1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "aco_ir.h"
26
27 #include <algorithm>
28 #include <map>
29 #include <vector>
30
31 namespace aco {
32 namespace {
33
34 struct phi_info_item {
35 Definition def;
36 Operand op;
37 };
38
39 struct ssa_elimination_ctx {
40 /* The outer vectors should be indexed by block index. The inner vectors store phi information
41 * for each block. */
42 std::vector<std::vector<phi_info_item>> logical_phi_info;
43 std::vector<std::vector<phi_info_item>> linear_phi_info;
44 std::vector<bool> empty_blocks;
45 std::vector<bool> blocks_incoming_exec_used;
46 Program* program;
47
ssa_elimination_ctxaco::__anonb137b1550111::ssa_elimination_ctx48 ssa_elimination_ctx(Program* program_)
49 : logical_phi_info(program_->blocks.size()), linear_phi_info(program_->blocks.size()),
50 empty_blocks(program_->blocks.size(), true),
51 blocks_incoming_exec_used(program_->blocks.size(), true), program(program_)
52 {}
53 };
54
55 void
collect_phi_info(ssa_elimination_ctx & ctx)56 collect_phi_info(ssa_elimination_ctx& ctx)
57 {
58 for (Block& block : ctx.program->blocks) {
59 for (aco_ptr<Instruction>& phi : block.instructions) {
60 if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
61 break;
62
63 for (unsigned i = 0; i < phi->operands.size(); i++) {
64 if (phi->operands[i].isUndefined())
65 continue;
66 if (phi->operands[i].physReg() == phi->definitions[0].physReg())
67 continue;
68
69 assert(phi->definitions[0].size() == phi->operands[i].size());
70
71 std::vector<unsigned>& preds =
72 phi->opcode == aco_opcode::p_phi ? block.logical_preds : block.linear_preds;
73 uint32_t pred_idx = preds[i];
74 auto& info_vec = phi->opcode == aco_opcode::p_phi ? ctx.logical_phi_info[pred_idx]
75 : ctx.linear_phi_info[pred_idx];
76 info_vec.push_back({phi->definitions[0], phi->operands[i]});
77 ctx.empty_blocks[pred_idx] = false;
78 }
79 }
80 }
81 }
82
83 void
insert_parallelcopies(ssa_elimination_ctx & ctx)84 insert_parallelcopies(ssa_elimination_ctx& ctx)
85 {
86 /* insert the parallelcopies from logical phis before p_logical_end */
87 for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) {
88 auto& logical_phi_info = ctx.logical_phi_info[block_idx];
89 if (logical_phi_info.empty())
90 continue;
91
92 Block& block = ctx.program->blocks[block_idx];
93 unsigned idx = block.instructions.size() - 1;
94 while (block.instructions[idx]->opcode != aco_opcode::p_logical_end) {
95 assert(idx > 0);
96 idx--;
97 }
98
99 std::vector<aco_ptr<Instruction>>::iterator it = std::next(block.instructions.begin(), idx);
100 aco_ptr<Pseudo_instruction> pc{
101 create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO,
102 logical_phi_info.size(), logical_phi_info.size())};
103 unsigned i = 0;
104 for (auto& phi_info : logical_phi_info) {
105 pc->definitions[i] = phi_info.def;
106 pc->operands[i] = phi_info.op;
107 i++;
108 }
109 /* this shouldn't be needed since we're only copying vgprs */
110 pc->tmp_in_scc = false;
111 block.instructions.insert(it, std::move(pc));
112 }
113
114 /* insert parallelcopies for the linear phis at the end of blocks just before the branch */
115 for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) {
116 auto& linear_phi_info = ctx.linear_phi_info[block_idx];
117 if (linear_phi_info.empty())
118 continue;
119
120 Block& block = ctx.program->blocks[block_idx];
121 std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.end();
122 --it;
123 assert((*it)->isBranch());
124 PhysReg scratch_sgpr = (*it)->definitions[0].physReg();
125 aco_ptr<Pseudo_instruction> pc{
126 create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO,
127 linear_phi_info.size(), linear_phi_info.size())};
128 unsigned i = 0;
129 for (auto& phi_info : linear_phi_info) {
130 pc->definitions[i] = phi_info.def;
131 pc->operands[i] = phi_info.op;
132 i++;
133 }
134 pc->tmp_in_scc = block.scc_live_out;
135 pc->scratch_sgpr = scratch_sgpr;
136 block.instructions.insert(it, std::move(pc));
137 }
138 }
139
140 bool
is_empty_block(Block * block,bool ignore_exec_writes)141 is_empty_block(Block* block, bool ignore_exec_writes)
142 {
143 /* check if this block is empty and the exec mask is not needed */
144 for (aco_ptr<Instruction>& instr : block->instructions) {
145 switch (instr->opcode) {
146 case aco_opcode::p_linear_phi:
147 case aco_opcode::p_phi:
148 case aco_opcode::p_logical_start:
149 case aco_opcode::p_logical_end:
150 case aco_opcode::p_branch: break;
151 case aco_opcode::p_parallelcopy:
152 for (unsigned i = 0; i < instr->definitions.size(); i++) {
153 if (ignore_exec_writes && instr->definitions[i].physReg() == exec)
154 continue;
155 if (instr->definitions[i].physReg() != instr->operands[i].physReg())
156 return false;
157 }
158 break;
159 case aco_opcode::s_andn2_b64:
160 case aco_opcode::s_andn2_b32:
161 if (ignore_exec_writes && instr->definitions[0].physReg() == exec)
162 break;
163 return false;
164 default: return false;
165 }
166 }
167 return true;
168 }
169
170 void
try_remove_merge_block(ssa_elimination_ctx & ctx,Block * block)171 try_remove_merge_block(ssa_elimination_ctx& ctx, Block* block)
172 {
173 /* check if the successor is another merge block which restores exec */
174 // TODO: divergent loops also restore exec
175 if (block->linear_succs.size() != 1 ||
176 !(ctx.program->blocks[block->linear_succs[0]].kind & block_kind_merge))
177 return;
178
179 /* check if this block is empty */
180 if (!is_empty_block(block, true))
181 return;
182
183 /* keep the branch instruction and remove the rest */
184 aco_ptr<Instruction> branch = std::move(block->instructions.back());
185 block->instructions.clear();
186 block->instructions.emplace_back(std::move(branch));
187 }
188
189 void
try_remove_invert_block(ssa_elimination_ctx & ctx,Block * block)190 try_remove_invert_block(ssa_elimination_ctx& ctx, Block* block)
191 {
192 assert(block->linear_succs.size() == 2);
193 /* only remove this block if the successor got removed as well */
194 if (block->linear_succs[0] != block->linear_succs[1])
195 return;
196
197 /* check if block is otherwise empty */
198 if (!is_empty_block(block, true))
199 return;
200
201 unsigned succ_idx = block->linear_succs[0];
202 assert(block->linear_preds.size() == 2);
203 for (unsigned i = 0; i < 2; i++) {
204 Block* pred = &ctx.program->blocks[block->linear_preds[i]];
205 pred->linear_succs[0] = succ_idx;
206 ctx.program->blocks[succ_idx].linear_preds[i] = pred->index;
207
208 Pseudo_branch_instruction& branch = pred->instructions.back()->branch();
209 assert(branch.isBranch());
210 branch.target[0] = succ_idx;
211 branch.target[1] = succ_idx;
212 }
213
214 block->instructions.clear();
215 block->linear_preds.clear();
216 block->linear_succs.clear();
217 }
218
219 void
try_remove_simple_block(ssa_elimination_ctx & ctx,Block * block)220 try_remove_simple_block(ssa_elimination_ctx& ctx, Block* block)
221 {
222 if (!is_empty_block(block, false))
223 return;
224
225 Block& pred = ctx.program->blocks[block->linear_preds[0]];
226 Block& succ = ctx.program->blocks[block->linear_succs[0]];
227 Pseudo_branch_instruction& branch = pred.instructions.back()->branch();
228 if (branch.opcode == aco_opcode::p_branch) {
229 branch.target[0] = succ.index;
230 branch.target[1] = succ.index;
231 } else if (branch.target[0] == block->index) {
232 branch.target[0] = succ.index;
233 } else if (branch.target[0] == succ.index) {
234 assert(branch.target[1] == block->index);
235 branch.target[1] = succ.index;
236 branch.opcode = aco_opcode::p_branch;
237 } else if (branch.target[1] == block->index) {
238 /* check if there is a fall-through path from block to succ */
239 bool falls_through = block->index < succ.index;
240 for (unsigned j = block->index + 1; falls_through && j < succ.index; j++) {
241 assert(ctx.program->blocks[j].index == j);
242 if (!ctx.program->blocks[j].instructions.empty())
243 falls_through = false;
244 }
245 if (falls_through) {
246 branch.target[1] = succ.index;
247 } else {
248 /* check if there is a fall-through path for the alternative target */
249 if (block->index >= branch.target[0])
250 return;
251 for (unsigned j = block->index + 1; j < branch.target[0]; j++) {
252 if (!ctx.program->blocks[j].instructions.empty())
253 return;
254 }
255
256 /* This is a (uniform) break or continue block. The branch condition has to be inverted. */
257 if (branch.opcode == aco_opcode::p_cbranch_z)
258 branch.opcode = aco_opcode::p_cbranch_nz;
259 else if (branch.opcode == aco_opcode::p_cbranch_nz)
260 branch.opcode = aco_opcode::p_cbranch_z;
261 else
262 assert(false);
263 /* also invert the linear successors */
264 pred.linear_succs[0] = pred.linear_succs[1];
265 pred.linear_succs[1] = succ.index;
266 branch.target[1] = branch.target[0];
267 branch.target[0] = succ.index;
268 }
269 } else {
270 assert(false);
271 }
272
273 if (branch.target[0] == branch.target[1]) {
274 while (branch.operands.size())
275 branch.operands.pop_back();
276
277 branch.opcode = aco_opcode::p_branch;
278 }
279
280 for (unsigned i = 0; i < pred.linear_succs.size(); i++)
281 if (pred.linear_succs[i] == block->index)
282 pred.linear_succs[i] = succ.index;
283
284 for (unsigned i = 0; i < succ.linear_preds.size(); i++)
285 if (succ.linear_preds[i] == block->index)
286 succ.linear_preds[i] = pred.index;
287
288 block->instructions.clear();
289 block->linear_preds.clear();
290 block->linear_succs.clear();
291 }
292
293 bool
instr_writes_exec(Instruction * instr)294 instr_writes_exec(Instruction* instr)
295 {
296 for (Definition& def : instr->definitions)
297 if (def.physReg() == exec || def.physReg() == exec_hi)
298 return true;
299
300 return false;
301 }
302
303 template <typename T, typename U>
304 bool
regs_intersect(const T & a,const U & b)305 regs_intersect(const T& a, const U& b)
306 {
307 const unsigned a_lo = a.physReg();
308 const unsigned a_hi = a_lo + a.size();
309 const unsigned b_lo = b.physReg();
310 const unsigned b_hi = b_lo + b.size();
311
312 return a_hi > b_lo && b_hi > a_lo;
313 }
314
315 void
try_optimize_branching_sequence(ssa_elimination_ctx & ctx,Block & block,const int exec_val_idx,const int exec_copy_idx)316 try_optimize_branching_sequence(ssa_elimination_ctx& ctx, Block& block, const int exec_val_idx,
317 const int exec_copy_idx)
318 {
319 /* Try to optimize the branching sequence at the end of a block.
320 *
321 * We are looking for blocks that look like this:
322 *
323 * BB:
324 * ... instructions ...
325 * s[N:M] = <exec_val instruction>
326 * ... other instructions that don't depend on exec ...
327 * p_logical_end
328 * exec = <exec_copy instruction> s[N:M]
329 * p_cbranch exec
330 *
331 * The main motivation is to eliminate exec_copy.
332 * Depending on the context, we try to do the following:
333 *
334 * 1. Reassign exec_val to write exec directly
335 * 2. If possible, eliminate exec_copy
336 * 3. When exec_copy also saves the old exec mask, insert a
337 * new copy instruction before exec_val
338 * 4. Reassign any instruction that used s[N:M] to use exec
339 *
340 * This is beneficial for the following reasons:
341 *
342 * - Fewer instructions in the block when exec_copy can be eliminated
343 * - As a result, when exec_val is VOPC this also improves the stalls
344 * due to SALU waiting for VALU. This works best when we can also
345 * remove the branching instruction, in which case the stall
346 * is entirely eliminated.
347 * - When exec_copy can't be removed, the reassignment may still be
348 * very slightly beneficial to latency.
349 */
350
351 aco_ptr<Instruction>& exec_val = block.instructions[exec_val_idx];
352 aco_ptr<Instruction>& exec_copy = block.instructions[exec_copy_idx];
353
354 const aco_opcode and_saveexec = ctx.program->lane_mask == s2 ? aco_opcode::s_and_saveexec_b64
355 : aco_opcode::s_and_saveexec_b32;
356
357 if (exec_copy->opcode != and_saveexec && exec_copy->opcode != aco_opcode::p_parallelcopy)
358 return;
359
360 if (exec_val->definitions.size() > 1)
361 return;
362
363 const bool vcmpx_exec_only = ctx.program->gfx_level >= GFX10;
364
365 /* Check if a suitable v_cmpx opcode exists. */
366 const aco_opcode v_cmpx_op =
367 exec_val->isVOPC() ? get_vcmpx(exec_val->opcode) : aco_opcode::num_opcodes;
368 const bool vopc = v_cmpx_op != aco_opcode::num_opcodes;
369
370 /* V_CMPX+DPP returns 0 with reads from disabled lanes, unlike V_CMP+DPP (RDNA3 ISA doc, 7.7) */
371 if (vopc && exec_val->isDPP())
372 return;
373
374 /* If s_and_saveexec is used, we'll need to insert a new instruction to save the old exec. */
375 bool save_original_exec = exec_copy->opcode == and_saveexec;
376
377 const Definition exec_wr_def = exec_val->definitions[0];
378 const Definition exec_copy_def = exec_copy->definitions[0];
379
380 if (save_original_exec) {
381 for (int i = exec_copy_idx - 1; i >= 0; i--) {
382 const aco_ptr<Instruction>& instr = block.instructions[i];
383 if (instr->opcode == aco_opcode::p_parallelcopy &&
384 instr->definitions[0].physReg() == exec &&
385 instr->definitions[0].regClass() == ctx.program->lane_mask &&
386 instr->operands[0].physReg() == exec_copy_def.physReg()) {
387 /* The register that we should save exec to already contains the same value as exec. */
388 save_original_exec = false;
389 break;
390 }
391 /* exec_copy_def is clobbered or exec written before we found a copy. */
392 if ((i != exec_val_idx || !vcmpx_exec_only) &&
393 std::any_of(instr->definitions.begin(), instr->definitions.end(),
394 [&exec_copy_def, &ctx](const Definition& def) -> bool
395 {
396 return regs_intersect(exec_copy_def, def) ||
397 regs_intersect(Definition(exec, ctx.program->lane_mask), def);
398 }))
399 break;
400 }
401 }
402
403 /* Position where the original exec mask copy should be inserted. */
404 const int save_original_exec_idx = exec_val_idx;
405 /* The copy can be removed when it kills its operand.
406 * v_cmpx also writes the original destination pre GFX10.
407 */
408 const bool can_remove_copy = exec_copy->operands[0].isKill() || (vopc && !vcmpx_exec_only);
409
410 /* Always allow reassigning when the value is written by (usable) VOPC.
411 * Note, VOPC implicitly contains "& exec" because it yields zero on inactive lanes.
412 * Additionally, when value is copied as-is, also allow SALU and parallelcopies.
413 */
414 const bool can_reassign =
415 vopc || (exec_copy->opcode == aco_opcode::p_parallelcopy &&
416 (exec_val->isSALU() || exec_val->opcode == aco_opcode::p_parallelcopy));
417
418 /* The reassignment is not worth it when both the original exec needs to be copied
419 * and the new exec copy can't be removed. In this case we'd end up with more instructions.
420 */
421 if (!can_reassign || (save_original_exec && !can_remove_copy))
422 return;
423
424 /* When exec_val and exec_copy are non-adjacent, check whether there are any
425 * instructions inbetween (besides p_logical_end) which may inhibit the optimization.
426 */
427 for (int idx = exec_val_idx + 1; idx < exec_copy_idx; ++idx) {
428 aco_ptr<Instruction>& instr = block.instructions[idx];
429
430 if (save_original_exec) {
431 /* Check if the instruction uses the exec_copy_def register, in which case we can't
432 * optimize. */
433 for (const Operand& op : instr->operands)
434 if (regs_intersect(exec_copy_def, op))
435 return;
436 for (const Definition& def : instr->definitions)
437 if (regs_intersect(exec_copy_def, def))
438 return;
439 }
440
441 /* Check if the instruction may implicitly read VCC, eg. v_cndmask or add with carry.
442 * Rewriting these operands may require format conversion because of encoding limitations.
443 */
444 if (exec_wr_def.physReg() == vcc && instr->isVALU() && instr->operands.size() >= 3 &&
445 !instr->isVOP3())
446 return;
447 }
448
449 if (save_original_exec) {
450 /* We insert the exec copy before exec_val, so exec_val can't use those registers. */
451 for (const Operand& op : exec_val->operands)
452 if (regs_intersect(exec_copy_def, op))
453 return;
454 /* We would write over the saved exec value in this case. */
455 if (((vopc && !vcmpx_exec_only) || !can_remove_copy) &&
456 regs_intersect(exec_copy_def, exec_wr_def))
457 return;
458 }
459
460 if (vopc) {
461 /* Add one extra definition for exec and copy the VOP3-specific fields if present. */
462 if (!vcmpx_exec_only) {
463 if (exec_val->isSDWA()) {
464 /* This might work but it needs testing and more code to copy the instruction. */
465 return;
466 } else {
467 aco_ptr<Instruction> tmp = std::move(exec_val);
468 exec_val.reset(create_instruction<VALU_instruction>(
469 tmp->opcode, tmp->format, tmp->operands.size(), tmp->definitions.size() + 1));
470 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), exec_val->operands.begin());
471 std::copy(tmp->definitions.cbegin(), tmp->definitions.cend(),
472 exec_val->definitions.begin());
473
474 VALU_instruction& src = tmp->valu();
475 VALU_instruction& dst = exec_val->valu();
476 dst.opsel = src.opsel;
477 dst.omod = src.omod;
478 dst.clamp = src.clamp;
479 dst.neg = src.neg;
480 dst.abs = src.abs;
481 }
482 }
483
484 /* Set v_cmpx opcode. */
485 exec_val->opcode = v_cmpx_op;
486
487 *exec_val->definitions.rbegin() = Definition(exec, ctx.program->lane_mask);
488
489 /* Change instruction from VOP3 to plain VOPC when possible. */
490 if (vcmpx_exec_only && !exec_val->usesModifiers() &&
491 (exec_val->operands.size() < 2 || exec_val->operands[1].isOfType(RegType::vgpr)))
492 exec_val->format = Format::VOPC;
493 } else {
494 /* Reassign the instruction to write exec directly. */
495 exec_val->definitions[0] = Definition(exec, ctx.program->lane_mask);
496 }
497
498 /* If there are other instructions (besides p_logical_end) between
499 * writing the value and copying it to exec, reassign uses
500 * of the old definition.
501 */
502 for (int idx = exec_val_idx + 1; idx < exec_copy_idx; ++idx) {
503 aco_ptr<Instruction>& instr = block.instructions[idx];
504 for (Operand& op : instr->operands) {
505 if (op.physReg() == exec_wr_def.physReg())
506 op = Operand(exec, op.regClass());
507 if (exec_wr_def.size() == 2 && op.physReg() == exec_wr_def.physReg().advance(4))
508 op = Operand(exec_hi, op.regClass());
509 }
510 }
511
512 if (can_remove_copy) {
513 /* Remove the copy. */
514 exec_copy.reset();
515 } else {
516 /* Reassign the copy to write the register of the original value. */
517 exec_copy.reset(
518 create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1));
519 exec_copy->definitions[0] = exec_wr_def;
520 exec_copy->operands[0] = Operand(exec, ctx.program->lane_mask);
521 }
522
523 if (exec_val->opcode == aco_opcode::p_parallelcopy && exec_val->operands[0].isConstant() &&
524 exec_val->operands[0].constantValue()) {
525 /* Remove the branch instruction when exec is constant non-zero. */
526 aco_ptr<Instruction>& branch = block.instructions.back();
527 if (branch->opcode == aco_opcode::p_cbranch_z && branch->operands[0].physReg() == exec)
528 block.instructions.back().reset();
529 }
530
531 if (save_original_exec) {
532 /* Insert a new instruction that saves the original exec before it is overwritten.
533 * Do this last, because inserting in the instructions vector may invalidate the exec_val
534 * reference.
535 */
536 const auto it = std::next(block.instructions.begin(), save_original_exec_idx);
537 aco_ptr<Instruction> copy(
538 create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO, 1, 1));
539 copy->definitions[0] = exec_copy_def;
540 copy->operands[0] = Operand(exec, ctx.program->lane_mask);
541 block.instructions.insert(it, std::move(copy));
542 }
543 }
544
545 void
eliminate_useless_exec_writes_in_block(ssa_elimination_ctx & ctx,Block & block)546 eliminate_useless_exec_writes_in_block(ssa_elimination_ctx& ctx, Block& block)
547 {
548 /* Check if any successor needs the outgoing exec mask from the current block. */
549
550 bool exec_write_used;
551 if (block.kind & block_kind_end_with_regs) {
552 /* Last block of a program with succeed shader part should respect final exec write. */
553 exec_write_used = true;
554 } else {
555 bool copy_to_exec = false;
556 bool copy_from_exec = false;
557
558 for (const auto& successor_phi_info : ctx.linear_phi_info[block.index]) {
559 copy_to_exec |= successor_phi_info.def.physReg() == exec;
560 copy_from_exec |= successor_phi_info.op.physReg() == exec;
561 }
562
563 if (copy_from_exec)
564 exec_write_used = true;
565 else if (copy_to_exec)
566 exec_write_used = false;
567 else
568 /* blocks_incoming_exec_used is initialized to true, so this is correct even for loops. */
569 exec_write_used =
570 std::any_of(block.linear_succs.begin(), block.linear_succs.end(),
571 [&ctx](int succ_idx) { return ctx.blocks_incoming_exec_used[succ_idx]; });
572 }
573
574 /* Collect information about the branching sequence. */
575
576 bool branch_exec_val_found = false;
577 int branch_exec_val_idx = -1;
578 int branch_exec_copy_idx = -1;
579 unsigned branch_exec_tempid = 0;
580
581 /* Go through all instructions and eliminate useless exec writes. */
582
583 for (int i = block.instructions.size() - 1; i >= 0; --i) {
584 aco_ptr<Instruction>& instr = block.instructions[i];
585
586 /* We already take information from phis into account before the loop, so let's just break on
587 * phis. */
588 if (instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi)
589 break;
590
591 /* See if the current instruction needs or writes exec. */
592 bool needs_exec =
593 needs_exec_mask(instr.get()) ||
594 (instr->opcode == aco_opcode::p_logical_end && !ctx.logical_phi_info[block.index].empty());
595 bool writes_exec = instr_writes_exec(instr.get());
596
597 /* See if we found an unused exec write. */
598 if (writes_exec && !exec_write_used) {
599 /* Don't eliminate an instruction that writes registers other than exec and scc.
600 * It is possible that this is eg. an s_and_saveexec and the saved value is
601 * used by a later branch.
602 */
603 bool writes_other = std::any_of(instr->definitions.begin(), instr->definitions.end(),
604 [](const Definition& def) -> bool
605 { return def.physReg() != exec && def.physReg() != scc; });
606 if (!writes_other) {
607 instr.reset();
608 continue;
609 }
610 }
611
612 /* For a newly encountered exec write, clear the used flag. */
613 if (writes_exec) {
614 if (instr->operands.size() && !branch_exec_val_found) {
615 /* We are in a branch that jumps according to exec.
616 * We just found the instruction that copies to exec before the branch.
617 */
618 assert(branch_exec_copy_idx == -1);
619 branch_exec_copy_idx = i;
620 branch_exec_tempid = instr->operands[0].tempId();
621 branch_exec_val_found = true;
622 } else if (branch_exec_val_idx == -1) {
623 /* The current instruction overwrites exec before branch_exec_val_idx was
624 * found, therefore we can't optimize the branching sequence.
625 */
626 branch_exec_copy_idx = -1;
627 branch_exec_tempid = 0;
628 }
629
630 exec_write_used = false;
631 } else if (branch_exec_tempid && instr->definitions.size() &&
632 instr->definitions[0].tempId() == branch_exec_tempid) {
633 /* We just found the instruction that produces the exec mask that is copied. */
634 assert(branch_exec_val_idx == -1);
635 branch_exec_val_idx = i;
636 } else if (branch_exec_tempid && branch_exec_val_idx == -1 && needs_exec) {
637 /* There is an instruction that needs the original exec mask before
638 * branch_exec_val_idx was found, so we can't optimize the branching sequence. */
639 branch_exec_copy_idx = -1;
640 branch_exec_tempid = 0;
641 }
642
643 /* If the current instruction needs exec, mark it as used. */
644 exec_write_used |= needs_exec;
645 }
646
647 /* Remember if the current block needs an incoming exec mask from its predecessors. */
648 ctx.blocks_incoming_exec_used[block.index] = exec_write_used;
649
650 /* See if we can optimize the instruction that produces the exec mask. */
651 if (branch_exec_val_idx != -1) {
652 assert(branch_exec_tempid && branch_exec_copy_idx != -1);
653 try_optimize_branching_sequence(ctx, block, branch_exec_val_idx, branch_exec_copy_idx);
654 }
655
656 /* Cleanup: remove deleted instructions from the vector. */
657 auto new_end = std::remove(block.instructions.begin(), block.instructions.end(), nullptr);
658 block.instructions.resize(new_end - block.instructions.begin());
659 }
660
661 void
jump_threading(ssa_elimination_ctx & ctx)662 jump_threading(ssa_elimination_ctx& ctx)
663 {
664 for (int i = ctx.program->blocks.size() - 1; i >= 0; i--) {
665 Block* block = &ctx.program->blocks[i];
666 eliminate_useless_exec_writes_in_block(ctx, *block);
667
668 if (!ctx.empty_blocks[i])
669 continue;
670
671 if (block->kind & block_kind_invert) {
672 try_remove_invert_block(ctx, block);
673 continue;
674 }
675
676 if (block->linear_succs.size() > 1)
677 continue;
678
679 if (block->kind & block_kind_merge || block->kind & block_kind_loop_exit)
680 try_remove_merge_block(ctx, block);
681
682 if (block->linear_preds.size() == 1)
683 try_remove_simple_block(ctx, block);
684 }
685 }
686
687 } /* end namespace */
688
689 void
ssa_elimination(Program * program)690 ssa_elimination(Program* program)
691 {
692 ssa_elimination_ctx ctx(program);
693
694 /* Collect information about every phi-instruction */
695 collect_phi_info(ctx);
696
697 /* eliminate empty blocks */
698 jump_threading(ctx);
699
700 /* insert parallelcopies from SSA elimination */
701 insert_parallelcopies(ctx);
702 }
703 } // namespace aco
704