• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Single-precision sin function -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/math/sinf.h"
10 #include "sincosf_utils.h"
11 #include "src/__support/FPUtil/BasicOperations.h"
12 #include "src/__support/FPUtil/FEnvImpl.h"
13 #include "src/__support/FPUtil/FPBits.h"
14 #include "src/__support/FPUtil/PolyEval.h"
15 #include "src/__support/FPUtil/multiply_add.h"
16 #include "src/__support/FPUtil/rounding_mode.h"
17 #include "src/__support/common.h"
18 #include "src/__support/macros/optimization.h"            // LIBC_UNLIKELY
19 #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
20 
21 #include <errno.h>
22 
23 #if defined(LIBC_TARGET_CPU_HAS_FMA)
24 #include "range_reduction_fma.h"
25 #else
26 #include "range_reduction.h"
27 #endif
28 
29 namespace LIBC_NAMESPACE {
30 
31 LLVM_LIBC_FUNCTION(float, sinf, (float x)) {
32   using FPBits = typename fputil::FPBits<float>;
33   FPBits xbits(x);
34 
35   uint32_t x_u = xbits.uintval();
36   uint32_t x_abs = x_u & 0x7fff'ffffU;
37   double xd = static_cast<double>(x);
38 
39   // Range reduction:
40   // For |x| > pi/32, we perform range reduction as follows:
41   // Find k and y such that:
42   //   x = (k + y) * pi/32
43   //   k is an integer
44   //   |y| < 0.5
45   // For small range (|x| < 2^45 when FMA instructions are available, 2^22
46   // otherwise), this is done by performing:
47   //   k = round(x * 32/pi)
48   //   y = x * 32/pi - k
49   // For large range, we will omit all the higher parts of 32/pi such that the
50   // least significant bits of their full products with x are larger than 63,
51   // since sin((k + y + 64*i) * pi/32) = sin(x + i * 2pi) = sin(x).
52   //
53   // When FMA instructions are not available, we store the digits of 32/pi in
54   // chunks of 28-bit precision.  This will make sure that the products:
55   //   x * THIRTYTWO_OVER_PI_28[i] are all exact.
56   // When FMA instructions are available, we simply store the digits of 32/pi in
57   // chunks of doubles (53-bit of precision).
58   // So when multiplying by the largest values of single precision, the
59   // resulting output should be correct up to 2^(-208 + 128) ~ 2^-80.  By the
60   // worst-case analysis of range reduction, |y| >= 2^-38, so this should give
61   // us more than 40 bits of accuracy. For the worst-case estimation of range
62   // reduction, see for instances:
63   //   Elementary Functions by J-M. Muller, Chapter 11,
64   //   Handbook of Floating-Point Arithmetic by J-M. Muller et. al.,
65   //   Chapter 10.2.
66   //
67   // Once k and y are computed, we then deduce the answer by the sine of sum
68   // formula:
69   //   sin(x) = sin((k + y)*pi/32)
70   //          = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
71   // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..31 are precomputed
72   // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are
73   // computed using degree-7 and degree-6 minimax polynomials generated by
74   // Sollya respectively.
75 
76   // |x| <= pi/16
77   if (LIBC_UNLIKELY(x_abs <= 0x3e49'0fdbU)) {
78 
79     // |x| < 0x1.d12ed2p-12f
80     if (LIBC_UNLIKELY(x_abs < 0x39e8'9769U)) {
81       if (LIBC_UNLIKELY(x_abs == 0U)) {
82         // For signed zeros.
83         return x;
84       }
85       // When |x| < 2^-12, the relative error of the approximation sin(x) ~ x
86       // is:
87       //   |sin(x) - x| / |sin(x)| < |x^3| / (6|x|)
88       //                           = x^2 / 6
89       //                           < 2^-25
90       //                           < epsilon(1)/2.
91       // So the correctly rounded values of sin(x) are:
92       //   = x - sign(x)*eps(x) if rounding mode = FE_TOWARDZERO,
93       //                        or (rounding mode = FE_UPWARD and x is
94       //                        negative),
95       //   = x otherwise.
96       // To simplify the rounding decision and make it more efficient, we use
97       //   fma(x, -2^-25, x) instead.
98       // An exhaustive test shows that this formula work correctly for all
99       // rounding modes up to |x| < 0x1.c555dep-11f.
100       // Note: to use the formula x - 2^-25*x to decide the correct rounding, we
101       // do need fma(x, -2^-25, x) to prevent underflow caused by -2^-25*x when
102       // |x| < 2^-125. For targets without FMA instructions, we simply use
103       // double for intermediate results as it is more efficient than using an
104       // emulated version of FMA.
105 #if defined(LIBC_TARGET_CPU_HAS_FMA)
106       return fputil::multiply_add(x, -0x1.0p-25f, x);
107 #else
108       return static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, xd));
109 #endif // LIBC_TARGET_CPU_HAS_FMA
110     }
111 
112     // |x| < pi/16.
113     double xsq = xd * xd;
114 
115     // Degree-9 polynomial approximation:
116     //   sin(x) ~ x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9
117     //          = x (1 + a_3 x^2 + ... + a_9 x^8)
118     //          = x * P(x^2)
119     // generated by Sollya with the following commands:
120     // > display = hexadecimal;
121     // > Q = fpminimax(sin(x)/x, [|0, 2, 4, 6, 8|], [|1, D...|], [0, pi/16]);
122     double result =
123         fputil::polyeval(xsq, 1.0, -0x1.55555555554c6p-3, 0x1.1111111085e65p-7,
124                          -0x1.a019f70fb4d4fp-13, 0x1.718d179815e74p-19);
125     return static_cast<float>(xd * result);
126   }
127 
128   if (LIBC_UNLIKELY(x_abs == 0x4619'9998U)) { // x = 0x1.33333p13
129     float r = -0x1.63f4bap-2f;
130     int rounding = fputil::quick_get_round();
131     if ((rounding == FE_DOWNWARD && xbits.is_pos()) ||
132         (rounding == FE_UPWARD && xbits.is_neg()))
133       r = -0x1.63f4bcp-2f;
134     return xbits.is_neg() ? -r : r;
135   }
136 
137   if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) {
138     if (x_abs == 0x7f80'0000U) {
139       fputil::set_errno_if_required(EDOM);
140       fputil::raise_except_if_required(FE_INVALID);
141     }
142     return x + FPBits::quiet_nan().get_val();
143   }
144 
145   // Combine the results with the sine of sum formula:
146   //   sin(x) = sin((k + y)*pi/32)
147   //          = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
148   //          = sin_y * cos_k + (1 + cosm1_y) * sin_k
149   //          = sin_y * cos_k + (cosm1_y * sin_k + sin_k)
150   double sin_k, cos_k, sin_y, cosm1_y;
151 
152   sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y);
153 
154   return static_cast<float>(fputil::multiply_add(
155       sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k)));
156 }
157 
158 } // namespace LIBC_NAMESPACE
159