123     double xd = static_cast<double>(x);
124     double xsq = xd * xd;
125     // Degree-8 minimax polynomial generated by Sollya with:
126     // > display = hexadecimal;
127     // > P = fpminimax((expm1(x) - x)/x^2, 6, [|D...|], [-2^-4, 2^-4]);
128 
129     double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]);
130     double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]);
131     double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]);
132 
133     double r = fputil::polyeval(xsq, c0, c1, c2, COEFFS[6]);
134     return static_cast<float>(fputil::multiply_add(r, xsq, xd));
135   }
136 
137   // For -18 < x < 89, to compute expm1(x), we perform the following range
138   // reduction: find hi, mid, lo such that:
139   //   x = hi + mid + lo, in which
140   //     hi is an integer,
141   //     mid * 2^7 is an integer
142   //     -2^(-8) <= lo < 2^-8.
143   // In particular,
144   //   hi + mid = round(x * 2^7) * 2^(-7).
145   // Then,
146   //   expm1(x) = exp(hi + mid + lo) - 1 = exp(hi) * exp(mid) * exp(lo) - 1.
147   // We store exp(hi) and exp(mid) in the lookup tables EXP_M1 and EXP_M2
148   // respectively.  exp(lo) is computed using a degree-4 minimax polynomial
149   // generated by Sollya.
150 
151   // x_hi = hi + mid.
152   float kf = fputil::nearest_integer(x * 0x1.0p7f);
153   int x_hi = static_cast<int>(kf);
154   // Subtract (hi + mid) from x to get lo.
155   double xd = static_cast<double>(fputil::multiply_add(kf, -0x1.0p-7f, x));
156   x_hi += 104 << 7;
157   // hi = x_hi >> 7
158   double exp_hi = EXP_M1[x_hi >> 7];
159   // lo = x_hi & 0x0000'007fU;
160   double exp_mid = EXP_M2[x_hi & 0x7f];
161   double exp_hi_mid = exp_hi * exp_mid;
162   // Degree-4 minimax polynomial generated by Sollya with the following
163   // commands:
164   //   > display = hexadecimal;
165   //   > Q = fpminimax(expm1(x)/x, 3, [|D...|], [-2^-8, 2^-8]);
166   //   > Q;
167   double exp_lo =
168       fputil::polyeval(xd, 0x1.0p0, 0x1.ffffffffff777p-1, 0x1.000000000071cp-1,
169                        0x1.555566668e5e7p-3, 0x1.55555555ef243p-5);
170   return static_cast<float>(fputil::multiply_add(exp_hi_mid, exp_lo, -1.0));
171 }
172 
173 } // namespace LIBC_NAMESPACE
174