• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Single-precision log2(x) function ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/math/log2f.h"
10 #include "common_constants.h" // Lookup table for (1/f)
11 #include "src/__support/FPUtil/FEnvImpl.h"
12 #include "src/__support/FPUtil/FPBits.h"
13 #include "src/__support/FPUtil/PolyEval.h"
14 #include "src/__support/FPUtil/except_value_utils.h"
15 #include "src/__support/FPUtil/multiply_add.h"
16 #include "src/__support/common.h"
17 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
18 
19 // This is a correctly-rounded algorithm for log2(x) in single precision with
20 // round-to-nearest, tie-to-even mode from the RLIBM project at:
21 // https://people.cs.rutgers.edu/~sn349/rlibm
22 
23 // Step 1 - Range reduction:
24 //   For x = 2^m * 1.mant, log2(x) = m + log2(1.m)
25 //   If x is denormal, we normalize it by multiplying x by 2^23 and subtracting
26 //   m by 23.
27 
28 // Step 2 - Another range reduction:
29 //   To compute log(1.mant), let f be the highest 8 bits including the hidden
30 // bit, and d be the difference (1.mant - f), i.e. the remaining 16 bits of the
31 // mantissa. Then we have the following approximation formula:
32 //   log2(1.mant) = log2(f) + log2(1.mant / f)
33 //                = log2(f) + log2(1 + d/f)
34 //                ~ log2(f) + P(d/f)
35 // since d/f is sufficiently small.
36 //   log2(f) and 1/f are then stored in two 2^7 = 128 entries look-up tables.
37 
38 // Step 3 - Polynomial approximation:
39 //   To compute P(d/f), we use a single degree-5 polynomial in double precision
40 // which provides correct rounding for all but few exception values.
41 //   For more detail about how this polynomial is obtained, please refer to the
42 // papers:
43 //   Lim, J. and Nagarakatte, S., "One Polynomial Approximation to Produce
44 // Correctly Rounded Results of an Elementary Function for Multiple
45 // Representations and Rounding Modes", Proceedings of the 49th ACM SIGPLAN
46 // Symposium on Principles of Programming Languages (POPL-2022), Philadelphia,
47 // USA, Jan. 16-22, 2022.
48 // https://people.cs.rutgers.edu/~sn349/papers/rlibmall-popl-2022.pdf
49 //   Aanjaneya, M., Lim, J., and Nagarakatte, S., "RLibm-Prog: Progressive
50 // Polynomial Approximations for Fast Correctly Rounded Math Libraries",
51 // Dept. of Comp. Sci., Rutgets U., Technical Report DCS-TR-758, Nov. 2021.
52 // https://arxiv.org/pdf/2111.12852.pdf.
53 
54 namespace LIBC_NAMESPACE {
55 
56 LLVM_LIBC_FUNCTION(float, log2f, (float x)) {
57   using FPBits = typename fputil::FPBits<float>;
58 
59   FPBits xbits(x);
60   uint32_t x_u = xbits.uintval();
61 
62   // Hard to round value(s).
63   using fputil::round_result_slightly_up;
64 
65   int m = -FPBits::EXP_BIAS;
66 
67   // log2(1.0f) = 0.0f.
68   if (LIBC_UNLIKELY(x_u == 0x3f80'0000U))
69     return 0.0f;
70 
71   // Exceptional inputs.
72   if (LIBC_UNLIKELY(x_u < FPBits::min_normal().uintval() ||
73                     x_u > FPBits::max_normal().uintval())) {
74     if (xbits.is_zero()) {
75       fputil::set_errno_if_required(ERANGE);
76       fputil::raise_except_if_required(FE_DIVBYZERO);
77       return FPBits::inf(Sign::NEG).get_val();
78     }
79     if (xbits.is_neg() && !xbits.is_nan()) {
80       fputil::set_errno_if_required(EDOM);
81       fputil::raise_except(FE_INVALID);
82       return FPBits::quiet_nan().get_val();
83     }
84     if (xbits.is_inf_or_nan()) {
85       return x;
86     }
87     // Normalize denormal inputs.
88     xbits = FPBits(xbits.get_val() * 0x1.0p23f);
89     m -= 23;
90   }
91 
92   m += xbits.get_biased_exponent();
93   int index = xbits.get_mantissa() >> 16;
94   // Set bits to 1.m
95   xbits.set_biased_exponent(0x7F);
96 
97   float u = xbits.get_val();
98   double v;
99 #ifdef LIBC_TARGET_CPU_HAS_FMA
100   v = static_cast<double>(fputil::multiply_add(u, R[index], -1.0f)); // Exact.
101 #else
102   v = fputil::multiply_add(static_cast<double>(u), RD[index], -1.0); // Exact
103 #endif // LIBC_TARGET_CPU_HAS_FMA
104 
105   double extra_factor = static_cast<double>(m) + LOG2_R[index];
106 
107   // Degree-5 polynomial approximation of log2 generated by Sollya with:
108   // > P = fpminimax(log2(1 + x)/x, 4, [|1, D...|], [-2^-8, 2^-7]);
109   constexpr double COEFFS[5] = {0x1.71547652b8133p0, -0x1.71547652d1e33p-1,
110                                 0x1.ec70a098473dep-2, -0x1.7154c5ccdf121p-2,
111                                 0x1.2514fd90a130ap-2};
112 
113   double vsq = v * v; // Exact
114   double c0 = fputil::multiply_add(v, COEFFS[0], extra_factor);
115   double c1 = fputil::multiply_add(v, COEFFS[2], COEFFS[1]);
116   double c2 = fputil::multiply_add(v, COEFFS[4], COEFFS[3]);
117 
118   double r = fputil::polyeval(vsq, c0, c1, c2);
119 
120   return static_cast<float>(r);
121 }
122 
123 } // namespace LIBC_NAMESPACE
124