• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "nir/nir_builder.h"
25 #include "radv_debug.h"
26 #include "radv_meta.h"
27 #include "radv_private.h"
28 
29 #include "util/format_rgb9e5.h"
30 #include "vk_common_entrypoints.h"
31 #include "vk_format.h"
32 
33 enum { DEPTH_CLEAR_SLOW, DEPTH_CLEAR_FAST };
34 
35 static void
build_color_shaders(struct radv_device * dev,struct nir_shader ** out_vs,struct nir_shader ** out_fs,uint32_t frag_output)36 build_color_shaders(struct radv_device *dev, struct nir_shader **out_vs, struct nir_shader **out_fs,
37                     uint32_t frag_output)
38 {
39    nir_builder vs_b = radv_meta_init_shader(dev, MESA_SHADER_VERTEX, "meta_clear_color_vs");
40    nir_builder fs_b = radv_meta_init_shader(dev, MESA_SHADER_FRAGMENT, "meta_clear_color_fs-%d", frag_output);
41 
42    const struct glsl_type *position_type = glsl_vec4_type();
43    const struct glsl_type *color_type = glsl_vec4_type();
44 
45    nir_variable *vs_out_pos = nir_variable_create(vs_b.shader, nir_var_shader_out, position_type, "gl_Position");
46    vs_out_pos->data.location = VARYING_SLOT_POS;
47 
48    nir_def *in_color_load = nir_load_push_constant(&fs_b, 4, 32, nir_imm_int(&fs_b, 0), .range = 16);
49 
50    nir_variable *fs_out_color = nir_variable_create(fs_b.shader, nir_var_shader_out, color_type, "f_color");
51    fs_out_color->data.location = FRAG_RESULT_DATA0 + frag_output;
52 
53    nir_store_var(&fs_b, fs_out_color, in_color_load, 0xf);
54 
55    nir_def *outvec = nir_gen_rect_vertices(&vs_b, NULL, NULL);
56    nir_store_var(&vs_b, vs_out_pos, outvec, 0xf);
57 
58    const struct glsl_type *layer_type = glsl_int_type();
59    nir_variable *vs_out_layer = nir_variable_create(vs_b.shader, nir_var_shader_out, layer_type, "v_layer");
60    vs_out_layer->data.location = VARYING_SLOT_LAYER;
61    vs_out_layer->data.interpolation = INTERP_MODE_FLAT;
62    nir_def *inst_id = nir_load_instance_id(&vs_b);
63    nir_def *base_instance = nir_load_base_instance(&vs_b);
64 
65    nir_def *layer_id = nir_iadd(&vs_b, inst_id, base_instance);
66    nir_store_var(&vs_b, vs_out_layer, layer_id, 0x1);
67 
68    *out_vs = vs_b.shader;
69    *out_fs = fs_b.shader;
70 }
71 
72 static VkResult
create_pipeline(struct radv_device * device,uint32_t samples,struct nir_shader * vs_nir,struct nir_shader * fs_nir,const VkPipelineVertexInputStateCreateInfo * vi_state,const VkPipelineDepthStencilStateCreateInfo * ds_state,const VkPipelineColorBlendStateCreateInfo * cb_state,const VkPipelineRenderingCreateInfo * dyn_state,const VkPipelineLayout layout,const struct radv_graphics_pipeline_create_info * extra,const VkAllocationCallbacks * alloc,VkPipeline * pipeline)73 create_pipeline(struct radv_device *device, uint32_t samples, struct nir_shader *vs_nir, struct nir_shader *fs_nir,
74                 const VkPipelineVertexInputStateCreateInfo *vi_state,
75                 const VkPipelineDepthStencilStateCreateInfo *ds_state,
76                 const VkPipelineColorBlendStateCreateInfo *cb_state, const VkPipelineRenderingCreateInfo *dyn_state,
77                 const VkPipelineLayout layout, const struct radv_graphics_pipeline_create_info *extra,
78                 const VkAllocationCallbacks *alloc, VkPipeline *pipeline)
79 {
80    VkDevice device_h = radv_device_to_handle(device);
81    VkResult result;
82 
83    result = radv_graphics_pipeline_create(device_h, device->meta_state.cache,
84                                           &(VkGraphicsPipelineCreateInfo){
85                                              .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
86                                              .pNext = dyn_state,
87                                              .stageCount = fs_nir ? 2 : 1,
88                                              .pStages =
89                                                 (VkPipelineShaderStageCreateInfo[]){
90                                                    {
91                                                       .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
92                                                       .stage = VK_SHADER_STAGE_VERTEX_BIT,
93                                                       .module = vk_shader_module_handle_from_nir(vs_nir),
94                                                       .pName = "main",
95                                                    },
96                                                    {
97                                                       .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
98                                                       .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
99                                                       .module = vk_shader_module_handle_from_nir(fs_nir),
100                                                       .pName = "main",
101                                                    },
102                                                 },
103                                              .pVertexInputState = vi_state,
104                                              .pInputAssemblyState =
105                                                 &(VkPipelineInputAssemblyStateCreateInfo){
106                                                    .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
107                                                    .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
108                                                    .primitiveRestartEnable = false,
109                                                 },
110                                              .pViewportState =
111                                                 &(VkPipelineViewportStateCreateInfo){
112                                                    .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
113                                                    .viewportCount = 1,
114                                                    .scissorCount = 1,
115                                                 },
116                                              .pRasterizationState =
117                                                 &(VkPipelineRasterizationStateCreateInfo){
118                                                    .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
119                                                    .rasterizerDiscardEnable = false,
120                                                    .polygonMode = VK_POLYGON_MODE_FILL,
121                                                    .cullMode = VK_CULL_MODE_NONE,
122                                                    .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE,
123                                                    .depthBiasEnable = false,
124                                                    .depthBiasConstantFactor = 0.0f,
125                                                    .depthBiasClamp = 0.0f,
126                                                    .depthBiasSlopeFactor = 0.0f,
127                                                    .lineWidth = 1.0f,
128                                                 },
129                                              .pMultisampleState =
130                                                 &(VkPipelineMultisampleStateCreateInfo){
131                                                    .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
132                                                    .rasterizationSamples = samples,
133                                                    .sampleShadingEnable = false,
134                                                    .pSampleMask = NULL,
135                                                    .alphaToCoverageEnable = false,
136                                                    .alphaToOneEnable = false,
137                                                 },
138                                              .pDepthStencilState = ds_state,
139                                              .pColorBlendState = cb_state,
140                                              .pDynamicState =
141                                                 &(VkPipelineDynamicStateCreateInfo){
142                                                    .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
143                                                    .dynamicStateCount = 3,
144                                                    .pDynamicStates =
145                                                       (VkDynamicState[]){
146                                                          VK_DYNAMIC_STATE_VIEWPORT,
147                                                          VK_DYNAMIC_STATE_SCISSOR,
148                                                          VK_DYNAMIC_STATE_STENCIL_REFERENCE,
149                                                       },
150                                                 },
151                                              .layout = layout,
152                                              .flags = 0,
153                                              .renderPass = VK_NULL_HANDLE,
154                                              .subpass = 0,
155                                           },
156                                           extra, alloc, pipeline);
157 
158    ralloc_free(vs_nir);
159    ralloc_free(fs_nir);
160 
161    return result;
162 }
163 
164 static VkResult
create_color_pipeline(struct radv_device * device,uint32_t samples,uint32_t frag_output,VkFormat format,VkPipeline * pipeline)165 create_color_pipeline(struct radv_device *device, uint32_t samples, uint32_t frag_output, VkFormat format,
166                       VkPipeline *pipeline)
167 {
168    struct nir_shader *vs_nir;
169    struct nir_shader *fs_nir;
170    VkResult result;
171 
172    mtx_lock(&device->meta_state.mtx);
173    if (*pipeline) {
174       mtx_unlock(&device->meta_state.mtx);
175       return VK_SUCCESS;
176    }
177 
178    build_color_shaders(device, &vs_nir, &fs_nir, frag_output);
179 
180    const VkPipelineVertexInputStateCreateInfo vi_state = {
181       .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
182       .vertexBindingDescriptionCount = 0,
183       .vertexAttributeDescriptionCount = 0,
184    };
185 
186    const VkPipelineDepthStencilStateCreateInfo ds_state = {
187       .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
188       .depthTestEnable = false,
189       .depthWriteEnable = false,
190       .depthBoundsTestEnable = false,
191       .stencilTestEnable = false,
192       .minDepthBounds = 0.0f,
193       .maxDepthBounds = 1.0f,
194    };
195 
196    VkPipelineColorBlendAttachmentState blend_attachment_state[MAX_RTS] = {0};
197    blend_attachment_state[frag_output] = (VkPipelineColorBlendAttachmentState){
198       .blendEnable = false,
199       .colorWriteMask =
200          VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT,
201    };
202 
203    const VkPipelineColorBlendStateCreateInfo cb_state = {
204       .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
205       .logicOpEnable = false,
206       .attachmentCount = MAX_RTS,
207       .pAttachments = blend_attachment_state,
208       .blendConstants = {0.0f, 0.0f, 0.0f, 0.0f}};
209 
210    VkFormat att_formats[MAX_RTS] = {0};
211    att_formats[frag_output] = format;
212 
213    const VkPipelineRenderingCreateInfo rendering_create_info = {
214       .sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO,
215       .colorAttachmentCount = MAX_RTS,
216       .pColorAttachmentFormats = att_formats,
217    };
218 
219    struct radv_graphics_pipeline_create_info extra = {
220       .use_rectlist = true,
221    };
222    result = create_pipeline(device, samples, vs_nir, fs_nir, &vi_state, &ds_state, &cb_state, &rendering_create_info,
223                             device->meta_state.clear_color_p_layout, &extra, &device->meta_state.alloc, pipeline);
224 
225    mtx_unlock(&device->meta_state.mtx);
226    return result;
227 }
228 
229 static void
finish_meta_clear_htile_mask_state(struct radv_device * device)230 finish_meta_clear_htile_mask_state(struct radv_device *device)
231 {
232    struct radv_meta_state *state = &device->meta_state;
233 
234    radv_DestroyPipeline(radv_device_to_handle(device), state->clear_htile_mask_pipeline, &state->alloc);
235    radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_htile_mask_p_layout, &state->alloc);
236    device->vk.dispatch_table.DestroyDescriptorSetLayout(radv_device_to_handle(device),
237                                                         state->clear_htile_mask_ds_layout, &state->alloc);
238 }
239 
240 static void
finish_meta_clear_dcc_comp_to_single_state(struct radv_device * device)241 finish_meta_clear_dcc_comp_to_single_state(struct radv_device *device)
242 {
243    struct radv_meta_state *state = &device->meta_state;
244 
245    for (uint32_t i = 0; i < 2; i++) {
246       radv_DestroyPipeline(radv_device_to_handle(device), state->clear_dcc_comp_to_single_pipeline[i], &state->alloc);
247    }
248    radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_dcc_comp_to_single_p_layout, &state->alloc);
249    device->vk.dispatch_table.DestroyDescriptorSetLayout(radv_device_to_handle(device),
250                                                         state->clear_dcc_comp_to_single_ds_layout, &state->alloc);
251 }
252 
253 void
radv_device_finish_meta_clear_state(struct radv_device * device)254 radv_device_finish_meta_clear_state(struct radv_device *device)
255 {
256    struct radv_meta_state *state = &device->meta_state;
257 
258    for (uint32_t i = 0; i < ARRAY_SIZE(state->color_clear); ++i) {
259       for (uint32_t j = 0; j < ARRAY_SIZE(state->color_clear[0]); ++j) {
260          for (uint32_t k = 0; k < ARRAY_SIZE(state->color_clear[i][j].color_pipelines); ++k) {
261             radv_DestroyPipeline(radv_device_to_handle(device), state->color_clear[i][j].color_pipelines[k],
262                                  &state->alloc);
263          }
264       }
265    }
266    for (uint32_t i = 0; i < ARRAY_SIZE(state->ds_clear); ++i) {
267       for (uint32_t j = 0; j < NUM_DEPTH_CLEAR_PIPELINES; j++) {
268          radv_DestroyPipeline(radv_device_to_handle(device), state->ds_clear[i].depth_only_pipeline[j], &state->alloc);
269          radv_DestroyPipeline(radv_device_to_handle(device), state->ds_clear[i].stencil_only_pipeline[j],
270                               &state->alloc);
271          radv_DestroyPipeline(radv_device_to_handle(device), state->ds_clear[i].depthstencil_pipeline[j],
272                               &state->alloc);
273 
274          radv_DestroyPipeline(radv_device_to_handle(device), state->ds_clear[i].depth_only_unrestricted_pipeline[j],
275                               &state->alloc);
276          radv_DestroyPipeline(radv_device_to_handle(device), state->ds_clear[i].stencil_only_unrestricted_pipeline[j],
277                               &state->alloc);
278          radv_DestroyPipeline(radv_device_to_handle(device), state->ds_clear[i].depthstencil_unrestricted_pipeline[j],
279                               &state->alloc);
280       }
281    }
282    radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_color_p_layout, &state->alloc);
283    radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_depth_p_layout, &state->alloc);
284    radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_depth_unrestricted_p_layout, &state->alloc);
285 
286    finish_meta_clear_htile_mask_state(device);
287    finish_meta_clear_dcc_comp_to_single_state(device);
288 }
289 
290 static void
emit_color_clear(struct radv_cmd_buffer * cmd_buffer,const VkClearAttachment * clear_att,const VkClearRect * clear_rect,uint32_t view_mask)291 emit_color_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att, const VkClearRect *clear_rect,
292                  uint32_t view_mask)
293 {
294    struct radv_device *device = cmd_buffer->device;
295    const struct radv_rendering_state *render = &cmd_buffer->state.render;
296    uint32_t samples, samples_log2;
297    VkFormat format;
298    unsigned fs_key;
299    VkClearColorValue clear_value = clear_att->clearValue.color;
300    VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
301    VkPipeline pipeline;
302 
303    assert(clear_att->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
304    assert(clear_att->colorAttachment < render->color_att_count);
305    const struct radv_attachment *color_att = &render->color_att[clear_att->colorAttachment];
306 
307    /* When a framebuffer is bound to the current command buffer, get the
308     * number of samples from it. Otherwise, get the number of samples from
309     * the render pass because it's likely a secondary command buffer.
310     */
311    if (color_att->iview) {
312       samples = color_att->iview->image->vk.samples;
313       format = color_att->iview->vk.format;
314    } else {
315       samples = render->max_samples;
316       format = color_att->format;
317    }
318    assert(format != VK_FORMAT_UNDEFINED);
319 
320    assert(util_is_power_of_two_nonzero(samples));
321    samples_log2 = ffs(samples) - 1;
322    fs_key = radv_format_meta_fs_key(device, format);
323    assert(fs_key != -1);
324 
325    if (device->meta_state.color_clear[samples_log2][clear_att->colorAttachment].color_pipelines[fs_key] ==
326        VK_NULL_HANDLE) {
327       VkResult ret = create_color_pipeline(
328          device, samples, clear_att->colorAttachment, radv_fs_key_format_exemplars[fs_key],
329          &device->meta_state.color_clear[samples_log2][clear_att->colorAttachment].color_pipelines[fs_key]);
330       if (ret != VK_SUCCESS) {
331          vk_command_buffer_set_error(&cmd_buffer->vk, ret);
332          return;
333       }
334    }
335 
336    pipeline = device->meta_state.color_clear[samples_log2][clear_att->colorAttachment].color_pipelines[fs_key];
337 
338    assert(samples_log2 < ARRAY_SIZE(device->meta_state.color_clear));
339    assert(pipeline);
340 
341    vk_common_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.clear_color_p_layout,
342                               VK_SHADER_STAGE_FRAGMENT_BIT, 0, 16, &clear_value);
343 
344    radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
345 
346    radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
347                        &(VkViewport){.x = clear_rect->rect.offset.x,
348                                      .y = clear_rect->rect.offset.y,
349                                      .width = clear_rect->rect.extent.width,
350                                      .height = clear_rect->rect.extent.height,
351                                      .minDepth = 0.0f,
352                                      .maxDepth = 1.0f});
353 
354    radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &clear_rect->rect);
355 
356    if (view_mask) {
357       u_foreach_bit (i, view_mask)
358          radv_CmdDraw(cmd_buffer_h, 3, 1, 0, i);
359    } else {
360       radv_CmdDraw(cmd_buffer_h, 3, clear_rect->layerCount, 0, clear_rect->baseArrayLayer);
361    }
362 }
363 
364 static void
build_depthstencil_shader(struct radv_device * dev,struct nir_shader ** out_vs,struct nir_shader ** out_fs,bool unrestricted)365 build_depthstencil_shader(struct radv_device *dev, struct nir_shader **out_vs, struct nir_shader **out_fs,
366                           bool unrestricted)
367 {
368    nir_builder vs_b = radv_meta_init_shader(
369       dev, MESA_SHADER_VERTEX, unrestricted ? "meta_clear_depthstencil_unrestricted_vs" : "meta_clear_depthstencil_vs");
370    nir_builder fs_b =
371       radv_meta_init_shader(dev, MESA_SHADER_FRAGMENT,
372                             unrestricted ? "meta_clear_depthstencil_unrestricted_fs" : "meta_clear_depthstencil_fs");
373 
374    const struct glsl_type *position_out_type = glsl_vec4_type();
375 
376    nir_variable *vs_out_pos = nir_variable_create(vs_b.shader, nir_var_shader_out, position_out_type, "gl_Position");
377    vs_out_pos->data.location = VARYING_SLOT_POS;
378 
379    nir_def *z;
380    if (unrestricted) {
381       nir_def *in_color_load = nir_load_push_constant(&fs_b, 1, 32, nir_imm_int(&fs_b, 0), .range = 4);
382 
383       nir_variable *fs_out_depth = nir_variable_create(fs_b.shader, nir_var_shader_out, glsl_int_type(), "f_depth");
384       fs_out_depth->data.location = FRAG_RESULT_DEPTH;
385       nir_store_var(&fs_b, fs_out_depth, in_color_load, 0x1);
386 
387       z = nir_imm_float(&vs_b, 0.0);
388    } else {
389       z = nir_load_push_constant(&vs_b, 1, 32, nir_imm_int(&vs_b, 0), .range = 4);
390    }
391 
392    nir_def *outvec = nir_gen_rect_vertices(&vs_b, z, NULL);
393    nir_store_var(&vs_b, vs_out_pos, outvec, 0xf);
394 
395    const struct glsl_type *layer_type = glsl_int_type();
396    nir_variable *vs_out_layer = nir_variable_create(vs_b.shader, nir_var_shader_out, layer_type, "v_layer");
397    vs_out_layer->data.location = VARYING_SLOT_LAYER;
398    vs_out_layer->data.interpolation = INTERP_MODE_FLAT;
399    nir_def *inst_id = nir_load_instance_id(&vs_b);
400    nir_def *base_instance = nir_load_base_instance(&vs_b);
401 
402    nir_def *layer_id = nir_iadd(&vs_b, inst_id, base_instance);
403    nir_store_var(&vs_b, vs_out_layer, layer_id, 0x1);
404 
405    *out_vs = vs_b.shader;
406    *out_fs = fs_b.shader;
407 }
408 
409 static VkResult
create_depthstencil_pipeline(struct radv_device * device,VkImageAspectFlags aspects,uint32_t samples,int index,bool unrestricted,VkPipeline * pipeline)410 create_depthstencil_pipeline(struct radv_device *device, VkImageAspectFlags aspects, uint32_t samples, int index,
411                              bool unrestricted, VkPipeline *pipeline)
412 {
413    struct nir_shader *vs_nir, *fs_nir;
414    VkResult result;
415 
416    mtx_lock(&device->meta_state.mtx);
417    if (*pipeline) {
418       mtx_unlock(&device->meta_state.mtx);
419       return VK_SUCCESS;
420    }
421 
422    build_depthstencil_shader(device, &vs_nir, &fs_nir, unrestricted);
423 
424    const VkPipelineVertexInputStateCreateInfo vi_state = {
425       .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
426       .vertexBindingDescriptionCount = 0,
427       .vertexAttributeDescriptionCount = 0,
428    };
429 
430    const VkPipelineDepthStencilStateCreateInfo ds_state = {
431       .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
432       .depthTestEnable = !!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT),
433       .depthCompareOp = VK_COMPARE_OP_ALWAYS,
434       .depthWriteEnable = !!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT),
435       .depthBoundsTestEnable = false,
436       .stencilTestEnable = !!(aspects & VK_IMAGE_ASPECT_STENCIL_BIT),
437       .front =
438          {
439             .passOp = VK_STENCIL_OP_REPLACE,
440             .compareOp = VK_COMPARE_OP_ALWAYS,
441             .writeMask = UINT32_MAX,
442             .reference = 0, /* dynamic */
443          },
444       .back = {0 /* dont care */},
445       .minDepthBounds = 0.0f,
446       .maxDepthBounds = 1.0f,
447    };
448 
449    const VkPipelineColorBlendStateCreateInfo cb_state = {
450       .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
451       .logicOpEnable = false,
452       .attachmentCount = 0,
453       .pAttachments = NULL,
454       .blendConstants = {0.0f, 0.0f, 0.0f, 0.0f},
455    };
456 
457    const VkPipelineRenderingCreateInfo rendering_create_info = {
458       .sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO,
459       .depthAttachmentFormat = (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) ? VK_FORMAT_D32_SFLOAT : VK_FORMAT_UNDEFINED,
460       .stencilAttachmentFormat = (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) ? VK_FORMAT_S8_UINT : VK_FORMAT_UNDEFINED,
461    };
462 
463    struct radv_graphics_pipeline_create_info extra = {
464       .use_rectlist = true,
465    };
466 
467    if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
468       extra.db_depth_clear = index == DEPTH_CLEAR_SLOW ? false : true;
469    }
470    if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
471       extra.db_stencil_clear = index == DEPTH_CLEAR_SLOW ? false : true;
472    }
473    result = create_pipeline(device, samples, vs_nir, fs_nir, &vi_state, &ds_state, &cb_state, &rendering_create_info,
474                             device->meta_state.clear_depth_p_layout, &extra, &device->meta_state.alloc, pipeline);
475 
476    mtx_unlock(&device->meta_state.mtx);
477    return result;
478 }
479 
480 static bool radv_can_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
481                                       VkImageLayout image_layout, VkImageAspectFlags aspects,
482                                       const VkClearRect *clear_rect, const VkClearDepthStencilValue clear_value,
483                                       uint32_t view_mask);
484 
485 static VkPipeline
pick_depthstencil_pipeline(struct radv_cmd_buffer * cmd_buffer,struct radv_meta_state * meta_state,int samples_log2,VkImageAspectFlags aspects,bool fast)486 pick_depthstencil_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_state *meta_state, int samples_log2,
487                            VkImageAspectFlags aspects, bool fast)
488 {
489    bool unrestricted = cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted;
490    int index = fast ? DEPTH_CLEAR_FAST : DEPTH_CLEAR_SLOW;
491    VkPipeline *pipeline;
492 
493    switch (aspects) {
494    case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
495       pipeline = unrestricted ? &meta_state->ds_clear[samples_log2].depthstencil_unrestricted_pipeline[index]
496                               : &meta_state->ds_clear[samples_log2].depthstencil_pipeline[index];
497       break;
498    case VK_IMAGE_ASPECT_DEPTH_BIT:
499       pipeline = unrestricted ? &meta_state->ds_clear[samples_log2].depth_only_unrestricted_pipeline[index]
500                               : &meta_state->ds_clear[samples_log2].depth_only_pipeline[index];
501       break;
502    case VK_IMAGE_ASPECT_STENCIL_BIT:
503       pipeline = unrestricted ? &meta_state->ds_clear[samples_log2].stencil_only_unrestricted_pipeline[index]
504                               : &meta_state->ds_clear[samples_log2].stencil_only_pipeline[index];
505       break;
506    default:
507       unreachable("expected depth or stencil aspect");
508    }
509 
510    if (*pipeline == VK_NULL_HANDLE) {
511       VkResult ret =
512          create_depthstencil_pipeline(cmd_buffer->device, aspects, 1u << samples_log2, index, unrestricted, pipeline);
513       if (ret != VK_SUCCESS) {
514          vk_command_buffer_set_error(&cmd_buffer->vk, ret);
515          return VK_NULL_HANDLE;
516       }
517    }
518    return *pipeline;
519 }
520 
521 static void
emit_depthstencil_clear(struct radv_cmd_buffer * cmd_buffer,VkClearDepthStencilValue clear_value,VkImageAspectFlags aspects,const VkClearRect * clear_rect,uint32_t view_mask,bool can_fast_clear)522 emit_depthstencil_clear(struct radv_cmd_buffer *cmd_buffer, VkClearDepthStencilValue clear_value,
523                         VkImageAspectFlags aspects, const VkClearRect *clear_rect, uint32_t view_mask,
524                         bool can_fast_clear)
525 {
526    struct radv_device *device = cmd_buffer->device;
527    struct radv_meta_state *meta_state = &device->meta_state;
528    const struct radv_rendering_state *render = &cmd_buffer->state.render;
529    uint32_t samples, samples_log2;
530    VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
531 
532    /* When a framebuffer is bound to the current command buffer, get the
533     * number of samples from it. Otherwise, get the number of samples from
534     * the render pass because it's likely a secondary command buffer.
535     */
536    struct radv_image_view *iview = render->ds_att.iview;
537    if (iview) {
538       samples = iview->image->vk.samples;
539    } else {
540       assert(render->ds_att.format != VK_FORMAT_UNDEFINED);
541       samples = render->max_samples;
542    }
543 
544    assert(util_is_power_of_two_nonzero(samples));
545    samples_log2 = ffs(samples) - 1;
546 
547    if (!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
548       clear_value.depth = 1.0f;
549 
550    if (cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted) {
551       vk_common_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
552                                  device->meta_state.clear_depth_unrestricted_p_layout, VK_SHADER_STAGE_FRAGMENT_BIT, 0,
553                                  4, &clear_value.depth);
554    } else {
555       vk_common_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), device->meta_state.clear_depth_p_layout,
556                                  VK_SHADER_STAGE_VERTEX_BIT, 0, 4, &clear_value.depth);
557    }
558 
559    uint32_t prev_reference = cmd_buffer->state.dynamic.vk.ds.stencil.front.reference;
560    if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
561       radv_CmdSetStencilReference(cmd_buffer_h, VK_STENCIL_FACE_FRONT_BIT, clear_value.stencil);
562    }
563 
564    VkPipeline pipeline = pick_depthstencil_pipeline(cmd_buffer, meta_state, samples_log2, aspects, can_fast_clear);
565    if (!pipeline)
566       return;
567 
568    radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
569 
570    if (can_fast_clear)
571       radv_update_ds_clear_metadata(cmd_buffer, iview, clear_value, aspects);
572 
573    radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
574                        &(VkViewport){.x = clear_rect->rect.offset.x,
575                                      .y = clear_rect->rect.offset.y,
576                                      .width = clear_rect->rect.extent.width,
577                                      .height = clear_rect->rect.extent.height,
578                                      .minDepth = 0.0f,
579                                      .maxDepth = 1.0f});
580 
581    radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &clear_rect->rect);
582 
583    if (view_mask) {
584       u_foreach_bit (i, view_mask)
585          radv_CmdDraw(cmd_buffer_h, 3, 1, 0, i);
586    } else {
587       radv_CmdDraw(cmd_buffer_h, 3, clear_rect->layerCount, 0, clear_rect->baseArrayLayer);
588    }
589 
590    if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
591       radv_CmdSetStencilReference(cmd_buffer_h, VK_STENCIL_FACE_FRONT_BIT, prev_reference);
592    }
593 }
594 
595 static uint32_t
clear_htile_mask(struct radv_cmd_buffer * cmd_buffer,const struct radv_image * image,struct radeon_winsys_bo * bo,uint64_t offset,uint64_t size,uint32_t htile_value,uint32_t htile_mask)596 clear_htile_mask(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image, struct radeon_winsys_bo *bo,
597                  uint64_t offset, uint64_t size, uint32_t htile_value, uint32_t htile_mask)
598 {
599    struct radv_device *device = cmd_buffer->device;
600    struct radv_meta_state *state = &device->meta_state;
601    uint64_t block_count = DIV_ROUND_UP(size, 1024);
602    struct radv_meta_saved_state saved_state;
603    struct radv_buffer dst_buffer;
604 
605    radv_meta_save(&saved_state, cmd_buffer,
606                   RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS);
607 
608    radv_buffer_init(&dst_buffer, device, bo, size, offset);
609 
610    radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
611                         state->clear_htile_mask_pipeline);
612 
613    radv_meta_push_descriptor_set(
614       cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, state->clear_htile_mask_p_layout, 0, /* set */
615       1,                                                                               /* descriptorWriteCount */
616       (VkWriteDescriptorSet[]){
617          {.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
618           .dstBinding = 0,
619           .dstArrayElement = 0,
620           .descriptorCount = 1,
621           .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
622           .pBufferInfo =
623              &(VkDescriptorBufferInfo){.buffer = radv_buffer_to_handle(&dst_buffer), .offset = 0, .range = size}}});
624 
625    const unsigned constants[2] = {
626       htile_value & htile_mask,
627       ~htile_mask,
628    };
629 
630    vk_common_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), state->clear_htile_mask_p_layout,
631                               VK_SHADER_STAGE_COMPUTE_BIT, 0, 8, constants);
632 
633    vk_common_CmdDispatch(radv_cmd_buffer_to_handle(cmd_buffer), block_count, 1, 1);
634 
635    radv_buffer_finish(&dst_buffer);
636 
637    radv_meta_restore(&saved_state, cmd_buffer);
638 
639    return RADV_CMD_FLAG_CS_PARTIAL_FLUSH | radv_src_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, image);
640 }
641 
642 static uint32_t
radv_get_htile_fast_clear_value(const struct radv_device * device,const struct radv_image * image,VkClearDepthStencilValue value)643 radv_get_htile_fast_clear_value(const struct radv_device *device, const struct radv_image *image,
644                                 VkClearDepthStencilValue value)
645 {
646    uint32_t max_zval = 0x3fff; /* maximum 14-bit value. */
647    uint32_t zmask = 0, smem = 0;
648    uint32_t htile_value;
649    uint32_t zmin, zmax;
650 
651    /* Convert the depth value to 14-bit zmin/zmax values. */
652    zmin = lroundf(value.depth * max_zval);
653    zmax = zmin;
654 
655    if (radv_image_tile_stencil_disabled(device, image)) {
656       /* Z only (no stencil):
657        *
658        * |31     18|17      4|3     0|
659        * +---------+---------+-------+
660        * |  Max Z  |  Min Z  | ZMask |
661        */
662       htile_value = (((zmax & 0x3fff) << 18) | ((zmin & 0x3fff) << 4) | ((zmask & 0xf) << 0));
663    } else {
664 
665       /* Z and stencil:
666        *
667        * |31       12|11 10|9    8|7   6|5   4|3     0|
668        * +-----------+-----+------+-----+-----+-------+
669        * |  Z Range  |     | SMem | SR1 | SR0 | ZMask |
670        *
671        * Z, stencil, 4 bit VRS encoding:
672        * |31       12| 11      10 |9    8|7         6 |5   4|3     0|
673        * +-----------+------------+------+------------+-----+-------+
674        * |  Z Range  | VRS Y-rate | SMem | VRS X-rate | SR0 | ZMask |
675        */
676       uint32_t delta = 0;
677       uint32_t zrange = ((zmax << 6) | delta);
678       uint32_t sresults = 0xf; /* SR0/SR1 both as 0x3. */
679 
680       if (radv_image_has_vrs_htile(device, image))
681          sresults = 0x3;
682 
683       htile_value = (((zrange & 0xfffff) << 12) | ((smem & 0x3) << 8) | ((sresults & 0xf) << 4) | ((zmask & 0xf) << 0));
684    }
685 
686    return htile_value;
687 }
688 
689 static uint32_t
radv_get_htile_mask(const struct radv_device * device,const struct radv_image * image,VkImageAspectFlags aspects)690 radv_get_htile_mask(const struct radv_device *device, const struct radv_image *image, VkImageAspectFlags aspects)
691 {
692    uint32_t mask = 0;
693 
694    if (radv_image_tile_stencil_disabled(device, image)) {
695       /* All the HTILE buffer is used when there is no stencil. */
696       mask = UINT32_MAX;
697    } else {
698       if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
699          mask |= 0xfffffc0f;
700       if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT)
701          mask |= 0x000003f0;
702    }
703 
704    return mask;
705 }
706 
707 static bool
radv_is_fast_clear_depth_allowed(VkClearDepthStencilValue value)708 radv_is_fast_clear_depth_allowed(VkClearDepthStencilValue value)
709 {
710    return value.depth == 1.0f || value.depth == 0.0f;
711 }
712 
713 static bool
radv_is_fast_clear_stencil_allowed(VkClearDepthStencilValue value)714 radv_is_fast_clear_stencil_allowed(VkClearDepthStencilValue value)
715 {
716    return value.stencil == 0;
717 }
718 
719 static bool
radv_can_fast_clear_depth(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkImageLayout image_layout,VkImageAspectFlags aspects,const VkClearRect * clear_rect,const VkClearDepthStencilValue clear_value,uint32_t view_mask)720 radv_can_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
721                           VkImageLayout image_layout, VkImageAspectFlags aspects, const VkClearRect *clear_rect,
722                           const VkClearDepthStencilValue clear_value, uint32_t view_mask)
723 {
724    if (!iview || !iview->support_fast_clear)
725       return false;
726 
727    if (!radv_layout_is_htile_compressed(cmd_buffer->device, iview->image, image_layout,
728                                         radv_image_queue_family_mask(iview->image, cmd_buffer->qf, cmd_buffer->qf)))
729       return false;
730 
731    if (clear_rect->rect.offset.x || clear_rect->rect.offset.y ||
732        clear_rect->rect.extent.width != iview->image->vk.extent.width ||
733        clear_rect->rect.extent.height != iview->image->vk.extent.height)
734       return false;
735 
736    if (view_mask && (iview->image->vk.array_layers >= 32 || (1u << iview->image->vk.array_layers) - 1u != view_mask))
737       return false;
738    if (!view_mask && clear_rect->baseArrayLayer != 0)
739       return false;
740    if (!view_mask && clear_rect->layerCount != iview->image->vk.array_layers)
741       return false;
742 
743    if (cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted &&
744        (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && (clear_value.depth < 0.0 || clear_value.depth > 1.0))
745       return false;
746 
747    if (radv_image_is_tc_compat_htile(iview->image) &&
748        (((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && !radv_is_fast_clear_depth_allowed(clear_value)) ||
749         ((aspects & VK_IMAGE_ASPECT_STENCIL_BIT) && !radv_is_fast_clear_stencil_allowed(clear_value))))
750       return false;
751 
752    if (iview->image->vk.mip_levels > 1) {
753       uint32_t last_level = iview->vk.base_mip_level + iview->vk.level_count - 1;
754       if (last_level >= iview->image->planes[0].surface.num_meta_levels) {
755          /* Do not fast clears if one level can't be fast cleared. */
756          return false;
757       }
758    }
759 
760    return true;
761 }
762 
763 static void
radv_fast_clear_depth(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkClearDepthStencilValue clear_value,VkImageAspectFlags aspects,enum radv_cmd_flush_bits * pre_flush,enum radv_cmd_flush_bits * post_flush)764 radv_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
765                       VkClearDepthStencilValue clear_value, VkImageAspectFlags aspects,
766                       enum radv_cmd_flush_bits *pre_flush, enum radv_cmd_flush_bits *post_flush)
767 {
768    uint32_t clear_word, flush_bits;
769 
770    clear_word = radv_get_htile_fast_clear_value(cmd_buffer->device, iview->image, clear_value);
771 
772    if (pre_flush) {
773       enum radv_cmd_flush_bits bits =
774          radv_src_access_flush(cmd_buffer, VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, iview->image) |
775          radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT | VK_ACCESS_2_SHADER_READ_BIT, iview->image);
776       cmd_buffer->state.flush_bits |= bits & ~*pre_flush;
777       *pre_flush |= cmd_buffer->state.flush_bits;
778    }
779 
780    VkImageSubresourceRange range = {
781       .aspectMask = aspects,
782       .baseMipLevel = iview->vk.base_mip_level,
783       .levelCount = iview->vk.level_count,
784       .baseArrayLayer = iview->vk.base_array_layer,
785       .layerCount = iview->vk.layer_count,
786    };
787 
788    flush_bits = radv_clear_htile(cmd_buffer, iview->image, &range, clear_word);
789 
790    if (iview->image->planes[0].surface.has_stencil &&
791        !(aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) {
792       /* Synchronize after performing a depth-only or a stencil-only
793        * fast clear because the driver uses an optimized path which
794        * performs a read-modify-write operation, and the two separate
795        * aspects might use the same HTILE memory.
796        */
797       cmd_buffer->state.flush_bits |= flush_bits;
798    }
799 
800    radv_update_ds_clear_metadata(cmd_buffer, iview, clear_value, aspects);
801    if (post_flush) {
802       *post_flush |= flush_bits;
803    }
804 }
805 
806 static nir_shader *
build_clear_htile_mask_shader(struct radv_device * dev)807 build_clear_htile_mask_shader(struct radv_device *dev)
808 {
809    nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, "meta_clear_htile_mask");
810    b.shader->info.workgroup_size[0] = 64;
811 
812    nir_def *global_id = get_global_ids(&b, 1);
813 
814    nir_def *offset = nir_imul_imm(&b, global_id, 16);
815    offset = nir_channel(&b, offset, 0);
816 
817    nir_def *buf = radv_meta_load_descriptor(&b, 0, 0);
818 
819    nir_def *constants = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8);
820 
821    nir_def *load = nir_load_ssbo(&b, 4, 32, buf, offset, .align_mul = 16);
822 
823    /* data = (data & ~htile_mask) | (htile_value & htile_mask) */
824    nir_def *data = nir_iand(&b, load, nir_channel(&b, constants, 1));
825    data = nir_ior(&b, data, nir_channel(&b, constants, 0));
826 
827    nir_store_ssbo(&b, data, buf, offset, .access = ACCESS_NON_READABLE, .align_mul = 16);
828 
829    return b.shader;
830 }
831 
832 static VkResult
init_meta_clear_htile_mask_state(struct radv_device * device)833 init_meta_clear_htile_mask_state(struct radv_device *device)
834 {
835    struct radv_meta_state *state = &device->meta_state;
836    VkResult result;
837    nir_shader *cs = build_clear_htile_mask_shader(device);
838 
839    VkDescriptorSetLayoutCreateInfo ds_layout_info = {.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
840                                                      .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
841                                                      .bindingCount = 1,
842                                                      .pBindings = (VkDescriptorSetLayoutBinding[]){
843                                                         {.binding = 0,
844                                                          .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
845                                                          .descriptorCount = 1,
846                                                          .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
847                                                          .pImmutableSamplers = NULL},
848                                                      }};
849 
850    result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_layout_info, &state->alloc,
851                                            &state->clear_htile_mask_ds_layout);
852    if (result != VK_SUCCESS)
853       goto fail;
854 
855    VkPipelineLayoutCreateInfo p_layout_info = {
856       .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
857       .setLayoutCount = 1,
858       .pSetLayouts = &state->clear_htile_mask_ds_layout,
859       .pushConstantRangeCount = 1,
860       .pPushConstantRanges =
861          &(VkPushConstantRange){
862             VK_SHADER_STAGE_COMPUTE_BIT,
863             0,
864             8,
865          },
866    };
867 
868    result = radv_CreatePipelineLayout(radv_device_to_handle(device), &p_layout_info, &state->alloc,
869                                       &state->clear_htile_mask_p_layout);
870    if (result != VK_SUCCESS)
871       goto fail;
872 
873    VkPipelineShaderStageCreateInfo shader_stage = {
874       .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
875       .stage = VK_SHADER_STAGE_COMPUTE_BIT,
876       .module = vk_shader_module_handle_from_nir(cs),
877       .pName = "main",
878       .pSpecializationInfo = NULL,
879    };
880 
881    VkComputePipelineCreateInfo pipeline_info = {
882       .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
883       .stage = shader_stage,
884       .flags = 0,
885       .layout = state->clear_htile_mask_p_layout,
886    };
887 
888    result = radv_compute_pipeline_create(radv_device_to_handle(device), state->cache, &pipeline_info, NULL,
889                                          &state->clear_htile_mask_pipeline);
890 
891 fail:
892    ralloc_free(cs);
893    return result;
894 }
895 
896 /* Clear DCC using comp-to-single by storing the clear value at the beginning of every 256B block.
897  * For MSAA images, clearing the first sample should be enough as long as CMASK is also cleared.
898  */
899 static nir_shader *
build_clear_dcc_comp_to_single_shader(struct radv_device * dev,bool is_msaa)900 build_clear_dcc_comp_to_single_shader(struct radv_device *dev, bool is_msaa)
901 {
902    enum glsl_sampler_dim dim = is_msaa ? GLSL_SAMPLER_DIM_MS : GLSL_SAMPLER_DIM_2D;
903    const struct glsl_type *img_type = glsl_image_type(dim, true, GLSL_TYPE_FLOAT);
904 
905    nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, "meta_clear_dcc_comp_to_single-%s",
906                                          is_msaa ? "multisampled" : "singlesampled");
907    b.shader->info.workgroup_size[0] = 8;
908    b.shader->info.workgroup_size[1] = 8;
909 
910    nir_def *global_id = get_global_ids(&b, 3);
911 
912    /* Load the dimensions in pixels of a block that gets compressed to one DCC byte. */
913    nir_def *dcc_block_size = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8);
914 
915    /* Compute the coordinates. */
916    nir_def *coord = nir_trim_vector(&b, global_id, 2);
917    coord = nir_imul(&b, coord, dcc_block_size);
918    coord = nir_vec4(&b, nir_channel(&b, coord, 0), nir_channel(&b, coord, 1), nir_channel(&b, global_id, 2),
919                     nir_undef(&b, 1, 32));
920 
921    nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img");
922    output_img->data.descriptor_set = 0;
923    output_img->data.binding = 0;
924 
925    /* Load the clear color values. */
926    nir_def *clear_values = nir_load_push_constant(&b, 4, 32, nir_imm_int(&b, 8), .range = 24);
927 
928    nir_def *data = nir_vec4(&b, nir_channel(&b, clear_values, 0), nir_channel(&b, clear_values, 1),
929                             nir_channel(&b, clear_values, 2), nir_channel(&b, clear_values, 3));
930 
931    /* Store the clear color values. */
932    nir_def *sample_id = is_msaa ? nir_imm_int(&b, 0) : nir_undef(&b, 1, 32);
933    nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->def, coord, sample_id, data, nir_imm_int(&b, 0),
934                          .image_dim = dim, .image_array = true);
935 
936    return b.shader;
937 }
938 
939 static VkResult
create_dcc_comp_to_single_pipeline(struct radv_device * device,bool is_msaa,VkPipeline * pipeline)940 create_dcc_comp_to_single_pipeline(struct radv_device *device, bool is_msaa, VkPipeline *pipeline)
941 {
942    struct radv_meta_state *state = &device->meta_state;
943    VkResult result;
944    nir_shader *cs = build_clear_dcc_comp_to_single_shader(device, is_msaa);
945 
946    VkPipelineShaderStageCreateInfo shader_stage = {
947       .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
948       .stage = VK_SHADER_STAGE_COMPUTE_BIT,
949       .module = vk_shader_module_handle_from_nir(cs),
950       .pName = "main",
951       .pSpecializationInfo = NULL,
952    };
953 
954    VkComputePipelineCreateInfo pipeline_info = {
955       .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
956       .stage = shader_stage,
957       .flags = 0,
958       .layout = state->clear_dcc_comp_to_single_p_layout,
959    };
960 
961    result = radv_compute_pipeline_create(radv_device_to_handle(device), state->cache, &pipeline_info, NULL, pipeline);
962 
963    ralloc_free(cs);
964    return result;
965 }
966 
967 static VkResult
init_meta_clear_dcc_comp_to_single_state(struct radv_device * device)968 init_meta_clear_dcc_comp_to_single_state(struct radv_device *device)
969 {
970    struct radv_meta_state *state = &device->meta_state;
971    VkResult result;
972 
973    VkDescriptorSetLayoutCreateInfo ds_layout_info = {.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
974                                                      .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
975                                                      .bindingCount = 1,
976                                                      .pBindings = (VkDescriptorSetLayoutBinding[]){
977                                                         {.binding = 0,
978                                                          .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
979                                                          .descriptorCount = 1,
980                                                          .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
981                                                          .pImmutableSamplers = NULL},
982                                                      }};
983 
984    result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_layout_info, &state->alloc,
985                                            &state->clear_dcc_comp_to_single_ds_layout);
986    if (result != VK_SUCCESS)
987       goto fail;
988 
989    VkPipelineLayoutCreateInfo p_layout_info = {
990       .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
991       .setLayoutCount = 1,
992       .pSetLayouts = &state->clear_dcc_comp_to_single_ds_layout,
993       .pushConstantRangeCount = 1,
994       .pPushConstantRanges =
995          &(VkPushConstantRange){
996             VK_SHADER_STAGE_COMPUTE_BIT,
997             0,
998             24,
999          },
1000    };
1001 
1002    result = radv_CreatePipelineLayout(radv_device_to_handle(device), &p_layout_info, &state->alloc,
1003                                       &state->clear_dcc_comp_to_single_p_layout);
1004    if (result != VK_SUCCESS)
1005       goto fail;
1006 
1007    for (uint32_t i = 0; i < 2; i++) {
1008       result = create_dcc_comp_to_single_pipeline(device, !!i, &state->clear_dcc_comp_to_single_pipeline[i]);
1009       if (result != VK_SUCCESS)
1010          goto fail;
1011    }
1012 
1013 fail:
1014    return result;
1015 }
1016 
1017 VkResult
radv_device_init_meta_clear_state(struct radv_device * device,bool on_demand)1018 radv_device_init_meta_clear_state(struct radv_device *device, bool on_demand)
1019 {
1020    VkResult res;
1021    struct radv_meta_state *state = &device->meta_state;
1022 
1023    VkPipelineLayoutCreateInfo pl_color_create_info = {
1024       .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1025       .setLayoutCount = 0,
1026       .pushConstantRangeCount = 1,
1027       .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 16},
1028    };
1029 
1030    res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_color_create_info, &device->meta_state.alloc,
1031                                    &device->meta_state.clear_color_p_layout);
1032    if (res != VK_SUCCESS)
1033       return res;
1034 
1035    VkPipelineLayoutCreateInfo pl_depth_create_info = {
1036       .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1037       .setLayoutCount = 0,
1038       .pushConstantRangeCount = 1,
1039       .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_VERTEX_BIT, 0, 4},
1040    };
1041 
1042    res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_depth_create_info, &device->meta_state.alloc,
1043                                    &device->meta_state.clear_depth_p_layout);
1044    if (res != VK_SUCCESS)
1045       return res;
1046 
1047    VkPipelineLayoutCreateInfo pl_depth_unrestricted_create_info = {
1048       .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1049       .setLayoutCount = 0,
1050       .pushConstantRangeCount = 1,
1051       .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 4},
1052    };
1053 
1054    res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_depth_unrestricted_create_info,
1055                                    &device->meta_state.alloc, &device->meta_state.clear_depth_unrestricted_p_layout);
1056    if (res != VK_SUCCESS)
1057       return res;
1058 
1059    res = init_meta_clear_htile_mask_state(device);
1060    if (res != VK_SUCCESS)
1061       return res;
1062 
1063    res = init_meta_clear_dcc_comp_to_single_state(device);
1064    if (res != VK_SUCCESS)
1065       return res;
1066 
1067    if (on_demand)
1068       return VK_SUCCESS;
1069 
1070    for (uint32_t i = 0; i < ARRAY_SIZE(state->color_clear); ++i) {
1071       uint32_t samples = 1 << i;
1072 
1073       /* Only precompile meta pipelines for attachment 0 as other are uncommon. */
1074       for (uint32_t j = 0; j < NUM_META_FS_KEYS; ++j) {
1075          VkFormat format = radv_fs_key_format_exemplars[j];
1076          unsigned fs_key = radv_format_meta_fs_key(device, format);
1077          assert(!state->color_clear[i][0].color_pipelines[fs_key]);
1078 
1079          res = create_color_pipeline(device, samples, 0, format, &state->color_clear[i][0].color_pipelines[fs_key]);
1080          if (res != VK_SUCCESS)
1081             return res;
1082       }
1083    }
1084    for (uint32_t i = 0; i < ARRAY_SIZE(state->ds_clear); ++i) {
1085       uint32_t samples = 1 << i;
1086 
1087       for (uint32_t j = 0; j < NUM_DEPTH_CLEAR_PIPELINES; j++) {
1088          res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, samples, j, false,
1089                                             &state->ds_clear[i].depth_only_pipeline[j]);
1090          if (res != VK_SUCCESS)
1091             return res;
1092 
1093          res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, false,
1094                                             &state->ds_clear[i].stencil_only_pipeline[j]);
1095          if (res != VK_SUCCESS)
1096             return res;
1097 
1098          res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, samples, j,
1099                                             false, &state->ds_clear[i].depthstencil_pipeline[j]);
1100          if (res != VK_SUCCESS)
1101             return res;
1102 
1103          res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, samples, j, true,
1104                                             &state->ds_clear[i].depth_only_unrestricted_pipeline[j]);
1105          if (res != VK_SUCCESS)
1106             return res;
1107 
1108          res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, true,
1109                                             &state->ds_clear[i].stencil_only_unrestricted_pipeline[j]);
1110          if (res != VK_SUCCESS)
1111             return res;
1112 
1113          res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, samples, j,
1114                                             true, &state->ds_clear[i].depthstencil_unrestricted_pipeline[j]);
1115          if (res != VK_SUCCESS)
1116             return res;
1117       }
1118    }
1119    return VK_SUCCESS;
1120 }
1121 
1122 static uint32_t
radv_get_cmask_fast_clear_value(const struct radv_image * image)1123 radv_get_cmask_fast_clear_value(const struct radv_image *image)
1124 {
1125    uint32_t value = 0; /* Default value when no DCC. */
1126 
1127    /* The fast-clear value is different for images that have both DCC and
1128     * CMASK metadata.
1129     */
1130    if (radv_image_has_dcc(image)) {
1131       /* DCC fast clear with MSAA should clear CMASK to 0xC. */
1132       return image->vk.samples > 1 ? 0xcccccccc : 0xffffffff;
1133    }
1134 
1135    return value;
1136 }
1137 
1138 uint32_t
radv_clear_cmask(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)1139 radv_clear_cmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range,
1140                  uint32_t value)
1141 {
1142    uint64_t offset = image->bindings[0].offset + image->planes[0].surface.cmask_offset;
1143    uint64_t size;
1144 
1145    if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX9) {
1146       /* TODO: clear layers. */
1147       size = image->planes[0].surface.cmask_size;
1148    } else {
1149       unsigned slice_size = image->planes[0].surface.cmask_slice_size;
1150 
1151       offset += slice_size * range->baseArrayLayer;
1152       size = slice_size * vk_image_subresource_layer_count(&image->vk, range);
1153    }
1154 
1155    return radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo, radv_buffer_get_va(image->bindings[0].bo) + offset,
1156                            size, value);
1157 }
1158 
1159 uint32_t
radv_clear_fmask(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)1160 radv_clear_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range,
1161                  uint32_t value)
1162 {
1163    uint64_t offset = image->bindings[0].offset + image->planes[0].surface.fmask_offset;
1164    unsigned slice_size = image->planes[0].surface.fmask_slice_size;
1165    uint64_t size;
1166 
1167    /* MSAA images do not support mipmap levels. */
1168    assert(range->baseMipLevel == 0 && vk_image_subresource_level_count(&image->vk, range) == 1);
1169 
1170    offset += slice_size * range->baseArrayLayer;
1171    size = slice_size * vk_image_subresource_layer_count(&image->vk, range);
1172 
1173    return radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo, radv_buffer_get_va(image->bindings[0].bo) + offset,
1174                            size, value);
1175 }
1176 
1177 uint32_t
radv_clear_dcc(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)1178 radv_clear_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range,
1179                uint32_t value)
1180 {
1181    uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
1182    uint32_t layer_count = vk_image_subresource_layer_count(&image->vk, range);
1183    uint32_t flush_bits = 0;
1184 
1185    /* Mark the image as being compressed. */
1186    radv_update_dcc_metadata(cmd_buffer, image, range, true);
1187 
1188    for (uint32_t l = 0; l < level_count; l++) {
1189       uint64_t offset = image->bindings[0].offset + image->planes[0].surface.meta_offset;
1190       uint32_t level = range->baseMipLevel + l;
1191       uint64_t size;
1192 
1193       if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10) {
1194          /* DCC for mipmaps+layers is currently disabled. */
1195          offset += image->planes[0].surface.meta_slice_size * range->baseArrayLayer +
1196                    image->planes[0].surface.u.gfx9.meta_levels[level].offset;
1197          size = image->planes[0].surface.u.gfx9.meta_levels[level].size * layer_count;
1198       } else if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX9) {
1199          /* Mipmap levels and layers aren't implemented. */
1200          assert(level == 0);
1201          size = image->planes[0].surface.meta_size;
1202       } else {
1203          const struct legacy_surf_dcc_level *dcc_level = &image->planes[0].surface.u.legacy.color.dcc_level[level];
1204 
1205          /* If dcc_fast_clear_size is 0 (which might happens for
1206           * mipmaps) the fill buffer operation below is a no-op.
1207           * This can only happen during initialization as the
1208           * fast clear path fallbacks to slow clears if one
1209           * level can't be fast cleared.
1210           */
1211          offset += dcc_level->dcc_offset + dcc_level->dcc_slice_fast_clear_size * range->baseArrayLayer;
1212          size = dcc_level->dcc_slice_fast_clear_size * vk_image_subresource_layer_count(&image->vk, range);
1213       }
1214 
1215       /* Do not clear this level if it can't be compressed. */
1216       if (!size)
1217          continue;
1218 
1219       flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo,
1220                                      radv_buffer_get_va(image->bindings[0].bo) + offset, size, value);
1221    }
1222 
1223    return flush_bits;
1224 }
1225 
1226 static uint32_t
radv_clear_dcc_comp_to_single(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,const VkImageSubresourceRange * range,uint32_t color_values[4])1227 radv_clear_dcc_comp_to_single(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
1228                               const VkImageSubresourceRange *range, uint32_t color_values[4])
1229 {
1230    struct radv_device *device = cmd_buffer->device;
1231    unsigned bytes_per_pixel = vk_format_get_blocksize(image->vk.format);
1232    unsigned layer_count = vk_image_subresource_layer_count(&image->vk, range);
1233    struct radv_meta_saved_state saved_state;
1234    bool is_msaa = image->vk.samples > 1;
1235    struct radv_image_view iview;
1236    VkFormat format;
1237 
1238    switch (bytes_per_pixel) {
1239    case 1:
1240       format = VK_FORMAT_R8_UINT;
1241       break;
1242    case 2:
1243       format = VK_FORMAT_R16_UINT;
1244       break;
1245    case 4:
1246       format = VK_FORMAT_R32_UINT;
1247       break;
1248    case 8:
1249       format = VK_FORMAT_R32G32_UINT;
1250       break;
1251    case 16:
1252       format = VK_FORMAT_R32G32B32A32_UINT;
1253       break;
1254    default:
1255       unreachable("Unsupported number of bytes per pixel");
1256    }
1257 
1258    radv_meta_save(&saved_state, cmd_buffer,
1259                   RADV_META_SAVE_DESCRIPTORS | RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS);
1260 
1261    VkPipeline pipeline = device->meta_state.clear_dcc_comp_to_single_pipeline[is_msaa];
1262 
1263    radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
1264 
1265    for (uint32_t l = 0; l < vk_image_subresource_level_count(&image->vk, range); l++) {
1266       uint32_t width, height;
1267 
1268       /* Do not write the clear color value for levels without DCC. */
1269       if (!radv_dcc_enabled(image, range->baseMipLevel + l))
1270          continue;
1271 
1272       width = radv_minify(image->vk.extent.width, range->baseMipLevel + l);
1273       height = radv_minify(image->vk.extent.height, range->baseMipLevel + l);
1274 
1275       radv_image_view_init(&iview, cmd_buffer->device,
1276                            &(VkImageViewCreateInfo){
1277                               .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1278                               .image = radv_image_to_handle(image),
1279                               .viewType = VK_IMAGE_VIEW_TYPE_2D,
1280                               .format = format,
1281                               .subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1282                                                    .baseMipLevel = range->baseMipLevel + l,
1283                                                    .levelCount = 1,
1284                                                    .baseArrayLayer = range->baseArrayLayer,
1285                                                    .layerCount = layer_count},
1286                            },
1287                            0, &(struct radv_image_view_extra_create_info){.disable_compression = true});
1288 
1289       radv_meta_push_descriptor_set(cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE,
1290                                     device->meta_state.clear_dcc_comp_to_single_p_layout, 0, 1,
1291                                     (VkWriteDescriptorSet[]){{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
1292                                                               .dstBinding = 0,
1293                                                               .dstArrayElement = 0,
1294                                                               .descriptorCount = 1,
1295                                                               .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
1296                                                               .pImageInfo = (VkDescriptorImageInfo[]){
1297                                                                  {
1298                                                                     .sampler = VK_NULL_HANDLE,
1299                                                                     .imageView = radv_image_view_to_handle(&iview),
1300                                                                     .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
1301                                                                  },
1302                                                               }}});
1303 
1304       unsigned dcc_width = DIV_ROUND_UP(width, image->planes[0].surface.u.gfx9.color.dcc_block_width);
1305       unsigned dcc_height = DIV_ROUND_UP(height, image->planes[0].surface.u.gfx9.color.dcc_block_height);
1306 
1307       const unsigned constants[6] = {
1308          image->planes[0].surface.u.gfx9.color.dcc_block_width,
1309          image->planes[0].surface.u.gfx9.color.dcc_block_height,
1310          color_values[0],
1311          color_values[1],
1312          color_values[2],
1313          color_values[3],
1314       };
1315 
1316       vk_common_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
1317                                  device->meta_state.clear_dcc_comp_to_single_p_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0,
1318                                  24, constants);
1319 
1320       radv_unaligned_dispatch(cmd_buffer, dcc_width, dcc_height, layer_count);
1321 
1322       radv_image_view_finish(&iview);
1323    }
1324 
1325    radv_meta_restore(&saved_state, cmd_buffer);
1326 
1327    return RADV_CMD_FLAG_CS_PARTIAL_FLUSH | radv_src_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, image);
1328 }
1329 
1330 uint32_t
radv_clear_htile(struct radv_cmd_buffer * cmd_buffer,const struct radv_image * image,const VkImageSubresourceRange * range,uint32_t value)1331 radv_clear_htile(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image,
1332                  const VkImageSubresourceRange *range, uint32_t value)
1333 {
1334    uint32_t level_count = vk_image_subresource_level_count(&image->vk, range);
1335    uint32_t flush_bits = 0;
1336    uint32_t htile_mask;
1337 
1338    htile_mask = radv_get_htile_mask(cmd_buffer->device, image, range->aspectMask);
1339 
1340    if (level_count != image->vk.mip_levels) {
1341       assert(cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10);
1342 
1343       /* Clear individuals levels separately. */
1344       for (uint32_t l = 0; l < level_count; l++) {
1345          uint32_t level = range->baseMipLevel + l;
1346          uint64_t offset = image->bindings[0].offset + image->planes[0].surface.meta_offset +
1347                            image->planes[0].surface.u.gfx9.meta_levels[level].offset;
1348          uint32_t size = image->planes[0].surface.u.gfx9.meta_levels[level].size;
1349 
1350          /* Do not clear this level if it can be compressed. */
1351          if (!size)
1352             continue;
1353 
1354          if (htile_mask == UINT_MAX) {
1355             /* Clear the whole HTILE buffer. */
1356             flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo,
1357                                            radv_buffer_get_va(image->bindings[0].bo) + offset, size, value);
1358          } else {
1359             /* Only clear depth or stencil bytes in the HTILE buffer. */
1360             flush_bits |= clear_htile_mask(cmd_buffer, image, image->bindings[0].bo, offset, size, value, htile_mask);
1361          }
1362       }
1363    } else {
1364       unsigned layer_count = vk_image_subresource_layer_count(&image->vk, range);
1365       uint64_t size = image->planes[0].surface.meta_slice_size * layer_count;
1366       uint64_t offset = image->bindings[0].offset + image->planes[0].surface.meta_offset +
1367                         image->planes[0].surface.meta_slice_size * range->baseArrayLayer;
1368 
1369       if (htile_mask == UINT_MAX) {
1370          /* Clear the whole HTILE buffer. */
1371          flush_bits = radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo,
1372                                        radv_buffer_get_va(image->bindings[0].bo) + offset, size, value);
1373       } else {
1374          /* Only clear depth or stencil bytes in the HTILE buffer. */
1375          flush_bits = clear_htile_mask(cmd_buffer, image, image->bindings[0].bo, offset, size, value, htile_mask);
1376       }
1377    }
1378 
1379    return flush_bits;
1380 }
1381 
1382 enum {
1383    RADV_DCC_CLEAR_0000 = 0x00000000U,
1384    RADV_DCC_GFX8_CLEAR_0001 = 0x40404040U,
1385    RADV_DCC_GFX8_CLEAR_1110 = 0x80808080U,
1386    RADV_DCC_GFX8_CLEAR_1111 = 0xC0C0C0C0U,
1387    RADV_DCC_GFX8_CLEAR_REG = 0x20202020U,
1388    RADV_DCC_GFX9_CLEAR_SINGLE = 0x10101010U,
1389    RADV_DCC_GFX11_CLEAR_SINGLE = 0x01010101U,
1390    RADV_DCC_GFX11_CLEAR_0000 = 0x00000000U,
1391    RADV_DCC_GFX11_CLEAR_1111_UNORM = 0x02020202U,
1392    RADV_DCC_GFX11_CLEAR_1111_FP16 = 0x04040404U,
1393    RADV_DCC_GFX11_CLEAR_1111_FP32 = 0x06060606U,
1394    RADV_DCC_GFX11_CLEAR_0001_UNORM = 0x08080808U,
1395    RADV_DCC_GFX11_CLEAR_1110_UNORM = 0x0A0A0A0AU,
1396 };
1397 
1398 static uint32_t
radv_dcc_single_clear_value(const struct radv_device * device)1399 radv_dcc_single_clear_value(const struct radv_device *device)
1400 {
1401    return device->physical_device->rad_info.gfx_level >= GFX11 ? RADV_DCC_GFX11_CLEAR_SINGLE
1402                                                                : RADV_DCC_GFX9_CLEAR_SINGLE;
1403 }
1404 
1405 static void
gfx8_get_fast_clear_parameters(struct radv_device * device,const struct radv_image_view * iview,const VkClearColorValue * clear_value,uint32_t * reset_value,bool * can_avoid_fast_clear_elim)1406 gfx8_get_fast_clear_parameters(struct radv_device *device, const struct radv_image_view *iview,
1407                                const VkClearColorValue *clear_value, uint32_t *reset_value,
1408                                bool *can_avoid_fast_clear_elim)
1409 {
1410    bool values[4] = {0};
1411    int extra_channel;
1412    bool main_value = false;
1413    bool extra_value = false;
1414    bool has_color = false;
1415    bool has_alpha = false;
1416 
1417    /* comp-to-single allows to perform DCC fast clears without requiring a FCE. */
1418    if (iview->image->support_comp_to_single) {
1419       *reset_value = RADV_DCC_GFX9_CLEAR_SINGLE;
1420       *can_avoid_fast_clear_elim = true;
1421    } else {
1422       *reset_value = RADV_DCC_GFX8_CLEAR_REG;
1423       *can_avoid_fast_clear_elim = false;
1424    }
1425 
1426    const struct util_format_description *desc = vk_format_description(iview->vk.format);
1427    if (iview->vk.format == VK_FORMAT_B10G11R11_UFLOAT_PACK32 || iview->vk.format == VK_FORMAT_R5G6B5_UNORM_PACK16 ||
1428        iview->vk.format == VK_FORMAT_B5G6R5_UNORM_PACK16)
1429       extra_channel = -1;
1430    else if (desc->layout == UTIL_FORMAT_LAYOUT_PLAIN) {
1431       if (vi_alpha_is_on_msb(device, iview->vk.format))
1432          extra_channel = desc->nr_channels - 1;
1433       else
1434          extra_channel = 0;
1435    } else
1436       return;
1437 
1438    for (int i = 0; i < 4; i++) {
1439       int index = desc->swizzle[i] - PIPE_SWIZZLE_X;
1440       if (desc->swizzle[i] < PIPE_SWIZZLE_X || desc->swizzle[i] > PIPE_SWIZZLE_W)
1441          continue;
1442 
1443       if (desc->channel[i].pure_integer && desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
1444          /* Use the maximum value for clamping the clear color. */
1445          int max = u_bit_consecutive(0, desc->channel[i].size - 1);
1446 
1447          values[i] = clear_value->int32[i] != 0;
1448          if (clear_value->int32[i] != 0 && MIN2(clear_value->int32[i], max) != max)
1449             return;
1450       } else if (desc->channel[i].pure_integer && desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) {
1451          /* Use the maximum value for clamping the clear color. */
1452          unsigned max = u_bit_consecutive(0, desc->channel[i].size);
1453 
1454          values[i] = clear_value->uint32[i] != 0U;
1455          if (clear_value->uint32[i] != 0U && MIN2(clear_value->uint32[i], max) != max)
1456             return;
1457       } else {
1458          values[i] = clear_value->float32[i] != 0.0F;
1459          if (clear_value->float32[i] != 0.0F && clear_value->float32[i] != 1.0F)
1460             return;
1461       }
1462 
1463       if (index == extra_channel) {
1464          extra_value = values[i];
1465          has_alpha = true;
1466       } else {
1467          main_value = values[i];
1468          has_color = true;
1469       }
1470    }
1471 
1472    /* If alpha isn't present, make it the same as color, and vice versa. */
1473    if (!has_alpha)
1474       extra_value = main_value;
1475    else if (!has_color)
1476       main_value = extra_value;
1477 
1478    for (int i = 0; i < 4; ++i)
1479       if (values[i] != main_value && desc->swizzle[i] - PIPE_SWIZZLE_X != extra_channel &&
1480           desc->swizzle[i] >= PIPE_SWIZZLE_X && desc->swizzle[i] <= PIPE_SWIZZLE_W)
1481          return;
1482 
1483    /* Only DCC clear code 0000 is allowed for signed<->unsigned formats. */
1484    if ((main_value || extra_value) && iview->image->dcc_sign_reinterpret)
1485       return;
1486 
1487    *can_avoid_fast_clear_elim = true;
1488 
1489    if (main_value) {
1490       if (extra_value)
1491          *reset_value = RADV_DCC_GFX8_CLEAR_1111;
1492       else
1493          *reset_value = RADV_DCC_GFX8_CLEAR_1110;
1494    } else {
1495       if (extra_value)
1496          *reset_value = RADV_DCC_GFX8_CLEAR_0001;
1497       else
1498          *reset_value = RADV_DCC_CLEAR_0000;
1499    }
1500 }
1501 
1502 static bool
gfx11_get_fast_clear_parameters(struct radv_device * device,const struct radv_image_view * iview,const VkClearColorValue * clear_value,uint32_t * reset_value)1503 gfx11_get_fast_clear_parameters(struct radv_device *device, const struct radv_image_view *iview,
1504                                 const VkClearColorValue *clear_value, uint32_t *reset_value)
1505 {
1506    const struct util_format_description *desc = vk_format_description(iview->vk.format);
1507    unsigned start_bit = UINT_MAX;
1508    unsigned end_bit = 0;
1509 
1510    /* TODO: 8bpp and 16bpp fast DCC clears don't work. */
1511    if (desc->block.bits <= 16)
1512       return false;
1513 
1514    /* Find the used bit range. */
1515    for (unsigned i = 0; i < 4; i++) {
1516       unsigned swizzle = desc->swizzle[i];
1517 
1518       if (swizzle >= PIPE_SWIZZLE_0)
1519          continue;
1520 
1521       start_bit = MIN2(start_bit, desc->channel[swizzle].shift);
1522       end_bit = MAX2(end_bit, desc->channel[swizzle].shift + desc->channel[swizzle].size);
1523    }
1524 
1525    union {
1526       uint8_t ub[16];
1527       uint16_t us[8];
1528       uint32_t ui[4];
1529    } value;
1530    memset(&value, 0, sizeof(value));
1531    util_format_pack_rgba(vk_format_to_pipe_format(iview->vk.format), &value, clear_value, 1);
1532 
1533    /* Check the cases where all components or bits are either all 0 or all 1. */
1534    bool all_bits_are_0 = true;
1535    bool all_bits_are_1 = true;
1536    bool all_words_are_fp16_1 = false;
1537    bool all_words_are_fp32_1 = false;
1538 
1539    for (unsigned i = start_bit; i < end_bit; i++) {
1540       bool bit = value.ub[i / 8] & BITFIELD_BIT(i % 8);
1541 
1542       all_bits_are_0 &= !bit;
1543       all_bits_are_1 &= bit;
1544    }
1545 
1546    if (start_bit % 16 == 0 && end_bit % 16 == 0) {
1547       all_words_are_fp16_1 = true;
1548       for (unsigned i = start_bit / 16; i < end_bit / 16; i++)
1549          all_words_are_fp16_1 &= value.us[i] == 0x3c00;
1550    }
1551 
1552    if (start_bit % 32 == 0 && end_bit % 32 == 0) {
1553       all_words_are_fp32_1 = true;
1554       for (unsigned i = start_bit / 32; i < end_bit / 32; i++)
1555          all_words_are_fp32_1 &= value.ui[i] == 0x3f800000;
1556    }
1557 
1558    if (all_bits_are_0 || all_bits_are_1 || all_words_are_fp16_1 || all_words_are_fp32_1) {
1559       if (all_bits_are_0)
1560          *reset_value = RADV_DCC_CLEAR_0000;
1561       else if (all_bits_are_1)
1562          *reset_value = RADV_DCC_GFX11_CLEAR_1111_UNORM;
1563       else if (all_words_are_fp16_1)
1564          *reset_value = RADV_DCC_GFX11_CLEAR_1111_FP16;
1565       else if (all_words_are_fp32_1)
1566          *reset_value = RADV_DCC_GFX11_CLEAR_1111_FP32;
1567       return true;
1568    }
1569 
1570    if (desc->nr_channels == 2 && desc->channel[0].size == 8) {
1571       if (value.ub[0] == 0x00 && value.ub[1] == 0xff) {
1572          *reset_value = RADV_DCC_GFX11_CLEAR_0001_UNORM;
1573          return true;
1574       } else if (value.ub[0] == 0xff && value.ub[1] == 0x00) {
1575          *reset_value = RADV_DCC_GFX11_CLEAR_1110_UNORM;
1576          return true;
1577       }
1578    } else if (desc->nr_channels == 4 && desc->channel[0].size == 8) {
1579       if (value.ub[0] == 0x00 && value.ub[1] == 0x00 && value.ub[2] == 0x00 && value.ub[3] == 0xff) {
1580          *reset_value = RADV_DCC_GFX11_CLEAR_0001_UNORM;
1581          return true;
1582       } else if (value.ub[0] == 0xff && value.ub[1] == 0xff && value.ub[2] == 0xff && value.ub[3] == 0x00) {
1583          *reset_value = RADV_DCC_GFX11_CLEAR_1110_UNORM;
1584          return true;
1585       }
1586    } else if (desc->nr_channels == 4 && desc->channel[0].size == 16) {
1587       if (value.us[0] == 0x0000 && value.us[1] == 0x0000 && value.us[2] == 0x0000 && value.us[3] == 0xffff) {
1588          *reset_value = RADV_DCC_GFX11_CLEAR_0001_UNORM;
1589          return true;
1590       } else if (value.us[0] == 0xffff && value.us[1] == 0xffff && value.us[2] == 0xffff && value.us[3] == 0x0000) {
1591          *reset_value = RADV_DCC_GFX11_CLEAR_1110_UNORM;
1592          return true;
1593       }
1594    }
1595 
1596    if (iview->image->support_comp_to_single) {
1597       *reset_value = RADV_DCC_GFX11_CLEAR_SINGLE;
1598       return true;
1599    }
1600 
1601    return false;
1602 }
1603 
1604 static bool
radv_can_fast_clear_color(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,VkImageLayout image_layout,const VkClearRect * clear_rect,VkClearColorValue clear_value,uint32_t view_mask)1605 radv_can_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
1606                           VkImageLayout image_layout, const VkClearRect *clear_rect, VkClearColorValue clear_value,
1607                           uint32_t view_mask)
1608 {
1609    uint32_t clear_color[2];
1610 
1611    if (!iview || !iview->support_fast_clear)
1612       return false;
1613 
1614    if (!radv_layout_can_fast_clear(cmd_buffer->device, iview->image, iview->vk.base_mip_level, image_layout,
1615                                    radv_image_queue_family_mask(iview->image, cmd_buffer->qf, cmd_buffer->qf)))
1616       return false;
1617 
1618    if (clear_rect->rect.offset.x || clear_rect->rect.offset.y ||
1619        clear_rect->rect.extent.width != iview->image->vk.extent.width ||
1620        clear_rect->rect.extent.height != iview->image->vk.extent.height)
1621       return false;
1622 
1623    if (view_mask && (iview->image->vk.array_layers >= 32 || (1u << iview->image->vk.array_layers) - 1u != view_mask))
1624       return false;
1625    if (!view_mask && clear_rect->baseArrayLayer != 0)
1626       return false;
1627    if (!view_mask && clear_rect->layerCount != iview->image->vk.array_layers)
1628       return false;
1629 
1630    /* DCC */
1631 
1632    /* Images that support comp-to-single clears don't have clear values. */
1633    if (!iview->image->support_comp_to_single) {
1634       if (!radv_format_pack_clear_color(iview->vk.format, clear_color, &clear_value))
1635          return false;
1636 
1637       if (!radv_image_has_clear_value(iview->image) && (clear_color[0] != 0 || clear_color[1] != 0))
1638          return false;
1639    }
1640 
1641    if (radv_dcc_enabled(iview->image, iview->vk.base_mip_level)) {
1642       bool can_avoid_fast_clear_elim;
1643       uint32_t reset_value;
1644 
1645       if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11) {
1646          if (!gfx11_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value))
1647             return false;
1648       } else {
1649          gfx8_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value,
1650                                         &can_avoid_fast_clear_elim);
1651       }
1652 
1653       if (iview->image->vk.mip_levels > 1) {
1654          if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX9) {
1655             uint32_t last_level = iview->vk.base_mip_level + iview->vk.level_count - 1;
1656             if (last_level >= iview->image->planes[0].surface.num_meta_levels) {
1657                /* Do not fast clears if one level can't be fast cleard. */
1658                return false;
1659             }
1660          } else {
1661             for (uint32_t l = 0; l < iview->vk.level_count; l++) {
1662                uint32_t level = iview->vk.base_mip_level + l;
1663                struct legacy_surf_dcc_level *dcc_level =
1664                   &iview->image->planes[0].surface.u.legacy.color.dcc_level[level];
1665 
1666                /* Do not fast clears if one level can't be
1667                 * fast cleared.
1668                 */
1669                if (!dcc_level->dcc_fast_clear_size)
1670                   return false;
1671             }
1672          }
1673       }
1674    }
1675 
1676    return true;
1677 }
1678 
1679 static void
radv_fast_clear_color(struct radv_cmd_buffer * cmd_buffer,const struct radv_image_view * iview,const VkClearAttachment * clear_att,enum radv_cmd_flush_bits * pre_flush,enum radv_cmd_flush_bits * post_flush)1680 radv_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
1681                       const VkClearAttachment *clear_att, enum radv_cmd_flush_bits *pre_flush,
1682                       enum radv_cmd_flush_bits *post_flush)
1683 {
1684    VkClearColorValue clear_value = clear_att->clearValue.color;
1685    uint32_t clear_color[4], flush_bits = 0;
1686    uint32_t cmask_clear_value;
1687    VkImageSubresourceRange range = {
1688       .aspectMask = iview->vk.aspects,
1689       .baseMipLevel = iview->vk.base_mip_level,
1690       .levelCount = iview->vk.level_count,
1691       .baseArrayLayer = iview->vk.base_array_layer,
1692       .layerCount = iview->vk.layer_count,
1693    };
1694 
1695    if (pre_flush) {
1696       enum radv_cmd_flush_bits bits =
1697          radv_src_access_flush(cmd_buffer, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, iview->image) |
1698          radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, iview->image);
1699       cmd_buffer->state.flush_bits |= bits & ~*pre_flush;
1700       *pre_flush |= cmd_buffer->state.flush_bits;
1701    }
1702 
1703    /* DCC */
1704    radv_format_pack_clear_color(iview->vk.format, clear_color, &clear_value);
1705 
1706    cmask_clear_value = radv_get_cmask_fast_clear_value(iview->image);
1707 
1708    /* clear cmask buffer */
1709    bool need_decompress_pass = false;
1710    if (radv_dcc_enabled(iview->image, iview->vk.base_mip_level)) {
1711       uint32_t reset_value;
1712       bool can_avoid_fast_clear_elim = true;
1713 
1714       if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11) {
1715          ASSERTED bool result = gfx11_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value);
1716          assert(result);
1717       } else {
1718          gfx8_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value,
1719                                         &can_avoid_fast_clear_elim);
1720       }
1721 
1722       if (radv_image_has_cmask(iview->image)) {
1723          flush_bits = radv_clear_cmask(cmd_buffer, iview->image, &range, cmask_clear_value);
1724       }
1725 
1726       if (!can_avoid_fast_clear_elim)
1727          need_decompress_pass = true;
1728 
1729       flush_bits |= radv_clear_dcc(cmd_buffer, iview->image, &range, reset_value);
1730 
1731       if (reset_value == radv_dcc_single_clear_value(cmd_buffer->device)) {
1732          /* Write the clear color to the first byte of each 256B block when the image supports DCC
1733           * fast clears with comp-to-single.
1734           */
1735          if (vk_format_get_blocksize(iview->image->vk.format) == 16) {
1736             flush_bits |= radv_clear_dcc_comp_to_single(cmd_buffer, iview->image, &range, clear_value.uint32);
1737          } else {
1738             clear_color[2] = clear_color[3] = 0;
1739             flush_bits |= radv_clear_dcc_comp_to_single(cmd_buffer, iview->image, &range, clear_color);
1740          }
1741       }
1742    } else {
1743       flush_bits = radv_clear_cmask(cmd_buffer, iview->image, &range, cmask_clear_value);
1744 
1745       /* Fast clearing with CMASK should always be eliminated. */
1746       need_decompress_pass = true;
1747    }
1748 
1749    if (post_flush) {
1750       *post_flush |= flush_bits;
1751    }
1752 
1753    /* Update the FCE predicate to perform a fast-clear eliminate. */
1754    radv_update_fce_metadata(cmd_buffer, iview->image, &range, need_decompress_pass);
1755 
1756    radv_update_color_clear_metadata(cmd_buffer, iview, clear_att->colorAttachment, clear_color);
1757 }
1758 
1759 /**
1760  * The parameters mean that same as those in vkCmdClearAttachments.
1761  */
1762 static void
emit_clear(struct radv_cmd_buffer * cmd_buffer,const VkClearAttachment * clear_att,const VkClearRect * clear_rect,enum radv_cmd_flush_bits * pre_flush,enum radv_cmd_flush_bits * post_flush,uint32_t view_mask)1763 emit_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att, const VkClearRect *clear_rect,
1764            enum radv_cmd_flush_bits *pre_flush, enum radv_cmd_flush_bits *post_flush, uint32_t view_mask)
1765 {
1766    const struct radv_rendering_state *render = &cmd_buffer->state.render;
1767    VkImageAspectFlags aspects = clear_att->aspectMask;
1768 
1769    if (aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
1770       assert(clear_att->colorAttachment < render->color_att_count);
1771       const struct radv_attachment *color_att = &render->color_att[clear_att->colorAttachment];
1772 
1773       if (color_att->format == VK_FORMAT_UNDEFINED)
1774          return;
1775 
1776       VkClearColorValue clear_value = clear_att->clearValue.color;
1777 
1778       if (radv_can_fast_clear_color(cmd_buffer, color_att->iview, color_att->layout, clear_rect, clear_value,
1779                                     view_mask)) {
1780          radv_fast_clear_color(cmd_buffer, color_att->iview, clear_att, pre_flush, post_flush);
1781       } else {
1782          emit_color_clear(cmd_buffer, clear_att, clear_rect, view_mask);
1783       }
1784    } else {
1785       const struct radv_attachment *ds_att = &render->ds_att;
1786 
1787       if (ds_att->format == VK_FORMAT_UNDEFINED)
1788          return;
1789 
1790       VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil;
1791 
1792       assert(aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
1793       bool can_fast_clear_depth = false;
1794       bool can_fast_clear_stencil = false;
1795       if (aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT) &&
1796           ds_att->layout != ds_att->stencil_layout) {
1797          can_fast_clear_depth = radv_can_fast_clear_depth(cmd_buffer, ds_att->iview, ds_att->layout, aspects,
1798                                                           clear_rect, clear_value, view_mask);
1799          can_fast_clear_stencil = radv_can_fast_clear_depth(cmd_buffer, ds_att->iview, ds_att->stencil_layout, aspects,
1800                                                             clear_rect, clear_value, view_mask);
1801       } else {
1802          VkImageLayout layout = aspects & VK_IMAGE_ASPECT_DEPTH_BIT ? ds_att->layout : ds_att->stencil_layout;
1803          can_fast_clear_depth =
1804             radv_can_fast_clear_depth(cmd_buffer, ds_att->iview, layout, aspects, clear_rect, clear_value, view_mask);
1805          can_fast_clear_stencil = can_fast_clear_depth;
1806       }
1807 
1808       if (can_fast_clear_depth && can_fast_clear_stencil) {
1809          radv_fast_clear_depth(cmd_buffer, ds_att->iview, clear_att->clearValue.depthStencil, clear_att->aspectMask,
1810                                pre_flush, post_flush);
1811       } else if (!can_fast_clear_depth && !can_fast_clear_stencil) {
1812          emit_depthstencil_clear(cmd_buffer, clear_att->clearValue.depthStencil, clear_att->aspectMask, clear_rect,
1813                                  view_mask, false);
1814       } else {
1815          if (can_fast_clear_depth) {
1816             radv_fast_clear_depth(cmd_buffer, ds_att->iview, clear_att->clearValue.depthStencil,
1817                                   VK_IMAGE_ASPECT_DEPTH_BIT, pre_flush, post_flush);
1818          } else {
1819             emit_depthstencil_clear(cmd_buffer, clear_att->clearValue.depthStencil, VK_IMAGE_ASPECT_DEPTH_BIT,
1820                                     clear_rect, view_mask, can_fast_clear_depth);
1821          }
1822 
1823          if (can_fast_clear_stencil) {
1824             radv_fast_clear_depth(cmd_buffer, ds_att->iview, clear_att->clearValue.depthStencil,
1825                                   VK_IMAGE_ASPECT_STENCIL_BIT, pre_flush, post_flush);
1826          } else {
1827             emit_depthstencil_clear(cmd_buffer, clear_att->clearValue.depthStencil, VK_IMAGE_ASPECT_STENCIL_BIT,
1828                                     clear_rect, view_mask, can_fast_clear_stencil);
1829          }
1830       }
1831    }
1832 }
1833 
1834 static bool
radv_rendering_needs_clear(const VkRenderingInfo * pRenderingInfo)1835 radv_rendering_needs_clear(const VkRenderingInfo *pRenderingInfo)
1836 {
1837    for (uint32_t i = 0; i < pRenderingInfo->colorAttachmentCount; i++) {
1838       if (pRenderingInfo->pColorAttachments[i].imageView != VK_NULL_HANDLE &&
1839           pRenderingInfo->pColorAttachments[i].loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR)
1840          return true;
1841    }
1842 
1843    if (pRenderingInfo->pDepthAttachment != NULL && pRenderingInfo->pDepthAttachment->imageView != VK_NULL_HANDLE &&
1844        pRenderingInfo->pDepthAttachment->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR)
1845       return true;
1846 
1847    if (pRenderingInfo->pStencilAttachment != NULL && pRenderingInfo->pStencilAttachment->imageView != VK_NULL_HANDLE &&
1848        pRenderingInfo->pStencilAttachment->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR)
1849       return true;
1850 
1851    return false;
1852 }
1853 
1854 static void
radv_subpass_clear_attachment(struct radv_cmd_buffer * cmd_buffer,const VkClearAttachment * clear_att,enum radv_cmd_flush_bits * pre_flush,enum radv_cmd_flush_bits * post_flush)1855 radv_subpass_clear_attachment(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att,
1856                               enum radv_cmd_flush_bits *pre_flush, enum radv_cmd_flush_bits *post_flush)
1857 {
1858    const struct radv_rendering_state *render = &cmd_buffer->state.render;
1859 
1860    VkClearRect clear_rect = {
1861       .rect = render->area,
1862       .baseArrayLayer = 0,
1863       .layerCount = render->layer_count,
1864    };
1865 
1866    radv_describe_begin_render_pass_clear(cmd_buffer, clear_att->aspectMask);
1867 
1868    emit_clear(cmd_buffer, clear_att, &clear_rect, pre_flush, post_flush, render->view_mask);
1869 
1870    radv_describe_end_render_pass_clear(cmd_buffer);
1871 }
1872 
1873 /**
1874  * Emit any pending attachment clears for the current subpass.
1875  *
1876  * @see radv_attachment_state::pending_clear_aspects
1877  */
1878 void
radv_cmd_buffer_clear_rendering(struct radv_cmd_buffer * cmd_buffer,const VkRenderingInfo * pRenderingInfo)1879 radv_cmd_buffer_clear_rendering(struct radv_cmd_buffer *cmd_buffer, const VkRenderingInfo *pRenderingInfo)
1880 {
1881    const struct radv_rendering_state *render = &cmd_buffer->state.render;
1882    struct radv_meta_saved_state saved_state;
1883    enum radv_cmd_flush_bits pre_flush = 0;
1884    enum radv_cmd_flush_bits post_flush = 0;
1885 
1886    if (!radv_rendering_needs_clear(pRenderingInfo))
1887       return;
1888 
1889    /* Subpass clear should not be affected by conditional rendering. */
1890    radv_meta_save(&saved_state, cmd_buffer,
1891                   RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SUSPEND_PREDICATING);
1892 
1893    assert(render->color_att_count == pRenderingInfo->colorAttachmentCount);
1894    for (uint32_t i = 0; i < render->color_att_count; i++) {
1895       if (render->color_att[i].iview == NULL ||
1896           pRenderingInfo->pColorAttachments[i].loadOp != VK_ATTACHMENT_LOAD_OP_CLEAR)
1897          continue;
1898 
1899       VkClearAttachment clear_att = {
1900          .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1901          .colorAttachment = i,
1902          .clearValue = pRenderingInfo->pColorAttachments[i].clearValue,
1903       };
1904 
1905       radv_subpass_clear_attachment(cmd_buffer, &clear_att, &pre_flush, &post_flush);
1906    }
1907 
1908    if (render->ds_att.iview != NULL) {
1909       VkClearAttachment clear_att = {.aspectMask = 0};
1910 
1911       if (pRenderingInfo->pDepthAttachment != NULL && pRenderingInfo->pDepthAttachment->imageView != VK_NULL_HANDLE &&
1912           pRenderingInfo->pDepthAttachment->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1913          clear_att.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
1914          clear_att.clearValue.depthStencil.depth = pRenderingInfo->pDepthAttachment->clearValue.depthStencil.depth;
1915       }
1916 
1917       if (pRenderingInfo->pStencilAttachment != NULL &&
1918           pRenderingInfo->pStencilAttachment->imageView != VK_NULL_HANDLE &&
1919           pRenderingInfo->pStencilAttachment->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1920          clear_att.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
1921          clear_att.clearValue.depthStencil.stencil =
1922             pRenderingInfo->pStencilAttachment->clearValue.depthStencil.stencil;
1923       }
1924 
1925       if (clear_att.aspectMask != 0) {
1926          radv_subpass_clear_attachment(cmd_buffer, &clear_att, &pre_flush, &post_flush);
1927       }
1928    }
1929 
1930    radv_meta_restore(&saved_state, cmd_buffer);
1931    cmd_buffer->state.flush_bits |= post_flush;
1932 }
1933 
1934 static void
radv_clear_image_layer(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout image_layout,const VkImageSubresourceRange * range,VkFormat format,int level,unsigned layer_count,const VkClearValue * clear_val)1935 radv_clear_image_layer(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout image_layout,
1936                        const VkImageSubresourceRange *range, VkFormat format, int level, unsigned layer_count,
1937                        const VkClearValue *clear_val)
1938 {
1939    struct radv_image_view iview;
1940    uint32_t width = radv_minify(image->vk.extent.width, range->baseMipLevel + level);
1941    uint32_t height = radv_minify(image->vk.extent.height, range->baseMipLevel + level);
1942 
1943    radv_image_view_init(&iview, cmd_buffer->device,
1944                         &(VkImageViewCreateInfo){
1945                            .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1946                            .image = radv_image_to_handle(image),
1947                            .viewType = radv_meta_get_view_type(image),
1948                            .format = format,
1949                            .subresourceRange = {.aspectMask = range->aspectMask,
1950                                                 .baseMipLevel = range->baseMipLevel + level,
1951                                                 .levelCount = 1,
1952                                                 .baseArrayLayer = range->baseArrayLayer,
1953                                                 .layerCount = layer_count},
1954                         },
1955                         0, NULL);
1956 
1957    VkClearAttachment clear_att = {
1958       .aspectMask = range->aspectMask,
1959       .colorAttachment = 0,
1960       .clearValue = *clear_val,
1961    };
1962 
1963    VkClearRect clear_rect = {
1964       .rect =
1965          {
1966             .offset = {0, 0},
1967             .extent = {width, height},
1968          },
1969       .baseArrayLayer = 0,
1970       .layerCount = layer_count,
1971    };
1972 
1973    VkRenderingAttachmentInfo att = {
1974       .sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO,
1975       .imageView = radv_image_view_to_handle(&iview),
1976       .imageLayout = image_layout,
1977       .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
1978       .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
1979    };
1980 
1981    VkRenderingInfo rendering_info = {
1982       .sType = VK_STRUCTURE_TYPE_RENDERING_INFO,
1983       .renderArea =
1984          {
1985             .offset = {0, 0},
1986             .extent = {width, height},
1987          },
1988       .layerCount = layer_count,
1989    };
1990 
1991    if (image->vk.aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
1992       rendering_info.colorAttachmentCount = 1;
1993       rendering_info.pColorAttachments = &att;
1994    }
1995    if (image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
1996       rendering_info.pDepthAttachment = &att;
1997    if (image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT)
1998       rendering_info.pStencilAttachment = &att;
1999 
2000    radv_CmdBeginRendering(radv_cmd_buffer_to_handle(cmd_buffer), &rendering_info);
2001 
2002    emit_clear(cmd_buffer, &clear_att, &clear_rect, NULL, NULL, 0);
2003 
2004    radv_CmdEndRendering(radv_cmd_buffer_to_handle(cmd_buffer));
2005 
2006    radv_image_view_finish(&iview);
2007 }
2008 
2009 /**
2010  * Return TRUE if a fast color or depth clear has been performed.
2011  */
2012 static bool
radv_fast_clear_range(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkFormat format,VkImageLayout image_layout,const VkImageSubresourceRange * range,const VkClearValue * clear_val)2013 radv_fast_clear_range(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkFormat format,
2014                       VkImageLayout image_layout, const VkImageSubresourceRange *range, const VkClearValue *clear_val)
2015 {
2016    struct radv_image_view iview;
2017    bool fast_cleared = false;
2018 
2019    radv_image_view_init(&iview, cmd_buffer->device,
2020                         &(VkImageViewCreateInfo){
2021                            .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
2022                            .image = radv_image_to_handle(image),
2023                            .viewType = radv_meta_get_view_type(image),
2024                            .format = image->vk.format,
2025                            .subresourceRange =
2026                               {
2027                                  .aspectMask = range->aspectMask,
2028                                  .baseMipLevel = range->baseMipLevel,
2029                                  .levelCount = vk_image_subresource_level_count(&image->vk, range),
2030                                  .baseArrayLayer = range->baseArrayLayer,
2031                                  .layerCount = vk_image_subresource_layer_count(&image->vk, range),
2032                               },
2033                         },
2034                         0, NULL);
2035 
2036    VkClearRect clear_rect = {
2037       .rect =
2038          {
2039             .offset = {0, 0},
2040             .extent =
2041                {
2042                   radv_minify(image->vk.extent.width, range->baseMipLevel),
2043                   radv_minify(image->vk.extent.height, range->baseMipLevel),
2044                },
2045          },
2046       .baseArrayLayer = range->baseArrayLayer,
2047       .layerCount = vk_image_subresource_layer_count(&image->vk, range),
2048    };
2049 
2050    VkClearAttachment clear_att = {
2051       .aspectMask = range->aspectMask,
2052       .colorAttachment = 0,
2053       .clearValue = *clear_val,
2054    };
2055 
2056    if (vk_format_is_color(format)) {
2057       if (radv_can_fast_clear_color(cmd_buffer, &iview, image_layout, &clear_rect, clear_att.clearValue.color, 0)) {
2058          radv_fast_clear_color(cmd_buffer, &iview, &clear_att, NULL, NULL);
2059          fast_cleared = true;
2060       }
2061    } else {
2062       if (radv_can_fast_clear_depth(cmd_buffer, &iview, image_layout, range->aspectMask, &clear_rect,
2063                                     clear_att.clearValue.depthStencil, 0)) {
2064          radv_fast_clear_depth(cmd_buffer, &iview, clear_att.clearValue.depthStencil, clear_att.aspectMask, NULL, NULL);
2065          fast_cleared = true;
2066       }
2067    }
2068 
2069    radv_image_view_finish(&iview);
2070    return fast_cleared;
2071 }
2072 
2073 static void
radv_cmd_clear_image(struct radv_cmd_buffer * cmd_buffer,struct radv_image * image,VkImageLayout image_layout,const VkClearValue * clear_value,uint32_t range_count,const VkImageSubresourceRange * ranges,bool cs)2074 radv_cmd_clear_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkImageLayout image_layout,
2075                      const VkClearValue *clear_value, uint32_t range_count, const VkImageSubresourceRange *ranges,
2076                      bool cs)
2077 {
2078    VkFormat format = image->vk.format;
2079    VkClearValue internal_clear_value;
2080 
2081    if (ranges->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT)
2082       internal_clear_value.color = clear_value->color;
2083    else
2084       internal_clear_value.depthStencil = clear_value->depthStencil;
2085 
2086    bool disable_compression = false;
2087 
2088    if (format == VK_FORMAT_E5B9G9R9_UFLOAT_PACK32) {
2089       bool blendable;
2090       if (cs ? !radv_is_storage_image_format_supported(cmd_buffer->device->physical_device, format)
2091              : !radv_is_colorbuffer_format_supported(cmd_buffer->device->physical_device, format, &blendable)) {
2092          format = VK_FORMAT_R32_UINT;
2093          internal_clear_value.color.uint32[0] = float3_to_rgb9e5(clear_value->color.float32);
2094 
2095          uint32_t queue_mask = radv_image_queue_family_mask(image, cmd_buffer->qf, cmd_buffer->qf);
2096 
2097          for (uint32_t r = 0; r < range_count; r++) {
2098             const VkImageSubresourceRange *range = &ranges[r];
2099 
2100             /* Don't use compressed image stores because they will use an incompatible format. */
2101             if (radv_layout_dcc_compressed(cmd_buffer->device, image, range->baseMipLevel, image_layout, queue_mask)) {
2102                disable_compression = cs;
2103                break;
2104             }
2105          }
2106       }
2107    }
2108 
2109    if (format == VK_FORMAT_R4G4_UNORM_PACK8) {
2110       uint8_t r, g;
2111       format = VK_FORMAT_R8_UINT;
2112       r = float_to_ubyte(clear_value->color.float32[0]) >> 4;
2113       g = float_to_ubyte(clear_value->color.float32[1]) >> 4;
2114       internal_clear_value.color.uint32[0] = (r << 4) | (g & 0xf);
2115    }
2116 
2117    for (uint32_t r = 0; r < range_count; r++) {
2118       const VkImageSubresourceRange *range = &ranges[r];
2119 
2120       /* Try to perform a fast clear first, otherwise fallback to
2121        * the legacy path.
2122        */
2123       if (!cs && radv_fast_clear_range(cmd_buffer, image, format, image_layout, range, &internal_clear_value)) {
2124          continue;
2125       }
2126 
2127       for (uint32_t l = 0; l < vk_image_subresource_level_count(&image->vk, range); ++l) {
2128          const uint32_t layer_count = image->vk.image_type == VK_IMAGE_TYPE_3D
2129                                          ? radv_minify(image->vk.extent.depth, range->baseMipLevel + l)
2130                                          : vk_image_subresource_layer_count(&image->vk, range);
2131          if (cs) {
2132             for (uint32_t s = 0; s < layer_count; ++s) {
2133                struct radv_meta_blit2d_surf surf;
2134                surf.format = format;
2135                surf.image = image;
2136                surf.level = range->baseMipLevel + l;
2137                surf.layer = range->baseArrayLayer + s;
2138                surf.aspect_mask = range->aspectMask;
2139                surf.disable_compression = disable_compression;
2140                radv_meta_clear_image_cs(cmd_buffer, &surf, &internal_clear_value.color);
2141             }
2142          } else {
2143             assert(!disable_compression);
2144             radv_clear_image_layer(cmd_buffer, image, image_layout, range, format, l, layer_count,
2145                                    &internal_clear_value);
2146          }
2147       }
2148    }
2149 
2150    if (disable_compression) {
2151       enum radv_cmd_flush_bits flush_bits = 0;
2152       for (unsigned i = 0; i < range_count; i++) {
2153          if (radv_dcc_enabled(image, ranges[i].baseMipLevel))
2154             flush_bits |= radv_clear_dcc(cmd_buffer, image, &ranges[i], 0xffffffffu);
2155       }
2156       cmd_buffer->state.flush_bits |= flush_bits;
2157    }
2158 }
2159 
2160 VKAPI_ATTR void VKAPI_CALL
radv_CmdClearColorImage(VkCommandBuffer commandBuffer,VkImage image_h,VkImageLayout imageLayout,const VkClearColorValue * pColor,uint32_t rangeCount,const VkImageSubresourceRange * pRanges)2161 radv_CmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image_h, VkImageLayout imageLayout,
2162                         const VkClearColorValue *pColor, uint32_t rangeCount, const VkImageSubresourceRange *pRanges)
2163 {
2164    RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
2165    RADV_FROM_HANDLE(radv_image, image, image_h);
2166    struct radv_meta_saved_state saved_state;
2167    bool cs;
2168 
2169    cs = cmd_buffer->qf == RADV_QUEUE_COMPUTE || !radv_image_is_renderable(cmd_buffer->device, image);
2170 
2171    /* Clear commands (except vkCmdClearAttachments) should not be affected by conditional rendering.
2172     */
2173    enum radv_meta_save_flags save_flags = RADV_META_SAVE_CONSTANTS | RADV_META_SUSPEND_PREDICATING;
2174    if (cs)
2175       save_flags |= RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_DESCRIPTORS;
2176    else
2177       save_flags |= RADV_META_SAVE_GRAPHICS_PIPELINE;
2178 
2179    radv_meta_save(&saved_state, cmd_buffer, save_flags);
2180 
2181    radv_cmd_clear_image(cmd_buffer, image, imageLayout, (const VkClearValue *)pColor, rangeCount, pRanges, cs);
2182 
2183    radv_meta_restore(&saved_state, cmd_buffer);
2184 }
2185 
2186 VKAPI_ATTR void VKAPI_CALL
radv_CmdClearDepthStencilImage(VkCommandBuffer commandBuffer,VkImage image_h,VkImageLayout imageLayout,const VkClearDepthStencilValue * pDepthStencil,uint32_t rangeCount,const VkImageSubresourceRange * pRanges)2187 radv_CmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image_h, VkImageLayout imageLayout,
2188                                const VkClearDepthStencilValue *pDepthStencil, uint32_t rangeCount,
2189                                const VkImageSubresourceRange *pRanges)
2190 {
2191    RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
2192    RADV_FROM_HANDLE(radv_image, image, image_h);
2193    struct radv_meta_saved_state saved_state;
2194 
2195    /* Clear commands (except vkCmdClearAttachments) should not be affected by conditional rendering. */
2196    radv_meta_save(&saved_state, cmd_buffer,
2197                   RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SUSPEND_PREDICATING);
2198 
2199    radv_cmd_clear_image(cmd_buffer, image, imageLayout, (const VkClearValue *)pDepthStencil, rangeCount, pRanges,
2200                         false);
2201 
2202    radv_meta_restore(&saved_state, cmd_buffer);
2203 }
2204 
2205 VKAPI_ATTR void VKAPI_CALL
radv_CmdClearAttachments(VkCommandBuffer commandBuffer,uint32_t attachmentCount,const VkClearAttachment * pAttachments,uint32_t rectCount,const VkClearRect * pRects)2206 radv_CmdClearAttachments(VkCommandBuffer commandBuffer, uint32_t attachmentCount, const VkClearAttachment *pAttachments,
2207                          uint32_t rectCount, const VkClearRect *pRects)
2208 {
2209    RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
2210    struct radv_meta_saved_state saved_state;
2211    enum radv_cmd_flush_bits pre_flush = 0;
2212    enum radv_cmd_flush_bits post_flush = 0;
2213 
2214    if (!cmd_buffer->state.render.active)
2215       return;
2216 
2217    radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS);
2218 
2219    /* FINISHME: We can do better than this dumb loop. It thrashes too much
2220     * state.
2221     */
2222    for (uint32_t a = 0; a < attachmentCount; ++a) {
2223       for (uint32_t r = 0; r < rectCount; ++r) {
2224          emit_clear(cmd_buffer, &pAttachments[a], &pRects[r], &pre_flush, &post_flush,
2225                     cmd_buffer->state.render.view_mask);
2226       }
2227    }
2228 
2229    radv_meta_restore(&saved_state, cmd_buffer);
2230    cmd_buffer->state.flush_bits |= post_flush;
2231 }
2232