• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic RegisterCoalescer interface which
11 // is used as the common interface used by all clients and
12 // implementations of register coalescing.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "RegisterCoalescer.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/LiveRangeEdit.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineLoopInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/RegisterClassInfo.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/Target/TargetSubtargetInfo.h"
40 #include <algorithm>
41 #include <cmath>
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "regalloc"
45 
46 STATISTIC(numJoins    , "Number of interval joins performed");
47 STATISTIC(numCrossRCs , "Number of cross class joins performed");
48 STATISTIC(numCommutes , "Number of instruction commuting performed");
49 STATISTIC(numExtends  , "Number of copies extended");
50 STATISTIC(NumReMats   , "Number of instructions re-materialized");
51 STATISTIC(NumInflated , "Number of register classes inflated");
52 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
53 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
54 
55 static cl::opt<bool>
56 EnableJoining("join-liveintervals",
57               cl::desc("Coalesce copies (default=true)"),
58               cl::init(true));
59 
60 static cl::opt<bool> UseTerminalRule("terminal-rule",
61                                      cl::desc("Apply the terminal rule"),
62                                      cl::init(false), cl::Hidden);
63 
64 /// Temporary flag to test critical edge unsplitting.
65 static cl::opt<bool>
66 EnableJoinSplits("join-splitedges",
67   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
68 
69 /// Temporary flag to test global copy optimization.
70 static cl::opt<cl::boolOrDefault>
71 EnableGlobalCopies("join-globalcopies",
72   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
73   cl::init(cl::BOU_UNSET), cl::Hidden);
74 
75 static cl::opt<bool>
76 VerifyCoalescing("verify-coalescing",
77          cl::desc("Verify machine instrs before and after register coalescing"),
78          cl::Hidden);
79 
80 namespace {
81   class RegisterCoalescer : public MachineFunctionPass,
82                             private LiveRangeEdit::Delegate {
83     MachineFunction* MF;
84     MachineRegisterInfo* MRI;
85     const TargetMachine* TM;
86     const TargetRegisterInfo* TRI;
87     const TargetInstrInfo* TII;
88     LiveIntervals *LIS;
89     const MachineLoopInfo* Loops;
90     AliasAnalysis *AA;
91     RegisterClassInfo RegClassInfo;
92 
93     /// A LaneMask to remember on which subregister live ranges we need to call
94     /// shrinkToUses() later.
95     LaneBitmask ShrinkMask;
96 
97     /// True if the main range of the currently coalesced intervals should be
98     /// checked for smaller live intervals.
99     bool ShrinkMainRange;
100 
101     /// \brief True if the coalescer should aggressively coalesce global copies
102     /// in favor of keeping local copies.
103     bool JoinGlobalCopies;
104 
105     /// \brief True if the coalescer should aggressively coalesce fall-thru
106     /// blocks exclusively containing copies.
107     bool JoinSplitEdges;
108 
109     /// Copy instructions yet to be coalesced.
110     SmallVector<MachineInstr*, 8> WorkList;
111     SmallVector<MachineInstr*, 8> LocalWorkList;
112 
113     /// Set of instruction pointers that have been erased, and
114     /// that may be present in WorkList.
115     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
116 
117     /// Dead instructions that are about to be deleted.
118     SmallVector<MachineInstr*, 8> DeadDefs;
119 
120     /// Virtual registers to be considered for register class inflation.
121     SmallVector<unsigned, 8> InflateRegs;
122 
123     /// Recursively eliminate dead defs in DeadDefs.
124     void eliminateDeadDefs();
125 
126     /// LiveRangeEdit callback for eliminateDeadDefs().
127     void LRE_WillEraseInstruction(MachineInstr *MI) override;
128 
129     /// Coalesce the LocalWorkList.
130     void coalesceLocals();
131 
132     /// Join compatible live intervals
133     void joinAllIntervals();
134 
135     /// Coalesce copies in the specified MBB, putting
136     /// copies that cannot yet be coalesced into WorkList.
137     void copyCoalesceInMBB(MachineBasicBlock *MBB);
138 
139     /// Tries to coalesce all copies in CurrList. Returns true if any progress
140     /// was made.
141     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
142 
143     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
144     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
145     /// was successfully coalesced away. If it is not currently possible to
146     /// coalesce this interval, but it may be possible if other things get
147     /// coalesced, then it returns true by reference in 'Again'.
148     bool joinCopy(MachineInstr *TheCopy, bool &Again);
149 
150     /// Attempt to join these two intervals.  On failure, this
151     /// returns false.  The output "SrcInt" will not have been modified, so we
152     /// can use this information below to update aliases.
153     bool joinIntervals(CoalescerPair &CP);
154 
155     /// Attempt joining two virtual registers. Return true on success.
156     bool joinVirtRegs(CoalescerPair &CP);
157 
158     /// Attempt joining with a reserved physreg.
159     bool joinReservedPhysReg(CoalescerPair &CP);
160 
161     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
162     /// Subranges in @p LI which only partially interfere with the desired
163     /// LaneMask are split as necessary. @p LaneMask are the lanes that
164     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
165     /// lanemasks already adjusted to the coalesced register.
166     void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
167                            LaneBitmask LaneMask, CoalescerPair &CP);
168 
169     /// Join the liveranges of two subregisters. Joins @p RRange into
170     /// @p LRange, @p RRange may be invalid afterwards.
171     void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
172                           LaneBitmask LaneMask, const CoalescerPair &CP);
173 
174     /// We found a non-trivially-coalescable copy. If the source value number is
175     /// defined by a copy from the destination reg see if we can merge these two
176     /// destination reg valno# into a single value number, eliminating a copy.
177     /// This returns true if an interval was modified.
178     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
179 
180     /// Return true if there are definitions of IntB
181     /// other than BValNo val# that can reach uses of AValno val# of IntA.
182     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
183                               VNInfo *AValNo, VNInfo *BValNo);
184 
185     /// We found a non-trivially-coalescable copy.
186     /// If the source value number is defined by a commutable instruction and
187     /// its other operand is coalesced to the copy dest register, see if we
188     /// can transform the copy into a noop by commuting the definition.
189     /// This returns true if an interval was modified.
190     bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
191 
192     /// If the source of a copy is defined by a
193     /// trivial computation, replace the copy by rematerialize the definition.
194     bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
195                                  bool &IsDefCopy);
196 
197     /// Return true if a copy involving a physreg should be joined.
198     bool canJoinPhys(const CoalescerPair &CP);
199 
200     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
201     /// number if it is not zero. If DstReg is a physical register and the
202     /// existing subregister number of the def / use being updated is not zero,
203     /// make sure to set it to the correct physical subregister.
204     void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
205 
206     /// If the given machine operand reads only undefined lanes add an undef
207     /// flag.
208     /// This can happen when undef uses were previously concealed by a copy
209     /// which we coalesced. Example:
210     ///    %vreg0:sub0<def,read-undef> = ...
211     ///    %vreg1 = COPY %vreg0       <-- Coalescing COPY reveals undef
212     ///           = use %vreg1:sub1   <-- hidden undef use
213     void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
214                       MachineOperand &MO, unsigned SubRegIdx);
215 
216     /// Handle copies of undef values.
217     /// Returns true if @p CopyMI was a copy of an undef value and eliminated.
218     bool eliminateUndefCopy(MachineInstr *CopyMI);
219 
220     /// Check whether or not we should apply the terminal rule on the
221     /// destination (Dst) of \p Copy.
222     /// When the terminal rule applies, Copy is not profitable to
223     /// coalesce.
224     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
225     /// at least one interference (Dst, Dst2). If Dst is terminal, the
226     /// terminal rule consists in checking that at least one of
227     /// interfering node, say Dst2, has an affinity of equal or greater
228     /// weight with Src.
229     /// In that case, Dst2 and Dst will not be able to be both coalesced
230     /// with Src. Since Dst2 exposes more coalescing opportunities than
231     /// Dst, we can drop \p Copy.
232     bool applyTerminalRule(const MachineInstr &Copy) const;
233 
234     /// Wrapper method for \see LiveIntervals::shrinkToUses.
235     /// This method does the proper fixing of the live-ranges when the afore
236     /// mentioned method returns true.
shrinkToUses(LiveInterval * LI,SmallVectorImpl<MachineInstr * > * Dead=nullptr)237     void shrinkToUses(LiveInterval *LI,
238                       SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
239       if (LIS->shrinkToUses(LI, Dead)) {
240         /// Check whether or not \p LI is composed by multiple connected
241         /// components and if that is the case, fix that.
242         SmallVector<LiveInterval*, 8> SplitLIs;
243         LIS->splitSeparateComponents(*LI, SplitLIs);
244       }
245     }
246 
247   public:
248     static char ID; ///< Class identification, replacement for typeinfo
RegisterCoalescer()249     RegisterCoalescer() : MachineFunctionPass(ID) {
250       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
251     }
252 
253     void getAnalysisUsage(AnalysisUsage &AU) const override;
254 
255     void releaseMemory() override;
256 
257     /// This is the pass entry point.
258     bool runOnMachineFunction(MachineFunction&) override;
259 
260     /// Implement the dump method.
261     void print(raw_ostream &O, const Module* = nullptr) const override;
262   };
263 } // end anonymous namespace
264 
265 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
266 
267 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
268                       "Simple Register Coalescing", false, false)
269 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
270 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
271 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
272 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
273 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
274                     "Simple Register Coalescing", false, false)
275 
276 char RegisterCoalescer::ID = 0;
277 
isMoveInstr(const TargetRegisterInfo & tri,const MachineInstr * MI,unsigned & Src,unsigned & Dst,unsigned & SrcSub,unsigned & DstSub)278 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
279                         unsigned &Src, unsigned &Dst,
280                         unsigned &SrcSub, unsigned &DstSub) {
281   if (MI->isCopy()) {
282     Dst = MI->getOperand(0).getReg();
283     DstSub = MI->getOperand(0).getSubReg();
284     Src = MI->getOperand(1).getReg();
285     SrcSub = MI->getOperand(1).getSubReg();
286   } else if (MI->isSubregToReg()) {
287     Dst = MI->getOperand(0).getReg();
288     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
289                                       MI->getOperand(3).getImm());
290     Src = MI->getOperand(2).getReg();
291     SrcSub = MI->getOperand(2).getSubReg();
292   } else
293     return false;
294   return true;
295 }
296 
297 /// Return true if this block should be vacated by the coalescer to eliminate
298 /// branches. The important cases to handle in the coalescer are critical edges
299 /// split during phi elimination which contain only copies. Simple blocks that
300 /// contain non-branches should also be vacated, but this can be handled by an
301 /// earlier pass similar to early if-conversion.
isSplitEdge(const MachineBasicBlock * MBB)302 static bool isSplitEdge(const MachineBasicBlock *MBB) {
303   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
304     return false;
305 
306   for (const auto &MI : *MBB) {
307     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
308       return false;
309   }
310   return true;
311 }
312 
setRegisters(const MachineInstr * MI)313 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
314   SrcReg = DstReg = 0;
315   SrcIdx = DstIdx = 0;
316   NewRC = nullptr;
317   Flipped = CrossClass = false;
318 
319   unsigned Src, Dst, SrcSub, DstSub;
320   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
321     return false;
322   Partial = SrcSub || DstSub;
323 
324   // If one register is a physreg, it must be Dst.
325   if (TargetRegisterInfo::isPhysicalRegister(Src)) {
326     if (TargetRegisterInfo::isPhysicalRegister(Dst))
327       return false;
328     std::swap(Src, Dst);
329     std::swap(SrcSub, DstSub);
330     Flipped = true;
331   }
332 
333   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
334 
335   if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
336     // Eliminate DstSub on a physreg.
337     if (DstSub) {
338       Dst = TRI.getSubReg(Dst, DstSub);
339       if (!Dst) return false;
340       DstSub = 0;
341     }
342 
343     // Eliminate SrcSub by picking a corresponding Dst superregister.
344     if (SrcSub) {
345       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
346       if (!Dst) return false;
347     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
348       return false;
349     }
350   } else {
351     // Both registers are virtual.
352     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
353     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
354 
355     // Both registers have subreg indices.
356     if (SrcSub && DstSub) {
357       // Copies between different sub-registers are never coalescable.
358       if (Src == Dst && SrcSub != DstSub)
359         return false;
360 
361       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
362                                          SrcIdx, DstIdx);
363       if (!NewRC)
364         return false;
365     } else if (DstSub) {
366       // SrcReg will be merged with a sub-register of DstReg.
367       SrcIdx = DstSub;
368       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
369     } else if (SrcSub) {
370       // DstReg will be merged with a sub-register of SrcReg.
371       DstIdx = SrcSub;
372       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
373     } else {
374       // This is a straight copy without sub-registers.
375       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
376     }
377 
378     // The combined constraint may be impossible to satisfy.
379     if (!NewRC)
380       return false;
381 
382     // Prefer SrcReg to be a sub-register of DstReg.
383     // FIXME: Coalescer should support subregs symmetrically.
384     if (DstIdx && !SrcIdx) {
385       std::swap(Src, Dst);
386       std::swap(SrcIdx, DstIdx);
387       Flipped = !Flipped;
388     }
389 
390     CrossClass = NewRC != DstRC || NewRC != SrcRC;
391   }
392   // Check our invariants
393   assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
394   assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
395          "Cannot have a physical SubIdx");
396   SrcReg = Src;
397   DstReg = Dst;
398   return true;
399 }
400 
flip()401 bool CoalescerPair::flip() {
402   if (TargetRegisterInfo::isPhysicalRegister(DstReg))
403     return false;
404   std::swap(SrcReg, DstReg);
405   std::swap(SrcIdx, DstIdx);
406   Flipped = !Flipped;
407   return true;
408 }
409 
isCoalescable(const MachineInstr * MI) const410 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
411   if (!MI)
412     return false;
413   unsigned Src, Dst, SrcSub, DstSub;
414   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
415     return false;
416 
417   // Find the virtual register that is SrcReg.
418   if (Dst == SrcReg) {
419     std::swap(Src, Dst);
420     std::swap(SrcSub, DstSub);
421   } else if (Src != SrcReg) {
422     return false;
423   }
424 
425   // Now check that Dst matches DstReg.
426   if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
427     if (!TargetRegisterInfo::isPhysicalRegister(Dst))
428       return false;
429     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
430     // DstSub could be set for a physreg from INSERT_SUBREG.
431     if (DstSub)
432       Dst = TRI.getSubReg(Dst, DstSub);
433     // Full copy of Src.
434     if (!SrcSub)
435       return DstReg == Dst;
436     // This is a partial register copy. Check that the parts match.
437     return TRI.getSubReg(DstReg, SrcSub) == Dst;
438   } else {
439     // DstReg is virtual.
440     if (DstReg != Dst)
441       return false;
442     // Registers match, do the subregisters line up?
443     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
444            TRI.composeSubRegIndices(DstIdx, DstSub);
445   }
446 }
447 
getAnalysisUsage(AnalysisUsage & AU) const448 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
449   AU.setPreservesCFG();
450   AU.addRequired<AAResultsWrapperPass>();
451   AU.addRequired<LiveIntervals>();
452   AU.addPreserved<LiveIntervals>();
453   AU.addPreserved<SlotIndexes>();
454   AU.addRequired<MachineLoopInfo>();
455   AU.addPreserved<MachineLoopInfo>();
456   AU.addPreservedID(MachineDominatorsID);
457   MachineFunctionPass::getAnalysisUsage(AU);
458 }
459 
eliminateDeadDefs()460 void RegisterCoalescer::eliminateDeadDefs() {
461   SmallVector<unsigned, 8> NewRegs;
462   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
463                 nullptr, this).eliminateDeadDefs(DeadDefs);
464 }
465 
LRE_WillEraseInstruction(MachineInstr * MI)466 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
467   // MI may be in WorkList. Make sure we don't visit it.
468   ErasedInstrs.insert(MI);
469 }
470 
adjustCopiesBackFrom(const CoalescerPair & CP,MachineInstr * CopyMI)471 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
472                                              MachineInstr *CopyMI) {
473   assert(!CP.isPartial() && "This doesn't work for partial copies.");
474   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
475 
476   LiveInterval &IntA =
477     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
478   LiveInterval &IntB =
479     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
480   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
481 
482   // We have a non-trivially-coalescable copy with IntA being the source and
483   // IntB being the dest, thus this defines a value number in IntB.  If the
484   // source value number (in IntA) is defined by a copy from B, see if we can
485   // merge these two pieces of B into a single value number, eliminating a copy.
486   // For example:
487   //
488   //  A3 = B0
489   //    ...
490   //  B1 = A3      <- this copy
491   //
492   // In this case, B0 can be extended to where the B1 copy lives, allowing the
493   // B1 value number to be replaced with B0 (which simplifies the B
494   // liveinterval).
495 
496   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
497   // the example above.
498   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
499   if (BS == IntB.end()) return false;
500   VNInfo *BValNo = BS->valno;
501 
502   // Get the location that B is defined at.  Two options: either this value has
503   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
504   // can't process it.
505   if (BValNo->def != CopyIdx) return false;
506 
507   // AValNo is the value number in A that defines the copy, A3 in the example.
508   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
509   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
510   // The live segment might not exist after fun with physreg coalescing.
511   if (AS == IntA.end()) return false;
512   VNInfo *AValNo = AS->valno;
513 
514   // If AValNo is defined as a copy from IntB, we can potentially process this.
515   // Get the instruction that defines this value number.
516   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
517   // Don't allow any partial copies, even if isCoalescable() allows them.
518   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
519     return false;
520 
521   // Get the Segment in IntB that this value number starts with.
522   LiveInterval::iterator ValS =
523     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
524   if (ValS == IntB.end())
525     return false;
526 
527   // Make sure that the end of the live segment is inside the same block as
528   // CopyMI.
529   MachineInstr *ValSEndInst =
530     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
531   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
532     return false;
533 
534   // Okay, we now know that ValS ends in the same block that the CopyMI
535   // live-range starts.  If there are no intervening live segments between them
536   // in IntB, we can merge them.
537   if (ValS+1 != BS) return false;
538 
539   DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
540 
541   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
542   // We are about to delete CopyMI, so need to remove it as the 'instruction
543   // that defines this value #'. Update the valnum with the new defining
544   // instruction #.
545   BValNo->def = FillerStart;
546 
547   // Okay, we can merge them.  We need to insert a new liverange:
548   // [ValS.end, BS.begin) of either value number, then we merge the
549   // two value numbers.
550   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
551 
552   // Okay, merge "B1" into the same value number as "B0".
553   if (BValNo != ValS->valno)
554     IntB.MergeValueNumberInto(BValNo, ValS->valno);
555 
556   // Do the same for the subregister segments.
557   for (LiveInterval::SubRange &S : IntB.subranges()) {
558     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
559     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
560     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
561     if (SubBValNo != SubValSNo)
562       S.MergeValueNumberInto(SubBValNo, SubValSNo);
563   }
564 
565   DEBUG(dbgs() << "   result = " << IntB << '\n');
566 
567   // If the source instruction was killing the source register before the
568   // merge, unset the isKill marker given the live range has been extended.
569   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
570   if (UIdx != -1) {
571     ValSEndInst->getOperand(UIdx).setIsKill(false);
572   }
573 
574   // Rewrite the copy. If the copy instruction was killing the destination
575   // register before the merge, find the last use and trim the live range. That
576   // will also add the isKill marker.
577   CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
578   if (AS->end == CopyIdx)
579     shrinkToUses(&IntA);
580 
581   ++numExtends;
582   return true;
583 }
584 
hasOtherReachingDefs(LiveInterval & IntA,LiveInterval & IntB,VNInfo * AValNo,VNInfo * BValNo)585 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
586                                              LiveInterval &IntB,
587                                              VNInfo *AValNo,
588                                              VNInfo *BValNo) {
589   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
590   // the PHI values.
591   if (LIS->hasPHIKill(IntA, AValNo))
592     return true;
593 
594   for (LiveRange::Segment &ASeg : IntA.segments) {
595     if (ASeg.valno != AValNo) continue;
596     LiveInterval::iterator BI =
597       std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
598     if (BI != IntB.begin())
599       --BI;
600     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
601       if (BI->valno == BValNo)
602         continue;
603       if (BI->start <= ASeg.start && BI->end > ASeg.start)
604         return true;
605       if (BI->start > ASeg.start && BI->start < ASeg.end)
606         return true;
607     }
608   }
609   return false;
610 }
611 
612 /// Copy segements with value number @p SrcValNo from liverange @p Src to live
613 /// range @Dst and use value number @p DstValNo there.
addSegmentsWithValNo(LiveRange & Dst,VNInfo * DstValNo,const LiveRange & Src,const VNInfo * SrcValNo)614 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo,
615                                  const LiveRange &Src, const VNInfo *SrcValNo)
616 {
617   for (const LiveRange::Segment &S : Src.segments) {
618     if (S.valno != SrcValNo)
619       continue;
620     Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo));
621   }
622 }
623 
removeCopyByCommutingDef(const CoalescerPair & CP,MachineInstr * CopyMI)624 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
625                                                  MachineInstr *CopyMI) {
626   assert(!CP.isPhys());
627 
628   LiveInterval &IntA =
629       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
630   LiveInterval &IntB =
631       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
632 
633   // We found a non-trivially-coalescable copy with IntA being the source and
634   // IntB being the dest, thus this defines a value number in IntB.  If the
635   // source value number (in IntA) is defined by a commutable instruction and
636   // its other operand is coalesced to the copy dest register, see if we can
637   // transform the copy into a noop by commuting the definition. For example,
638   //
639   //  A3 = op A2 B0<kill>
640   //    ...
641   //  B1 = A3      <- this copy
642   //    ...
643   //     = op A3   <- more uses
644   //
645   // ==>
646   //
647   //  B2 = op B0 A2<kill>
648   //    ...
649   //  B1 = B2      <- now an identity copy
650   //    ...
651   //     = op B2   <- more uses
652 
653   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
654   // the example above.
655   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
656   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
657   assert(BValNo != nullptr && BValNo->def == CopyIdx);
658 
659   // AValNo is the value number in A that defines the copy, A3 in the example.
660   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
661   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
662   if (AValNo->isPHIDef())
663     return false;
664   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
665   if (!DefMI)
666     return false;
667   if (!DefMI->isCommutable())
668     return false;
669   // If DefMI is a two-address instruction then commuting it will change the
670   // destination register.
671   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
672   assert(DefIdx != -1);
673   unsigned UseOpIdx;
674   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
675     return false;
676 
677   // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
678   // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
679   // passed to the method. That _other_ operand is chosen by
680   // the findCommutedOpIndices() method.
681   //
682   // That is obviously an area for improvement in case of instructions having
683   // more than 2 operands. For example, if some instruction has 3 commutable
684   // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
685   // op#2<->op#3) of commute transformation should be considered/tried here.
686   unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
687   if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
688     return false;
689 
690   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
691   unsigned NewReg = NewDstMO.getReg();
692   if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
693     return false;
694 
695   // Make sure there are no other definitions of IntB that would reach the
696   // uses which the new definition can reach.
697   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
698     return false;
699 
700   // If some of the uses of IntA.reg is already coalesced away, return false.
701   // It's not possible to determine whether it's safe to perform the coalescing.
702   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
703     MachineInstr *UseMI = MO.getParent();
704     unsigned OpNo = &MO - &UseMI->getOperand(0);
705     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
706     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
707     if (US == IntA.end() || US->valno != AValNo)
708       continue;
709     // If this use is tied to a def, we can't rewrite the register.
710     if (UseMI->isRegTiedToDefOperand(OpNo))
711       return false;
712   }
713 
714   DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
715                << *DefMI);
716 
717   // At this point we have decided that it is legal to do this
718   // transformation.  Start by commuting the instruction.
719   MachineBasicBlock *MBB = DefMI->getParent();
720   MachineInstr *NewMI =
721       TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
722   if (!NewMI)
723     return false;
724   if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
725       TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
726       !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
727     return false;
728   if (NewMI != DefMI) {
729     LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
730     MachineBasicBlock::iterator Pos = DefMI;
731     MBB->insert(Pos, NewMI);
732     MBB->erase(DefMI);
733   }
734 
735   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
736   // A = or A, B
737   // ...
738   // B = A
739   // ...
740   // C = A<kill>
741   // ...
742   //   = B
743 
744   // Update uses of IntA of the specific Val# with IntB.
745   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
746                                          UE = MRI->use_end();
747        UI != UE; /* ++UI is below because of possible MI removal */) {
748     MachineOperand &UseMO = *UI;
749     ++UI;
750     if (UseMO.isUndef())
751       continue;
752     MachineInstr *UseMI = UseMO.getParent();
753     if (UseMI->isDebugValue()) {
754       // FIXME These don't have an instruction index.  Not clear we have enough
755       // info to decide whether to do this replacement or not.  For now do it.
756       UseMO.setReg(NewReg);
757       continue;
758     }
759     SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
760     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
761     assert(US != IntA.end() && "Use must be live");
762     if (US->valno != AValNo)
763       continue;
764     // Kill flags are no longer accurate. They are recomputed after RA.
765     UseMO.setIsKill(false);
766     if (TargetRegisterInfo::isPhysicalRegister(NewReg))
767       UseMO.substPhysReg(NewReg, *TRI);
768     else
769       UseMO.setReg(NewReg);
770     if (UseMI == CopyMI)
771       continue;
772     if (!UseMI->isCopy())
773       continue;
774     if (UseMI->getOperand(0).getReg() != IntB.reg ||
775         UseMI->getOperand(0).getSubReg())
776       continue;
777 
778     // This copy will become a noop. If it's defining a new val#, merge it into
779     // BValNo.
780     SlotIndex DefIdx = UseIdx.getRegSlot();
781     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
782     if (!DVNI)
783       continue;
784     DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
785     assert(DVNI->def == DefIdx);
786     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
787     for (LiveInterval::SubRange &S : IntB.subranges()) {
788       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
789       if (!SubDVNI)
790         continue;
791       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
792       assert(SubBValNo->def == CopyIdx);
793       S.MergeValueNumberInto(SubDVNI, SubBValNo);
794     }
795 
796     ErasedInstrs.insert(UseMI);
797     LIS->RemoveMachineInstrFromMaps(*UseMI);
798     UseMI->eraseFromParent();
799   }
800 
801   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
802   // is updated.
803   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
804   if (IntB.hasSubRanges()) {
805     if (!IntA.hasSubRanges()) {
806       LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
807       IntA.createSubRangeFrom(Allocator, Mask, IntA);
808     }
809     SlotIndex AIdx = CopyIdx.getRegSlot(true);
810     for (LiveInterval::SubRange &SA : IntA.subranges()) {
811       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
812       assert(ASubValNo != nullptr);
813 
814       LaneBitmask AMask = SA.LaneMask;
815       for (LiveInterval::SubRange &SB : IntB.subranges()) {
816         LaneBitmask BMask = SB.LaneMask;
817         LaneBitmask Common = BMask & AMask;
818         if (Common == 0)
819           continue;
820 
821         DEBUG( dbgs() << "\t\tCopy_Merge " << PrintLaneMask(BMask)
822                       << " into " << PrintLaneMask(Common) << '\n');
823         LaneBitmask BRest = BMask & ~AMask;
824         LiveInterval::SubRange *CommonRange;
825         if (BRest != 0) {
826           SB.LaneMask = BRest;
827           DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(BRest)
828                        << '\n');
829           // Duplicate SubRange for newly merged common stuff.
830           CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB);
831         } else {
832           // We van reuse the L SubRange.
833           SB.LaneMask = Common;
834           CommonRange = &SB;
835         }
836         LiveRange RangeCopy(SB, Allocator);
837 
838         VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx);
839         assert(BSubValNo->def == CopyIdx);
840         BSubValNo->def = ASubValNo->def;
841         addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo);
842         AMask &= ~BMask;
843       }
844       if (AMask != 0) {
845         DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(AMask) << '\n');
846         LiveRange *NewRange = IntB.createSubRange(Allocator, AMask);
847         VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator);
848         addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo);
849       }
850     }
851   }
852 
853   BValNo->def = AValNo->def;
854   addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
855   DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
856 
857   LIS->removeVRegDefAt(IntA, AValNo->def);
858 
859   DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
860   ++numCommutes;
861   return true;
862 }
863 
864 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
865 /// defining a subregister.
definesFullReg(const MachineInstr & MI,unsigned Reg)866 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
867   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
868          "This code cannot handle physreg aliasing");
869   for (const MachineOperand &Op : MI.operands()) {
870     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
871       continue;
872     // Return true if we define the full register or don't care about the value
873     // inside other subregisters.
874     if (Op.getSubReg() == 0 || Op.isUndef())
875       return true;
876   }
877   return false;
878 }
879 
reMaterializeTrivialDef(const CoalescerPair & CP,MachineInstr * CopyMI,bool & IsDefCopy)880 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
881                                                 MachineInstr *CopyMI,
882                                                 bool &IsDefCopy) {
883   IsDefCopy = false;
884   unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
885   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
886   unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
887   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
888   if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
889     return false;
890 
891   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
892   SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
893   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
894   assert(ValNo && "CopyMI input register not live");
895   if (ValNo->isPHIDef() || ValNo->isUnused())
896     return false;
897   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
898   if (!DefMI)
899     return false;
900   if (DefMI->isCopyLike()) {
901     IsDefCopy = true;
902     return false;
903   }
904   if (!TII->isAsCheapAsAMove(*DefMI))
905     return false;
906   if (!TII->isTriviallyReMaterializable(*DefMI, AA))
907     return false;
908   if (!definesFullReg(*DefMI, SrcReg))
909     return false;
910   bool SawStore = false;
911   if (!DefMI->isSafeToMove(AA, SawStore))
912     return false;
913   const MCInstrDesc &MCID = DefMI->getDesc();
914   if (MCID.getNumDefs() != 1)
915     return false;
916   // Only support subregister destinations when the def is read-undef.
917   MachineOperand &DstOperand = CopyMI->getOperand(0);
918   unsigned CopyDstReg = DstOperand.getReg();
919   if (DstOperand.getSubReg() && !DstOperand.isUndef())
920     return false;
921 
922   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
923   // the register substantially (beyond both source and dest size). This is bad
924   // for performance since it can cascade through a function, introducing many
925   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
926   // around after a few subreg copies).
927   if (SrcIdx && DstIdx)
928     return false;
929 
930   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
931   if (!DefMI->isImplicitDef()) {
932     if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
933       unsigned NewDstReg = DstReg;
934 
935       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
936                                               DefMI->getOperand(0).getSubReg());
937       if (NewDstIdx)
938         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
939 
940       // Finally, make sure that the physical subregister that will be
941       // constructed later is permitted for the instruction.
942       if (!DefRC->contains(NewDstReg))
943         return false;
944     } else {
945       // Theoretically, some stack frame reference could exist. Just make sure
946       // it hasn't actually happened.
947       assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
948              "Only expect to deal with virtual or physical registers");
949     }
950   }
951 
952   DebugLoc DL = CopyMI->getDebugLoc();
953   MachineBasicBlock *MBB = CopyMI->getParent();
954   MachineBasicBlock::iterator MII =
955     std::next(MachineBasicBlock::iterator(CopyMI));
956   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
957   MachineInstr &NewMI = *std::prev(MII);
958   NewMI.setDebugLoc(DL);
959 
960   // In a situation like the following:
961   //     %vreg0:subreg = instr              ; DefMI, subreg = DstIdx
962   //     %vreg1        = copy %vreg0:subreg ; CopyMI, SrcIdx = 0
963   // instead of widening %vreg1 to the register class of %vreg0 simply do:
964   //     %vreg1 = instr
965   const TargetRegisterClass *NewRC = CP.getNewRC();
966   if (DstIdx != 0) {
967     MachineOperand &DefMO = NewMI.getOperand(0);
968     if (DefMO.getSubReg() == DstIdx) {
969       assert(SrcIdx == 0 && CP.isFlipped()
970              && "Shouldn't have SrcIdx+DstIdx at this point");
971       const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
972       const TargetRegisterClass *CommonRC =
973         TRI->getCommonSubClass(DefRC, DstRC);
974       if (CommonRC != nullptr) {
975         NewRC = CommonRC;
976         DstIdx = 0;
977         DefMO.setSubReg(0);
978       }
979     }
980   }
981 
982   // CopyMI may have implicit operands, save them so that we can transfer them
983   // over to the newly materialized instruction after CopyMI is removed.
984   SmallVector<MachineOperand, 4> ImplicitOps;
985   ImplicitOps.reserve(CopyMI->getNumOperands() -
986                       CopyMI->getDesc().getNumOperands());
987   for (unsigned I = CopyMI->getDesc().getNumOperands(),
988                 E = CopyMI->getNumOperands();
989        I != E; ++I) {
990     MachineOperand &MO = CopyMI->getOperand(I);
991     if (MO.isReg()) {
992       assert(MO.isImplicit() && "No explicit operands after implict operands.");
993       // Discard VReg implicit defs.
994       if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
995         ImplicitOps.push_back(MO);
996     }
997   }
998 
999   LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1000   CopyMI->eraseFromParent();
1001   ErasedInstrs.insert(CopyMI);
1002 
1003   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1004   // We need to remember these so we can add intervals once we insert
1005   // NewMI into SlotIndexes.
1006   SmallVector<unsigned, 4> NewMIImplDefs;
1007   for (unsigned i = NewMI.getDesc().getNumOperands(),
1008                 e = NewMI.getNumOperands();
1009        i != e; ++i) {
1010     MachineOperand &MO = NewMI.getOperand(i);
1011     if (MO.isReg() && MO.isDef()) {
1012       assert(MO.isImplicit() && MO.isDead() &&
1013              TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
1014       NewMIImplDefs.push_back(MO.getReg());
1015     }
1016   }
1017 
1018   if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
1019     unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1020 
1021     if (DefRC != nullptr) {
1022       if (NewIdx)
1023         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1024       else
1025         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1026       assert(NewRC && "subreg chosen for remat incompatible with instruction");
1027     }
1028     // Remap subranges to new lanemask and change register class.
1029     LiveInterval &DstInt = LIS->getInterval(DstReg);
1030     for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1031       SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1032     }
1033     MRI->setRegClass(DstReg, NewRC);
1034 
1035     // Update machine operands and add flags.
1036     updateRegDefsUses(DstReg, DstReg, DstIdx);
1037     NewMI.getOperand(0).setSubReg(NewIdx);
1038     // Add dead subregister definitions if we are defining the whole register
1039     // but only part of it is live.
1040     // This could happen if the rematerialization instruction is rematerializing
1041     // more than actually is used in the register.
1042     // An example would be:
1043     // vreg1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1044     // ; Copying only part of the register here, but the rest is undef.
1045     // vreg2:sub_16bit<def, read-undef> = COPY vreg1:sub_16bit
1046     // ==>
1047     // ; Materialize all the constants but only using one
1048     // vreg2 = LOAD_CONSTANTS 5, 8
1049     //
1050     // at this point for the part that wasn't defined before we could have
1051     // subranges missing the definition.
1052     if (NewIdx == 0 && DstInt.hasSubRanges()) {
1053       SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1054       SlotIndex DefIndex =
1055           CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1056       LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1057       VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1058       for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1059         if (!SR.liveAt(DefIndex))
1060           SR.createDeadDef(DefIndex, Alloc);
1061         MaxMask &= ~SR.LaneMask;
1062       }
1063       if (MaxMask != 0) {
1064         LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1065         SR->createDeadDef(DefIndex, Alloc);
1066       }
1067     }
1068   } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1069     // The New instruction may be defining a sub-register of what's actually
1070     // been asked for. If so it must implicitly define the whole thing.
1071     assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
1072            "Only expect virtual or physical registers in remat");
1073     NewMI.getOperand(0).setIsDead(true);
1074     NewMI.addOperand(MachineOperand::CreateReg(
1075         CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1076     // Record small dead def live-ranges for all the subregisters
1077     // of the destination register.
1078     // Otherwise, variables that live through may miss some
1079     // interferences, thus creating invalid allocation.
1080     // E.g., i386 code:
1081     // vreg1 = somedef ; vreg1 GR8
1082     // vreg2 = remat ; vreg2 GR32
1083     // CL = COPY vreg2.sub_8bit
1084     // = somedef vreg1 ; vreg1 GR8
1085     // =>
1086     // vreg1 = somedef ; vreg1 GR8
1087     // ECX<def, dead> = remat ; CL<imp-def>
1088     // = somedef vreg1 ; vreg1 GR8
1089     // vreg1 will see the inteferences with CL but not with CH since
1090     // no live-ranges would have been created for ECX.
1091     // Fix that!
1092     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1093     for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1094          Units.isValid(); ++Units)
1095       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1096         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1097   }
1098 
1099   if (NewMI.getOperand(0).getSubReg())
1100     NewMI.getOperand(0).setIsUndef();
1101 
1102   // Transfer over implicit operands to the rematerialized instruction.
1103   for (MachineOperand &MO : ImplicitOps)
1104     NewMI.addOperand(MO);
1105 
1106   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1107   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1108     unsigned Reg = NewMIImplDefs[i];
1109     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1110       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1111         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1112   }
1113 
1114   DEBUG(dbgs() << "Remat: " << NewMI);
1115   ++NumReMats;
1116 
1117   // The source interval can become smaller because we removed a use.
1118   shrinkToUses(&SrcInt, &DeadDefs);
1119   if (!DeadDefs.empty()) {
1120     // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1121     // to describe DstReg instead.
1122     for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1123       MachineInstr *UseMI = UseMO.getParent();
1124       if (UseMI->isDebugValue()) {
1125         UseMO.setReg(DstReg);
1126         DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1127       }
1128     }
1129     eliminateDeadDefs();
1130   }
1131 
1132   return true;
1133 }
1134 
eliminateUndefCopy(MachineInstr * CopyMI)1135 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1136   // ProcessImpicitDefs may leave some copies of <undef> values, it only removes
1137   // local variables. When we have a copy like:
1138   //
1139   //   %vreg1 = COPY %vreg2<undef>
1140   //
1141   // We delete the copy and remove the corresponding value number from %vreg1.
1142   // Any uses of that value number are marked as <undef>.
1143 
1144   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1145   // CoalescerPair may have a new register class with adjusted subreg indices
1146   // at this point.
1147   unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1148   isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
1149 
1150   SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1151   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1152   // CopyMI is undef iff SrcReg is not live before the instruction.
1153   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1154     LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1155     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1156       if ((SR.LaneMask & SrcMask) == 0)
1157         continue;
1158       if (SR.liveAt(Idx))
1159         return false;
1160     }
1161   } else if (SrcLI.liveAt(Idx))
1162     return false;
1163 
1164   DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1165 
1166   // Remove any DstReg segments starting at the instruction.
1167   LiveInterval &DstLI = LIS->getInterval(DstReg);
1168   SlotIndex RegIndex = Idx.getRegSlot();
1169   // Remove value or merge with previous one in case of a subregister def.
1170   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1171     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1172     DstLI.MergeValueNumberInto(VNI, PrevVNI);
1173 
1174     // The affected subregister segments can be removed.
1175     LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1176     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1177       if ((SR.LaneMask & DstMask) == 0)
1178         continue;
1179 
1180       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1181       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1182       SR.removeValNo(SVNI);
1183     }
1184     DstLI.removeEmptySubRanges();
1185   } else
1186     LIS->removeVRegDefAt(DstLI, RegIndex);
1187 
1188   // Mark uses as undef.
1189   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1190     if (MO.isDef() /*|| MO.isUndef()*/)
1191       continue;
1192     const MachineInstr &MI = *MO.getParent();
1193     SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1194     LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1195     bool isLive;
1196     if (UseMask != ~0u && DstLI.hasSubRanges()) {
1197       isLive = false;
1198       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1199         if ((SR.LaneMask & UseMask) == 0)
1200           continue;
1201         if (SR.liveAt(UseIdx)) {
1202           isLive = true;
1203           break;
1204         }
1205       }
1206     } else
1207       isLive = DstLI.liveAt(UseIdx);
1208     if (isLive)
1209       continue;
1210     MO.setIsUndef(true);
1211     DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1212   }
1213   return true;
1214 }
1215 
addUndefFlag(const LiveInterval & Int,SlotIndex UseIdx,MachineOperand & MO,unsigned SubRegIdx)1216 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1217                                      MachineOperand &MO, unsigned SubRegIdx) {
1218   LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1219   if (MO.isDef())
1220     Mask = ~Mask;
1221   bool IsUndef = true;
1222   for (const LiveInterval::SubRange &S : Int.subranges()) {
1223     if ((S.LaneMask & Mask) == 0)
1224       continue;
1225     if (S.liveAt(UseIdx)) {
1226       IsUndef = false;
1227       break;
1228     }
1229   }
1230   if (IsUndef) {
1231     MO.setIsUndef(true);
1232     // We found out some subregister use is actually reading an undefined
1233     // value. In some cases the whole vreg has become undefined at this
1234     // point so we have to potentially shrink the main range if the
1235     // use was ending a live segment there.
1236     LiveQueryResult Q = Int.Query(UseIdx);
1237     if (Q.valueOut() == nullptr)
1238       ShrinkMainRange = true;
1239   }
1240 }
1241 
updateRegDefsUses(unsigned SrcReg,unsigned DstReg,unsigned SubIdx)1242 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1243                                           unsigned DstReg,
1244                                           unsigned SubIdx) {
1245   bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1246   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1247 
1248   if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1249     for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1250       unsigned SubReg = MO.getSubReg();
1251       if (SubReg == 0 || MO.isUndef())
1252         continue;
1253       MachineInstr &MI = *MO.getParent();
1254       if (MI.isDebugValue())
1255         continue;
1256       SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1257       addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1258     }
1259   }
1260 
1261   SmallPtrSet<MachineInstr*, 8> Visited;
1262   for (MachineRegisterInfo::reg_instr_iterator
1263        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1264        I != E; ) {
1265     MachineInstr *UseMI = &*(I++);
1266 
1267     // Each instruction can only be rewritten once because sub-register
1268     // composition is not always idempotent. When SrcReg != DstReg, rewriting
1269     // the UseMI operands removes them from the SrcReg use-def chain, but when
1270     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1271     // operands mentioning the virtual register.
1272     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1273       continue;
1274 
1275     SmallVector<unsigned,8> Ops;
1276     bool Reads, Writes;
1277     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1278 
1279     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1280     // because SrcReg is a sub-register.
1281     if (DstInt && !Reads && SubIdx)
1282       Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1283 
1284     // Replace SrcReg with DstReg in all UseMI operands.
1285     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1286       MachineOperand &MO = UseMI->getOperand(Ops[i]);
1287 
1288       // Adjust <undef> flags in case of sub-register joins. We don't want to
1289       // turn a full def into a read-modify-write sub-register def and vice
1290       // versa.
1291       if (SubIdx && MO.isDef())
1292         MO.setIsUndef(!Reads);
1293 
1294       // A subreg use of a partially undef (super) register may be a complete
1295       // undef use now and then has to be marked that way.
1296       if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1297         if (!DstInt->hasSubRanges()) {
1298           BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1299           LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1300           DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1301         }
1302         SlotIndex MIIdx = UseMI->isDebugValue()
1303                               ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1304                               : LIS->getInstructionIndex(*UseMI);
1305         SlotIndex UseIdx = MIIdx.getRegSlot(true);
1306         addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1307       }
1308 
1309       if (DstIsPhys)
1310         MO.substPhysReg(DstReg, *TRI);
1311       else
1312         MO.substVirtReg(DstReg, SubIdx, *TRI);
1313     }
1314 
1315     DEBUG({
1316         dbgs() << "\t\tupdated: ";
1317         if (!UseMI->isDebugValue())
1318           dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1319         dbgs() << *UseMI;
1320       });
1321   }
1322 }
1323 
canJoinPhys(const CoalescerPair & CP)1324 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1325   // Always join simple intervals that are defined by a single copy from a
1326   // reserved register. This doesn't increase register pressure, so it is
1327   // always beneficial.
1328   if (!MRI->isReserved(CP.getDstReg())) {
1329     DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1330     return false;
1331   }
1332 
1333   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1334   if (JoinVInt.containsOneValue())
1335     return true;
1336 
1337   DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n");
1338   return false;
1339 }
1340 
joinCopy(MachineInstr * CopyMI,bool & Again)1341 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1342 
1343   Again = false;
1344   DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1345 
1346   CoalescerPair CP(*TRI);
1347   if (!CP.setRegisters(CopyMI)) {
1348     DEBUG(dbgs() << "\tNot coalescable.\n");
1349     return false;
1350   }
1351 
1352   if (CP.getNewRC()) {
1353     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1354     auto DstRC = MRI->getRegClass(CP.getDstReg());
1355     unsigned SrcIdx = CP.getSrcIdx();
1356     unsigned DstIdx = CP.getDstIdx();
1357     if (CP.isFlipped()) {
1358       std::swap(SrcIdx, DstIdx);
1359       std::swap(SrcRC, DstRC);
1360     }
1361     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1362                             CP.getNewRC())) {
1363       DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1364       return false;
1365     }
1366   }
1367 
1368   // Dead code elimination. This really should be handled by MachineDCE, but
1369   // sometimes dead copies slip through, and we can't generate invalid live
1370   // ranges.
1371   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1372     DEBUG(dbgs() << "\tCopy is dead.\n");
1373     DeadDefs.push_back(CopyMI);
1374     eliminateDeadDefs();
1375     return true;
1376   }
1377 
1378   // Eliminate undefs.
1379   if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) {
1380     LIS->RemoveMachineInstrFromMaps(*CopyMI);
1381     CopyMI->eraseFromParent();
1382     return false;  // Not coalescable.
1383   }
1384 
1385   // Coalesced copies are normally removed immediately, but transformations
1386   // like removeCopyByCommutingDef() can inadvertently create identity copies.
1387   // When that happens, just join the values and remove the copy.
1388   if (CP.getSrcReg() == CP.getDstReg()) {
1389     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1390     DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1391     const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1392     LiveQueryResult LRQ = LI.Query(CopyIdx);
1393     if (VNInfo *DefVNI = LRQ.valueDefined()) {
1394       VNInfo *ReadVNI = LRQ.valueIn();
1395       assert(ReadVNI && "No value before copy and no <undef> flag.");
1396       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1397       LI.MergeValueNumberInto(DefVNI, ReadVNI);
1398 
1399       // Process subregister liveranges.
1400       for (LiveInterval::SubRange &S : LI.subranges()) {
1401         LiveQueryResult SLRQ = S.Query(CopyIdx);
1402         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1403           VNInfo *SReadVNI = SLRQ.valueIn();
1404           S.MergeValueNumberInto(SDefVNI, SReadVNI);
1405         }
1406       }
1407       DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1408     }
1409     LIS->RemoveMachineInstrFromMaps(*CopyMI);
1410     CopyMI->eraseFromParent();
1411     return true;
1412   }
1413 
1414   // Enforce policies.
1415   if (CP.isPhys()) {
1416     DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1417                  << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1418                  << '\n');
1419     if (!canJoinPhys(CP)) {
1420       // Before giving up coalescing, if definition of source is defined by
1421       // trivial computation, try rematerializing it.
1422       bool IsDefCopy;
1423       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1424         return true;
1425       if (IsDefCopy)
1426         Again = true;  // May be possible to coalesce later.
1427       return false;
1428     }
1429   } else {
1430     // When possible, let DstReg be the larger interval.
1431     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1432                            LIS->getInterval(CP.getDstReg()).size())
1433       CP.flip();
1434 
1435     DEBUG({
1436       dbgs() << "\tConsidering merging to "
1437              << TRI->getRegClassName(CP.getNewRC()) << " with ";
1438       if (CP.getDstIdx() && CP.getSrcIdx())
1439         dbgs() << PrintReg(CP.getDstReg()) << " in "
1440                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1441                << PrintReg(CP.getSrcReg()) << " in "
1442                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1443       else
1444         dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1445                << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1446     });
1447   }
1448 
1449   ShrinkMask = 0;
1450   ShrinkMainRange = false;
1451 
1452   // Okay, attempt to join these two intervals.  On failure, this returns false.
1453   // Otherwise, if one of the intervals being joined is a physreg, this method
1454   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1455   // been modified, so we can use this information below to update aliases.
1456   if (!joinIntervals(CP)) {
1457     // Coalescing failed.
1458 
1459     // If definition of source is defined by trivial computation, try
1460     // rematerializing it.
1461     bool IsDefCopy;
1462     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1463       return true;
1464 
1465     // If we can eliminate the copy without merging the live segments, do so
1466     // now.
1467     if (!CP.isPartial() && !CP.isPhys()) {
1468       if (adjustCopiesBackFrom(CP, CopyMI) ||
1469           removeCopyByCommutingDef(CP, CopyMI)) {
1470         LIS->RemoveMachineInstrFromMaps(*CopyMI);
1471         CopyMI->eraseFromParent();
1472         DEBUG(dbgs() << "\tTrivial!\n");
1473         return true;
1474       }
1475     }
1476 
1477     // Otherwise, we are unable to join the intervals.
1478     DEBUG(dbgs() << "\tInterference!\n");
1479     Again = true;  // May be possible to coalesce later.
1480     return false;
1481   }
1482 
1483   // Coalescing to a virtual register that is of a sub-register class of the
1484   // other. Make sure the resulting register is set to the right register class.
1485   if (CP.isCrossClass()) {
1486     ++numCrossRCs;
1487     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1488   }
1489 
1490   // Removing sub-register copies can ease the register class constraints.
1491   // Make sure we attempt to inflate the register class of DstReg.
1492   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1493     InflateRegs.push_back(CP.getDstReg());
1494 
1495   // CopyMI has been erased by joinIntervals at this point. Remove it from
1496   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1497   // to the work list. This keeps ErasedInstrs from growing needlessly.
1498   ErasedInstrs.erase(CopyMI);
1499 
1500   // Rewrite all SrcReg operands to DstReg.
1501   // Also update DstReg operands to include DstIdx if it is set.
1502   if (CP.getDstIdx())
1503     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1504   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1505 
1506   // Shrink subregister ranges if necessary.
1507   if (ShrinkMask != 0) {
1508     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1509     for (LiveInterval::SubRange &S : LI.subranges()) {
1510       if ((S.LaneMask & ShrinkMask) == 0)
1511         continue;
1512       DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1513                    << ")\n");
1514       LIS->shrinkToUses(S, LI.reg);
1515     }
1516     LI.removeEmptySubRanges();
1517   }
1518   if (ShrinkMainRange) {
1519     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1520     shrinkToUses(&LI);
1521   }
1522 
1523   // SrcReg is guaranteed to be the register whose live interval that is
1524   // being merged.
1525   LIS->removeInterval(CP.getSrcReg());
1526 
1527   // Update regalloc hint.
1528   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1529 
1530   DEBUG({
1531     dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1532            << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1533     dbgs() << "\tResult = ";
1534     if (CP.isPhys())
1535       dbgs() << PrintReg(CP.getDstReg(), TRI);
1536     else
1537       dbgs() << LIS->getInterval(CP.getDstReg());
1538     dbgs() << '\n';
1539   });
1540 
1541   ++numJoins;
1542   return true;
1543 }
1544 
joinReservedPhysReg(CoalescerPair & CP)1545 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1546   unsigned DstReg = CP.getDstReg();
1547   assert(CP.isPhys() && "Must be a physreg copy");
1548   assert(MRI->isReserved(DstReg) && "Not a reserved register");
1549   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1550   DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1551 
1552   assert(RHS.containsOneValue() && "Invalid join with reserved register");
1553 
1554   // Optimization for reserved registers like ESP. We can only merge with a
1555   // reserved physreg if RHS has a single value that is a copy of DstReg.
1556   // The live range of the reserved register will look like a set of dead defs
1557   // - we don't properly track the live range of reserved registers.
1558 
1559   // Deny any overlapping intervals.  This depends on all the reserved
1560   // register live ranges to look like dead defs.
1561   for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI)
1562     if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1563       DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1564       return false;
1565     }
1566 
1567   // Skip any value computations, we are not adding new values to the
1568   // reserved register.  Also skip merging the live ranges, the reserved
1569   // register live range doesn't need to be accurate as long as all the
1570   // defs are there.
1571 
1572   // Delete the identity copy.
1573   MachineInstr *CopyMI;
1574   if (CP.isFlipped()) {
1575     CopyMI = MRI->getVRegDef(RHS.reg);
1576   } else {
1577     if (!MRI->hasOneNonDBGUse(RHS.reg)) {
1578       DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
1579       return false;
1580     }
1581 
1582     MachineInstr *DestMI = MRI->getVRegDef(RHS.reg);
1583     CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg);
1584     const SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
1585     const SlotIndex DestRegIdx = LIS->getInstructionIndex(*DestMI).getRegSlot();
1586 
1587     // We checked above that there are no interfering defs of the physical
1588     // register. However, for this case, where we intent to move up the def of
1589     // the physical register, we also need to check for interfering uses.
1590     SlotIndexes *Indexes = LIS->getSlotIndexes();
1591     for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
1592          SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
1593       MachineInstr *MI = LIS->getInstructionFromIndex(SI);
1594       if (MI->readsRegister(DstReg, TRI)) {
1595         DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
1596         return false;
1597       }
1598 
1599       // We must also check for clobbers caused by regmasks.
1600       for (const auto &MO : MI->operands()) {
1601         if (MO.isRegMask() && MO.clobbersPhysReg(DstReg)) {
1602           DEBUG(dbgs() << "\t\tInterference (regmask clobber): " << *MI);
1603           return false;
1604         }
1605       }
1606     }
1607 
1608     // We're going to remove the copy which defines a physical reserved
1609     // register, so remove its valno, etc.
1610     DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at "
1611           << CopyRegIdx << "\n");
1612 
1613     LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
1614     // Create a new dead def at the new def location.
1615     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1616       LiveRange &LR = LIS->getRegUnit(*UI);
1617       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
1618     }
1619   }
1620 
1621   LIS->RemoveMachineInstrFromMaps(*CopyMI);
1622   CopyMI->eraseFromParent();
1623 
1624   // We don't track kills for reserved registers.
1625   MRI->clearKillFlags(CP.getSrcReg());
1626 
1627   return true;
1628 }
1629 
1630 //===----------------------------------------------------------------------===//
1631 //                 Interference checking and interval joining
1632 //===----------------------------------------------------------------------===//
1633 //
1634 // In the easiest case, the two live ranges being joined are disjoint, and
1635 // there is no interference to consider. It is quite common, though, to have
1636 // overlapping live ranges, and we need to check if the interference can be
1637 // resolved.
1638 //
1639 // The live range of a single SSA value forms a sub-tree of the dominator tree.
1640 // This means that two SSA values overlap if and only if the def of one value
1641 // is contained in the live range of the other value. As a special case, the
1642 // overlapping values can be defined at the same index.
1643 //
1644 // The interference from an overlapping def can be resolved in these cases:
1645 //
1646 // 1. Coalescable copies. The value is defined by a copy that would become an
1647 //    identity copy after joining SrcReg and DstReg. The copy instruction will
1648 //    be removed, and the value will be merged with the source value.
1649 //
1650 //    There can be several copies back and forth, causing many values to be
1651 //    merged into one. We compute a list of ultimate values in the joined live
1652 //    range as well as a mappings from the old value numbers.
1653 //
1654 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1655 //    predecessors have a live out value. It doesn't cause real interference,
1656 //    and can be merged into the value it overlaps. Like a coalescable copy, it
1657 //    can be erased after joining.
1658 //
1659 // 3. Copy of external value. The overlapping def may be a copy of a value that
1660 //    is already in the other register. This is like a coalescable copy, but
1661 //    the live range of the source register must be trimmed after erasing the
1662 //    copy instruction:
1663 //
1664 //      %src = COPY %ext
1665 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
1666 //
1667 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
1668 //    defining one lane at a time:
1669 //
1670 //      %dst:ssub0<def,read-undef> = FOO
1671 //      %src = BAR
1672 //      %dst:ssub1<def> = COPY %src
1673 //
1674 //    The live range of %src overlaps the %dst value defined by FOO, but
1675 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1676 //    which was undef anyway.
1677 //
1678 //    The value mapping is more complicated in this case. The final live range
1679 //    will have different value numbers for both FOO and BAR, but there is no
1680 //    simple mapping from old to new values. It may even be necessary to add
1681 //    new PHI values.
1682 //
1683 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1684 //    is live, but never read. This can happen because we don't compute
1685 //    individual live ranges per lane.
1686 //
1687 //      %dst<def> = FOO
1688 //      %src = BAR
1689 //      %dst:ssub1<def> = COPY %src
1690 //
1691 //    This kind of interference is only resolved locally. If the clobbered
1692 //    lane value escapes the block, the join is aborted.
1693 
1694 namespace {
1695 /// Track information about values in a single virtual register about to be
1696 /// joined. Objects of this class are always created in pairs - one for each
1697 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
1698 /// pair)
1699 class JoinVals {
1700   /// Live range we work on.
1701   LiveRange &LR;
1702   /// (Main) register we work on.
1703   const unsigned Reg;
1704 
1705   /// Reg (and therefore the values in this liverange) will end up as
1706   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
1707   /// CP.SrcIdx.
1708   const unsigned SubIdx;
1709   /// The LaneMask that this liverange will occupy the coalesced register. May
1710   /// be smaller than the lanemask produced by SubIdx when merging subranges.
1711   const LaneBitmask LaneMask;
1712 
1713   /// This is true when joining sub register ranges, false when joining main
1714   /// ranges.
1715   const bool SubRangeJoin;
1716   /// Whether the current LiveInterval tracks subregister liveness.
1717   const bool TrackSubRegLiveness;
1718 
1719   /// Values that will be present in the final live range.
1720   SmallVectorImpl<VNInfo*> &NewVNInfo;
1721 
1722   const CoalescerPair &CP;
1723   LiveIntervals *LIS;
1724   SlotIndexes *Indexes;
1725   const TargetRegisterInfo *TRI;
1726 
1727   /// Value number assignments. Maps value numbers in LI to entries in
1728   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
1729   SmallVector<int, 8> Assignments;
1730 
1731   /// Conflict resolution for overlapping values.
1732   enum ConflictResolution {
1733     /// No overlap, simply keep this value.
1734     CR_Keep,
1735 
1736     /// Merge this value into OtherVNI and erase the defining instruction.
1737     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
1738     /// values.
1739     CR_Erase,
1740 
1741     /// Merge this value into OtherVNI but keep the defining instruction.
1742     /// This is for the special case where OtherVNI is defined by the same
1743     /// instruction.
1744     CR_Merge,
1745 
1746     /// Keep this value, and have it replace OtherVNI where possible. This
1747     /// complicates value mapping since OtherVNI maps to two different values
1748     /// before and after this def.
1749     /// Used when clobbering undefined or dead lanes.
1750     CR_Replace,
1751 
1752     /// Unresolved conflict. Visit later when all values have been mapped.
1753     CR_Unresolved,
1754 
1755     /// Unresolvable conflict. Abort the join.
1756     CR_Impossible
1757   };
1758 
1759   /// Per-value info for LI. The lane bit masks are all relative to the final
1760   /// joined register, so they can be compared directly between SrcReg and
1761   /// DstReg.
1762   struct Val {
1763     ConflictResolution Resolution;
1764 
1765     /// Lanes written by this def, 0 for unanalyzed values.
1766     LaneBitmask WriteLanes;
1767 
1768     /// Lanes with defined values in this register. Other lanes are undef and
1769     /// safe to clobber.
1770     LaneBitmask ValidLanes;
1771 
1772     /// Value in LI being redefined by this def.
1773     VNInfo *RedefVNI;
1774 
1775     /// Value in the other live range that overlaps this def, if any.
1776     VNInfo *OtherVNI;
1777 
1778     /// Is this value an IMPLICIT_DEF that can be erased?
1779     ///
1780     /// IMPLICIT_DEF values should only exist at the end of a basic block that
1781     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
1782     /// safely erased if they are overlapping a live value in the other live
1783     /// interval.
1784     ///
1785     /// Weird control flow graphs and incomplete PHI handling in
1786     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
1787     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
1788     /// normal values.
1789     bool ErasableImplicitDef;
1790 
1791     /// True when the live range of this value will be pruned because of an
1792     /// overlapping CR_Replace value in the other live range.
1793     bool Pruned;
1794 
1795     /// True once Pruned above has been computed.
1796     bool PrunedComputed;
1797 
Val__anon4db011c00211::JoinVals::Val1798     Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
1799             RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false),
1800             Pruned(false), PrunedComputed(false) {}
1801 
isAnalyzed__anon4db011c00211::JoinVals::Val1802     bool isAnalyzed() const { return WriteLanes != 0; }
1803   };
1804 
1805   /// One entry per value number in LI.
1806   SmallVector<Val, 8> Vals;
1807 
1808   /// Compute the bitmask of lanes actually written by DefMI.
1809   /// Set Redef if there are any partial register definitions that depend on the
1810   /// previous value of the register.
1811   LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
1812 
1813   /// Find the ultimate value that VNI was copied from.
1814   std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
1815 
1816   bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const;
1817 
1818   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
1819   /// Return a conflict resolution when possible, but leave the hard cases as
1820   /// CR_Unresolved.
1821   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
1822   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
1823   /// The recursion always goes upwards in the dominator tree, making loops
1824   /// impossible.
1825   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
1826 
1827   /// Compute the value assignment for ValNo in RI.
1828   /// This may be called recursively by analyzeValue(), but never for a ValNo on
1829   /// the stack.
1830   void computeAssignment(unsigned ValNo, JoinVals &Other);
1831 
1832   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
1833   /// the extent of the tainted lanes in the block.
1834   ///
1835   /// Multiple values in Other.LR can be affected since partial redefinitions
1836   /// can preserve previously tainted lanes.
1837   ///
1838   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
1839   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
1840   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
1841   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
1842   ///
1843   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
1844   /// entry to TaintedVals.
1845   ///
1846   /// Returns false if the tainted lanes extend beyond the basic block.
1847   bool taintExtent(unsigned, LaneBitmask, JoinVals&,
1848                    SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&);
1849 
1850   /// Return true if MI uses any of the given Lanes from Reg.
1851   /// This does not include partial redefinitions of Reg.
1852   bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
1853 
1854   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
1855   /// be pruned:
1856   ///
1857   ///   %dst = COPY %src
1858   ///   %src = COPY %dst  <-- This value to be pruned.
1859   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
1860   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
1861 
1862 public:
JoinVals(LiveRange & LR,unsigned Reg,unsigned SubIdx,LaneBitmask LaneMask,SmallVectorImpl<VNInfo * > & newVNInfo,const CoalescerPair & cp,LiveIntervals * lis,const TargetRegisterInfo * TRI,bool SubRangeJoin,bool TrackSubRegLiveness)1863   JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
1864            SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
1865            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
1866            bool TrackSubRegLiveness)
1867     : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
1868       SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
1869       NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
1870       TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums())
1871   {}
1872 
1873   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
1874   /// Returns false if any conflicts were impossible to resolve.
1875   bool mapValues(JoinVals &Other);
1876 
1877   /// Try to resolve conflicts that require all values to be mapped.
1878   /// Returns false if any conflicts were impossible to resolve.
1879   bool resolveConflicts(JoinVals &Other);
1880 
1881   /// Prune the live range of values in Other.LR where they would conflict with
1882   /// CR_Replace values in LR. Collect end points for restoring the live range
1883   /// after joining.
1884   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
1885                    bool changeInstrs);
1886 
1887   /// Removes subranges starting at copies that get removed. This sometimes
1888   /// happens when undefined subranges are copied around. These ranges contain
1889   /// no useful information and can be removed.
1890   void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
1891 
1892   /// Erase any machine instructions that have been coalesced away.
1893   /// Add erased instructions to ErasedInstrs.
1894   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
1895   /// the erased instrs.
1896   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
1897                    SmallVectorImpl<unsigned> &ShrinkRegs);
1898 
1899   /// Remove liverange defs at places where implicit defs will be removed.
1900   void removeImplicitDefs();
1901 
1902   /// Get the value assignments suitable for passing to LiveInterval::join.
getAssignments() const1903   const int *getAssignments() const { return Assignments.data(); }
1904 };
1905 } // end anonymous namespace
1906 
computeWriteLanes(const MachineInstr * DefMI,bool & Redef) const1907 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
1908   const {
1909   LaneBitmask L = 0;
1910   for (const MachineOperand &MO : DefMI->operands()) {
1911     if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
1912       continue;
1913     L |= TRI->getSubRegIndexLaneMask(
1914            TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
1915     if (MO.readsReg())
1916       Redef = true;
1917   }
1918   return L;
1919 }
1920 
followCopyChain(const VNInfo * VNI) const1921 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
1922     const VNInfo *VNI) const {
1923   unsigned Reg = this->Reg;
1924 
1925   while (!VNI->isPHIDef()) {
1926     SlotIndex Def = VNI->def;
1927     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
1928     assert(MI && "No defining instruction");
1929     if (!MI->isFullCopy())
1930       return std::make_pair(VNI, Reg);
1931     unsigned SrcReg = MI->getOperand(1).getReg();
1932     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1933       return std::make_pair(VNI, Reg);
1934 
1935     const LiveInterval &LI = LIS->getInterval(SrcReg);
1936     const VNInfo *ValueIn;
1937     // No subrange involved.
1938     if (!SubRangeJoin || !LI.hasSubRanges()) {
1939       LiveQueryResult LRQ = LI.Query(Def);
1940       ValueIn = LRQ.valueIn();
1941     } else {
1942       // Query subranges. Pick the first matching one.
1943       ValueIn = nullptr;
1944       for (const LiveInterval::SubRange &S : LI.subranges()) {
1945         // Transform lanemask to a mask in the joined live interval.
1946         LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
1947         if ((SMask & LaneMask) == 0)
1948           continue;
1949         LiveQueryResult LRQ = S.Query(Def);
1950         ValueIn = LRQ.valueIn();
1951         break;
1952       }
1953     }
1954     if (ValueIn == nullptr)
1955       break;
1956     VNI = ValueIn;
1957     Reg = SrcReg;
1958   }
1959   return std::make_pair(VNI, Reg);
1960 }
1961 
valuesIdentical(VNInfo * Value0,VNInfo * Value1,const JoinVals & Other) const1962 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
1963                                const JoinVals &Other) const {
1964   const VNInfo *Orig0;
1965   unsigned Reg0;
1966   std::tie(Orig0, Reg0) = followCopyChain(Value0);
1967   if (Orig0 == Value1)
1968     return true;
1969 
1970   const VNInfo *Orig1;
1971   unsigned Reg1;
1972   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
1973 
1974   // The values are equal if they are defined at the same place and use the
1975   // same register. Note that we cannot compare VNInfos directly as some of
1976   // them might be from a copy created in mergeSubRangeInto()  while the other
1977   // is from the original LiveInterval.
1978   return Orig0->def == Orig1->def && Reg0 == Reg1;
1979 }
1980 
1981 JoinVals::ConflictResolution
analyzeValue(unsigned ValNo,JoinVals & Other)1982 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
1983   Val &V = Vals[ValNo];
1984   assert(!V.isAnalyzed() && "Value has already been analyzed!");
1985   VNInfo *VNI = LR.getValNumInfo(ValNo);
1986   if (VNI->isUnused()) {
1987     V.WriteLanes = ~0u;
1988     return CR_Keep;
1989   }
1990 
1991   // Get the instruction defining this value, compute the lanes written.
1992   const MachineInstr *DefMI = nullptr;
1993   if (VNI->isPHIDef()) {
1994     // Conservatively assume that all lanes in a PHI are valid.
1995     LaneBitmask Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx);
1996     V.ValidLanes = V.WriteLanes = Lanes;
1997   } else {
1998     DefMI = Indexes->getInstructionFromIndex(VNI->def);
1999     assert(DefMI != nullptr);
2000     if (SubRangeJoin) {
2001       // We don't care about the lanes when joining subregister ranges.
2002       V.WriteLanes = V.ValidLanes = 1;
2003       if (DefMI->isImplicitDef()) {
2004         V.ValidLanes = 0;
2005         V.ErasableImplicitDef = true;
2006       }
2007     } else {
2008       bool Redef = false;
2009       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2010 
2011       // If this is a read-modify-write instruction, there may be more valid
2012       // lanes than the ones written by this instruction.
2013       // This only covers partial redef operands. DefMI may have normal use
2014       // operands reading the register. They don't contribute valid lanes.
2015       //
2016       // This adds ssub1 to the set of valid lanes in %src:
2017       //
2018       //   %src:ssub1<def> = FOO
2019       //
2020       // This leaves only ssub1 valid, making any other lanes undef:
2021       //
2022       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2023       //
2024       // The <read-undef> flag on the def operand means that old lane values are
2025       // not important.
2026       if (Redef) {
2027         V.RedefVNI = LR.Query(VNI->def).valueIn();
2028         assert((TrackSubRegLiveness || V.RedefVNI) &&
2029                "Instruction is reading nonexistent value");
2030         if (V.RedefVNI != nullptr) {
2031           computeAssignment(V.RedefVNI->id, Other);
2032           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2033         }
2034       }
2035 
2036       // An IMPLICIT_DEF writes undef values.
2037       if (DefMI->isImplicitDef()) {
2038         // We normally expect IMPLICIT_DEF values to be live only until the end
2039         // of their block. If the value is really live longer and gets pruned in
2040         // another block, this flag is cleared again.
2041         V.ErasableImplicitDef = true;
2042         V.ValidLanes &= ~V.WriteLanes;
2043       }
2044     }
2045   }
2046 
2047   // Find the value in Other that overlaps VNI->def, if any.
2048   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2049 
2050   // It is possible that both values are defined by the same instruction, or
2051   // the values are PHIs defined in the same block. When that happens, the two
2052   // values should be merged into one, but not into any preceding value.
2053   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2054   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2055     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2056 
2057     // One value stays, the other is merged. Keep the earlier one, or the first
2058     // one we see.
2059     if (OtherVNI->def < VNI->def)
2060       Other.computeAssignment(OtherVNI->id, *this);
2061     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2062       // This is an early-clobber def overlapping a live-in value in the other
2063       // register. Not mergeable.
2064       V.OtherVNI = OtherLRQ.valueIn();
2065       return CR_Impossible;
2066     }
2067     V.OtherVNI = OtherVNI;
2068     Val &OtherV = Other.Vals[OtherVNI->id];
2069     // Keep this value, check for conflicts when analyzing OtherVNI.
2070     if (!OtherV.isAnalyzed())
2071       return CR_Keep;
2072     // Both sides have been analyzed now.
2073     // Allow overlapping PHI values. Any real interference would show up in a
2074     // predecessor, the PHI itself can't introduce any conflicts.
2075     if (VNI->isPHIDef())
2076       return CR_Merge;
2077     if (V.ValidLanes & OtherV.ValidLanes)
2078       // Overlapping lanes can't be resolved.
2079       return CR_Impossible;
2080     else
2081       return CR_Merge;
2082   }
2083 
2084   // No simultaneous def. Is Other live at the def?
2085   V.OtherVNI = OtherLRQ.valueIn();
2086   if (!V.OtherVNI)
2087     // No overlap, no conflict.
2088     return CR_Keep;
2089 
2090   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2091 
2092   // We have overlapping values, or possibly a kill of Other.
2093   // Recursively compute assignments up the dominator tree.
2094   Other.computeAssignment(V.OtherVNI->id, *this);
2095   Val &OtherV = Other.Vals[V.OtherVNI->id];
2096 
2097   // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2098   // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2099   // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2100   // technically.
2101   //
2102   // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2103   // to erase the IMPLICIT_DEF instruction.
2104   if (OtherV.ErasableImplicitDef && DefMI &&
2105       DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2106     DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2107                  << " extends into BB#" << DefMI->getParent()->getNumber()
2108                  << ", keeping it.\n");
2109     OtherV.ErasableImplicitDef = false;
2110   }
2111 
2112   // Allow overlapping PHI values. Any real interference would show up in a
2113   // predecessor, the PHI itself can't introduce any conflicts.
2114   if (VNI->isPHIDef())
2115     return CR_Replace;
2116 
2117   // Check for simple erasable conflicts.
2118   if (DefMI->isImplicitDef()) {
2119     // We need the def for the subregister if there is nothing else live at the
2120     // subrange at this point.
2121     if (TrackSubRegLiveness
2122         && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0)
2123       return CR_Replace;
2124     return CR_Erase;
2125   }
2126 
2127   // Include the non-conflict where DefMI is a coalescable copy that kills
2128   // OtherVNI. We still want the copy erased and value numbers merged.
2129   if (CP.isCoalescable(DefMI)) {
2130     // Some of the lanes copied from OtherVNI may be undef, making them undef
2131     // here too.
2132     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2133     return CR_Erase;
2134   }
2135 
2136   // This may not be a real conflict if DefMI simply kills Other and defines
2137   // VNI.
2138   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2139     return CR_Keep;
2140 
2141   // Handle the case where VNI and OtherVNI can be proven to be identical:
2142   //
2143   //   %other = COPY %ext
2144   //   %this  = COPY %ext <-- Erase this copy
2145   //
2146   if (DefMI->isFullCopy() && !CP.isPartial()
2147       && valuesIdentical(VNI, V.OtherVNI, Other))
2148     return CR_Erase;
2149 
2150   // If the lanes written by this instruction were all undef in OtherVNI, it is
2151   // still safe to join the live ranges. This can't be done with a simple value
2152   // mapping, though - OtherVNI will map to multiple values:
2153   //
2154   //   1 %dst:ssub0 = FOO                <-- OtherVNI
2155   //   2 %src = BAR                      <-- VNI
2156   //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
2157   //   4 BAZ %dst<kill>
2158   //   5 QUUX %src<kill>
2159   //
2160   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2161   // handles this complex value mapping.
2162   if ((V.WriteLanes & OtherV.ValidLanes) == 0)
2163     return CR_Replace;
2164 
2165   // If the other live range is killed by DefMI and the live ranges are still
2166   // overlapping, it must be because we're looking at an early clobber def:
2167   //
2168   //   %dst<def,early-clobber> = ASM %src<kill>
2169   //
2170   // In this case, it is illegal to merge the two live ranges since the early
2171   // clobber def would clobber %src before it was read.
2172   if (OtherLRQ.isKill()) {
2173     // This case where the def doesn't overlap the kill is handled above.
2174     assert(VNI->def.isEarlyClobber() &&
2175            "Only early clobber defs can overlap a kill");
2176     return CR_Impossible;
2177   }
2178 
2179   // VNI is clobbering live lanes in OtherVNI, but there is still the
2180   // possibility that no instructions actually read the clobbered lanes.
2181   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2182   // Otherwise Other.RI wouldn't be live here.
2183   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
2184     return CR_Impossible;
2185 
2186   // We need to verify that no instructions are reading the clobbered lanes. To
2187   // save compile time, we'll only check that locally. Don't allow the tainted
2188   // value to escape the basic block.
2189   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2190   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2191     return CR_Impossible;
2192 
2193   // There are still some things that could go wrong besides clobbered lanes
2194   // being read, for example OtherVNI may be only partially redefined in MBB,
2195   // and some clobbered lanes could escape the block. Save this analysis for
2196   // resolveConflicts() when all values have been mapped. We need to know
2197   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2198   // that now - the recursive analyzeValue() calls must go upwards in the
2199   // dominator tree.
2200   return CR_Unresolved;
2201 }
2202 
computeAssignment(unsigned ValNo,JoinVals & Other)2203 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2204   Val &V = Vals[ValNo];
2205   if (V.isAnalyzed()) {
2206     // Recursion should always move up the dominator tree, so ValNo is not
2207     // supposed to reappear before it has been assigned.
2208     assert(Assignments[ValNo] != -1 && "Bad recursion?");
2209     return;
2210   }
2211   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2212   case CR_Erase:
2213   case CR_Merge:
2214     // Merge this ValNo into OtherVNI.
2215     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2216     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2217     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2218     DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@'
2219                  << LR.getValNumInfo(ValNo)->def << " into "
2220                  << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2221                  << V.OtherVNI->def << " --> @"
2222                  << NewVNInfo[Assignments[ValNo]]->def << '\n');
2223     break;
2224   case CR_Replace:
2225   case CR_Unresolved: {
2226     // The other value is going to be pruned if this join is successful.
2227     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2228     Val &OtherV = Other.Vals[V.OtherVNI->id];
2229     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2230     // its lanes.
2231     if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness)
2232       OtherV.ErasableImplicitDef = false;
2233     OtherV.Pruned = true;
2234   }
2235     // Fall through.
2236   default:
2237     // This value number needs to go in the final joined live range.
2238     Assignments[ValNo] = NewVNInfo.size();
2239     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2240     break;
2241   }
2242 }
2243 
mapValues(JoinVals & Other)2244 bool JoinVals::mapValues(JoinVals &Other) {
2245   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2246     computeAssignment(i, Other);
2247     if (Vals[i].Resolution == CR_Impossible) {
2248       DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i
2249                    << '@' << LR.getValNumInfo(i)->def << '\n');
2250       return false;
2251     }
2252   }
2253   return true;
2254 }
2255 
2256 bool JoinVals::
taintExtent(unsigned ValNo,LaneBitmask TaintedLanes,JoinVals & Other,SmallVectorImpl<std::pair<SlotIndex,LaneBitmask>> & TaintExtent)2257 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2258             SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) {
2259   VNInfo *VNI = LR.getValNumInfo(ValNo);
2260   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2261   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2262 
2263   // Scan Other.LR from VNI.def to MBBEnd.
2264   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2265   assert(OtherI != Other.LR.end() && "No conflict?");
2266   do {
2267     // OtherI is pointing to a tainted value. Abort the join if the tainted
2268     // lanes escape the block.
2269     SlotIndex End = OtherI->end;
2270     if (End >= MBBEnd) {
2271       DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':'
2272                    << OtherI->valno->id << '@' << OtherI->start << '\n');
2273       return false;
2274     }
2275     DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':'
2276                  << OtherI->valno->id << '@' << OtherI->start
2277                  << " to " << End << '\n');
2278     // A dead def is not a problem.
2279     if (End.isDead())
2280       break;
2281     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2282 
2283     // Check for another def in the MBB.
2284     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2285       break;
2286 
2287     // Lanes written by the new def are no longer tainted.
2288     const Val &OV = Other.Vals[OtherI->valno->id];
2289     TaintedLanes &= ~OV.WriteLanes;
2290     if (!OV.RedefVNI)
2291       break;
2292   } while (TaintedLanes);
2293   return true;
2294 }
2295 
usesLanes(const MachineInstr & MI,unsigned Reg,unsigned SubIdx,LaneBitmask Lanes) const2296 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2297                          LaneBitmask Lanes) const {
2298   if (MI.isDebugValue())
2299     return false;
2300   for (const MachineOperand &MO : MI.operands()) {
2301     if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2302       continue;
2303     if (!MO.readsReg())
2304       continue;
2305     if (Lanes & TRI->getSubRegIndexLaneMask(
2306                   TRI->composeSubRegIndices(SubIdx, MO.getSubReg())))
2307       return true;
2308   }
2309   return false;
2310 }
2311 
resolveConflicts(JoinVals & Other)2312 bool JoinVals::resolveConflicts(JoinVals &Other) {
2313   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2314     Val &V = Vals[i];
2315     assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
2316     if (V.Resolution != CR_Unresolved)
2317       continue;
2318     DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i
2319                  << '@' << LR.getValNumInfo(i)->def << '\n');
2320     if (SubRangeJoin)
2321       return false;
2322 
2323     ++NumLaneConflicts;
2324     assert(V.OtherVNI && "Inconsistent conflict resolution.");
2325     VNInfo *VNI = LR.getValNumInfo(i);
2326     const Val &OtherV = Other.Vals[V.OtherVNI->id];
2327 
2328     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2329     // join, those lanes will be tainted with a wrong value. Get the extent of
2330     // the tainted lanes.
2331     LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2332     SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2333     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2334       // Tainted lanes would extend beyond the basic block.
2335       return false;
2336 
2337     assert(!TaintExtent.empty() && "There should be at least one conflict.");
2338 
2339     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2340     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2341     MachineBasicBlock::iterator MI = MBB->begin();
2342     if (!VNI->isPHIDef()) {
2343       MI = Indexes->getInstructionFromIndex(VNI->def);
2344       // No need to check the instruction defining VNI for reads.
2345       ++MI;
2346     }
2347     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2348            "Interference ends on VNI->def. Should have been handled earlier");
2349     MachineInstr *LastMI =
2350       Indexes->getInstructionFromIndex(TaintExtent.front().first);
2351     assert(LastMI && "Range must end at a proper instruction");
2352     unsigned TaintNum = 0;
2353     for(;;) {
2354       assert(MI != MBB->end() && "Bad LastMI");
2355       if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2356         DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2357         return false;
2358       }
2359       // LastMI is the last instruction to use the current value.
2360       if (&*MI == LastMI) {
2361         if (++TaintNum == TaintExtent.size())
2362           break;
2363         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2364         assert(LastMI && "Range must end at a proper instruction");
2365         TaintedLanes = TaintExtent[TaintNum].second;
2366       }
2367       ++MI;
2368     }
2369 
2370     // The tainted lanes are unused.
2371     V.Resolution = CR_Replace;
2372     ++NumLaneResolves;
2373   }
2374   return true;
2375 }
2376 
isPrunedValue(unsigned ValNo,JoinVals & Other)2377 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2378   Val &V = Vals[ValNo];
2379   if (V.Pruned || V.PrunedComputed)
2380     return V.Pruned;
2381 
2382   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2383     return V.Pruned;
2384 
2385   // Follow copies up the dominator tree and check if any intermediate value
2386   // has been pruned.
2387   V.PrunedComputed = true;
2388   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2389   return V.Pruned;
2390 }
2391 
pruneValues(JoinVals & Other,SmallVectorImpl<SlotIndex> & EndPoints,bool changeInstrs)2392 void JoinVals::pruneValues(JoinVals &Other,
2393                            SmallVectorImpl<SlotIndex> &EndPoints,
2394                            bool changeInstrs) {
2395   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2396     SlotIndex Def = LR.getValNumInfo(i)->def;
2397     switch (Vals[i].Resolution) {
2398     case CR_Keep:
2399       break;
2400     case CR_Replace: {
2401       // This value takes precedence over the value in Other.LR.
2402       LIS->pruneValue(Other.LR, Def, &EndPoints);
2403       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2404       // instructions are only inserted to provide a live-out value for PHI
2405       // predecessors, so the instruction should simply go away once its value
2406       // has been replaced.
2407       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2408       bool EraseImpDef = OtherV.ErasableImplicitDef &&
2409                          OtherV.Resolution == CR_Keep;
2410       if (!Def.isBlock()) {
2411         if (changeInstrs) {
2412           // Remove <def,read-undef> flags. This def is now a partial redef.
2413           // Also remove <def,dead> flags since the joined live range will
2414           // continue past this instruction.
2415           for (MachineOperand &MO :
2416                Indexes->getInstructionFromIndex(Def)->operands()) {
2417             if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2418               MO.setIsUndef(EraseImpDef);
2419               MO.setIsDead(false);
2420             }
2421           }
2422         }
2423         // This value will reach instructions below, but we need to make sure
2424         // the live range also reaches the instruction at Def.
2425         if (!EraseImpDef)
2426           EndPoints.push_back(Def);
2427       }
2428       DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def
2429                    << ": " << Other.LR << '\n');
2430       break;
2431     }
2432     case CR_Erase:
2433     case CR_Merge:
2434       if (isPrunedValue(i, Other)) {
2435         // This value is ultimately a copy of a pruned value in LR or Other.LR.
2436         // We can no longer trust the value mapping computed by
2437         // computeAssignment(), the value that was originally copied could have
2438         // been replaced.
2439         LIS->pruneValue(LR, Def, &EndPoints);
2440         DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at "
2441                      << Def << ": " << LR << '\n');
2442       }
2443       break;
2444     case CR_Unresolved:
2445     case CR_Impossible:
2446       llvm_unreachable("Unresolved conflicts");
2447     }
2448   }
2449 }
2450 
pruneSubRegValues(LiveInterval & LI,LaneBitmask & ShrinkMask)2451 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask)
2452 {
2453   // Look for values being erased.
2454   bool DidPrune = false;
2455   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2456     if (Vals[i].Resolution != CR_Erase)
2457       continue;
2458 
2459     // Check subranges at the point where the copy will be removed.
2460     SlotIndex Def = LR.getValNumInfo(i)->def;
2461     for (LiveInterval::SubRange &S : LI.subranges()) {
2462       LiveQueryResult Q = S.Query(Def);
2463 
2464       // If a subrange starts at the copy then an undefined value has been
2465       // copied and we must remove that subrange value as well.
2466       VNInfo *ValueOut = Q.valueOutOrDead();
2467       if (ValueOut != nullptr && Q.valueIn() == nullptr) {
2468         DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
2469                      << " at " << Def << "\n");
2470         LIS->pruneValue(S, Def, nullptr);
2471         DidPrune = true;
2472         // Mark value number as unused.
2473         ValueOut->markUnused();
2474         continue;
2475       }
2476       // If a subrange ends at the copy, then a value was copied but only
2477       // partially used later. Shrink the subregister range appropriately.
2478       if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
2479         DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask)
2480                      << " at " << Def << "\n");
2481         ShrinkMask |= S.LaneMask;
2482       }
2483     }
2484   }
2485   if (DidPrune)
2486     LI.removeEmptySubRanges();
2487 }
2488 
removeImplicitDefs()2489 void JoinVals::removeImplicitDefs() {
2490   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2491     Val &V = Vals[i];
2492     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
2493       continue;
2494 
2495     VNInfo *VNI = LR.getValNumInfo(i);
2496     VNI->markUnused();
2497     LR.removeValNo(VNI);
2498   }
2499 }
2500 
eraseInstrs(SmallPtrSetImpl<MachineInstr * > & ErasedInstrs,SmallVectorImpl<unsigned> & ShrinkRegs)2501 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2502                            SmallVectorImpl<unsigned> &ShrinkRegs) {
2503   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2504     // Get the def location before markUnused() below invalidates it.
2505     SlotIndex Def = LR.getValNumInfo(i)->def;
2506     switch (Vals[i].Resolution) {
2507     case CR_Keep: {
2508       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
2509       // longer. The IMPLICIT_DEF instructions are only inserted by
2510       // PHIElimination to guarantee that all PHI predecessors have a value.
2511       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
2512         break;
2513       // Remove value number i from LR.
2514       VNInfo *VNI = LR.getValNumInfo(i);
2515       LR.removeValNo(VNI);
2516       // Note that this VNInfo is reused and still referenced in NewVNInfo,
2517       // make it appear like an unused value number.
2518       VNI->markUnused();
2519       DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n');
2520       // FALL THROUGH.
2521     }
2522 
2523     case CR_Erase: {
2524       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2525       assert(MI && "No instruction to erase");
2526       if (MI->isCopy()) {
2527         unsigned Reg = MI->getOperand(1).getReg();
2528         if (TargetRegisterInfo::isVirtualRegister(Reg) &&
2529             Reg != CP.getSrcReg() && Reg != CP.getDstReg())
2530           ShrinkRegs.push_back(Reg);
2531       }
2532       ErasedInstrs.insert(MI);
2533       DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
2534       LIS->RemoveMachineInstrFromMaps(*MI);
2535       MI->eraseFromParent();
2536       break;
2537     }
2538     default:
2539       break;
2540     }
2541   }
2542 }
2543 
joinSubRegRanges(LiveRange & LRange,LiveRange & RRange,LaneBitmask LaneMask,const CoalescerPair & CP)2544 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
2545                                          LaneBitmask LaneMask,
2546                                          const CoalescerPair &CP) {
2547   SmallVector<VNInfo*, 16> NewVNInfo;
2548   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
2549                    NewVNInfo, CP, LIS, TRI, true, true);
2550   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
2551                    NewVNInfo, CP, LIS, TRI, true, true);
2552 
2553   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
2554   // We should be able to resolve all conflicts here as we could successfully do
2555   // it on the mainrange already. There is however a problem when multiple
2556   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
2557   // interferences.
2558   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
2559     // We already determined that it is legal to merge the intervals, so this
2560     // should never fail.
2561     llvm_unreachable("*** Couldn't join subrange!\n");
2562   }
2563   if (!LHSVals.resolveConflicts(RHSVals) ||
2564       !RHSVals.resolveConflicts(LHSVals)) {
2565     // We already determined that it is legal to merge the intervals, so this
2566     // should never fail.
2567     llvm_unreachable("*** Couldn't join subrange!\n");
2568   }
2569 
2570   // The merging algorithm in LiveInterval::join() can't handle conflicting
2571   // value mappings, so we need to remove any live ranges that overlap a
2572   // CR_Replace resolution. Collect a set of end points that can be used to
2573   // restore the live range after joining.
2574   SmallVector<SlotIndex, 8> EndPoints;
2575   LHSVals.pruneValues(RHSVals, EndPoints, false);
2576   RHSVals.pruneValues(LHSVals, EndPoints, false);
2577 
2578   LHSVals.removeImplicitDefs();
2579   RHSVals.removeImplicitDefs();
2580 
2581   LRange.verify();
2582   RRange.verify();
2583 
2584   // Join RRange into LHS.
2585   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
2586               NewVNInfo);
2587 
2588   DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n");
2589   if (EndPoints.empty())
2590     return;
2591 
2592   // Recompute the parts of the live range we had to remove because of
2593   // CR_Replace conflicts.
2594   DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2595                << " points: " << LRange << '\n');
2596   LIS->extendToIndices(LRange, EndPoints);
2597 }
2598 
mergeSubRangeInto(LiveInterval & LI,const LiveRange & ToMerge,LaneBitmask LaneMask,CoalescerPair & CP)2599 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
2600                                           const LiveRange &ToMerge,
2601                                           LaneBitmask LaneMask,
2602                                           CoalescerPair &CP) {
2603   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
2604   for (LiveInterval::SubRange &R : LI.subranges()) {
2605     LaneBitmask RMask = R.LaneMask;
2606     // LaneMask of subregisters common to subrange R and ToMerge.
2607     LaneBitmask Common = RMask & LaneMask;
2608     // There is nothing to do without common subregs.
2609     if (Common == 0)
2610       continue;
2611 
2612     DEBUG(dbgs() << "\t\tCopy+Merge " << PrintLaneMask(RMask) << " into "
2613                  << PrintLaneMask(Common) << '\n');
2614     // LaneMask of subregisters contained in the R range but not in ToMerge,
2615     // they have to split into their own subrange.
2616     LaneBitmask LRest = RMask & ~LaneMask;
2617     LiveInterval::SubRange *CommonRange;
2618     if (LRest != 0) {
2619       R.LaneMask = LRest;
2620       DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(LRest) << '\n');
2621       // Duplicate SubRange for newly merged common stuff.
2622       CommonRange = LI.createSubRangeFrom(Allocator, Common, R);
2623     } else {
2624       // Reuse the existing range.
2625       R.LaneMask = Common;
2626       CommonRange = &R;
2627     }
2628     LiveRange RangeCopy(ToMerge, Allocator);
2629     joinSubRegRanges(*CommonRange, RangeCopy, Common, CP);
2630     LaneMask &= ~RMask;
2631   }
2632 
2633   if (LaneMask != 0) {
2634     DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(LaneMask) << '\n');
2635     LI.createSubRangeFrom(Allocator, LaneMask, ToMerge);
2636   }
2637 }
2638 
joinVirtRegs(CoalescerPair & CP)2639 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
2640   SmallVector<VNInfo*, 16> NewVNInfo;
2641   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
2642   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
2643   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
2644   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS,
2645                    TRI, false, TrackSubRegLiveness);
2646   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS,
2647                    TRI, false, TrackSubRegLiveness);
2648 
2649   DEBUG(dbgs() << "\t\tRHS = " << RHS
2650                << "\n\t\tLHS = " << LHS
2651                << '\n');
2652 
2653   // First compute NewVNInfo and the simple value mappings.
2654   // Detect impossible conflicts early.
2655   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
2656     return false;
2657 
2658   // Some conflicts can only be resolved after all values have been mapped.
2659   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
2660     return false;
2661 
2662   // All clear, the live ranges can be merged.
2663   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
2664     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
2665 
2666     // Transform lanemasks from the LHS to masks in the coalesced register and
2667     // create initial subranges if necessary.
2668     unsigned DstIdx = CP.getDstIdx();
2669     if (!LHS.hasSubRanges()) {
2670       LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
2671                                      : TRI->getSubRegIndexLaneMask(DstIdx);
2672       // LHS must support subregs or we wouldn't be in this codepath.
2673       assert(Mask != 0);
2674       LHS.createSubRangeFrom(Allocator, Mask, LHS);
2675     } else if (DstIdx != 0) {
2676       // Transform LHS lanemasks to new register class if necessary.
2677       for (LiveInterval::SubRange &R : LHS.subranges()) {
2678         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
2679         R.LaneMask = Mask;
2680       }
2681     }
2682     DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg())
2683                  << ' ' << LHS << '\n');
2684 
2685     // Determine lanemasks of RHS in the coalesced register and merge subranges.
2686     unsigned SrcIdx = CP.getSrcIdx();
2687     if (!RHS.hasSubRanges()) {
2688       LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
2689                                      : TRI->getSubRegIndexLaneMask(SrcIdx);
2690       mergeSubRangeInto(LHS, RHS, Mask, CP);
2691     } else {
2692       // Pair up subranges and merge.
2693       for (LiveInterval::SubRange &R : RHS.subranges()) {
2694         LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
2695         mergeSubRangeInto(LHS, R, Mask, CP);
2696       }
2697     }
2698     DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
2699 
2700     LHSVals.pruneSubRegValues(LHS, ShrinkMask);
2701     RHSVals.pruneSubRegValues(LHS, ShrinkMask);
2702   }
2703 
2704   // The merging algorithm in LiveInterval::join() can't handle conflicting
2705   // value mappings, so we need to remove any live ranges that overlap a
2706   // CR_Replace resolution. Collect a set of end points that can be used to
2707   // restore the live range after joining.
2708   SmallVector<SlotIndex, 8> EndPoints;
2709   LHSVals.pruneValues(RHSVals, EndPoints, true);
2710   RHSVals.pruneValues(LHSVals, EndPoints, true);
2711 
2712   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
2713   // registers to require trimming.
2714   SmallVector<unsigned, 8> ShrinkRegs;
2715   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2716   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2717   while (!ShrinkRegs.empty())
2718     shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
2719 
2720   // Join RHS into LHS.
2721   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
2722 
2723   // Kill flags are going to be wrong if the live ranges were overlapping.
2724   // Eventually, we should simply clear all kill flags when computing live
2725   // ranges. They are reinserted after register allocation.
2726   MRI->clearKillFlags(LHS.reg);
2727   MRI->clearKillFlags(RHS.reg);
2728 
2729   if (!EndPoints.empty()) {
2730     // Recompute the parts of the live range we had to remove because of
2731     // CR_Replace conflicts.
2732     DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2733                  << " points: " << LHS << '\n');
2734     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
2735   }
2736 
2737   return true;
2738 }
2739 
joinIntervals(CoalescerPair & CP)2740 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
2741   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
2742 }
2743 
2744 namespace {
2745 /// Information concerning MBB coalescing priority.
2746 struct MBBPriorityInfo {
2747   MachineBasicBlock *MBB;
2748   unsigned Depth;
2749   bool IsSplit;
2750 
MBBPriorityInfo__anon4db011c00311::MBBPriorityInfo2751   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
2752     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
2753 };
2754 }
2755 
2756 /// C-style comparator that sorts first based on the loop depth of the basic
2757 /// block (the unsigned), and then on the MBB number.
2758 ///
2759 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
compareMBBPriority(const MBBPriorityInfo * LHS,const MBBPriorityInfo * RHS)2760 static int compareMBBPriority(const MBBPriorityInfo *LHS,
2761                               const MBBPriorityInfo *RHS) {
2762   // Deeper loops first
2763   if (LHS->Depth != RHS->Depth)
2764     return LHS->Depth > RHS->Depth ? -1 : 1;
2765 
2766   // Try to unsplit critical edges next.
2767   if (LHS->IsSplit != RHS->IsSplit)
2768     return LHS->IsSplit ? -1 : 1;
2769 
2770   // Prefer blocks that are more connected in the CFG. This takes care of
2771   // the most difficult copies first while intervals are short.
2772   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
2773   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
2774   if (cl != cr)
2775     return cl > cr ? -1 : 1;
2776 
2777   // As a last resort, sort by block number.
2778   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
2779 }
2780 
2781 /// \returns true if the given copy uses or defines a local live range.
isLocalCopy(MachineInstr * Copy,const LiveIntervals * LIS)2782 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
2783   if (!Copy->isCopy())
2784     return false;
2785 
2786   if (Copy->getOperand(1).isUndef())
2787     return false;
2788 
2789   unsigned SrcReg = Copy->getOperand(1).getReg();
2790   unsigned DstReg = Copy->getOperand(0).getReg();
2791   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
2792       || TargetRegisterInfo::isPhysicalRegister(DstReg))
2793     return false;
2794 
2795   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
2796     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
2797 }
2798 
2799 bool RegisterCoalescer::
copyCoalesceWorkList(MutableArrayRef<MachineInstr * > CurrList)2800 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
2801   bool Progress = false;
2802   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
2803     if (!CurrList[i])
2804       continue;
2805     // Skip instruction pointers that have already been erased, for example by
2806     // dead code elimination.
2807     if (ErasedInstrs.erase(CurrList[i])) {
2808       CurrList[i] = nullptr;
2809       continue;
2810     }
2811     bool Again = false;
2812     bool Success = joinCopy(CurrList[i], Again);
2813     Progress |= Success;
2814     if (Success || !Again)
2815       CurrList[i] = nullptr;
2816   }
2817   return Progress;
2818 }
2819 
2820 /// Check if DstReg is a terminal node.
2821 /// I.e., it does not have any affinity other than \p Copy.
isTerminalReg(unsigned DstReg,const MachineInstr & Copy,const MachineRegisterInfo * MRI)2822 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
2823                           const MachineRegisterInfo *MRI) {
2824   assert(Copy.isCopyLike());
2825   // Check if the destination of this copy as any other affinity.
2826   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
2827     if (&MI != &Copy && MI.isCopyLike())
2828       return false;
2829   return true;
2830 }
2831 
applyTerminalRule(const MachineInstr & Copy) const2832 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
2833   assert(Copy.isCopyLike());
2834   if (!UseTerminalRule)
2835     return false;
2836   unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
2837   isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
2838   // Check if the destination of this copy has any other affinity.
2839   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
2840       // If SrcReg is a physical register, the copy won't be coalesced.
2841       // Ignoring it may have other side effect (like missing
2842       // rematerialization). So keep it.
2843       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
2844       !isTerminalReg(DstReg, Copy, MRI))
2845     return false;
2846 
2847   // DstReg is a terminal node. Check if it interferes with any other
2848   // copy involving SrcReg.
2849   const MachineBasicBlock *OrigBB = Copy.getParent();
2850   const LiveInterval &DstLI = LIS->getInterval(DstReg);
2851   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
2852     // Technically we should check if the weight of the new copy is
2853     // interesting compared to the other one and update the weight
2854     // of the copies accordingly. However, this would only work if
2855     // we would gather all the copies first then coalesce, whereas
2856     // right now we interleave both actions.
2857     // For now, just consider the copies that are in the same block.
2858     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
2859       continue;
2860     unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
2861     isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
2862                 OtherSubReg);
2863     if (OtherReg == SrcReg)
2864       OtherReg = OtherSrcReg;
2865     // Check if OtherReg is a non-terminal.
2866     if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
2867         isTerminalReg(OtherReg, MI, MRI))
2868       continue;
2869     // Check that OtherReg interfere with DstReg.
2870     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
2871       DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n');
2872       return true;
2873     }
2874   }
2875   return false;
2876 }
2877 
2878 void
copyCoalesceInMBB(MachineBasicBlock * MBB)2879 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
2880   DEBUG(dbgs() << MBB->getName() << ":\n");
2881 
2882   // Collect all copy-like instructions in MBB. Don't start coalescing anything
2883   // yet, it might invalidate the iterator.
2884   const unsigned PrevSize = WorkList.size();
2885   if (JoinGlobalCopies) {
2886     SmallVector<MachineInstr*, 2> LocalTerminals;
2887     SmallVector<MachineInstr*, 2> GlobalTerminals;
2888     // Coalesce copies bottom-up to coalesce local defs before local uses. They
2889     // are not inherently easier to resolve, but slightly preferable until we
2890     // have local live range splitting. In particular this is required by
2891     // cmp+jmp macro fusion.
2892     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2893          MII != E; ++MII) {
2894       if (!MII->isCopyLike())
2895         continue;
2896       bool ApplyTerminalRule = applyTerminalRule(*MII);
2897       if (isLocalCopy(&(*MII), LIS)) {
2898         if (ApplyTerminalRule)
2899           LocalTerminals.push_back(&(*MII));
2900         else
2901           LocalWorkList.push_back(&(*MII));
2902       } else {
2903         if (ApplyTerminalRule)
2904           GlobalTerminals.push_back(&(*MII));
2905         else
2906           WorkList.push_back(&(*MII));
2907       }
2908     }
2909     // Append the copies evicted by the terminal rule at the end of the list.
2910     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
2911     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
2912   }
2913   else {
2914     SmallVector<MachineInstr*, 2> Terminals;
2915     for (MachineInstr &MII : *MBB)
2916       if (MII.isCopyLike()) {
2917         if (applyTerminalRule(MII))
2918           Terminals.push_back(&MII);
2919         else
2920           WorkList.push_back(&MII);
2921       }
2922     // Append the copies evicted by the terminal rule at the end of the list.
2923     WorkList.append(Terminals.begin(), Terminals.end());
2924   }
2925   // Try coalescing the collected copies immediately, and remove the nulls.
2926   // This prevents the WorkList from getting too large since most copies are
2927   // joinable on the first attempt.
2928   MutableArrayRef<MachineInstr*>
2929     CurrList(WorkList.begin() + PrevSize, WorkList.end());
2930   if (copyCoalesceWorkList(CurrList))
2931     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
2932                                (MachineInstr*)nullptr), WorkList.end());
2933 }
2934 
coalesceLocals()2935 void RegisterCoalescer::coalesceLocals() {
2936   copyCoalesceWorkList(LocalWorkList);
2937   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
2938     if (LocalWorkList[j])
2939       WorkList.push_back(LocalWorkList[j]);
2940   }
2941   LocalWorkList.clear();
2942 }
2943 
joinAllIntervals()2944 void RegisterCoalescer::joinAllIntervals() {
2945   DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
2946   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
2947 
2948   std::vector<MBBPriorityInfo> MBBs;
2949   MBBs.reserve(MF->size());
2950   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
2951     MachineBasicBlock *MBB = &*I;
2952     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
2953                                    JoinSplitEdges && isSplitEdge(MBB)));
2954   }
2955   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
2956 
2957   // Coalesce intervals in MBB priority order.
2958   unsigned CurrDepth = UINT_MAX;
2959   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
2960     // Try coalescing the collected local copies for deeper loops.
2961     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
2962       coalesceLocals();
2963       CurrDepth = MBBs[i].Depth;
2964     }
2965     copyCoalesceInMBB(MBBs[i].MBB);
2966   }
2967   coalesceLocals();
2968 
2969   // Joining intervals can allow other intervals to be joined.  Iteratively join
2970   // until we make no progress.
2971   while (copyCoalesceWorkList(WorkList))
2972     /* empty */ ;
2973 }
2974 
releaseMemory()2975 void RegisterCoalescer::releaseMemory() {
2976   ErasedInstrs.clear();
2977   WorkList.clear();
2978   DeadDefs.clear();
2979   InflateRegs.clear();
2980 }
2981 
runOnMachineFunction(MachineFunction & fn)2982 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
2983   MF = &fn;
2984   MRI = &fn.getRegInfo();
2985   TM = &fn.getTarget();
2986   const TargetSubtargetInfo &STI = fn.getSubtarget();
2987   TRI = STI.getRegisterInfo();
2988   TII = STI.getInstrInfo();
2989   LIS = &getAnalysis<LiveIntervals>();
2990   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2991   Loops = &getAnalysis<MachineLoopInfo>();
2992   if (EnableGlobalCopies == cl::BOU_UNSET)
2993     JoinGlobalCopies = STI.enableJoinGlobalCopies();
2994   else
2995     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
2996 
2997   // The MachineScheduler does not currently require JoinSplitEdges. This will
2998   // either be enabled unconditionally or replaced by a more general live range
2999   // splitting optimization.
3000   JoinSplitEdges = EnableJoinSplits;
3001 
3002   DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3003                << "********** Function: " << MF->getName() << '\n');
3004 
3005   if (VerifyCoalescing)
3006     MF->verify(this, "Before register coalescing");
3007 
3008   RegClassInfo.runOnMachineFunction(fn);
3009 
3010   // Join (coalesce) intervals if requested.
3011   if (EnableJoining)
3012     joinAllIntervals();
3013 
3014   // After deleting a lot of copies, register classes may be less constrained.
3015   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3016   // DPR inflation.
3017   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3018   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3019                     InflateRegs.end());
3020   DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
3021   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3022     unsigned Reg = InflateRegs[i];
3023     if (MRI->reg_nodbg_empty(Reg))
3024       continue;
3025     if (MRI->recomputeRegClass(Reg)) {
3026       DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
3027                    << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3028       ++NumInflated;
3029 
3030       LiveInterval &LI = LIS->getInterval(Reg);
3031       if (LI.hasSubRanges()) {
3032         // If the inflated register class does not support subregisters anymore
3033         // remove the subranges.
3034         if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3035           LI.clearSubRanges();
3036         } else {
3037 #ifndef NDEBUG
3038           LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3039           // If subranges are still supported, then the same subregs
3040           // should still be supported.
3041           for (LiveInterval::SubRange &S : LI.subranges()) {
3042             assert((S.LaneMask & ~MaxMask) == 0);
3043           }
3044 #endif
3045         }
3046       }
3047     }
3048   }
3049 
3050   DEBUG(dump());
3051   if (VerifyCoalescing)
3052     MF->verify(this, "After register coalescing");
3053   return true;
3054 }
3055 
print(raw_ostream & O,const Module * m) const3056 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3057    LIS->print(O, m);
3058 }
3059