• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2019 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "aco_builder.h"
26 #include "aco_ir.h"
27 
28 #include "util/enum_operators.h"
29 
30 #include <algorithm>
31 #include <map>
32 #include <vector>
33 
34 namespace aco {
35 
36 enum class pred_defined : uint8_t {
37    undef = 0,
38    const_1 = 1,
39    const_0 = 2,
40    temp = 3,
41    zero = 4, /* all disabled lanes are zero'd out */
42 };
43 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(pred_defined);
44 
45 struct ssa_state {
46    bool checked_preds_for_uniform;
47    bool all_preds_uniform;
48    unsigned loop_nest_depth;
49 
50    std::vector<pred_defined> any_pred_defined;
51    std::vector<bool> visited;
52    std::vector<Operand> outputs; /* the output per block */
53 };
54 
55 Operand get_output(Program* program, unsigned block_idx, ssa_state* state);
56 
57 void
init_outputs(Program * program,ssa_state * state,unsigned start,unsigned end)58 init_outputs(Program* program, ssa_state* state, unsigned start, unsigned end)
59 {
60    for (unsigned i = start; i < end; ++i) {
61       if (state->visited[i])
62          continue;
63       state->outputs[i] = get_output(program, i, state);
64       state->visited[i] = true;
65    }
66 }
67 
68 Operand
get_output(Program * program,unsigned block_idx,ssa_state * state)69 get_output(Program* program, unsigned block_idx, ssa_state* state)
70 {
71    Block& block = program->blocks[block_idx];
72 
73    if (state->any_pred_defined[block_idx] == pred_defined::undef)
74       return Operand(program->lane_mask);
75 
76    if (block.loop_nest_depth < state->loop_nest_depth)
77       /* loop-carried value for loop exit phis */
78       return Operand::zero(program->lane_mask.bytes());
79 
80    size_t num_preds = block.linear_preds.size();
81 
82    if (block.loop_nest_depth > state->loop_nest_depth || num_preds == 1 ||
83        block.kind & block_kind_loop_exit)
84       return state->outputs[block.linear_preds[0]];
85 
86    Operand output;
87 
88    /* Loop headers can contain back edges, in which case the predecessor
89     * outputs aren't yet determined because the predecessor is after the block.
90     * The predecessor outputs also depend on the output of the loop header,
91     * so allocate a temporary that will store this block's output and use that
92     * to calculate the predecessor block output. In this case, we always emit a phi
93     * to ensure the allocated temporary is defined. */
94    if (block.kind & block_kind_loop_header) {
95       unsigned start_idx = block_idx + 1;
96       unsigned end_idx = block.linear_preds.back() + 1;
97 
98       state->outputs[block_idx] = Operand(Temp(program->allocateTmp(program->lane_mask)));
99       init_outputs(program, state, start_idx, end_idx);
100       output = state->outputs[block_idx];
101    } else if (std::all_of(block.linear_preds.begin() + 1, block.linear_preds.end(),
102                           [&](unsigned pred) {
103                              return state->outputs[pred] == state->outputs[block.linear_preds[0]];
104                           })) {
105       return state->outputs[block.linear_preds[0]];
106    } else {
107       output = Operand(Temp(program->allocateTmp(program->lane_mask)));
108    }
109 
110    /* create phi */
111    aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
112       aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)};
113    for (unsigned i = 0; i < num_preds; i++)
114       phi->operands[i] = state->outputs[block.linear_preds[i]];
115    phi->definitions[0] = Definition(output.getTemp());
116    block.instructions.emplace(block.instructions.begin(), std::move(phi));
117 
118    assert(output.size() == program->lane_mask.size());
119 
120    return output;
121 }
122 
123 void
insert_before_logical_end(Block * block,aco_ptr<Instruction> instr)124 insert_before_logical_end(Block* block, aco_ptr<Instruction> instr)
125 {
126    auto IsLogicalEnd = [](const aco_ptr<Instruction>& inst) -> bool
127    { return inst->opcode == aco_opcode::p_logical_end; };
128    auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd);
129 
130    if (it == block->instructions.crend()) {
131       assert(block->instructions.back()->isBranch());
132       block->instructions.insert(std::prev(block->instructions.end()), std::move(instr));
133    } else {
134       block->instructions.insert(std::prev(it.base()), std::move(instr));
135    }
136 }
137 
138 void
build_merge_code(Program * program,ssa_state * state,Block * block,Operand cur)139 build_merge_code(Program* program, ssa_state* state, Block* block, Operand cur)
140 {
141    unsigned block_idx = block->index;
142    Definition dst = Definition(state->outputs[block_idx].getTemp());
143    Operand prev = get_output(program, block_idx, state);
144    if (cur.isUndefined())
145       cur = Operand::zero(program->lane_mask.bytes());
146 
147    Builder bld(program);
148    auto IsLogicalEnd = [](const aco_ptr<Instruction>& instr) -> bool
149    { return instr->opcode == aco_opcode::p_logical_end; };
150    auto it = std::find_if(block->instructions.rbegin(), block->instructions.rend(), IsLogicalEnd);
151    assert(it != block->instructions.rend());
152    bld.reset(&block->instructions, std::prev(it.base()));
153 
154    pred_defined defined = state->any_pred_defined[block_idx];
155    if (defined == pred_defined::undef) {
156       return;
157    } else if (defined == pred_defined::const_0) {
158       bld.sop2(Builder::s_and, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
159       return;
160    } else if (defined == pred_defined::const_1) {
161       bld.sop2(Builder::s_orn2, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
162       return;
163    }
164 
165    assert(prev.isTemp());
166    /* simpler sequence in case prev has only zeros in disabled lanes */
167    if ((defined & pred_defined::zero) == pred_defined::zero) {
168       if (cur.isConstant()) {
169          if (!cur.constantValue()) {
170             bld.copy(dst, prev);
171             return;
172          }
173          cur = Operand(exec, bld.lm);
174       } else {
175          cur =
176             bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm));
177       }
178       bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur);
179       return;
180    }
181 
182    if (cur.isConstant()) {
183       if (cur.constantValue())
184          bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
185       else
186          bld.sop2(Builder::s_andn2, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
187       return;
188    }
189    prev =
190       bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), prev, Operand(exec, bld.lm));
191    cur = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm));
192    bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur);
193    return;
194 }
195 
196 void
build_const_else_merge_code(Program * program,Block & invert_block,aco_ptr<Instruction> & phi)197 build_const_else_merge_code(Program* program, Block& invert_block, aco_ptr<Instruction>& phi)
198 {
199    /* When the else-side operand of a binary merge phi is constant,
200     * we can use a simpler way to lower the phi by emitting some
201     * instructions to the invert block instead.
202     * This allows us to actually delete the else block when it's empty.
203     */
204    assert(invert_block.kind & block_kind_invert);
205    Builder bld(program);
206    Operand then = phi->operands[0];
207    const Operand els = phi->operands[1];
208 
209    /* Only -1 (all lanes true) and 0 (all lanes false) constants are supported here. */
210    assert(!then.isConstant() || then.constantEquals(0) || then.constantEquals(-1));
211    assert(els.constantEquals(0) || els.constantEquals(-1));
212 
213    if (!then.isConstant()) {
214       /* Left-hand operand is not constant, so we need to emit a phi to access it. */
215       bld.reset(&invert_block.instructions, invert_block.instructions.begin());
216       then = bld.pseudo(aco_opcode::p_linear_phi, bld.def(bld.lm), then, Operand(bld.lm));
217    }
218 
219    auto after_phis =
220       std::find_if(invert_block.instructions.begin(), invert_block.instructions.end(),
221                    [](const aco_ptr<Instruction>& instr) -> bool { return !is_phi(instr.get()); });
222    bld.reset(&invert_block.instructions, after_phis);
223 
224    Temp tmp;
225    if (then.constantEquals(-1) && els.constantEquals(0)) {
226       tmp = bld.copy(bld.def(bld.lm), Operand(exec, bld.lm));
227    } else {
228       Builder::WaveSpecificOpcode opc = els.constantEquals(0) ? Builder::s_and : Builder::s_orn2;
229       tmp = bld.sop2(opc, bld.def(bld.lm), bld.def(s1, scc), then, Operand(exec, bld.lm));
230    }
231 
232    /* We can't delete the original phi because that'd invalidate the iterator in lower_phis,
233     * so just make it a trivial phi instead.
234     */
235    phi->opcode = aco_opcode::p_linear_phi;
236    phi->operands[0] = Operand(tmp);
237    phi->operands[1] = Operand(tmp);
238 }
239 
240 void
init_state(Program * program,Block * block,ssa_state * state,aco_ptr<Instruction> & phi)241 init_state(Program* program, Block* block, ssa_state* state, aco_ptr<Instruction>& phi)
242 {
243    Builder bld(program);
244 
245    /* do this here to avoid resizing in case of no boolean phis */
246    state->visited.resize(program->blocks.size());
247    state->outputs.resize(program->blocks.size());
248    state->any_pred_defined.resize(program->blocks.size());
249    state->loop_nest_depth = block->loop_nest_depth;
250    if (block->kind & block_kind_loop_exit)
251       state->loop_nest_depth += 1;
252    std::fill(state->visited.begin(), state->visited.end(), false);
253    std::fill(state->any_pred_defined.begin(), state->any_pred_defined.end(), pred_defined::undef);
254 
255    for (unsigned i = 0; i < block->logical_preds.size(); i++) {
256       if (phi->operands[i].isUndefined())
257          continue;
258       pred_defined defined = pred_defined::temp;
259       if (phi->operands[i].isConstant())
260          defined = phi->operands[i].constantValue() ? pred_defined::const_1 : pred_defined::const_0;
261       for (unsigned succ : program->blocks[block->logical_preds[i]].linear_succs)
262          state->any_pred_defined[succ] |= defined;
263    }
264 
265    unsigned start = block->logical_preds[0];
266    unsigned end = block->index;
267 
268    /* for loop exit phis, start at the loop pre-header */
269    if (block->kind & block_kind_loop_exit) {
270       while (program->blocks[start].loop_nest_depth >= state->loop_nest_depth)
271          start--;
272       /* If the loop-header has a back-edge, we need to insert a phi.
273        * This will contain a defined value */
274       if (program->blocks[start + 1].linear_preds.size() > 1)
275          state->any_pred_defined[start + 1] = pred_defined::temp;
276    }
277    /* for loop header phis, end at the loop exit */
278    if (block->kind & block_kind_loop_header) {
279       while (program->blocks[end].loop_nest_depth >= state->loop_nest_depth)
280          end++;
281       /* don't propagate the incoming value */
282       state->any_pred_defined[block->index] = pred_defined::undef;
283    }
284 
285    /* add dominating zero: this allows to emit simpler merge sequences
286     * if we can ensure that all disabled lanes are always zero on incoming values */
287    // TODO: find more occasions where pred_defined::zero is beneficial (e.g. with 2+ temp merges)
288    if (block->kind & block_kind_loop_exit) {
289       /* zero the loop-carried variable */
290       if (program->blocks[start + 1].linear_preds.size() > 1) {
291          state->any_pred_defined[start + 1] |= pred_defined::zero;
292          // TODO: emit this zero explicitly
293          state->any_pred_defined[start] = pred_defined::const_0;
294       }
295    }
296 
297    for (unsigned j = start; j < end; j++) {
298       if (state->any_pred_defined[j] == pred_defined::undef)
299          continue;
300       for (unsigned succ : program->blocks[j].linear_succs)
301          state->any_pred_defined[succ] |= state->any_pred_defined[j];
302    }
303 
304    state->any_pred_defined[block->index] = pred_defined::undef;
305 
306    for (unsigned i = 0; i < phi->operands.size(); i++) {
307       unsigned pred = block->logical_preds[i];
308       if (state->any_pred_defined[pred] != pred_defined::undef)
309          state->outputs[pred] = Operand(bld.tmp(bld.lm));
310       else
311          state->outputs[pred] = phi->operands[i];
312       assert(state->outputs[pred].size() == bld.lm.size());
313       state->visited[pred] = true;
314    }
315 
316    init_outputs(program, state, start, end);
317 }
318 
319 void
lower_divergent_bool_phi(Program * program,ssa_state * state,Block * block,aco_ptr<Instruction> & phi)320 lower_divergent_bool_phi(Program* program, ssa_state* state, Block* block,
321                          aco_ptr<Instruction>& phi)
322 {
323    if (!state->checked_preds_for_uniform) {
324       state->all_preds_uniform = !(block->kind & block_kind_merge) &&
325                                  block->linear_preds.size() == block->logical_preds.size();
326       for (unsigned pred : block->logical_preds)
327          state->all_preds_uniform =
328             state->all_preds_uniform && (program->blocks[pred].kind & block_kind_uniform);
329       state->checked_preds_for_uniform = true;
330    }
331 
332    if (state->all_preds_uniform) {
333       phi->opcode = aco_opcode::p_linear_phi;
334       return;
335    }
336 
337    if (phi->operands.size() == 2 && phi->operands[1].isConstant() &&
338        (block->kind & block_kind_merge)) {
339       build_const_else_merge_code(program, program->blocks[block->linear_idom], phi);
340       return;
341    }
342 
343    init_state(program, block, state, phi);
344 
345    for (unsigned i = 0; i < phi->operands.size(); i++)
346       build_merge_code(program, state, &program->blocks[block->logical_preds[i]], phi->operands[i]);
347 
348    unsigned num_preds = block->linear_preds.size();
349    if (phi->operands.size() != num_preds) {
350       Pseudo_instruction* new_phi{create_instruction<Pseudo_instruction>(
351          aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)};
352       new_phi->definitions[0] = phi->definitions[0];
353       phi.reset(new_phi);
354    } else {
355       phi->opcode = aco_opcode::p_linear_phi;
356    }
357    assert(phi->operands.size() == num_preds);
358 
359    for (unsigned i = 0; i < num_preds; i++)
360       phi->operands[i] = state->outputs[block->linear_preds[i]];
361 
362    return;
363 }
364 
365 void
lower_subdword_phis(Program * program,Block * block,aco_ptr<Instruction> & phi)366 lower_subdword_phis(Program* program, Block* block, aco_ptr<Instruction>& phi)
367 {
368    Builder bld(program);
369    for (unsigned i = 0; i < phi->operands.size(); i++) {
370       if (phi->operands[i].isUndefined())
371          continue;
372       if (phi->operands[i].regClass() == phi->definitions[0].regClass())
373          continue;
374 
375       assert(phi->operands[i].isTemp());
376       Block* pred = &program->blocks[block->logical_preds[i]];
377       Temp phi_src = phi->operands[i].getTemp();
378 
379       assert(phi_src.regClass().type() == RegType::sgpr);
380       Temp tmp = bld.tmp(RegClass(RegType::vgpr, phi_src.size()));
381       insert_before_logical_end(pred, bld.copy(Definition(tmp), phi_src).get_ptr());
382       Temp new_phi_src = bld.tmp(phi->definitions[0].regClass());
383       insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_extract_vector,
384                                                  Definition(new_phi_src), tmp, Operand::zero())
385                                          .get_ptr());
386 
387       phi->operands[i].setTemp(new_phi_src);
388    }
389    return;
390 }
391 
392 void
lower_phis(Program * program)393 lower_phis(Program* program)
394 {
395    ssa_state state;
396 
397    for (Block& block : program->blocks) {
398       state.checked_preds_for_uniform = false;
399       for (aco_ptr<Instruction>& phi : block.instructions) {
400          if (phi->opcode == aco_opcode::p_phi) {
401             assert(program->wave_size == 64 ? phi->definitions[0].regClass() != s1
402                                             : phi->definitions[0].regClass() != s2);
403             if (phi->definitions[0].regClass() == program->lane_mask)
404                lower_divergent_bool_phi(program, &state, &block, phi);
405             else if (phi->definitions[0].regClass().is_subdword())
406                lower_subdword_phis(program, &block, phi);
407          } else if (!is_phi(phi)) {
408             break;
409          }
410       }
411    }
412 }
413 
414 } // namespace aco
415