• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2019 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "aco_builder.h"
26 #include "aco_ir.h"
27 
28 #include "util/bitset.h"
29 
30 #include <algorithm>
31 #include <bitset>
32 #include <set>
33 #include <stack>
34 #include <vector>
35 
36 namespace aco {
37 namespace {
38 
39 struct State {
40    Program* program;
41    Block* block;
42    std::vector<aco_ptr<Instruction>> old_instructions;
43 };
44 
45 struct NOP_ctx_gfx6 {
joinaco::__anon9574be4a0111::NOP_ctx_gfx646    void join(const NOP_ctx_gfx6& other)
47    {
48       set_vskip_mode_then_vector =
49          MAX2(set_vskip_mode_then_vector, other.set_vskip_mode_then_vector);
50       valu_wr_vcc_then_div_fmas = MAX2(valu_wr_vcc_then_div_fmas, other.valu_wr_vcc_then_div_fmas);
51       salu_wr_m0_then_gds_msg_ttrace =
52          MAX2(salu_wr_m0_then_gds_msg_ttrace, other.salu_wr_m0_then_gds_msg_ttrace);
53       valu_wr_exec_then_dpp = MAX2(valu_wr_exec_then_dpp, other.valu_wr_exec_then_dpp);
54       salu_wr_m0_then_lds = MAX2(salu_wr_m0_then_lds, other.salu_wr_m0_then_lds);
55       salu_wr_m0_then_moverel = MAX2(salu_wr_m0_then_moverel, other.salu_wr_m0_then_moverel);
56       setreg_then_getsetreg = MAX2(setreg_then_getsetreg, other.setreg_then_getsetreg);
57       vmem_store_then_wr_data |= other.vmem_store_then_wr_data;
58       smem_clause |= other.smem_clause;
59       smem_write |= other.smem_write;
60       for (unsigned i = 0; i < BITSET_WORDS(128); i++) {
61          smem_clause_read_write[i] |= other.smem_clause_read_write[i];
62          smem_clause_write[i] |= other.smem_clause_write[i];
63       }
64    }
65 
operator ==aco::__anon9574be4a0111::NOP_ctx_gfx666    bool operator==(const NOP_ctx_gfx6& other)
67    {
68       return set_vskip_mode_then_vector == other.set_vskip_mode_then_vector &&
69              valu_wr_vcc_then_div_fmas == other.valu_wr_vcc_then_div_fmas &&
70              vmem_store_then_wr_data == other.vmem_store_then_wr_data &&
71              salu_wr_m0_then_gds_msg_ttrace == other.salu_wr_m0_then_gds_msg_ttrace &&
72              valu_wr_exec_then_dpp == other.valu_wr_exec_then_dpp &&
73              salu_wr_m0_then_lds == other.salu_wr_m0_then_lds &&
74              salu_wr_m0_then_moverel == other.salu_wr_m0_then_moverel &&
75              setreg_then_getsetreg == other.setreg_then_getsetreg &&
76              smem_clause == other.smem_clause && smem_write == other.smem_write &&
77              BITSET_EQUAL(smem_clause_read_write, other.smem_clause_read_write) &&
78              BITSET_EQUAL(smem_clause_write, other.smem_clause_write);
79    }
80 
add_wait_statesaco::__anon9574be4a0111::NOP_ctx_gfx681    void add_wait_states(unsigned amount)
82    {
83       if ((set_vskip_mode_then_vector -= amount) < 0)
84          set_vskip_mode_then_vector = 0;
85 
86       if ((valu_wr_vcc_then_div_fmas -= amount) < 0)
87          valu_wr_vcc_then_div_fmas = 0;
88 
89       if ((salu_wr_m0_then_gds_msg_ttrace -= amount) < 0)
90          salu_wr_m0_then_gds_msg_ttrace = 0;
91 
92       if ((valu_wr_exec_then_dpp -= amount) < 0)
93          valu_wr_exec_then_dpp = 0;
94 
95       if ((salu_wr_m0_then_lds -= amount) < 0)
96          salu_wr_m0_then_lds = 0;
97 
98       if ((salu_wr_m0_then_moverel -= amount) < 0)
99          salu_wr_m0_then_moverel = 0;
100 
101       if ((setreg_then_getsetreg -= amount) < 0)
102          setreg_then_getsetreg = 0;
103 
104       vmem_store_then_wr_data.reset();
105    }
106 
107    /* setting MODE.vskip and then any vector op requires 2 wait states */
108    int8_t set_vskip_mode_then_vector = 0;
109 
110    /* VALU writing VCC followed by v_div_fmas require 4 wait states */
111    int8_t valu_wr_vcc_then_div_fmas = 0;
112 
113    /* SALU writing M0 followed by GDS, s_sendmsg or s_ttrace_data requires 1 wait state */
114    int8_t salu_wr_m0_then_gds_msg_ttrace = 0;
115 
116    /* VALU writing EXEC followed by DPP requires 5 wait states */
117    int8_t valu_wr_exec_then_dpp = 0;
118 
119    /* SALU writing M0 followed by some LDS instructions requires 1 wait state on GFX10 */
120    int8_t salu_wr_m0_then_lds = 0;
121 
122    /* SALU writing M0 followed by s_moverel requires 1 wait state on GFX9 */
123    int8_t salu_wr_m0_then_moverel = 0;
124 
125    /* s_setreg followed by a s_getreg/s_setreg of the same register needs 2 wait states
126     * currently we don't look at the actual register */
127    int8_t setreg_then_getsetreg = 0;
128 
129    /* some memory instructions writing >64bit followed by a instructions
130     * writing the VGPRs holding the writedata requires 1 wait state */
131    std::bitset<256> vmem_store_then_wr_data;
132 
133    /* we break up SMEM clauses that contain stores or overwrite an
134     * operand/definition of another instruction in the clause */
135    bool smem_clause = false;
136    bool smem_write = false;
137    BITSET_DECLARE(smem_clause_read_write, 128) = {0};
138    BITSET_DECLARE(smem_clause_write, 128) = {0};
139 };
140 
141 struct NOP_ctx_gfx10 {
142    bool has_VOPC_write_exec = false;
143    bool has_nonVALU_exec_read = false;
144    bool has_VMEM = false;
145    bool has_branch_after_VMEM = false;
146    bool has_DS = false;
147    bool has_branch_after_DS = false;
148    bool has_NSA_MIMG = false;
149    bool has_writelane = false;
150    std::bitset<128> sgprs_read_by_VMEM;
151    std::bitset<128> sgprs_read_by_VMEM_store;
152    std::bitset<128> sgprs_read_by_DS;
153    std::bitset<128> sgprs_read_by_SMEM;
154 
joinaco::__anon9574be4a0111::NOP_ctx_gfx10155    void join(const NOP_ctx_gfx10& other)
156    {
157       has_VOPC_write_exec |= other.has_VOPC_write_exec;
158       has_nonVALU_exec_read |= other.has_nonVALU_exec_read;
159       has_VMEM |= other.has_VMEM;
160       has_branch_after_VMEM |= other.has_branch_after_VMEM;
161       has_DS |= other.has_DS;
162       has_branch_after_DS |= other.has_branch_after_DS;
163       has_NSA_MIMG |= other.has_NSA_MIMG;
164       has_writelane |= other.has_writelane;
165       sgprs_read_by_VMEM |= other.sgprs_read_by_VMEM;
166       sgprs_read_by_DS |= other.sgprs_read_by_DS;
167       sgprs_read_by_VMEM_store |= other.sgprs_read_by_VMEM_store;
168       sgprs_read_by_SMEM |= other.sgprs_read_by_SMEM;
169    }
170 
operator ==aco::__anon9574be4a0111::NOP_ctx_gfx10171    bool operator==(const NOP_ctx_gfx10& other)
172    {
173       return has_VOPC_write_exec == other.has_VOPC_write_exec &&
174              has_nonVALU_exec_read == other.has_nonVALU_exec_read && has_VMEM == other.has_VMEM &&
175              has_branch_after_VMEM == other.has_branch_after_VMEM && has_DS == other.has_DS &&
176              has_branch_after_DS == other.has_branch_after_DS &&
177              has_NSA_MIMG == other.has_NSA_MIMG && has_writelane == other.has_writelane &&
178              sgprs_read_by_VMEM == other.sgprs_read_by_VMEM &&
179              sgprs_read_by_DS == other.sgprs_read_by_DS &&
180              sgprs_read_by_VMEM_store == other.sgprs_read_by_VMEM_store &&
181              sgprs_read_by_SMEM == other.sgprs_read_by_SMEM;
182    }
183 };
184 
185 template <int Max> struct VGPRCounterMap {
186 public:
187    int base = 0;
188    BITSET_DECLARE(resident, 256);
189    int val[256];
190 
191    /* Initializes all counters to Max. */
VGPRCounterMapaco::__anon9574be4a0111::VGPRCounterMap192    VGPRCounterMap() { BITSET_ZERO(resident); }
193 
194    /* Increase all counters, clamping at Max. */
incaco::__anon9574be4a0111::VGPRCounterMap195    void inc() { base++; }
196 
197    /* Set counter to 0. */
setaco::__anon9574be4a0111::VGPRCounterMap198    void set(unsigned idx)
199    {
200       val[idx] = -base;
201       BITSET_SET(resident, idx);
202    }
203 
setaco::__anon9574be4a0111::VGPRCounterMap204    void set(PhysReg reg, unsigned bytes)
205    {
206       if (reg.reg() < 256)
207          return;
208 
209       for (unsigned i = 0; i < DIV_ROUND_UP(bytes, 4); i++)
210          set(reg.reg() - 256 + i);
211    }
212 
213    /* Reset all counters to Max. */
resetaco::__anon9574be4a0111::VGPRCounterMap214    void reset()
215    {
216       base = 0;
217       BITSET_ZERO(resident);
218    }
219 
resetaco::__anon9574be4a0111::VGPRCounterMap220    void reset(PhysReg reg, unsigned bytes)
221    {
222       if (reg.reg() < 256)
223          return;
224 
225       for (unsigned i = 0; i < DIV_ROUND_UP(bytes, 4); i++)
226          BITSET_CLEAR(resident, reg.reg() - 256 + i);
227    }
228 
getaco::__anon9574be4a0111::VGPRCounterMap229    uint8_t get(unsigned idx)
230    {
231       return BITSET_TEST(resident, idx) ? MIN2(val[idx] + base, Max) : Max;
232    }
233 
getaco::__anon9574be4a0111::VGPRCounterMap234    uint8_t get(PhysReg reg, unsigned offset = 0)
235    {
236       assert(reg.reg() >= 256);
237       return get(reg.reg() - 256 + offset);
238    }
239 
join_minaco::__anon9574be4a0111::VGPRCounterMap240    void join_min(const VGPRCounterMap& other)
241    {
242       unsigned i;
243       BITSET_FOREACH_SET (i, other.resident, 256) {
244          if (BITSET_TEST(resident, i))
245             val[i] = MIN2(val[i] + base, other.val[i] + other.base) - base;
246          else
247             val[i] = other.val[i] + other.base - base;
248       }
249       BITSET_OR(resident, resident, other.resident);
250    }
251 
operator ==aco::__anon9574be4a0111::VGPRCounterMap252    bool operator==(const VGPRCounterMap& other) const
253    {
254       if (!BITSET_EQUAL(resident, other.resident))
255          return false;
256 
257       unsigned i;
258       BITSET_FOREACH_SET (i, other.resident, 256) {
259          if (!BITSET_TEST(resident, i))
260             return false;
261          if (val[i] + base != other.val[i] + other.base)
262             return false;
263       }
264       return true;
265    }
266 };
267 
268 struct NOP_ctx_gfx11 {
269    /* VcmpxPermlaneHazard */
270    bool has_Vcmpx = false;
271 
272    /* LdsDirectVMEMHazard */
273    std::bitset<256> vgpr_used_by_vmem_load;
274    std::bitset<256> vgpr_used_by_vmem_store;
275    std::bitset<256> vgpr_used_by_ds;
276 
277    /* VALUTransUseHazard */
278    VGPRCounterMap<15> valu_since_wr_by_trans;
279    VGPRCounterMap<2> trans_since_wr_by_trans;
280 
281    /* VALUMaskWriteHazard */
282    std::bitset<128> sgpr_read_by_valu_as_lanemask;
283    std::bitset<128> sgpr_read_by_valu_as_lanemask_then_wr_by_salu;
284 
joinaco::__anon9574be4a0111::NOP_ctx_gfx11285    void join(const NOP_ctx_gfx11& other)
286    {
287       has_Vcmpx |= other.has_Vcmpx;
288       vgpr_used_by_vmem_load |= other.vgpr_used_by_vmem_load;
289       vgpr_used_by_vmem_store |= other.vgpr_used_by_vmem_store;
290       vgpr_used_by_ds |= other.vgpr_used_by_ds;
291       valu_since_wr_by_trans.join_min(other.valu_since_wr_by_trans);
292       trans_since_wr_by_trans.join_min(other.trans_since_wr_by_trans);
293       sgpr_read_by_valu_as_lanemask |= other.sgpr_read_by_valu_as_lanemask;
294       sgpr_read_by_valu_as_lanemask_then_wr_by_salu |=
295          other.sgpr_read_by_valu_as_lanemask_then_wr_by_salu;
296    }
297 
operator ==aco::__anon9574be4a0111::NOP_ctx_gfx11298    bool operator==(const NOP_ctx_gfx11& other)
299    {
300       return has_Vcmpx == other.has_Vcmpx &&
301              vgpr_used_by_vmem_load == other.vgpr_used_by_vmem_load &&
302              vgpr_used_by_vmem_store == other.vgpr_used_by_vmem_store &&
303              vgpr_used_by_ds == other.vgpr_used_by_ds &&
304              valu_since_wr_by_trans == other.valu_since_wr_by_trans &&
305              trans_since_wr_by_trans == other.trans_since_wr_by_trans &&
306              sgpr_read_by_valu_as_lanemask == other.sgpr_read_by_valu_as_lanemask &&
307              sgpr_read_by_valu_as_lanemask_then_wr_by_salu ==
308                 other.sgpr_read_by_valu_as_lanemask_then_wr_by_salu;
309    }
310 };
311 
312 int
get_wait_states(aco_ptr<Instruction> & instr)313 get_wait_states(aco_ptr<Instruction>& instr)
314 {
315    if (instr->opcode == aco_opcode::s_nop)
316       return instr->sopp().imm + 1;
317    else if (instr->opcode == aco_opcode::p_constaddr)
318       return 3; /* lowered to 3 instructions in the assembler */
319    else
320       return 1;
321 }
322 
323 bool
regs_intersect(PhysReg a_reg,unsigned a_size,PhysReg b_reg,unsigned b_size)324 regs_intersect(PhysReg a_reg, unsigned a_size, PhysReg b_reg, unsigned b_size)
325 {
326    return a_reg > b_reg ? (a_reg - b_reg < b_size) : (b_reg - a_reg < a_size);
327 }
328 
329 template <typename GlobalState, typename BlockState,
330           bool (*block_cb)(GlobalState&, BlockState&, Block*),
331           bool (*instr_cb)(GlobalState&, BlockState&, aco_ptr<Instruction>&)>
332 void
search_backwards_internal(State & state,GlobalState & global_state,BlockState block_state,Block * block,bool start_at_end)333 search_backwards_internal(State& state, GlobalState& global_state, BlockState block_state,
334                           Block* block, bool start_at_end)
335 {
336    if (block == state.block && start_at_end) {
337       /* If it's the current block, block->instructions is incomplete. */
338       for (int pred_idx = state.old_instructions.size() - 1; pred_idx >= 0; pred_idx--) {
339          aco_ptr<Instruction>& instr = state.old_instructions[pred_idx];
340          if (!instr)
341             break; /* Instruction has been moved to block->instructions. */
342          if (instr_cb(global_state, block_state, instr))
343             return;
344       }
345    }
346 
347    for (int pred_idx = block->instructions.size() - 1; pred_idx >= 0; pred_idx--) {
348       if (instr_cb(global_state, block_state, block->instructions[pred_idx]))
349          return;
350    }
351 
352    PRAGMA_DIAGNOSTIC_PUSH
353    PRAGMA_DIAGNOSTIC_IGNORED(-Waddress)
354    if (block_cb != nullptr && !block_cb(global_state, block_state, block))
355       return;
356    PRAGMA_DIAGNOSTIC_POP
357 
358    for (unsigned lin_pred : block->linear_preds) {
359       search_backwards_internal<GlobalState, BlockState, block_cb, instr_cb>(
360          state, global_state, block_state, &state.program->blocks[lin_pred], true);
361    }
362 }
363 
364 template <typename GlobalState, typename BlockState,
365           bool (*block_cb)(GlobalState&, BlockState&, Block*),
366           bool (*instr_cb)(GlobalState&, BlockState&, aco_ptr<Instruction>&)>
367 void
search_backwards(State & state,GlobalState & global_state,BlockState & block_state)368 search_backwards(State& state, GlobalState& global_state, BlockState& block_state)
369 {
370    search_backwards_internal<GlobalState, BlockState, block_cb, instr_cb>(
371       state, global_state, block_state, state.block, false);
372 }
373 
374 struct HandleRawHazardGlobalState {
375    PhysReg reg;
376    int nops_needed;
377 };
378 
379 struct HandleRawHazardBlockState {
380    uint32_t mask;
381    int nops_needed;
382 };
383 
384 template <bool Valu, bool Vintrp, bool Salu>
385 bool
handle_raw_hazard_instr(HandleRawHazardGlobalState & global_state,HandleRawHazardBlockState & block_state,aco_ptr<Instruction> & pred)386 handle_raw_hazard_instr(HandleRawHazardGlobalState& global_state,
387                         HandleRawHazardBlockState& block_state, aco_ptr<Instruction>& pred)
388 {
389    unsigned mask_size = util_last_bit(block_state.mask);
390 
391    uint32_t writemask = 0;
392    for (Definition& def : pred->definitions) {
393       if (regs_intersect(global_state.reg, mask_size, def.physReg(), def.size())) {
394          unsigned start = def.physReg() > global_state.reg ? def.physReg() - global_state.reg : 0;
395          unsigned end = MIN2(mask_size, start + def.size());
396          writemask |= u_bit_consecutive(start, end - start);
397       }
398    }
399 
400    bool is_hazard = writemask != 0 && ((pred->isVALU() && Valu) || (pred->isVINTRP() && Vintrp) ||
401                                        (pred->isSALU() && Salu));
402    if (is_hazard) {
403       global_state.nops_needed = MAX2(global_state.nops_needed, block_state.nops_needed);
404       return true;
405    }
406 
407    block_state.mask &= ~writemask;
408    block_state.nops_needed = MAX2(block_state.nops_needed - get_wait_states(pred), 0);
409 
410    if (block_state.mask == 0)
411       block_state.nops_needed = 0;
412 
413    return block_state.nops_needed == 0;
414 }
415 
416 template <bool Valu, bool Vintrp, bool Salu>
417 void
handle_raw_hazard(State & state,int * NOPs,int min_states,Operand op)418 handle_raw_hazard(State& state, int* NOPs, int min_states, Operand op)
419 {
420    if (*NOPs >= min_states)
421       return;
422 
423    HandleRawHazardGlobalState global = {op.physReg(), 0};
424    HandleRawHazardBlockState block = {u_bit_consecutive(0, op.size()), min_states};
425 
426    /* Loops require branch instructions, which count towards the wait
427     * states. So even with loops this should finish unless nops_needed is some
428     * huge value. */
429    search_backwards<HandleRawHazardGlobalState, HandleRawHazardBlockState, nullptr,
430                     handle_raw_hazard_instr<Valu, Vintrp, Salu>>(state, global, block);
431 
432    *NOPs = MAX2(*NOPs, global.nops_needed);
433 }
434 
435 static auto handle_valu_then_read_hazard = handle_raw_hazard<true, true, false>;
436 static auto handle_vintrp_then_read_hazard = handle_raw_hazard<false, true, false>;
437 static auto handle_valu_salu_then_read_hazard = handle_raw_hazard<true, true, true>;
438 
439 void
set_bitset_range(BITSET_WORD * words,unsigned start,unsigned size)440 set_bitset_range(BITSET_WORD* words, unsigned start, unsigned size)
441 {
442    unsigned end = start + size - 1;
443    unsigned start_mod = start % BITSET_WORDBITS;
444    if (start_mod + size <= BITSET_WORDBITS) {
445       BITSET_SET_RANGE_INSIDE_WORD(words, start, end);
446    } else {
447       unsigned first_size = BITSET_WORDBITS - start_mod;
448       set_bitset_range(words, start, BITSET_WORDBITS - start_mod);
449       set_bitset_range(words, start + first_size, size - first_size);
450    }
451 }
452 
453 bool
test_bitset_range(BITSET_WORD * words,unsigned start,unsigned size)454 test_bitset_range(BITSET_WORD* words, unsigned start, unsigned size)
455 {
456    unsigned end = start + size - 1;
457    unsigned start_mod = start % BITSET_WORDBITS;
458    if (start_mod + size <= BITSET_WORDBITS) {
459       return BITSET_TEST_RANGE(words, start, end);
460    } else {
461       unsigned first_size = BITSET_WORDBITS - start_mod;
462       return test_bitset_range(words, start, BITSET_WORDBITS - start_mod) ||
463              test_bitset_range(words, start + first_size, size - first_size);
464    }
465 }
466 
467 /* A SMEM clause is any group of consecutive SMEM instructions. The
468  * instructions in this group may return out of order and/or may be replayed.
469  *
470  * To fix this potential hazard correctly, we have to make sure that when a
471  * clause has more than one instruction, no instruction in the clause writes
472  * to a register that is read by another instruction in the clause (including
473  * itself). In this case, we have to break the SMEM clause by inserting non
474  * SMEM instructions.
475  *
476  * SMEM clauses are only present on GFX8+, and only matter when XNACK is set.
477  */
478 void
handle_smem_clause_hazards(Program * program,NOP_ctx_gfx6 & ctx,aco_ptr<Instruction> & instr,int * NOPs)479 handle_smem_clause_hazards(Program* program, NOP_ctx_gfx6& ctx, aco_ptr<Instruction>& instr,
480                            int* NOPs)
481 {
482    /* break off from previous SMEM clause if needed */
483    if (!*NOPs & (ctx.smem_clause || ctx.smem_write)) {
484       /* Don't allow clauses with store instructions since the clause's
485        * instructions may use the same address. */
486       if (ctx.smem_write || instr->definitions.empty() ||
487           instr_info.is_atomic[(unsigned)instr->opcode]) {
488          *NOPs = 1;
489       } else if (program->dev.xnack_enabled) {
490          for (Operand op : instr->operands) {
491             if (!op.isConstant() &&
492                 test_bitset_range(ctx.smem_clause_write, op.physReg(), op.size())) {
493                *NOPs = 1;
494                break;
495             }
496          }
497 
498          Definition def = instr->definitions[0];
499          if (!*NOPs && test_bitset_range(ctx.smem_clause_read_write, def.physReg(), def.size()))
500             *NOPs = 1;
501       }
502    }
503 }
504 
505 /* TODO: we don't handle accessing VCC using the actual SGPR instead of using the alias */
506 void
handle_instruction_gfx6(State & state,NOP_ctx_gfx6 & ctx,aco_ptr<Instruction> & instr,std::vector<aco_ptr<Instruction>> & new_instructions)507 handle_instruction_gfx6(State& state, NOP_ctx_gfx6& ctx, aco_ptr<Instruction>& instr,
508                         std::vector<aco_ptr<Instruction>>& new_instructions)
509 {
510    /* check hazards */
511    int NOPs = 0;
512 
513    if (instr->isSMEM()) {
514       if (state.program->gfx_level == GFX6) {
515          /* A read of an SGPR by SMRD instruction requires 4 wait states
516           * when the SGPR was written by a VALU instruction. According to LLVM,
517           * there is also an undocumented hardware behavior when the buffer
518           * descriptor is written by a SALU instruction */
519          for (unsigned i = 0; i < instr->operands.size(); i++) {
520             Operand op = instr->operands[i];
521             if (op.isConstant())
522                continue;
523 
524             bool is_buffer_desc = i == 0 && op.size() > 2;
525             if (is_buffer_desc)
526                handle_valu_salu_then_read_hazard(state, &NOPs, 4, op);
527             else
528                handle_valu_then_read_hazard(state, &NOPs, 4, op);
529          }
530       }
531 
532       handle_smem_clause_hazards(state.program, ctx, instr, &NOPs);
533    } else if (instr->isSALU()) {
534       if (instr->opcode == aco_opcode::s_setreg_b32 ||
535           instr->opcode == aco_opcode::s_setreg_imm32_b32 ||
536           instr->opcode == aco_opcode::s_getreg_b32) {
537          NOPs = MAX2(NOPs, ctx.setreg_then_getsetreg);
538       }
539 
540       if (state.program->gfx_level == GFX9) {
541          if (instr->opcode == aco_opcode::s_movrels_b32 ||
542              instr->opcode == aco_opcode::s_movrels_b64 ||
543              instr->opcode == aco_opcode::s_movreld_b32 ||
544              instr->opcode == aco_opcode::s_movreld_b64) {
545             NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_moverel);
546          }
547       }
548 
549       if (instr->opcode == aco_opcode::s_sendmsg || instr->opcode == aco_opcode::s_ttracedata)
550          NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_gds_msg_ttrace);
551    } else if (instr->isDS() && instr->ds().gds) {
552       NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_gds_msg_ttrace);
553    } else if (instr->isVALU() || instr->isVINTRP()) {
554       if (instr->isDPP()) {
555          NOPs = MAX2(NOPs, ctx.valu_wr_exec_then_dpp);
556          handle_valu_then_read_hazard(state, &NOPs, 2, instr->operands[0]);
557       }
558 
559       for (Definition def : instr->definitions) {
560          if (def.regClass().type() != RegType::sgpr) {
561             for (unsigned i = 0; i < def.size(); i++)
562                NOPs = MAX2(NOPs, ctx.vmem_store_then_wr_data[(def.physReg() & 0xff) + i]);
563          }
564       }
565 
566       if ((instr->opcode == aco_opcode::v_readlane_b32 ||
567            instr->opcode == aco_opcode::v_readlane_b32_e64 ||
568            instr->opcode == aco_opcode::v_writelane_b32 ||
569            instr->opcode == aco_opcode::v_writelane_b32_e64) &&
570           !instr->operands[1].isConstant()) {
571          handle_valu_then_read_hazard(state, &NOPs, 4, instr->operands[1]);
572       }
573 
574       /* It's required to insert 1 wait state if the dst VGPR of any v_interp_*
575        * is followed by a read with v_readfirstlane or v_readlane to fix GPU
576        * hangs on GFX6. Note that v_writelane_* is apparently not affected.
577        * This hazard isn't documented anywhere but AMD confirmed that hazard.
578        */
579       if (state.program->gfx_level == GFX6 &&
580           (instr->opcode == aco_opcode::v_readlane_b32 || /* GFX6 doesn't have v_readlane_b32_e64 */
581            instr->opcode == aco_opcode::v_readfirstlane_b32)) {
582          handle_vintrp_then_read_hazard(state, &NOPs, 1, instr->operands[0]);
583       }
584 
585       if (instr->opcode == aco_opcode::v_div_fmas_f32 ||
586           instr->opcode == aco_opcode::v_div_fmas_f64)
587          NOPs = MAX2(NOPs, ctx.valu_wr_vcc_then_div_fmas);
588    } else if (instr->isVMEM() || instr->isFlatLike()) {
589       /* If the VALU writes the SGPR that is used by a VMEM, the user must add five wait states. */
590       for (Operand op : instr->operands) {
591          if (!op.isConstant() && !op.isUndefined() && op.regClass().type() == RegType::sgpr)
592             handle_valu_then_read_hazard(state, &NOPs, 5, op);
593       }
594    }
595 
596    if (!instr->isSALU() && instr->format != Format::SMEM)
597       NOPs = MAX2(NOPs, ctx.set_vskip_mode_then_vector);
598 
599    if (state.program->gfx_level == GFX9) {
600       bool lds_scratch_global = (instr->isScratch() || instr->isGlobal()) && instr->flatlike().lds;
601       if (instr->isVINTRP() || lds_scratch_global ||
602           instr->opcode == aco_opcode::ds_read_addtid_b32 ||
603           instr->opcode == aco_opcode::ds_write_addtid_b32 ||
604           instr->opcode == aco_opcode::buffer_store_lds_dword) {
605          NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_lds);
606       }
607    }
608 
609    ctx.add_wait_states(NOPs + get_wait_states(instr));
610 
611    // TODO: try to schedule the NOP-causing instruction up to reduce the number of stall cycles
612    if (NOPs) {
613       /* create NOP */
614       aco_ptr<SOPP_instruction> nop{
615          create_instruction<SOPP_instruction>(aco_opcode::s_nop, Format::SOPP, 0, 0)};
616       nop->imm = NOPs - 1;
617       nop->block = -1;
618       new_instructions.emplace_back(std::move(nop));
619    }
620 
621    /* update information to check for later hazards */
622    if ((ctx.smem_clause || ctx.smem_write) && (NOPs || instr->format != Format::SMEM)) {
623       ctx.smem_clause = false;
624       ctx.smem_write = false;
625 
626       if (state.program->dev.xnack_enabled) {
627          BITSET_ZERO(ctx.smem_clause_read_write);
628          BITSET_ZERO(ctx.smem_clause_write);
629       }
630    }
631 
632    if (instr->isSMEM()) {
633       if (instr->definitions.empty() || instr_info.is_atomic[(unsigned)instr->opcode]) {
634          ctx.smem_write = true;
635       } else {
636          ctx.smem_clause = true;
637 
638          if (state.program->dev.xnack_enabled) {
639             for (Operand op : instr->operands) {
640                if (!op.isConstant()) {
641                   set_bitset_range(ctx.smem_clause_read_write, op.physReg(), op.size());
642                }
643             }
644 
645             Definition def = instr->definitions[0];
646             set_bitset_range(ctx.smem_clause_read_write, def.physReg(), def.size());
647             set_bitset_range(ctx.smem_clause_write, def.physReg(), def.size());
648          }
649       }
650    } else if (instr->isVALU()) {
651       for (Definition def : instr->definitions) {
652          if (def.regClass().type() == RegType::sgpr) {
653             if (def.physReg() == vcc || def.physReg() == vcc_hi) {
654                ctx.valu_wr_vcc_then_div_fmas = 4;
655             }
656             if (def.physReg() == exec || def.physReg() == exec_hi) {
657                ctx.valu_wr_exec_then_dpp = 5;
658             }
659          }
660       }
661    } else if (instr->isSALU()) {
662       if (!instr->definitions.empty()) {
663          /* all other definitions should be SCC */
664          Definition def = instr->definitions[0];
665          if (def.physReg() == m0) {
666             ctx.salu_wr_m0_then_gds_msg_ttrace = 1;
667             ctx.salu_wr_m0_then_lds = 1;
668             ctx.salu_wr_m0_then_moverel = 1;
669          }
670       } else if (instr->opcode == aco_opcode::s_setreg_b32 ||
671                  instr->opcode == aco_opcode::s_setreg_imm32_b32) {
672          SOPK_instruction& sopk = instr->sopk();
673          unsigned offset = (sopk.imm >> 6) & 0x1f;
674          unsigned size = ((sopk.imm >> 11) & 0x1f) + 1;
675          unsigned reg = sopk.imm & 0x3f;
676          ctx.setreg_then_getsetreg = 2;
677 
678          if (reg == 1 && offset >= 28 && size > (28 - offset))
679             ctx.set_vskip_mode_then_vector = 2;
680       }
681    } else if (instr->isVMEM() || instr->isFlatLike()) {
682       /* >64-bit MUBUF/MTBUF store with a constant in SOFFSET */
683       bool consider_buf = (instr->isMUBUF() || instr->isMTBUF()) && instr->operands.size() == 4 &&
684                           instr->operands[3].size() > 2 && instr->operands[2].physReg() >= 128;
685       /* MIMG store with a 128-bit T# with more than two bits set in dmask (making it a >64-bit
686        * store) */
687       bool consider_mimg = instr->isMIMG() &&
688                            instr->operands[1].regClass().type() == RegType::vgpr &&
689                            instr->operands[1].size() > 2 && instr->operands[0].size() == 4;
690       /* FLAT/GLOBAL/SCRATCH store with >64-bit data */
691       bool consider_flat =
692          instr->isFlatLike() && instr->operands.size() == 3 && instr->operands[2].size() > 2;
693       if (consider_buf || consider_mimg || consider_flat) {
694          PhysReg wrdata = instr->operands[consider_flat ? 2 : 3].physReg();
695          unsigned size = instr->operands[consider_flat ? 2 : 3].size();
696          for (unsigned i = 0; i < size; i++)
697             ctx.vmem_store_then_wr_data[(wrdata & 0xff) + i] = 1;
698       }
699    }
700 }
701 
702 bool
is_latest_instr_vintrp(bool & global_state,bool & block_state,aco_ptr<Instruction> & pred)703 is_latest_instr_vintrp(bool& global_state, bool& block_state, aco_ptr<Instruction>& pred)
704 {
705    if (pred->isVINTRP())
706       global_state = true;
707    return true;
708 }
709 
710 template <bool Salu, bool Sgpr>
711 bool
handle_wr_hazard_instr(int & global_state,int & block_state,aco_ptr<Instruction> & pred)712 handle_wr_hazard_instr(int& global_state, int& block_state, aco_ptr<Instruction>& pred)
713 {
714    if (Salu ? pred->isSALU() : (pred->isVALU() || pred->isVINTRP())) {
715       for (Definition dst : pred->definitions) {
716          if ((dst.physReg().reg() < 256) == Sgpr) {
717             global_state = MAX2(global_state, block_state);
718             return true;
719          }
720       }
721    }
722 
723    block_state -= get_wait_states(pred);
724    return block_state <= 0;
725 }
726 
727 template <bool Salu, bool Sgpr>
728 void
handle_wr_hazard(State & state,int * NOPs,int min_states)729 handle_wr_hazard(State& state, int* NOPs, int min_states)
730 {
731    if (*NOPs >= min_states)
732       return;
733 
734    int global = 0;
735    int block = min_states;
736    search_backwards<int, int, nullptr, handle_wr_hazard_instr<Salu, Sgpr>>(state, global, block);
737    *NOPs = MAX2(*NOPs, global);
738 }
739 
740 void
resolve_all_gfx6(State & state,NOP_ctx_gfx6 & ctx,std::vector<aco_ptr<Instruction>> & new_instructions)741 resolve_all_gfx6(State& state, NOP_ctx_gfx6& ctx,
742                  std::vector<aco_ptr<Instruction>>& new_instructions)
743 {
744    int NOPs = 0;
745 
746    /* SGPR->SMEM hazards */
747    if (state.program->gfx_level == GFX6) {
748       handle_wr_hazard<true, true>(state, &NOPs, 4);
749       handle_wr_hazard<false, true>(state, &NOPs, 4);
750    }
751 
752    /* Break up SMEM clauses */
753    if (ctx.smem_clause || ctx.smem_write)
754       NOPs = MAX2(NOPs, 1);
755 
756    /* SALU/GDS hazards */
757    NOPs = MAX2(NOPs, ctx.setreg_then_getsetreg);
758    if (state.program->gfx_level == GFX9)
759       NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_moverel);
760    NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_gds_msg_ttrace);
761 
762    /* VALU hazards */
763    NOPs = MAX2(NOPs, ctx.valu_wr_exec_then_dpp);
764    if (state.program->gfx_level >= GFX8)
765       handle_wr_hazard<false, false>(state, &NOPs, 2); /* VALU->DPP */
766    NOPs = MAX2(NOPs, ctx.vmem_store_then_wr_data.any() ? 1 : 0);
767    if (state.program->gfx_level == GFX6) {
768       /* VINTRP->v_readlane_b32/etc */
769       bool vintrp = false;
770       search_backwards<bool, bool, nullptr, is_latest_instr_vintrp>(state, vintrp, vintrp);
771       if (vintrp)
772          NOPs = MAX2(NOPs, 1);
773    }
774    NOPs = MAX2(NOPs, ctx.valu_wr_vcc_then_div_fmas);
775 
776    /* VALU(sgpr)->VMEM/v_readlane_b32/etc hazards. v_readlane_b32/etc require only 4 NOPs. */
777    handle_wr_hazard<false, true>(state, &NOPs, 5);
778 
779    NOPs = MAX2(NOPs, ctx.set_vskip_mode_then_vector);
780 
781    if (state.program->gfx_level == GFX9)
782       NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_lds);
783 
784    ctx.add_wait_states(NOPs);
785    if (NOPs) {
786       Builder bld(state.program, &new_instructions);
787       bld.sopp(aco_opcode::s_nop, -1, NOPs - 1);
788    }
789 }
790 
791 template <std::size_t N>
792 bool
check_written_regs(const aco_ptr<Instruction> & instr,const std::bitset<N> & check_regs)793 check_written_regs(const aco_ptr<Instruction>& instr, const std::bitset<N>& check_regs)
794 {
795    return std::any_of(instr->definitions.begin(), instr->definitions.end(),
796                       [&check_regs](const Definition& def) -> bool
797                       {
798                          bool writes_any = false;
799                          for (unsigned i = 0; i < def.size(); i++) {
800                             unsigned def_reg = def.physReg() + i;
801                             writes_any |= def_reg < check_regs.size() && check_regs[def_reg];
802                          }
803                          return writes_any;
804                       });
805 }
806 
807 template <std::size_t N>
808 bool
check_read_regs(const aco_ptr<Instruction> & instr,const std::bitset<N> & check_regs)809 check_read_regs(const aco_ptr<Instruction>& instr, const std::bitset<N>& check_regs)
810 {
811    return std::any_of(instr->operands.begin(), instr->operands.end(),
812                       [&check_regs](const Operand& op) -> bool
813                       {
814                          if (op.isConstant())
815                             return false;
816                          bool writes_any = false;
817                          for (unsigned i = 0; i < op.size(); i++) {
818                             unsigned op_reg = op.physReg() + i;
819                             writes_any |= op_reg < check_regs.size() && check_regs[op_reg];
820                          }
821                          return writes_any;
822                       });
823 }
824 
825 template <std::size_t N>
826 void
mark_read_regs(const aco_ptr<Instruction> & instr,std::bitset<N> & reg_reads)827 mark_read_regs(const aco_ptr<Instruction>& instr, std::bitset<N>& reg_reads)
828 {
829    for (const Operand& op : instr->operands) {
830       for (unsigned i = 0; i < op.size(); i++) {
831          unsigned reg = op.physReg() + i;
832          if (reg < reg_reads.size())
833             reg_reads.set(reg);
834       }
835    }
836 }
837 
838 template <std::size_t N>
839 void
mark_read_regs_exec(State & state,const aco_ptr<Instruction> & instr,std::bitset<N> & reg_reads)840 mark_read_regs_exec(State& state, const aco_ptr<Instruction>& instr, std::bitset<N>& reg_reads)
841 {
842    mark_read_regs(instr, reg_reads);
843    reg_reads.set(exec);
844    if (state.program->wave_size == 64)
845       reg_reads.set(exec_hi);
846 }
847 
848 bool
VALU_writes_sgpr(aco_ptr<Instruction> & instr)849 VALU_writes_sgpr(aco_ptr<Instruction>& instr)
850 {
851    if (instr->isVOPC())
852       return true;
853    if (instr->isVOP3() && instr->definitions.size() == 2)
854       return true;
855    if (instr->opcode == aco_opcode::v_readfirstlane_b32 ||
856        instr->opcode == aco_opcode::v_readlane_b32 ||
857        instr->opcode == aco_opcode::v_readlane_b32_e64)
858       return true;
859    return false;
860 }
861 
862 bool
instr_writes_sgpr(const aco_ptr<Instruction> & instr)863 instr_writes_sgpr(const aco_ptr<Instruction>& instr)
864 {
865    return std::any_of(instr->definitions.begin(), instr->definitions.end(),
866                       [](const Definition& def) -> bool
867                       { return def.getTemp().type() == RegType::sgpr; });
868 }
869 
870 inline bool
instr_is_branch(const aco_ptr<Instruction> & instr)871 instr_is_branch(const aco_ptr<Instruction>& instr)
872 {
873    return instr->opcode == aco_opcode::s_branch || instr->opcode == aco_opcode::s_cbranch_scc0 ||
874           instr->opcode == aco_opcode::s_cbranch_scc1 ||
875           instr->opcode == aco_opcode::s_cbranch_vccz ||
876           instr->opcode == aco_opcode::s_cbranch_vccnz ||
877           instr->opcode == aco_opcode::s_cbranch_execz ||
878           instr->opcode == aco_opcode::s_cbranch_execnz ||
879           instr->opcode == aco_opcode::s_cbranch_cdbgsys ||
880           instr->opcode == aco_opcode::s_cbranch_cdbguser ||
881           instr->opcode == aco_opcode::s_cbranch_cdbgsys_or_user ||
882           instr->opcode == aco_opcode::s_cbranch_cdbgsys_and_user ||
883           instr->opcode == aco_opcode::s_subvector_loop_begin ||
884           instr->opcode == aco_opcode::s_subvector_loop_end ||
885           instr->opcode == aco_opcode::s_setpc_b64 || instr->opcode == aco_opcode::s_swappc_b64 ||
886           instr->opcode == aco_opcode::s_getpc_b64 || instr->opcode == aco_opcode::s_call_b64;
887 }
888 
889 void
handle_instruction_gfx10(State & state,NOP_ctx_gfx10 & ctx,aco_ptr<Instruction> & instr,std::vector<aco_ptr<Instruction>> & new_instructions)890 handle_instruction_gfx10(State& state, NOP_ctx_gfx10& ctx, aco_ptr<Instruction>& instr,
891                          std::vector<aco_ptr<Instruction>>& new_instructions)
892 {
893    // TODO: s_dcache_inv needs to be in it's own group on GFX10
894 
895    Builder bld(state.program, &new_instructions);
896 
897    unsigned vm_vsrc = 7;
898    unsigned sa_sdst = 1;
899    if (debug_flags & DEBUG_FORCE_WAITDEPS) {
900       bld.sopp(aco_opcode::s_waitcnt_depctr, -1, 0x0000);
901       vm_vsrc = 0;
902       sa_sdst = 0;
903    } else if (instr->opcode == aco_opcode::s_waitcnt_depctr) {
904       vm_vsrc = (instr->sopp().imm >> 2) & 0x7;
905       sa_sdst = instr->sopp().imm & 0x1;
906    }
907 
908    /* VMEMtoScalarWriteHazard
909     * Handle EXEC/M0/SGPR write following a VMEM/DS instruction without a VALU or "waitcnt vmcnt(0)"
910     * in-between.
911     */
912    if (instr->isVMEM() || instr->isFlatLike() || instr->isDS()) {
913       /* Remember all SGPRs that are read by the VMEM/DS instruction */
914       if (instr->isVMEM() || instr->isFlatLike())
915          mark_read_regs_exec(
916             state, instr,
917             instr->definitions.empty() ? ctx.sgprs_read_by_VMEM_store : ctx.sgprs_read_by_VMEM);
918       if (instr->isFlat() || instr->isDS())
919          mark_read_regs_exec(state, instr, ctx.sgprs_read_by_DS);
920    } else if (instr->isSALU() || instr->isSMEM()) {
921       if (instr->opcode == aco_opcode::s_waitcnt) {
922          wait_imm imm(state.program->gfx_level, instr->sopp().imm);
923          if (imm.vm == 0)
924             ctx.sgprs_read_by_VMEM.reset();
925          if (imm.lgkm == 0)
926             ctx.sgprs_read_by_DS.reset();
927       } else if (instr->opcode == aco_opcode::s_waitcnt_vscnt && instr->sopk().imm == 0) {
928          ctx.sgprs_read_by_VMEM_store.reset();
929       } else if (vm_vsrc == 0) {
930          ctx.sgprs_read_by_VMEM.reset();
931          ctx.sgprs_read_by_DS.reset();
932          ctx.sgprs_read_by_VMEM_store.reset();
933       }
934 
935       /* Check if SALU writes an SGPR that was previously read by the VALU */
936       if (check_written_regs(instr, ctx.sgprs_read_by_VMEM) ||
937           check_written_regs(instr, ctx.sgprs_read_by_DS) ||
938           check_written_regs(instr, ctx.sgprs_read_by_VMEM_store)) {
939          ctx.sgprs_read_by_VMEM.reset();
940          ctx.sgprs_read_by_DS.reset();
941          ctx.sgprs_read_by_VMEM_store.reset();
942 
943          /* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */
944          bld.sopp(aco_opcode::s_waitcnt_depctr, -1, 0xffe3);
945       }
946    } else if (instr->isVALU()) {
947       /* Hazard is mitigated by any VALU instruction */
948       ctx.sgprs_read_by_VMEM.reset();
949       ctx.sgprs_read_by_DS.reset();
950       ctx.sgprs_read_by_VMEM_store.reset();
951    }
952 
953    /* VcmpxPermlaneHazard
954     * Handle any permlane following a VOPC instruction writing exec, insert v_mov between them.
955     */
956    if (instr->isVOPC() && instr->definitions[0].physReg() == exec) {
957       /* we only need to check definitions[0] because since GFX10 v_cmpx only writes one dest */
958       ctx.has_VOPC_write_exec = true;
959    } else if (ctx.has_VOPC_write_exec && (instr->opcode == aco_opcode::v_permlane16_b32 ||
960                                           instr->opcode == aco_opcode::v_permlanex16_b32)) {
961       ctx.has_VOPC_write_exec = false;
962 
963       /* v_nop would be discarded by SQ, so use v_mov with the first operand of the permlane */
964       bld.vop1(aco_opcode::v_mov_b32, Definition(instr->operands[0].physReg(), v1),
965                Operand(instr->operands[0].physReg(), v1));
966    } else if (instr->isVALU() && instr->opcode != aco_opcode::v_nop) {
967       ctx.has_VOPC_write_exec = false;
968    }
969 
970    /* VcmpxExecWARHazard
971     * Handle any VALU instruction writing the exec mask after it was read by a non-VALU instruction.
972     */
973    if (!instr->isVALU() && instr->reads_exec()) {
974       ctx.has_nonVALU_exec_read = true;
975    } else if (instr->isVALU() && ctx.has_nonVALU_exec_read) {
976       if (instr->writes_exec()) {
977          ctx.has_nonVALU_exec_read = false;
978 
979          /* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */
980          bld.sopp(aco_opcode::s_waitcnt_depctr, -1, 0xfffe);
981       } else if (instr_writes_sgpr(instr)) {
982          /* Any VALU instruction that writes an SGPR mitigates the problem */
983          ctx.has_nonVALU_exec_read = false;
984       }
985    } else if (sa_sdst == 0) {
986       ctx.has_nonVALU_exec_read = false;
987    }
988 
989    /* SMEMtoVectorWriteHazard
990     * Handle any VALU instruction writing an SGPR after an SMEM reads it.
991     */
992    if (instr->isSMEM()) {
993       /* Remember all SGPRs that are read by the SMEM instruction */
994       mark_read_regs(instr, ctx.sgprs_read_by_SMEM);
995    } else if (VALU_writes_sgpr(instr)) {
996       /* Check if VALU writes an SGPR that was previously read by SMEM */
997       if (check_written_regs(instr, ctx.sgprs_read_by_SMEM)) {
998          ctx.sgprs_read_by_SMEM.reset();
999 
1000          /* Insert s_mov to mitigate the problem */
1001          bld.sop1(aco_opcode::s_mov_b32, Definition(sgpr_null, s1), Operand::zero());
1002       }
1003    } else if (instr->isSALU()) {
1004       /* Reducing lgkmcnt count to 0 always mitigates the hazard. */
1005       if (instr->opcode == aco_opcode::s_waitcnt_lgkmcnt) {
1006          const SOPK_instruction& sopk = instr->sopk();
1007          if (sopk.imm == 0 && sopk.operands[0].physReg() == sgpr_null)
1008             ctx.sgprs_read_by_SMEM.reset();
1009       } else if (instr->opcode == aco_opcode::s_waitcnt) {
1010          wait_imm imm(state.program->gfx_level, instr->sopp().imm);
1011          if (imm.lgkm == 0)
1012             ctx.sgprs_read_by_SMEM.reset();
1013       } else if (instr->format != Format::SOPP && instr->definitions.size()) {
1014          /* SALU can mitigate the hazard */
1015          ctx.sgprs_read_by_SMEM.reset();
1016       }
1017    }
1018 
1019    /* LdsBranchVmemWARHazard
1020     * Handle VMEM/GLOBAL/SCRATCH->branch->DS and DS->branch->VMEM/GLOBAL/SCRATCH patterns.
1021     */
1022    if (instr->isVMEM() || instr->isGlobal() || instr->isScratch()) {
1023       if (ctx.has_branch_after_DS)
1024          bld.sopk(aco_opcode::s_waitcnt_vscnt, Operand(sgpr_null, s1), 0);
1025       ctx.has_branch_after_VMEM = ctx.has_branch_after_DS = ctx.has_DS = false;
1026       ctx.has_VMEM = true;
1027    } else if (instr->isDS()) {
1028       if (ctx.has_branch_after_VMEM)
1029          bld.sopk(aco_opcode::s_waitcnt_vscnt, Operand(sgpr_null, s1), 0);
1030       ctx.has_branch_after_VMEM = ctx.has_branch_after_DS = ctx.has_VMEM = false;
1031       ctx.has_DS = true;
1032    } else if (instr_is_branch(instr)) {
1033       ctx.has_branch_after_VMEM |= ctx.has_VMEM;
1034       ctx.has_branch_after_DS |= ctx.has_DS;
1035       ctx.has_VMEM = ctx.has_DS = false;
1036    } else if (instr->opcode == aco_opcode::s_waitcnt_vscnt) {
1037       /* Only s_waitcnt_vscnt can mitigate the hazard */
1038       const SOPK_instruction& sopk = instr->sopk();
1039       if (sopk.operands[0].physReg() == sgpr_null && sopk.imm == 0)
1040          ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;
1041    }
1042 
1043    /* NSAToVMEMBug
1044     * Handles NSA MIMG (4 or more dwords) immediately followed by MUBUF/MTBUF (with offset[2:1] !=
1045     * 0).
1046     */
1047    if (instr->isMIMG() && get_mimg_nsa_dwords(instr.get()) > 1) {
1048       ctx.has_NSA_MIMG = true;
1049    } else if (ctx.has_NSA_MIMG) {
1050       ctx.has_NSA_MIMG = false;
1051 
1052       if (instr->isMUBUF() || instr->isMTBUF()) {
1053          uint32_t offset = instr->isMUBUF() ? instr->mubuf().offset : instr->mtbuf().offset;
1054          if (offset & 6)
1055             bld.sopp(aco_opcode::s_nop, -1, 0);
1056       }
1057    }
1058 
1059    /* waNsaCannotFollowWritelane
1060     * Handles NSA MIMG immediately following a v_writelane_b32.
1061     */
1062    if (instr->opcode == aco_opcode::v_writelane_b32_e64) {
1063       ctx.has_writelane = true;
1064    } else if (ctx.has_writelane) {
1065       ctx.has_writelane = false;
1066       if (instr->isMIMG() && get_mimg_nsa_dwords(instr.get()) > 0)
1067          bld.sopp(aco_opcode::s_nop, -1, 0);
1068    }
1069 }
1070 
1071 void
resolve_all_gfx10(State & state,NOP_ctx_gfx10 & ctx,std::vector<aco_ptr<Instruction>> & new_instructions)1072 resolve_all_gfx10(State& state, NOP_ctx_gfx10& ctx,
1073                   std::vector<aco_ptr<Instruction>>& new_instructions)
1074 {
1075    Builder bld(state.program, &new_instructions);
1076 
1077    size_t prev_count = new_instructions.size();
1078 
1079    /* VcmpxPermlaneHazard */
1080    if (ctx.has_VOPC_write_exec) {
1081       ctx.has_VOPC_write_exec = false;
1082       bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg(256), v1), Operand(PhysReg(256), v1));
1083 
1084       /* VALU mitigates VMEMtoScalarWriteHazard. */
1085       ctx.sgprs_read_by_VMEM.reset();
1086       ctx.sgprs_read_by_DS.reset();
1087       ctx.sgprs_read_by_VMEM_store.reset();
1088    }
1089 
1090    unsigned waitcnt_depctr = 0xffff;
1091 
1092    /* VMEMtoScalarWriteHazard */
1093    if (ctx.sgprs_read_by_VMEM.any() || ctx.sgprs_read_by_DS.any() ||
1094        ctx.sgprs_read_by_VMEM_store.any()) {
1095       ctx.sgprs_read_by_VMEM.reset();
1096       ctx.sgprs_read_by_DS.reset();
1097       ctx.sgprs_read_by_VMEM_store.reset();
1098       waitcnt_depctr &= 0xffe3;
1099    }
1100 
1101    /* VcmpxExecWARHazard */
1102    if (ctx.has_nonVALU_exec_read) {
1103       ctx.has_nonVALU_exec_read = false;
1104       waitcnt_depctr &= 0xfffe;
1105    }
1106 
1107    if (waitcnt_depctr != 0xffff)
1108       bld.sopp(aco_opcode::s_waitcnt_depctr, -1, waitcnt_depctr);
1109 
1110    /* SMEMtoVectorWriteHazard */
1111    if (ctx.sgprs_read_by_SMEM.any()) {
1112       ctx.sgprs_read_by_SMEM.reset();
1113       bld.sop1(aco_opcode::s_mov_b32, Definition(sgpr_null, s1), Operand::zero());
1114    }
1115 
1116    /* LdsBranchVmemWARHazard */
1117    if (ctx.has_VMEM || ctx.has_branch_after_VMEM || ctx.has_DS || ctx.has_branch_after_DS) {
1118       bld.sopk(aco_opcode::s_waitcnt_vscnt, Operand(sgpr_null, s1), 0);
1119       ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;
1120    }
1121 
1122    /* NSAToVMEMBug/waNsaCannotFollowWritelane */
1123    if (ctx.has_NSA_MIMG || ctx.has_writelane) {
1124       ctx.has_NSA_MIMG = ctx.has_writelane = false;
1125       /* Any instruction resolves these hazards. */
1126       if (new_instructions.size() == prev_count)
1127          bld.sopp(aco_opcode::s_nop, -1, 0);
1128    }
1129 }
1130 
1131 void
fill_vgpr_bitset(std::bitset<256> & set,PhysReg reg,unsigned bytes)1132 fill_vgpr_bitset(std::bitset<256>& set, PhysReg reg, unsigned bytes)
1133 {
1134    if (reg.reg() < 256)
1135       return;
1136    for (unsigned i = 0; i < DIV_ROUND_UP(bytes, 4); i++)
1137       set.set(reg.reg() - 256 + i);
1138 }
1139 
1140 /* GFX11 */
1141 unsigned
parse_vdst_wait(aco_ptr<Instruction> & instr)1142 parse_vdst_wait(aco_ptr<Instruction>& instr)
1143 {
1144    if (instr->isVMEM() || instr->isFlatLike() || instr->isDS() || instr->isEXP())
1145       return 0;
1146    else if (instr->isLDSDIR())
1147       return instr->ldsdir().wait_vdst;
1148    else if (instr->opcode == aco_opcode::s_waitcnt_depctr)
1149       return (instr->sopp().imm >> 12) & 0xf;
1150    else
1151       return 15;
1152 }
1153 
1154 struct LdsDirectVALUHazardGlobalState {
1155    unsigned wait_vdst = 15;
1156    PhysReg vgpr;
1157    std::set<unsigned> loop_headers_visited;
1158 };
1159 
1160 struct LdsDirectVALUHazardBlockState {
1161    unsigned num_valu = 0;
1162    bool has_trans = false;
1163 
1164    unsigned num_instrs = 0;
1165    unsigned num_blocks = 0;
1166 };
1167 
1168 bool
handle_lds_direct_valu_hazard_instr(LdsDirectVALUHazardGlobalState & global_state,LdsDirectVALUHazardBlockState & block_state,aco_ptr<Instruction> & instr)1169 handle_lds_direct_valu_hazard_instr(LdsDirectVALUHazardGlobalState& global_state,
1170                                     LdsDirectVALUHazardBlockState& block_state,
1171                                     aco_ptr<Instruction>& instr)
1172 {
1173    if (instr->isVALU()) {
1174       block_state.has_trans |= instr->isTrans();
1175 
1176       bool uses_vgpr = false;
1177       for (Definition& def : instr->definitions)
1178          uses_vgpr |= regs_intersect(def.physReg(), def.size(), global_state.vgpr, 1);
1179       for (Operand& op : instr->operands) {
1180          uses_vgpr |=
1181             !op.isConstant() && regs_intersect(op.physReg(), op.size(), global_state.vgpr, 1);
1182       }
1183       if (uses_vgpr) {
1184          /* Transcendentals execute in parallel to other VALU and va_vdst count becomes unusable */
1185          global_state.wait_vdst =
1186             MIN2(global_state.wait_vdst, block_state.has_trans ? 0 : block_state.num_valu);
1187          return true;
1188       }
1189 
1190       block_state.num_valu++;
1191    }
1192 
1193    if (parse_vdst_wait(instr) == 0)
1194       return true;
1195 
1196    block_state.num_instrs++;
1197    if (block_state.num_instrs > 256 || block_state.num_blocks > 32) {
1198       /* Exit to limit compile times and set wait_vdst to be safe. */
1199       global_state.wait_vdst =
1200          MIN2(global_state.wait_vdst, block_state.has_trans ? 0 : block_state.num_valu);
1201       return true;
1202    }
1203 
1204    return block_state.num_valu >= global_state.wait_vdst;
1205 }
1206 
1207 bool
handle_lds_direct_valu_hazard_block(LdsDirectVALUHazardGlobalState & global_state,LdsDirectVALUHazardBlockState & block_state,Block * block)1208 handle_lds_direct_valu_hazard_block(LdsDirectVALUHazardGlobalState& global_state,
1209                                     LdsDirectVALUHazardBlockState& block_state, Block* block)
1210 {
1211    if (block->kind & block_kind_loop_header) {
1212       if (global_state.loop_headers_visited.count(block->index))
1213          return false;
1214       global_state.loop_headers_visited.insert(block->index);
1215    }
1216 
1217    block_state.num_blocks++;
1218 
1219    return true;
1220 }
1221 
1222 unsigned
handle_lds_direct_valu_hazard(State & state,aco_ptr<Instruction> & instr)1223 handle_lds_direct_valu_hazard(State& state, aco_ptr<Instruction>& instr)
1224 {
1225    /* LdsDirectVALUHazard
1226     * Handle LDSDIR writing a VGPR after it's used by a VALU instruction.
1227     */
1228    if (instr->ldsdir().wait_vdst == 0)
1229       return 0; /* early exit */
1230 
1231    LdsDirectVALUHazardGlobalState global_state;
1232    global_state.wait_vdst = instr->ldsdir().wait_vdst;
1233    global_state.vgpr = instr->definitions[0].physReg();
1234    LdsDirectVALUHazardBlockState block_state;
1235    search_backwards<LdsDirectVALUHazardGlobalState, LdsDirectVALUHazardBlockState,
1236                     &handle_lds_direct_valu_hazard_block, &handle_lds_direct_valu_hazard_instr>(
1237       state, global_state, block_state);
1238    return global_state.wait_vdst;
1239 }
1240 
1241 enum VALUPartialForwardingHazardState : uint8_t {
1242    nothing_written,
1243    written_after_exec_write,
1244    exec_written,
1245 };
1246 
1247 struct VALUPartialForwardingHazardGlobalState {
1248    bool hazard_found = false;
1249    std::set<unsigned> loop_headers_visited;
1250 };
1251 
1252 struct VALUPartialForwardingHazardBlockState {
1253    /* initialized by number of VGPRs read by VALU, decrement when encountered to return early */
1254    uint8_t num_vgprs_read = 0;
1255    BITSET_DECLARE(vgprs_read, 256) = {0};
1256    enum VALUPartialForwardingHazardState state = nothing_written;
1257    unsigned num_valu_since_read = 0;
1258    unsigned num_valu_since_write = 0;
1259 
1260    unsigned num_instrs = 0;
1261    unsigned num_blocks = 0;
1262 };
1263 
1264 bool
handle_valu_partial_forwarding_hazard_instr(VALUPartialForwardingHazardGlobalState & global_state,VALUPartialForwardingHazardBlockState & block_state,aco_ptr<Instruction> & instr)1265 handle_valu_partial_forwarding_hazard_instr(VALUPartialForwardingHazardGlobalState& global_state,
1266                                             VALUPartialForwardingHazardBlockState& block_state,
1267                                             aco_ptr<Instruction>& instr)
1268 {
1269    if (instr->isSALU() && !instr->definitions.empty()) {
1270       if (block_state.state == written_after_exec_write && instr->writes_exec())
1271          block_state.state = exec_written;
1272    } else if (instr->isVALU()) {
1273       bool vgpr_write = false;
1274       for (Definition& def : instr->definitions) {
1275          if (def.physReg().reg() < 256)
1276             continue;
1277 
1278          for (unsigned i = 0; i < def.size(); i++) {
1279             unsigned reg = def.physReg().reg() - 256 + i;
1280             if (!BITSET_TEST(block_state.vgprs_read, reg))
1281                continue;
1282 
1283             if (block_state.state == exec_written && block_state.num_valu_since_write < 3) {
1284                global_state.hazard_found = true;
1285                return true;
1286             }
1287 
1288             BITSET_CLEAR(block_state.vgprs_read, reg);
1289             block_state.num_vgprs_read--;
1290             vgpr_write = true;
1291          }
1292       }
1293 
1294       if (vgpr_write) {
1295          /* If the state is nothing_written: the check below should ensure that this write is
1296           * close enough to the read.
1297           *
1298           * If the state is exec_written: the current choice of second write has failed. Reset and
1299           * try with the current write as the second one, if it's close enough to the read.
1300           *
1301           * If the state is written_after_exec_write: a further second write would be better, if
1302           * it's close enough to the read.
1303           */
1304          if (block_state.state == nothing_written || block_state.num_valu_since_read < 5) {
1305             block_state.state = written_after_exec_write;
1306             block_state.num_valu_since_write = 0;
1307          } else {
1308             block_state.num_valu_since_write++;
1309          }
1310       } else {
1311          block_state.num_valu_since_write++;
1312       }
1313 
1314       block_state.num_valu_since_read++;
1315    } else if (parse_vdst_wait(instr) == 0) {
1316       return true;
1317    }
1318 
1319    if (block_state.num_valu_since_read >= (block_state.state == nothing_written ? 5 : 8))
1320       return true; /* Hazard not possible at this distance. */
1321    if (block_state.num_vgprs_read == 0)
1322       return true; /* All VGPRs have been written and a hazard was never found. */
1323 
1324    block_state.num_instrs++;
1325    if (block_state.num_instrs > 256 || block_state.num_blocks > 32) {
1326       /* Exit to limit compile times and set hazard_found=true to be safe. */
1327       global_state.hazard_found = true;
1328       return true;
1329    }
1330 
1331    return false;
1332 }
1333 
1334 bool
handle_valu_partial_forwarding_hazard_block(VALUPartialForwardingHazardGlobalState & global_state,VALUPartialForwardingHazardBlockState & block_state,Block * block)1335 handle_valu_partial_forwarding_hazard_block(VALUPartialForwardingHazardGlobalState& global_state,
1336                                             VALUPartialForwardingHazardBlockState& block_state,
1337                                             Block* block)
1338 {
1339    if (block->kind & block_kind_loop_header) {
1340       if (global_state.loop_headers_visited.count(block->index))
1341          return false;
1342       global_state.loop_headers_visited.insert(block->index);
1343    }
1344 
1345    block_state.num_blocks++;
1346 
1347    return true;
1348 }
1349 
1350 bool
handle_valu_partial_forwarding_hazard(State & state,aco_ptr<Instruction> & instr)1351 handle_valu_partial_forwarding_hazard(State& state, aco_ptr<Instruction>& instr)
1352 {
1353    /* VALUPartialForwardingHazard
1354     * VALU instruction reads two VGPRs: one written before an exec write by SALU and one after.
1355     * For the hazard, there must be less than 3 VALU between the first and second VGPR writes.
1356     * There also must be less than 5 VALU between the second VGPR write and the current instruction.
1357     */
1358    if (state.program->wave_size != 64 || !instr->isVALU())
1359       return false;
1360 
1361    unsigned num_vgprs = 0;
1362    for (Operand& op : instr->operands)
1363       num_vgprs += op.physReg().reg() < 256 ? op.size() : 1;
1364    if (num_vgprs <= 1)
1365       return false; /* early exit */
1366 
1367    VALUPartialForwardingHazardBlockState block_state;
1368 
1369    for (unsigned i = 0; i < instr->operands.size(); i++) {
1370       Operand& op = instr->operands[i];
1371       if (op.physReg().reg() < 256)
1372          continue;
1373       for (unsigned j = 0; j < op.size(); j++)
1374          BITSET_SET(block_state.vgprs_read, op.physReg().reg() - 256 + j);
1375    }
1376    block_state.num_vgprs_read = BITSET_COUNT(block_state.vgprs_read);
1377 
1378    if (block_state.num_vgprs_read <= 1)
1379       return false; /* early exit */
1380 
1381    VALUPartialForwardingHazardGlobalState global_state;
1382    search_backwards<VALUPartialForwardingHazardGlobalState, VALUPartialForwardingHazardBlockState,
1383                     &handle_valu_partial_forwarding_hazard_block,
1384                     &handle_valu_partial_forwarding_hazard_instr>(state, global_state, block_state);
1385    return global_state.hazard_found;
1386 }
1387 
1388 void
handle_instruction_gfx11(State & state,NOP_ctx_gfx11 & ctx,aco_ptr<Instruction> & instr,std::vector<aco_ptr<Instruction>> & new_instructions)1389 handle_instruction_gfx11(State& state, NOP_ctx_gfx11& ctx, aco_ptr<Instruction>& instr,
1390                          std::vector<aco_ptr<Instruction>>& new_instructions)
1391 {
1392    Builder bld(state.program, &new_instructions);
1393 
1394    /* VcmpxPermlaneHazard
1395     * Handle any permlane following a VOPC instruction writing exec, insert v_mov between them.
1396     */
1397    if (instr->isVOPC() && instr->definitions[0].physReg() == exec) {
1398       ctx.has_Vcmpx = true;
1399    } else if (ctx.has_Vcmpx && (instr->opcode == aco_opcode::v_permlane16_b32 ||
1400                                 instr->opcode == aco_opcode::v_permlanex16_b32 ||
1401                                 instr->opcode == aco_opcode::v_permlane64_b32)) {
1402       ctx.has_Vcmpx = false;
1403 
1404       /* Unlike on GFX10, v_nop should resolve the hazard on GFX11. */
1405       bld.vop1(aco_opcode::v_nop);
1406    } else if (instr->isVALU()) {
1407       ctx.has_Vcmpx = false;
1408    }
1409 
1410    unsigned va_vdst = parse_vdst_wait(instr);
1411    unsigned vm_vsrc = 7;
1412    unsigned sa_sdst = 1;
1413 
1414    if (debug_flags & DEBUG_FORCE_WAITDEPS) {
1415       bld.sopp(aco_opcode::s_waitcnt_depctr, -1, 0x0000);
1416       va_vdst = 0;
1417       vm_vsrc = 0;
1418       sa_sdst = 0;
1419    } else if (instr->opcode == aco_opcode::s_waitcnt_depctr) {
1420       /* va_vdst already obtained through parse_vdst_wait(). */
1421       vm_vsrc = (instr->sopp().imm >> 2) & 0x7;
1422       sa_sdst = instr->sopp().imm & 0x1;
1423    }
1424 
1425    if (instr->isLDSDIR()) {
1426       unsigned count = handle_lds_direct_valu_hazard(state, instr);
1427       LDSDIR_instruction* ldsdir = &instr->ldsdir();
1428       if (count < va_vdst) {
1429          ldsdir->wait_vdst = MIN2(ldsdir->wait_vdst, count);
1430          va_vdst = MIN2(va_vdst, count);
1431       }
1432    }
1433 
1434    /* VALUTransUseHazard
1435     * VALU reads VGPR written by transcendental instruction without 6+ VALU or 2+ transcendental
1436     * in-between.
1437     */
1438    if (va_vdst > 0 && instr->isVALU()) {
1439       uint8_t num_valu = 15;
1440       uint8_t num_trans = 15;
1441       for (Operand& op : instr->operands) {
1442          if (op.physReg().reg() < 256)
1443             continue;
1444          for (unsigned i = 0; i < op.size(); i++) {
1445             num_valu = std::min(num_valu, ctx.valu_since_wr_by_trans.get(op.physReg(), i));
1446             num_trans = std::min(num_trans, ctx.trans_since_wr_by_trans.get(op.physReg(), i));
1447          }
1448       }
1449       if (num_trans <= 1 && num_valu <= 5) {
1450          bld.sopp(aco_opcode::s_waitcnt_depctr, -1, 0x0fff);
1451          va_vdst = 0;
1452       }
1453    }
1454 
1455    if (va_vdst > 0 && handle_valu_partial_forwarding_hazard(state, instr)) {
1456       bld.sopp(aco_opcode::s_waitcnt_depctr, -1, 0x0fff);
1457       va_vdst = 0;
1458    }
1459 
1460    /* VALUMaskWriteHazard
1461     * VALU reads SGPR as a lane mask and later written by SALU cannot safely be read by SALU.
1462     */
1463    if (state.program->wave_size == 64 && instr->isSALU() &&
1464        check_written_regs(instr, ctx.sgpr_read_by_valu_as_lanemask)) {
1465       ctx.sgpr_read_by_valu_as_lanemask_then_wr_by_salu = ctx.sgpr_read_by_valu_as_lanemask;
1466       ctx.sgpr_read_by_valu_as_lanemask.reset();
1467    } else if (state.program->wave_size == 64 && instr->isSALU() &&
1468               check_read_regs(instr, ctx.sgpr_read_by_valu_as_lanemask_then_wr_by_salu)) {
1469       bld.sopp(aco_opcode::s_waitcnt_depctr, -1, 0xfffe);
1470       sa_sdst = 0;
1471    }
1472 
1473    if (va_vdst == 0) {
1474       ctx.valu_since_wr_by_trans.reset();
1475       ctx.trans_since_wr_by_trans.reset();
1476    }
1477 
1478    if (sa_sdst == 0)
1479       ctx.sgpr_read_by_valu_as_lanemask_then_wr_by_salu.reset();
1480 
1481    if (instr->isVALU()) {
1482       bool is_trans = instr->isTrans();
1483 
1484       ctx.valu_since_wr_by_trans.inc();
1485       if (is_trans)
1486          ctx.trans_since_wr_by_trans.inc();
1487 
1488       if (is_trans) {
1489          for (Definition& def : instr->definitions) {
1490             ctx.valu_since_wr_by_trans.set(def.physReg(), def.bytes());
1491             ctx.trans_since_wr_by_trans.set(def.physReg(), def.bytes());
1492          }
1493       }
1494 
1495       if (state.program->wave_size == 64) {
1496          for (Operand& op : instr->operands) {
1497             if (op.isLiteral() || (!op.isConstant() && op.physReg().reg() < 128))
1498                ctx.sgpr_read_by_valu_as_lanemask.reset();
1499          }
1500          switch (instr->opcode) {
1501          case aco_opcode::v_addc_co_u32:
1502          case aco_opcode::v_subb_co_u32:
1503          case aco_opcode::v_subbrev_co_u32:
1504          case aco_opcode::v_cndmask_b16:
1505          case aco_opcode::v_cndmask_b32:
1506          case aco_opcode::v_div_fmas_f32:
1507          case aco_opcode::v_div_fmas_f64:
1508             if (instr->operands.back().physReg() != exec) {
1509                ctx.sgpr_read_by_valu_as_lanemask.set(instr->operands.back().physReg().reg());
1510                ctx.sgpr_read_by_valu_as_lanemask.set(instr->operands.back().physReg().reg() + 1);
1511             }
1512             break;
1513          default: break;
1514          }
1515       }
1516    }
1517 
1518    /* LdsDirectVMEMHazard
1519     * Handle LDSDIR writing a VGPR after it's used by a VMEM/DS instruction.
1520     */
1521    if (instr->isVMEM() || instr->isFlatLike()) {
1522       for (Definition& def : instr->definitions)
1523          fill_vgpr_bitset(ctx.vgpr_used_by_vmem_load, def.physReg(), def.bytes());
1524       if (instr->definitions.empty()) {
1525          for (Operand& op : instr->operands)
1526             fill_vgpr_bitset(ctx.vgpr_used_by_vmem_store, op.physReg(), op.bytes());
1527       } else {
1528          for (Operand& op : instr->operands)
1529             fill_vgpr_bitset(ctx.vgpr_used_by_vmem_load, op.physReg(), op.bytes());
1530       }
1531    }
1532    if (instr->isDS() || instr->isFlat()) {
1533       for (Definition& def : instr->definitions)
1534          fill_vgpr_bitset(ctx.vgpr_used_by_ds, def.physReg(), def.bytes());
1535       for (Operand& op : instr->operands)
1536          fill_vgpr_bitset(ctx.vgpr_used_by_ds, op.physReg(), op.bytes());
1537    }
1538    if (instr->isVALU() || instr->isEXP() || vm_vsrc == 0) {
1539       ctx.vgpr_used_by_vmem_load.reset();
1540       ctx.vgpr_used_by_vmem_store.reset();
1541       ctx.vgpr_used_by_ds.reset();
1542    } else if (instr->opcode == aco_opcode::s_waitcnt) {
1543       wait_imm imm(GFX11, instr->sopp().imm);
1544       if (imm.vm == 0)
1545          ctx.vgpr_used_by_vmem_load.reset();
1546       if (imm.lgkm == 0)
1547          ctx.vgpr_used_by_ds.reset();
1548    } else if (instr->opcode == aco_opcode::s_waitcnt_vscnt && instr->sopk().imm == 0) {
1549       ctx.vgpr_used_by_vmem_store.reset();
1550    }
1551    if (instr->isLDSDIR()) {
1552       if (ctx.vgpr_used_by_vmem_load[instr->definitions[0].physReg().reg() - 256] ||
1553           ctx.vgpr_used_by_vmem_store[instr->definitions[0].physReg().reg() - 256] ||
1554           ctx.vgpr_used_by_ds[instr->definitions[0].physReg().reg() - 256]) {
1555          bld.sopp(aco_opcode::s_waitcnt_depctr, -1, 0xffe3);
1556          ctx.vgpr_used_by_vmem_load.reset();
1557          ctx.vgpr_used_by_vmem_store.reset();
1558          ctx.vgpr_used_by_ds.reset();
1559       }
1560    }
1561 }
1562 
1563 bool
has_vdst0_since_valu_instr(bool & global_state,unsigned & block_state,aco_ptr<Instruction> & pred)1564 has_vdst0_since_valu_instr(bool& global_state, unsigned& block_state, aco_ptr<Instruction>& pred)
1565 {
1566    if (parse_vdst_wait(pred) == 0)
1567       return true;
1568 
1569    if (--block_state == 0) {
1570       global_state = false;
1571       return true;
1572    }
1573 
1574    if (pred->isVALU()) {
1575       bool vgpr_rd_or_wr = false;
1576       for (Definition def : pred->definitions) {
1577          if (def.physReg().reg() >= 256)
1578             vgpr_rd_or_wr = true;
1579       }
1580       for (Operand op : pred->operands) {
1581          if (op.physReg().reg() >= 256)
1582             vgpr_rd_or_wr = true;
1583       }
1584       if (vgpr_rd_or_wr) {
1585          global_state = false;
1586          return true;
1587       }
1588    }
1589 
1590    return false;
1591 }
1592 
1593 void
resolve_all_gfx11(State & state,NOP_ctx_gfx11 & ctx,std::vector<aco_ptr<Instruction>> & new_instructions)1594 resolve_all_gfx11(State& state, NOP_ctx_gfx11& ctx,
1595                   std::vector<aco_ptr<Instruction>>& new_instructions)
1596 {
1597    Builder bld(state.program, &new_instructions);
1598 
1599    unsigned waitcnt_depctr = 0xffff;
1600 
1601    /* LdsDirectVALUHazard/VALUPartialForwardingHazard/VALUTransUseHazard */
1602    bool has_vdst0_since_valu = true;
1603    unsigned depth = 16;
1604    search_backwards<bool, unsigned, nullptr, has_vdst0_since_valu_instr>(
1605       state, has_vdst0_since_valu, depth);
1606    if (!has_vdst0_since_valu) {
1607       waitcnt_depctr &= 0x0fff;
1608       ctx.valu_since_wr_by_trans.reset();
1609       ctx.trans_since_wr_by_trans.reset();
1610    }
1611 
1612    /* VcmpxPermlaneHazard */
1613    if (ctx.has_Vcmpx) {
1614       ctx.has_Vcmpx = false;
1615       bld.vop1(aco_opcode::v_nop);
1616    }
1617 
1618    /* VALUMaskWriteHazard */
1619    if (state.program->wave_size == 64 &&
1620        (ctx.sgpr_read_by_valu_as_lanemask.any() ||
1621         ctx.sgpr_read_by_valu_as_lanemask_then_wr_by_salu.any())) {
1622       waitcnt_depctr &= 0xfffe;
1623       ctx.sgpr_read_by_valu_as_lanemask.reset();
1624       ctx.sgpr_read_by_valu_as_lanemask_then_wr_by_salu.reset();
1625    }
1626 
1627    /* LdsDirectVMEMHazard */
1628    if (ctx.vgpr_used_by_vmem_load.any() || ctx.vgpr_used_by_vmem_store.any() ||
1629        ctx.vgpr_used_by_ds.any()) {
1630       waitcnt_depctr &= 0xffe3;
1631       ctx.vgpr_used_by_vmem_load.reset();
1632       ctx.vgpr_used_by_vmem_store.reset();
1633       ctx.vgpr_used_by_ds.reset();
1634    }
1635 
1636    if (waitcnt_depctr != 0xffff)
1637       bld.sopp(aco_opcode::s_waitcnt_depctr, -1, waitcnt_depctr);
1638 }
1639 
1640 template <typename Ctx>
1641 using HandleInstr = void (*)(State& state, Ctx&, aco_ptr<Instruction>&,
1642                              std::vector<aco_ptr<Instruction>>&);
1643 
1644 template <typename Ctx>
1645 using ResolveAll = void (*)(State& state, Ctx&, std::vector<aco_ptr<Instruction>>&);
1646 
1647 template <typename Ctx, HandleInstr<Ctx> Handle, ResolveAll<Ctx> Resolve>
1648 void
handle_block(Program * program,Ctx & ctx,Block & block)1649 handle_block(Program* program, Ctx& ctx, Block& block)
1650 {
1651    if (block.instructions.empty())
1652       return;
1653 
1654    State state;
1655    state.program = program;
1656    state.block = &block;
1657    state.old_instructions = std::move(block.instructions);
1658 
1659    block.instructions.clear(); // Silence clang-analyzer-cplusplus.Move warning
1660    block.instructions.reserve(state.old_instructions.size());
1661 
1662    bool found_end = false;
1663    for (aco_ptr<Instruction>& instr : state.old_instructions) {
1664       Handle(state, ctx, instr, block.instructions);
1665 
1666       /* Resolve all possible hazards (we don't know what s_setpc_b64 jumps to). */
1667       if (instr->opcode == aco_opcode::s_setpc_b64) {
1668          block.instructions.emplace_back(std::move(instr));
1669 
1670          std::vector<aco_ptr<Instruction>> resolve_instrs;
1671          Resolve(state, ctx, resolve_instrs);
1672          block.instructions.insert(std::prev(block.instructions.end()),
1673                                    std::move_iterator(resolve_instrs.begin()),
1674                                    std::move_iterator(resolve_instrs.end()));
1675 
1676          found_end = true;
1677          continue;
1678       }
1679 
1680       found_end |= instr->opcode == aco_opcode::s_endpgm;
1681       block.instructions.emplace_back(std::move(instr));
1682    }
1683 
1684    /* Resolve all possible hazards (we don't know what the shader is concatenated with). */
1685    if (block.linear_succs.empty() && !found_end)
1686       Resolve(state, ctx, block.instructions);
1687 }
1688 
1689 template <typename Ctx, HandleInstr<Ctx> Handle, ResolveAll<Ctx> Resolve>
1690 void
mitigate_hazards(Program * program)1691 mitigate_hazards(Program* program)
1692 {
1693    std::vector<Ctx> all_ctx(program->blocks.size());
1694    std::stack<unsigned, std::vector<unsigned>> loop_header_indices;
1695 
1696    for (unsigned i = 0; i < program->blocks.size(); i++) {
1697       Block& block = program->blocks[i];
1698       Ctx& ctx = all_ctx[i];
1699 
1700       if (block.kind & block_kind_loop_header) {
1701          loop_header_indices.push(i);
1702       } else if (block.kind & block_kind_loop_exit) {
1703          /* Go through the whole loop again */
1704          for (unsigned idx = loop_header_indices.top(); idx < i; idx++) {
1705             Ctx loop_block_ctx;
1706             for (unsigned b : program->blocks[idx].linear_preds)
1707                loop_block_ctx.join(all_ctx[b]);
1708 
1709             handle_block<Ctx, Handle, Resolve>(program, loop_block_ctx, program->blocks[idx]);
1710 
1711             /* We only need to continue if the loop header context changed */
1712             if (idx == loop_header_indices.top() && loop_block_ctx == all_ctx[idx])
1713                break;
1714 
1715             all_ctx[idx] = loop_block_ctx;
1716          }
1717 
1718          loop_header_indices.pop();
1719       }
1720 
1721       for (unsigned b : block.linear_preds)
1722          ctx.join(all_ctx[b]);
1723 
1724       handle_block<Ctx, Handle, Resolve>(program, ctx, block);
1725    }
1726 }
1727 
1728 } /* end namespace */
1729 
1730 void
insert_NOPs(Program * program)1731 insert_NOPs(Program* program)
1732 {
1733    if (program->gfx_level >= GFX11)
1734       mitigate_hazards<NOP_ctx_gfx11, handle_instruction_gfx11, resolve_all_gfx11>(program);
1735    else if (program->gfx_level >= GFX10_3)
1736       ; /* no hazards/bugs to mitigate */
1737    else if (program->gfx_level >= GFX10)
1738       mitigate_hazards<NOP_ctx_gfx10, handle_instruction_gfx10, resolve_all_gfx10>(program);
1739    else
1740       mitigate_hazards<NOP_ctx_gfx6, handle_instruction_gfx6, resolve_all_gfx6>(program);
1741 }
1742 
1743 } // namespace aco
1744