• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Unittests for strtold ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/__support/FPUtil/FPBits.h"
10 #include "src/__support/uint128.h"
11 #include "src/errno/libc_errno.h"
12 #include "src/stdlib/strtold.h"
13 
14 #include "test/UnitTest/Test.h"
15 
16 #include <stddef.h>
17 
18 #if defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64)
19 #define SELECT_CONST(val, _, __) val
20 #elif defined(LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80)
21 #define SELECT_CONST(_, val, __) val
22 #elif defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT128)
23 #define SELECT_CONST(_, __, val) val
24 #else
25 #error "Unknown long double type"
26 #endif
27 
28 class LlvmLibcStrToLDTest : public LIBC_NAMESPACE::testing::Test {
29 public:
30 #if defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64)
run_test(const char * inputString,const ptrdiff_t expectedStrLen,const uint64_t expectedRawData,const int expectedErrno=0)31   void run_test(const char *inputString, const ptrdiff_t expectedStrLen,
32                 const uint64_t expectedRawData, const int expectedErrno = 0)
33 #else
34   void run_test(const char *inputString, const ptrdiff_t expectedStrLen,
35                 const UInt128 expectedRawData, const int expectedErrno = 0)
36 #endif
37   {
38     // expectedRawData64 is the expected long double result as a uint64_t,
39     // organized according to the IEEE754 double precision format:
40     //
41     // +-- 1 Sign Bit                        +-- 52 Mantissa bits
42     // |                                     |
43     // |           +-------------------------+------------------------+
44     // |           |                                                  |
45     // SEEEEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
46     //  |         |
47     //  +----+----+
48     //       |
49     //       +-- 11 Exponent Bits
50 
51     // expectedRawData80 is the expected long double result as a UInt128,
52     // organized according to the x86 extended precision format:
53     //
54     // +-- 1 Sign Bit
55     // |
56     // |               +-- 1 Integer part bit (1 unless this is a subnormal)
57     // |               |
58     // SEEEEEEEEEEEEEEEIMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM...M
59     //  |             | |                                                      |
60     //  +------+------+ +---------------------------+--------------------------+
61     //         |                                    |
62     //         +-- 15 Exponent Bits                 +-- 63 Mantissa bits
63 
64     // expectedRawData128 is the expected long double result as a UInt128,
65     // organized according to IEEE754 quadruple precision format:
66     //
67     // +-- 1 Sign Bit                               +-- 112 Mantissa bits
68     // |                                            |
69     // |               +----------------------------+--------------------------+
70     // |               |                                                       |
71     // SEEEEEEEEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM...M
72     //  |             |
73     //  +------+------+
74     //         |
75     //         +-- 15 Exponent Bits
76     char *str_end = nullptr;
77 
78     LIBC_NAMESPACE::fputil::FPBits<long double> expected_fp =
79         LIBC_NAMESPACE::fputil::FPBits<long double>(expectedRawData);
80     const int expected_errno = expectedErrno;
81 
82     LIBC_NAMESPACE::libc_errno = 0;
83     long double result = LIBC_NAMESPACE::strtold(inputString, &str_end);
84 
85     LIBC_NAMESPACE::fputil::FPBits<long double> actual_fp =
86         LIBC_NAMESPACE::fputil::FPBits<long double>();
87     actual_fp = LIBC_NAMESPACE::fputil::FPBits<long double>(result);
88 
89     EXPECT_EQ(str_end - inputString, expectedStrLen);
90 
91     EXPECT_EQ(actual_fp.uintval(), expected_fp.uintval());
92     EXPECT_EQ(actual_fp.is_neg(), expected_fp.is_neg());
93     EXPECT_EQ(actual_fp.get_exponent(), expected_fp.get_exponent());
94     EXPECT_EQ(actual_fp.get_mantissa(), expected_fp.get_mantissa());
95     ASSERT_ERRNO_EQ(expected_errno);
96   }
97 };
98 
TEST_F(LlvmLibcStrToLDTest,SimpleTest)99 TEST_F(LlvmLibcStrToLDTest, SimpleTest) {
100   run_test("123", 3,
101            SELECT_CONST(uint64_t(0x405ec00000000000),
102                         UInt128(0x4005f60000) << 40,
103                         UInt128(0x4005ec0000000000) << 64));
104 
105   // This should fail on Eisel-Lemire, forcing a fallback to simple decimal
106   // conversion.
107   run_test("12345678901234549760", 20,
108            SELECT_CONST(uint64_t(0x43e56a95319d63d8),
109                         (UInt128(0x403eab54a9) << 40) + UInt128(0x8ceb1ec400),
110                         (UInt128(0x403e56a95319d63d) << 64) +
111                             UInt128(0x8800000000000000)));
112 
113   // Found while looking for difficult test cases here:
114   // https://github.com/nigeltao/parse-number-fxx-test-data/blob/main/more-test-cases/golang-org-issue-36657.txt
115   run_test("1090544144181609348835077142190", 31,
116            SELECT_CONST(uint64_t(0x462b8779f2474dfb),
117                         (UInt128(0x4062dc3bcf) << 40) + UInt128(0x923a6fd402),
118                         (UInt128(0x4062b8779f2474df) << 64) +
119                             UInt128(0xa804bfd8c6d5c000)));
120 
121   run_test("0x123", 5,
122            SELECT_CONST(uint64_t(0x4072300000000000),
123                         (UInt128(0x4007918000) << 40),
124                         (UInt128(0x4007230000000000) << 64)));
125 }
126 
127 // These are tests that have caused problems for doubles in the past.
TEST_F(LlvmLibcStrToLDTest,Float64SpecificFailures)128 TEST_F(LlvmLibcStrToLDTest, Float64SpecificFailures) {
129   run_test("3E70000000000000", 16,
130            SELECT_CONST(uint64_t(0x7FF0000000000000),
131                         (UInt128(0x7fff800000) << 40),
132                         (UInt128(0x7fff000000000000) << 64)),
133            ERANGE);
134   run_test("358416272e-33", 13,
135            SELECT_CONST(uint64_t(0x3adbbb2a68c9d0b9),
136                         (UInt128(0x3fadddd953) << 40) + UInt128(0x464e85c400),
137                         (UInt128(0x3fadbbb2a68c9d0b) << 64) +
138                             UInt128(0x8800e7969e1c5fc8)));
139   run_test("2.16656806400000023841857910156251e9", 36,
140            SELECT_CONST(uint64_t(0x41e0246690000001),
141                         (UInt128(0x401e812334) << 40) + UInt128(0x8000000400),
142                         (UInt128(0x401e024669000000) << 64) +
143                             UInt128(0x800000000000018)));
144   run_test("27949676547093071875", 20,
145            SELECT_CONST(uint64_t(0x43f83e132bc608c9),
146                         (UInt128(0x403fc1f099) << 40) + UInt128(0x5e30464402),
147                         (UInt128(0x403f83e132bc608c) << 64) +
148                             UInt128(0x8803000000000000)));
149 }
150 
TEST_F(LlvmLibcStrToLDTest,Float80SpecificFailures)151 TEST_F(LlvmLibcStrToLDTest, Float80SpecificFailures) {
152   run_test("7777777777777777777777777777777777777777777777777777777777777777777"
153            "777777777777777777777777777777777",
154            100,
155            SELECT_CONST(uint64_t(0x54ac729b8fcaf734),
156                         (UInt128(0x414ae394dc) << 40) + UInt128(0x7e57b9a0c2),
157                         (UInt128(0x414ac729b8fcaf73) << 64) +
158                             UInt128(0x4184a3d793224129)));
159 }
160 
TEST_F(LlvmLibcStrToLDTest,MaxSizeNumbers)161 TEST_F(LlvmLibcStrToLDTest, MaxSizeNumbers) {
162   run_test("1.1897314953572317650e4932", 26,
163            SELECT_CONST(uint64_t(0x7FF0000000000000),
164                         (UInt128(0x7ffeffffff) << 40) + UInt128(0xffffffffff),
165                         (UInt128(0x7ffeffffffffffff) << 64) +
166                             UInt128(0xfffd57322e3f8675)),
167            SELECT_CONST(ERANGE, 0, 0));
168   run_test("1.18973149535723176508e4932", 27,
169            SELECT_CONST(uint64_t(0x7FF0000000000000),
170                         (UInt128(0x7fff800000) << 40),
171                         (UInt128(0x7ffeffffffffffff) << 64) +
172                             UInt128(0xffffd2478338036c)),
173            SELECT_CONST(ERANGE, ERANGE, 0));
174 }
175 
176 // These tests check subnormal behavior for 80 bit and 128 bit floats. They will
177 // be too small for 64 bit floats.
TEST_F(LlvmLibcStrToLDTest,SubnormalTests)178 TEST_F(LlvmLibcStrToLDTest, SubnormalTests) {
179   run_test("1e-4950", 7,
180            SELECT_CONST(uint64_t(0), (UInt128(0x00000000000000000003)),
181                         (UInt128(0x000000000000000000057c9647e1a018))),
182            ERANGE);
183   run_test("1.89e-4951", 10,
184            SELECT_CONST(uint64_t(0), (UInt128(0x00000000000000000001)),
185                         (UInt128(0x0000000000000000000109778a006738))),
186            ERANGE);
187   run_test("4e-4966", 7,
188            SELECT_CONST(uint64_t(0), (UInt128(0)),
189                         (UInt128(0x00000000000000000000000000000001))),
190            ERANGE);
191 }
192 
TEST_F(LlvmLibcStrToLDTest,SmallNormalTests)193 TEST_F(LlvmLibcStrToLDTest, SmallNormalTests) {
194   run_test("3.37e-4932", 10,
195            SELECT_CONST(
196                uint64_t(0), (UInt128(0x1804cf7) << 40) + UInt128(0x908850712),
197                (UInt128(0x10099ee12110a) << 64) + UInt128(0xe24b75c0f50dc0c)),
198            SELECT_CONST(ERANGE, 0, 0));
199 }
200 
TEST_F(LlvmLibcStrToLDTest,ComplexHexadecimalTests)201 TEST_F(LlvmLibcStrToLDTest, ComplexHexadecimalTests) {
202   run_test("0x1p16383", 9,
203            SELECT_CONST(0x7ff0000000000000, (UInt128(0x7ffe800000) << 40),
204                         (UInt128(0x7ffe000000000000) << 64)),
205            SELECT_CONST(ERANGE, 0, 0));
206   run_test("0x123456789abcdef", 17,
207            SELECT_CONST(0x43723456789abcdf,
208                         (UInt128(0x403791a2b3) << 40) + UInt128(0xc4d5e6f780),
209                         (UInt128(0x403723456789abcd) << 64) +
210                             UInt128(0xef00000000000000)));
211   run_test("0x123456789abcdef0123456789ABCDEF", 33,
212            SELECT_CONST(0x47723456789abcdf,
213                         (UInt128(0x407791a2b3) << 40) + UInt128(0xc4d5e6f781),
214                         (UInt128(0x407723456789abcd) << 64) +
215                             UInt128(0xef0123456789abce)));
216 }
217 
TEST_F(LlvmLibcStrToLDTest,InfTests)218 TEST_F(LlvmLibcStrToLDTest, InfTests) {
219   run_test("INF", 3,
220            SELECT_CONST(0x7ff0000000000000, (UInt128(0x7fff800000) << 40),
221                         (UInt128(0x7fff000000000000) << 64)));
222   run_test("INFinity", 8,
223            SELECT_CONST(0x7ff0000000000000, (UInt128(0x7fff800000) << 40),
224                         (UInt128(0x7fff000000000000) << 64)));
225   run_test("-inf", 4,
226            SELECT_CONST(0xfff0000000000000, (UInt128(0xffff800000) << 40),
227                         (UInt128(0xffff000000000000) << 64)));
228 }
229 
TEST_F(LlvmLibcStrToLDTest,NaNTests)230 TEST_F(LlvmLibcStrToLDTest, NaNTests) {
231   run_test("NaN", 3,
232            SELECT_CONST(0x7ff8000000000000, (UInt128(0x7fffc00000) << 40),
233                         (UInt128(0x7fff800000000000) << 64)));
234   run_test("-nAn", 4,
235            SELECT_CONST(0xfff8000000000000, (UInt128(0xffffc00000) << 40),
236                         (UInt128(0xffff800000000000) << 64)));
237   run_test("NaN()", 5,
238            SELECT_CONST(0x7ff8000000000000, (UInt128(0x7fffc00000) << 40),
239                         (UInt128(0x7fff800000000000) << 64)));
240   run_test("NaN(1234)", 9,
241            SELECT_CONST(0x7ff80000000004d2,
242                         (UInt128(0x7fffc00000) << 40) + UInt128(0x4d2),
243                         (UInt128(0x7fff800000000000) << 64) + UInt128(0x4d2)));
244   run_test("NaN(0xffffffffffff)", 19,
245            SELECT_CONST(0x7ff8ffffffffffff,
246                         (UInt128(0x7fffc000ff) << 40) + UInt128(0xffffffffff),
247                         (UInt128(0x7fff800000000000) << 64) +
248                             UInt128(0xffffffffffff)));
249   run_test("NaN(0xfffffffffffff)", 20,
250            SELECT_CONST(0x7fffffffffffffff,
251                         (UInt128(0x7fffc00fff) << 40) + UInt128(0xffffffffff),
252                         (UInt128(0x7fff800000000000) << 64) +
253                             UInt128(0xfffffffffffff)));
254   run_test("NaN(0xffffffffffffffff)", 23,
255            SELECT_CONST(0x7fffffffffffffff,
256                         (UInt128(0x7fffffffff) << 40) + UInt128(0xffffffffff),
257                         (UInt128(0x7fff800000000000) << 64) +
258                             UInt128(0xffffffffffffffff)));
259   run_test("NaN( 1234)", 3,
260            SELECT_CONST(0x7ff8000000000000, (UInt128(0x7fffc00000) << 40),
261                         (UInt128(0x7fff800000000000) << 64)));
262 }
263