1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic RegisterCoalescer interface which
11 // is used as the common interface used by all clients and
12 // implementations of register coalescing.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "RegisterCoalescer.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/LiveRangeEdit.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineLoopInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/RegisterClassInfo.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/Target/TargetSubtargetInfo.h"
40 #include <algorithm>
41 #include <cmath>
42 using namespace llvm;
43
44 #define DEBUG_TYPE "regalloc"
45
46 STATISTIC(numJoins , "Number of interval joins performed");
47 STATISTIC(numCrossRCs , "Number of cross class joins performed");
48 STATISTIC(numCommutes , "Number of instruction commuting performed");
49 STATISTIC(numExtends , "Number of copies extended");
50 STATISTIC(NumReMats , "Number of instructions re-materialized");
51 STATISTIC(NumInflated , "Number of register classes inflated");
52 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
53 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
54
55 static cl::opt<bool>
56 EnableJoining("join-liveintervals",
57 cl::desc("Coalesce copies (default=true)"),
58 cl::init(true));
59
60 static cl::opt<bool> UseTerminalRule("terminal-rule",
61 cl::desc("Apply the terminal rule"),
62 cl::init(false), cl::Hidden);
63
64 /// Temporary flag to test critical edge unsplitting.
65 static cl::opt<bool>
66 EnableJoinSplits("join-splitedges",
67 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
68
69 /// Temporary flag to test global copy optimization.
70 static cl::opt<cl::boolOrDefault>
71 EnableGlobalCopies("join-globalcopies",
72 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
73 cl::init(cl::BOU_UNSET), cl::Hidden);
74
75 static cl::opt<bool>
76 VerifyCoalescing("verify-coalescing",
77 cl::desc("Verify machine instrs before and after register coalescing"),
78 cl::Hidden);
79
80 namespace {
81 class RegisterCoalescer : public MachineFunctionPass,
82 private LiveRangeEdit::Delegate {
83 MachineFunction* MF;
84 MachineRegisterInfo* MRI;
85 const TargetMachine* TM;
86 const TargetRegisterInfo* TRI;
87 const TargetInstrInfo* TII;
88 LiveIntervals *LIS;
89 const MachineLoopInfo* Loops;
90 AliasAnalysis *AA;
91 RegisterClassInfo RegClassInfo;
92
93 /// A LaneMask to remember on which subregister live ranges we need to call
94 /// shrinkToUses() later.
95 LaneBitmask ShrinkMask;
96
97 /// True if the main range of the currently coalesced intervals should be
98 /// checked for smaller live intervals.
99 bool ShrinkMainRange;
100
101 /// \brief True if the coalescer should aggressively coalesce global copies
102 /// in favor of keeping local copies.
103 bool JoinGlobalCopies;
104
105 /// \brief True if the coalescer should aggressively coalesce fall-thru
106 /// blocks exclusively containing copies.
107 bool JoinSplitEdges;
108
109 /// Copy instructions yet to be coalesced.
110 SmallVector<MachineInstr*, 8> WorkList;
111 SmallVector<MachineInstr*, 8> LocalWorkList;
112
113 /// Set of instruction pointers that have been erased, and
114 /// that may be present in WorkList.
115 SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
116
117 /// Dead instructions that are about to be deleted.
118 SmallVector<MachineInstr*, 8> DeadDefs;
119
120 /// Virtual registers to be considered for register class inflation.
121 SmallVector<unsigned, 8> InflateRegs;
122
123 /// Recursively eliminate dead defs in DeadDefs.
124 void eliminateDeadDefs();
125
126 /// LiveRangeEdit callback for eliminateDeadDefs().
127 void LRE_WillEraseInstruction(MachineInstr *MI) override;
128
129 /// Coalesce the LocalWorkList.
130 void coalesceLocals();
131
132 /// Join compatible live intervals
133 void joinAllIntervals();
134
135 /// Coalesce copies in the specified MBB, putting
136 /// copies that cannot yet be coalesced into WorkList.
137 void copyCoalesceInMBB(MachineBasicBlock *MBB);
138
139 /// Tries to coalesce all copies in CurrList. Returns true if any progress
140 /// was made.
141 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
142
143 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
144 /// src/dst of the copy instruction CopyMI. This returns true if the copy
145 /// was successfully coalesced away. If it is not currently possible to
146 /// coalesce this interval, but it may be possible if other things get
147 /// coalesced, then it returns true by reference in 'Again'.
148 bool joinCopy(MachineInstr *TheCopy, bool &Again);
149
150 /// Attempt to join these two intervals. On failure, this
151 /// returns false. The output "SrcInt" will not have been modified, so we
152 /// can use this information below to update aliases.
153 bool joinIntervals(CoalescerPair &CP);
154
155 /// Attempt joining two virtual registers. Return true on success.
156 bool joinVirtRegs(CoalescerPair &CP);
157
158 /// Attempt joining with a reserved physreg.
159 bool joinReservedPhysReg(CoalescerPair &CP);
160
161 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
162 /// Subranges in @p LI which only partially interfere with the desired
163 /// LaneMask are split as necessary. @p LaneMask are the lanes that
164 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
165 /// lanemasks already adjusted to the coalesced register.
166 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
167 LaneBitmask LaneMask, CoalescerPair &CP);
168
169 /// Join the liveranges of two subregisters. Joins @p RRange into
170 /// @p LRange, @p RRange may be invalid afterwards.
171 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
172 LaneBitmask LaneMask, const CoalescerPair &CP);
173
174 /// We found a non-trivially-coalescable copy. If the source value number is
175 /// defined by a copy from the destination reg see if we can merge these two
176 /// destination reg valno# into a single value number, eliminating a copy.
177 /// This returns true if an interval was modified.
178 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
179
180 /// Return true if there are definitions of IntB
181 /// other than BValNo val# that can reach uses of AValno val# of IntA.
182 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
183 VNInfo *AValNo, VNInfo *BValNo);
184
185 /// We found a non-trivially-coalescable copy.
186 /// If the source value number is defined by a commutable instruction and
187 /// its other operand is coalesced to the copy dest register, see if we
188 /// can transform the copy into a noop by commuting the definition.
189 /// This returns true if an interval was modified.
190 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
191
192 /// If the source of a copy is defined by a
193 /// trivial computation, replace the copy by rematerialize the definition.
194 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
195 bool &IsDefCopy);
196
197 /// Return true if a copy involving a physreg should be joined.
198 bool canJoinPhys(const CoalescerPair &CP);
199
200 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
201 /// number if it is not zero. If DstReg is a physical register and the
202 /// existing subregister number of the def / use being updated is not zero,
203 /// make sure to set it to the correct physical subregister.
204 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
205
206 /// If the given machine operand reads only undefined lanes add an undef
207 /// flag.
208 /// This can happen when undef uses were previously concealed by a copy
209 /// which we coalesced. Example:
210 /// %vreg0:sub0<def,read-undef> = ...
211 /// %vreg1 = COPY %vreg0 <-- Coalescing COPY reveals undef
212 /// = use %vreg1:sub1 <-- hidden undef use
213 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
214 MachineOperand &MO, unsigned SubRegIdx);
215
216 /// Handle copies of undef values.
217 /// Returns true if @p CopyMI was a copy of an undef value and eliminated.
218 bool eliminateUndefCopy(MachineInstr *CopyMI);
219
220 /// Check whether or not we should apply the terminal rule on the
221 /// destination (Dst) of \p Copy.
222 /// When the terminal rule applies, Copy is not profitable to
223 /// coalesce.
224 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
225 /// at least one interference (Dst, Dst2). If Dst is terminal, the
226 /// terminal rule consists in checking that at least one of
227 /// interfering node, say Dst2, has an affinity of equal or greater
228 /// weight with Src.
229 /// In that case, Dst2 and Dst will not be able to be both coalesced
230 /// with Src. Since Dst2 exposes more coalescing opportunities than
231 /// Dst, we can drop \p Copy.
232 bool applyTerminalRule(const MachineInstr &Copy) const;
233
234 /// Wrapper method for \see LiveIntervals::shrinkToUses.
235 /// This method does the proper fixing of the live-ranges when the afore
236 /// mentioned method returns true.
shrinkToUses(LiveInterval * LI,SmallVectorImpl<MachineInstr * > * Dead=nullptr)237 void shrinkToUses(LiveInterval *LI,
238 SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
239 if (LIS->shrinkToUses(LI, Dead)) {
240 /// Check whether or not \p LI is composed by multiple connected
241 /// components and if that is the case, fix that.
242 SmallVector<LiveInterval*, 8> SplitLIs;
243 LIS->splitSeparateComponents(*LI, SplitLIs);
244 }
245 }
246
247 public:
248 static char ID; ///< Class identification, replacement for typeinfo
RegisterCoalescer()249 RegisterCoalescer() : MachineFunctionPass(ID) {
250 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
251 }
252
253 void getAnalysisUsage(AnalysisUsage &AU) const override;
254
255 void releaseMemory() override;
256
257 /// This is the pass entry point.
258 bool runOnMachineFunction(MachineFunction&) override;
259
260 /// Implement the dump method.
261 void print(raw_ostream &O, const Module* = nullptr) const override;
262 };
263 } // end anonymous namespace
264
265 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
266
267 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
268 "Simple Register Coalescing", false, false)
269 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
270 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
271 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
272 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
273 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
274 "Simple Register Coalescing", false, false)
275
276 char RegisterCoalescer::ID = 0;
277
isMoveInstr(const TargetRegisterInfo & tri,const MachineInstr * MI,unsigned & Src,unsigned & Dst,unsigned & SrcSub,unsigned & DstSub)278 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
279 unsigned &Src, unsigned &Dst,
280 unsigned &SrcSub, unsigned &DstSub) {
281 if (MI->isCopy()) {
282 Dst = MI->getOperand(0).getReg();
283 DstSub = MI->getOperand(0).getSubReg();
284 Src = MI->getOperand(1).getReg();
285 SrcSub = MI->getOperand(1).getSubReg();
286 } else if (MI->isSubregToReg()) {
287 Dst = MI->getOperand(0).getReg();
288 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
289 MI->getOperand(3).getImm());
290 Src = MI->getOperand(2).getReg();
291 SrcSub = MI->getOperand(2).getSubReg();
292 } else
293 return false;
294 return true;
295 }
296
297 /// Return true if this block should be vacated by the coalescer to eliminate
298 /// branches. The important cases to handle in the coalescer are critical edges
299 /// split during phi elimination which contain only copies. Simple blocks that
300 /// contain non-branches should also be vacated, but this can be handled by an
301 /// earlier pass similar to early if-conversion.
isSplitEdge(const MachineBasicBlock * MBB)302 static bool isSplitEdge(const MachineBasicBlock *MBB) {
303 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
304 return false;
305
306 for (const auto &MI : *MBB) {
307 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
308 return false;
309 }
310 return true;
311 }
312
setRegisters(const MachineInstr * MI)313 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
314 SrcReg = DstReg = 0;
315 SrcIdx = DstIdx = 0;
316 NewRC = nullptr;
317 Flipped = CrossClass = false;
318
319 unsigned Src, Dst, SrcSub, DstSub;
320 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
321 return false;
322 Partial = SrcSub || DstSub;
323
324 // If one register is a physreg, it must be Dst.
325 if (TargetRegisterInfo::isPhysicalRegister(Src)) {
326 if (TargetRegisterInfo::isPhysicalRegister(Dst))
327 return false;
328 std::swap(Src, Dst);
329 std::swap(SrcSub, DstSub);
330 Flipped = true;
331 }
332
333 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
334
335 if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
336 // Eliminate DstSub on a physreg.
337 if (DstSub) {
338 Dst = TRI.getSubReg(Dst, DstSub);
339 if (!Dst) return false;
340 DstSub = 0;
341 }
342
343 // Eliminate SrcSub by picking a corresponding Dst superregister.
344 if (SrcSub) {
345 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
346 if (!Dst) return false;
347 } else if (!MRI.getRegClass(Src)->contains(Dst)) {
348 return false;
349 }
350 } else {
351 // Both registers are virtual.
352 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
353 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
354
355 // Both registers have subreg indices.
356 if (SrcSub && DstSub) {
357 // Copies between different sub-registers are never coalescable.
358 if (Src == Dst && SrcSub != DstSub)
359 return false;
360
361 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
362 SrcIdx, DstIdx);
363 if (!NewRC)
364 return false;
365 } else if (DstSub) {
366 // SrcReg will be merged with a sub-register of DstReg.
367 SrcIdx = DstSub;
368 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
369 } else if (SrcSub) {
370 // DstReg will be merged with a sub-register of SrcReg.
371 DstIdx = SrcSub;
372 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
373 } else {
374 // This is a straight copy without sub-registers.
375 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
376 }
377
378 // The combined constraint may be impossible to satisfy.
379 if (!NewRC)
380 return false;
381
382 // Prefer SrcReg to be a sub-register of DstReg.
383 // FIXME: Coalescer should support subregs symmetrically.
384 if (DstIdx && !SrcIdx) {
385 std::swap(Src, Dst);
386 std::swap(SrcIdx, DstIdx);
387 Flipped = !Flipped;
388 }
389
390 CrossClass = NewRC != DstRC || NewRC != SrcRC;
391 }
392 // Check our invariants
393 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
394 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
395 "Cannot have a physical SubIdx");
396 SrcReg = Src;
397 DstReg = Dst;
398 return true;
399 }
400
flip()401 bool CoalescerPair::flip() {
402 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
403 return false;
404 std::swap(SrcReg, DstReg);
405 std::swap(SrcIdx, DstIdx);
406 Flipped = !Flipped;
407 return true;
408 }
409
isCoalescable(const MachineInstr * MI) const410 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
411 if (!MI)
412 return false;
413 unsigned Src, Dst, SrcSub, DstSub;
414 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
415 return false;
416
417 // Find the virtual register that is SrcReg.
418 if (Dst == SrcReg) {
419 std::swap(Src, Dst);
420 std::swap(SrcSub, DstSub);
421 } else if (Src != SrcReg) {
422 return false;
423 }
424
425 // Now check that Dst matches DstReg.
426 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
427 if (!TargetRegisterInfo::isPhysicalRegister(Dst))
428 return false;
429 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
430 // DstSub could be set for a physreg from INSERT_SUBREG.
431 if (DstSub)
432 Dst = TRI.getSubReg(Dst, DstSub);
433 // Full copy of Src.
434 if (!SrcSub)
435 return DstReg == Dst;
436 // This is a partial register copy. Check that the parts match.
437 return TRI.getSubReg(DstReg, SrcSub) == Dst;
438 } else {
439 // DstReg is virtual.
440 if (DstReg != Dst)
441 return false;
442 // Registers match, do the subregisters line up?
443 return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
444 TRI.composeSubRegIndices(DstIdx, DstSub);
445 }
446 }
447
getAnalysisUsage(AnalysisUsage & AU) const448 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
449 AU.setPreservesCFG();
450 AU.addRequired<AAResultsWrapperPass>();
451 AU.addRequired<LiveIntervals>();
452 AU.addPreserved<LiveIntervals>();
453 AU.addPreserved<SlotIndexes>();
454 AU.addRequired<MachineLoopInfo>();
455 AU.addPreserved<MachineLoopInfo>();
456 AU.addPreservedID(MachineDominatorsID);
457 MachineFunctionPass::getAnalysisUsage(AU);
458 }
459
eliminateDeadDefs()460 void RegisterCoalescer::eliminateDeadDefs() {
461 SmallVector<unsigned, 8> NewRegs;
462 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
463 nullptr, this).eliminateDeadDefs(DeadDefs);
464 }
465
LRE_WillEraseInstruction(MachineInstr * MI)466 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
467 // MI may be in WorkList. Make sure we don't visit it.
468 ErasedInstrs.insert(MI);
469 }
470
adjustCopiesBackFrom(const CoalescerPair & CP,MachineInstr * CopyMI)471 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
472 MachineInstr *CopyMI) {
473 assert(!CP.isPartial() && "This doesn't work for partial copies.");
474 assert(!CP.isPhys() && "This doesn't work for physreg copies.");
475
476 LiveInterval &IntA =
477 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
478 LiveInterval &IntB =
479 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
480 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
481
482 // We have a non-trivially-coalescable copy with IntA being the source and
483 // IntB being the dest, thus this defines a value number in IntB. If the
484 // source value number (in IntA) is defined by a copy from B, see if we can
485 // merge these two pieces of B into a single value number, eliminating a copy.
486 // For example:
487 //
488 // A3 = B0
489 // ...
490 // B1 = A3 <- this copy
491 //
492 // In this case, B0 can be extended to where the B1 copy lives, allowing the
493 // B1 value number to be replaced with B0 (which simplifies the B
494 // liveinterval).
495
496 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
497 // the example above.
498 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
499 if (BS == IntB.end()) return false;
500 VNInfo *BValNo = BS->valno;
501
502 // Get the location that B is defined at. Two options: either this value has
503 // an unknown definition point or it is defined at CopyIdx. If unknown, we
504 // can't process it.
505 if (BValNo->def != CopyIdx) return false;
506
507 // AValNo is the value number in A that defines the copy, A3 in the example.
508 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
509 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
510 // The live segment might not exist after fun with physreg coalescing.
511 if (AS == IntA.end()) return false;
512 VNInfo *AValNo = AS->valno;
513
514 // If AValNo is defined as a copy from IntB, we can potentially process this.
515 // Get the instruction that defines this value number.
516 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
517 // Don't allow any partial copies, even if isCoalescable() allows them.
518 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
519 return false;
520
521 // Get the Segment in IntB that this value number starts with.
522 LiveInterval::iterator ValS =
523 IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
524 if (ValS == IntB.end())
525 return false;
526
527 // Make sure that the end of the live segment is inside the same block as
528 // CopyMI.
529 MachineInstr *ValSEndInst =
530 LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
531 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
532 return false;
533
534 // Okay, we now know that ValS ends in the same block that the CopyMI
535 // live-range starts. If there are no intervening live segments between them
536 // in IntB, we can merge them.
537 if (ValS+1 != BS) return false;
538
539 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
540
541 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
542 // We are about to delete CopyMI, so need to remove it as the 'instruction
543 // that defines this value #'. Update the valnum with the new defining
544 // instruction #.
545 BValNo->def = FillerStart;
546
547 // Okay, we can merge them. We need to insert a new liverange:
548 // [ValS.end, BS.begin) of either value number, then we merge the
549 // two value numbers.
550 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
551
552 // Okay, merge "B1" into the same value number as "B0".
553 if (BValNo != ValS->valno)
554 IntB.MergeValueNumberInto(BValNo, ValS->valno);
555
556 // Do the same for the subregister segments.
557 for (LiveInterval::SubRange &S : IntB.subranges()) {
558 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
559 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
560 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
561 if (SubBValNo != SubValSNo)
562 S.MergeValueNumberInto(SubBValNo, SubValSNo);
563 }
564
565 DEBUG(dbgs() << " result = " << IntB << '\n');
566
567 // If the source instruction was killing the source register before the
568 // merge, unset the isKill marker given the live range has been extended.
569 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
570 if (UIdx != -1) {
571 ValSEndInst->getOperand(UIdx).setIsKill(false);
572 }
573
574 // Rewrite the copy. If the copy instruction was killing the destination
575 // register before the merge, find the last use and trim the live range. That
576 // will also add the isKill marker.
577 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
578 if (AS->end == CopyIdx)
579 shrinkToUses(&IntA);
580
581 ++numExtends;
582 return true;
583 }
584
hasOtherReachingDefs(LiveInterval & IntA,LiveInterval & IntB,VNInfo * AValNo,VNInfo * BValNo)585 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
586 LiveInterval &IntB,
587 VNInfo *AValNo,
588 VNInfo *BValNo) {
589 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
590 // the PHI values.
591 if (LIS->hasPHIKill(IntA, AValNo))
592 return true;
593
594 for (LiveRange::Segment &ASeg : IntA.segments) {
595 if (ASeg.valno != AValNo) continue;
596 LiveInterval::iterator BI =
597 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
598 if (BI != IntB.begin())
599 --BI;
600 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
601 if (BI->valno == BValNo)
602 continue;
603 if (BI->start <= ASeg.start && BI->end > ASeg.start)
604 return true;
605 if (BI->start > ASeg.start && BI->start < ASeg.end)
606 return true;
607 }
608 }
609 return false;
610 }
611
612 /// Copy segements with value number @p SrcValNo from liverange @p Src to live
613 /// range @Dst and use value number @p DstValNo there.
addSegmentsWithValNo(LiveRange & Dst,VNInfo * DstValNo,const LiveRange & Src,const VNInfo * SrcValNo)614 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo,
615 const LiveRange &Src, const VNInfo *SrcValNo)
616 {
617 for (const LiveRange::Segment &S : Src.segments) {
618 if (S.valno != SrcValNo)
619 continue;
620 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo));
621 }
622 }
623
removeCopyByCommutingDef(const CoalescerPair & CP,MachineInstr * CopyMI)624 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
625 MachineInstr *CopyMI) {
626 assert(!CP.isPhys());
627
628 LiveInterval &IntA =
629 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
630 LiveInterval &IntB =
631 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
632
633 // We found a non-trivially-coalescable copy with IntA being the source and
634 // IntB being the dest, thus this defines a value number in IntB. If the
635 // source value number (in IntA) is defined by a commutable instruction and
636 // its other operand is coalesced to the copy dest register, see if we can
637 // transform the copy into a noop by commuting the definition. For example,
638 //
639 // A3 = op A2 B0<kill>
640 // ...
641 // B1 = A3 <- this copy
642 // ...
643 // = op A3 <- more uses
644 //
645 // ==>
646 //
647 // B2 = op B0 A2<kill>
648 // ...
649 // B1 = B2 <- now an identity copy
650 // ...
651 // = op B2 <- more uses
652
653 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
654 // the example above.
655 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
656 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
657 assert(BValNo != nullptr && BValNo->def == CopyIdx);
658
659 // AValNo is the value number in A that defines the copy, A3 in the example.
660 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
661 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
662 if (AValNo->isPHIDef())
663 return false;
664 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
665 if (!DefMI)
666 return false;
667 if (!DefMI->isCommutable())
668 return false;
669 // If DefMI is a two-address instruction then commuting it will change the
670 // destination register.
671 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
672 assert(DefIdx != -1);
673 unsigned UseOpIdx;
674 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
675 return false;
676
677 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
678 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
679 // passed to the method. That _other_ operand is chosen by
680 // the findCommutedOpIndices() method.
681 //
682 // That is obviously an area for improvement in case of instructions having
683 // more than 2 operands. For example, if some instruction has 3 commutable
684 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
685 // op#2<->op#3) of commute transformation should be considered/tried here.
686 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
687 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
688 return false;
689
690 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
691 unsigned NewReg = NewDstMO.getReg();
692 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
693 return false;
694
695 // Make sure there are no other definitions of IntB that would reach the
696 // uses which the new definition can reach.
697 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
698 return false;
699
700 // If some of the uses of IntA.reg is already coalesced away, return false.
701 // It's not possible to determine whether it's safe to perform the coalescing.
702 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
703 MachineInstr *UseMI = MO.getParent();
704 unsigned OpNo = &MO - &UseMI->getOperand(0);
705 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
706 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
707 if (US == IntA.end() || US->valno != AValNo)
708 continue;
709 // If this use is tied to a def, we can't rewrite the register.
710 if (UseMI->isRegTiedToDefOperand(OpNo))
711 return false;
712 }
713
714 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
715 << *DefMI);
716
717 // At this point we have decided that it is legal to do this
718 // transformation. Start by commuting the instruction.
719 MachineBasicBlock *MBB = DefMI->getParent();
720 MachineInstr *NewMI =
721 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
722 if (!NewMI)
723 return false;
724 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
725 TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
726 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
727 return false;
728 if (NewMI != DefMI) {
729 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
730 MachineBasicBlock::iterator Pos = DefMI;
731 MBB->insert(Pos, NewMI);
732 MBB->erase(DefMI);
733 }
734
735 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
736 // A = or A, B
737 // ...
738 // B = A
739 // ...
740 // C = A<kill>
741 // ...
742 // = B
743
744 // Update uses of IntA of the specific Val# with IntB.
745 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
746 UE = MRI->use_end();
747 UI != UE; /* ++UI is below because of possible MI removal */) {
748 MachineOperand &UseMO = *UI;
749 ++UI;
750 if (UseMO.isUndef())
751 continue;
752 MachineInstr *UseMI = UseMO.getParent();
753 if (UseMI->isDebugValue()) {
754 // FIXME These don't have an instruction index. Not clear we have enough
755 // info to decide whether to do this replacement or not. For now do it.
756 UseMO.setReg(NewReg);
757 continue;
758 }
759 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
760 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
761 assert(US != IntA.end() && "Use must be live");
762 if (US->valno != AValNo)
763 continue;
764 // Kill flags are no longer accurate. They are recomputed after RA.
765 UseMO.setIsKill(false);
766 if (TargetRegisterInfo::isPhysicalRegister(NewReg))
767 UseMO.substPhysReg(NewReg, *TRI);
768 else
769 UseMO.setReg(NewReg);
770 if (UseMI == CopyMI)
771 continue;
772 if (!UseMI->isCopy())
773 continue;
774 if (UseMI->getOperand(0).getReg() != IntB.reg ||
775 UseMI->getOperand(0).getSubReg())
776 continue;
777
778 // This copy will become a noop. If it's defining a new val#, merge it into
779 // BValNo.
780 SlotIndex DefIdx = UseIdx.getRegSlot();
781 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
782 if (!DVNI)
783 continue;
784 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
785 assert(DVNI->def == DefIdx);
786 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
787 for (LiveInterval::SubRange &S : IntB.subranges()) {
788 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
789 if (!SubDVNI)
790 continue;
791 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
792 assert(SubBValNo->def == CopyIdx);
793 S.MergeValueNumberInto(SubDVNI, SubBValNo);
794 }
795
796 ErasedInstrs.insert(UseMI);
797 LIS->RemoveMachineInstrFromMaps(*UseMI);
798 UseMI->eraseFromParent();
799 }
800
801 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
802 // is updated.
803 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
804 if (IntB.hasSubRanges()) {
805 if (!IntA.hasSubRanges()) {
806 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
807 IntA.createSubRangeFrom(Allocator, Mask, IntA);
808 }
809 SlotIndex AIdx = CopyIdx.getRegSlot(true);
810 for (LiveInterval::SubRange &SA : IntA.subranges()) {
811 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
812 assert(ASubValNo != nullptr);
813
814 LaneBitmask AMask = SA.LaneMask;
815 for (LiveInterval::SubRange &SB : IntB.subranges()) {
816 LaneBitmask BMask = SB.LaneMask;
817 LaneBitmask Common = BMask & AMask;
818 if (Common == 0)
819 continue;
820
821 DEBUG( dbgs() << "\t\tCopy_Merge " << PrintLaneMask(BMask)
822 << " into " << PrintLaneMask(Common) << '\n');
823 LaneBitmask BRest = BMask & ~AMask;
824 LiveInterval::SubRange *CommonRange;
825 if (BRest != 0) {
826 SB.LaneMask = BRest;
827 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(BRest)
828 << '\n');
829 // Duplicate SubRange for newly merged common stuff.
830 CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB);
831 } else {
832 // We van reuse the L SubRange.
833 SB.LaneMask = Common;
834 CommonRange = &SB;
835 }
836 LiveRange RangeCopy(SB, Allocator);
837
838 VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx);
839 assert(BSubValNo->def == CopyIdx);
840 BSubValNo->def = ASubValNo->def;
841 addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo);
842 AMask &= ~BMask;
843 }
844 if (AMask != 0) {
845 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(AMask) << '\n');
846 LiveRange *NewRange = IntB.createSubRange(Allocator, AMask);
847 VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator);
848 addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo);
849 }
850 }
851 }
852
853 BValNo->def = AValNo->def;
854 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
855 DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
856
857 LIS->removeVRegDefAt(IntA, AValNo->def);
858
859 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
860 ++numCommutes;
861 return true;
862 }
863
864 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
865 /// defining a subregister.
definesFullReg(const MachineInstr & MI,unsigned Reg)866 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
867 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
868 "This code cannot handle physreg aliasing");
869 for (const MachineOperand &Op : MI.operands()) {
870 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
871 continue;
872 // Return true if we define the full register or don't care about the value
873 // inside other subregisters.
874 if (Op.getSubReg() == 0 || Op.isUndef())
875 return true;
876 }
877 return false;
878 }
879
reMaterializeTrivialDef(const CoalescerPair & CP,MachineInstr * CopyMI,bool & IsDefCopy)880 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
881 MachineInstr *CopyMI,
882 bool &IsDefCopy) {
883 IsDefCopy = false;
884 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
885 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
886 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
887 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
888 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
889 return false;
890
891 LiveInterval &SrcInt = LIS->getInterval(SrcReg);
892 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
893 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
894 assert(ValNo && "CopyMI input register not live");
895 if (ValNo->isPHIDef() || ValNo->isUnused())
896 return false;
897 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
898 if (!DefMI)
899 return false;
900 if (DefMI->isCopyLike()) {
901 IsDefCopy = true;
902 return false;
903 }
904 if (!TII->isAsCheapAsAMove(*DefMI))
905 return false;
906 if (!TII->isTriviallyReMaterializable(*DefMI, AA))
907 return false;
908 if (!definesFullReg(*DefMI, SrcReg))
909 return false;
910 bool SawStore = false;
911 if (!DefMI->isSafeToMove(AA, SawStore))
912 return false;
913 const MCInstrDesc &MCID = DefMI->getDesc();
914 if (MCID.getNumDefs() != 1)
915 return false;
916 // Only support subregister destinations when the def is read-undef.
917 MachineOperand &DstOperand = CopyMI->getOperand(0);
918 unsigned CopyDstReg = DstOperand.getReg();
919 if (DstOperand.getSubReg() && !DstOperand.isUndef())
920 return false;
921
922 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
923 // the register substantially (beyond both source and dest size). This is bad
924 // for performance since it can cascade through a function, introducing many
925 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
926 // around after a few subreg copies).
927 if (SrcIdx && DstIdx)
928 return false;
929
930 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
931 if (!DefMI->isImplicitDef()) {
932 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
933 unsigned NewDstReg = DstReg;
934
935 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
936 DefMI->getOperand(0).getSubReg());
937 if (NewDstIdx)
938 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
939
940 // Finally, make sure that the physical subregister that will be
941 // constructed later is permitted for the instruction.
942 if (!DefRC->contains(NewDstReg))
943 return false;
944 } else {
945 // Theoretically, some stack frame reference could exist. Just make sure
946 // it hasn't actually happened.
947 assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
948 "Only expect to deal with virtual or physical registers");
949 }
950 }
951
952 DebugLoc DL = CopyMI->getDebugLoc();
953 MachineBasicBlock *MBB = CopyMI->getParent();
954 MachineBasicBlock::iterator MII =
955 std::next(MachineBasicBlock::iterator(CopyMI));
956 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
957 MachineInstr &NewMI = *std::prev(MII);
958 NewMI.setDebugLoc(DL);
959
960 // In a situation like the following:
961 // %vreg0:subreg = instr ; DefMI, subreg = DstIdx
962 // %vreg1 = copy %vreg0:subreg ; CopyMI, SrcIdx = 0
963 // instead of widening %vreg1 to the register class of %vreg0 simply do:
964 // %vreg1 = instr
965 const TargetRegisterClass *NewRC = CP.getNewRC();
966 if (DstIdx != 0) {
967 MachineOperand &DefMO = NewMI.getOperand(0);
968 if (DefMO.getSubReg() == DstIdx) {
969 assert(SrcIdx == 0 && CP.isFlipped()
970 && "Shouldn't have SrcIdx+DstIdx at this point");
971 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
972 const TargetRegisterClass *CommonRC =
973 TRI->getCommonSubClass(DefRC, DstRC);
974 if (CommonRC != nullptr) {
975 NewRC = CommonRC;
976 DstIdx = 0;
977 DefMO.setSubReg(0);
978 }
979 }
980 }
981
982 // CopyMI may have implicit operands, save them so that we can transfer them
983 // over to the newly materialized instruction after CopyMI is removed.
984 SmallVector<MachineOperand, 4> ImplicitOps;
985 ImplicitOps.reserve(CopyMI->getNumOperands() -
986 CopyMI->getDesc().getNumOperands());
987 for (unsigned I = CopyMI->getDesc().getNumOperands(),
988 E = CopyMI->getNumOperands();
989 I != E; ++I) {
990 MachineOperand &MO = CopyMI->getOperand(I);
991 if (MO.isReg()) {
992 assert(MO.isImplicit() && "No explicit operands after implict operands.");
993 // Discard VReg implicit defs.
994 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
995 ImplicitOps.push_back(MO);
996 }
997 }
998
999 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1000 CopyMI->eraseFromParent();
1001 ErasedInstrs.insert(CopyMI);
1002
1003 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1004 // We need to remember these so we can add intervals once we insert
1005 // NewMI into SlotIndexes.
1006 SmallVector<unsigned, 4> NewMIImplDefs;
1007 for (unsigned i = NewMI.getDesc().getNumOperands(),
1008 e = NewMI.getNumOperands();
1009 i != e; ++i) {
1010 MachineOperand &MO = NewMI.getOperand(i);
1011 if (MO.isReg() && MO.isDef()) {
1012 assert(MO.isImplicit() && MO.isDead() &&
1013 TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
1014 NewMIImplDefs.push_back(MO.getReg());
1015 }
1016 }
1017
1018 if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
1019 unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1020
1021 if (DefRC != nullptr) {
1022 if (NewIdx)
1023 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1024 else
1025 NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1026 assert(NewRC && "subreg chosen for remat incompatible with instruction");
1027 }
1028 // Remap subranges to new lanemask and change register class.
1029 LiveInterval &DstInt = LIS->getInterval(DstReg);
1030 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1031 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1032 }
1033 MRI->setRegClass(DstReg, NewRC);
1034
1035 // Update machine operands and add flags.
1036 updateRegDefsUses(DstReg, DstReg, DstIdx);
1037 NewMI.getOperand(0).setSubReg(NewIdx);
1038 // Add dead subregister definitions if we are defining the whole register
1039 // but only part of it is live.
1040 // This could happen if the rematerialization instruction is rematerializing
1041 // more than actually is used in the register.
1042 // An example would be:
1043 // vreg1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1044 // ; Copying only part of the register here, but the rest is undef.
1045 // vreg2:sub_16bit<def, read-undef> = COPY vreg1:sub_16bit
1046 // ==>
1047 // ; Materialize all the constants but only using one
1048 // vreg2 = LOAD_CONSTANTS 5, 8
1049 //
1050 // at this point for the part that wasn't defined before we could have
1051 // subranges missing the definition.
1052 if (NewIdx == 0 && DstInt.hasSubRanges()) {
1053 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1054 SlotIndex DefIndex =
1055 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1056 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1057 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1058 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1059 if (!SR.liveAt(DefIndex))
1060 SR.createDeadDef(DefIndex, Alloc);
1061 MaxMask &= ~SR.LaneMask;
1062 }
1063 if (MaxMask != 0) {
1064 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1065 SR->createDeadDef(DefIndex, Alloc);
1066 }
1067 }
1068 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1069 // The New instruction may be defining a sub-register of what's actually
1070 // been asked for. If so it must implicitly define the whole thing.
1071 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
1072 "Only expect virtual or physical registers in remat");
1073 NewMI.getOperand(0).setIsDead(true);
1074 NewMI.addOperand(MachineOperand::CreateReg(
1075 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1076 // Record small dead def live-ranges for all the subregisters
1077 // of the destination register.
1078 // Otherwise, variables that live through may miss some
1079 // interferences, thus creating invalid allocation.
1080 // E.g., i386 code:
1081 // vreg1 = somedef ; vreg1 GR8
1082 // vreg2 = remat ; vreg2 GR32
1083 // CL = COPY vreg2.sub_8bit
1084 // = somedef vreg1 ; vreg1 GR8
1085 // =>
1086 // vreg1 = somedef ; vreg1 GR8
1087 // ECX<def, dead> = remat ; CL<imp-def>
1088 // = somedef vreg1 ; vreg1 GR8
1089 // vreg1 will see the inteferences with CL but not with CH since
1090 // no live-ranges would have been created for ECX.
1091 // Fix that!
1092 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1093 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1094 Units.isValid(); ++Units)
1095 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1096 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1097 }
1098
1099 if (NewMI.getOperand(0).getSubReg())
1100 NewMI.getOperand(0).setIsUndef();
1101
1102 // Transfer over implicit operands to the rematerialized instruction.
1103 for (MachineOperand &MO : ImplicitOps)
1104 NewMI.addOperand(MO);
1105
1106 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1107 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1108 unsigned Reg = NewMIImplDefs[i];
1109 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1110 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1111 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1112 }
1113
1114 DEBUG(dbgs() << "Remat: " << NewMI);
1115 ++NumReMats;
1116
1117 // The source interval can become smaller because we removed a use.
1118 shrinkToUses(&SrcInt, &DeadDefs);
1119 if (!DeadDefs.empty()) {
1120 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1121 // to describe DstReg instead.
1122 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1123 MachineInstr *UseMI = UseMO.getParent();
1124 if (UseMI->isDebugValue()) {
1125 UseMO.setReg(DstReg);
1126 DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1127 }
1128 }
1129 eliminateDeadDefs();
1130 }
1131
1132 return true;
1133 }
1134
eliminateUndefCopy(MachineInstr * CopyMI)1135 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1136 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes
1137 // local variables. When we have a copy like:
1138 //
1139 // %vreg1 = COPY %vreg2<undef>
1140 //
1141 // We delete the copy and remove the corresponding value number from %vreg1.
1142 // Any uses of that value number are marked as <undef>.
1143
1144 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1145 // CoalescerPair may have a new register class with adjusted subreg indices
1146 // at this point.
1147 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1148 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
1149
1150 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1151 const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1152 // CopyMI is undef iff SrcReg is not live before the instruction.
1153 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1154 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1155 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1156 if ((SR.LaneMask & SrcMask) == 0)
1157 continue;
1158 if (SR.liveAt(Idx))
1159 return false;
1160 }
1161 } else if (SrcLI.liveAt(Idx))
1162 return false;
1163
1164 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1165
1166 // Remove any DstReg segments starting at the instruction.
1167 LiveInterval &DstLI = LIS->getInterval(DstReg);
1168 SlotIndex RegIndex = Idx.getRegSlot();
1169 // Remove value or merge with previous one in case of a subregister def.
1170 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1171 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1172 DstLI.MergeValueNumberInto(VNI, PrevVNI);
1173
1174 // The affected subregister segments can be removed.
1175 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1176 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1177 if ((SR.LaneMask & DstMask) == 0)
1178 continue;
1179
1180 VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1181 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1182 SR.removeValNo(SVNI);
1183 }
1184 DstLI.removeEmptySubRanges();
1185 } else
1186 LIS->removeVRegDefAt(DstLI, RegIndex);
1187
1188 // Mark uses as undef.
1189 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1190 if (MO.isDef() /*|| MO.isUndef()*/)
1191 continue;
1192 const MachineInstr &MI = *MO.getParent();
1193 SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1194 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1195 bool isLive;
1196 if (UseMask != ~0u && DstLI.hasSubRanges()) {
1197 isLive = false;
1198 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1199 if ((SR.LaneMask & UseMask) == 0)
1200 continue;
1201 if (SR.liveAt(UseIdx)) {
1202 isLive = true;
1203 break;
1204 }
1205 }
1206 } else
1207 isLive = DstLI.liveAt(UseIdx);
1208 if (isLive)
1209 continue;
1210 MO.setIsUndef(true);
1211 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1212 }
1213 return true;
1214 }
1215
addUndefFlag(const LiveInterval & Int,SlotIndex UseIdx,MachineOperand & MO,unsigned SubRegIdx)1216 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1217 MachineOperand &MO, unsigned SubRegIdx) {
1218 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1219 if (MO.isDef())
1220 Mask = ~Mask;
1221 bool IsUndef = true;
1222 for (const LiveInterval::SubRange &S : Int.subranges()) {
1223 if ((S.LaneMask & Mask) == 0)
1224 continue;
1225 if (S.liveAt(UseIdx)) {
1226 IsUndef = false;
1227 break;
1228 }
1229 }
1230 if (IsUndef) {
1231 MO.setIsUndef(true);
1232 // We found out some subregister use is actually reading an undefined
1233 // value. In some cases the whole vreg has become undefined at this
1234 // point so we have to potentially shrink the main range if the
1235 // use was ending a live segment there.
1236 LiveQueryResult Q = Int.Query(UseIdx);
1237 if (Q.valueOut() == nullptr)
1238 ShrinkMainRange = true;
1239 }
1240 }
1241
updateRegDefsUses(unsigned SrcReg,unsigned DstReg,unsigned SubIdx)1242 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1243 unsigned DstReg,
1244 unsigned SubIdx) {
1245 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1246 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1247
1248 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1249 for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1250 unsigned SubReg = MO.getSubReg();
1251 if (SubReg == 0 || MO.isUndef())
1252 continue;
1253 MachineInstr &MI = *MO.getParent();
1254 if (MI.isDebugValue())
1255 continue;
1256 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1257 addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1258 }
1259 }
1260
1261 SmallPtrSet<MachineInstr*, 8> Visited;
1262 for (MachineRegisterInfo::reg_instr_iterator
1263 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1264 I != E; ) {
1265 MachineInstr *UseMI = &*(I++);
1266
1267 // Each instruction can only be rewritten once because sub-register
1268 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1269 // the UseMI operands removes them from the SrcReg use-def chain, but when
1270 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1271 // operands mentioning the virtual register.
1272 if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1273 continue;
1274
1275 SmallVector<unsigned,8> Ops;
1276 bool Reads, Writes;
1277 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1278
1279 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1280 // because SrcReg is a sub-register.
1281 if (DstInt && !Reads && SubIdx)
1282 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1283
1284 // Replace SrcReg with DstReg in all UseMI operands.
1285 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1286 MachineOperand &MO = UseMI->getOperand(Ops[i]);
1287
1288 // Adjust <undef> flags in case of sub-register joins. We don't want to
1289 // turn a full def into a read-modify-write sub-register def and vice
1290 // versa.
1291 if (SubIdx && MO.isDef())
1292 MO.setIsUndef(!Reads);
1293
1294 // A subreg use of a partially undef (super) register may be a complete
1295 // undef use now and then has to be marked that way.
1296 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1297 if (!DstInt->hasSubRanges()) {
1298 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1299 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1300 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1301 }
1302 SlotIndex MIIdx = UseMI->isDebugValue()
1303 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1304 : LIS->getInstructionIndex(*UseMI);
1305 SlotIndex UseIdx = MIIdx.getRegSlot(true);
1306 addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1307 }
1308
1309 if (DstIsPhys)
1310 MO.substPhysReg(DstReg, *TRI);
1311 else
1312 MO.substVirtReg(DstReg, SubIdx, *TRI);
1313 }
1314
1315 DEBUG({
1316 dbgs() << "\t\tupdated: ";
1317 if (!UseMI->isDebugValue())
1318 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1319 dbgs() << *UseMI;
1320 });
1321 }
1322 }
1323
canJoinPhys(const CoalescerPair & CP)1324 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1325 // Always join simple intervals that are defined by a single copy from a
1326 // reserved register. This doesn't increase register pressure, so it is
1327 // always beneficial.
1328 if (!MRI->isReserved(CP.getDstReg())) {
1329 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1330 return false;
1331 }
1332
1333 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1334 if (JoinVInt.containsOneValue())
1335 return true;
1336
1337 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n");
1338 return false;
1339 }
1340
joinCopy(MachineInstr * CopyMI,bool & Again)1341 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1342
1343 Again = false;
1344 DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1345
1346 CoalescerPair CP(*TRI);
1347 if (!CP.setRegisters(CopyMI)) {
1348 DEBUG(dbgs() << "\tNot coalescable.\n");
1349 return false;
1350 }
1351
1352 if (CP.getNewRC()) {
1353 auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1354 auto DstRC = MRI->getRegClass(CP.getDstReg());
1355 unsigned SrcIdx = CP.getSrcIdx();
1356 unsigned DstIdx = CP.getDstIdx();
1357 if (CP.isFlipped()) {
1358 std::swap(SrcIdx, DstIdx);
1359 std::swap(SrcRC, DstRC);
1360 }
1361 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1362 CP.getNewRC())) {
1363 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1364 return false;
1365 }
1366 }
1367
1368 // Dead code elimination. This really should be handled by MachineDCE, but
1369 // sometimes dead copies slip through, and we can't generate invalid live
1370 // ranges.
1371 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1372 DEBUG(dbgs() << "\tCopy is dead.\n");
1373 DeadDefs.push_back(CopyMI);
1374 eliminateDeadDefs();
1375 return true;
1376 }
1377
1378 // Eliminate undefs.
1379 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) {
1380 LIS->RemoveMachineInstrFromMaps(*CopyMI);
1381 CopyMI->eraseFromParent();
1382 return false; // Not coalescable.
1383 }
1384
1385 // Coalesced copies are normally removed immediately, but transformations
1386 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1387 // When that happens, just join the values and remove the copy.
1388 if (CP.getSrcReg() == CP.getDstReg()) {
1389 LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1390 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1391 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1392 LiveQueryResult LRQ = LI.Query(CopyIdx);
1393 if (VNInfo *DefVNI = LRQ.valueDefined()) {
1394 VNInfo *ReadVNI = LRQ.valueIn();
1395 assert(ReadVNI && "No value before copy and no <undef> flag.");
1396 assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1397 LI.MergeValueNumberInto(DefVNI, ReadVNI);
1398
1399 // Process subregister liveranges.
1400 for (LiveInterval::SubRange &S : LI.subranges()) {
1401 LiveQueryResult SLRQ = S.Query(CopyIdx);
1402 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1403 VNInfo *SReadVNI = SLRQ.valueIn();
1404 S.MergeValueNumberInto(SDefVNI, SReadVNI);
1405 }
1406 }
1407 DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
1408 }
1409 LIS->RemoveMachineInstrFromMaps(*CopyMI);
1410 CopyMI->eraseFromParent();
1411 return true;
1412 }
1413
1414 // Enforce policies.
1415 if (CP.isPhys()) {
1416 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1417 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1418 << '\n');
1419 if (!canJoinPhys(CP)) {
1420 // Before giving up coalescing, if definition of source is defined by
1421 // trivial computation, try rematerializing it.
1422 bool IsDefCopy;
1423 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1424 return true;
1425 if (IsDefCopy)
1426 Again = true; // May be possible to coalesce later.
1427 return false;
1428 }
1429 } else {
1430 // When possible, let DstReg be the larger interval.
1431 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1432 LIS->getInterval(CP.getDstReg()).size())
1433 CP.flip();
1434
1435 DEBUG({
1436 dbgs() << "\tConsidering merging to "
1437 << TRI->getRegClassName(CP.getNewRC()) << " with ";
1438 if (CP.getDstIdx() && CP.getSrcIdx())
1439 dbgs() << PrintReg(CP.getDstReg()) << " in "
1440 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1441 << PrintReg(CP.getSrcReg()) << " in "
1442 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1443 else
1444 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1445 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1446 });
1447 }
1448
1449 ShrinkMask = 0;
1450 ShrinkMainRange = false;
1451
1452 // Okay, attempt to join these two intervals. On failure, this returns false.
1453 // Otherwise, if one of the intervals being joined is a physreg, this method
1454 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1455 // been modified, so we can use this information below to update aliases.
1456 if (!joinIntervals(CP)) {
1457 // Coalescing failed.
1458
1459 // If definition of source is defined by trivial computation, try
1460 // rematerializing it.
1461 bool IsDefCopy;
1462 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1463 return true;
1464
1465 // If we can eliminate the copy without merging the live segments, do so
1466 // now.
1467 if (!CP.isPartial() && !CP.isPhys()) {
1468 if (adjustCopiesBackFrom(CP, CopyMI) ||
1469 removeCopyByCommutingDef(CP, CopyMI)) {
1470 LIS->RemoveMachineInstrFromMaps(*CopyMI);
1471 CopyMI->eraseFromParent();
1472 DEBUG(dbgs() << "\tTrivial!\n");
1473 return true;
1474 }
1475 }
1476
1477 // Otherwise, we are unable to join the intervals.
1478 DEBUG(dbgs() << "\tInterference!\n");
1479 Again = true; // May be possible to coalesce later.
1480 return false;
1481 }
1482
1483 // Coalescing to a virtual register that is of a sub-register class of the
1484 // other. Make sure the resulting register is set to the right register class.
1485 if (CP.isCrossClass()) {
1486 ++numCrossRCs;
1487 MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1488 }
1489
1490 // Removing sub-register copies can ease the register class constraints.
1491 // Make sure we attempt to inflate the register class of DstReg.
1492 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1493 InflateRegs.push_back(CP.getDstReg());
1494
1495 // CopyMI has been erased by joinIntervals at this point. Remove it from
1496 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1497 // to the work list. This keeps ErasedInstrs from growing needlessly.
1498 ErasedInstrs.erase(CopyMI);
1499
1500 // Rewrite all SrcReg operands to DstReg.
1501 // Also update DstReg operands to include DstIdx if it is set.
1502 if (CP.getDstIdx())
1503 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1504 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1505
1506 // Shrink subregister ranges if necessary.
1507 if (ShrinkMask != 0) {
1508 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1509 for (LiveInterval::SubRange &S : LI.subranges()) {
1510 if ((S.LaneMask & ShrinkMask) == 0)
1511 continue;
1512 DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1513 << ")\n");
1514 LIS->shrinkToUses(S, LI.reg);
1515 }
1516 LI.removeEmptySubRanges();
1517 }
1518 if (ShrinkMainRange) {
1519 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1520 shrinkToUses(&LI);
1521 }
1522
1523 // SrcReg is guaranteed to be the register whose live interval that is
1524 // being merged.
1525 LIS->removeInterval(CP.getSrcReg());
1526
1527 // Update regalloc hint.
1528 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1529
1530 DEBUG({
1531 dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1532 << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1533 dbgs() << "\tResult = ";
1534 if (CP.isPhys())
1535 dbgs() << PrintReg(CP.getDstReg(), TRI);
1536 else
1537 dbgs() << LIS->getInterval(CP.getDstReg());
1538 dbgs() << '\n';
1539 });
1540
1541 ++numJoins;
1542 return true;
1543 }
1544
joinReservedPhysReg(CoalescerPair & CP)1545 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1546 unsigned DstReg = CP.getDstReg();
1547 assert(CP.isPhys() && "Must be a physreg copy");
1548 assert(MRI->isReserved(DstReg) && "Not a reserved register");
1549 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1550 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1551
1552 assert(RHS.containsOneValue() && "Invalid join with reserved register");
1553
1554 // Optimization for reserved registers like ESP. We can only merge with a
1555 // reserved physreg if RHS has a single value that is a copy of DstReg.
1556 // The live range of the reserved register will look like a set of dead defs
1557 // - we don't properly track the live range of reserved registers.
1558
1559 // Deny any overlapping intervals. This depends on all the reserved
1560 // register live ranges to look like dead defs.
1561 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI)
1562 if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1563 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1564 return false;
1565 }
1566
1567 // Skip any value computations, we are not adding new values to the
1568 // reserved register. Also skip merging the live ranges, the reserved
1569 // register live range doesn't need to be accurate as long as all the
1570 // defs are there.
1571
1572 // Delete the identity copy.
1573 MachineInstr *CopyMI;
1574 if (CP.isFlipped()) {
1575 CopyMI = MRI->getVRegDef(RHS.reg);
1576 } else {
1577 if (!MRI->hasOneNonDBGUse(RHS.reg)) {
1578 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
1579 return false;
1580 }
1581
1582 MachineInstr *DestMI = MRI->getVRegDef(RHS.reg);
1583 CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg);
1584 const SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
1585 const SlotIndex DestRegIdx = LIS->getInstructionIndex(*DestMI).getRegSlot();
1586
1587 // We checked above that there are no interfering defs of the physical
1588 // register. However, for this case, where we intent to move up the def of
1589 // the physical register, we also need to check for interfering uses.
1590 SlotIndexes *Indexes = LIS->getSlotIndexes();
1591 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
1592 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
1593 MachineInstr *MI = LIS->getInstructionFromIndex(SI);
1594 if (MI->readsRegister(DstReg, TRI)) {
1595 DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
1596 return false;
1597 }
1598
1599 // We must also check for clobbers caused by regmasks.
1600 for (const auto &MO : MI->operands()) {
1601 if (MO.isRegMask() && MO.clobbersPhysReg(DstReg)) {
1602 DEBUG(dbgs() << "\t\tInterference (regmask clobber): " << *MI);
1603 return false;
1604 }
1605 }
1606 }
1607
1608 // We're going to remove the copy which defines a physical reserved
1609 // register, so remove its valno, etc.
1610 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at "
1611 << CopyRegIdx << "\n");
1612
1613 LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
1614 // Create a new dead def at the new def location.
1615 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1616 LiveRange &LR = LIS->getRegUnit(*UI);
1617 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
1618 }
1619 }
1620
1621 LIS->RemoveMachineInstrFromMaps(*CopyMI);
1622 CopyMI->eraseFromParent();
1623
1624 // We don't track kills for reserved registers.
1625 MRI->clearKillFlags(CP.getSrcReg());
1626
1627 return true;
1628 }
1629
1630 //===----------------------------------------------------------------------===//
1631 // Interference checking and interval joining
1632 //===----------------------------------------------------------------------===//
1633 //
1634 // In the easiest case, the two live ranges being joined are disjoint, and
1635 // there is no interference to consider. It is quite common, though, to have
1636 // overlapping live ranges, and we need to check if the interference can be
1637 // resolved.
1638 //
1639 // The live range of a single SSA value forms a sub-tree of the dominator tree.
1640 // This means that two SSA values overlap if and only if the def of one value
1641 // is contained in the live range of the other value. As a special case, the
1642 // overlapping values can be defined at the same index.
1643 //
1644 // The interference from an overlapping def can be resolved in these cases:
1645 //
1646 // 1. Coalescable copies. The value is defined by a copy that would become an
1647 // identity copy after joining SrcReg and DstReg. The copy instruction will
1648 // be removed, and the value will be merged with the source value.
1649 //
1650 // There can be several copies back and forth, causing many values to be
1651 // merged into one. We compute a list of ultimate values in the joined live
1652 // range as well as a mappings from the old value numbers.
1653 //
1654 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1655 // predecessors have a live out value. It doesn't cause real interference,
1656 // and can be merged into the value it overlaps. Like a coalescable copy, it
1657 // can be erased after joining.
1658 //
1659 // 3. Copy of external value. The overlapping def may be a copy of a value that
1660 // is already in the other register. This is like a coalescable copy, but
1661 // the live range of the source register must be trimmed after erasing the
1662 // copy instruction:
1663 //
1664 // %src = COPY %ext
1665 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
1666 //
1667 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
1668 // defining one lane at a time:
1669 //
1670 // %dst:ssub0<def,read-undef> = FOO
1671 // %src = BAR
1672 // %dst:ssub1<def> = COPY %src
1673 //
1674 // The live range of %src overlaps the %dst value defined by FOO, but
1675 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1676 // which was undef anyway.
1677 //
1678 // The value mapping is more complicated in this case. The final live range
1679 // will have different value numbers for both FOO and BAR, but there is no
1680 // simple mapping from old to new values. It may even be necessary to add
1681 // new PHI values.
1682 //
1683 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1684 // is live, but never read. This can happen because we don't compute
1685 // individual live ranges per lane.
1686 //
1687 // %dst<def> = FOO
1688 // %src = BAR
1689 // %dst:ssub1<def> = COPY %src
1690 //
1691 // This kind of interference is only resolved locally. If the clobbered
1692 // lane value escapes the block, the join is aborted.
1693
1694 namespace {
1695 /// Track information about values in a single virtual register about to be
1696 /// joined. Objects of this class are always created in pairs - one for each
1697 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
1698 /// pair)
1699 class JoinVals {
1700 /// Live range we work on.
1701 LiveRange &LR;
1702 /// (Main) register we work on.
1703 const unsigned Reg;
1704
1705 /// Reg (and therefore the values in this liverange) will end up as
1706 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
1707 /// CP.SrcIdx.
1708 const unsigned SubIdx;
1709 /// The LaneMask that this liverange will occupy the coalesced register. May
1710 /// be smaller than the lanemask produced by SubIdx when merging subranges.
1711 const LaneBitmask LaneMask;
1712
1713 /// This is true when joining sub register ranges, false when joining main
1714 /// ranges.
1715 const bool SubRangeJoin;
1716 /// Whether the current LiveInterval tracks subregister liveness.
1717 const bool TrackSubRegLiveness;
1718
1719 /// Values that will be present in the final live range.
1720 SmallVectorImpl<VNInfo*> &NewVNInfo;
1721
1722 const CoalescerPair &CP;
1723 LiveIntervals *LIS;
1724 SlotIndexes *Indexes;
1725 const TargetRegisterInfo *TRI;
1726
1727 /// Value number assignments. Maps value numbers in LI to entries in
1728 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
1729 SmallVector<int, 8> Assignments;
1730
1731 /// Conflict resolution for overlapping values.
1732 enum ConflictResolution {
1733 /// No overlap, simply keep this value.
1734 CR_Keep,
1735
1736 /// Merge this value into OtherVNI and erase the defining instruction.
1737 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
1738 /// values.
1739 CR_Erase,
1740
1741 /// Merge this value into OtherVNI but keep the defining instruction.
1742 /// This is for the special case where OtherVNI is defined by the same
1743 /// instruction.
1744 CR_Merge,
1745
1746 /// Keep this value, and have it replace OtherVNI where possible. This
1747 /// complicates value mapping since OtherVNI maps to two different values
1748 /// before and after this def.
1749 /// Used when clobbering undefined or dead lanes.
1750 CR_Replace,
1751
1752 /// Unresolved conflict. Visit later when all values have been mapped.
1753 CR_Unresolved,
1754
1755 /// Unresolvable conflict. Abort the join.
1756 CR_Impossible
1757 };
1758
1759 /// Per-value info for LI. The lane bit masks are all relative to the final
1760 /// joined register, so they can be compared directly between SrcReg and
1761 /// DstReg.
1762 struct Val {
1763 ConflictResolution Resolution;
1764
1765 /// Lanes written by this def, 0 for unanalyzed values.
1766 LaneBitmask WriteLanes;
1767
1768 /// Lanes with defined values in this register. Other lanes are undef and
1769 /// safe to clobber.
1770 LaneBitmask ValidLanes;
1771
1772 /// Value in LI being redefined by this def.
1773 VNInfo *RedefVNI;
1774
1775 /// Value in the other live range that overlaps this def, if any.
1776 VNInfo *OtherVNI;
1777
1778 /// Is this value an IMPLICIT_DEF that can be erased?
1779 ///
1780 /// IMPLICIT_DEF values should only exist at the end of a basic block that
1781 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
1782 /// safely erased if they are overlapping a live value in the other live
1783 /// interval.
1784 ///
1785 /// Weird control flow graphs and incomplete PHI handling in
1786 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
1787 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
1788 /// normal values.
1789 bool ErasableImplicitDef;
1790
1791 /// True when the live range of this value will be pruned because of an
1792 /// overlapping CR_Replace value in the other live range.
1793 bool Pruned;
1794
1795 /// True once Pruned above has been computed.
1796 bool PrunedComputed;
1797
Val__anon4db011c00211::JoinVals::Val1798 Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
1799 RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false),
1800 Pruned(false), PrunedComputed(false) {}
1801
isAnalyzed__anon4db011c00211::JoinVals::Val1802 bool isAnalyzed() const { return WriteLanes != 0; }
1803 };
1804
1805 /// One entry per value number in LI.
1806 SmallVector<Val, 8> Vals;
1807
1808 /// Compute the bitmask of lanes actually written by DefMI.
1809 /// Set Redef if there are any partial register definitions that depend on the
1810 /// previous value of the register.
1811 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
1812
1813 /// Find the ultimate value that VNI was copied from.
1814 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
1815
1816 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const;
1817
1818 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
1819 /// Return a conflict resolution when possible, but leave the hard cases as
1820 /// CR_Unresolved.
1821 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
1822 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
1823 /// The recursion always goes upwards in the dominator tree, making loops
1824 /// impossible.
1825 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
1826
1827 /// Compute the value assignment for ValNo in RI.
1828 /// This may be called recursively by analyzeValue(), but never for a ValNo on
1829 /// the stack.
1830 void computeAssignment(unsigned ValNo, JoinVals &Other);
1831
1832 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
1833 /// the extent of the tainted lanes in the block.
1834 ///
1835 /// Multiple values in Other.LR can be affected since partial redefinitions
1836 /// can preserve previously tainted lanes.
1837 ///
1838 /// 1 %dst = VLOAD <-- Define all lanes in %dst
1839 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
1840 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
1841 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
1842 ///
1843 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
1844 /// entry to TaintedVals.
1845 ///
1846 /// Returns false if the tainted lanes extend beyond the basic block.
1847 bool taintExtent(unsigned, LaneBitmask, JoinVals&,
1848 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&);
1849
1850 /// Return true if MI uses any of the given Lanes from Reg.
1851 /// This does not include partial redefinitions of Reg.
1852 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
1853
1854 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
1855 /// be pruned:
1856 ///
1857 /// %dst = COPY %src
1858 /// %src = COPY %dst <-- This value to be pruned.
1859 /// %dst = COPY %src <-- This value is a copy of a pruned value.
1860 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
1861
1862 public:
JoinVals(LiveRange & LR,unsigned Reg,unsigned SubIdx,LaneBitmask LaneMask,SmallVectorImpl<VNInfo * > & newVNInfo,const CoalescerPair & cp,LiveIntervals * lis,const TargetRegisterInfo * TRI,bool SubRangeJoin,bool TrackSubRegLiveness)1863 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
1864 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
1865 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
1866 bool TrackSubRegLiveness)
1867 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
1868 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
1869 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
1870 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums())
1871 {}
1872
1873 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
1874 /// Returns false if any conflicts were impossible to resolve.
1875 bool mapValues(JoinVals &Other);
1876
1877 /// Try to resolve conflicts that require all values to be mapped.
1878 /// Returns false if any conflicts were impossible to resolve.
1879 bool resolveConflicts(JoinVals &Other);
1880
1881 /// Prune the live range of values in Other.LR where they would conflict with
1882 /// CR_Replace values in LR. Collect end points for restoring the live range
1883 /// after joining.
1884 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
1885 bool changeInstrs);
1886
1887 /// Removes subranges starting at copies that get removed. This sometimes
1888 /// happens when undefined subranges are copied around. These ranges contain
1889 /// no useful information and can be removed.
1890 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
1891
1892 /// Erase any machine instructions that have been coalesced away.
1893 /// Add erased instructions to ErasedInstrs.
1894 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
1895 /// the erased instrs.
1896 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
1897 SmallVectorImpl<unsigned> &ShrinkRegs);
1898
1899 /// Remove liverange defs at places where implicit defs will be removed.
1900 void removeImplicitDefs();
1901
1902 /// Get the value assignments suitable for passing to LiveInterval::join.
getAssignments() const1903 const int *getAssignments() const { return Assignments.data(); }
1904 };
1905 } // end anonymous namespace
1906
computeWriteLanes(const MachineInstr * DefMI,bool & Redef) const1907 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
1908 const {
1909 LaneBitmask L = 0;
1910 for (const MachineOperand &MO : DefMI->operands()) {
1911 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
1912 continue;
1913 L |= TRI->getSubRegIndexLaneMask(
1914 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
1915 if (MO.readsReg())
1916 Redef = true;
1917 }
1918 return L;
1919 }
1920
followCopyChain(const VNInfo * VNI) const1921 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
1922 const VNInfo *VNI) const {
1923 unsigned Reg = this->Reg;
1924
1925 while (!VNI->isPHIDef()) {
1926 SlotIndex Def = VNI->def;
1927 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
1928 assert(MI && "No defining instruction");
1929 if (!MI->isFullCopy())
1930 return std::make_pair(VNI, Reg);
1931 unsigned SrcReg = MI->getOperand(1).getReg();
1932 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1933 return std::make_pair(VNI, Reg);
1934
1935 const LiveInterval &LI = LIS->getInterval(SrcReg);
1936 const VNInfo *ValueIn;
1937 // No subrange involved.
1938 if (!SubRangeJoin || !LI.hasSubRanges()) {
1939 LiveQueryResult LRQ = LI.Query(Def);
1940 ValueIn = LRQ.valueIn();
1941 } else {
1942 // Query subranges. Pick the first matching one.
1943 ValueIn = nullptr;
1944 for (const LiveInterval::SubRange &S : LI.subranges()) {
1945 // Transform lanemask to a mask in the joined live interval.
1946 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
1947 if ((SMask & LaneMask) == 0)
1948 continue;
1949 LiveQueryResult LRQ = S.Query(Def);
1950 ValueIn = LRQ.valueIn();
1951 break;
1952 }
1953 }
1954 if (ValueIn == nullptr)
1955 break;
1956 VNI = ValueIn;
1957 Reg = SrcReg;
1958 }
1959 return std::make_pair(VNI, Reg);
1960 }
1961
valuesIdentical(VNInfo * Value0,VNInfo * Value1,const JoinVals & Other) const1962 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
1963 const JoinVals &Other) const {
1964 const VNInfo *Orig0;
1965 unsigned Reg0;
1966 std::tie(Orig0, Reg0) = followCopyChain(Value0);
1967 if (Orig0 == Value1)
1968 return true;
1969
1970 const VNInfo *Orig1;
1971 unsigned Reg1;
1972 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
1973
1974 // The values are equal if they are defined at the same place and use the
1975 // same register. Note that we cannot compare VNInfos directly as some of
1976 // them might be from a copy created in mergeSubRangeInto() while the other
1977 // is from the original LiveInterval.
1978 return Orig0->def == Orig1->def && Reg0 == Reg1;
1979 }
1980
1981 JoinVals::ConflictResolution
analyzeValue(unsigned ValNo,JoinVals & Other)1982 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
1983 Val &V = Vals[ValNo];
1984 assert(!V.isAnalyzed() && "Value has already been analyzed!");
1985 VNInfo *VNI = LR.getValNumInfo(ValNo);
1986 if (VNI->isUnused()) {
1987 V.WriteLanes = ~0u;
1988 return CR_Keep;
1989 }
1990
1991 // Get the instruction defining this value, compute the lanes written.
1992 const MachineInstr *DefMI = nullptr;
1993 if (VNI->isPHIDef()) {
1994 // Conservatively assume that all lanes in a PHI are valid.
1995 LaneBitmask Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx);
1996 V.ValidLanes = V.WriteLanes = Lanes;
1997 } else {
1998 DefMI = Indexes->getInstructionFromIndex(VNI->def);
1999 assert(DefMI != nullptr);
2000 if (SubRangeJoin) {
2001 // We don't care about the lanes when joining subregister ranges.
2002 V.WriteLanes = V.ValidLanes = 1;
2003 if (DefMI->isImplicitDef()) {
2004 V.ValidLanes = 0;
2005 V.ErasableImplicitDef = true;
2006 }
2007 } else {
2008 bool Redef = false;
2009 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2010
2011 // If this is a read-modify-write instruction, there may be more valid
2012 // lanes than the ones written by this instruction.
2013 // This only covers partial redef operands. DefMI may have normal use
2014 // operands reading the register. They don't contribute valid lanes.
2015 //
2016 // This adds ssub1 to the set of valid lanes in %src:
2017 //
2018 // %src:ssub1<def> = FOO
2019 //
2020 // This leaves only ssub1 valid, making any other lanes undef:
2021 //
2022 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2023 //
2024 // The <read-undef> flag on the def operand means that old lane values are
2025 // not important.
2026 if (Redef) {
2027 V.RedefVNI = LR.Query(VNI->def).valueIn();
2028 assert((TrackSubRegLiveness || V.RedefVNI) &&
2029 "Instruction is reading nonexistent value");
2030 if (V.RedefVNI != nullptr) {
2031 computeAssignment(V.RedefVNI->id, Other);
2032 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2033 }
2034 }
2035
2036 // An IMPLICIT_DEF writes undef values.
2037 if (DefMI->isImplicitDef()) {
2038 // We normally expect IMPLICIT_DEF values to be live only until the end
2039 // of their block. If the value is really live longer and gets pruned in
2040 // another block, this flag is cleared again.
2041 V.ErasableImplicitDef = true;
2042 V.ValidLanes &= ~V.WriteLanes;
2043 }
2044 }
2045 }
2046
2047 // Find the value in Other that overlaps VNI->def, if any.
2048 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2049
2050 // It is possible that both values are defined by the same instruction, or
2051 // the values are PHIs defined in the same block. When that happens, the two
2052 // values should be merged into one, but not into any preceding value.
2053 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2054 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2055 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2056
2057 // One value stays, the other is merged. Keep the earlier one, or the first
2058 // one we see.
2059 if (OtherVNI->def < VNI->def)
2060 Other.computeAssignment(OtherVNI->id, *this);
2061 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2062 // This is an early-clobber def overlapping a live-in value in the other
2063 // register. Not mergeable.
2064 V.OtherVNI = OtherLRQ.valueIn();
2065 return CR_Impossible;
2066 }
2067 V.OtherVNI = OtherVNI;
2068 Val &OtherV = Other.Vals[OtherVNI->id];
2069 // Keep this value, check for conflicts when analyzing OtherVNI.
2070 if (!OtherV.isAnalyzed())
2071 return CR_Keep;
2072 // Both sides have been analyzed now.
2073 // Allow overlapping PHI values. Any real interference would show up in a
2074 // predecessor, the PHI itself can't introduce any conflicts.
2075 if (VNI->isPHIDef())
2076 return CR_Merge;
2077 if (V.ValidLanes & OtherV.ValidLanes)
2078 // Overlapping lanes can't be resolved.
2079 return CR_Impossible;
2080 else
2081 return CR_Merge;
2082 }
2083
2084 // No simultaneous def. Is Other live at the def?
2085 V.OtherVNI = OtherLRQ.valueIn();
2086 if (!V.OtherVNI)
2087 // No overlap, no conflict.
2088 return CR_Keep;
2089
2090 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2091
2092 // We have overlapping values, or possibly a kill of Other.
2093 // Recursively compute assignments up the dominator tree.
2094 Other.computeAssignment(V.OtherVNI->id, *this);
2095 Val &OtherV = Other.Vals[V.OtherVNI->id];
2096
2097 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2098 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2099 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2100 // technically.
2101 //
2102 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2103 // to erase the IMPLICIT_DEF instruction.
2104 if (OtherV.ErasableImplicitDef && DefMI &&
2105 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2106 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2107 << " extends into BB#" << DefMI->getParent()->getNumber()
2108 << ", keeping it.\n");
2109 OtherV.ErasableImplicitDef = false;
2110 }
2111
2112 // Allow overlapping PHI values. Any real interference would show up in a
2113 // predecessor, the PHI itself can't introduce any conflicts.
2114 if (VNI->isPHIDef())
2115 return CR_Replace;
2116
2117 // Check for simple erasable conflicts.
2118 if (DefMI->isImplicitDef()) {
2119 // We need the def for the subregister if there is nothing else live at the
2120 // subrange at this point.
2121 if (TrackSubRegLiveness
2122 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0)
2123 return CR_Replace;
2124 return CR_Erase;
2125 }
2126
2127 // Include the non-conflict where DefMI is a coalescable copy that kills
2128 // OtherVNI. We still want the copy erased and value numbers merged.
2129 if (CP.isCoalescable(DefMI)) {
2130 // Some of the lanes copied from OtherVNI may be undef, making them undef
2131 // here too.
2132 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2133 return CR_Erase;
2134 }
2135
2136 // This may not be a real conflict if DefMI simply kills Other and defines
2137 // VNI.
2138 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2139 return CR_Keep;
2140
2141 // Handle the case where VNI and OtherVNI can be proven to be identical:
2142 //
2143 // %other = COPY %ext
2144 // %this = COPY %ext <-- Erase this copy
2145 //
2146 if (DefMI->isFullCopy() && !CP.isPartial()
2147 && valuesIdentical(VNI, V.OtherVNI, Other))
2148 return CR_Erase;
2149
2150 // If the lanes written by this instruction were all undef in OtherVNI, it is
2151 // still safe to join the live ranges. This can't be done with a simple value
2152 // mapping, though - OtherVNI will map to multiple values:
2153 //
2154 // 1 %dst:ssub0 = FOO <-- OtherVNI
2155 // 2 %src = BAR <-- VNI
2156 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy.
2157 // 4 BAZ %dst<kill>
2158 // 5 QUUX %src<kill>
2159 //
2160 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2161 // handles this complex value mapping.
2162 if ((V.WriteLanes & OtherV.ValidLanes) == 0)
2163 return CR_Replace;
2164
2165 // If the other live range is killed by DefMI and the live ranges are still
2166 // overlapping, it must be because we're looking at an early clobber def:
2167 //
2168 // %dst<def,early-clobber> = ASM %src<kill>
2169 //
2170 // In this case, it is illegal to merge the two live ranges since the early
2171 // clobber def would clobber %src before it was read.
2172 if (OtherLRQ.isKill()) {
2173 // This case where the def doesn't overlap the kill is handled above.
2174 assert(VNI->def.isEarlyClobber() &&
2175 "Only early clobber defs can overlap a kill");
2176 return CR_Impossible;
2177 }
2178
2179 // VNI is clobbering live lanes in OtherVNI, but there is still the
2180 // possibility that no instructions actually read the clobbered lanes.
2181 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2182 // Otherwise Other.RI wouldn't be live here.
2183 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
2184 return CR_Impossible;
2185
2186 // We need to verify that no instructions are reading the clobbered lanes. To
2187 // save compile time, we'll only check that locally. Don't allow the tainted
2188 // value to escape the basic block.
2189 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2190 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2191 return CR_Impossible;
2192
2193 // There are still some things that could go wrong besides clobbered lanes
2194 // being read, for example OtherVNI may be only partially redefined in MBB,
2195 // and some clobbered lanes could escape the block. Save this analysis for
2196 // resolveConflicts() when all values have been mapped. We need to know
2197 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2198 // that now - the recursive analyzeValue() calls must go upwards in the
2199 // dominator tree.
2200 return CR_Unresolved;
2201 }
2202
computeAssignment(unsigned ValNo,JoinVals & Other)2203 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2204 Val &V = Vals[ValNo];
2205 if (V.isAnalyzed()) {
2206 // Recursion should always move up the dominator tree, so ValNo is not
2207 // supposed to reappear before it has been assigned.
2208 assert(Assignments[ValNo] != -1 && "Bad recursion?");
2209 return;
2210 }
2211 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2212 case CR_Erase:
2213 case CR_Merge:
2214 // Merge this ValNo into OtherVNI.
2215 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2216 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2217 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2218 DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@'
2219 << LR.getValNumInfo(ValNo)->def << " into "
2220 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2221 << V.OtherVNI->def << " --> @"
2222 << NewVNInfo[Assignments[ValNo]]->def << '\n');
2223 break;
2224 case CR_Replace:
2225 case CR_Unresolved: {
2226 // The other value is going to be pruned if this join is successful.
2227 assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2228 Val &OtherV = Other.Vals[V.OtherVNI->id];
2229 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2230 // its lanes.
2231 if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness)
2232 OtherV.ErasableImplicitDef = false;
2233 OtherV.Pruned = true;
2234 }
2235 // Fall through.
2236 default:
2237 // This value number needs to go in the final joined live range.
2238 Assignments[ValNo] = NewVNInfo.size();
2239 NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2240 break;
2241 }
2242 }
2243
mapValues(JoinVals & Other)2244 bool JoinVals::mapValues(JoinVals &Other) {
2245 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2246 computeAssignment(i, Other);
2247 if (Vals[i].Resolution == CR_Impossible) {
2248 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i
2249 << '@' << LR.getValNumInfo(i)->def << '\n');
2250 return false;
2251 }
2252 }
2253 return true;
2254 }
2255
2256 bool JoinVals::
taintExtent(unsigned ValNo,LaneBitmask TaintedLanes,JoinVals & Other,SmallVectorImpl<std::pair<SlotIndex,LaneBitmask>> & TaintExtent)2257 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2258 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) {
2259 VNInfo *VNI = LR.getValNumInfo(ValNo);
2260 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2261 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2262
2263 // Scan Other.LR from VNI.def to MBBEnd.
2264 LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2265 assert(OtherI != Other.LR.end() && "No conflict?");
2266 do {
2267 // OtherI is pointing to a tainted value. Abort the join if the tainted
2268 // lanes escape the block.
2269 SlotIndex End = OtherI->end;
2270 if (End >= MBBEnd) {
2271 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':'
2272 << OtherI->valno->id << '@' << OtherI->start << '\n');
2273 return false;
2274 }
2275 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':'
2276 << OtherI->valno->id << '@' << OtherI->start
2277 << " to " << End << '\n');
2278 // A dead def is not a problem.
2279 if (End.isDead())
2280 break;
2281 TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2282
2283 // Check for another def in the MBB.
2284 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2285 break;
2286
2287 // Lanes written by the new def are no longer tainted.
2288 const Val &OV = Other.Vals[OtherI->valno->id];
2289 TaintedLanes &= ~OV.WriteLanes;
2290 if (!OV.RedefVNI)
2291 break;
2292 } while (TaintedLanes);
2293 return true;
2294 }
2295
usesLanes(const MachineInstr & MI,unsigned Reg,unsigned SubIdx,LaneBitmask Lanes) const2296 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2297 LaneBitmask Lanes) const {
2298 if (MI.isDebugValue())
2299 return false;
2300 for (const MachineOperand &MO : MI.operands()) {
2301 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2302 continue;
2303 if (!MO.readsReg())
2304 continue;
2305 if (Lanes & TRI->getSubRegIndexLaneMask(
2306 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())))
2307 return true;
2308 }
2309 return false;
2310 }
2311
resolveConflicts(JoinVals & Other)2312 bool JoinVals::resolveConflicts(JoinVals &Other) {
2313 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2314 Val &V = Vals[i];
2315 assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
2316 if (V.Resolution != CR_Unresolved)
2317 continue;
2318 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i
2319 << '@' << LR.getValNumInfo(i)->def << '\n');
2320 if (SubRangeJoin)
2321 return false;
2322
2323 ++NumLaneConflicts;
2324 assert(V.OtherVNI && "Inconsistent conflict resolution.");
2325 VNInfo *VNI = LR.getValNumInfo(i);
2326 const Val &OtherV = Other.Vals[V.OtherVNI->id];
2327
2328 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2329 // join, those lanes will be tainted with a wrong value. Get the extent of
2330 // the tainted lanes.
2331 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2332 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2333 if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2334 // Tainted lanes would extend beyond the basic block.
2335 return false;
2336
2337 assert(!TaintExtent.empty() && "There should be at least one conflict.");
2338
2339 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2340 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2341 MachineBasicBlock::iterator MI = MBB->begin();
2342 if (!VNI->isPHIDef()) {
2343 MI = Indexes->getInstructionFromIndex(VNI->def);
2344 // No need to check the instruction defining VNI for reads.
2345 ++MI;
2346 }
2347 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2348 "Interference ends on VNI->def. Should have been handled earlier");
2349 MachineInstr *LastMI =
2350 Indexes->getInstructionFromIndex(TaintExtent.front().first);
2351 assert(LastMI && "Range must end at a proper instruction");
2352 unsigned TaintNum = 0;
2353 for(;;) {
2354 assert(MI != MBB->end() && "Bad LastMI");
2355 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2356 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2357 return false;
2358 }
2359 // LastMI is the last instruction to use the current value.
2360 if (&*MI == LastMI) {
2361 if (++TaintNum == TaintExtent.size())
2362 break;
2363 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2364 assert(LastMI && "Range must end at a proper instruction");
2365 TaintedLanes = TaintExtent[TaintNum].second;
2366 }
2367 ++MI;
2368 }
2369
2370 // The tainted lanes are unused.
2371 V.Resolution = CR_Replace;
2372 ++NumLaneResolves;
2373 }
2374 return true;
2375 }
2376
isPrunedValue(unsigned ValNo,JoinVals & Other)2377 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2378 Val &V = Vals[ValNo];
2379 if (V.Pruned || V.PrunedComputed)
2380 return V.Pruned;
2381
2382 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2383 return V.Pruned;
2384
2385 // Follow copies up the dominator tree and check if any intermediate value
2386 // has been pruned.
2387 V.PrunedComputed = true;
2388 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2389 return V.Pruned;
2390 }
2391
pruneValues(JoinVals & Other,SmallVectorImpl<SlotIndex> & EndPoints,bool changeInstrs)2392 void JoinVals::pruneValues(JoinVals &Other,
2393 SmallVectorImpl<SlotIndex> &EndPoints,
2394 bool changeInstrs) {
2395 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2396 SlotIndex Def = LR.getValNumInfo(i)->def;
2397 switch (Vals[i].Resolution) {
2398 case CR_Keep:
2399 break;
2400 case CR_Replace: {
2401 // This value takes precedence over the value in Other.LR.
2402 LIS->pruneValue(Other.LR, Def, &EndPoints);
2403 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2404 // instructions are only inserted to provide a live-out value for PHI
2405 // predecessors, so the instruction should simply go away once its value
2406 // has been replaced.
2407 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2408 bool EraseImpDef = OtherV.ErasableImplicitDef &&
2409 OtherV.Resolution == CR_Keep;
2410 if (!Def.isBlock()) {
2411 if (changeInstrs) {
2412 // Remove <def,read-undef> flags. This def is now a partial redef.
2413 // Also remove <def,dead> flags since the joined live range will
2414 // continue past this instruction.
2415 for (MachineOperand &MO :
2416 Indexes->getInstructionFromIndex(Def)->operands()) {
2417 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2418 MO.setIsUndef(EraseImpDef);
2419 MO.setIsDead(false);
2420 }
2421 }
2422 }
2423 // This value will reach instructions below, but we need to make sure
2424 // the live range also reaches the instruction at Def.
2425 if (!EraseImpDef)
2426 EndPoints.push_back(Def);
2427 }
2428 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def
2429 << ": " << Other.LR << '\n');
2430 break;
2431 }
2432 case CR_Erase:
2433 case CR_Merge:
2434 if (isPrunedValue(i, Other)) {
2435 // This value is ultimately a copy of a pruned value in LR or Other.LR.
2436 // We can no longer trust the value mapping computed by
2437 // computeAssignment(), the value that was originally copied could have
2438 // been replaced.
2439 LIS->pruneValue(LR, Def, &EndPoints);
2440 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at "
2441 << Def << ": " << LR << '\n');
2442 }
2443 break;
2444 case CR_Unresolved:
2445 case CR_Impossible:
2446 llvm_unreachable("Unresolved conflicts");
2447 }
2448 }
2449 }
2450
pruneSubRegValues(LiveInterval & LI,LaneBitmask & ShrinkMask)2451 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask)
2452 {
2453 // Look for values being erased.
2454 bool DidPrune = false;
2455 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2456 if (Vals[i].Resolution != CR_Erase)
2457 continue;
2458
2459 // Check subranges at the point where the copy will be removed.
2460 SlotIndex Def = LR.getValNumInfo(i)->def;
2461 for (LiveInterval::SubRange &S : LI.subranges()) {
2462 LiveQueryResult Q = S.Query(Def);
2463
2464 // If a subrange starts at the copy then an undefined value has been
2465 // copied and we must remove that subrange value as well.
2466 VNInfo *ValueOut = Q.valueOutOrDead();
2467 if (ValueOut != nullptr && Q.valueIn() == nullptr) {
2468 DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
2469 << " at " << Def << "\n");
2470 LIS->pruneValue(S, Def, nullptr);
2471 DidPrune = true;
2472 // Mark value number as unused.
2473 ValueOut->markUnused();
2474 continue;
2475 }
2476 // If a subrange ends at the copy, then a value was copied but only
2477 // partially used later. Shrink the subregister range appropriately.
2478 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
2479 DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask)
2480 << " at " << Def << "\n");
2481 ShrinkMask |= S.LaneMask;
2482 }
2483 }
2484 }
2485 if (DidPrune)
2486 LI.removeEmptySubRanges();
2487 }
2488
removeImplicitDefs()2489 void JoinVals::removeImplicitDefs() {
2490 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2491 Val &V = Vals[i];
2492 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
2493 continue;
2494
2495 VNInfo *VNI = LR.getValNumInfo(i);
2496 VNI->markUnused();
2497 LR.removeValNo(VNI);
2498 }
2499 }
2500
eraseInstrs(SmallPtrSetImpl<MachineInstr * > & ErasedInstrs,SmallVectorImpl<unsigned> & ShrinkRegs)2501 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2502 SmallVectorImpl<unsigned> &ShrinkRegs) {
2503 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2504 // Get the def location before markUnused() below invalidates it.
2505 SlotIndex Def = LR.getValNumInfo(i)->def;
2506 switch (Vals[i].Resolution) {
2507 case CR_Keep: {
2508 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
2509 // longer. The IMPLICIT_DEF instructions are only inserted by
2510 // PHIElimination to guarantee that all PHI predecessors have a value.
2511 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
2512 break;
2513 // Remove value number i from LR.
2514 VNInfo *VNI = LR.getValNumInfo(i);
2515 LR.removeValNo(VNI);
2516 // Note that this VNInfo is reused and still referenced in NewVNInfo,
2517 // make it appear like an unused value number.
2518 VNI->markUnused();
2519 DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n');
2520 // FALL THROUGH.
2521 }
2522
2523 case CR_Erase: {
2524 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2525 assert(MI && "No instruction to erase");
2526 if (MI->isCopy()) {
2527 unsigned Reg = MI->getOperand(1).getReg();
2528 if (TargetRegisterInfo::isVirtualRegister(Reg) &&
2529 Reg != CP.getSrcReg() && Reg != CP.getDstReg())
2530 ShrinkRegs.push_back(Reg);
2531 }
2532 ErasedInstrs.insert(MI);
2533 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
2534 LIS->RemoveMachineInstrFromMaps(*MI);
2535 MI->eraseFromParent();
2536 break;
2537 }
2538 default:
2539 break;
2540 }
2541 }
2542 }
2543
joinSubRegRanges(LiveRange & LRange,LiveRange & RRange,LaneBitmask LaneMask,const CoalescerPair & CP)2544 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
2545 LaneBitmask LaneMask,
2546 const CoalescerPair &CP) {
2547 SmallVector<VNInfo*, 16> NewVNInfo;
2548 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
2549 NewVNInfo, CP, LIS, TRI, true, true);
2550 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
2551 NewVNInfo, CP, LIS, TRI, true, true);
2552
2553 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
2554 // We should be able to resolve all conflicts here as we could successfully do
2555 // it on the mainrange already. There is however a problem when multiple
2556 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
2557 // interferences.
2558 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
2559 // We already determined that it is legal to merge the intervals, so this
2560 // should never fail.
2561 llvm_unreachable("*** Couldn't join subrange!\n");
2562 }
2563 if (!LHSVals.resolveConflicts(RHSVals) ||
2564 !RHSVals.resolveConflicts(LHSVals)) {
2565 // We already determined that it is legal to merge the intervals, so this
2566 // should never fail.
2567 llvm_unreachable("*** Couldn't join subrange!\n");
2568 }
2569
2570 // The merging algorithm in LiveInterval::join() can't handle conflicting
2571 // value mappings, so we need to remove any live ranges that overlap a
2572 // CR_Replace resolution. Collect a set of end points that can be used to
2573 // restore the live range after joining.
2574 SmallVector<SlotIndex, 8> EndPoints;
2575 LHSVals.pruneValues(RHSVals, EndPoints, false);
2576 RHSVals.pruneValues(LHSVals, EndPoints, false);
2577
2578 LHSVals.removeImplicitDefs();
2579 RHSVals.removeImplicitDefs();
2580
2581 LRange.verify();
2582 RRange.verify();
2583
2584 // Join RRange into LHS.
2585 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
2586 NewVNInfo);
2587
2588 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n");
2589 if (EndPoints.empty())
2590 return;
2591
2592 // Recompute the parts of the live range we had to remove because of
2593 // CR_Replace conflicts.
2594 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2595 << " points: " << LRange << '\n');
2596 LIS->extendToIndices(LRange, EndPoints);
2597 }
2598
mergeSubRangeInto(LiveInterval & LI,const LiveRange & ToMerge,LaneBitmask LaneMask,CoalescerPair & CP)2599 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
2600 const LiveRange &ToMerge,
2601 LaneBitmask LaneMask,
2602 CoalescerPair &CP) {
2603 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
2604 for (LiveInterval::SubRange &R : LI.subranges()) {
2605 LaneBitmask RMask = R.LaneMask;
2606 // LaneMask of subregisters common to subrange R and ToMerge.
2607 LaneBitmask Common = RMask & LaneMask;
2608 // There is nothing to do without common subregs.
2609 if (Common == 0)
2610 continue;
2611
2612 DEBUG(dbgs() << "\t\tCopy+Merge " << PrintLaneMask(RMask) << " into "
2613 << PrintLaneMask(Common) << '\n');
2614 // LaneMask of subregisters contained in the R range but not in ToMerge,
2615 // they have to split into their own subrange.
2616 LaneBitmask LRest = RMask & ~LaneMask;
2617 LiveInterval::SubRange *CommonRange;
2618 if (LRest != 0) {
2619 R.LaneMask = LRest;
2620 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(LRest) << '\n');
2621 // Duplicate SubRange for newly merged common stuff.
2622 CommonRange = LI.createSubRangeFrom(Allocator, Common, R);
2623 } else {
2624 // Reuse the existing range.
2625 R.LaneMask = Common;
2626 CommonRange = &R;
2627 }
2628 LiveRange RangeCopy(ToMerge, Allocator);
2629 joinSubRegRanges(*CommonRange, RangeCopy, Common, CP);
2630 LaneMask &= ~RMask;
2631 }
2632
2633 if (LaneMask != 0) {
2634 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(LaneMask) << '\n');
2635 LI.createSubRangeFrom(Allocator, LaneMask, ToMerge);
2636 }
2637 }
2638
joinVirtRegs(CoalescerPair & CP)2639 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
2640 SmallVector<VNInfo*, 16> NewVNInfo;
2641 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
2642 LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
2643 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
2644 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS,
2645 TRI, false, TrackSubRegLiveness);
2646 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS,
2647 TRI, false, TrackSubRegLiveness);
2648
2649 DEBUG(dbgs() << "\t\tRHS = " << RHS
2650 << "\n\t\tLHS = " << LHS
2651 << '\n');
2652
2653 // First compute NewVNInfo and the simple value mappings.
2654 // Detect impossible conflicts early.
2655 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
2656 return false;
2657
2658 // Some conflicts can only be resolved after all values have been mapped.
2659 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
2660 return false;
2661
2662 // All clear, the live ranges can be merged.
2663 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
2664 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
2665
2666 // Transform lanemasks from the LHS to masks in the coalesced register and
2667 // create initial subranges if necessary.
2668 unsigned DstIdx = CP.getDstIdx();
2669 if (!LHS.hasSubRanges()) {
2670 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
2671 : TRI->getSubRegIndexLaneMask(DstIdx);
2672 // LHS must support subregs or we wouldn't be in this codepath.
2673 assert(Mask != 0);
2674 LHS.createSubRangeFrom(Allocator, Mask, LHS);
2675 } else if (DstIdx != 0) {
2676 // Transform LHS lanemasks to new register class if necessary.
2677 for (LiveInterval::SubRange &R : LHS.subranges()) {
2678 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
2679 R.LaneMask = Mask;
2680 }
2681 }
2682 DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg())
2683 << ' ' << LHS << '\n');
2684
2685 // Determine lanemasks of RHS in the coalesced register and merge subranges.
2686 unsigned SrcIdx = CP.getSrcIdx();
2687 if (!RHS.hasSubRanges()) {
2688 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
2689 : TRI->getSubRegIndexLaneMask(SrcIdx);
2690 mergeSubRangeInto(LHS, RHS, Mask, CP);
2691 } else {
2692 // Pair up subranges and merge.
2693 for (LiveInterval::SubRange &R : RHS.subranges()) {
2694 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
2695 mergeSubRangeInto(LHS, R, Mask, CP);
2696 }
2697 }
2698 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
2699
2700 LHSVals.pruneSubRegValues(LHS, ShrinkMask);
2701 RHSVals.pruneSubRegValues(LHS, ShrinkMask);
2702 }
2703
2704 // The merging algorithm in LiveInterval::join() can't handle conflicting
2705 // value mappings, so we need to remove any live ranges that overlap a
2706 // CR_Replace resolution. Collect a set of end points that can be used to
2707 // restore the live range after joining.
2708 SmallVector<SlotIndex, 8> EndPoints;
2709 LHSVals.pruneValues(RHSVals, EndPoints, true);
2710 RHSVals.pruneValues(LHSVals, EndPoints, true);
2711
2712 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
2713 // registers to require trimming.
2714 SmallVector<unsigned, 8> ShrinkRegs;
2715 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2716 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2717 while (!ShrinkRegs.empty())
2718 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
2719
2720 // Join RHS into LHS.
2721 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
2722
2723 // Kill flags are going to be wrong if the live ranges were overlapping.
2724 // Eventually, we should simply clear all kill flags when computing live
2725 // ranges. They are reinserted after register allocation.
2726 MRI->clearKillFlags(LHS.reg);
2727 MRI->clearKillFlags(RHS.reg);
2728
2729 if (!EndPoints.empty()) {
2730 // Recompute the parts of the live range we had to remove because of
2731 // CR_Replace conflicts.
2732 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2733 << " points: " << LHS << '\n');
2734 LIS->extendToIndices((LiveRange&)LHS, EndPoints);
2735 }
2736
2737 return true;
2738 }
2739
joinIntervals(CoalescerPair & CP)2740 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
2741 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
2742 }
2743
2744 namespace {
2745 /// Information concerning MBB coalescing priority.
2746 struct MBBPriorityInfo {
2747 MachineBasicBlock *MBB;
2748 unsigned Depth;
2749 bool IsSplit;
2750
MBBPriorityInfo__anon4db011c00311::MBBPriorityInfo2751 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
2752 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
2753 };
2754 }
2755
2756 /// C-style comparator that sorts first based on the loop depth of the basic
2757 /// block (the unsigned), and then on the MBB number.
2758 ///
2759 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
compareMBBPriority(const MBBPriorityInfo * LHS,const MBBPriorityInfo * RHS)2760 static int compareMBBPriority(const MBBPriorityInfo *LHS,
2761 const MBBPriorityInfo *RHS) {
2762 // Deeper loops first
2763 if (LHS->Depth != RHS->Depth)
2764 return LHS->Depth > RHS->Depth ? -1 : 1;
2765
2766 // Try to unsplit critical edges next.
2767 if (LHS->IsSplit != RHS->IsSplit)
2768 return LHS->IsSplit ? -1 : 1;
2769
2770 // Prefer blocks that are more connected in the CFG. This takes care of
2771 // the most difficult copies first while intervals are short.
2772 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
2773 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
2774 if (cl != cr)
2775 return cl > cr ? -1 : 1;
2776
2777 // As a last resort, sort by block number.
2778 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
2779 }
2780
2781 /// \returns true if the given copy uses or defines a local live range.
isLocalCopy(MachineInstr * Copy,const LiveIntervals * LIS)2782 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
2783 if (!Copy->isCopy())
2784 return false;
2785
2786 if (Copy->getOperand(1).isUndef())
2787 return false;
2788
2789 unsigned SrcReg = Copy->getOperand(1).getReg();
2790 unsigned DstReg = Copy->getOperand(0).getReg();
2791 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
2792 || TargetRegisterInfo::isPhysicalRegister(DstReg))
2793 return false;
2794
2795 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
2796 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
2797 }
2798
2799 bool RegisterCoalescer::
copyCoalesceWorkList(MutableArrayRef<MachineInstr * > CurrList)2800 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
2801 bool Progress = false;
2802 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
2803 if (!CurrList[i])
2804 continue;
2805 // Skip instruction pointers that have already been erased, for example by
2806 // dead code elimination.
2807 if (ErasedInstrs.erase(CurrList[i])) {
2808 CurrList[i] = nullptr;
2809 continue;
2810 }
2811 bool Again = false;
2812 bool Success = joinCopy(CurrList[i], Again);
2813 Progress |= Success;
2814 if (Success || !Again)
2815 CurrList[i] = nullptr;
2816 }
2817 return Progress;
2818 }
2819
2820 /// Check if DstReg is a terminal node.
2821 /// I.e., it does not have any affinity other than \p Copy.
isTerminalReg(unsigned DstReg,const MachineInstr & Copy,const MachineRegisterInfo * MRI)2822 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
2823 const MachineRegisterInfo *MRI) {
2824 assert(Copy.isCopyLike());
2825 // Check if the destination of this copy as any other affinity.
2826 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
2827 if (&MI != &Copy && MI.isCopyLike())
2828 return false;
2829 return true;
2830 }
2831
applyTerminalRule(const MachineInstr & Copy) const2832 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
2833 assert(Copy.isCopyLike());
2834 if (!UseTerminalRule)
2835 return false;
2836 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
2837 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
2838 // Check if the destination of this copy has any other affinity.
2839 if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
2840 // If SrcReg is a physical register, the copy won't be coalesced.
2841 // Ignoring it may have other side effect (like missing
2842 // rematerialization). So keep it.
2843 TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
2844 !isTerminalReg(DstReg, Copy, MRI))
2845 return false;
2846
2847 // DstReg is a terminal node. Check if it interferes with any other
2848 // copy involving SrcReg.
2849 const MachineBasicBlock *OrigBB = Copy.getParent();
2850 const LiveInterval &DstLI = LIS->getInterval(DstReg);
2851 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
2852 // Technically we should check if the weight of the new copy is
2853 // interesting compared to the other one and update the weight
2854 // of the copies accordingly. However, this would only work if
2855 // we would gather all the copies first then coalesce, whereas
2856 // right now we interleave both actions.
2857 // For now, just consider the copies that are in the same block.
2858 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
2859 continue;
2860 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
2861 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
2862 OtherSubReg);
2863 if (OtherReg == SrcReg)
2864 OtherReg = OtherSrcReg;
2865 // Check if OtherReg is a non-terminal.
2866 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
2867 isTerminalReg(OtherReg, MI, MRI))
2868 continue;
2869 // Check that OtherReg interfere with DstReg.
2870 if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
2871 DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n');
2872 return true;
2873 }
2874 }
2875 return false;
2876 }
2877
2878 void
copyCoalesceInMBB(MachineBasicBlock * MBB)2879 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
2880 DEBUG(dbgs() << MBB->getName() << ":\n");
2881
2882 // Collect all copy-like instructions in MBB. Don't start coalescing anything
2883 // yet, it might invalidate the iterator.
2884 const unsigned PrevSize = WorkList.size();
2885 if (JoinGlobalCopies) {
2886 SmallVector<MachineInstr*, 2> LocalTerminals;
2887 SmallVector<MachineInstr*, 2> GlobalTerminals;
2888 // Coalesce copies bottom-up to coalesce local defs before local uses. They
2889 // are not inherently easier to resolve, but slightly preferable until we
2890 // have local live range splitting. In particular this is required by
2891 // cmp+jmp macro fusion.
2892 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2893 MII != E; ++MII) {
2894 if (!MII->isCopyLike())
2895 continue;
2896 bool ApplyTerminalRule = applyTerminalRule(*MII);
2897 if (isLocalCopy(&(*MII), LIS)) {
2898 if (ApplyTerminalRule)
2899 LocalTerminals.push_back(&(*MII));
2900 else
2901 LocalWorkList.push_back(&(*MII));
2902 } else {
2903 if (ApplyTerminalRule)
2904 GlobalTerminals.push_back(&(*MII));
2905 else
2906 WorkList.push_back(&(*MII));
2907 }
2908 }
2909 // Append the copies evicted by the terminal rule at the end of the list.
2910 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
2911 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
2912 }
2913 else {
2914 SmallVector<MachineInstr*, 2> Terminals;
2915 for (MachineInstr &MII : *MBB)
2916 if (MII.isCopyLike()) {
2917 if (applyTerminalRule(MII))
2918 Terminals.push_back(&MII);
2919 else
2920 WorkList.push_back(&MII);
2921 }
2922 // Append the copies evicted by the terminal rule at the end of the list.
2923 WorkList.append(Terminals.begin(), Terminals.end());
2924 }
2925 // Try coalescing the collected copies immediately, and remove the nulls.
2926 // This prevents the WorkList from getting too large since most copies are
2927 // joinable on the first attempt.
2928 MutableArrayRef<MachineInstr*>
2929 CurrList(WorkList.begin() + PrevSize, WorkList.end());
2930 if (copyCoalesceWorkList(CurrList))
2931 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
2932 (MachineInstr*)nullptr), WorkList.end());
2933 }
2934
coalesceLocals()2935 void RegisterCoalescer::coalesceLocals() {
2936 copyCoalesceWorkList(LocalWorkList);
2937 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
2938 if (LocalWorkList[j])
2939 WorkList.push_back(LocalWorkList[j]);
2940 }
2941 LocalWorkList.clear();
2942 }
2943
joinAllIntervals()2944 void RegisterCoalescer::joinAllIntervals() {
2945 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
2946 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
2947
2948 std::vector<MBBPriorityInfo> MBBs;
2949 MBBs.reserve(MF->size());
2950 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
2951 MachineBasicBlock *MBB = &*I;
2952 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
2953 JoinSplitEdges && isSplitEdge(MBB)));
2954 }
2955 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
2956
2957 // Coalesce intervals in MBB priority order.
2958 unsigned CurrDepth = UINT_MAX;
2959 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
2960 // Try coalescing the collected local copies for deeper loops.
2961 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
2962 coalesceLocals();
2963 CurrDepth = MBBs[i].Depth;
2964 }
2965 copyCoalesceInMBB(MBBs[i].MBB);
2966 }
2967 coalesceLocals();
2968
2969 // Joining intervals can allow other intervals to be joined. Iteratively join
2970 // until we make no progress.
2971 while (copyCoalesceWorkList(WorkList))
2972 /* empty */ ;
2973 }
2974
releaseMemory()2975 void RegisterCoalescer::releaseMemory() {
2976 ErasedInstrs.clear();
2977 WorkList.clear();
2978 DeadDefs.clear();
2979 InflateRegs.clear();
2980 }
2981
runOnMachineFunction(MachineFunction & fn)2982 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
2983 MF = &fn;
2984 MRI = &fn.getRegInfo();
2985 TM = &fn.getTarget();
2986 const TargetSubtargetInfo &STI = fn.getSubtarget();
2987 TRI = STI.getRegisterInfo();
2988 TII = STI.getInstrInfo();
2989 LIS = &getAnalysis<LiveIntervals>();
2990 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2991 Loops = &getAnalysis<MachineLoopInfo>();
2992 if (EnableGlobalCopies == cl::BOU_UNSET)
2993 JoinGlobalCopies = STI.enableJoinGlobalCopies();
2994 else
2995 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
2996
2997 // The MachineScheduler does not currently require JoinSplitEdges. This will
2998 // either be enabled unconditionally or replaced by a more general live range
2999 // splitting optimization.
3000 JoinSplitEdges = EnableJoinSplits;
3001
3002 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3003 << "********** Function: " << MF->getName() << '\n');
3004
3005 if (VerifyCoalescing)
3006 MF->verify(this, "Before register coalescing");
3007
3008 RegClassInfo.runOnMachineFunction(fn);
3009
3010 // Join (coalesce) intervals if requested.
3011 if (EnableJoining)
3012 joinAllIntervals();
3013
3014 // After deleting a lot of copies, register classes may be less constrained.
3015 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3016 // DPR inflation.
3017 array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3018 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3019 InflateRegs.end());
3020 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
3021 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3022 unsigned Reg = InflateRegs[i];
3023 if (MRI->reg_nodbg_empty(Reg))
3024 continue;
3025 if (MRI->recomputeRegClass(Reg)) {
3026 DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
3027 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3028 ++NumInflated;
3029
3030 LiveInterval &LI = LIS->getInterval(Reg);
3031 if (LI.hasSubRanges()) {
3032 // If the inflated register class does not support subregisters anymore
3033 // remove the subranges.
3034 if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3035 LI.clearSubRanges();
3036 } else {
3037 #ifndef NDEBUG
3038 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3039 // If subranges are still supported, then the same subregs
3040 // should still be supported.
3041 for (LiveInterval::SubRange &S : LI.subranges()) {
3042 assert((S.LaneMask & ~MaxMask) == 0);
3043 }
3044 #endif
3045 }
3046 }
3047 }
3048 }
3049
3050 DEBUG(dump());
3051 if (VerifyCoalescing)
3052 MF->verify(this, "After register coalescing");
3053 return true;
3054 }
3055
print(raw_ostream & O,const Module * m) const3056 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3057 LIS->print(O, m);
3058 }
3059