1 /*
2 * Copyright © 2021 Valve Corporation
3 *
4 * SPDX-License-Identifier: MIT
5 */
6
7 #include "ac_nir.h"
8 #include "amdgfxregs.h"
9 #include "nir_builder.h"
10 #include "nir_xfb_info.h"
11 #include "util/u_math.h"
12 #include "util/u_vector.h"
13
14 #define SPECIAL_MS_OUT_MASK \
15 (BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_COUNT) | \
16 BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES) | \
17 BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE))
18
19 #define MS_PRIM_ARG_EXP_MASK \
20 (VARYING_BIT_LAYER | \
21 VARYING_BIT_VIEWPORT | \
22 VARYING_BIT_PRIMITIVE_SHADING_RATE)
23
24 #define MS_VERT_ARG_EXP_MASK \
25 (VARYING_BIT_CULL_DIST0 | \
26 VARYING_BIT_CULL_DIST1 | \
27 VARYING_BIT_CLIP_DIST0 | \
28 VARYING_BIT_CLIP_DIST1 | \
29 VARYING_BIT_PSIZ)
30
31 enum {
32 nggc_passflag_used_by_pos = 1,
33 nggc_passflag_used_by_other = 2,
34 nggc_passflag_used_by_both = nggc_passflag_used_by_pos | nggc_passflag_used_by_other,
35 };
36
37 typedef struct
38 {
39 nir_def *ssa;
40 nir_variable *var;
41 } reusable_nondeferred_variable;
42
43 typedef struct
44 {
45 gl_varying_slot slot;
46 nir_def *chan[4];
47 } vs_output;
48
49 typedef struct
50 {
51 nir_alu_type types[VARYING_SLOT_MAX][4];
52 nir_alu_type types_16bit_lo[16][4];
53 nir_alu_type types_16bit_hi[16][4];
54 } shader_output_types;
55
56 typedef struct
57 {
58 const ac_nir_lower_ngg_options *options;
59
60 nir_variable *position_value_var;
61 nir_variable *prim_exp_arg_var;
62 nir_variable *es_accepted_var;
63 nir_variable *gs_accepted_var;
64 nir_variable *gs_exported_var;
65 nir_variable *gs_vtx_indices_vars[3];
66
67 nir_def *vtx_addr[3];
68
69 struct u_vector reusable_nondeferred_variables;
70
71 bool early_prim_export;
72 bool streamout_enabled;
73 bool has_user_edgeflags;
74 unsigned max_num_waves;
75
76 /* LDS params */
77 unsigned pervertex_lds_bytes;
78
79 uint64_t inputs_needed_by_pos;
80 uint64_t inputs_needed_by_others;
81
82 nir_instr *compact_arg_stores[4];
83 nir_intrinsic_instr *overwrite_args;
84 nir_variable *repacked_rel_patch_id;
85
86 /* clip distance */
87 nir_variable *clip_vertex_var;
88 nir_variable *clipdist_neg_mask_var;
89 bool has_clipdist;
90
91 /* outputs */
92 nir_def *outputs[VARYING_SLOT_MAX][4];
93 nir_def *outputs_16bit_lo[16][4];
94 nir_def *outputs_16bit_hi[16][4];
95 shader_output_types output_types;
96 } lower_ngg_nogs_state;
97
98 typedef struct
99 {
100 /* output stream index, 2 bit per component */
101 uint8_t stream;
102 /* Bitmask of components used: 4 bits per slot, 1 bit per component. */
103 uint8_t components_mask : 4;
104 } gs_output_info;
105
106 typedef struct
107 {
108 const ac_nir_lower_ngg_options *options;
109
110 nir_function_impl *impl;
111 int const_out_vtxcnt[4];
112 int const_out_prmcnt[4];
113 unsigned max_num_waves;
114 unsigned num_vertices_per_primitive;
115 nir_def *lds_addr_gs_out_vtx;
116 nir_def *lds_addr_gs_scratch;
117 unsigned lds_bytes_per_gs_out_vertex;
118 unsigned lds_offs_primflags;
119 bool output_compile_time_known;
120 bool streamout_enabled;
121 /* 32 bit outputs */
122 nir_def *outputs[VARYING_SLOT_MAX][4];
123 gs_output_info output_info[VARYING_SLOT_MAX];
124 /* 16 bit outputs */
125 nir_def *outputs_16bit_hi[16][4];
126 nir_def *outputs_16bit_lo[16][4];
127 gs_output_info output_info_16bit_hi[16];
128 gs_output_info output_info_16bit_lo[16];
129 /* output types for both 32bit and 16bit */
130 shader_output_types output_types;
131 /* Count per stream. */
132 nir_def *vertex_count[4];
133 nir_def *primitive_count[4];
134 } lower_ngg_gs_state;
135
136 /* LDS layout of Mesh Shader workgroup info. */
137 enum {
138 /* DW0: number of primitives */
139 lds_ms_num_prims = 0,
140 /* DW1: number of vertices */
141 lds_ms_num_vtx = 4,
142 /* DW2: workgroup index within the current dispatch */
143 lds_ms_wg_index = 8,
144 /* DW3: number of API workgroups in flight */
145 lds_ms_num_api_waves = 12,
146 };
147
148 /* Potential location for Mesh Shader outputs. */
149 typedef enum {
150 ms_out_mode_lds,
151 ms_out_mode_scratch_ring,
152 ms_out_mode_attr_ring,
153 ms_out_mode_var,
154 } ms_out_mode;
155
156 typedef struct
157 {
158 uint64_t mask; /* Mask of output locations */
159 uint32_t addr; /* Base address */
160 } ms_out_part;
161
162 typedef struct
163 {
164 /* Mesh shader LDS layout. For details, see ms_calculate_output_layout. */
165 struct {
166 uint32_t workgroup_info_addr;
167 ms_out_part vtx_attr;
168 ms_out_part prm_attr;
169 uint32_t indices_addr;
170 uint32_t cull_flags_addr;
171 uint32_t total_size;
172 } lds;
173
174 /* VRAM "mesh shader scratch ring" layout for outputs that don't fit into the LDS.
175 * Not to be confused with scratch memory.
176 */
177 struct {
178 ms_out_part vtx_attr;
179 ms_out_part prm_attr;
180 } scratch_ring;
181
182 /* VRAM attributes ring (GFX11 only) for all non-position outputs.
183 * GFX11 doesn't have to reload attributes from this ring at the end of the shader.
184 */
185 struct {
186 ms_out_part vtx_attr;
187 ms_out_part prm_attr;
188 } attr_ring;
189
190 /* Outputs without cross-invocation access can be stored in variables. */
191 struct {
192 ms_out_part vtx_attr;
193 ms_out_part prm_attr;
194 } var;
195 } ms_out_mem_layout;
196
197 typedef struct
198 {
199 enum amd_gfx_level gfx_level;
200 bool fast_launch_2;
201 bool vert_multirow_export;
202 bool prim_multirow_export;
203
204 ms_out_mem_layout layout;
205 uint64_t per_vertex_outputs;
206 uint64_t per_primitive_outputs;
207 unsigned vertices_per_prim;
208
209 unsigned wave_size;
210 unsigned api_workgroup_size;
211 unsigned hw_workgroup_size;
212
213 nir_def *workgroup_index;
214 nir_variable *out_variables[VARYING_SLOT_MAX * 4];
215 nir_variable *primitive_count_var;
216 nir_variable *vertex_count_var;
217
218 /* True if the lowering needs to insert the layer output. */
219 bool insert_layer_output;
220 /* True if cull flags are used */
221 bool uses_cull_flags;
222
223 struct {
224 /* Bitmask of components used: 4 bits per slot, 1 bit per component. */
225 uint32_t components_mask;
226 } output_info[VARYING_SLOT_MAX];
227
228 /* Used by outputs export. */
229 nir_def *outputs[VARYING_SLOT_MAX][4];
230 uint32_t clipdist_enable_mask;
231 const uint8_t *vs_output_param_offset;
232 bool has_param_exports;
233
234 /* True if the lowering needs to insert shader query. */
235 bool has_query;
236 } lower_ngg_ms_state;
237
238 /* Per-vertex LDS layout of culling shaders */
239 enum {
240 /* Position of the ES vertex (at the beginning for alignment reasons) */
241 lds_es_pos_x = 0,
242 lds_es_pos_y = 4,
243 lds_es_pos_z = 8,
244 lds_es_pos_w = 12,
245
246 /* 1 when the vertex is accepted, 0 if it should be culled */
247 lds_es_vertex_accepted = 16,
248 /* ID of the thread which will export the current thread's vertex */
249 lds_es_exporter_tid = 17,
250 /* bit i is set when the i'th clip distance of a vertex is negative */
251 lds_es_clipdist_neg_mask = 18,
252 /* TES only, relative patch ID, less than max workgroup size */
253 lds_es_tes_rel_patch_id = 19,
254
255 /* Repacked arguments - also listed separately for VS and TES */
256 lds_es_arg_0 = 20,
257 };
258
259 typedef struct {
260 nir_def *num_repacked_invocations;
261 nir_def *repacked_invocation_index;
262 } wg_repack_result;
263
264 /**
265 * Computes a horizontal sum of 8-bit packed values loaded from LDS.
266 *
267 * Each lane N will sum packed bytes 0 to N-1.
268 * We only care about the results from up to wave_id+1 lanes.
269 * (Other lanes are not deactivated but their calculation is not used.)
270 */
271 static nir_def *
summarize_repack(nir_builder * b,nir_def * packed_counts,unsigned num_lds_dwords)272 summarize_repack(nir_builder *b, nir_def *packed_counts, unsigned num_lds_dwords)
273 {
274 /* We'll use shift to filter out the bytes not needed by the current lane.
275 *
276 * Need to shift by: num_lds_dwords * 4 - lane_id (in bytes).
277 * However, two shifts are needed because one can't go all the way,
278 * so the shift amount is half that (and in bits).
279 *
280 * When v_dot4_u32_u8 is available, we right-shift a series of 0x01 bytes.
281 * This will yield 0x01 at wanted byte positions and 0x00 at unwanted positions,
282 * therefore v_dot can get rid of the unneeded values.
283 * This sequence is preferable because it better hides the latency of the LDS.
284 *
285 * If the v_dot instruction can't be used, we left-shift the packed bytes.
286 * This will shift out the unneeded bytes and shift in zeroes instead,
287 * then we sum them using v_msad_u8.
288 */
289
290 nir_def *lane_id = nir_load_subgroup_invocation(b);
291 nir_def *shift = nir_iadd_imm(b, nir_imul_imm(b, lane_id, -4u), num_lds_dwords * 16);
292 bool use_dot = b->shader->options->has_udot_4x8;
293
294 if (num_lds_dwords == 1) {
295 nir_def *dot_op = !use_dot ? NULL : nir_ushr(b, nir_ushr(b, nir_imm_int(b, 0x01010101), shift), shift);
296
297 /* Broadcast the packed data we read from LDS (to the first 16 lanes, but we only care up to num_waves). */
298 nir_def *packed = nir_lane_permute_16_amd(b, packed_counts, nir_imm_int(b, 0), nir_imm_int(b, 0));
299
300 /* Horizontally add the packed bytes. */
301 if (use_dot) {
302 return nir_udot_4x8_uadd(b, packed, dot_op, nir_imm_int(b, 0));
303 } else {
304 nir_def *sad_op = nir_ishl(b, nir_ishl(b, packed, shift), shift);
305 return nir_msad_4x8(b, sad_op, nir_imm_int(b, 0), nir_imm_int(b, 0));
306 }
307 } else if (num_lds_dwords == 2) {
308 nir_def *dot_op = !use_dot ? NULL : nir_ushr(b, nir_ushr(b, nir_imm_int64(b, 0x0101010101010101), shift), shift);
309
310 /* Broadcast the packed data we read from LDS (to the first 16 lanes, but we only care up to num_waves). */
311 nir_def *packed_dw0 = nir_lane_permute_16_amd(b, nir_unpack_64_2x32_split_x(b, packed_counts), nir_imm_int(b, 0), nir_imm_int(b, 0));
312 nir_def *packed_dw1 = nir_lane_permute_16_amd(b, nir_unpack_64_2x32_split_y(b, packed_counts), nir_imm_int(b, 0), nir_imm_int(b, 0));
313
314 /* Horizontally add the packed bytes. */
315 if (use_dot) {
316 nir_def *sum = nir_udot_4x8_uadd(b, packed_dw0, nir_unpack_64_2x32_split_x(b, dot_op), nir_imm_int(b, 0));
317 return nir_udot_4x8_uadd(b, packed_dw1, nir_unpack_64_2x32_split_y(b, dot_op), sum);
318 } else {
319 nir_def *sad_op = nir_ishl(b, nir_ishl(b, nir_pack_64_2x32_split(b, packed_dw0, packed_dw1), shift), shift);
320 nir_def *sum = nir_msad_4x8(b, nir_unpack_64_2x32_split_x(b, sad_op), nir_imm_int(b, 0), nir_imm_int(b, 0));
321 return nir_msad_4x8(b, nir_unpack_64_2x32_split_y(b, sad_op), nir_imm_int(b, 0), sum);
322 }
323 } else {
324 unreachable("Unimplemented NGG wave count");
325 }
326 }
327
328 /**
329 * Repacks invocations in the current workgroup to eliminate gaps between them.
330 *
331 * Uses 1 dword of LDS per 4 waves (1 byte of LDS per wave).
332 * Assumes that all invocations in the workgroup are active (exec = -1).
333 */
334 static wg_repack_result
repack_invocations_in_workgroup(nir_builder * b,nir_def * input_bool,nir_def * lds_addr_base,unsigned max_num_waves,unsigned wave_size)335 repack_invocations_in_workgroup(nir_builder *b, nir_def *input_bool,
336 nir_def *lds_addr_base, unsigned max_num_waves,
337 unsigned wave_size)
338 {
339 /* Input boolean: 1 if the current invocation should survive the repack. */
340 assert(input_bool->bit_size == 1);
341
342 /* STEP 1. Count surviving invocations in the current wave.
343 *
344 * Implemented by a scalar instruction that simply counts the number of bits set in a 32/64-bit mask.
345 */
346
347 nir_def *input_mask = nir_ballot(b, 1, wave_size, input_bool);
348 nir_def *surviving_invocations_in_current_wave = nir_bit_count(b, input_mask);
349
350 /* If we know at compile time that the workgroup has only 1 wave, no further steps are necessary. */
351 if (max_num_waves == 1) {
352 wg_repack_result r = {
353 .num_repacked_invocations = surviving_invocations_in_current_wave,
354 .repacked_invocation_index = nir_mbcnt_amd(b, input_mask, nir_imm_int(b, 0)),
355 };
356 return r;
357 }
358
359 /* STEP 2. Waves tell each other their number of surviving invocations.
360 *
361 * Each wave activates only its first lane (exec = 1), which stores the number of surviving
362 * invocations in that wave into the LDS, then reads the numbers from every wave.
363 *
364 * The workgroup size of NGG shaders is at most 256, which means
365 * the maximum number of waves is 4 in Wave64 mode and 8 in Wave32 mode.
366 * Each wave writes 1 byte, so it's up to 8 bytes, so at most 2 dwords are necessary.
367 */
368
369 const unsigned num_lds_dwords = DIV_ROUND_UP(max_num_waves, 4);
370 assert(num_lds_dwords <= 2);
371
372 nir_def *wave_id = nir_load_subgroup_id(b);
373 nir_def *lds_offset = nir_iadd(b, lds_addr_base, wave_id);
374 nir_def *dont_care = nir_undef(b, 1, num_lds_dwords * 32);
375 nir_if *if_first_lane = nir_push_if(b, nir_elect(b, 1));
376
377 nir_store_shared(b, nir_u2u8(b, surviving_invocations_in_current_wave), lds_offset);
378
379 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
380 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
381
382 nir_def *packed_counts =
383 nir_load_shared(b, 1, num_lds_dwords * 32, lds_addr_base, .align_mul = 8u);
384
385 nir_pop_if(b, if_first_lane);
386
387 packed_counts = nir_if_phi(b, packed_counts, dont_care);
388
389 /* STEP 3. Compute the repacked invocation index and the total number of surviving invocations.
390 *
391 * By now, every wave knows the number of surviving invocations in all waves.
392 * Each number is 1 byte, and they are packed into up to 2 dwords.
393 *
394 * Each lane N will sum the number of surviving invocations from waves 0 to N-1.
395 * If the workgroup has M waves, then each wave will use only its first M+1 lanes for this.
396 * (Other lanes are not deactivated but their calculation is not used.)
397 *
398 * - We read the sum from the lane whose id is the current wave's id.
399 * Add the masked bitcount to this, and we get the repacked invocation index.
400 * - We read the sum from the lane whose id is the number of waves in the workgroup.
401 * This is the total number of surviving invocations in the workgroup.
402 */
403
404 nir_def *num_waves = nir_load_num_subgroups(b);
405 nir_def *sum = summarize_repack(b, packed_counts, num_lds_dwords);
406
407 nir_def *wg_repacked_index_base = nir_read_invocation(b, sum, wave_id);
408 nir_def *wg_num_repacked_invocations = nir_read_invocation(b, sum, num_waves);
409 nir_def *wg_repacked_index = nir_mbcnt_amd(b, input_mask, wg_repacked_index_base);
410
411 wg_repack_result r = {
412 .num_repacked_invocations = wg_num_repacked_invocations,
413 .repacked_invocation_index = wg_repacked_index,
414 };
415
416 return r;
417 }
418
419 static nir_def *
pervertex_lds_addr(nir_builder * b,nir_def * vertex_idx,unsigned per_vtx_bytes)420 pervertex_lds_addr(nir_builder *b, nir_def *vertex_idx, unsigned per_vtx_bytes)
421 {
422 return nir_imul_imm(b, vertex_idx, per_vtx_bytes);
423 }
424
425 static nir_def *
emit_pack_ngg_prim_exp_arg(nir_builder * b,unsigned num_vertices_per_primitives,nir_def * vertex_indices[3],nir_def * is_null_prim)426 emit_pack_ngg_prim_exp_arg(nir_builder *b, unsigned num_vertices_per_primitives,
427 nir_def *vertex_indices[3], nir_def *is_null_prim)
428 {
429 nir_def *arg = nir_load_initial_edgeflags_amd(b);
430
431 for (unsigned i = 0; i < num_vertices_per_primitives; ++i) {
432 assert(vertex_indices[i]);
433 arg = nir_ior(b, arg, nir_ishl_imm(b, vertex_indices[i], 10u * i));
434 }
435
436 if (is_null_prim) {
437 if (is_null_prim->bit_size == 1)
438 is_null_prim = nir_b2i32(b, is_null_prim);
439 assert(is_null_prim->bit_size == 32);
440 arg = nir_ior(b, arg, nir_ishl_imm(b, is_null_prim, 31u));
441 }
442
443 return arg;
444 }
445
446 static void
alloc_vertices_and_primitives(nir_builder * b,nir_def * num_vtx,nir_def * num_prim)447 alloc_vertices_and_primitives(nir_builder *b,
448 nir_def *num_vtx,
449 nir_def *num_prim)
450 {
451 /* The caller should only call this conditionally on wave 0.
452 *
453 * Send GS Alloc Request message from the first wave of the group to SPI.
454 * Message payload (in the m0 register) is:
455 * - bits 0..10: number of vertices in group
456 * - bits 12..22: number of primitives in group
457 */
458
459 nir_def *m0 = nir_ior(b, nir_ishl_imm(b, num_prim, 12), num_vtx);
460 nir_sendmsg_amd(b, m0, .base = AC_SENDMSG_GS_ALLOC_REQ);
461 }
462
463 static void
alloc_vertices_and_primitives_gfx10_workaround(nir_builder * b,nir_def * num_vtx,nir_def * num_prim)464 alloc_vertices_and_primitives_gfx10_workaround(nir_builder *b,
465 nir_def *num_vtx,
466 nir_def *num_prim)
467 {
468 /* HW workaround for a GPU hang with 100% culling on GFX10.
469 * We always have to export at least 1 primitive.
470 * Export a degenerate triangle using vertex 0 for all 3 vertices.
471 *
472 * NOTE: We rely on the caller to set the vertex count also to 0 when the primitive count is 0.
473 */
474 nir_def *is_prim_cnt_0 = nir_ieq_imm(b, num_prim, 0);
475 nir_if *if_prim_cnt_0 = nir_push_if(b, is_prim_cnt_0);
476 {
477 nir_def *one = nir_imm_int(b, 1);
478 alloc_vertices_and_primitives(b, one, one);
479
480 nir_def *tid = nir_load_subgroup_invocation(b);
481 nir_def *is_thread_0 = nir_ieq_imm(b, tid, 0);
482 nir_if *if_thread_0 = nir_push_if(b, is_thread_0);
483 {
484 /* The vertex indices are 0, 0, 0. */
485 nir_export_amd(b, nir_imm_zero(b, 4, 32),
486 .base = V_008DFC_SQ_EXP_PRIM,
487 .flags = AC_EXP_FLAG_DONE,
488 .write_mask = 1);
489
490 /* The HW culls primitives with NaN. -1 is also NaN and can save
491 * a dword in binary code by inlining constant.
492 */
493 nir_export_amd(b, nir_imm_ivec4(b, -1, -1, -1, -1),
494 .base = V_008DFC_SQ_EXP_POS,
495 .flags = AC_EXP_FLAG_DONE,
496 .write_mask = 0xf);
497 }
498 nir_pop_if(b, if_thread_0);
499 }
500 nir_push_else(b, if_prim_cnt_0);
501 {
502 alloc_vertices_and_primitives(b, num_vtx, num_prim);
503 }
504 nir_pop_if(b, if_prim_cnt_0);
505 }
506
507 static void
ngg_nogs_init_vertex_indices_vars(nir_builder * b,nir_function_impl * impl,lower_ngg_nogs_state * s)508 ngg_nogs_init_vertex_indices_vars(nir_builder *b, nir_function_impl *impl, lower_ngg_nogs_state *s)
509 {
510 for (unsigned v = 0; v < s->options->num_vertices_per_primitive; ++v) {
511 s->gs_vtx_indices_vars[v] = nir_local_variable_create(impl, glsl_uint_type(), "gs_vtx_addr");
512
513 nir_def *vtx = s->options->passthrough ?
514 nir_ubfe_imm(b, nir_load_packed_passthrough_primitive_amd(b),
515 10 * v, 9) :
516 nir_ubfe_imm(b, nir_load_gs_vertex_offset_amd(b, .base = v / 2u),
517 (v & 1u) * 16u, 16u);
518
519 nir_store_var(b, s->gs_vtx_indices_vars[v], vtx, 0x1);
520 }
521 }
522
523 static nir_def *
emit_ngg_nogs_prim_exp_arg(nir_builder * b,lower_ngg_nogs_state * s)524 emit_ngg_nogs_prim_exp_arg(nir_builder *b, lower_ngg_nogs_state *s)
525 {
526 if (s->options->passthrough) {
527 return nir_load_packed_passthrough_primitive_amd(b);
528 } else {
529 nir_def *vtx_idx[3] = {0};
530
531 for (unsigned v = 0; v < s->options->num_vertices_per_primitive; ++v)
532 vtx_idx[v] = nir_load_var(b, s->gs_vtx_indices_vars[v]);
533
534 return emit_pack_ngg_prim_exp_arg(b, s->options->num_vertices_per_primitive, vtx_idx, NULL);
535 }
536 }
537
538 static nir_def *
has_input_vertex(nir_builder * b)539 has_input_vertex(nir_builder *b)
540 {
541 return nir_is_subgroup_invocation_lt_amd(b, nir_load_merged_wave_info_amd(b));
542 }
543
544 static nir_def *
has_input_primitive(nir_builder * b)545 has_input_primitive(nir_builder *b)
546 {
547 return nir_is_subgroup_invocation_lt_amd(b,
548 nir_ushr_imm(b, nir_load_merged_wave_info_amd(b), 8));
549 }
550
551 static void
nogs_prim_gen_query(nir_builder * b,lower_ngg_nogs_state * s)552 nogs_prim_gen_query(nir_builder *b, lower_ngg_nogs_state *s)
553 {
554 if (!s->options->has_gen_prim_query)
555 return;
556
557 nir_if *if_shader_query = nir_push_if(b, nir_load_prim_gen_query_enabled_amd(b));
558 {
559 /* Activate only 1 lane and add the number of primitives to query result. */
560 nir_if *if_elected = nir_push_if(b, nir_elect(b, 1));
561 {
562 /* Number of input primitives in the current wave. */
563 nir_def *num_input_prims = nir_ubfe_imm(b, nir_load_merged_wave_info_amd(b),
564 8, 8);
565
566 /* Add to stream 0 primitive generated counter. */
567 nir_atomic_add_gen_prim_count_amd(b, num_input_prims, .stream_id = 0);
568 }
569 nir_pop_if(b, if_elected);
570 }
571 nir_pop_if(b, if_shader_query);
572 }
573
574 static void
emit_ngg_nogs_prim_export(nir_builder * b,lower_ngg_nogs_state * s,nir_def * arg)575 emit_ngg_nogs_prim_export(nir_builder *b, lower_ngg_nogs_state *s, nir_def *arg)
576 {
577 nir_if *if_gs_thread = nir_push_if(b, nir_load_var(b, s->gs_exported_var));
578 {
579 if (!arg)
580 arg = emit_ngg_nogs_prim_exp_arg(b, s);
581
582 /* pack user edge flag info into arg */
583 if (s->has_user_edgeflags) {
584 /* Workgroup barrier: wait for ES threads store user edge flags to LDS */
585 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
586 .memory_scope = SCOPE_WORKGROUP,
587 .memory_semantics = NIR_MEMORY_ACQ_REL,
588 .memory_modes = nir_var_mem_shared);
589
590 unsigned edge_flag_bits = ac_get_all_edge_flag_bits();
591 nir_def *mask = nir_imm_intN_t(b, ~edge_flag_bits, 32);
592
593 unsigned edge_flag_offset = 0;
594 if (s->streamout_enabled) {
595 unsigned packed_location =
596 util_bitcount64(b->shader->info.outputs_written &
597 BITFIELD64_MASK(VARYING_SLOT_EDGE));
598 edge_flag_offset = packed_location * 16;
599 }
600
601 for (int i = 0; i < s->options->num_vertices_per_primitive; i++) {
602 nir_def *vtx_idx = nir_load_var(b, s->gs_vtx_indices_vars[i]);
603 nir_def *addr = pervertex_lds_addr(b, vtx_idx, s->pervertex_lds_bytes);
604 nir_def *edge = nir_load_shared(b, 1, 32, addr, .base = edge_flag_offset);
605 mask = nir_ior(b, mask, nir_ishl_imm(b, edge, 9 + i * 10));
606 }
607 arg = nir_iand(b, arg, mask);
608 }
609
610 ac_nir_export_primitive(b, arg, NULL);
611 }
612 nir_pop_if(b, if_gs_thread);
613 }
614
615 static void
emit_ngg_nogs_prim_id_store_shared(nir_builder * b,lower_ngg_nogs_state * s)616 emit_ngg_nogs_prim_id_store_shared(nir_builder *b, lower_ngg_nogs_state *s)
617 {
618 nir_def *gs_thread =
619 s->gs_accepted_var ? nir_load_var(b, s->gs_accepted_var) : has_input_primitive(b);
620
621 nir_if *if_gs_thread = nir_push_if(b, gs_thread);
622 {
623 /* Copy Primitive IDs from GS threads to the LDS address
624 * corresponding to the ES thread of the provoking vertex.
625 * It will be exported as a per-vertex attribute.
626 */
627 nir_def *gs_vtx_indices[3];
628 for (unsigned i = 0; i < s->options->num_vertices_per_primitive; i++)
629 gs_vtx_indices[i] = nir_load_var(b, s->gs_vtx_indices_vars[i]);
630
631 nir_def *provoking_vertex = nir_load_provoking_vtx_in_prim_amd(b);
632 nir_def *provoking_vtx_idx = nir_select_from_ssa_def_array(
633 b, gs_vtx_indices, s->options->num_vertices_per_primitive, provoking_vertex);
634
635 nir_def *prim_id = nir_load_primitive_id(b);
636 nir_def *addr = pervertex_lds_addr(b, provoking_vtx_idx, s->pervertex_lds_bytes);
637
638 /* primitive id is always at last of a vertex */
639 nir_store_shared(b, prim_id, addr, .base = s->pervertex_lds_bytes - 4);
640 }
641 nir_pop_if(b, if_gs_thread);
642 }
643
644 static void
emit_store_ngg_nogs_es_primitive_id(nir_builder * b,lower_ngg_nogs_state * s)645 emit_store_ngg_nogs_es_primitive_id(nir_builder *b, lower_ngg_nogs_state *s)
646 {
647 nir_def *prim_id = NULL;
648
649 if (b->shader->info.stage == MESA_SHADER_VERTEX) {
650 /* LDS address where the primitive ID is stored */
651 nir_def *thread_id_in_threadgroup = nir_load_local_invocation_index(b);
652 nir_def *addr =
653 pervertex_lds_addr(b, thread_id_in_threadgroup, s->pervertex_lds_bytes);
654
655 /* Load primitive ID from LDS */
656 prim_id = nir_load_shared(b, 1, 32, addr, .base = s->pervertex_lds_bytes - 4);
657 } else if (b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
658 /* Just use tess eval primitive ID, which is the same as the patch ID. */
659 prim_id = nir_load_primitive_id(b);
660 }
661
662 s->outputs[VARYING_SLOT_PRIMITIVE_ID][0] = prim_id;
663
664 /* Update outputs_written to reflect that the pass added a new output. */
665 b->shader->info.outputs_written |= VARYING_BIT_PRIMITIVE_ID;
666 }
667
668 static void
add_clipdist_bit(nir_builder * b,nir_def * dist,unsigned index,nir_variable * mask)669 add_clipdist_bit(nir_builder *b, nir_def *dist, unsigned index, nir_variable *mask)
670 {
671 nir_def *is_neg = nir_flt_imm(b, dist, 0);
672 nir_def *neg_mask = nir_ishl_imm(b, nir_b2i32(b, is_neg), index);
673 neg_mask = nir_ior(b, neg_mask, nir_load_var(b, mask));
674 nir_store_var(b, mask, neg_mask, 1);
675 }
676
677 static bool
remove_culling_shader_output(nir_builder * b,nir_instr * instr,void * state)678 remove_culling_shader_output(nir_builder *b, nir_instr *instr, void *state)
679 {
680 lower_ngg_nogs_state *s = (lower_ngg_nogs_state *) state;
681
682 if (instr->type != nir_instr_type_intrinsic)
683 return false;
684
685 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
686
687 /* These are not allowed in VS / TES */
688 assert(intrin->intrinsic != nir_intrinsic_store_per_vertex_output &&
689 intrin->intrinsic != nir_intrinsic_load_per_vertex_input);
690
691 /* We are only interested in output stores now */
692 if (intrin->intrinsic != nir_intrinsic_store_output)
693 return false;
694
695 b->cursor = nir_before_instr(instr);
696
697 /* no indirect output */
698 assert(nir_src_is_const(intrin->src[1]) && nir_src_as_uint(intrin->src[1]) == 0);
699
700 unsigned writemask = nir_intrinsic_write_mask(intrin);
701 unsigned component = nir_intrinsic_component(intrin);
702 nir_def *store_val = intrin->src[0].ssa;
703
704 /* Position output - store the value to a variable, remove output store */
705 nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
706 switch (io_sem.location) {
707 case VARYING_SLOT_POS:
708 ac_nir_store_var_components(b, s->position_value_var, store_val, component, writemask);
709 break;
710 case VARYING_SLOT_CLIP_DIST0:
711 case VARYING_SLOT_CLIP_DIST1: {
712 unsigned base = io_sem.location == VARYING_SLOT_CLIP_DIST1 ? 4 : 0;
713 base += component;
714
715 /* valid clipdist component mask */
716 unsigned mask = (s->options->clip_cull_dist_mask >> base) & writemask;
717 u_foreach_bit(i, mask) {
718 add_clipdist_bit(b, nir_channel(b, store_val, i), base + i,
719 s->clipdist_neg_mask_var);
720 s->has_clipdist = true;
721 }
722 break;
723 }
724 case VARYING_SLOT_CLIP_VERTEX:
725 ac_nir_store_var_components(b, s->clip_vertex_var, store_val, component, writemask);
726 break;
727 default:
728 break;
729 }
730
731 /* Remove all output stores */
732 nir_instr_remove(instr);
733 return true;
734 }
735
736 static void
remove_culling_shader_outputs(nir_shader * culling_shader,lower_ngg_nogs_state * s)737 remove_culling_shader_outputs(nir_shader *culling_shader, lower_ngg_nogs_state *s)
738 {
739 nir_shader_instructions_pass(culling_shader, remove_culling_shader_output,
740 nir_metadata_block_index | nir_metadata_dominance, s);
741
742 /* Remove dead code resulting from the deleted outputs. */
743 bool progress;
744 do {
745 progress = false;
746 NIR_PASS(progress, culling_shader, nir_opt_dead_write_vars);
747 NIR_PASS(progress, culling_shader, nir_opt_dce);
748 NIR_PASS(progress, culling_shader, nir_opt_dead_cf);
749 } while (progress);
750 }
751
752 static void
rewrite_uses_to_var(nir_builder * b,nir_def * old_def,nir_variable * replacement_var,unsigned replacement_var_channel)753 rewrite_uses_to_var(nir_builder *b, nir_def *old_def, nir_variable *replacement_var, unsigned replacement_var_channel)
754 {
755 if (old_def->parent_instr->type == nir_instr_type_load_const)
756 return;
757
758 b->cursor = nir_after_instr(old_def->parent_instr);
759 if (b->cursor.instr->type == nir_instr_type_phi)
760 b->cursor = nir_after_phis(old_def->parent_instr->block);
761
762 nir_def *pos_val_rep = nir_load_var(b, replacement_var);
763 nir_def *replacement = nir_channel(b, pos_val_rep, replacement_var_channel);
764
765 if (old_def->num_components > 1) {
766 /* old_def uses a swizzled vector component.
767 * There is no way to replace the uses of just a single vector component,
768 * so instead create a new vector and replace all uses of the old vector.
769 */
770 nir_def *old_def_elements[NIR_MAX_VEC_COMPONENTS] = {0};
771 for (unsigned j = 0; j < old_def->num_components; ++j)
772 old_def_elements[j] = nir_channel(b, old_def, j);
773 replacement = nir_vec(b, old_def_elements, old_def->num_components);
774 }
775
776 nir_def_rewrite_uses_after(old_def, replacement, replacement->parent_instr);
777 }
778
779 static bool
remove_extra_pos_output(nir_builder * b,nir_instr * instr,void * state)780 remove_extra_pos_output(nir_builder *b, nir_instr *instr, void *state)
781 {
782 lower_ngg_nogs_state *s = (lower_ngg_nogs_state *) state;
783
784 if (instr->type != nir_instr_type_intrinsic)
785 return false;
786
787 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
788
789 /* These are not allowed in VS / TES */
790 assert(intrin->intrinsic != nir_intrinsic_store_per_vertex_output &&
791 intrin->intrinsic != nir_intrinsic_load_per_vertex_input);
792
793 /* We are only interested in output stores now */
794 if (intrin->intrinsic != nir_intrinsic_store_output)
795 return false;
796
797 nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
798 if (io_sem.location != VARYING_SLOT_POS)
799 return false;
800
801 b->cursor = nir_before_instr(instr);
802
803 /* In case other outputs use what we calculated for pos,
804 * try to avoid calculating it again by rewriting the usages
805 * of the store components here.
806 */
807 nir_def *store_val = intrin->src[0].ssa;
808 unsigned store_pos_component = nir_intrinsic_component(intrin);
809
810 nir_instr_remove(instr);
811
812 if (store_val->parent_instr->type == nir_instr_type_alu) {
813 nir_alu_instr *alu = nir_instr_as_alu(store_val->parent_instr);
814 if (nir_op_is_vec_or_mov(alu->op)) {
815 /* Output store uses a vector, we can easily rewrite uses of each vector element. */
816
817 unsigned num_vec_src = 0;
818 if (alu->op == nir_op_mov)
819 num_vec_src = 1;
820 else if (alu->op == nir_op_vec2)
821 num_vec_src = 2;
822 else if (alu->op == nir_op_vec3)
823 num_vec_src = 3;
824 else if (alu->op == nir_op_vec4)
825 num_vec_src = 4;
826 assert(num_vec_src);
827
828 /* Remember the current components whose uses we wish to replace.
829 * This is needed because rewriting one source can affect the others too.
830 */
831 nir_def *vec_comps[NIR_MAX_VEC_COMPONENTS] = {0};
832 for (unsigned i = 0; i < num_vec_src; i++)
833 vec_comps[i] = alu->src[i].src.ssa;
834
835 for (unsigned i = 0; i < num_vec_src; i++)
836 rewrite_uses_to_var(b, vec_comps[i], s->position_value_var, store_pos_component + i);
837 } else {
838 rewrite_uses_to_var(b, store_val, s->position_value_var, store_pos_component);
839 }
840 } else {
841 rewrite_uses_to_var(b, store_val, s->position_value_var, store_pos_component);
842 }
843
844 return true;
845 }
846
847 static void
remove_extra_pos_outputs(nir_shader * shader,lower_ngg_nogs_state * s)848 remove_extra_pos_outputs(nir_shader *shader, lower_ngg_nogs_state *s)
849 {
850 nir_shader_instructions_pass(shader, remove_extra_pos_output,
851 nir_metadata_block_index | nir_metadata_dominance,
852 s);
853 }
854
855 static bool
remove_compacted_arg(lower_ngg_nogs_state * s,nir_builder * b,unsigned idx)856 remove_compacted_arg(lower_ngg_nogs_state *s, nir_builder *b, unsigned idx)
857 {
858 nir_instr *store_instr = s->compact_arg_stores[idx];
859 if (!store_instr)
860 return false;
861
862 /* Simply remove the store. */
863 nir_instr_remove(store_instr);
864
865 /* Find the intrinsic that overwrites the shader arguments,
866 * and change its corresponding source.
867 * This will cause NIR's DCE to recognize the load and its phis as dead.
868 */
869 b->cursor = nir_before_instr(&s->overwrite_args->instr);
870 nir_def *undef_arg = nir_undef(b, 1, 32);
871 nir_def_rewrite_uses(s->overwrite_args->src[idx].ssa, undef_arg);
872
873 s->compact_arg_stores[idx] = NULL;
874 return true;
875 }
876
877 static bool
cleanup_culling_shader_after_dce(nir_shader * shader,nir_function_impl * function_impl,lower_ngg_nogs_state * s)878 cleanup_culling_shader_after_dce(nir_shader *shader,
879 nir_function_impl *function_impl,
880 lower_ngg_nogs_state *s)
881 {
882 bool uses_vs_vertex_id = false;
883 bool uses_vs_instance_id = false;
884 bool uses_tes_u = false;
885 bool uses_tes_v = false;
886 bool uses_tes_rel_patch_id = false;
887 bool uses_tes_patch_id = false;
888
889 bool progress = false;
890 nir_builder b = nir_builder_create(function_impl);
891
892 nir_foreach_block_reverse_safe(block, function_impl) {
893 nir_foreach_instr_reverse_safe(instr, block) {
894 if (instr->type != nir_instr_type_intrinsic)
895 continue;
896
897 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
898
899 switch (intrin->intrinsic) {
900 case nir_intrinsic_sendmsg_amd:
901 goto cleanup_culling_shader_after_dce_done;
902 case nir_intrinsic_load_vertex_id:
903 case nir_intrinsic_load_vertex_id_zero_base:
904 uses_vs_vertex_id = true;
905 break;
906 case nir_intrinsic_load_instance_id:
907 uses_vs_instance_id = true;
908 break;
909 case nir_intrinsic_load_input:
910 if (s->options->instance_rate_inputs & BITFIELD_BIT(nir_intrinsic_base(intrin)))
911 uses_vs_instance_id = true;
912 else
913 uses_vs_vertex_id = true;
914 break;
915 case nir_intrinsic_load_tess_coord:
916 uses_tes_u = uses_tes_v = true;
917 break;
918 case nir_intrinsic_load_tess_rel_patch_id_amd:
919 uses_tes_rel_patch_id = true;
920 break;
921 case nir_intrinsic_load_primitive_id:
922 if (shader->info.stage == MESA_SHADER_TESS_EVAL)
923 uses_tes_patch_id = true;
924 break;
925 default:
926 break;
927 }
928 }
929 }
930
931 cleanup_culling_shader_after_dce_done:
932
933 if (shader->info.stage == MESA_SHADER_VERTEX) {
934 if (!uses_vs_vertex_id)
935 progress |= remove_compacted_arg(s, &b, 0);
936 if (!uses_vs_instance_id)
937 progress |= remove_compacted_arg(s, &b, 1);
938 } else if (shader->info.stage == MESA_SHADER_TESS_EVAL) {
939 if (!uses_tes_u)
940 progress |= remove_compacted_arg(s, &b, 0);
941 if (!uses_tes_v)
942 progress |= remove_compacted_arg(s, &b, 1);
943 if (!uses_tes_rel_patch_id)
944 progress |= remove_compacted_arg(s, &b, 3);
945 if (!uses_tes_patch_id)
946 progress |= remove_compacted_arg(s, &b, 2);
947 }
948
949 return progress;
950 }
951
952 /**
953 * Perform vertex compaction after culling.
954 *
955 * 1. Repack surviving ES invocations (this determines which lane will export which vertex)
956 * 2. Surviving ES vertex invocations store their data to LDS
957 * 3. Emit GS_ALLOC_REQ
958 * 4. Repacked invocations load the vertex data from LDS
959 * 5. GS threads update their vertex indices
960 */
961 static void
compact_vertices_after_culling(nir_builder * b,lower_ngg_nogs_state * s,nir_variable ** repacked_variables,nir_variable ** gs_vtxaddr_vars,nir_def * invocation_index,nir_def * es_vertex_lds_addr,nir_def * es_exporter_tid,nir_def * num_live_vertices_in_workgroup,unsigned pervertex_lds_bytes,unsigned num_repacked_variables)962 compact_vertices_after_culling(nir_builder *b,
963 lower_ngg_nogs_state *s,
964 nir_variable **repacked_variables,
965 nir_variable **gs_vtxaddr_vars,
966 nir_def *invocation_index,
967 nir_def *es_vertex_lds_addr,
968 nir_def *es_exporter_tid,
969 nir_def *num_live_vertices_in_workgroup,
970 unsigned pervertex_lds_bytes,
971 unsigned num_repacked_variables)
972 {
973 nir_variable *es_accepted_var = s->es_accepted_var;
974 nir_variable *gs_accepted_var = s->gs_accepted_var;
975 nir_variable *position_value_var = s->position_value_var;
976 nir_variable *prim_exp_arg_var = s->prim_exp_arg_var;
977
978 nir_if *if_es_accepted = nir_push_if(b, nir_load_var(b, es_accepted_var));
979 {
980 nir_def *exporter_addr = pervertex_lds_addr(b, es_exporter_tid, pervertex_lds_bytes);
981
982 /* Store the exporter thread's index to the LDS space of the current thread so GS threads can load it */
983 nir_store_shared(b, nir_u2u8(b, es_exporter_tid), es_vertex_lds_addr, .base = lds_es_exporter_tid);
984
985 /* Store the current thread's position output to the exporter thread's LDS space */
986 nir_def *pos = nir_load_var(b, position_value_var);
987 nir_store_shared(b, pos, exporter_addr, .base = lds_es_pos_x);
988
989 /* Store the current thread's repackable arguments to the exporter thread's LDS space */
990 for (unsigned i = 0; i < num_repacked_variables; ++i) {
991 nir_def *arg_val = nir_load_var(b, repacked_variables[i]);
992 nir_intrinsic_instr *store = nir_store_shared(b, arg_val, exporter_addr, .base = lds_es_arg_0 + 4u * i);
993
994 s->compact_arg_stores[i] = &store->instr;
995 }
996
997 /* TES rel patch id does not cost extra dword */
998 if (b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
999 nir_def *arg_val = nir_load_var(b, s->repacked_rel_patch_id);
1000 nir_intrinsic_instr *store =
1001 nir_store_shared(b, nir_u2u8(b, arg_val), exporter_addr,
1002 .base = lds_es_tes_rel_patch_id);
1003
1004 s->compact_arg_stores[3] = &store->instr;
1005 }
1006 }
1007 nir_pop_if(b, if_es_accepted);
1008
1009 /* TODO: Consider adding a shortcut exit.
1010 * Waves that have no vertices and primitives left can s_endpgm right here.
1011 */
1012
1013 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
1014 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
1015
1016 nir_def *es_survived = nir_ilt(b, invocation_index, num_live_vertices_in_workgroup);
1017 nir_if *if_packed_es_thread = nir_push_if(b, es_survived);
1018 {
1019 /* Read position from the current ES thread's LDS space (written by the exported vertex's ES thread) */
1020 nir_def *exported_pos = nir_load_shared(b, 4, 32, es_vertex_lds_addr, .base = lds_es_pos_x);
1021 nir_store_var(b, position_value_var, exported_pos, 0xfu);
1022
1023 /* Read the repacked arguments */
1024 for (unsigned i = 0; i < num_repacked_variables; ++i) {
1025 nir_def *arg_val = nir_load_shared(b, 1, 32, es_vertex_lds_addr, .base = lds_es_arg_0 + 4u * i);
1026 nir_store_var(b, repacked_variables[i], arg_val, 0x1u);
1027 }
1028
1029 if (b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
1030 nir_def *arg_val = nir_load_shared(b, 1, 8, es_vertex_lds_addr,
1031 .base = lds_es_tes_rel_patch_id);
1032 nir_store_var(b, s->repacked_rel_patch_id, nir_u2u32(b, arg_val), 0x1u);
1033 }
1034 }
1035 nir_push_else(b, if_packed_es_thread);
1036 {
1037 nir_store_var(b, position_value_var, nir_undef(b, 4, 32), 0xfu);
1038 for (unsigned i = 0; i < num_repacked_variables; ++i)
1039 nir_store_var(b, repacked_variables[i], nir_undef(b, 1, 32), 0x1u);
1040 }
1041 nir_pop_if(b, if_packed_es_thread);
1042
1043 nir_if *if_gs_accepted = nir_push_if(b, nir_load_var(b, gs_accepted_var));
1044 {
1045 nir_def *exporter_vtx_indices[3] = {0};
1046
1047 /* Load the index of the ES threads that will export the current GS thread's vertices */
1048 for (unsigned v = 0; v < s->options->num_vertices_per_primitive; ++v) {
1049 nir_def *vtx_addr = nir_load_var(b, gs_vtxaddr_vars[v]);
1050 nir_def *exporter_vtx_idx = nir_load_shared(b, 1, 8, vtx_addr, .base = lds_es_exporter_tid);
1051 exporter_vtx_indices[v] = nir_u2u32(b, exporter_vtx_idx);
1052 nir_store_var(b, s->gs_vtx_indices_vars[v], exporter_vtx_indices[v], 0x1);
1053 }
1054
1055 nir_def *prim_exp_arg =
1056 emit_pack_ngg_prim_exp_arg(b, s->options->num_vertices_per_primitive,
1057 exporter_vtx_indices, NULL);
1058 nir_store_var(b, prim_exp_arg_var, prim_exp_arg, 0x1u);
1059 }
1060 nir_pop_if(b, if_gs_accepted);
1061
1062 nir_store_var(b, es_accepted_var, es_survived, 0x1u);
1063 }
1064
1065 static void
analyze_shader_before_culling_walk(nir_def * ssa,uint8_t flag,lower_ngg_nogs_state * s)1066 analyze_shader_before_culling_walk(nir_def *ssa,
1067 uint8_t flag,
1068 lower_ngg_nogs_state *s)
1069 {
1070 nir_instr *instr = ssa->parent_instr;
1071 uint8_t old_pass_flags = instr->pass_flags;
1072 instr->pass_flags |= flag;
1073
1074 if (instr->pass_flags == old_pass_flags)
1075 return; /* Already visited. */
1076
1077 switch (instr->type) {
1078 case nir_instr_type_intrinsic: {
1079 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1080
1081 /* VS input loads and SSBO loads are actually VRAM reads on AMD HW. */
1082 switch (intrin->intrinsic) {
1083 case nir_intrinsic_load_input: {
1084 nir_io_semantics in_io_sem = nir_intrinsic_io_semantics(intrin);
1085 uint64_t in_mask = UINT64_C(1) << (uint64_t) in_io_sem.location;
1086 if (instr->pass_flags & nggc_passflag_used_by_pos)
1087 s->inputs_needed_by_pos |= in_mask;
1088 else if (instr->pass_flags & nggc_passflag_used_by_other)
1089 s->inputs_needed_by_others |= in_mask;
1090 break;
1091 }
1092 default:
1093 break;
1094 }
1095
1096 break;
1097 }
1098 case nir_instr_type_alu: {
1099 nir_alu_instr *alu = nir_instr_as_alu(instr);
1100 unsigned num_srcs = nir_op_infos[alu->op].num_inputs;
1101
1102 for (unsigned i = 0; i < num_srcs; ++i) {
1103 analyze_shader_before_culling_walk(alu->src[i].src.ssa, flag, s);
1104 }
1105
1106 break;
1107 }
1108 case nir_instr_type_tex: {
1109 nir_tex_instr *tex = nir_instr_as_tex(instr);
1110 unsigned num_srcs = tex->num_srcs;
1111
1112 for (unsigned i = 0; i < num_srcs; ++i) {
1113 analyze_shader_before_culling_walk(tex->src[i].src.ssa, flag, s);
1114 }
1115
1116 break;
1117 }
1118 case nir_instr_type_phi: {
1119 nir_phi_instr *phi = nir_instr_as_phi(instr);
1120 nir_foreach_phi_src_safe(phi_src, phi) {
1121 analyze_shader_before_culling_walk(phi_src->src.ssa, flag, s);
1122 }
1123
1124 break;
1125 }
1126 default:
1127 break;
1128 }
1129 }
1130
1131 static void
analyze_shader_before_culling(nir_shader * shader,lower_ngg_nogs_state * s)1132 analyze_shader_before_culling(nir_shader *shader, lower_ngg_nogs_state *s)
1133 {
1134 /* LCSSA is needed to get correct results from divergence analysis. */
1135 nir_convert_to_lcssa(shader, true, true);
1136 /* We need divergence info for culling shaders. */
1137 nir_divergence_analysis(shader);
1138
1139 nir_foreach_function_impl(impl, shader) {
1140 nir_foreach_block(block, impl) {
1141 nir_foreach_instr(instr, block) {
1142 instr->pass_flags = 0;
1143
1144 if (instr->type != nir_instr_type_intrinsic)
1145 continue;
1146
1147 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1148 if (intrin->intrinsic != nir_intrinsic_store_output)
1149 continue;
1150
1151 nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
1152 nir_def *store_val = intrin->src[0].ssa;
1153 uint8_t flag = io_sem.location == VARYING_SLOT_POS ? nggc_passflag_used_by_pos : nggc_passflag_used_by_other;
1154 analyze_shader_before_culling_walk(store_val, flag, s);
1155 }
1156 }
1157 }
1158 }
1159
1160 static nir_def *
find_reusable_ssa_def(nir_instr * instr)1161 find_reusable_ssa_def(nir_instr *instr)
1162 {
1163 /* Find instructions whose SSA definitions are used by both
1164 * the top and bottom parts of the shader (before and after culling).
1165 * Only in this case, it makes sense for the bottom part
1166 * to try to reuse these from the top part.
1167 */
1168 if ((instr->pass_flags & nggc_passflag_used_by_both) != nggc_passflag_used_by_both)
1169 return NULL;
1170
1171 switch (instr->type) {
1172 case nir_instr_type_alu: {
1173 nir_alu_instr *alu = nir_instr_as_alu(instr);
1174 if (alu->def.divergent)
1175 return NULL;
1176 /* Ignore uniform floats because they regress VGPR usage too much */
1177 if (nir_op_infos[alu->op].output_type & nir_type_float)
1178 return NULL;
1179 return &alu->def;
1180 }
1181 case nir_instr_type_intrinsic: {
1182 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1183 if (!nir_intrinsic_can_reorder(intrin) ||
1184 !nir_intrinsic_infos[intrin->intrinsic].has_dest ||
1185 intrin->def.divergent)
1186 return NULL;
1187 return &intrin->def;
1188 }
1189 case nir_instr_type_phi: {
1190 nir_phi_instr *phi = nir_instr_as_phi(instr);
1191 if (phi->def.divergent)
1192 return NULL;
1193 return &phi->def;
1194 }
1195 default:
1196 return NULL;
1197 }
1198 }
1199
1200 static const struct glsl_type *
glsl_uint_type_for_ssa(nir_def * ssa)1201 glsl_uint_type_for_ssa(nir_def *ssa)
1202 {
1203 enum glsl_base_type base_type = GLSL_TYPE_UINT;
1204 switch (ssa->bit_size) {
1205 case 8: base_type = GLSL_TYPE_UINT8; break;
1206 case 16: base_type = GLSL_TYPE_UINT16; break;
1207 case 32: base_type = GLSL_TYPE_UINT; break;
1208 case 64: base_type = GLSL_TYPE_UINT64; break;
1209 default: return NULL;
1210 }
1211
1212 return ssa->num_components == 1
1213 ? glsl_scalar_type(base_type)
1214 : glsl_vector_type(base_type, ssa->num_components);
1215 }
1216
1217 /**
1218 * Save the reusable SSA definitions to variables so that the
1219 * bottom shader part can reuse them from the top part.
1220 *
1221 * 1. We create a new function temporary variable for reusables,
1222 * and insert a store+load.
1223 * 2. The shader is cloned (the top part is created), then the
1224 * control flow is reinserted (for the bottom part.)
1225 * 3. For reusables, we delete the variable stores from the
1226 * bottom part. This will make them use the variables from
1227 * the top part and DCE the redundant instructions.
1228 */
1229 static void
save_reusable_variables(nir_builder * b,lower_ngg_nogs_state * s)1230 save_reusable_variables(nir_builder *b, lower_ngg_nogs_state *s)
1231 {
1232 ASSERTED int vec_ok = u_vector_init(&s->reusable_nondeferred_variables, 4, sizeof(reusable_nondeferred_variable));
1233 assert(vec_ok);
1234
1235 /* Upper limit on reusable uniforms in order to reduce SGPR spilling. */
1236 unsigned remaining_reusable_uniforms = 48;
1237
1238 nir_block *block = nir_start_block(b->impl);
1239 while (block) {
1240 /* Process the instructions in the current block. */
1241 nir_foreach_instr_safe(instr, block) {
1242 /* Determine if we can reuse the current SSA value.
1243 * When vertex compaction is used, it is possible that the same shader invocation
1244 * processes a different vertex in the top and bottom part of the shader.
1245 * Therefore, we only reuse uniform values.
1246 */
1247 nir_def *ssa = find_reusable_ssa_def(instr);
1248 if (!ssa)
1249 continue;
1250
1251 /* Determine a suitable type for the SSA value. */
1252 const struct glsl_type *t = glsl_uint_type_for_ssa(ssa);
1253 if (!t)
1254 continue;
1255
1256 if (!ssa->divergent) {
1257 if (remaining_reusable_uniforms < ssa->num_components)
1258 continue;
1259
1260 remaining_reusable_uniforms -= ssa->num_components;
1261 }
1262
1263 reusable_nondeferred_variable *saved = (reusable_nondeferred_variable *) u_vector_add(&s->reusable_nondeferred_variables);
1264 assert(saved);
1265
1266 /* Create a new NIR variable where we store the reusable value.
1267 * Then, we reload the variable and replace the uses of the value
1268 * with the reloaded variable.
1269 */
1270 saved->var = nir_local_variable_create(b->impl, t, NULL);
1271 saved->ssa = ssa;
1272
1273 b->cursor = instr->type == nir_instr_type_phi
1274 ? nir_after_instr_and_phis(instr)
1275 : nir_after_instr(instr);
1276 nir_store_var(b, saved->var, saved->ssa, BITFIELD_MASK(ssa->num_components));
1277 nir_def *reloaded = nir_load_var(b, saved->var);
1278 nir_def_rewrite_uses_after(ssa, reloaded, reloaded->parent_instr);
1279 }
1280
1281 /* Look at the next CF node. */
1282 nir_cf_node *next_cf_node = nir_cf_node_next(&block->cf_node);
1283 if (next_cf_node) {
1284 /* It makes no sense to try to reuse things from within loops. */
1285 bool next_is_loop = next_cf_node->type == nir_cf_node_loop;
1286
1287 /* Don't reuse if we're in divergent control flow.
1288 *
1289 * Thanks to vertex repacking, the same shader invocation may process a different vertex
1290 * in the top and bottom part, and it's even possible that this different vertex was initially
1291 * processed in a different wave. So the two parts may take a different divergent code path.
1292 * Therefore, these variables in divergent control flow may stay undefined.
1293 *
1294 * Note that this problem doesn't exist if vertices are not repacked or if the
1295 * workgroup only has a single wave.
1296 */
1297 bool next_is_divergent_if =
1298 next_cf_node->type == nir_cf_node_if &&
1299 nir_cf_node_as_if(next_cf_node)->condition.ssa->divergent;
1300
1301 if (next_is_loop || next_is_divergent_if) {
1302 block = nir_cf_node_cf_tree_next(next_cf_node);
1303 continue;
1304 }
1305 }
1306
1307 /* Go to the next block. */
1308 block = nir_block_cf_tree_next(block);
1309 }
1310 }
1311
1312 /**
1313 * Reuses suitable variables from the top part of the shader,
1314 * by deleting their stores from the bottom part.
1315 */
1316 static void
apply_reusable_variables(nir_builder * b,lower_ngg_nogs_state * s)1317 apply_reusable_variables(nir_builder *b, lower_ngg_nogs_state *s)
1318 {
1319 if (!u_vector_length(&s->reusable_nondeferred_variables)) {
1320 u_vector_finish(&s->reusable_nondeferred_variables);
1321 return;
1322 }
1323
1324 nir_foreach_block_reverse_safe(block, b->impl) {
1325 nir_foreach_instr_reverse_safe(instr, block) {
1326 if (instr->type != nir_instr_type_intrinsic)
1327 continue;
1328 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1329
1330 /* When we found any of these intrinsics, it means
1331 * we reached the top part and we must stop.
1332 */
1333 if (intrin->intrinsic == nir_intrinsic_sendmsg_amd)
1334 goto done;
1335
1336 if (intrin->intrinsic != nir_intrinsic_store_deref)
1337 continue;
1338 nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
1339 if (deref->deref_type != nir_deref_type_var)
1340 continue;
1341
1342 reusable_nondeferred_variable *saved;
1343 u_vector_foreach(saved, &s->reusable_nondeferred_variables) {
1344 if (saved->var == deref->var) {
1345 nir_instr_remove(instr);
1346 }
1347 }
1348 }
1349 }
1350
1351 done:
1352 u_vector_finish(&s->reusable_nondeferred_variables);
1353 }
1354
1355 static void
cull_primitive_accepted(nir_builder * b,void * state)1356 cull_primitive_accepted(nir_builder *b, void *state)
1357 {
1358 lower_ngg_nogs_state *s = (lower_ngg_nogs_state *)state;
1359
1360 nir_store_var(b, s->gs_accepted_var, nir_imm_true(b), 0x1u);
1361
1362 /* Store the accepted state to LDS for ES threads */
1363 for (unsigned vtx = 0; vtx < s->options->num_vertices_per_primitive; ++vtx)
1364 nir_store_shared(b, nir_imm_intN_t(b, 1, 8), s->vtx_addr[vtx], .base = lds_es_vertex_accepted);
1365 }
1366
1367 static void
clipdist_culling_es_part(nir_builder * b,lower_ngg_nogs_state * s,nir_def * es_vertex_lds_addr)1368 clipdist_culling_es_part(nir_builder *b, lower_ngg_nogs_state *s,
1369 nir_def *es_vertex_lds_addr)
1370 {
1371 /* no gl_ClipDistance used but we have user defined clip plane */
1372 if (s->options->user_clip_plane_enable_mask && !s->has_clipdist) {
1373 /* use gl_ClipVertex if defined */
1374 nir_variable *clip_vertex_var =
1375 b->shader->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_CLIP_VERTEX) ?
1376 s->clip_vertex_var : s->position_value_var;
1377 nir_def *clip_vertex = nir_load_var(b, clip_vertex_var);
1378
1379 /* clip against user defined clip planes */
1380 for (unsigned i = 0; i < 8; i++) {
1381 if (!(s->options->user_clip_plane_enable_mask & BITFIELD_BIT(i)))
1382 continue;
1383
1384 nir_def *plane = nir_load_user_clip_plane(b, .ucp_id = i);
1385 nir_def *dist = nir_fdot(b, clip_vertex, plane);
1386 add_clipdist_bit(b, dist, i, s->clipdist_neg_mask_var);
1387 }
1388
1389 s->has_clipdist = true;
1390 }
1391
1392 /* store clipdist_neg_mask to LDS for culling latter in gs thread */
1393 if (s->has_clipdist) {
1394 nir_def *mask = nir_load_var(b, s->clipdist_neg_mask_var);
1395 nir_store_shared(b, nir_u2u8(b, mask), es_vertex_lds_addr,
1396 .base = lds_es_clipdist_neg_mask);
1397 }
1398 }
1399
1400 static unsigned
ngg_nogs_get_culling_pervertex_lds_size(gl_shader_stage stage,bool uses_instance_id,bool uses_primitive_id,unsigned * num_repacked_variables)1401 ngg_nogs_get_culling_pervertex_lds_size(gl_shader_stage stage,
1402 bool uses_instance_id,
1403 bool uses_primitive_id,
1404 unsigned *num_repacked_variables)
1405 {
1406 /* Culling shaders must repack some variables because
1407 * the same shader invocation may process different vertices
1408 * before and after the culling algorithm.
1409 */
1410
1411 unsigned num_repacked;
1412 if (stage == MESA_SHADER_VERTEX) {
1413 /* Vertex shaders repack:
1414 * - Vertex ID
1415 * - Instance ID (only if used)
1416 */
1417 num_repacked = uses_instance_id ? 2 : 1;
1418 } else {
1419 /* Tess eval shaders repack:
1420 * - U, V coordinates
1421 * - primitive ID (aka. patch id, only if used)
1422 * - relative patch id (not included here because doesn't need a dword)
1423 */
1424 assert(stage == MESA_SHADER_TESS_EVAL);
1425 num_repacked = uses_primitive_id ? 3 : 2;
1426 }
1427
1428 if (num_repacked_variables)
1429 *num_repacked_variables = num_repacked;
1430
1431 /* one odd dword to reduce LDS bank conflict */
1432 return (lds_es_arg_0 + num_repacked * 4u) | 4u;
1433 }
1434
1435 static void
add_deferred_attribute_culling(nir_builder * b,nir_cf_list * original_extracted_cf,lower_ngg_nogs_state * s)1436 add_deferred_attribute_culling(nir_builder *b, nir_cf_list *original_extracted_cf, lower_ngg_nogs_state *s)
1437 {
1438 bool uses_instance_id = BITSET_TEST(b->shader->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
1439 bool uses_tess_primitive_id = BITSET_TEST(b->shader->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
1440
1441 unsigned num_repacked_variables;
1442 unsigned pervertex_lds_bytes =
1443 ngg_nogs_get_culling_pervertex_lds_size(b->shader->info.stage,
1444 uses_instance_id,
1445 uses_tess_primitive_id,
1446 &num_repacked_variables);
1447
1448 nir_function_impl *impl = nir_shader_get_entrypoint(b->shader);
1449
1450 /* Create some helper variables. */
1451 nir_variable *gs_vtxaddr_vars[3] = {
1452 nir_local_variable_create(impl, glsl_uint_type(), "gs_vtx0_addr"),
1453 nir_local_variable_create(impl, glsl_uint_type(), "gs_vtx1_addr"),
1454 nir_local_variable_create(impl, glsl_uint_type(), "gs_vtx2_addr"),
1455 };
1456
1457 nir_variable *repacked_variables[3] = {
1458 nir_local_variable_create(impl, glsl_uint_type(), "repacked_var_0"),
1459 nir_local_variable_create(impl, glsl_uint_type(), "repacked_var_1"),
1460 nir_local_variable_create(impl, glsl_uint_type(), "repacked_var_2"),
1461 };
1462
1463 /* Relative patch ID is a special case because it doesn't need an extra dword, repack separately. */
1464 s->repacked_rel_patch_id = nir_local_variable_create(impl, glsl_uint_type(), "repacked_rel_patch_id");
1465
1466 if (s->options->clip_cull_dist_mask ||
1467 s->options->user_clip_plane_enable_mask) {
1468 s->clip_vertex_var =
1469 nir_local_variable_create(impl, glsl_vec4_type(), "clip_vertex");
1470 s->clipdist_neg_mask_var =
1471 nir_local_variable_create(impl, glsl_uint_type(), "clipdist_neg_mask");
1472
1473 /* init mask to 0 */
1474 nir_store_var(b, s->clipdist_neg_mask_var, nir_imm_int(b, 0), 1);
1475 }
1476
1477 /* Top part of the culling shader (aka. position shader part)
1478 *
1479 * We clone the full ES shader and emit it here, but we only really care
1480 * about its position output, so we delete every other output from this part.
1481 * The position output is stored into a temporary variable, and reloaded later.
1482 */
1483
1484 nir_def *es_thread = has_input_vertex(b);
1485 nir_if *if_es_thread = nir_push_if(b, es_thread);
1486 {
1487 /* Initialize the position output variable to zeroes, in case not all VS/TES invocations store the output.
1488 * The spec doesn't require it, but we use (0, 0, 0, 1) because some games rely on that.
1489 */
1490 nir_store_var(b, s->position_value_var, nir_imm_vec4(b, 0.0f, 0.0f, 0.0f, 1.0f), 0xfu);
1491
1492 /* Now reinsert a clone of the shader code */
1493 struct hash_table *remap_table = _mesa_pointer_hash_table_create(NULL);
1494 nir_cf_list_clone_and_reinsert(original_extracted_cf, &if_es_thread->cf_node, b->cursor, remap_table);
1495 _mesa_hash_table_destroy(remap_table, NULL);
1496 b->cursor = nir_after_cf_list(&if_es_thread->then_list);
1497
1498 /* Remember the current thread's shader arguments */
1499 if (b->shader->info.stage == MESA_SHADER_VERTEX) {
1500 nir_store_var(b, repacked_variables[0], nir_load_vertex_id_zero_base(b), 0x1u);
1501 if (uses_instance_id)
1502 nir_store_var(b, repacked_variables[1], nir_load_instance_id(b), 0x1u);
1503 } else if (b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
1504 nir_store_var(b, s->repacked_rel_patch_id, nir_load_tess_rel_patch_id_amd(b), 0x1u);
1505 nir_def *tess_coord = nir_load_tess_coord(b);
1506 nir_store_var(b, repacked_variables[0], nir_channel(b, tess_coord, 0), 0x1u);
1507 nir_store_var(b, repacked_variables[1], nir_channel(b, tess_coord, 1), 0x1u);
1508 if (uses_tess_primitive_id)
1509 nir_store_var(b, repacked_variables[2], nir_load_primitive_id(b), 0x1u);
1510 } else {
1511 unreachable("Should be VS or TES.");
1512 }
1513 }
1514 nir_pop_if(b, if_es_thread);
1515
1516 nir_store_var(b, s->es_accepted_var, es_thread, 0x1u);
1517 nir_def *gs_thread = has_input_primitive(b);
1518 nir_store_var(b, s->gs_accepted_var, gs_thread, 0x1u);
1519
1520 /* Remove all non-position outputs, and put the position output into the variable. */
1521 nir_metadata_preserve(impl, nir_metadata_none);
1522 remove_culling_shader_outputs(b->shader, s);
1523 b->cursor = nir_after_impl(impl);
1524
1525 nir_def *lds_scratch_base = nir_load_lds_ngg_scratch_base_amd(b);
1526
1527 /* Run culling algorithms if culling is enabled.
1528 *
1529 * NGG culling can be enabled or disabled in runtime.
1530 * This is determined by a SGPR shader argument which is accessed
1531 * by the following NIR intrinsic.
1532 */
1533
1534 nir_if *if_cull_en = nir_push_if(b, nir_load_cull_any_enabled_amd(b));
1535 {
1536 nir_def *invocation_index = nir_load_local_invocation_index(b);
1537 nir_def *es_vertex_lds_addr = pervertex_lds_addr(b, invocation_index, pervertex_lds_bytes);
1538
1539 /* ES invocations store their vertex data to LDS for GS threads to read. */
1540 if_es_thread = nir_push_if(b, es_thread);
1541 if_es_thread->control = nir_selection_control_divergent_always_taken;
1542 {
1543 /* Store position components that are relevant to culling in LDS */
1544 nir_def *pre_cull_pos = nir_load_var(b, s->position_value_var);
1545 nir_def *pre_cull_w = nir_channel(b, pre_cull_pos, 3);
1546 nir_store_shared(b, pre_cull_w, es_vertex_lds_addr, .base = lds_es_pos_w);
1547 nir_def *pre_cull_x_div_w = nir_fdiv(b, nir_channel(b, pre_cull_pos, 0), pre_cull_w);
1548 nir_def *pre_cull_y_div_w = nir_fdiv(b, nir_channel(b, pre_cull_pos, 1), pre_cull_w);
1549 nir_store_shared(b, nir_vec2(b, pre_cull_x_div_w, pre_cull_y_div_w), es_vertex_lds_addr, .base = lds_es_pos_x);
1550
1551 /* Clear out the ES accepted flag in LDS */
1552 nir_store_shared(b, nir_imm_zero(b, 1, 8), es_vertex_lds_addr, .align_mul = 4, .base = lds_es_vertex_accepted);
1553
1554 /* For clipdist culling */
1555 clipdist_culling_es_part(b, s, es_vertex_lds_addr);
1556 }
1557 nir_pop_if(b, if_es_thread);
1558
1559 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
1560 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
1561
1562 nir_store_var(b, s->gs_accepted_var, nir_imm_false(b), 0x1u);
1563 nir_store_var(b, s->prim_exp_arg_var, nir_imm_int(b, 1u << 31), 0x1u);
1564
1565 /* GS invocations load the vertex data and perform the culling. */
1566 nir_if *if_gs_thread = nir_push_if(b, gs_thread);
1567 {
1568 /* Load vertex indices from input VGPRs */
1569 nir_def *vtx_idx[3] = {0};
1570 for (unsigned vertex = 0; vertex < s->options->num_vertices_per_primitive;
1571 ++vertex)
1572 vtx_idx[vertex] = nir_load_var(b, s->gs_vtx_indices_vars[vertex]);
1573
1574 nir_def *pos[3][4] = {0};
1575
1576 /* Load W positions of vertices first because the culling code will use these first */
1577 for (unsigned vtx = 0; vtx < s->options->num_vertices_per_primitive; ++vtx) {
1578 s->vtx_addr[vtx] = pervertex_lds_addr(b, vtx_idx[vtx], pervertex_lds_bytes);
1579 pos[vtx][3] = nir_load_shared(b, 1, 32, s->vtx_addr[vtx], .base = lds_es_pos_w);
1580 nir_store_var(b, gs_vtxaddr_vars[vtx], s->vtx_addr[vtx], 0x1u);
1581 }
1582
1583 /* Load the X/W, Y/W positions of vertices */
1584 for (unsigned vtx = 0; vtx < s->options->num_vertices_per_primitive; ++vtx) {
1585 nir_def *xy = nir_load_shared(b, 2, 32, s->vtx_addr[vtx], .base = lds_es_pos_x);
1586 pos[vtx][0] = nir_channel(b, xy, 0);
1587 pos[vtx][1] = nir_channel(b, xy, 1);
1588 }
1589
1590 nir_def *accepted_by_clipdist;
1591 if (s->has_clipdist) {
1592 nir_def *clipdist_neg_mask = nir_imm_intN_t(b, 0xff, 8);
1593 for (unsigned vtx = 0; vtx < s->options->num_vertices_per_primitive; ++vtx) {
1594 nir_def *mask =
1595 nir_load_shared(b, 1, 8, s->vtx_addr[vtx],
1596 .base = lds_es_clipdist_neg_mask);
1597 clipdist_neg_mask = nir_iand(b, clipdist_neg_mask, mask);
1598 }
1599 /* primitive is culled if any plane's clipdist of all vertices are negative */
1600 accepted_by_clipdist = nir_ieq_imm(b, clipdist_neg_mask, 0);
1601 } else {
1602 accepted_by_clipdist = nir_imm_true(b);
1603 }
1604
1605 /* See if the current primitive is accepted */
1606 ac_nir_cull_primitive(b, accepted_by_clipdist, pos,
1607 s->options->num_vertices_per_primitive,
1608 cull_primitive_accepted, s);
1609 }
1610 nir_pop_if(b, if_gs_thread);
1611
1612 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
1613 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
1614
1615 nir_store_var(b, s->es_accepted_var, nir_imm_false(b), 0x1u);
1616
1617 /* ES invocations load their accepted flag from LDS. */
1618 if_es_thread = nir_push_if(b, es_thread);
1619 if_es_thread->control = nir_selection_control_divergent_always_taken;
1620 {
1621 nir_def *accepted = nir_load_shared(b, 1, 8u, es_vertex_lds_addr, .base = lds_es_vertex_accepted, .align_mul = 4u);
1622 nir_def *accepted_bool = nir_ine_imm(b, nir_u2u32(b, accepted), 0);
1623 nir_store_var(b, s->es_accepted_var, accepted_bool, 0x1u);
1624 }
1625 nir_pop_if(b, if_es_thread);
1626
1627 nir_def *es_accepted = nir_load_var(b, s->es_accepted_var);
1628
1629 /* Repack the vertices that survived the culling. */
1630 wg_repack_result rep = repack_invocations_in_workgroup(b, es_accepted, lds_scratch_base,
1631 s->max_num_waves,
1632 s->options->wave_size);
1633 nir_def *num_live_vertices_in_workgroup = rep.num_repacked_invocations;
1634 nir_def *es_exporter_tid = rep.repacked_invocation_index;
1635
1636 /* If all vertices are culled, set primitive count to 0 as well. */
1637 nir_def *num_exported_prims = nir_load_workgroup_num_input_primitives_amd(b);
1638 nir_def *fully_culled = nir_ieq_imm(b, num_live_vertices_in_workgroup, 0u);
1639 num_exported_prims = nir_bcsel(b, fully_culled, nir_imm_int(b, 0u), num_exported_prims);
1640 nir_store_var(b, s->gs_exported_var, nir_iand(b, nir_inot(b, fully_culled), has_input_primitive(b)), 0x1u);
1641
1642 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, nir_load_subgroup_id(b), 0));
1643 {
1644 /* Tell the final vertex and primitive count to the HW. */
1645 if (s->options->gfx_level == GFX10) {
1646 alloc_vertices_and_primitives_gfx10_workaround(
1647 b, num_live_vertices_in_workgroup, num_exported_prims);
1648 } else {
1649 alloc_vertices_and_primitives(
1650 b, num_live_vertices_in_workgroup, num_exported_prims);
1651 }
1652 }
1653 nir_pop_if(b, if_wave_0);
1654
1655 /* Vertex compaction. */
1656 compact_vertices_after_culling(b, s,
1657 repacked_variables, gs_vtxaddr_vars,
1658 invocation_index, es_vertex_lds_addr,
1659 es_exporter_tid, num_live_vertices_in_workgroup,
1660 pervertex_lds_bytes, num_repacked_variables);
1661 }
1662 nir_push_else(b, if_cull_en);
1663 {
1664 /* When culling is disabled, we do the same as we would without culling. */
1665 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, nir_load_subgroup_id(b), 0));
1666 {
1667 nir_def *vtx_cnt = nir_load_workgroup_num_input_vertices_amd(b);
1668 nir_def *prim_cnt = nir_load_workgroup_num_input_primitives_amd(b);
1669 alloc_vertices_and_primitives(b, vtx_cnt, prim_cnt);
1670 }
1671 nir_pop_if(b, if_wave_0);
1672 nir_store_var(b, s->prim_exp_arg_var, emit_ngg_nogs_prim_exp_arg(b, s), 0x1u);
1673 }
1674 nir_pop_if(b, if_cull_en);
1675
1676 /* Update shader arguments.
1677 *
1678 * The registers which hold information about the subgroup's
1679 * vertices and primitives are updated here, so the rest of the shader
1680 * doesn't need to worry about the culling.
1681 *
1682 * These "overwrite" intrinsics must be at top level control flow,
1683 * otherwise they can mess up the backend (eg. ACO's SSA).
1684 *
1685 * TODO:
1686 * A cleaner solution would be to simply replace all usages of these args
1687 * with the load of the variables.
1688 * However, this wouldn't work right now because the backend uses the arguments
1689 * for purposes not expressed in NIR, eg. VS input loads, etc.
1690 * This can change if VS input loads and other stuff are lowered to eg. load_buffer_amd.
1691 */
1692
1693 if (b->shader->info.stage == MESA_SHADER_VERTEX)
1694 s->overwrite_args =
1695 nir_overwrite_vs_arguments_amd(b,
1696 nir_load_var(b, repacked_variables[0]), nir_load_var(b, repacked_variables[1]));
1697 else if (b->shader->info.stage == MESA_SHADER_TESS_EVAL)
1698 s->overwrite_args =
1699 nir_overwrite_tes_arguments_amd(b,
1700 nir_load_var(b, repacked_variables[0]), nir_load_var(b, repacked_variables[1]),
1701 nir_load_var(b, repacked_variables[2]), nir_load_var(b, s->repacked_rel_patch_id));
1702 else
1703 unreachable("Should be VS or TES.");
1704 }
1705
1706 static void
ngg_nogs_store_edgeflag_to_lds(nir_builder * b,lower_ngg_nogs_state * s)1707 ngg_nogs_store_edgeflag_to_lds(nir_builder *b, lower_ngg_nogs_state *s)
1708 {
1709 if (!s->outputs[VARYING_SLOT_EDGE][0])
1710 return;
1711
1712 /* clamp user edge flag to 1 for latter bit operations */
1713 nir_def *edgeflag = s->outputs[VARYING_SLOT_EDGE][0];
1714 edgeflag = nir_umin(b, edgeflag, nir_imm_int(b, 1));
1715
1716 /* user edge flag is stored at the beginning of a vertex if streamout is not enabled */
1717 unsigned offset = 0;
1718 if (s->streamout_enabled) {
1719 unsigned packed_location =
1720 util_bitcount64(b->shader->info.outputs_written & BITFIELD64_MASK(VARYING_SLOT_EDGE));
1721 offset = packed_location * 16;
1722 }
1723
1724 nir_def *tid = nir_load_local_invocation_index(b);
1725 nir_def *addr = pervertex_lds_addr(b, tid, s->pervertex_lds_bytes);
1726
1727 nir_store_shared(b, edgeflag, addr, .base = offset);
1728 }
1729
1730 static void
ngg_nogs_store_xfb_outputs_to_lds(nir_builder * b,lower_ngg_nogs_state * s)1731 ngg_nogs_store_xfb_outputs_to_lds(nir_builder *b, lower_ngg_nogs_state *s)
1732 {
1733 nir_xfb_info *info = b->shader->xfb_info;
1734
1735 uint64_t xfb_outputs = 0;
1736 unsigned xfb_outputs_16bit = 0;
1737 uint8_t xfb_mask[VARYING_SLOT_MAX] = {0};
1738 uint8_t xfb_mask_16bit_lo[16] = {0};
1739 uint8_t xfb_mask_16bit_hi[16] = {0};
1740
1741 /* Get XFB output mask for each slot. */
1742 for (int i = 0; i < info->output_count; i++) {
1743 nir_xfb_output_info *out = info->outputs + i;
1744
1745 if (out->location < VARYING_SLOT_VAR0_16BIT) {
1746 xfb_outputs |= BITFIELD64_BIT(out->location);
1747 xfb_mask[out->location] |= out->component_mask;
1748 } else {
1749 unsigned index = out->location - VARYING_SLOT_VAR0_16BIT;
1750 xfb_outputs_16bit |= BITFIELD_BIT(index);
1751
1752 if (out->high_16bits)
1753 xfb_mask_16bit_hi[index] |= out->component_mask;
1754 else
1755 xfb_mask_16bit_lo[index] |= out->component_mask;
1756 }
1757 }
1758
1759 nir_def *tid = nir_load_local_invocation_index(b);
1760 nir_def *addr = pervertex_lds_addr(b, tid, s->pervertex_lds_bytes);
1761
1762 u_foreach_bit64(slot, xfb_outputs) {
1763 unsigned packed_location =
1764 util_bitcount64(b->shader->info.outputs_written & BITFIELD64_MASK(slot));
1765
1766 unsigned mask = xfb_mask[slot];
1767
1768 /* Clear unused components. */
1769 for (unsigned i = 0; i < 4; i++) {
1770 if (!s->outputs[slot][i])
1771 mask &= ~BITFIELD_BIT(i);
1772 }
1773
1774 while (mask) {
1775 int start, count;
1776 u_bit_scan_consecutive_range(&mask, &start, &count);
1777 /* Outputs here are sure to be 32bit.
1778 *
1779 * 64bit outputs have been lowered to two 32bit. As 16bit outputs:
1780 * Vulkan does not allow streamout outputs less than 32bit.
1781 * OpenGL puts 16bit outputs in VARYING_SLOT_VAR0_16BIT.
1782 */
1783 nir_def *store_val = nir_vec(b, &s->outputs[slot][start], (unsigned)count);
1784 nir_store_shared(b, store_val, addr, .base = packed_location * 16 + start * 4);
1785 }
1786 }
1787
1788 unsigned num_32bit_outputs = util_bitcount64(b->shader->info.outputs_written);
1789 u_foreach_bit64(slot, xfb_outputs_16bit) {
1790 unsigned packed_location = num_32bit_outputs +
1791 util_bitcount(b->shader->info.outputs_written_16bit & BITFIELD_MASK(slot));
1792
1793 unsigned mask_lo = xfb_mask_16bit_lo[slot];
1794 unsigned mask_hi = xfb_mask_16bit_hi[slot];
1795
1796 /* Clear unused components. */
1797 for (unsigned i = 0; i < 4; i++) {
1798 if (!s->outputs_16bit_lo[slot][i])
1799 mask_lo &= ~BITFIELD_BIT(i);
1800 if (!s->outputs_16bit_hi[slot][i])
1801 mask_hi &= ~BITFIELD_BIT(i);
1802 }
1803
1804 nir_def **outputs_lo = s->outputs_16bit_lo[slot];
1805 nir_def **outputs_hi = s->outputs_16bit_hi[slot];
1806 nir_def *undef = nir_undef(b, 1, 16);
1807
1808 unsigned mask = mask_lo | mask_hi;
1809 while (mask) {
1810 int start, count;
1811 u_bit_scan_consecutive_range(&mask, &start, &count);
1812
1813 nir_def *values[4] = {0};
1814 for (int c = start; c < start + count; ++c) {
1815 nir_def *lo = mask_lo & BITFIELD_BIT(c) ? outputs_lo[c] : undef;
1816 nir_def *hi = mask_hi & BITFIELD_BIT(c) ? outputs_hi[c] : undef;
1817
1818 /* extend 8/16 bit to 32 bit, 64 bit has been lowered */
1819 values[c - start] = nir_pack_32_2x16_split(b, lo, hi);
1820 }
1821
1822 nir_def *store_val = nir_vec(b, values, (unsigned)count);
1823 nir_store_shared(b, store_val, addr, .base = packed_location * 16 + start * 4);
1824 }
1825 }
1826 }
1827
1828 static void
ngg_build_streamout_buffer_info(nir_builder * b,nir_xfb_info * info,bool has_xfb_prim_query,nir_def * scratch_base,nir_def * tid_in_tg,nir_def * gen_prim[4],nir_def * prim_stride_ret[4],nir_def * so_buffer_ret[4],nir_def * buffer_offsets_ret[4],nir_def * emit_prim_ret[4])1829 ngg_build_streamout_buffer_info(nir_builder *b,
1830 nir_xfb_info *info,
1831 bool has_xfb_prim_query,
1832 nir_def *scratch_base,
1833 nir_def *tid_in_tg,
1834 nir_def *gen_prim[4],
1835 nir_def *prim_stride_ret[4],
1836 nir_def *so_buffer_ret[4],
1837 nir_def *buffer_offsets_ret[4],
1838 nir_def *emit_prim_ret[4])
1839 {
1840 nir_def *undef = nir_undef(b, 1, 32);
1841
1842 /* For radeonsi which pass this value by arg when VS. Streamout need accurate
1843 * num-vert-per-prim for writing correct amount of data to buffer.
1844 */
1845 nir_def *num_vert_per_prim = nir_load_num_vertices_per_primitive_amd(b);
1846 for (unsigned buffer = 0; buffer < 4; buffer++) {
1847 if (!(info->buffers_written & BITFIELD_BIT(buffer)))
1848 continue;
1849
1850 assert(info->buffers[buffer].stride);
1851
1852 prim_stride_ret[buffer] =
1853 nir_imul_imm(b, num_vert_per_prim, info->buffers[buffer].stride);
1854 so_buffer_ret[buffer] = nir_load_streamout_buffer_amd(b, .base = buffer);
1855 }
1856
1857 nir_if *if_invocation_0 = nir_push_if(b, nir_ieq_imm(b, tid_in_tg, 0));
1858 {
1859 nir_def *workgroup_buffer_sizes[4];
1860 for (unsigned buffer = 0; buffer < 4; buffer++) {
1861 if (info->buffers_written & BITFIELD_BIT(buffer)) {
1862 nir_def *buffer_size = nir_channel(b, so_buffer_ret[buffer], 2);
1863 /* In radeonsi, we may not know if a feedback buffer has been bound when
1864 * compile time, so have to check buffer size in runtime to disable the
1865 * GDS update for unbind buffer to prevent the case that previous draw
1866 * compiled with streamout but does not bind feedback buffer miss update
1867 * GDS which will affect current draw's streamout.
1868 */
1869 nir_def *buffer_valid = nir_ine_imm(b, buffer_size, 0);
1870 nir_def *inc_buffer_size =
1871 nir_imul(b, gen_prim[info->buffer_to_stream[buffer]], prim_stride_ret[buffer]);
1872 workgroup_buffer_sizes[buffer] =
1873 nir_bcsel(b, buffer_valid, inc_buffer_size, nir_imm_int(b, 0));
1874 } else
1875 workgroup_buffer_sizes[buffer] = undef;
1876 }
1877
1878 nir_def *ordered_id = nir_load_ordered_id_amd(b);
1879 /* Get current global offset of buffer and increase by amount of
1880 * workgroup buffer size. This is an ordered operation sorted by
1881 * ordered_id; Each buffer info is in a channel of a vec4.
1882 */
1883 nir_def *buffer_offsets =
1884 nir_ordered_xfb_counter_add_amd(b, ordered_id, nir_vec(b, workgroup_buffer_sizes, 4),
1885 /* mask of buffers to update */
1886 .write_mask = info->buffers_written);
1887
1888 nir_def *emit_prim[4];
1889 memcpy(emit_prim, gen_prim, 4 * sizeof(nir_def *));
1890
1891 nir_def *any_overflow = nir_imm_false(b);
1892 nir_def *overflow_amount[4] = {undef, undef, undef, undef};
1893
1894 for (unsigned buffer = 0; buffer < 4; buffer++) {
1895 if (!(info->buffers_written & BITFIELD_BIT(buffer)))
1896 continue;
1897
1898 nir_def *buffer_size = nir_channel(b, so_buffer_ret[buffer], 2);
1899
1900 /* Only consider overflow for valid feedback buffers because
1901 * otherwise the ordered operation above (GDS atomic return) might
1902 * return non-zero offsets for invalid buffers.
1903 */
1904 nir_def *buffer_valid = nir_ine_imm(b, buffer_size, 0);
1905 nir_def *buffer_offset = nir_channel(b, buffer_offsets, buffer);
1906 buffer_offset = nir_bcsel(b, buffer_valid, buffer_offset, nir_imm_int(b, 0));
1907
1908 nir_def *remain_size = nir_isub(b, buffer_size, buffer_offset);
1909 nir_def *remain_prim = nir_idiv(b, remain_size, prim_stride_ret[buffer]);
1910 nir_def *overflow = nir_ilt(b, buffer_size, buffer_offset);
1911
1912 any_overflow = nir_ior(b, any_overflow, overflow);
1913 overflow_amount[buffer] = nir_imax(b, nir_imm_int(b, 0),
1914 nir_isub(b, buffer_offset, buffer_size));
1915
1916 unsigned stream = info->buffer_to_stream[buffer];
1917 /* when previous workgroup overflow, we can't emit any primitive */
1918 emit_prim[stream] = nir_bcsel(
1919 b, overflow, nir_imm_int(b, 0),
1920 /* we can emit part primitives, limited by smallest buffer */
1921 nir_imin(b, emit_prim[stream], remain_prim));
1922
1923 /* Save to LDS for being accessed by other waves in this workgroup. */
1924 nir_store_shared(b, buffer_offset, scratch_base, .base = buffer * 4);
1925 }
1926
1927 /* We have to fix up the streamout offsets if we overflowed because they determine
1928 * the vertex count for DrawTransformFeedback.
1929 */
1930 nir_if *if_any_overflow = nir_push_if(b, any_overflow);
1931 {
1932 nir_xfb_counter_sub_amd(b, nir_vec(b, overflow_amount, 4),
1933 /* mask of buffers to update */
1934 .write_mask = info->buffers_written);
1935 }
1936 nir_pop_if(b, if_any_overflow);
1937
1938 /* Save to LDS for being accessed by other waves in this workgroup. */
1939 for (unsigned stream = 0; stream < 4; stream++) {
1940 if (!(info->streams_written & BITFIELD_BIT(stream)))
1941 continue;
1942
1943 nir_store_shared(b, emit_prim[stream], scratch_base, .base = 16 + stream * 4);
1944 }
1945
1946 /* Update shader query. */
1947 if (has_xfb_prim_query) {
1948 nir_if *if_shader_query = nir_push_if(b, nir_load_prim_xfb_query_enabled_amd(b));
1949 {
1950 for (unsigned stream = 0; stream < 4; stream++) {
1951 if (info->streams_written & BITFIELD_BIT(stream))
1952 nir_atomic_add_xfb_prim_count_amd(b, emit_prim[stream], .stream_id = stream);
1953 }
1954 }
1955 nir_pop_if(b, if_shader_query);
1956 }
1957 }
1958 nir_pop_if(b, if_invocation_0);
1959
1960 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
1961 .memory_scope = SCOPE_WORKGROUP,
1962 .memory_semantics = NIR_MEMORY_ACQ_REL,
1963 .memory_modes = nir_var_mem_shared);
1964
1965 /* Fetch the per-buffer offsets in all waves. */
1966 for (unsigned buffer = 0; buffer < 4; buffer++) {
1967 if (!(info->buffers_written & BITFIELD_BIT(buffer)))
1968 continue;
1969
1970 buffer_offsets_ret[buffer] =
1971 nir_load_shared(b, 1, 32, scratch_base, .base = buffer * 4);
1972 }
1973
1974 /* Fetch the per-stream emit prim in all waves. */
1975 for (unsigned stream = 0; stream < 4; stream++) {
1976 if (!(info->streams_written & BITFIELD_BIT(stream)))
1977 continue;
1978
1979 emit_prim_ret[stream] =
1980 nir_load_shared(b, 1, 32, scratch_base, .base = 16 + stream * 4);
1981 }
1982 }
1983
1984 static void
ngg_build_streamout_vertex(nir_builder * b,nir_xfb_info * info,unsigned stream,nir_def * so_buffer[4],nir_def * buffer_offsets[4],nir_def * vtx_buffer_idx,nir_def * vtx_lds_addr,shader_output_types * output_types)1985 ngg_build_streamout_vertex(nir_builder *b, nir_xfb_info *info,
1986 unsigned stream, nir_def *so_buffer[4],
1987 nir_def *buffer_offsets[4],
1988 nir_def *vtx_buffer_idx, nir_def *vtx_lds_addr,
1989 shader_output_types *output_types)
1990 {
1991 nir_def *vtx_buffer_offsets[4];
1992 for (unsigned buffer = 0; buffer < 4; buffer++) {
1993 if (!(info->buffers_written & BITFIELD_BIT(buffer)))
1994 continue;
1995
1996 nir_def *offset = nir_imul_imm(b, vtx_buffer_idx, info->buffers[buffer].stride);
1997 vtx_buffer_offsets[buffer] = nir_iadd(b, buffer_offsets[buffer], offset);
1998 }
1999
2000 for (unsigned i = 0; i < info->output_count; i++) {
2001 nir_xfb_output_info *out = info->outputs + i;
2002 if (!out->component_mask || info->buffer_to_stream[out->buffer] != stream)
2003 continue;
2004
2005 unsigned base;
2006 if (out->location >= VARYING_SLOT_VAR0_16BIT) {
2007 base =
2008 util_bitcount64(b->shader->info.outputs_written) +
2009 util_bitcount(b->shader->info.outputs_written_16bit &
2010 BITFIELD_MASK(out->location - VARYING_SLOT_VAR0_16BIT));
2011 } else {
2012 base =
2013 util_bitcount64(b->shader->info.outputs_written &
2014 BITFIELD64_MASK(out->location));
2015 }
2016
2017 unsigned offset = (base * 4 + out->component_offset) * 4;
2018 unsigned count = util_bitcount(out->component_mask);
2019
2020 assert(u_bit_consecutive(out->component_offset, count) == out->component_mask);
2021
2022 nir_def *out_data =
2023 nir_load_shared(b, count, 32, vtx_lds_addr, .base = offset);
2024
2025 /* Up-scaling 16bit outputs to 32bit.
2026 *
2027 * OpenGL ES will put 16bit medium precision varyings to VARYING_SLOT_VAR0_16BIT.
2028 * We need to up-scaling them to 32bit when streamout to buffer.
2029 *
2030 * Vulkan does not allow 8/16bit varyings to be streamout.
2031 */
2032 if (out->location >= VARYING_SLOT_VAR0_16BIT) {
2033 unsigned index = out->location - VARYING_SLOT_VAR0_16BIT;
2034 nir_def *values[4];
2035
2036 for (int j = 0; j < count; j++) {
2037 unsigned c = out->component_offset + j;
2038 nir_def *v = nir_channel(b, out_data, j);
2039 nir_alu_type t;
2040
2041 if (out->high_16bits) {
2042 v = nir_unpack_32_2x16_split_y(b, v);
2043 t = output_types->types_16bit_hi[index][c];
2044 } else {
2045 v = nir_unpack_32_2x16_split_x(b, v);
2046 t = output_types->types_16bit_lo[index][c];
2047 }
2048
2049 t = nir_alu_type_get_base_type(t);
2050 values[j] = nir_convert_to_bit_size(b, v, t, 32);
2051 }
2052
2053 out_data = nir_vec(b, values, count);
2054 }
2055
2056 nir_def *zero = nir_imm_int(b, 0);
2057 nir_store_buffer_amd(b, out_data, so_buffer[out->buffer],
2058 vtx_buffer_offsets[out->buffer],
2059 zero, zero,
2060 .base = out->offset,
2061 .memory_modes = nir_var_mem_ssbo,
2062 .access = ACCESS_NON_TEMPORAL);
2063 }
2064 }
2065
2066 static void
ngg_nogs_build_streamout(nir_builder * b,lower_ngg_nogs_state * s)2067 ngg_nogs_build_streamout(nir_builder *b, lower_ngg_nogs_state *s)
2068 {
2069 nir_xfb_info *info = b->shader->xfb_info;
2070
2071 nir_def *lds_scratch_base = nir_load_lds_ngg_scratch_base_amd(b);
2072
2073 /* Get global buffer offset where this workgroup will stream out data to. */
2074 nir_def *generated_prim = nir_load_workgroup_num_input_primitives_amd(b);
2075 nir_def *gen_prim_per_stream[4] = {generated_prim, 0, 0, 0};
2076 nir_def *emit_prim_per_stream[4] = {0};
2077 nir_def *buffer_offsets[4] = {0};
2078 nir_def *so_buffer[4] = {0};
2079 nir_def *prim_stride[4] = {0};
2080 nir_def *tid_in_tg = nir_load_local_invocation_index(b);
2081 ngg_build_streamout_buffer_info(b, info, s->options->has_xfb_prim_query,
2082 lds_scratch_base, tid_in_tg,
2083 gen_prim_per_stream, prim_stride,
2084 so_buffer, buffer_offsets,
2085 emit_prim_per_stream);
2086
2087 /* Write out primitive data */
2088 nir_if *if_emit = nir_push_if(b, nir_ilt(b, tid_in_tg, emit_prim_per_stream[0]));
2089 {
2090 unsigned vtx_lds_stride = (b->shader->num_outputs * 4 + 1) * 4;
2091 nir_def *num_vert_per_prim = nir_load_num_vertices_per_primitive_amd(b);
2092 nir_def *vtx_buffer_idx = nir_imul(b, tid_in_tg, num_vert_per_prim);
2093
2094 for (unsigned i = 0; i < s->options->num_vertices_per_primitive; i++) {
2095 nir_if *if_valid_vertex =
2096 nir_push_if(b, nir_igt_imm(b, num_vert_per_prim, i));
2097 {
2098 nir_def *vtx_lds_idx = nir_load_var(b, s->gs_vtx_indices_vars[i]);
2099 nir_def *vtx_lds_addr = pervertex_lds_addr(b, vtx_lds_idx, vtx_lds_stride);
2100 ngg_build_streamout_vertex(b, info, 0, so_buffer, buffer_offsets,
2101 nir_iadd_imm(b, vtx_buffer_idx, i),
2102 vtx_lds_addr, &s->output_types);
2103 }
2104 nir_pop_if(b, if_valid_vertex);
2105 }
2106 }
2107 nir_pop_if(b, if_emit);
2108
2109 /* Wait streamout memory ops done before export primitive, otherwise it
2110 * may not finish when shader ends.
2111 *
2112 * If a shader has no param exports, rasterization can start before
2113 * the shader finishes and thus memory stores might not finish before
2114 * the pixel shader starts.
2115 *
2116 * TODO: we only need this when no param exports.
2117 *
2118 * TODO: not sure if we need this barrier when late prim export, as I
2119 * can't observe test fail without this barrier.
2120 */
2121 nir_scoped_memory_barrier(b, SCOPE_DEVICE, NIR_MEMORY_RELEASE, nir_var_mem_ssbo);
2122 }
2123
2124 static unsigned
ngg_nogs_get_pervertex_lds_size(gl_shader_stage stage,unsigned shader_num_outputs,bool streamout_enabled,bool export_prim_id,bool has_user_edgeflags)2125 ngg_nogs_get_pervertex_lds_size(gl_shader_stage stage,
2126 unsigned shader_num_outputs,
2127 bool streamout_enabled,
2128 bool export_prim_id,
2129 bool has_user_edgeflags)
2130 {
2131 unsigned pervertex_lds_bytes = 0;
2132
2133 if (streamout_enabled) {
2134 /* The extra dword is used to avoid LDS bank conflicts and store the primitive id.
2135 * TODO: only alloc space for outputs that really need streamout.
2136 */
2137 pervertex_lds_bytes = (shader_num_outputs * 4 + 1) * 4;
2138 }
2139
2140 bool need_prim_id_store_shared = export_prim_id && stage == MESA_SHADER_VERTEX;
2141 if (need_prim_id_store_shared || has_user_edgeflags) {
2142 unsigned size = 0;
2143 if (need_prim_id_store_shared)
2144 size += 4;
2145 if (has_user_edgeflags)
2146 size += 4;
2147
2148 /* pad to odd dwords to avoid LDS bank conflict */
2149 size |= 4;
2150
2151 pervertex_lds_bytes = MAX2(pervertex_lds_bytes, size);
2152 }
2153
2154 return pervertex_lds_bytes;
2155 }
2156
2157 static void
ngg_nogs_gather_outputs(nir_builder * b,struct exec_list * cf_list,lower_ngg_nogs_state * s)2158 ngg_nogs_gather_outputs(nir_builder *b, struct exec_list *cf_list, lower_ngg_nogs_state *s)
2159 {
2160 /* Assume:
2161 * - the shader used nir_lower_io_to_temporaries
2162 * - 64-bit outputs are lowered
2163 * - no indirect indexing is present
2164 */
2165 struct nir_cf_node *first_node =
2166 exec_node_data(nir_cf_node, exec_list_get_head(cf_list), node);
2167
2168 for (nir_block *block = nir_cf_node_cf_tree_first(first_node); block != NULL;
2169 block = nir_block_cf_tree_next(block)) {
2170 nir_foreach_instr_safe (instr, block) {
2171 if (instr->type != nir_instr_type_intrinsic)
2172 continue;
2173
2174 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
2175 if (intrin->intrinsic != nir_intrinsic_store_output)
2176 continue;
2177
2178 assert(nir_src_is_const(intrin->src[1]) && !nir_src_as_uint(intrin->src[1]));
2179
2180 nir_io_semantics sem = nir_intrinsic_io_semantics(intrin);
2181 unsigned slot = sem.location;
2182
2183 nir_def **output;
2184 nir_alu_type *type;
2185 if (slot >= VARYING_SLOT_VAR0_16BIT) {
2186 unsigned index = slot - VARYING_SLOT_VAR0_16BIT;
2187 if (sem.high_16bits) {
2188 output = s->outputs_16bit_hi[index];
2189 type = s->output_types.types_16bit_hi[index];
2190 } else {
2191 output = s->outputs_16bit_lo[index];
2192 type = s->output_types.types_16bit_lo[index];
2193 }
2194 } else {
2195 output = s->outputs[slot];
2196 type = s->output_types.types[slot];
2197 }
2198
2199 unsigned component = nir_intrinsic_component(intrin);
2200 unsigned write_mask = nir_intrinsic_write_mask(intrin);
2201 nir_alu_type src_type = nir_intrinsic_src_type(intrin);
2202
2203 u_foreach_bit (i, write_mask) {
2204 unsigned c = component + i;
2205 output[c] = nir_channel(b, intrin->src[0].ssa, i);
2206 type[c] = src_type;
2207 }
2208
2209 /* remove all store output instructions */
2210 nir_instr_remove(instr);
2211 }
2212 }
2213 }
2214
2215 static unsigned
gather_vs_outputs(nir_builder * b,vs_output * outputs,const uint8_t * param_offsets,nir_def * (* data)[4],nir_def * (* data_16bit_lo)[4],nir_def * (* data_16bit_hi)[4])2216 gather_vs_outputs(nir_builder *b, vs_output *outputs,
2217 const uint8_t *param_offsets,
2218 nir_def *(*data)[4],
2219 nir_def *(*data_16bit_lo)[4],
2220 nir_def *(*data_16bit_hi)[4])
2221 {
2222 unsigned num_outputs = 0;
2223 u_foreach_bit64 (slot, b->shader->info.outputs_written) {
2224 if (param_offsets[slot] > AC_EXP_PARAM_OFFSET_31)
2225 continue;
2226
2227 nir_def **output = data[slot];
2228
2229 /* skip output if no one written before */
2230 if (!output[0] && !output[1] && !output[2] && !output[3])
2231 continue;
2232
2233 outputs[num_outputs].slot = slot;
2234 for (int i = 0; i < 4; i++) {
2235 nir_def *chan = output[i];
2236 /* RADV implements 16-bit outputs as 32-bit with VARYING_SLOT_VAR0-31. */
2237 outputs[num_outputs].chan[i] = chan && chan->bit_size == 16 ? nir_u2u32(b, chan) : chan;
2238 }
2239 num_outputs++;
2240 }
2241
2242 u_foreach_bit (i, b->shader->info.outputs_written_16bit) {
2243 unsigned slot = VARYING_SLOT_VAR0_16BIT + i;
2244 if (param_offsets[slot] > AC_EXP_PARAM_OFFSET_31)
2245 continue;
2246
2247 nir_def **output_lo = data_16bit_lo[i];
2248 nir_def **output_hi = data_16bit_hi[i];
2249
2250 /* skip output if no one written before */
2251 if (!output_lo[0] && !output_lo[1] && !output_lo[2] && !output_lo[3] &&
2252 !output_hi[0] && !output_hi[1] && !output_hi[2] && !output_hi[3])
2253 continue;
2254
2255 vs_output *output = &outputs[num_outputs++];
2256 output->slot = slot;
2257
2258 nir_def *undef = nir_undef(b, 1, 16);
2259 for (int j = 0; j < 4; j++) {
2260 nir_def *lo = output_lo[j] ? output_lo[j] : undef;
2261 nir_def *hi = output_hi[j] ? output_hi[j] : undef;
2262 if (output_lo[j] || output_hi[j])
2263 output->chan[j] = nir_pack_32_2x16_split(b, lo, hi);
2264 else
2265 output->chan[j] = NULL;
2266 }
2267 }
2268
2269 return num_outputs;
2270 }
2271
2272 static void
create_vertex_param_phis(nir_builder * b,unsigned num_outputs,vs_output * outputs)2273 create_vertex_param_phis(nir_builder *b, unsigned num_outputs, vs_output *outputs)
2274 {
2275 nir_def *undef = nir_undef(b, 1, 32); /* inserted at the start of the shader */
2276
2277 for (unsigned i = 0; i < num_outputs; i++) {
2278 for (unsigned j = 0; j < 4; j++) {
2279 if (outputs[i].chan[j])
2280 outputs[i].chan[j] = nir_if_phi(b, outputs[i].chan[j], undef);
2281 }
2282 }
2283 }
2284
2285 static void
export_vertex_params_gfx11(nir_builder * b,nir_def * export_tid,nir_def * num_export_threads,unsigned num_outputs,vs_output * outputs,const uint8_t * vs_output_param_offset)2286 export_vertex_params_gfx11(nir_builder *b, nir_def *export_tid, nir_def *num_export_threads,
2287 unsigned num_outputs, vs_output *outputs,
2288 const uint8_t *vs_output_param_offset)
2289 {
2290 nir_def *attr_rsrc = nir_load_ring_attr_amd(b);
2291
2292 /* We should always store full vec4s in groups of 8 lanes for the best performance even if
2293 * some of them are garbage or have unused components, so align the number of export threads
2294 * to 8.
2295 */
2296 num_export_threads = nir_iand_imm(b, nir_iadd_imm(b, num_export_threads, 7), ~7);
2297 if (!export_tid)
2298 nir_push_if(b, nir_is_subgroup_invocation_lt_amd(b, num_export_threads));
2299 else
2300 nir_push_if(b, nir_ult(b, export_tid, num_export_threads));
2301
2302 nir_def *attr_offset = nir_load_ring_attr_offset_amd(b);
2303 nir_def *vindex = nir_load_local_invocation_index(b);
2304 nir_def *voffset = nir_imm_int(b, 0);
2305 nir_def *undef = nir_undef(b, 1, 32);
2306
2307 uint32_t exported_params = 0;
2308
2309 for (unsigned i = 0; i < num_outputs; i++) {
2310 gl_varying_slot slot = outputs[i].slot;
2311 unsigned offset = vs_output_param_offset[slot];
2312
2313 /* Since vs_output_param_offset[] can map multiple varying slots to
2314 * the same param export index (that's radeonsi-specific behavior),
2315 * we need to do this so as not to emit duplicated exports.
2316 */
2317 if (exported_params & BITFIELD_BIT(offset))
2318 continue;
2319
2320 nir_def *comp[4];
2321 for (unsigned j = 0; j < 4; j++)
2322 comp[j] = outputs[i].chan[j] ? outputs[i].chan[j] : undef;
2323 nir_store_buffer_amd(b, nir_vec(b, comp, 4), attr_rsrc, voffset, attr_offset, vindex,
2324 .base = offset * 16,
2325 .memory_modes = nir_var_shader_out,
2326 .access = ACCESS_COHERENT | ACCESS_IS_SWIZZLED_AMD);
2327 exported_params |= BITFIELD_BIT(offset);
2328 }
2329
2330 nir_pop_if(b, NULL);
2331 }
2332
must_wait_attr_ring(enum amd_gfx_level gfx_level,bool has_param_exports)2333 static bool must_wait_attr_ring(enum amd_gfx_level gfx_level, bool has_param_exports)
2334 {
2335 return (gfx_level == GFX11 || gfx_level == GFX11_5) && has_param_exports;
2336 }
2337
2338 static void
export_pos0_wait_attr_ring(nir_builder * b,nir_if * if_es_thread,nir_def * outputs[VARYING_SLOT_MAX][4],const ac_nir_lower_ngg_options * options)2339 export_pos0_wait_attr_ring(nir_builder *b, nir_if *if_es_thread, nir_def *outputs[VARYING_SLOT_MAX][4], const ac_nir_lower_ngg_options *options)
2340 {
2341 b->cursor = nir_after_cf_node(&if_es_thread->cf_node);
2342
2343 /* Create phi for the position output values. */
2344 vs_output pos_output = {
2345 .slot = VARYING_SLOT_POS,
2346 .chan = {
2347 outputs[VARYING_SLOT_POS][0],
2348 outputs[VARYING_SLOT_POS][1],
2349 outputs[VARYING_SLOT_POS][2],
2350 outputs[VARYING_SLOT_POS][3],
2351 },
2352 };
2353 create_vertex_param_phis(b, 1, &pos_output);
2354
2355 b->cursor = nir_after_cf_list(&b->impl->body);
2356
2357 /* Wait for attribute stores to finish. */
2358 nir_barrier(b, .execution_scope = SCOPE_SUBGROUP,
2359 .memory_scope = SCOPE_DEVICE,
2360 .memory_semantics = NIR_MEMORY_RELEASE,
2361 .memory_modes = nir_var_mem_ssbo | nir_var_shader_out | nir_var_mem_global | nir_var_image);
2362
2363 /* Export just the pos0 output. */
2364 nir_if *if_export_empty_pos = nir_push_if(b, if_es_thread->condition.ssa);
2365 {
2366 nir_def *pos_output_array[VARYING_SLOT_MAX][4] = {0};
2367 memcpy(pos_output_array[VARYING_SLOT_POS], pos_output.chan, sizeof(pos_output.chan));
2368
2369 ac_nir_export_position(b, options->gfx_level,
2370 options->clip_cull_dist_mask,
2371 !options->has_param_exports,
2372 options->force_vrs, true,
2373 VARYING_BIT_POS, pos_output_array, NULL);
2374 }
2375 nir_pop_if(b, if_export_empty_pos);
2376 }
2377
2378 static void
nogs_export_vertex_params(nir_builder * b,nir_function_impl * impl,nir_if * if_es_thread,nir_def * num_es_threads,lower_ngg_nogs_state * s)2379 nogs_export_vertex_params(nir_builder *b, nir_function_impl *impl,
2380 nir_if *if_es_thread, nir_def *num_es_threads,
2381 lower_ngg_nogs_state *s)
2382 {
2383 if (!s->options->has_param_exports)
2384 return;
2385
2386 if (s->options->gfx_level >= GFX11) {
2387 /* Export varyings for GFX11+ */
2388 vs_output outputs[64];
2389 const unsigned num_outputs =
2390 gather_vs_outputs(b, outputs,
2391 s->options->vs_output_param_offset,
2392 s->outputs,
2393 s->outputs_16bit_lo,
2394 s->outputs_16bit_hi);
2395
2396 if (!num_outputs)
2397 return;
2398
2399 b->cursor = nir_after_cf_node(&if_es_thread->cf_node);
2400 create_vertex_param_phis(b, num_outputs, outputs);
2401
2402 b->cursor = nir_after_impl(impl);
2403 if (!num_es_threads)
2404 num_es_threads = nir_load_merged_wave_info_amd(b);
2405
2406 export_vertex_params_gfx11(b, NULL, num_es_threads, num_outputs, outputs,
2407 s->options->vs_output_param_offset);
2408 } else {
2409 ac_nir_export_parameters(b, s->options->vs_output_param_offset,
2410 b->shader->info.outputs_written,
2411 b->shader->info.outputs_written_16bit,
2412 s->outputs, s->outputs_16bit_lo,
2413 s->outputs_16bit_hi);
2414 }
2415 }
2416
2417 void
ac_nir_lower_ngg_nogs(nir_shader * shader,const ac_nir_lower_ngg_options * options)2418 ac_nir_lower_ngg_nogs(nir_shader *shader, const ac_nir_lower_ngg_options *options)
2419 {
2420 nir_function_impl *impl = nir_shader_get_entrypoint(shader);
2421 assert(impl);
2422 assert(options->max_workgroup_size && options->wave_size);
2423 assert(!(options->can_cull && options->passthrough));
2424
2425 nir_variable *position_value_var = nir_local_variable_create(impl, glsl_vec4_type(), "position_value");
2426 nir_variable *prim_exp_arg_var = nir_local_variable_create(impl, glsl_uint_type(), "prim_exp_arg");
2427 nir_variable *es_accepted_var =
2428 options->can_cull ? nir_local_variable_create(impl, glsl_bool_type(), "es_accepted") : NULL;
2429 nir_variable *gs_accepted_var =
2430 options->can_cull ? nir_local_variable_create(impl, glsl_bool_type(), "gs_accepted") : NULL;
2431 nir_variable *gs_exported_var = nir_local_variable_create(impl, glsl_bool_type(), "gs_exported");
2432
2433 bool streamout_enabled = shader->xfb_info && !options->disable_streamout;
2434 bool has_user_edgeflags =
2435 options->use_edgeflags && (shader->info.outputs_written & VARYING_BIT_EDGE);
2436 /* streamout need to be done before either prim or vertex export. Because when no
2437 * param export, rasterization can start right after prim and vertex export,
2438 * which left streamout buffer writes un-finished.
2439 *
2440 * Always use late prim export when user edge flags are enabled.
2441 * This is because edge flags are written by ES threads but they
2442 * are exported by GS threads as part of th primitive export.
2443 */
2444 bool early_prim_export =
2445 options->early_prim_export && !(streamout_enabled || has_user_edgeflags);
2446
2447 lower_ngg_nogs_state state = {
2448 .options = options,
2449 .early_prim_export = early_prim_export,
2450 .streamout_enabled = streamout_enabled,
2451 .position_value_var = position_value_var,
2452 .prim_exp_arg_var = prim_exp_arg_var,
2453 .es_accepted_var = es_accepted_var,
2454 .gs_accepted_var = gs_accepted_var,
2455 .gs_exported_var = gs_exported_var,
2456 .max_num_waves = DIV_ROUND_UP(options->max_workgroup_size, options->wave_size),
2457 .has_user_edgeflags = has_user_edgeflags,
2458 };
2459
2460 const bool need_prim_id_store_shared =
2461 options->export_primitive_id && shader->info.stage == MESA_SHADER_VERTEX;
2462
2463 if (options->export_primitive_id) {
2464 nir_variable *prim_id_var = nir_variable_create(shader, nir_var_shader_out, glsl_uint_type(), "ngg_prim_id");
2465 prim_id_var->data.location = VARYING_SLOT_PRIMITIVE_ID;
2466 prim_id_var->data.driver_location = VARYING_SLOT_PRIMITIVE_ID;
2467 prim_id_var->data.interpolation = INTERP_MODE_NONE;
2468 shader->info.outputs_written |= VARYING_BIT_PRIMITIVE_ID;
2469 }
2470
2471 nir_builder builder = nir_builder_create(impl);
2472 nir_builder *b = &builder; /* This is to avoid the & */
2473
2474 if (options->can_cull) {
2475 analyze_shader_before_culling(shader, &state);
2476 save_reusable_variables(b, &state);
2477 }
2478
2479 nir_cf_list extracted;
2480 nir_cf_extract(&extracted, nir_before_impl(impl),
2481 nir_after_impl(impl));
2482 b->cursor = nir_before_impl(impl);
2483
2484 ngg_nogs_init_vertex_indices_vars(b, impl, &state);
2485
2486 /* Emit primitives generated query code here, so that
2487 * it executes before culling and isn't in the extracted CF.
2488 */
2489 nogs_prim_gen_query(b, &state);
2490
2491 /* Whether a shader invocation should export a primitive,
2492 * initialize to all invocations that have an input primitive.
2493 */
2494 nir_store_var(b, gs_exported_var, has_input_primitive(b), 0x1u);
2495
2496 if (!options->can_cull) {
2497 /* Newer chips can use PRIMGEN_PASSTHRU_NO_MSG to skip gs_alloc_req for NGG passthrough. */
2498 if (!(options->passthrough && options->family >= CHIP_NAVI23)) {
2499 /* Allocate export space on wave 0 - confirm to the HW that we want to use all possible space */
2500 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, nir_load_subgroup_id(b), 0));
2501 {
2502 nir_def *vtx_cnt = nir_load_workgroup_num_input_vertices_amd(b);
2503 nir_def *prim_cnt = nir_load_workgroup_num_input_primitives_amd(b);
2504 alloc_vertices_and_primitives(b, vtx_cnt, prim_cnt);
2505 }
2506 nir_pop_if(b, if_wave_0);
2507 }
2508
2509 /* Take care of early primitive export, otherwise just pack the primitive export argument */
2510 if (state.early_prim_export)
2511 emit_ngg_nogs_prim_export(b, &state, NULL);
2512 else
2513 nir_store_var(b, prim_exp_arg_var, emit_ngg_nogs_prim_exp_arg(b, &state), 0x1u);
2514 } else {
2515 add_deferred_attribute_culling(b, &extracted, &state);
2516 b->cursor = nir_after_impl(impl);
2517
2518 if (state.early_prim_export)
2519 emit_ngg_nogs_prim_export(b, &state, nir_load_var(b, state.prim_exp_arg_var));
2520
2521 /* Wait for culling to finish using LDS. */
2522 if (need_prim_id_store_shared || has_user_edgeflags) {
2523 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
2524 .memory_scope = SCOPE_WORKGROUP,
2525 .memory_semantics = NIR_MEMORY_ACQ_REL,
2526 .memory_modes = nir_var_mem_shared);
2527 }
2528 }
2529
2530 /* determine the LDS vertex stride */
2531 state.pervertex_lds_bytes =
2532 ngg_nogs_get_pervertex_lds_size(shader->info.stage,
2533 shader->num_outputs,
2534 state.streamout_enabled,
2535 options->export_primitive_id,
2536 state.has_user_edgeflags);
2537
2538 if (need_prim_id_store_shared) {
2539 emit_ngg_nogs_prim_id_store_shared(b, &state);
2540
2541 /* Wait for GS threads to store primitive ID in LDS. */
2542 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP, .memory_scope = SCOPE_WORKGROUP,
2543 .memory_semantics = NIR_MEMORY_ACQ_REL, .memory_modes = nir_var_mem_shared);
2544 }
2545
2546 nir_def *es_thread =
2547 options->can_cull ? nir_load_var(b, es_accepted_var) : has_input_vertex(b);
2548
2549 /* Calculate the bit count here instead of below for lower SGPR usage and better ALU
2550 * scheduling.
2551 */
2552 nir_def *num_es_threads = NULL;
2553 if (state.options->gfx_level >= GFX11 && options->can_cull) {
2554 nir_def *es_accepted_mask =
2555 nir_ballot(b, 1, options->wave_size, nir_load_var(b, es_accepted_var));
2556 num_es_threads = nir_bit_count(b, es_accepted_mask);
2557 }
2558
2559 nir_if *if_es_thread = nir_push_if(b, es_thread);
2560 {
2561 /* Run the actual shader */
2562 nir_cf_reinsert(&extracted, b->cursor);
2563 b->cursor = nir_after_cf_list(&if_es_thread->then_list);
2564
2565 if (options->export_primitive_id)
2566 emit_store_ngg_nogs_es_primitive_id(b, &state);
2567 }
2568 nir_pop_if(b, if_es_thread);
2569
2570 if (options->can_cull) {
2571 /* Replace uniforms. */
2572 apply_reusable_variables(b, &state);
2573
2574 /* Remove the redundant position output. */
2575 remove_extra_pos_outputs(shader, &state);
2576
2577 /* After looking at the performance in apps eg. Doom Eternal, and The Witcher 3,
2578 * it seems that it's best to put the position export always at the end, and
2579 * then let ACO schedule it up (slightly) only when early prim export is used.
2580 */
2581 b->cursor = nir_after_cf_list(&if_es_thread->then_list);
2582
2583 nir_def *pos_val = nir_load_var(b, state.position_value_var);
2584 for (int i = 0; i < 4; i++)
2585 state.outputs[VARYING_SLOT_POS][i] = nir_channel(b, pos_val, i);
2586 }
2587
2588 /* Gather outputs data and types */
2589 b->cursor = nir_after_cf_list(&if_es_thread->then_list);
2590 ngg_nogs_gather_outputs(b, &if_es_thread->then_list, &state);
2591
2592 if (state.has_user_edgeflags)
2593 ngg_nogs_store_edgeflag_to_lds(b, &state);
2594
2595 if (state.streamout_enabled) {
2596 /* TODO: support culling after streamout. */
2597 assert(!options->can_cull);
2598
2599 ngg_nogs_store_xfb_outputs_to_lds(b, &state);
2600
2601 b->cursor = nir_after_impl(impl);
2602 ngg_nogs_build_streamout(b, &state);
2603 }
2604
2605 /* Take care of late primitive export */
2606 if (!state.early_prim_export) {
2607 b->cursor = nir_after_impl(impl);
2608 emit_ngg_nogs_prim_export(b, &state, nir_load_var(b, prim_exp_arg_var));
2609 }
2610
2611 uint64_t export_outputs = shader->info.outputs_written | VARYING_BIT_POS;
2612 if (options->kill_pointsize)
2613 export_outputs &= ~VARYING_BIT_PSIZ;
2614 if (options->kill_layer)
2615 export_outputs &= ~VARYING_BIT_LAYER;
2616
2617 const bool wait_attr_ring = must_wait_attr_ring(options->gfx_level, options->has_param_exports);
2618 if (wait_attr_ring)
2619 export_outputs &= ~VARYING_BIT_POS;
2620
2621 b->cursor = nir_after_cf_list(&if_es_thread->then_list);
2622
2623 ac_nir_export_position(b, options->gfx_level,
2624 options->clip_cull_dist_mask,
2625 !options->has_param_exports,
2626 options->force_vrs, !wait_attr_ring,
2627 export_outputs, state.outputs, NULL);
2628
2629 nogs_export_vertex_params(b, impl, if_es_thread, num_es_threads, &state);
2630
2631 if (wait_attr_ring)
2632 export_pos0_wait_attr_ring(b, if_es_thread, state.outputs, options);
2633
2634 nir_metadata_preserve(impl, nir_metadata_none);
2635 nir_validate_shader(shader, "after emitting NGG VS/TES");
2636
2637 /* Cleanup */
2638 nir_opt_dead_write_vars(shader);
2639 nir_lower_vars_to_ssa(shader);
2640 nir_remove_dead_variables(shader, nir_var_function_temp, NULL);
2641 nir_lower_alu_to_scalar(shader, NULL, NULL);
2642 nir_lower_phis_to_scalar(shader, true);
2643
2644 if (options->can_cull) {
2645 /* It's beneficial to redo these opts after splitting the shader. */
2646 nir_opt_sink(shader, nir_move_load_input | nir_move_const_undef | nir_move_copies);
2647 nir_opt_move(shader, nir_move_load_input | nir_move_copies | nir_move_const_undef);
2648 }
2649
2650 bool progress;
2651 do {
2652 progress = false;
2653 NIR_PASS(progress, shader, nir_opt_undef);
2654 NIR_PASS(progress, shader, nir_opt_dce);
2655 NIR_PASS(progress, shader, nir_opt_dead_cf);
2656
2657 if (options->can_cull)
2658 progress |= cleanup_culling_shader_after_dce(shader, b->impl, &state);
2659 } while (progress);
2660 }
2661
2662 /**
2663 * Return the address of the LDS storage reserved for the N'th vertex,
2664 * where N is in emit order, meaning:
2665 * - during the finale, N is the invocation_index (within the workgroup)
2666 * - during vertex emit, i.e. while the API GS shader invocation is running,
2667 * N = invocation_index * gs_max_out_vertices + emit_idx
2668 * where emit_idx is the vertex index in the current API GS invocation.
2669 *
2670 * Goals of the LDS memory layout:
2671 * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
2672 * in uniform control flow
2673 * 2. Eliminate bank conflicts on read for export if, additionally, there is no
2674 * culling
2675 * 3. Agnostic to the number of waves (since we don't know it before compiling)
2676 * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
2677 * 5. Avoid wasting memory.
2678 *
2679 * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
2680 * layout, elimination of bank conflicts requires that each vertex occupy an
2681 * odd number of dwords. We use the additional dword to store the output stream
2682 * index as well as a flag to indicate whether this vertex ends a primitive
2683 * for rasterization.
2684 *
2685 * Swizzling is required to satisfy points 1 and 2 simultaneously.
2686 *
2687 * Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
2688 * Indices are swizzled in groups of 32, which ensures point 1 without
2689 * disturbing point 2.
2690 *
2691 * \return an LDS pointer to type {[N x i32], [4 x i8]}
2692 */
2693 static nir_def *
ngg_gs_out_vertex_addr(nir_builder * b,nir_def * out_vtx_idx,lower_ngg_gs_state * s)2694 ngg_gs_out_vertex_addr(nir_builder *b, nir_def *out_vtx_idx, lower_ngg_gs_state *s)
2695 {
2696 unsigned write_stride_2exp = ffs(MAX2(b->shader->info.gs.vertices_out, 1)) - 1;
2697
2698 /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
2699 if (write_stride_2exp) {
2700 nir_def *row = nir_ushr_imm(b, out_vtx_idx, 5);
2701 nir_def *swizzle = nir_iand_imm(b, row, (1u << write_stride_2exp) - 1u);
2702 out_vtx_idx = nir_ixor(b, out_vtx_idx, swizzle);
2703 }
2704
2705 nir_def *out_vtx_offs = nir_imul_imm(b, out_vtx_idx, s->lds_bytes_per_gs_out_vertex);
2706 return nir_iadd_nuw(b, out_vtx_offs, s->lds_addr_gs_out_vtx);
2707 }
2708
2709 static nir_def *
ngg_gs_emit_vertex_addr(nir_builder * b,nir_def * gs_vtx_idx,lower_ngg_gs_state * s)2710 ngg_gs_emit_vertex_addr(nir_builder *b, nir_def *gs_vtx_idx, lower_ngg_gs_state *s)
2711 {
2712 nir_def *tid_in_tg = nir_load_local_invocation_index(b);
2713 nir_def *gs_out_vtx_base = nir_imul_imm(b, tid_in_tg, b->shader->info.gs.vertices_out);
2714 nir_def *out_vtx_idx = nir_iadd_nuw(b, gs_out_vtx_base, gs_vtx_idx);
2715
2716 return ngg_gs_out_vertex_addr(b, out_vtx_idx, s);
2717 }
2718
2719 static void
ngg_gs_clear_primflags(nir_builder * b,nir_def * num_vertices,unsigned stream,lower_ngg_gs_state * s)2720 ngg_gs_clear_primflags(nir_builder *b, nir_def *num_vertices, unsigned stream, lower_ngg_gs_state *s)
2721 {
2722 char name[32];
2723 snprintf(name, sizeof(name), "clear_primflag_idx_%u", stream);
2724 nir_variable *clear_primflag_idx_var = nir_local_variable_create(b->impl, glsl_uint_type(), name);
2725
2726 nir_def *zero_u8 = nir_imm_zero(b, 1, 8);
2727 nir_store_var(b, clear_primflag_idx_var, num_vertices, 0x1u);
2728
2729 nir_loop *loop = nir_push_loop(b);
2730 {
2731 nir_def *clear_primflag_idx = nir_load_var(b, clear_primflag_idx_var);
2732 nir_if *if_break = nir_push_if(b, nir_uge_imm(b, clear_primflag_idx, b->shader->info.gs.vertices_out));
2733 {
2734 nir_jump(b, nir_jump_break);
2735 }
2736 nir_push_else(b, if_break);
2737 {
2738 nir_def *emit_vtx_addr = ngg_gs_emit_vertex_addr(b, clear_primflag_idx, s);
2739 nir_store_shared(b, zero_u8, emit_vtx_addr, .base = s->lds_offs_primflags + stream);
2740 nir_store_var(b, clear_primflag_idx_var, nir_iadd_imm_nuw(b, clear_primflag_idx, 1), 0x1u);
2741 }
2742 nir_pop_if(b, if_break);
2743 }
2744 nir_pop_loop(b, loop);
2745 }
2746
2747 static bool
lower_ngg_gs_store_output(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_gs_state * s)2748 lower_ngg_gs_store_output(nir_builder *b, nir_intrinsic_instr *intrin, lower_ngg_gs_state *s)
2749 {
2750 assert(nir_src_is_const(intrin->src[1]) && !nir_src_as_uint(intrin->src[1]));
2751 b->cursor = nir_before_instr(&intrin->instr);
2752
2753 unsigned writemask = nir_intrinsic_write_mask(intrin);
2754 unsigned component_offset = nir_intrinsic_component(intrin);
2755 nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
2756
2757 unsigned location = io_sem.location;
2758
2759 nir_def *store_val = intrin->src[0].ssa;
2760 nir_alu_type src_type = nir_intrinsic_src_type(intrin);
2761
2762 /* Small bitsize components consume the same amount of space as 32-bit components,
2763 * but 64-bit ones consume twice as many. (Vulkan spec 15.1.5)
2764 *
2765 * 64-bit IO has been lowered to multi 32-bit IO.
2766 */
2767 assert(store_val->bit_size <= 32);
2768 assert(nir_alu_type_get_type_size(src_type) == store_val->bit_size);
2769
2770 /* Get corresponding output variable and usage info. */
2771 nir_def **output;
2772 nir_alu_type *type;
2773 gs_output_info *info;
2774 if (location >= VARYING_SLOT_VAR0_16BIT) {
2775 unsigned index = location - VARYING_SLOT_VAR0_16BIT;
2776 assert(index < 16);
2777
2778 if (io_sem.high_16bits) {
2779 output = s->outputs_16bit_hi[index];
2780 type = s->output_types.types_16bit_hi[index];
2781 info = s->output_info_16bit_hi + index;
2782 } else {
2783 output = s->outputs_16bit_lo[index];
2784 type = s->output_types.types_16bit_lo[index];
2785 info = s->output_info_16bit_lo + index;
2786 }
2787 } else {
2788 assert(location < VARYING_SLOT_MAX);
2789 output = s->outputs[location];
2790 type = s->output_types.types[location];
2791 info = s->output_info + location;
2792 }
2793
2794 for (unsigned comp = 0; comp < store_val->num_components; ++comp) {
2795 if (!(writemask & (1 << comp)))
2796 continue;
2797 unsigned stream = (io_sem.gs_streams >> (comp * 2)) & 0x3;
2798 if (!(b->shader->info.gs.active_stream_mask & (1 << stream)))
2799 continue;
2800
2801 unsigned component = component_offset + comp;
2802
2803 /* The same output component should always belong to the same stream. */
2804 assert(!(info->components_mask & (1 << component)) ||
2805 ((info->stream >> (component * 2)) & 3) == stream);
2806
2807 /* Components of the same output slot may belong to different streams. */
2808 info->stream |= stream << (component * 2);
2809 info->components_mask |= BITFIELD_BIT(component);
2810
2811 /* If type is set multiple times, the value must be same. */
2812 assert(type[component] == nir_type_invalid || type[component] == src_type);
2813 type[component] = src_type;
2814
2815 /* Assume we have called nir_lower_io_to_temporaries which store output in the
2816 * same block as EmitVertex, so we don't need to use nir_variable for outputs.
2817 */
2818 output[component] = nir_channel(b, store_val, comp);
2819 }
2820
2821 nir_instr_remove(&intrin->instr);
2822 return true;
2823 }
2824
2825 static unsigned
gs_output_component_mask_with_stream(gs_output_info * info,unsigned stream)2826 gs_output_component_mask_with_stream(gs_output_info *info, unsigned stream)
2827 {
2828 unsigned mask = info->components_mask;
2829 if (!mask)
2830 return 0;
2831
2832 /* clear component when not requested stream */
2833 for (int i = 0; i < 4; i++) {
2834 if (((info->stream >> (i * 2)) & 3) != stream)
2835 mask &= ~(1 << i);
2836 }
2837
2838 return mask;
2839 }
2840
2841 static bool
lower_ngg_gs_emit_vertex_with_counter(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_gs_state * s)2842 lower_ngg_gs_emit_vertex_with_counter(nir_builder *b, nir_intrinsic_instr *intrin, lower_ngg_gs_state *s)
2843 {
2844 b->cursor = nir_before_instr(&intrin->instr);
2845
2846 unsigned stream = nir_intrinsic_stream_id(intrin);
2847 if (!(b->shader->info.gs.active_stream_mask & (1 << stream))) {
2848 nir_instr_remove(&intrin->instr);
2849 return true;
2850 }
2851
2852 nir_def *gs_emit_vtx_idx = intrin->src[0].ssa;
2853 nir_def *current_vtx_per_prim = intrin->src[1].ssa;
2854 nir_def *gs_emit_vtx_addr = ngg_gs_emit_vertex_addr(b, gs_emit_vtx_idx, s);
2855
2856 u_foreach_bit64(slot, b->shader->info.outputs_written) {
2857 unsigned packed_location = util_bitcount64((b->shader->info.outputs_written & BITFIELD64_MASK(slot)));
2858 gs_output_info *info = &s->output_info[slot];
2859 nir_def **output = s->outputs[slot];
2860
2861 unsigned mask = gs_output_component_mask_with_stream(info, stream);
2862 while (mask) {
2863 int start, count;
2864 u_bit_scan_consecutive_range(&mask, &start, &count);
2865 nir_def *values[4] = {0};
2866 for (int c = start; c < start + count; ++c) {
2867 if (!output[c]) {
2868 /* no one write to this output before */
2869 values[c - start] = nir_undef(b, 1, 32);
2870 continue;
2871 }
2872
2873 /* extend 8/16 bit to 32 bit, 64 bit has been lowered */
2874 values[c - start] = nir_u2uN(b, output[c], 32);
2875 }
2876
2877 nir_def *store_val = nir_vec(b, values, (unsigned)count);
2878 nir_store_shared(b, store_val, gs_emit_vtx_addr,
2879 .base = packed_location * 16 + start * 4,
2880 .align_mul = 4);
2881 }
2882
2883 /* Clear all outputs (they are undefined after emit_vertex) */
2884 memset(s->outputs[slot], 0, sizeof(s->outputs[slot]));
2885 }
2886
2887 /* Store 16bit outputs to LDS. */
2888 unsigned num_32bit_outputs = util_bitcount64(b->shader->info.outputs_written);
2889 u_foreach_bit(slot, b->shader->info.outputs_written_16bit) {
2890 unsigned packed_location = num_32bit_outputs +
2891 util_bitcount(b->shader->info.outputs_written_16bit & BITFIELD_MASK(slot));
2892
2893 unsigned mask_lo = gs_output_component_mask_with_stream(s->output_info_16bit_lo + slot, stream);
2894 unsigned mask_hi = gs_output_component_mask_with_stream(s->output_info_16bit_hi + slot, stream);
2895 unsigned mask = mask_lo | mask_hi;
2896
2897 nir_def **output_lo = s->outputs_16bit_lo[slot];
2898 nir_def **output_hi = s->outputs_16bit_hi[slot];
2899 nir_def *undef = nir_undef(b, 1, 16);
2900
2901 while (mask) {
2902 int start, count;
2903 u_bit_scan_consecutive_range(&mask, &start, &count);
2904 nir_def *values[4] = {0};
2905 for (int c = start; c < start + count; ++c) {
2906 nir_def *lo = output_lo[c] ? output_lo[c] : undef;
2907 nir_def *hi = output_hi[c] ? output_hi[c] : undef;
2908
2909 values[c - start] = nir_pack_32_2x16_split(b, lo, hi);
2910 }
2911
2912 nir_def *store_val = nir_vec(b, values, (unsigned)count);
2913 nir_store_shared(b, store_val, gs_emit_vtx_addr,
2914 .base = packed_location * 16 + start * 4,
2915 .align_mul = 4);
2916 }
2917
2918 /* Clear all outputs (they are undefined after emit_vertex) */
2919 memset(s->outputs_16bit_lo[slot], 0, sizeof(s->outputs_16bit_lo[slot]));
2920 memset(s->outputs_16bit_hi[slot], 0, sizeof(s->outputs_16bit_hi[slot]));
2921 }
2922
2923 /* Calculate and store per-vertex primitive flags based on vertex counts:
2924 * - bit 0: whether this vertex finishes a primitive (a real primitive, not the strip)
2925 * - bit 1: whether the primitive index is odd (if we are emitting triangle strips, otherwise always 0)
2926 * only set when the vertex also finishes the primitive
2927 * - bit 2: whether vertex is live (if culling is enabled: set after culling, otherwise always 1)
2928 */
2929
2930 nir_def *vertex_live_flag =
2931 !stream && s->options->can_cull
2932 ? nir_ishl_imm(b, nir_b2i32(b, nir_inot(b, nir_load_cull_any_enabled_amd(b))), 2)
2933 : nir_imm_int(b, 0b100);
2934
2935 nir_def *completes_prim = nir_ige_imm(b, current_vtx_per_prim, s->num_vertices_per_primitive - 1);
2936 nir_def *complete_flag = nir_b2i32(b, completes_prim);
2937
2938 nir_def *prim_flag = nir_ior(b, vertex_live_flag, complete_flag);
2939 if (s->num_vertices_per_primitive == 3) {
2940 nir_def *odd = nir_iand(b, current_vtx_per_prim, complete_flag);
2941 nir_def *odd_flag = nir_ishl_imm(b, odd, 1);
2942 prim_flag = nir_ior(b, prim_flag, odd_flag);
2943 }
2944
2945 nir_store_shared(b, nir_u2u8(b, prim_flag), gs_emit_vtx_addr,
2946 .base = s->lds_offs_primflags + stream,
2947 .align_mul = 4, .align_offset = stream);
2948
2949 nir_instr_remove(&intrin->instr);
2950 return true;
2951 }
2952
2953 static bool
lower_ngg_gs_end_primitive_with_counter(nir_builder * b,nir_intrinsic_instr * intrin,UNUSED lower_ngg_gs_state * s)2954 lower_ngg_gs_end_primitive_with_counter(nir_builder *b, nir_intrinsic_instr *intrin, UNUSED lower_ngg_gs_state *s)
2955 {
2956 b->cursor = nir_before_instr(&intrin->instr);
2957
2958 /* These are not needed, we can simply remove them */
2959 nir_instr_remove(&intrin->instr);
2960 return true;
2961 }
2962
2963 static bool
lower_ngg_gs_set_vertex_and_primitive_count(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_gs_state * s)2964 lower_ngg_gs_set_vertex_and_primitive_count(nir_builder *b, nir_intrinsic_instr *intrin, lower_ngg_gs_state *s)
2965 {
2966 b->cursor = nir_before_instr(&intrin->instr);
2967
2968 unsigned stream = nir_intrinsic_stream_id(intrin);
2969 if (stream > 0 && !(b->shader->info.gs.active_stream_mask & (1 << stream))) {
2970 nir_instr_remove(&intrin->instr);
2971 return true;
2972 }
2973
2974 s->vertex_count[stream] = intrin->src[0].ssa;
2975 s->primitive_count[stream] = intrin->src[1].ssa;
2976
2977 /* Clear the primitive flags of non-emitted vertices */
2978 if (!nir_src_is_const(intrin->src[0]) || nir_src_as_uint(intrin->src[0]) < b->shader->info.gs.vertices_out)
2979 ngg_gs_clear_primflags(b, intrin->src[0].ssa, stream, s);
2980
2981 nir_instr_remove(&intrin->instr);
2982 return true;
2983 }
2984
2985 static bool
lower_ngg_gs_intrinsic(nir_builder * b,nir_instr * instr,void * state)2986 lower_ngg_gs_intrinsic(nir_builder *b, nir_instr *instr, void *state)
2987 {
2988 lower_ngg_gs_state *s = (lower_ngg_gs_state *) state;
2989
2990 if (instr->type != nir_instr_type_intrinsic)
2991 return false;
2992
2993 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
2994
2995 if (intrin->intrinsic == nir_intrinsic_store_output)
2996 return lower_ngg_gs_store_output(b, intrin, s);
2997 else if (intrin->intrinsic == nir_intrinsic_emit_vertex_with_counter)
2998 return lower_ngg_gs_emit_vertex_with_counter(b, intrin, s);
2999 else if (intrin->intrinsic == nir_intrinsic_end_primitive_with_counter)
3000 return lower_ngg_gs_end_primitive_with_counter(b, intrin, s);
3001 else if (intrin->intrinsic == nir_intrinsic_set_vertex_and_primitive_count)
3002 return lower_ngg_gs_set_vertex_and_primitive_count(b, intrin, s);
3003
3004 return false;
3005 }
3006
3007 static void
lower_ngg_gs_intrinsics(nir_shader * shader,lower_ngg_gs_state * s)3008 lower_ngg_gs_intrinsics(nir_shader *shader, lower_ngg_gs_state *s)
3009 {
3010 nir_shader_instructions_pass(shader, lower_ngg_gs_intrinsic, nir_metadata_none, s);
3011 }
3012
3013 static void
ngg_gs_export_primitives(nir_builder * b,nir_def * max_num_out_prims,nir_def * tid_in_tg,nir_def * exporter_tid_in_tg,nir_def * primflag_0,lower_ngg_gs_state * s)3014 ngg_gs_export_primitives(nir_builder *b, nir_def *max_num_out_prims, nir_def *tid_in_tg,
3015 nir_def *exporter_tid_in_tg, nir_def *primflag_0,
3016 lower_ngg_gs_state *s)
3017 {
3018 nir_if *if_prim_export_thread = nir_push_if(b, nir_ilt(b, tid_in_tg, max_num_out_prims));
3019
3020 /* Only bit 0 matters here - set it to 1 when the primitive should be null */
3021 nir_def *is_null_prim = nir_ixor(b, primflag_0, nir_imm_int(b, -1u));
3022
3023 nir_def *vtx_indices[3] = {0};
3024 vtx_indices[s->num_vertices_per_primitive - 1] = exporter_tid_in_tg;
3025 if (s->num_vertices_per_primitive >= 2)
3026 vtx_indices[s->num_vertices_per_primitive - 2] = nir_iadd_imm(b, exporter_tid_in_tg, -1);
3027 if (s->num_vertices_per_primitive == 3)
3028 vtx_indices[s->num_vertices_per_primitive - 3] = nir_iadd_imm(b, exporter_tid_in_tg, -2);
3029
3030 if (s->num_vertices_per_primitive == 3) {
3031 /* API GS outputs triangle strips, but NGG HW understands triangles.
3032 * We already know the triangles due to how we set the primitive flags, but we need to
3033 * make sure the vertex order is so that the front/back is correct, and the provoking vertex is kept.
3034 */
3035
3036 nir_def *is_odd = nir_ubfe_imm(b, primflag_0, 1, 1);
3037 nir_def *provoking_vertex_index = nir_load_provoking_vtx_in_prim_amd(b);
3038 nir_def *provoking_vertex_first = nir_ieq_imm(b, provoking_vertex_index, 0);
3039
3040 vtx_indices[0] = nir_bcsel(b, provoking_vertex_first, vtx_indices[0],
3041 nir_iadd(b, vtx_indices[0], is_odd));
3042 vtx_indices[1] = nir_bcsel(b, provoking_vertex_first,
3043 nir_iadd(b, vtx_indices[1], is_odd),
3044 nir_isub(b, vtx_indices[1], is_odd));
3045 vtx_indices[2] = nir_bcsel(b, provoking_vertex_first,
3046 nir_isub(b, vtx_indices[2], is_odd), vtx_indices[2]);
3047 }
3048
3049 nir_def *arg = emit_pack_ngg_prim_exp_arg(b, s->num_vertices_per_primitive, vtx_indices,
3050 is_null_prim);
3051 ac_nir_export_primitive(b, arg, NULL);
3052 nir_pop_if(b, if_prim_export_thread);
3053 }
3054
3055 static void
ngg_gs_export_vertices(nir_builder * b,nir_def * max_num_out_vtx,nir_def * tid_in_tg,nir_def * out_vtx_lds_addr,lower_ngg_gs_state * s)3056 ngg_gs_export_vertices(nir_builder *b, nir_def *max_num_out_vtx, nir_def *tid_in_tg,
3057 nir_def *out_vtx_lds_addr, lower_ngg_gs_state *s)
3058 {
3059 nir_if *if_vtx_export_thread = nir_push_if(b, nir_ilt(b, tid_in_tg, max_num_out_vtx));
3060 nir_def *exported_out_vtx_lds_addr = out_vtx_lds_addr;
3061
3062 if (!s->output_compile_time_known) {
3063 /* Vertex compaction.
3064 * The current thread will export a vertex that was live in another invocation.
3065 * Load the index of the vertex that the current thread will have to export.
3066 */
3067 nir_def *exported_vtx_idx = nir_load_shared(b, 1, 8, out_vtx_lds_addr, .base = s->lds_offs_primflags + 1);
3068 exported_out_vtx_lds_addr = ngg_gs_out_vertex_addr(b, nir_u2u32(b, exported_vtx_idx), s);
3069 }
3070
3071 u_foreach_bit64(slot, b->shader->info.outputs_written) {
3072 unsigned packed_location =
3073 util_bitcount64((b->shader->info.outputs_written & BITFIELD64_MASK(slot)));
3074
3075 gs_output_info *info = &s->output_info[slot];
3076 unsigned mask = gs_output_component_mask_with_stream(info, 0);
3077
3078 while (mask) {
3079 int start, count;
3080 u_bit_scan_consecutive_range(&mask, &start, &count);
3081 nir_def *load =
3082 nir_load_shared(b, count, 32, exported_out_vtx_lds_addr,
3083 .base = packed_location * 16 + start * 4,
3084 .align_mul = 4);
3085
3086 for (int i = 0; i < count; i++)
3087 s->outputs[slot][start + i] = nir_channel(b, load, i);
3088 }
3089 }
3090
3091 /* 16bit outputs */
3092 unsigned num_32bit_outputs = util_bitcount64(b->shader->info.outputs_written);
3093 u_foreach_bit(i, b->shader->info.outputs_written_16bit) {
3094 unsigned packed_location = num_32bit_outputs +
3095 util_bitcount(b->shader->info.outputs_written_16bit & BITFIELD_MASK(i));
3096
3097 gs_output_info *info_lo = s->output_info_16bit_lo + i;
3098 gs_output_info *info_hi = s->output_info_16bit_hi + i;
3099 unsigned mask_lo = gs_output_component_mask_with_stream(info_lo, 0);
3100 unsigned mask_hi = gs_output_component_mask_with_stream(info_hi, 0);
3101 unsigned mask = mask_lo | mask_hi;
3102
3103 while (mask) {
3104 int start, count;
3105 u_bit_scan_consecutive_range(&mask, &start, &count);
3106 nir_def *load =
3107 nir_load_shared(b, count, 32, exported_out_vtx_lds_addr,
3108 .base = packed_location * 16 + start * 4,
3109 .align_mul = 4);
3110
3111 for (int j = 0; j < count; j++) {
3112 nir_def *val = nir_channel(b, load, j);
3113 unsigned comp = start + j;
3114
3115 if (mask_lo & BITFIELD_BIT(comp))
3116 s->outputs_16bit_lo[i][comp] = nir_unpack_32_2x16_split_x(b, val);
3117
3118 if (mask_hi & BITFIELD_BIT(comp))
3119 s->outputs_16bit_hi[i][comp] = nir_unpack_32_2x16_split_y(b, val);
3120 }
3121 }
3122 }
3123
3124 uint64_t export_outputs = b->shader->info.outputs_written | VARYING_BIT_POS;
3125 if (s->options->kill_pointsize)
3126 export_outputs &= ~VARYING_BIT_PSIZ;
3127 if (s->options->kill_layer)
3128 export_outputs &= ~VARYING_BIT_LAYER;
3129
3130 const bool wait_attr_ring = must_wait_attr_ring(s->options->gfx_level, s->options->has_param_exports);
3131 if (wait_attr_ring)
3132 export_outputs &= ~VARYING_BIT_POS;
3133
3134 ac_nir_export_position(b, s->options->gfx_level,
3135 s->options->clip_cull_dist_mask,
3136 !s->options->has_param_exports,
3137 s->options->force_vrs, !wait_attr_ring,
3138 export_outputs, s->outputs, NULL);
3139
3140 nir_pop_if(b, if_vtx_export_thread);
3141
3142 if (s->options->has_param_exports) {
3143 b->cursor = nir_after_cf_list(&if_vtx_export_thread->then_list);
3144
3145 if (s->options->gfx_level >= GFX11) {
3146 vs_output outputs[64];
3147 unsigned num_outputs = gather_vs_outputs(b, outputs,
3148 s->options->vs_output_param_offset,
3149 s->outputs, s->outputs_16bit_lo,
3150 s->outputs_16bit_hi);
3151
3152 if (num_outputs) {
3153 b->cursor = nir_after_impl(s->impl);
3154 create_vertex_param_phis(b, num_outputs, outputs);
3155
3156 export_vertex_params_gfx11(b, tid_in_tg, max_num_out_vtx, num_outputs, outputs,
3157 s->options->vs_output_param_offset);
3158 }
3159 } else {
3160 ac_nir_export_parameters(b, s->options->vs_output_param_offset,
3161 b->shader->info.outputs_written,
3162 b->shader->info.outputs_written_16bit,
3163 s->outputs, s->outputs_16bit_lo,
3164 s->outputs_16bit_hi);
3165 }
3166 }
3167
3168 if (wait_attr_ring)
3169 export_pos0_wait_attr_ring(b, if_vtx_export_thread, s->outputs, s->options);
3170 }
3171
3172 static void
ngg_gs_setup_vertex_compaction(nir_builder * b,nir_def * vertex_live,nir_def * tid_in_tg,nir_def * exporter_tid_in_tg,lower_ngg_gs_state * s)3173 ngg_gs_setup_vertex_compaction(nir_builder *b, nir_def *vertex_live, nir_def *tid_in_tg,
3174 nir_def *exporter_tid_in_tg, lower_ngg_gs_state *s)
3175 {
3176 assert(vertex_live->bit_size == 1);
3177 nir_if *if_vertex_live = nir_push_if(b, vertex_live);
3178 {
3179 /* Setup the vertex compaction.
3180 * Save the current thread's id for the thread which will export the current vertex.
3181 * We reuse stream 1 of the primitive flag of the other thread's vertex for storing this.
3182 */
3183
3184 nir_def *exporter_lds_addr = ngg_gs_out_vertex_addr(b, exporter_tid_in_tg, s);
3185 nir_def *tid_in_tg_u8 = nir_u2u8(b, tid_in_tg);
3186 nir_store_shared(b, tid_in_tg_u8, exporter_lds_addr, .base = s->lds_offs_primflags + 1);
3187 }
3188 nir_pop_if(b, if_vertex_live);
3189 }
3190
3191 static nir_def *
ngg_gs_load_out_vtx_primflag(nir_builder * b,unsigned stream,nir_def * tid_in_tg,nir_def * vtx_lds_addr,nir_def * max_num_out_vtx,lower_ngg_gs_state * s)3192 ngg_gs_load_out_vtx_primflag(nir_builder *b, unsigned stream, nir_def *tid_in_tg,
3193 nir_def *vtx_lds_addr, nir_def *max_num_out_vtx,
3194 lower_ngg_gs_state *s)
3195 {
3196 nir_def *zero = nir_imm_int(b, 0);
3197
3198 nir_if *if_outvtx_thread = nir_push_if(b, nir_ilt(b, tid_in_tg, max_num_out_vtx));
3199 nir_def *primflag = nir_load_shared(b, 1, 8, vtx_lds_addr,
3200 .base = s->lds_offs_primflags + stream);
3201 primflag = nir_u2u32(b, primflag);
3202 nir_pop_if(b, if_outvtx_thread);
3203
3204 return nir_if_phi(b, primflag, zero);
3205 }
3206
3207 static void
ngg_gs_out_prim_all_vtxptr(nir_builder * b,nir_def * last_vtxidx,nir_def * last_vtxptr,nir_def * last_vtx_primflag,lower_ngg_gs_state * s,nir_def * vtxptr[3])3208 ngg_gs_out_prim_all_vtxptr(nir_builder *b, nir_def *last_vtxidx, nir_def *last_vtxptr,
3209 nir_def *last_vtx_primflag, lower_ngg_gs_state *s,
3210 nir_def *vtxptr[3])
3211 {
3212 unsigned last_vtx = s->num_vertices_per_primitive - 1;
3213 vtxptr[last_vtx]= last_vtxptr;
3214
3215 bool primitive_is_triangle = s->num_vertices_per_primitive == 3;
3216 nir_def *is_odd = primitive_is_triangle ?
3217 nir_ubfe_imm(b, last_vtx_primflag, 1, 1) : NULL;
3218
3219 for (unsigned i = 0; i < s->num_vertices_per_primitive - 1; i++) {
3220 nir_def *vtxidx = nir_iadd_imm(b, last_vtxidx, -(last_vtx - i));
3221
3222 /* Need to swap vertex 0 and vertex 1 when vertex 2 index is odd to keep
3223 * CW/CCW order for correct front/back face culling.
3224 */
3225 if (primitive_is_triangle)
3226 vtxidx = i == 0 ? nir_iadd(b, vtxidx, is_odd) : nir_isub(b, vtxidx, is_odd);
3227
3228 vtxptr[i] = ngg_gs_out_vertex_addr(b, vtxidx, s);
3229 }
3230 }
3231
3232 static nir_def *
ngg_gs_cull_primitive(nir_builder * b,nir_def * tid_in_tg,nir_def * max_vtxcnt,nir_def * out_vtx_lds_addr,nir_def * out_vtx_primflag_0,lower_ngg_gs_state * s)3233 ngg_gs_cull_primitive(nir_builder *b, nir_def *tid_in_tg, nir_def *max_vtxcnt,
3234 nir_def *out_vtx_lds_addr, nir_def *out_vtx_primflag_0,
3235 lower_ngg_gs_state *s)
3236 {
3237 /* we haven't enabled point culling, if enabled this function could be further optimized */
3238 assert(s->num_vertices_per_primitive > 1);
3239
3240 /* save the primflag so that we don't need to load it from LDS again */
3241 nir_variable *primflag_var = nir_local_variable_create(s->impl, glsl_uint_type(), "primflag");
3242 nir_store_var(b, primflag_var, out_vtx_primflag_0, 1);
3243
3244 /* last bit of primflag indicate if this is the final vertex of a primitive */
3245 nir_def *is_end_prim_vtx = nir_i2b(b, nir_iand_imm(b, out_vtx_primflag_0, 1));
3246 nir_def *has_output_vertex = nir_ilt(b, tid_in_tg, max_vtxcnt);
3247 nir_def *prim_enable = nir_iand(b, is_end_prim_vtx, has_output_vertex);
3248
3249 nir_if *if_prim_enable = nir_push_if(b, prim_enable);
3250 {
3251 /* Calculate the LDS address of every vertex in the current primitive. */
3252 nir_def *vtxptr[3];
3253 ngg_gs_out_prim_all_vtxptr(b, tid_in_tg, out_vtx_lds_addr, out_vtx_primflag_0, s, vtxptr);
3254
3255 /* Load the positions from LDS. */
3256 nir_def *pos[3][4];
3257 for (unsigned i = 0; i < s->num_vertices_per_primitive; i++) {
3258 /* VARYING_SLOT_POS == 0, so base won't count packed location */
3259 pos[i][3] = nir_load_shared(b, 1, 32, vtxptr[i], .base = 12); /* W */
3260 nir_def *xy = nir_load_shared(b, 2, 32, vtxptr[i], .base = 0, .align_mul = 4);
3261 pos[i][0] = nir_channel(b, xy, 0);
3262 pos[i][1] = nir_channel(b, xy, 1);
3263
3264 pos[i][0] = nir_fdiv(b, pos[i][0], pos[i][3]);
3265 pos[i][1] = nir_fdiv(b, pos[i][1], pos[i][3]);
3266 }
3267
3268 /* TODO: support clipdist culling in GS */
3269 nir_def *accepted_by_clipdist = nir_imm_true(b);
3270
3271 nir_def *accepted = ac_nir_cull_primitive(
3272 b, accepted_by_clipdist, pos, s->num_vertices_per_primitive, NULL, NULL);
3273
3274 nir_if *if_rejected = nir_push_if(b, nir_inot(b, accepted));
3275 {
3276 /* clear the primflag if rejected */
3277 nir_store_shared(b, nir_imm_zero(b, 1, 8), out_vtx_lds_addr,
3278 .base = s->lds_offs_primflags);
3279
3280 nir_store_var(b, primflag_var, nir_imm_int(b, 0), 1);
3281 }
3282 nir_pop_if(b, if_rejected);
3283 }
3284 nir_pop_if(b, if_prim_enable);
3285
3286 /* Wait for LDS primflag access done. */
3287 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
3288 .memory_scope = SCOPE_WORKGROUP,
3289 .memory_semantics = NIR_MEMORY_ACQ_REL,
3290 .memory_modes = nir_var_mem_shared);
3291
3292 /* only dead vertex need a chance to relive */
3293 nir_def *vtx_is_dead = nir_ieq_imm(b, nir_load_var(b, primflag_var), 0);
3294 nir_def *vtx_update_primflag = nir_iand(b, vtx_is_dead, has_output_vertex);
3295 nir_if *if_update_primflag = nir_push_if(b, vtx_update_primflag);
3296 {
3297 /* get succeeding vertices' primflag to detect this vertex's liveness */
3298 for (unsigned i = 1; i < s->num_vertices_per_primitive; i++) {
3299 nir_def *vtxidx = nir_iadd_imm(b, tid_in_tg, i);
3300 nir_def *not_overflow = nir_ilt(b, vtxidx, max_vtxcnt);
3301 nir_if *if_not_overflow = nir_push_if(b, not_overflow);
3302 {
3303 nir_def *vtxptr = ngg_gs_out_vertex_addr(b, vtxidx, s);
3304 nir_def *vtx_primflag =
3305 nir_load_shared(b, 1, 8, vtxptr, .base = s->lds_offs_primflags);
3306 vtx_primflag = nir_u2u32(b, vtx_primflag);
3307
3308 /* if succeeding vertex is alive end of primitive vertex, need to set current
3309 * thread vertex's liveness flag (bit 2)
3310 */
3311 nir_def *has_prim = nir_i2b(b, nir_iand_imm(b, vtx_primflag, 1));
3312 nir_def *vtx_live_flag =
3313 nir_bcsel(b, has_prim, nir_imm_int(b, 0b100), nir_imm_int(b, 0));
3314
3315 /* update this vertex's primflag */
3316 nir_def *primflag = nir_load_var(b, primflag_var);
3317 primflag = nir_ior(b, primflag, vtx_live_flag);
3318 nir_store_var(b, primflag_var, primflag, 1);
3319 }
3320 nir_pop_if(b, if_not_overflow);
3321 }
3322 }
3323 nir_pop_if(b, if_update_primflag);
3324
3325 return nir_load_var(b, primflag_var);
3326 }
3327
3328 static void
ngg_gs_build_streamout(nir_builder * b,lower_ngg_gs_state * s)3329 ngg_gs_build_streamout(nir_builder *b, lower_ngg_gs_state *s)
3330 {
3331 nir_xfb_info *info = b->shader->xfb_info;
3332
3333 nir_def *tid_in_tg = nir_load_local_invocation_index(b);
3334 nir_def *max_vtxcnt = nir_load_workgroup_num_input_vertices_amd(b);
3335 nir_def *out_vtx_lds_addr = ngg_gs_out_vertex_addr(b, tid_in_tg, s);
3336 nir_def *prim_live[4] = {0};
3337 nir_def *gen_prim[4] = {0};
3338 nir_def *export_seq[4] = {0};
3339 nir_def *out_vtx_primflag[4] = {0};
3340 for (unsigned stream = 0; stream < 4; stream++) {
3341 if (!(info->streams_written & BITFIELD_BIT(stream)))
3342 continue;
3343
3344 out_vtx_primflag[stream] =
3345 ngg_gs_load_out_vtx_primflag(b, stream, tid_in_tg, out_vtx_lds_addr, max_vtxcnt, s);
3346
3347 /* Check bit 0 of primflag for primitive alive, it's set for every last
3348 * vertex of a primitive.
3349 */
3350 prim_live[stream] = nir_i2b(b, nir_iand_imm(b, out_vtx_primflag[stream], 1));
3351
3352 unsigned scratch_stride = ALIGN(s->max_num_waves, 4);
3353 nir_def *scratch_base =
3354 nir_iadd_imm(b, s->lds_addr_gs_scratch, stream * scratch_stride);
3355
3356 /* We want to export primitives to streamout buffer in sequence,
3357 * but not all vertices are alive or mark end of a primitive, so
3358 * there're "holes". We don't need continuous invocations to write
3359 * primitives to streamout buffer like final vertex export, so
3360 * just repack to get the sequence (export_seq) is enough, no need
3361 * to do compaction.
3362 *
3363 * Use separate scratch space for each stream to avoid barrier.
3364 * TODO: we may further reduce barriers by writing to all stream
3365 * LDS at once, then we only need one barrier instead of one each
3366 * stream..
3367 */
3368 wg_repack_result rep =
3369 repack_invocations_in_workgroup(b, prim_live[stream], scratch_base,
3370 s->max_num_waves, s->options->wave_size);
3371
3372 /* nir_intrinsic_set_vertex_and_primitive_count can also get primitive count of
3373 * current wave, but still need LDS to sum all wave's count to get workgroup count.
3374 * And we need repack to export primitive to streamout buffer anyway, so do here.
3375 */
3376 gen_prim[stream] = rep.num_repacked_invocations;
3377 export_seq[stream] = rep.repacked_invocation_index;
3378 }
3379
3380 /* Workgroup barrier: wait for LDS scratch reads finish. */
3381 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
3382 .memory_scope = SCOPE_WORKGROUP,
3383 .memory_semantics = NIR_MEMORY_ACQ_REL,
3384 .memory_modes = nir_var_mem_shared);
3385
3386 /* Get global buffer offset where this workgroup will stream out data to. */
3387 nir_def *emit_prim[4] = {0};
3388 nir_def *buffer_offsets[4] = {0};
3389 nir_def *so_buffer[4] = {0};
3390 nir_def *prim_stride[4] = {0};
3391 ngg_build_streamout_buffer_info(b, info, s->options->has_xfb_prim_query,
3392 s->lds_addr_gs_scratch, tid_in_tg, gen_prim,
3393 prim_stride, so_buffer, buffer_offsets, emit_prim);
3394
3395 for (unsigned stream = 0; stream < 4; stream++) {
3396 if (!(info->streams_written & BITFIELD_BIT(stream)))
3397 continue;
3398
3399 nir_def *can_emit = nir_ilt(b, export_seq[stream], emit_prim[stream]);
3400 nir_if *if_emit = nir_push_if(b, nir_iand(b, can_emit, prim_live[stream]));
3401 {
3402 /* Get streamout buffer vertex index for the first vertex of this primitive. */
3403 nir_def *vtx_buffer_idx =
3404 nir_imul_imm(b, export_seq[stream], s->num_vertices_per_primitive);
3405
3406 /* Get all vertices' lds address of this primitive. */
3407 nir_def *exported_vtx_lds_addr[3];
3408 ngg_gs_out_prim_all_vtxptr(b, tid_in_tg, out_vtx_lds_addr,
3409 out_vtx_primflag[stream], s,
3410 exported_vtx_lds_addr);
3411
3412 /* Write all vertices of this primitive to streamout buffer. */
3413 for (unsigned i = 0; i < s->num_vertices_per_primitive; i++) {
3414 ngg_build_streamout_vertex(b, info, stream, so_buffer,
3415 buffer_offsets,
3416 nir_iadd_imm(b, vtx_buffer_idx, i),
3417 exported_vtx_lds_addr[i],
3418 &s->output_types);
3419 }
3420 }
3421 nir_pop_if(b, if_emit);
3422 }
3423 }
3424
3425 static void
ngg_gs_finale(nir_builder * b,lower_ngg_gs_state * s)3426 ngg_gs_finale(nir_builder *b, lower_ngg_gs_state *s)
3427 {
3428 nir_def *tid_in_tg = nir_load_local_invocation_index(b);
3429 nir_def *max_vtxcnt = nir_load_workgroup_num_input_vertices_amd(b);
3430 nir_def *max_prmcnt = max_vtxcnt; /* They are currently practically the same; both RADV and RadeonSI do this. */
3431 nir_def *out_vtx_lds_addr = ngg_gs_out_vertex_addr(b, tid_in_tg, s);
3432
3433 if (s->output_compile_time_known) {
3434 /* When the output is compile-time known, the GS writes all possible vertices and primitives it can.
3435 * The gs_alloc_req needs to happen on one wave only, otherwise the HW hangs.
3436 */
3437 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, nir_load_subgroup_id(b), 0));
3438 alloc_vertices_and_primitives(b, max_vtxcnt, max_prmcnt);
3439 nir_pop_if(b, if_wave_0);
3440 }
3441
3442 /* Workgroup barrier already emitted, we can assume all GS output stores are done by now. */
3443
3444 nir_def *out_vtx_primflag_0 = ngg_gs_load_out_vtx_primflag(b, 0, tid_in_tg, out_vtx_lds_addr, max_vtxcnt, s);
3445
3446 if (s->output_compile_time_known) {
3447 ngg_gs_export_primitives(b, max_vtxcnt, tid_in_tg, tid_in_tg, out_vtx_primflag_0, s);
3448 ngg_gs_export_vertices(b, max_vtxcnt, tid_in_tg, out_vtx_lds_addr, s);
3449 return;
3450 }
3451
3452 /* cull primitives */
3453 if (s->options->can_cull) {
3454 nir_if *if_cull_en = nir_push_if(b, nir_load_cull_any_enabled_amd(b));
3455
3456 /* culling code will update the primflag */
3457 nir_def *updated_primflag =
3458 ngg_gs_cull_primitive(b, tid_in_tg, max_vtxcnt, out_vtx_lds_addr,
3459 out_vtx_primflag_0, s);
3460
3461 nir_pop_if(b, if_cull_en);
3462
3463 out_vtx_primflag_0 = nir_if_phi(b, updated_primflag, out_vtx_primflag_0);
3464 }
3465
3466 /* When the output vertex count is not known at compile time:
3467 * There may be gaps between invocations that have live vertices, but NGG hardware
3468 * requires that the invocations that export vertices are packed (ie. compact).
3469 * To ensure this, we need to repack invocations that have a live vertex.
3470 */
3471 nir_def *vertex_live = nir_ine_imm(b, out_vtx_primflag_0, 0);
3472 wg_repack_result rep = repack_invocations_in_workgroup(b, vertex_live, s->lds_addr_gs_scratch,
3473 s->max_num_waves, s->options->wave_size);
3474
3475 nir_def *workgroup_num_vertices = rep.num_repacked_invocations;
3476 nir_def *exporter_tid_in_tg = rep.repacked_invocation_index;
3477
3478 /* When the workgroup emits 0 total vertices, we also must export 0 primitives (otherwise the HW can hang). */
3479 nir_def *any_output = nir_ine_imm(b, workgroup_num_vertices, 0);
3480 max_prmcnt = nir_bcsel(b, any_output, max_prmcnt, nir_imm_int(b, 0));
3481
3482 /* Allocate export space. We currently don't compact primitives, just use the maximum number. */
3483 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, nir_load_subgroup_id(b), 0));
3484 {
3485 if (s->options->gfx_level == GFX10)
3486 alloc_vertices_and_primitives_gfx10_workaround(b, workgroup_num_vertices, max_prmcnt);
3487 else
3488 alloc_vertices_and_primitives(b, workgroup_num_vertices, max_prmcnt);
3489 }
3490 nir_pop_if(b, if_wave_0);
3491
3492 /* Vertex compaction. This makes sure there are no gaps between threads that export vertices. */
3493 ngg_gs_setup_vertex_compaction(b, vertex_live, tid_in_tg, exporter_tid_in_tg, s);
3494
3495 /* Workgroup barrier: wait for all LDS stores to finish. */
3496 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
3497 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
3498
3499 ngg_gs_export_primitives(b, max_prmcnt, tid_in_tg, exporter_tid_in_tg, out_vtx_primflag_0, s);
3500 ngg_gs_export_vertices(b, workgroup_num_vertices, tid_in_tg, out_vtx_lds_addr, s);
3501 }
3502
3503 void
ac_nir_lower_ngg_gs(nir_shader * shader,const ac_nir_lower_ngg_options * options)3504 ac_nir_lower_ngg_gs(nir_shader *shader, const ac_nir_lower_ngg_options *options)
3505 {
3506 nir_function_impl *impl = nir_shader_get_entrypoint(shader);
3507 assert(impl);
3508
3509 lower_ngg_gs_state state = {
3510 .options = options,
3511 .impl = impl,
3512 .max_num_waves = DIV_ROUND_UP(options->max_workgroup_size, options->wave_size),
3513 .lds_offs_primflags = options->gs_out_vtx_bytes,
3514 .lds_bytes_per_gs_out_vertex = options->gs_out_vtx_bytes + 4u,
3515 .streamout_enabled = shader->xfb_info && !options->disable_streamout,
3516 };
3517
3518 if (!options->can_cull) {
3519 nir_gs_count_vertices_and_primitives(shader, state.const_out_vtxcnt,
3520 state.const_out_prmcnt, NULL, 4u);
3521 state.output_compile_time_known =
3522 state.const_out_vtxcnt[0] == shader->info.gs.vertices_out &&
3523 state.const_out_prmcnt[0] != -1;
3524 }
3525
3526 if (shader->info.gs.output_primitive == MESA_PRIM_POINTS)
3527 state.num_vertices_per_primitive = 1;
3528 else if (shader->info.gs.output_primitive == MESA_PRIM_LINE_STRIP)
3529 state.num_vertices_per_primitive = 2;
3530 else if (shader->info.gs.output_primitive == MESA_PRIM_TRIANGLE_STRIP)
3531 state.num_vertices_per_primitive = 3;
3532 else
3533 unreachable("Invalid GS output primitive.");
3534
3535 /* Extract the full control flow. It is going to be wrapped in an if statement. */
3536 nir_cf_list extracted;
3537 nir_cf_extract(&extracted, nir_before_impl(impl),
3538 nir_after_impl(impl));
3539
3540 nir_builder builder = nir_builder_at(nir_before_impl(impl));
3541 nir_builder *b = &builder; /* This is to avoid the & */
3542
3543 /* Workgroup barrier: wait for ES threads */
3544 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
3545 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
3546
3547 state.lds_addr_gs_out_vtx = nir_load_lds_ngg_gs_out_vertex_base_amd(b);
3548 state.lds_addr_gs_scratch = nir_load_lds_ngg_scratch_base_amd(b);
3549
3550 /* Wrap the GS control flow. */
3551 nir_if *if_gs_thread = nir_push_if(b, has_input_primitive(b));
3552
3553 nir_cf_reinsert(&extracted, b->cursor);
3554 b->cursor = nir_after_cf_list(&if_gs_thread->then_list);
3555 nir_pop_if(b, if_gs_thread);
3556
3557 /* Workgroup barrier: wait for all GS threads to finish */
3558 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
3559 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
3560
3561 if (state.streamout_enabled)
3562 ngg_gs_build_streamout(b, &state);
3563
3564 /* Lower the GS intrinsics */
3565 lower_ngg_gs_intrinsics(shader, &state);
3566
3567 if (!state.vertex_count[0]) {
3568 fprintf(stderr, "Could not find set_vertex_and_primitive_count for stream 0. This would hang your GPU.");
3569 abort();
3570 }
3571
3572 /* Emit shader queries */
3573 b->cursor = nir_after_cf_list(&if_gs_thread->then_list);
3574 ac_nir_gs_shader_query(b,
3575 state.options->has_gen_prim_query,
3576 state.options->has_gs_invocations_query,
3577 state.options->has_gs_primitives_query,
3578 state.num_vertices_per_primitive,
3579 state.options->wave_size,
3580 state.vertex_count,
3581 state.primitive_count);
3582
3583 b->cursor = nir_after_impl(impl);
3584
3585 /* Emit the finale sequence */
3586 ngg_gs_finale(b, &state);
3587 nir_validate_shader(shader, "after emitting NGG GS");
3588
3589 /* Cleanup */
3590 nir_lower_vars_to_ssa(shader);
3591 nir_remove_dead_variables(shader, nir_var_function_temp, NULL);
3592 nir_metadata_preserve(impl, nir_metadata_none);
3593 }
3594
3595 unsigned
ac_ngg_nogs_get_pervertex_lds_size(gl_shader_stage stage,unsigned shader_num_outputs,bool streamout_enabled,bool export_prim_id,bool has_user_edgeflags,bool can_cull,bool uses_instance_id,bool uses_primitive_id)3596 ac_ngg_nogs_get_pervertex_lds_size(gl_shader_stage stage,
3597 unsigned shader_num_outputs,
3598 bool streamout_enabled,
3599 bool export_prim_id,
3600 bool has_user_edgeflags,
3601 bool can_cull,
3602 bool uses_instance_id,
3603 bool uses_primitive_id)
3604 {
3605 /* for culling time lds layout only */
3606 unsigned culling_pervertex_lds_bytes = can_cull ?
3607 ngg_nogs_get_culling_pervertex_lds_size(
3608 stage, uses_instance_id, uses_primitive_id, NULL) : 0;
3609
3610 unsigned pervertex_lds_bytes =
3611 ngg_nogs_get_pervertex_lds_size(stage, shader_num_outputs, streamout_enabled,
3612 export_prim_id, has_user_edgeflags);
3613
3614 return MAX2(culling_pervertex_lds_bytes, pervertex_lds_bytes);
3615 }
3616
3617 unsigned
ac_ngg_get_scratch_lds_size(gl_shader_stage stage,unsigned workgroup_size,unsigned wave_size,bool streamout_enabled,bool can_cull)3618 ac_ngg_get_scratch_lds_size(gl_shader_stage stage,
3619 unsigned workgroup_size,
3620 unsigned wave_size,
3621 bool streamout_enabled,
3622 bool can_cull)
3623 {
3624 unsigned scratch_lds_size = 0;
3625 unsigned max_num_waves = DIV_ROUND_UP(workgroup_size, wave_size);
3626
3627 if (stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL) {
3628 if (streamout_enabled) {
3629 /* 4 dwords for 4 streamout buffer offset, 1 dword for emit prim count */
3630 scratch_lds_size = 20;
3631 } else if (can_cull) {
3632 scratch_lds_size = ALIGN(max_num_waves, 4u);
3633 }
3634 } else {
3635 assert(stage == MESA_SHADER_GEOMETRY);
3636
3637 scratch_lds_size = ALIGN(max_num_waves, 4u);
3638 /* streamout take 8 dwords for buffer offset and emit vertex per stream */
3639 if (streamout_enabled)
3640 scratch_lds_size = MAX2(scratch_lds_size, 32);
3641 }
3642
3643 return scratch_lds_size;
3644 }
3645
3646 static void
ms_store_prim_indices(nir_builder * b,nir_def * val,nir_def * offset_src,lower_ngg_ms_state * s)3647 ms_store_prim_indices(nir_builder *b,
3648 nir_def *val,
3649 nir_def *offset_src,
3650 lower_ngg_ms_state *s)
3651 {
3652 assert(val->num_components <= 3);
3653
3654 if (s->layout.var.prm_attr.mask & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES)) {
3655 for (unsigned c = 0; c < s->vertices_per_prim; ++c)
3656 nir_store_var(b, s->out_variables[VARYING_SLOT_PRIMITIVE_INDICES * 4 + c], nir_channel(b, val, c), 0x1);
3657 return;
3658 }
3659
3660 if (!offset_src)
3661 offset_src = nir_imm_int(b, 0);
3662
3663 nir_store_shared(b, nir_u2u8(b, val), offset_src, .base = s->layout.lds.indices_addr);
3664 }
3665
3666 static void
ms_store_cull_flag(nir_builder * b,nir_def * val,nir_def * offset_src,lower_ngg_ms_state * s)3667 ms_store_cull_flag(nir_builder *b,
3668 nir_def *val,
3669 nir_def *offset_src,
3670 lower_ngg_ms_state *s)
3671 {
3672 assert(val->num_components == 1);
3673 assert(val->bit_size == 1);
3674
3675 if (s->layout.var.prm_attr.mask & BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE)) {
3676 nir_store_var(b, s->out_variables[VARYING_SLOT_CULL_PRIMITIVE * 4], nir_b2i32(b, val), 0x1);
3677 return;
3678 }
3679
3680 if (!offset_src)
3681 offset_src = nir_imm_int(b, 0);
3682
3683 nir_store_shared(b, nir_b2i8(b, val), offset_src, .base = s->layout.lds.cull_flags_addr);
3684 }
3685
3686 static nir_def *
ms_arrayed_output_base_addr(nir_builder * b,nir_def * arr_index,unsigned driver_location,unsigned num_arrayed_outputs)3687 ms_arrayed_output_base_addr(nir_builder *b,
3688 nir_def *arr_index,
3689 unsigned driver_location,
3690 unsigned num_arrayed_outputs)
3691 {
3692 /* Address offset of the array item (vertex or primitive). */
3693 unsigned arr_index_stride = num_arrayed_outputs * 16u;
3694 nir_def *arr_index_off = nir_imul_imm(b, arr_index, arr_index_stride);
3695
3696 /* IO address offset within the vertex or primitive data. */
3697 unsigned io_offset = driver_location * 16u;
3698 nir_def *io_off = nir_imm_int(b, io_offset);
3699
3700 return nir_iadd_nuw(b, arr_index_off, io_off);
3701 }
3702
3703 static void
update_ms_output_info_slot(lower_ngg_ms_state * s,unsigned slot,unsigned base_off,uint32_t components_mask)3704 update_ms_output_info_slot(lower_ngg_ms_state *s,
3705 unsigned slot, unsigned base_off,
3706 uint32_t components_mask)
3707 {
3708 while (components_mask) {
3709 s->output_info[slot + base_off].components_mask |= components_mask & 0xF;
3710
3711 components_mask >>= 4;
3712 base_off++;
3713 }
3714 }
3715
3716 static void
update_ms_output_info(nir_intrinsic_instr * intrin,const ms_out_part * out,lower_ngg_ms_state * s)3717 update_ms_output_info(nir_intrinsic_instr *intrin,
3718 const ms_out_part *out,
3719 lower_ngg_ms_state *s)
3720 {
3721 nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
3722 nir_src *base_offset_src = nir_get_io_offset_src(intrin);
3723 uint32_t write_mask = nir_intrinsic_write_mask(intrin);
3724 unsigned component_offset = nir_intrinsic_component(intrin);
3725
3726 nir_def *store_val = intrin->src[0].ssa;
3727 write_mask = util_widen_mask(write_mask, DIV_ROUND_UP(store_val->bit_size, 32));
3728 uint32_t components_mask = write_mask << component_offset;
3729
3730 if (nir_src_is_const(*base_offset_src)) {
3731 /* Simply mark the components of the current slot as used. */
3732 unsigned base_off = nir_src_as_uint(*base_offset_src);
3733 update_ms_output_info_slot(s, io_sem.location, base_off, components_mask);
3734 } else {
3735 /* Indirect offset: mark the components of all slots as used. */
3736 for (unsigned base_off = 0; base_off < io_sem.num_slots; ++base_off)
3737 update_ms_output_info_slot(s, io_sem.location, base_off, components_mask);
3738 }
3739 }
3740
3741 static nir_def *
regroup_store_val(nir_builder * b,nir_def * store_val)3742 regroup_store_val(nir_builder *b, nir_def *store_val)
3743 {
3744 /* Vulkan spec 15.1.4-15.1.5:
3745 *
3746 * The shader interface consists of output slots with 4x 32-bit components.
3747 * Small bitsize components consume the same space as 32-bit components,
3748 * but 64-bit ones consume twice as much.
3749 *
3750 * The same output slot may consist of components of different bit sizes.
3751 * Therefore for simplicity we don't store small bitsize components
3752 * contiguously, but pad them instead. In practice, they are converted to
3753 * 32-bit and then stored contiguously.
3754 */
3755
3756 if (store_val->bit_size < 32) {
3757 assert(store_val->num_components <= 4);
3758 nir_def *comps[4] = {0};
3759 for (unsigned c = 0; c < store_val->num_components; ++c)
3760 comps[c] = nir_u2u32(b, nir_channel(b, store_val, c));
3761 return nir_vec(b, comps, store_val->num_components);
3762 }
3763
3764 return store_val;
3765 }
3766
3767 static nir_def *
regroup_load_val(nir_builder * b,nir_def * load,unsigned dest_bit_size)3768 regroup_load_val(nir_builder *b, nir_def *load, unsigned dest_bit_size)
3769 {
3770 if (dest_bit_size == load->bit_size)
3771 return load;
3772
3773 /* Small bitsize components are not stored contiguously, take care of that here. */
3774 unsigned num_components = load->num_components;
3775 assert(num_components <= 4);
3776 nir_def *components[4] = {0};
3777 for (unsigned i = 0; i < num_components; ++i)
3778 components[i] = nir_u2uN(b, nir_channel(b, load, i), dest_bit_size);
3779
3780 return nir_vec(b, components, num_components);
3781 }
3782
3783 static const ms_out_part *
ms_get_out_layout_part(unsigned location,shader_info * info,ms_out_mode * out_mode,lower_ngg_ms_state * s)3784 ms_get_out_layout_part(unsigned location,
3785 shader_info *info,
3786 ms_out_mode *out_mode,
3787 lower_ngg_ms_state *s)
3788 {
3789 uint64_t mask = BITFIELD64_BIT(location);
3790
3791 if (info->per_primitive_outputs & mask) {
3792 if (mask & s->layout.lds.prm_attr.mask) {
3793 *out_mode = ms_out_mode_lds;
3794 return &s->layout.lds.prm_attr;
3795 } else if (mask & s->layout.scratch_ring.prm_attr.mask) {
3796 *out_mode = ms_out_mode_scratch_ring;
3797 return &s->layout.scratch_ring.prm_attr;
3798 } else if (mask & s->layout.attr_ring.prm_attr.mask) {
3799 *out_mode = ms_out_mode_attr_ring;
3800 return &s->layout.attr_ring.prm_attr;
3801 } else if (mask & s->layout.var.prm_attr.mask) {
3802 *out_mode = ms_out_mode_var;
3803 return &s->layout.var.prm_attr;
3804 }
3805 } else {
3806 if (mask & s->layout.lds.vtx_attr.mask) {
3807 *out_mode = ms_out_mode_lds;
3808 return &s->layout.lds.vtx_attr;
3809 } else if (mask & s->layout.scratch_ring.vtx_attr.mask) {
3810 *out_mode = ms_out_mode_scratch_ring;
3811 return &s->layout.scratch_ring.vtx_attr;
3812 } else if (mask & s->layout.attr_ring.vtx_attr.mask) {
3813 *out_mode = ms_out_mode_attr_ring;
3814 return &s->layout.attr_ring.vtx_attr;
3815 } else if (mask & s->layout.var.vtx_attr.mask) {
3816 *out_mode = ms_out_mode_var;
3817 return &s->layout.var.vtx_attr;
3818 }
3819 }
3820
3821 unreachable("Couldn't figure out mesh shader output mode.");
3822 }
3823
3824 static void
ms_store_arrayed_output_intrin(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_ms_state * s)3825 ms_store_arrayed_output_intrin(nir_builder *b,
3826 nir_intrinsic_instr *intrin,
3827 lower_ngg_ms_state *s)
3828 {
3829 unsigned location = nir_intrinsic_io_semantics(intrin).location;
3830
3831 if (location == VARYING_SLOT_PRIMITIVE_INDICES) {
3832 /* EXT_mesh_shader primitive indices: array of vectors.
3833 * They don't count as per-primitive outputs, but the array is indexed
3834 * by the primitive index, so they are practically per-primitive.
3835 *
3836 * The max vertex count is 256, so these indices always fit 8 bits.
3837 * To reduce LDS use, store these as a flat array of 8-bit values.
3838 */
3839 assert(nir_src_is_const(*nir_get_io_offset_src(intrin)));
3840 assert(nir_src_as_uint(*nir_get_io_offset_src(intrin)) == 0);
3841 assert(nir_intrinsic_component(intrin) == 0);
3842
3843 nir_def *store_val = intrin->src[0].ssa;
3844 nir_def *arr_index = nir_get_io_arrayed_index_src(intrin)->ssa;
3845 nir_def *offset = nir_imul_imm(b, arr_index, s->vertices_per_prim);
3846 ms_store_prim_indices(b, store_val, offset, s);
3847 return;
3848 } else if (location == VARYING_SLOT_CULL_PRIMITIVE) {
3849 /* EXT_mesh_shader cull primitive: per-primitive bool.
3850 * To reduce LDS use, store these as an array of 8-bit values.
3851 */
3852 assert(nir_src_is_const(*nir_get_io_offset_src(intrin)));
3853 assert(nir_src_as_uint(*nir_get_io_offset_src(intrin)) == 0);
3854 assert(nir_intrinsic_component(intrin) == 0);
3855 assert(nir_intrinsic_write_mask(intrin) == 1);
3856
3857 nir_def *store_val = intrin->src[0].ssa;
3858 nir_def *arr_index = nir_get_io_arrayed_index_src(intrin)->ssa;
3859 nir_def *offset = nir_imul_imm(b, arr_index, s->vertices_per_prim);
3860 ms_store_cull_flag(b, store_val, offset, s);
3861 return;
3862 }
3863
3864 ms_out_mode out_mode;
3865 const ms_out_part *out = ms_get_out_layout_part(location, &b->shader->info, &out_mode, s);
3866 update_ms_output_info(intrin, out, s);
3867
3868 /* We compact the LDS size (we don't reserve LDS space for outputs which can
3869 * be stored in variables), so we can't rely on the original driver_location.
3870 * Instead, we compute the first free location based on the output mask.
3871 */
3872 unsigned driver_location = util_bitcount64(out->mask & u_bit_consecutive64(0, location));
3873 unsigned component_offset = nir_intrinsic_component(intrin);
3874 unsigned write_mask = nir_intrinsic_write_mask(intrin);
3875 unsigned num_outputs = util_bitcount64(out->mask);
3876 unsigned const_off = out->addr + component_offset * 4;
3877
3878 nir_def *store_val = regroup_store_val(b, intrin->src[0].ssa);
3879 nir_def *arr_index = nir_get_io_arrayed_index_src(intrin)->ssa;
3880 nir_def *base_addr = ms_arrayed_output_base_addr(b, arr_index, driver_location, num_outputs);
3881 nir_def *base_offset = nir_get_io_offset_src(intrin)->ssa;
3882 nir_def *base_addr_off = nir_imul_imm(b, base_offset, 16u);
3883 nir_def *addr = nir_iadd_nuw(b, base_addr, base_addr_off);
3884
3885 if (out_mode == ms_out_mode_lds) {
3886 nir_store_shared(b, store_val, addr, .base = const_off,
3887 .write_mask = write_mask, .align_mul = 16,
3888 .align_offset = const_off % 16);
3889 } else if (out_mode == ms_out_mode_scratch_ring) {
3890 nir_def *ring = nir_load_ring_mesh_scratch_amd(b);
3891 nir_def *off = nir_load_ring_mesh_scratch_offset_amd(b);
3892 nir_def *zero = nir_imm_int(b, 0);
3893 nir_store_buffer_amd(b, store_val, ring, addr, off, zero,
3894 .base = const_off,
3895 .write_mask = write_mask,
3896 .memory_modes = nir_var_shader_out,
3897 .access = ACCESS_COHERENT);
3898 } else if (out_mode == ms_out_mode_attr_ring) {
3899 /* GFX11+: Store params straight to the attribute ring.
3900 *
3901 * Even though the access pattern may not be the most optimal,
3902 * this is still much better than reserving LDS and losing waves.
3903 * (Also much better than storing and reloading from the scratch ring.)
3904 */
3905 const nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
3906 unsigned param_offset = s->vs_output_param_offset[io_sem.location];
3907 nir_def *ring = nir_load_ring_attr_amd(b);
3908 nir_def *soffset = nir_load_ring_attr_offset_amd(b);
3909 nir_store_buffer_amd(b, store_val, ring, base_addr_off, soffset, arr_index,
3910 .base = const_off + param_offset * 16,
3911 .write_mask = write_mask,
3912 .memory_modes = nir_var_shader_out,
3913 .access = ACCESS_COHERENT | ACCESS_IS_SWIZZLED_AMD);
3914 } else if (out_mode == ms_out_mode_var) {
3915 if (store_val->bit_size > 32) {
3916 /* Split 64-bit store values to 32-bit components. */
3917 store_val = nir_bitcast_vector(b, store_val, 32);
3918 /* Widen the write mask so it is in 32-bit components. */
3919 write_mask = util_widen_mask(write_mask, store_val->bit_size / 32);
3920 }
3921
3922 u_foreach_bit(comp, write_mask) {
3923 nir_def *val = nir_channel(b, store_val, comp);
3924 unsigned idx = location * 4 + comp + component_offset;
3925 nir_store_var(b, s->out_variables[idx], val, 0x1);
3926 }
3927 } else {
3928 unreachable("Invalid MS output mode for store");
3929 }
3930 }
3931
3932 static nir_def *
ms_load_arrayed_output(nir_builder * b,nir_def * arr_index,nir_def * base_offset,unsigned location,unsigned component_offset,unsigned num_components,unsigned load_bit_size,lower_ngg_ms_state * s)3933 ms_load_arrayed_output(nir_builder *b,
3934 nir_def *arr_index,
3935 nir_def *base_offset,
3936 unsigned location,
3937 unsigned component_offset,
3938 unsigned num_components,
3939 unsigned load_bit_size,
3940 lower_ngg_ms_state *s)
3941 {
3942 ms_out_mode out_mode;
3943 const ms_out_part *out = ms_get_out_layout_part(location, &b->shader->info, &out_mode, s);
3944
3945 unsigned component_addr_off = component_offset * 4;
3946 unsigned num_outputs = util_bitcount64(out->mask);
3947 unsigned const_off = out->addr + component_offset * 4;
3948
3949 /* Use compacted driver location instead of the original. */
3950 unsigned driver_location = util_bitcount64(out->mask & u_bit_consecutive64(0, location));
3951
3952 nir_def *base_addr = ms_arrayed_output_base_addr(b, arr_index, driver_location, num_outputs);
3953 nir_def *base_addr_off = nir_imul_imm(b, base_offset, 16);
3954 nir_def *addr = nir_iadd_nuw(b, base_addr, base_addr_off);
3955
3956 if (out_mode == ms_out_mode_lds) {
3957 return nir_load_shared(b, num_components, load_bit_size, addr, .align_mul = 16,
3958 .align_offset = component_addr_off % 16,
3959 .base = const_off);
3960 } else if (out_mode == ms_out_mode_scratch_ring) {
3961 nir_def *ring = nir_load_ring_mesh_scratch_amd(b);
3962 nir_def *off = nir_load_ring_mesh_scratch_offset_amd(b);
3963 nir_def *zero = nir_imm_int(b, 0);
3964 return nir_load_buffer_amd(b, num_components, load_bit_size, ring, addr, off, zero,
3965 .base = const_off,
3966 .memory_modes = nir_var_shader_out,
3967 .access = ACCESS_COHERENT);
3968 } else if (out_mode == ms_out_mode_var) {
3969 nir_def *arr[8] = {0};
3970 unsigned num_32bit_components = num_components * load_bit_size / 32;
3971 for (unsigned comp = 0; comp < num_32bit_components; ++comp) {
3972 unsigned idx = location * 4 + comp + component_addr_off;
3973 arr[comp] = nir_load_var(b, s->out_variables[idx]);
3974 }
3975 if (load_bit_size > 32)
3976 return nir_extract_bits(b, arr, 1, 0, num_components, load_bit_size);
3977 return nir_vec(b, arr, num_components);
3978 } else {
3979 unreachable("Invalid MS output mode for load");
3980 }
3981 }
3982
3983 static nir_def *
ms_load_arrayed_output_intrin(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_ms_state * s)3984 ms_load_arrayed_output_intrin(nir_builder *b,
3985 nir_intrinsic_instr *intrin,
3986 lower_ngg_ms_state *s)
3987 {
3988 nir_def *arr_index = nir_get_io_arrayed_index_src(intrin)->ssa;
3989 nir_def *base_offset = nir_get_io_offset_src(intrin)->ssa;
3990
3991 unsigned location = nir_intrinsic_io_semantics(intrin).location;
3992 unsigned component_offset = nir_intrinsic_component(intrin);
3993 unsigned bit_size = intrin->def.bit_size;
3994 unsigned num_components = intrin->def.num_components;
3995 unsigned load_bit_size = MAX2(bit_size, 32);
3996
3997 nir_def *load =
3998 ms_load_arrayed_output(b, arr_index, base_offset, location, component_offset,
3999 num_components, load_bit_size, s);
4000
4001 return regroup_load_val(b, load, bit_size);
4002 }
4003
4004 static nir_def *
lower_ms_load_workgroup_index(nir_builder * b,UNUSED nir_intrinsic_instr * intrin,lower_ngg_ms_state * s)4005 lower_ms_load_workgroup_index(nir_builder *b,
4006 UNUSED nir_intrinsic_instr *intrin,
4007 lower_ngg_ms_state *s)
4008 {
4009 return s->workgroup_index;
4010 }
4011
4012 static nir_def *
lower_ms_set_vertex_and_primitive_count(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_ms_state * s)4013 lower_ms_set_vertex_and_primitive_count(nir_builder *b,
4014 nir_intrinsic_instr *intrin,
4015 lower_ngg_ms_state *s)
4016 {
4017 /* If either the number of vertices or primitives is zero, set both of them to zero. */
4018 nir_def *num_vtx = nir_read_first_invocation(b, intrin->src[0].ssa);
4019 nir_def *num_prm = nir_read_first_invocation(b, intrin->src[1].ssa);
4020 nir_def *zero = nir_imm_int(b, 0);
4021 nir_def *is_either_zero = nir_ieq(b, nir_umin(b, num_vtx, num_prm), zero);
4022 num_vtx = nir_bcsel(b, is_either_zero, zero, num_vtx);
4023 num_prm = nir_bcsel(b, is_either_zero, zero, num_prm);
4024
4025 nir_store_var(b, s->vertex_count_var, num_vtx, 0x1);
4026 nir_store_var(b, s->primitive_count_var, num_prm, 0x1);
4027
4028 return NIR_LOWER_INSTR_PROGRESS_REPLACE;
4029 }
4030
4031 static nir_def *
update_ms_barrier(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_ms_state * s)4032 update_ms_barrier(nir_builder *b,
4033 nir_intrinsic_instr *intrin,
4034 lower_ngg_ms_state *s)
4035 {
4036 /* Output loads and stores are lowered to shared memory access,
4037 * so we have to update the barriers to also reflect this.
4038 */
4039 unsigned mem_modes = nir_intrinsic_memory_modes(intrin);
4040 if (mem_modes & nir_var_shader_out)
4041 mem_modes |= nir_var_mem_shared;
4042 else
4043 return NULL;
4044
4045 nir_intrinsic_set_memory_modes(intrin, mem_modes);
4046
4047 return NIR_LOWER_INSTR_PROGRESS;
4048 }
4049
4050 static nir_def *
lower_ms_intrinsic(nir_builder * b,nir_instr * instr,void * state)4051 lower_ms_intrinsic(nir_builder *b, nir_instr *instr, void *state)
4052 {
4053 lower_ngg_ms_state *s = (lower_ngg_ms_state *) state;
4054
4055 if (instr->type != nir_instr_type_intrinsic)
4056 return NULL;
4057
4058 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
4059
4060 switch (intrin->intrinsic) {
4061 case nir_intrinsic_store_per_vertex_output:
4062 case nir_intrinsic_store_per_primitive_output:
4063 ms_store_arrayed_output_intrin(b, intrin, s);
4064 return NIR_LOWER_INSTR_PROGRESS_REPLACE;
4065 case nir_intrinsic_load_per_vertex_output:
4066 case nir_intrinsic_load_per_primitive_output:
4067 return ms_load_arrayed_output_intrin(b, intrin, s);
4068 case nir_intrinsic_barrier:
4069 return update_ms_barrier(b, intrin, s);
4070 case nir_intrinsic_load_workgroup_index:
4071 return lower_ms_load_workgroup_index(b, intrin, s);
4072 case nir_intrinsic_set_vertex_and_primitive_count:
4073 return lower_ms_set_vertex_and_primitive_count(b, intrin, s);
4074 default:
4075 unreachable("Not a lowerable mesh shader intrinsic.");
4076 }
4077 }
4078
4079 static bool
filter_ms_intrinsic(const nir_instr * instr,UNUSED const void * s)4080 filter_ms_intrinsic(const nir_instr *instr,
4081 UNUSED const void *s)
4082 {
4083 if (instr->type != nir_instr_type_intrinsic)
4084 return false;
4085
4086 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
4087 return intrin->intrinsic == nir_intrinsic_store_output ||
4088 intrin->intrinsic == nir_intrinsic_load_output ||
4089 intrin->intrinsic == nir_intrinsic_store_per_vertex_output ||
4090 intrin->intrinsic == nir_intrinsic_load_per_vertex_output ||
4091 intrin->intrinsic == nir_intrinsic_store_per_primitive_output ||
4092 intrin->intrinsic == nir_intrinsic_load_per_primitive_output ||
4093 intrin->intrinsic == nir_intrinsic_barrier ||
4094 intrin->intrinsic == nir_intrinsic_load_workgroup_index ||
4095 intrin->intrinsic == nir_intrinsic_set_vertex_and_primitive_count;
4096 }
4097
4098 static void
lower_ms_intrinsics(nir_shader * shader,lower_ngg_ms_state * s)4099 lower_ms_intrinsics(nir_shader *shader, lower_ngg_ms_state *s)
4100 {
4101 nir_shader_lower_instructions(shader, filter_ms_intrinsic, lower_ms_intrinsic, s);
4102 }
4103
4104 static void
ms_emit_arrayed_outputs(nir_builder * b,nir_def * invocation_index,uint64_t mask,lower_ngg_ms_state * s)4105 ms_emit_arrayed_outputs(nir_builder *b,
4106 nir_def *invocation_index,
4107 uint64_t mask,
4108 lower_ngg_ms_state *s)
4109 {
4110 nir_def *zero = nir_imm_int(b, 0);
4111
4112 u_foreach_bit64(slot, mask) {
4113 /* Should not occur here, handled separately. */
4114 assert(slot != VARYING_SLOT_PRIMITIVE_COUNT && slot != VARYING_SLOT_PRIMITIVE_INDICES);
4115
4116 unsigned component_mask = s->output_info[slot].components_mask;
4117
4118 while (component_mask) {
4119 int start_comp = 0, num_components = 1;
4120 u_bit_scan_consecutive_range(&component_mask, &start_comp, &num_components);
4121
4122 nir_def *load =
4123 ms_load_arrayed_output(b, invocation_index, zero, slot, start_comp,
4124 num_components, 32, s);
4125
4126 for (int i = 0; i < num_components; i++)
4127 s->outputs[slot][start_comp + i] = nir_channel(b, load, i);
4128 }
4129 }
4130 }
4131
4132 static void
ms_create_same_invocation_vars(nir_builder * b,lower_ngg_ms_state * s)4133 ms_create_same_invocation_vars(nir_builder *b, lower_ngg_ms_state *s)
4134 {
4135 /* Initialize NIR variables for same-invocation outputs. */
4136 uint64_t same_invocation_output_mask = s->layout.var.prm_attr.mask | s->layout.var.vtx_attr.mask;
4137
4138 u_foreach_bit64(slot, same_invocation_output_mask) {
4139 for (unsigned comp = 0; comp < 4; ++comp) {
4140 unsigned idx = slot * 4 + comp;
4141 s->out_variables[idx] = nir_local_variable_create(b->impl, glsl_uint_type(), "ms_var_output");
4142 }
4143 }
4144 }
4145
4146 static void
ms_emit_legacy_workgroup_index(nir_builder * b,lower_ngg_ms_state * s)4147 ms_emit_legacy_workgroup_index(nir_builder *b, lower_ngg_ms_state *s)
4148 {
4149 /* Workgroup ID should have been lowered to workgroup index. */
4150 assert(!BITSET_TEST(b->shader->info.system_values_read, SYSTEM_VALUE_WORKGROUP_ID));
4151
4152 /* No need to do anything if the shader doesn't use the workgroup index. */
4153 if (!BITSET_TEST(b->shader->info.system_values_read, SYSTEM_VALUE_WORKGROUP_INDEX))
4154 return;
4155
4156 b->cursor = nir_before_impl(b->impl);
4157
4158 /* Legacy fast launch mode (FAST_LAUNCH=1):
4159 *
4160 * The HW doesn't support a proper workgroup index for vertex processing stages,
4161 * so we use the vertex ID which is equivalent to the index of the current workgroup
4162 * within the current dispatch.
4163 *
4164 * Due to the register programming of mesh shaders, this value is only filled for
4165 * the first invocation of the first wave. To let other waves know, we use LDS.
4166 */
4167 nir_def *workgroup_index = nir_load_vertex_id_zero_base(b);
4168
4169 if (s->api_workgroup_size <= s->wave_size) {
4170 /* API workgroup is small, so we don't need to use LDS. */
4171 s->workgroup_index = nir_read_first_invocation(b, workgroup_index);
4172 return;
4173 }
4174
4175 unsigned workgroup_index_lds_addr = s->layout.lds.workgroup_info_addr + lds_ms_wg_index;
4176
4177 nir_def *zero = nir_imm_int(b, 0);
4178 nir_def *dont_care = nir_undef(b, 1, 32);
4179 nir_def *loaded_workgroup_index = NULL;
4180
4181 /* Use elect to make sure only 1 invocation uses LDS. */
4182 nir_if *if_elected = nir_push_if(b, nir_elect(b, 1));
4183 {
4184 nir_def *wave_id = nir_load_subgroup_id(b);
4185 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, wave_id, 0));
4186 {
4187 nir_store_shared(b, workgroup_index, zero, .base = workgroup_index_lds_addr);
4188 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4189 .memory_scope = SCOPE_WORKGROUP,
4190 .memory_semantics = NIR_MEMORY_ACQ_REL,
4191 .memory_modes = nir_var_mem_shared);
4192 }
4193 nir_push_else(b, if_wave_0);
4194 {
4195 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4196 .memory_scope = SCOPE_WORKGROUP,
4197 .memory_semantics = NIR_MEMORY_ACQ_REL,
4198 .memory_modes = nir_var_mem_shared);
4199 loaded_workgroup_index = nir_load_shared(b, 1, 32, zero, .base = workgroup_index_lds_addr);
4200 }
4201 nir_pop_if(b, if_wave_0);
4202
4203 workgroup_index = nir_if_phi(b, workgroup_index, loaded_workgroup_index);
4204 }
4205 nir_pop_if(b, if_elected);
4206
4207 workgroup_index = nir_if_phi(b, workgroup_index, dont_care);
4208 s->workgroup_index = nir_read_first_invocation(b, workgroup_index);
4209 }
4210
4211 static void
set_ms_final_output_counts(nir_builder * b,lower_ngg_ms_state * s,nir_def ** out_num_prm,nir_def ** out_num_vtx)4212 set_ms_final_output_counts(nir_builder *b,
4213 lower_ngg_ms_state *s,
4214 nir_def **out_num_prm,
4215 nir_def **out_num_vtx)
4216 {
4217 /* The spec allows the numbers to be divergent, and in that case we need to
4218 * use the values from the first invocation. Also the HW requires us to set
4219 * both to 0 if either was 0.
4220 *
4221 * These are already done by the lowering.
4222 */
4223 nir_def *num_prm = nir_load_var(b, s->primitive_count_var);
4224 nir_def *num_vtx = nir_load_var(b, s->vertex_count_var);
4225
4226 if (s->hw_workgroup_size <= s->wave_size) {
4227 /* Single-wave mesh shader workgroup. */
4228 alloc_vertices_and_primitives(b, num_vtx, num_prm);
4229 *out_num_prm = num_prm;
4230 *out_num_vtx = num_vtx;
4231 return;
4232 }
4233
4234 /* Multi-wave mesh shader workgroup:
4235 * We need to use LDS to distribute the correct values to the other waves.
4236 *
4237 * TODO:
4238 * If we can prove that the values are workgroup-uniform, we can skip this
4239 * and just use whatever the current wave has. However, NIR divergence analysis
4240 * currently doesn't support this.
4241 */
4242
4243 nir_def *zero = nir_imm_int(b, 0);
4244
4245 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, nir_load_subgroup_id(b), 0));
4246 {
4247 nir_if *if_elected = nir_push_if(b, nir_elect(b, 1));
4248 {
4249 nir_store_shared(b, nir_vec2(b, num_prm, num_vtx), zero,
4250 .base = s->layout.lds.workgroup_info_addr + lds_ms_num_prims);
4251 }
4252 nir_pop_if(b, if_elected);
4253
4254 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4255 .memory_scope = SCOPE_WORKGROUP,
4256 .memory_semantics = NIR_MEMORY_ACQ_REL,
4257 .memory_modes = nir_var_mem_shared);
4258
4259 alloc_vertices_and_primitives(b, num_vtx, num_prm);
4260 }
4261 nir_push_else(b, if_wave_0);
4262 {
4263 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4264 .memory_scope = SCOPE_WORKGROUP,
4265 .memory_semantics = NIR_MEMORY_ACQ_REL,
4266 .memory_modes = nir_var_mem_shared);
4267
4268 nir_def *prm_vtx = NULL;
4269 nir_def *dont_care_2x32 = nir_undef(b, 2, 32);
4270 nir_if *if_elected = nir_push_if(b, nir_elect(b, 1));
4271 {
4272 prm_vtx = nir_load_shared(b, 2, 32, zero,
4273 .base = s->layout.lds.workgroup_info_addr + lds_ms_num_prims);
4274 }
4275 nir_pop_if(b, if_elected);
4276
4277 prm_vtx = nir_if_phi(b, prm_vtx, dont_care_2x32);
4278 num_prm = nir_read_first_invocation(b, nir_channel(b, prm_vtx, 0));
4279 num_vtx = nir_read_first_invocation(b, nir_channel(b, prm_vtx, 1));
4280
4281 nir_store_var(b, s->primitive_count_var, num_prm, 0x1);
4282 nir_store_var(b, s->vertex_count_var, num_vtx, 0x1);
4283 }
4284 nir_pop_if(b, if_wave_0);
4285
4286 *out_num_prm = nir_load_var(b, s->primitive_count_var);
4287 *out_num_vtx = nir_load_var(b, s->vertex_count_var);
4288 }
4289
4290 static void
ms_emit_attribute_ring_output_stores(nir_builder * b,const uint64_t outputs_mask,nir_def * idx,lower_ngg_ms_state * s)4291 ms_emit_attribute_ring_output_stores(nir_builder *b, const uint64_t outputs_mask,
4292 nir_def *idx, lower_ngg_ms_state *s)
4293 {
4294 if (!outputs_mask)
4295 return;
4296
4297 nir_def *ring = nir_load_ring_attr_amd(b);
4298 nir_def *off = nir_load_ring_attr_offset_amd(b);
4299 nir_def *zero = nir_imm_int(b, 0);
4300
4301 u_foreach_bit64 (slot, outputs_mask) {
4302 if (s->vs_output_param_offset[slot] > AC_EXP_PARAM_OFFSET_31)
4303 continue;
4304
4305 nir_def *soffset = nir_iadd_imm(b, off, s->vs_output_param_offset[slot] * 16 * 32);
4306 nir_def *store_val = nir_undef(b, 4, 32);
4307 unsigned store_val_components = 0;
4308 for (unsigned c = 0; c < 4; ++c) {
4309 if (s->outputs[slot][c]) {
4310 store_val = nir_vector_insert_imm(b, store_val, s->outputs[slot][c], c);
4311 store_val_components = c + 1;
4312 }
4313 }
4314
4315 store_val = nir_trim_vector(b, store_val, store_val_components);
4316 nir_store_buffer_amd(b, store_val, ring, zero, soffset, idx,
4317 .memory_modes = nir_var_shader_out,
4318 .access = ACCESS_COHERENT | ACCESS_IS_SWIZZLED_AMD);
4319 }
4320 }
4321
4322 static nir_def *
ms_prim_exp_arg_ch1(nir_builder * b,nir_def * invocation_index,nir_def * num_vtx,lower_ngg_ms_state * s)4323 ms_prim_exp_arg_ch1(nir_builder *b, nir_def *invocation_index, nir_def *num_vtx, lower_ngg_ms_state *s)
4324 {
4325 /* Primitive connectivity data: describes which vertices the primitive uses. */
4326 nir_def *prim_idx_addr = nir_imul_imm(b, invocation_index, s->vertices_per_prim);
4327 nir_def *indices_loaded = NULL;
4328 nir_def *cull_flag = NULL;
4329
4330 if (s->layout.var.prm_attr.mask & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES)) {
4331 nir_def *indices[3] = {0};
4332 for (unsigned c = 0; c < s->vertices_per_prim; ++c)
4333 indices[c] = nir_load_var(b, s->out_variables[VARYING_SLOT_PRIMITIVE_INDICES * 4 + c]);
4334 indices_loaded = nir_vec(b, indices, s->vertices_per_prim);
4335 } else {
4336 indices_loaded = nir_load_shared(b, s->vertices_per_prim, 8, prim_idx_addr, .base = s->layout.lds.indices_addr);
4337 indices_loaded = nir_u2u32(b, indices_loaded);
4338 }
4339
4340 if (s->uses_cull_flags) {
4341 nir_def *loaded_cull_flag = NULL;
4342 if (s->layout.var.prm_attr.mask & BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE))
4343 loaded_cull_flag = nir_load_var(b, s->out_variables[VARYING_SLOT_CULL_PRIMITIVE * 4]);
4344 else
4345 loaded_cull_flag = nir_u2u32(b, nir_load_shared(b, 1, 8, prim_idx_addr, .base = s->layout.lds.cull_flags_addr));
4346
4347 cull_flag = nir_i2b(b, loaded_cull_flag);
4348 }
4349
4350 nir_def *indices[3];
4351 nir_def *max_vtx_idx = nir_iadd_imm(b, num_vtx, -1u);
4352
4353 for (unsigned i = 0; i < s->vertices_per_prim; ++i) {
4354 indices[i] = nir_channel(b, indices_loaded, i);
4355 indices[i] = nir_umin(b, indices[i], max_vtx_idx);
4356 }
4357
4358 return emit_pack_ngg_prim_exp_arg(b, s->vertices_per_prim, indices, cull_flag);
4359 }
4360
4361 static nir_def *
ms_prim_exp_arg_ch2(nir_builder * b,uint64_t outputs_mask,lower_ngg_ms_state * s)4362 ms_prim_exp_arg_ch2(nir_builder *b, uint64_t outputs_mask, lower_ngg_ms_state *s)
4363 {
4364 nir_def *prim_exp_arg_ch2 = NULL;
4365
4366 if (outputs_mask) {
4367 /* When layer, viewport etc. are per-primitive, they need to be encoded in
4368 * the primitive export instruction's second channel. The encoding is:
4369 *
4370 * --- GFX10.3 ---
4371 * bits 31..30: VRS rate Y
4372 * bits 29..28: VRS rate X
4373 * bits 23..20: viewport
4374 * bits 19..17: layer
4375 *
4376 * --- GFX11 ---
4377 * bits 31..28: VRS rate enum
4378 * bits 23..20: viewport
4379 * bits 12..00: layer
4380 */
4381 prim_exp_arg_ch2 = nir_imm_int(b, 0);
4382
4383 if (outputs_mask & VARYING_BIT_LAYER) {
4384 nir_def *layer =
4385 nir_ishl_imm(b, s->outputs[VARYING_SLOT_LAYER][0], s->gfx_level >= GFX11 ? 0 : 17);
4386 prim_exp_arg_ch2 = nir_ior(b, prim_exp_arg_ch2, layer);
4387 }
4388
4389 if (outputs_mask & VARYING_BIT_VIEWPORT) {
4390 nir_def *view = nir_ishl_imm(b, s->outputs[VARYING_SLOT_VIEWPORT][0], 20);
4391 prim_exp_arg_ch2 = nir_ior(b, prim_exp_arg_ch2, view);
4392 }
4393
4394 if (outputs_mask & VARYING_BIT_PRIMITIVE_SHADING_RATE) {
4395 nir_def *rate = s->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE][0];
4396 prim_exp_arg_ch2 = nir_ior(b, prim_exp_arg_ch2, rate);
4397 }
4398 }
4399
4400 return prim_exp_arg_ch2;
4401 }
4402
4403 static void
ms_prim_gen_query(nir_builder * b,nir_def * invocation_index,nir_def * num_prm,lower_ngg_ms_state * s)4404 ms_prim_gen_query(nir_builder *b,
4405 nir_def *invocation_index,
4406 nir_def *num_prm,
4407 lower_ngg_ms_state *s)
4408 {
4409 if (!s->has_query)
4410 return;
4411
4412 nir_if *if_invocation_index_zero = nir_push_if(b, nir_ieq_imm(b, invocation_index, 0));
4413 {
4414 nir_if *if_shader_query = nir_push_if(b, nir_load_prim_gen_query_enabled_amd(b));
4415 {
4416 nir_atomic_add_gen_prim_count_amd(b, num_prm, .stream_id = 0);
4417 }
4418 nir_pop_if(b, if_shader_query);
4419 }
4420 nir_pop_if(b, if_invocation_index_zero);
4421 }
4422
4423 static void
ms_invocation_query(nir_builder * b,nir_def * invocation_index,lower_ngg_ms_state * s)4424 ms_invocation_query(nir_builder *b,
4425 nir_def *invocation_index,
4426 lower_ngg_ms_state *s)
4427 {
4428 if (!s->has_query)
4429 return;
4430
4431 nir_if *if_invocation_index_zero = nir_push_if(b, nir_ieq_imm(b, invocation_index, 0));
4432 {
4433 nir_if *if_pipeline_query = nir_push_if(b, nir_load_pipeline_stat_query_enabled_amd(b));
4434 {
4435 nir_atomic_add_shader_invocation_count_amd(b, nir_imm_int(b, s->api_workgroup_size));
4436 }
4437 nir_pop_if(b, if_pipeline_query);
4438 }
4439 nir_pop_if(b, if_invocation_index_zero);
4440 }
4441
4442 static void
emit_ms_vertex(nir_builder * b,nir_def * index,nir_def * row,bool exports,bool parameters,uint64_t per_vertex_outputs,lower_ngg_ms_state * s)4443 emit_ms_vertex(nir_builder *b, nir_def *index, nir_def *row, bool exports, bool parameters,
4444 uint64_t per_vertex_outputs, lower_ngg_ms_state *s)
4445 {
4446 ms_emit_arrayed_outputs(b, index, per_vertex_outputs, s);
4447
4448 if (exports) {
4449 ac_nir_export_position(b, s->gfx_level, s->clipdist_enable_mask,
4450 !s->has_param_exports, false, true,
4451 s->per_vertex_outputs | VARYING_BIT_POS, s->outputs, row);
4452 }
4453
4454 if (parameters) {
4455 /* Export generic attributes on GFX10.3
4456 * (On GFX11 they are already stored in the attribute ring.)
4457 */
4458 if (s->has_param_exports && s->gfx_level == GFX10_3) {
4459 ac_nir_export_parameters(b, s->vs_output_param_offset, per_vertex_outputs, 0, s->outputs,
4460 NULL, NULL);
4461 }
4462
4463 /* GFX11+: also store special outputs to the attribute ring so PS can load them. */
4464 if (s->gfx_level >= GFX11 && (per_vertex_outputs & MS_VERT_ARG_EXP_MASK))
4465 ms_emit_attribute_ring_output_stores(b, per_vertex_outputs & MS_VERT_ARG_EXP_MASK, index, s);
4466 }
4467 }
4468
4469 static void
emit_ms_primitive(nir_builder * b,nir_def * index,nir_def * row,bool exports,bool parameters,uint64_t per_primitive_outputs,lower_ngg_ms_state * s)4470 emit_ms_primitive(nir_builder *b, nir_def *index, nir_def *row, bool exports, bool parameters,
4471 uint64_t per_primitive_outputs, lower_ngg_ms_state *s)
4472 {
4473 ms_emit_arrayed_outputs(b, index, per_primitive_outputs, s);
4474
4475 /* Insert layer output store if the pipeline uses multiview but the API shader doesn't write it. */
4476 if (s->insert_layer_output)
4477 s->outputs[VARYING_SLOT_LAYER][0] = nir_load_view_index(b);
4478
4479 if (exports) {
4480 const uint64_t outputs_mask = per_primitive_outputs & MS_PRIM_ARG_EXP_MASK;
4481 nir_def *num_vtx = nir_load_var(b, s->vertex_count_var);
4482 nir_def *prim_exp_arg_ch1 = ms_prim_exp_arg_ch1(b, index, num_vtx, s);
4483 nir_def *prim_exp_arg_ch2 = ms_prim_exp_arg_ch2(b, outputs_mask, s);
4484
4485 nir_def *prim_exp_arg = prim_exp_arg_ch2 ?
4486 nir_vec2(b, prim_exp_arg_ch1, prim_exp_arg_ch2) : prim_exp_arg_ch1;
4487
4488 ac_nir_export_primitive(b, prim_exp_arg, row);
4489 }
4490
4491 if (parameters) {
4492 /* Export generic attributes on GFX10.3
4493 * (On GFX11 they are already stored in the attribute ring.)
4494 */
4495 if (s->has_param_exports && s->gfx_level == GFX10_3) {
4496 ac_nir_export_parameters(b, s->vs_output_param_offset, per_primitive_outputs, 0,
4497 s->outputs, NULL, NULL);
4498 }
4499
4500 /* GFX11+: also store special outputs to the attribute ring so PS can load them. */
4501 if (s->gfx_level >= GFX11)
4502 ms_emit_attribute_ring_output_stores(b, per_primitive_outputs & MS_PRIM_ARG_EXP_MASK, index, s);
4503 }
4504 }
4505
4506 static void
emit_ms_outputs(nir_builder * b,nir_def * invocation_index,nir_def * row_start,nir_def * count,bool exports,bool parameters,uint64_t mask,void (* cb)(nir_builder *,nir_def *,nir_def *,bool,bool,uint64_t,lower_ngg_ms_state *),lower_ngg_ms_state * s)4507 emit_ms_outputs(nir_builder *b, nir_def *invocation_index, nir_def *row_start,
4508 nir_def *count, bool exports, bool parameters, uint64_t mask,
4509 void (*cb)(nir_builder *, nir_def *, nir_def *, bool, bool,
4510 uint64_t, lower_ngg_ms_state *),
4511 lower_ngg_ms_state *s)
4512 {
4513 if (cb == &emit_ms_primitive ? s->prim_multirow_export : s->vert_multirow_export) {
4514 assert(s->hw_workgroup_size % s->wave_size == 0);
4515 const unsigned num_waves = s->hw_workgroup_size / s->wave_size;
4516
4517 nir_loop *row_loop = nir_push_loop(b);
4518 {
4519 nir_block *preheader = nir_cf_node_as_block(nir_cf_node_prev(&row_loop->cf_node));
4520
4521 nir_phi_instr *index = nir_phi_instr_create(b->shader);
4522 nir_phi_instr *row = nir_phi_instr_create(b->shader);
4523 nir_def_init(&index->instr, &index->def, 1, 32);
4524 nir_def_init(&row->instr, &row->def, 1, 32);
4525
4526 nir_phi_instr_add_src(index, preheader, invocation_index);
4527 nir_phi_instr_add_src(row, preheader, row_start);
4528
4529 nir_if *if_break = nir_push_if(b, nir_uge(b, &index->def, count));
4530 {
4531 nir_jump(b, nir_jump_break);
4532 }
4533 nir_pop_if(b, if_break);
4534
4535 cb(b, &index->def, &row->def, exports, parameters, mask, s);
4536
4537 nir_block *body = nir_cursor_current_block(b->cursor);
4538 nir_phi_instr_add_src(index, body,
4539 nir_iadd_imm(b, &index->def, s->hw_workgroup_size));
4540 nir_phi_instr_add_src(row, body,
4541 nir_iadd_imm(b, &row->def, num_waves));
4542
4543 nir_instr_insert_before_cf_list(&row_loop->body, &row->instr);
4544 nir_instr_insert_before_cf_list(&row_loop->body, &index->instr);
4545 }
4546 nir_pop_loop(b, row_loop);
4547 } else {
4548 nir_def *has_output = nir_ilt(b, invocation_index, count);
4549 nir_if *if_has_output = nir_push_if(b, has_output);
4550 {
4551 cb(b, invocation_index, row_start, exports, parameters, mask, s);
4552 }
4553 nir_pop_if(b, if_has_output);
4554 }
4555 }
4556
4557 static void
emit_ms_finale(nir_builder * b,lower_ngg_ms_state * s)4558 emit_ms_finale(nir_builder *b, lower_ngg_ms_state *s)
4559 {
4560 /* We assume there is always a single end block in the shader. */
4561 nir_block *last_block = nir_impl_last_block(b->impl);
4562 b->cursor = nir_after_block(last_block);
4563
4564 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
4565 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_shader_out|nir_var_mem_shared);
4566
4567 nir_def *num_prm;
4568 nir_def *num_vtx;
4569
4570 set_ms_final_output_counts(b, s, &num_prm, &num_vtx);
4571
4572 nir_def *invocation_index = nir_load_local_invocation_index(b);
4573
4574 ms_prim_gen_query(b, invocation_index, num_prm, s);
4575
4576 nir_def *row_start = NULL;
4577 if (s->fast_launch_2)
4578 row_start = s->hw_workgroup_size <= s->wave_size ? nir_imm_int(b, 0) : nir_load_subgroup_id(b);
4579
4580 /* Load vertex/primitive attributes from shared memory and
4581 * emit store_output intrinsics for them.
4582 *
4583 * Contrary to the semantics of the API mesh shader, these are now
4584 * compliant with NGG HW semantics, meaning that these store the
4585 * current thread's vertex attributes in a way the HW can export.
4586 */
4587
4588 uint64_t per_vertex_outputs =
4589 s->per_vertex_outputs & ~s->layout.attr_ring.vtx_attr.mask;
4590 uint64_t per_primitive_outputs =
4591 s->per_primitive_outputs & ~s->layout.attr_ring.prm_attr.mask & ~SPECIAL_MS_OUT_MASK;
4592
4593 /* Insert layer output store if the pipeline uses multiview but the API shader doesn't write it. */
4594 if (s->insert_layer_output) {
4595 b->shader->info.outputs_written |= VARYING_BIT_LAYER;
4596 b->shader->info.per_primitive_outputs |= VARYING_BIT_LAYER;
4597 per_primitive_outputs |= VARYING_BIT_LAYER;
4598 }
4599
4600 const bool has_special_param_exports =
4601 (per_vertex_outputs & MS_VERT_ARG_EXP_MASK) ||
4602 (per_primitive_outputs & MS_PRIM_ARG_EXP_MASK);
4603
4604 const bool wait_attr_ring = must_wait_attr_ring(s->gfx_level, has_special_param_exports);
4605
4606 /* Export vertices. */
4607 if ((per_vertex_outputs & ~VARYING_BIT_POS) || !wait_attr_ring) {
4608 emit_ms_outputs(b, invocation_index, row_start, num_vtx, !wait_attr_ring, true,
4609 per_vertex_outputs, &emit_ms_vertex, s);
4610 }
4611
4612 /* Export primitives. */
4613 if (per_primitive_outputs || !wait_attr_ring) {
4614 emit_ms_outputs(b, invocation_index, row_start, num_prm, !wait_attr_ring, true,
4615 per_primitive_outputs, &emit_ms_primitive, s);
4616 }
4617
4618 /* When we need to wait for attribute ring stores, we emit both position and primitive
4619 * export instructions after a barrier to make sure both per-vertex and per-primitive
4620 * attribute ring stores are finished before the GPU starts rasterization.
4621 */
4622 if (wait_attr_ring) {
4623 /* Wait for attribute stores to finish. */
4624 nir_barrier(b, .execution_scope = SCOPE_SUBGROUP,
4625 .memory_scope = SCOPE_DEVICE,
4626 .memory_semantics = NIR_MEMORY_RELEASE,
4627 .memory_modes = nir_var_shader_out);
4628
4629 /* Position/primitive export only */
4630 emit_ms_outputs(b, invocation_index, row_start, num_vtx, true, false,
4631 per_vertex_outputs, &emit_ms_vertex, s);
4632 emit_ms_outputs(b, invocation_index, row_start, num_prm, true, false,
4633 per_primitive_outputs, &emit_ms_primitive, s);
4634 }
4635 }
4636
4637 static void
handle_smaller_ms_api_workgroup(nir_builder * b,lower_ngg_ms_state * s)4638 handle_smaller_ms_api_workgroup(nir_builder *b,
4639 lower_ngg_ms_state *s)
4640 {
4641 if (s->api_workgroup_size >= s->hw_workgroup_size)
4642 return;
4643
4644 /* Handle barriers manually when the API workgroup
4645 * size is less than the HW workgroup size.
4646 *
4647 * The problem is that the real workgroup launched on NGG HW
4648 * will be larger than the size specified by the API, and the
4649 * extra waves need to keep up with barriers in the API waves.
4650 *
4651 * There are 2 different cases:
4652 * 1. The whole API workgroup fits in a single wave.
4653 * We can shrink the barriers to subgroup scope and
4654 * don't need to insert any extra ones.
4655 * 2. The API workgroup occupies multiple waves, but not
4656 * all. In this case, we emit code that consumes every
4657 * barrier on the extra waves.
4658 */
4659 assert(s->hw_workgroup_size % s->wave_size == 0);
4660 bool scan_barriers = ALIGN(s->api_workgroup_size, s->wave_size) < s->hw_workgroup_size;
4661 bool can_shrink_barriers = s->api_workgroup_size <= s->wave_size;
4662 bool need_additional_barriers = scan_barriers && !can_shrink_barriers;
4663
4664 unsigned api_waves_in_flight_addr = s->layout.lds.workgroup_info_addr + lds_ms_num_api_waves;
4665 unsigned num_api_waves = DIV_ROUND_UP(s->api_workgroup_size, s->wave_size);
4666
4667 /* Scan the shader for workgroup barriers. */
4668 if (scan_barriers) {
4669 bool has_any_workgroup_barriers = false;
4670
4671 nir_foreach_block(block, b->impl) {
4672 nir_foreach_instr_safe(instr, block) {
4673 if (instr->type != nir_instr_type_intrinsic)
4674 continue;
4675
4676 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
4677 bool is_workgroup_barrier =
4678 intrin->intrinsic == nir_intrinsic_barrier &&
4679 nir_intrinsic_execution_scope(intrin) == SCOPE_WORKGROUP;
4680
4681 if (!is_workgroup_barrier)
4682 continue;
4683
4684 if (can_shrink_barriers) {
4685 /* Every API invocation runs in the first wave.
4686 * In this case, we can change the barriers to subgroup scope
4687 * and avoid adding additional barriers.
4688 */
4689 nir_intrinsic_set_memory_scope(intrin, SCOPE_SUBGROUP);
4690 nir_intrinsic_set_execution_scope(intrin, SCOPE_SUBGROUP);
4691 } else {
4692 has_any_workgroup_barriers = true;
4693 }
4694 }
4695 }
4696
4697 need_additional_barriers &= has_any_workgroup_barriers;
4698 }
4699
4700 /* Extract the full control flow of the shader. */
4701 nir_cf_list extracted;
4702 nir_cf_extract(&extracted, nir_before_impl(b->impl),
4703 nir_after_cf_list(&b->impl->body));
4704 b->cursor = nir_before_impl(b->impl);
4705
4706 /* Wrap the shader in an if to ensure that only the necessary amount of lanes run it. */
4707 nir_def *invocation_index = nir_load_local_invocation_index(b);
4708 nir_def *zero = nir_imm_int(b, 0);
4709
4710 if (need_additional_barriers) {
4711 /* First invocation stores 0 to number of API waves in flight. */
4712 nir_if *if_first_in_workgroup = nir_push_if(b, nir_ieq_imm(b, invocation_index, 0));
4713 {
4714 nir_store_shared(b, nir_imm_int(b, num_api_waves), zero, .base = api_waves_in_flight_addr);
4715 }
4716 nir_pop_if(b, if_first_in_workgroup);
4717
4718 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4719 .memory_scope = SCOPE_WORKGROUP,
4720 .memory_semantics = NIR_MEMORY_ACQ_REL,
4721 .memory_modes = nir_var_shader_out | nir_var_mem_shared);
4722 }
4723
4724 nir_def *has_api_ms_invocation = nir_ult_imm(b, invocation_index, s->api_workgroup_size);
4725 nir_if *if_has_api_ms_invocation = nir_push_if(b, has_api_ms_invocation);
4726 {
4727 nir_cf_reinsert(&extracted, b->cursor);
4728 b->cursor = nir_after_cf_list(&if_has_api_ms_invocation->then_list);
4729
4730 if (need_additional_barriers) {
4731 /* One invocation in each API wave decrements the number of API waves in flight. */
4732 nir_if *if_elected_again = nir_push_if(b, nir_elect(b, 1));
4733 {
4734 nir_shared_atomic(b, 32, zero, nir_imm_int(b, -1u),
4735 .base = api_waves_in_flight_addr,
4736 .atomic_op = nir_atomic_op_iadd);
4737 }
4738 nir_pop_if(b, if_elected_again);
4739
4740 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4741 .memory_scope = SCOPE_WORKGROUP,
4742 .memory_semantics = NIR_MEMORY_ACQ_REL,
4743 .memory_modes = nir_var_shader_out | nir_var_mem_shared);
4744 }
4745
4746 ms_invocation_query(b, invocation_index, s);
4747 }
4748 nir_pop_if(b, if_has_api_ms_invocation);
4749
4750 if (need_additional_barriers) {
4751 /* Make sure that waves that don't run any API invocations execute
4752 * the same amount of barriers as those that do.
4753 *
4754 * We do this by executing a barrier until the number of API waves
4755 * in flight becomes zero.
4756 */
4757 nir_def *has_api_ms_ballot = nir_ballot(b, 1, s->wave_size, has_api_ms_invocation);
4758 nir_def *wave_has_no_api_ms = nir_ieq_imm(b, has_api_ms_ballot, 0);
4759 nir_if *if_wave_has_no_api_ms = nir_push_if(b, wave_has_no_api_ms);
4760 {
4761 nir_if *if_elected = nir_push_if(b, nir_elect(b, 1));
4762 {
4763 nir_loop *loop = nir_push_loop(b);
4764 {
4765 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4766 .memory_scope = SCOPE_WORKGROUP,
4767 .memory_semantics = NIR_MEMORY_ACQ_REL,
4768 .memory_modes = nir_var_shader_out | nir_var_mem_shared);
4769
4770 nir_def *loaded = nir_load_shared(b, 1, 32, zero, .base = api_waves_in_flight_addr);
4771 nir_if *if_break = nir_push_if(b, nir_ieq_imm(b, loaded, 0));
4772 {
4773 nir_jump(b, nir_jump_break);
4774 }
4775 nir_pop_if(b, if_break);
4776 }
4777 nir_pop_loop(b, loop);
4778 }
4779 nir_pop_if(b, if_elected);
4780 }
4781 nir_pop_if(b, if_wave_has_no_api_ms);
4782 }
4783 }
4784
4785 static void
ms_move_output(ms_out_part * from,ms_out_part * to)4786 ms_move_output(ms_out_part *from, ms_out_part *to)
4787 {
4788 uint64_t loc = util_logbase2_64(from->mask);
4789 uint64_t bit = BITFIELD64_BIT(loc);
4790 from->mask ^= bit;
4791 to->mask |= bit;
4792 }
4793
4794 static void
ms_calculate_arrayed_output_layout(ms_out_mem_layout * l,unsigned max_vertices,unsigned max_primitives)4795 ms_calculate_arrayed_output_layout(ms_out_mem_layout *l,
4796 unsigned max_vertices,
4797 unsigned max_primitives)
4798 {
4799 uint32_t lds_vtx_attr_size = util_bitcount64(l->lds.vtx_attr.mask) * max_vertices * 16;
4800 uint32_t lds_prm_attr_size = util_bitcount64(l->lds.prm_attr.mask) * max_primitives * 16;
4801 l->lds.prm_attr.addr = ALIGN(l->lds.vtx_attr.addr + lds_vtx_attr_size, 16);
4802 l->lds.total_size = l->lds.prm_attr.addr + lds_prm_attr_size;
4803
4804 uint32_t scratch_ring_vtx_attr_size =
4805 util_bitcount64(l->scratch_ring.vtx_attr.mask) * max_vertices * 16;
4806 l->scratch_ring.prm_attr.addr =
4807 ALIGN(l->scratch_ring.vtx_attr.addr + scratch_ring_vtx_attr_size, 16);
4808 }
4809
4810 static ms_out_mem_layout
ms_calculate_output_layout(enum amd_gfx_level gfx_level,unsigned api_shared_size,uint64_t per_vertex_output_mask,uint64_t per_primitive_output_mask,uint64_t cross_invocation_output_access,unsigned max_vertices,unsigned max_primitives,unsigned vertices_per_prim)4811 ms_calculate_output_layout(enum amd_gfx_level gfx_level, unsigned api_shared_size,
4812 uint64_t per_vertex_output_mask, uint64_t per_primitive_output_mask,
4813 uint64_t cross_invocation_output_access, unsigned max_vertices,
4814 unsigned max_primitives, unsigned vertices_per_prim)
4815 {
4816 /* These outputs always need export instructions and can't use the attributes ring. */
4817 const uint64_t always_export_mask =
4818 VARYING_BIT_POS | VARYING_BIT_CULL_DIST0 | VARYING_BIT_CULL_DIST1 | VARYING_BIT_CLIP_DIST0 |
4819 VARYING_BIT_CLIP_DIST1 | VARYING_BIT_PSIZ | VARYING_BIT_VIEWPORT |
4820 VARYING_BIT_PRIMITIVE_SHADING_RATE | VARYING_BIT_LAYER |
4821 BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_COUNT) |
4822 BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES) | BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE);
4823
4824 const bool use_attr_ring = gfx_level >= GFX11;
4825 const uint64_t attr_ring_per_vertex_output_mask =
4826 use_attr_ring ? per_vertex_output_mask & ~always_export_mask : 0;
4827 const uint64_t attr_ring_per_primitive_output_mask =
4828 use_attr_ring ? per_primitive_output_mask & ~always_export_mask : 0;
4829
4830 const uint64_t lds_per_vertex_output_mask =
4831 per_vertex_output_mask & ~attr_ring_per_vertex_output_mask & cross_invocation_output_access &
4832 ~SPECIAL_MS_OUT_MASK;
4833 const uint64_t lds_per_primitive_output_mask =
4834 per_primitive_output_mask & ~attr_ring_per_primitive_output_mask &
4835 cross_invocation_output_access & ~SPECIAL_MS_OUT_MASK;
4836
4837 const bool cross_invocation_indices =
4838 cross_invocation_output_access & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES);
4839 const bool cross_invocation_cull_primitive =
4840 cross_invocation_output_access & BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE);
4841
4842 /* Shared memory used by the API shader. */
4843 ms_out_mem_layout l = { .lds = { .total_size = api_shared_size } };
4844
4845 /* GFX11+: use attribute ring for all generic attributes. */
4846 l.attr_ring.vtx_attr.mask = attr_ring_per_vertex_output_mask;
4847 l.attr_ring.prm_attr.mask = attr_ring_per_primitive_output_mask;
4848
4849 /* Outputs without cross-invocation access can be stored in variables. */
4850 l.var.vtx_attr.mask =
4851 per_vertex_output_mask & ~attr_ring_per_vertex_output_mask & ~cross_invocation_output_access;
4852 l.var.prm_attr.mask = per_primitive_output_mask & ~attr_ring_per_primitive_output_mask &
4853 ~cross_invocation_output_access;
4854
4855 /* Workgroup information, see ms_workgroup_* for the layout. */
4856 l.lds.workgroup_info_addr = ALIGN(l.lds.total_size, 16);
4857 l.lds.total_size = l.lds.workgroup_info_addr + 16;
4858
4859 /* Per-vertex and per-primitive output attributes.
4860 * Outputs without cross-invocation access are not included here.
4861 * First, try to put all outputs into LDS (shared memory).
4862 * If they don't fit, try to move them to VRAM one by one.
4863 */
4864 l.lds.vtx_attr.addr = ALIGN(l.lds.total_size, 16);
4865 l.lds.vtx_attr.mask = lds_per_vertex_output_mask;
4866 l.lds.prm_attr.mask = lds_per_primitive_output_mask;
4867 ms_calculate_arrayed_output_layout(&l, max_vertices, max_primitives);
4868
4869 /* NGG shaders can only address up to 32K LDS memory.
4870 * The spec requires us to allow the application to use at least up to 28K
4871 * shared memory. Additionally, we reserve 2K for driver internal use
4872 * (eg. primitive indices and such, see below).
4873 *
4874 * Move the outputs that do not fit LDS, to VRAM.
4875 * Start with per-primitive attributes, because those are grouped at the end.
4876 */
4877 const unsigned usable_lds_kbytes =
4878 (cross_invocation_cull_primitive || cross_invocation_indices) ? 30 : 31;
4879 while (l.lds.total_size >= usable_lds_kbytes * 1024) {
4880 if (l.lds.prm_attr.mask)
4881 ms_move_output(&l.lds.prm_attr, &l.scratch_ring.prm_attr);
4882 else if (l.lds.vtx_attr.mask)
4883 ms_move_output(&l.lds.vtx_attr, &l.scratch_ring.vtx_attr);
4884 else
4885 unreachable("API shader uses too much shared memory.");
4886
4887 ms_calculate_arrayed_output_layout(&l, max_vertices, max_primitives);
4888 }
4889
4890 if (cross_invocation_indices) {
4891 /* Indices: flat array of 8-bit vertex indices for each primitive. */
4892 l.lds.indices_addr = ALIGN(l.lds.total_size, 16);
4893 l.lds.total_size = l.lds.indices_addr + max_primitives * vertices_per_prim;
4894 }
4895
4896 if (cross_invocation_cull_primitive) {
4897 /* Cull flags: array of 8-bit cull flags for each primitive, 1=cull, 0=keep. */
4898 l.lds.cull_flags_addr = ALIGN(l.lds.total_size, 16);
4899 l.lds.total_size = l.lds.cull_flags_addr + max_primitives;
4900 }
4901
4902 /* NGG is only allowed to address up to 32K of LDS. */
4903 assert(l.lds.total_size <= 32 * 1024);
4904 return l;
4905 }
4906
4907 void
ac_nir_lower_ngg_ms(nir_shader * shader,enum amd_gfx_level gfx_level,uint32_t clipdist_enable_mask,const uint8_t * vs_output_param_offset,bool has_param_exports,bool * out_needs_scratch_ring,unsigned wave_size,unsigned hw_workgroup_size,bool multiview,bool has_query,bool fast_launch_2)4908 ac_nir_lower_ngg_ms(nir_shader *shader,
4909 enum amd_gfx_level gfx_level,
4910 uint32_t clipdist_enable_mask,
4911 const uint8_t *vs_output_param_offset,
4912 bool has_param_exports,
4913 bool *out_needs_scratch_ring,
4914 unsigned wave_size,
4915 unsigned hw_workgroup_size,
4916 bool multiview,
4917 bool has_query,
4918 bool fast_launch_2)
4919 {
4920 unsigned vertices_per_prim =
4921 mesa_vertices_per_prim(shader->info.mesh.primitive_type);
4922
4923 uint64_t per_vertex_outputs =
4924 shader->info.outputs_written & ~shader->info.per_primitive_outputs & ~SPECIAL_MS_OUT_MASK;
4925 uint64_t per_primitive_outputs =
4926 shader->info.per_primitive_outputs & shader->info.outputs_written;
4927
4928 /* Whether the shader uses CullPrimitiveEXT */
4929 bool uses_cull = shader->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE);
4930 /* Can't handle indirect register addressing, pretend as if they were cross-invocation. */
4931 uint64_t cross_invocation_access = shader->info.mesh.ms_cross_invocation_output_access |
4932 shader->info.outputs_accessed_indirectly;
4933
4934 unsigned max_vertices = shader->info.mesh.max_vertices_out;
4935 unsigned max_primitives = shader->info.mesh.max_primitives_out;
4936
4937 ms_out_mem_layout layout = ms_calculate_output_layout(
4938 gfx_level, shader->info.shared_size, per_vertex_outputs, per_primitive_outputs,
4939 cross_invocation_access, max_vertices, max_primitives, vertices_per_prim);
4940
4941 shader->info.shared_size = layout.lds.total_size;
4942 *out_needs_scratch_ring = layout.scratch_ring.vtx_attr.mask || layout.scratch_ring.prm_attr.mask;
4943
4944 /* The workgroup size that is specified by the API shader may be different
4945 * from the size of the workgroup that actually runs on the HW, due to the
4946 * limitations of NGG: max 0/1 vertex and 0/1 primitive per lane is allowed.
4947 *
4948 * Therefore, we must make sure that when the API workgroup size is smaller,
4949 * we don't run the API shader on more HW invocations than is necessary.
4950 */
4951 unsigned api_workgroup_size = shader->info.workgroup_size[0] *
4952 shader->info.workgroup_size[1] *
4953 shader->info.workgroup_size[2];
4954
4955 lower_ngg_ms_state state = {
4956 .layout = layout,
4957 .wave_size = wave_size,
4958 .per_vertex_outputs = per_vertex_outputs,
4959 .per_primitive_outputs = per_primitive_outputs,
4960 .vertices_per_prim = vertices_per_prim,
4961 .api_workgroup_size = api_workgroup_size,
4962 .hw_workgroup_size = hw_workgroup_size,
4963 .insert_layer_output = multiview && !(shader->info.outputs_written & VARYING_BIT_LAYER),
4964 .uses_cull_flags = uses_cull,
4965 .gfx_level = gfx_level,
4966 .fast_launch_2 = fast_launch_2,
4967 .vert_multirow_export = fast_launch_2 && max_vertices > hw_workgroup_size,
4968 .prim_multirow_export = fast_launch_2 && max_primitives > hw_workgroup_size,
4969 .clipdist_enable_mask = clipdist_enable_mask,
4970 .vs_output_param_offset = vs_output_param_offset,
4971 .has_param_exports = has_param_exports,
4972 .has_query = has_query,
4973 };
4974
4975 nir_function_impl *impl = nir_shader_get_entrypoint(shader);
4976 assert(impl);
4977
4978 state.vertex_count_var =
4979 nir_local_variable_create(impl, glsl_uint_type(), "vertex_count_var");
4980 state.primitive_count_var =
4981 nir_local_variable_create(impl, glsl_uint_type(), "primitive_count_var");
4982
4983 nir_builder builder = nir_builder_at(nir_before_impl(impl));
4984 nir_builder *b = &builder; /* This is to avoid the & */
4985
4986 handle_smaller_ms_api_workgroup(b, &state);
4987 if (!fast_launch_2)
4988 ms_emit_legacy_workgroup_index(b, &state);
4989 ms_create_same_invocation_vars(b, &state);
4990 nir_metadata_preserve(impl, nir_metadata_none);
4991
4992 lower_ms_intrinsics(shader, &state);
4993
4994 emit_ms_finale(b, &state);
4995 nir_metadata_preserve(impl, nir_metadata_none);
4996
4997 /* Cleanup */
4998 nir_lower_vars_to_ssa(shader);
4999 nir_remove_dead_variables(shader, nir_var_function_temp, NULL);
5000 nir_lower_alu_to_scalar(shader, NULL, NULL);
5001 nir_lower_phis_to_scalar(shader, true);
5002
5003 /* Optimize load_local_invocation_index. When the API workgroup is smaller than the HW workgroup,
5004 * local_invocation_id isn't initialized for all lanes and we can't perform this optimization for
5005 * all load_local_invocation_index.
5006 */
5007 if (fast_launch_2 && api_workgroup_size == hw_workgroup_size &&
5008 ((shader->info.workgroup_size[0] == 1) + (shader->info.workgroup_size[1] == 1) +
5009 (shader->info.workgroup_size[2] == 1)) == 2) {
5010 nir_lower_compute_system_values_options csv_options = {
5011 .lower_local_invocation_index = true,
5012 };
5013 nir_lower_compute_system_values(shader, &csv_options);
5014 }
5015
5016 nir_validate_shader(shader, "after emitting NGG MS");
5017 }
5018