1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "meta/radv_meta.h"
29 #include "nir/nir.h"
30 #include "nir/nir_builder.h"
31 #include "nir/nir_serialize.h"
32 #include "nir/radv_nir.h"
33 #include "spirv/nir_spirv.h"
34 #include "util/disk_cache.h"
35 #include "util/mesa-sha1.h"
36 #include "util/os_time.h"
37 #include "util/u_atomic.h"
38 #include "radv_cs.h"
39 #include "radv_debug.h"
40 #include "radv_private.h"
41 #include "radv_shader.h"
42 #include "radv_shader_args.h"
43 #include "vk_nir_convert_ycbcr.h"
44 #include "vk_pipeline.h"
45 #include "vk_render_pass.h"
46 #include "vk_util.h"
47
48 #include "util/u_debug.h"
49 #include "ac_binary.h"
50 #include "ac_nir.h"
51 #include "ac_shader_util.h"
52 #include "aco_interface.h"
53 #include "sid.h"
54 #include "vk_format.h"
55
56 struct radv_blend_state {
57 uint32_t spi_shader_col_format;
58 uint32_t cb_shader_mask;
59 };
60
61 static bool
radv_is_static_vrs_enabled(const struct radv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state)62 radv_is_static_vrs_enabled(const struct radv_graphics_pipeline *pipeline,
63 const struct vk_graphics_pipeline_state *state)
64 {
65 if (!state->fsr)
66 return false;
67
68 return state->fsr->fragment_size.width != 1 || state->fsr->fragment_size.height != 1 ||
69 state->fsr->combiner_ops[0] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR ||
70 state->fsr->combiner_ops[1] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR;
71 }
72
73 static bool
radv_is_vrs_enabled(const struct radv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state)74 radv_is_vrs_enabled(const struct radv_graphics_pipeline *pipeline, const struct vk_graphics_pipeline_state *state)
75 {
76 return radv_is_static_vrs_enabled(pipeline, state) ||
77 (pipeline->dynamic_states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
78 }
79
80 static bool
radv_pipeline_has_ds_attachments(const struct vk_render_pass_state * rp)81 radv_pipeline_has_ds_attachments(const struct vk_render_pass_state *rp)
82 {
83 return rp->depth_attachment_format != VK_FORMAT_UNDEFINED || rp->stencil_attachment_format != VK_FORMAT_UNDEFINED;
84 }
85
86 static bool
radv_pipeline_has_color_attachments(const struct vk_render_pass_state * rp)87 radv_pipeline_has_color_attachments(const struct vk_render_pass_state *rp)
88 {
89 for (uint32_t i = 0; i < rp->color_attachment_count; ++i) {
90 if (rp->color_attachment_formats[i] != VK_FORMAT_UNDEFINED)
91 return true;
92 }
93
94 return false;
95 }
96
97 bool
radv_pipeline_has_ngg(const struct radv_graphics_pipeline * pipeline)98 radv_pipeline_has_ngg(const struct radv_graphics_pipeline *pipeline)
99 {
100 struct radv_shader *shader = pipeline->base.shaders[pipeline->last_vgt_api_stage];
101
102 return shader->info.is_ngg;
103 }
104
105 bool
radv_pipeline_has_ngg_passthrough(const struct radv_graphics_pipeline * pipeline)106 radv_pipeline_has_ngg_passthrough(const struct radv_graphics_pipeline *pipeline)
107 {
108 assert(radv_pipeline_has_ngg(pipeline));
109
110 struct radv_shader *shader = pipeline->base.shaders[pipeline->last_vgt_api_stage];
111
112 return shader->info.is_ngg_passthrough;
113 }
114
115 bool
radv_pipeline_has_gs_copy_shader(const struct radv_pipeline * pipeline)116 radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline)
117 {
118 return !!pipeline->gs_copy_shader;
119 }
120
121 /**
122 * Get rid of DST in the blend factors by commuting the operands:
123 * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
124 */
125 void
radv_blend_remove_dst(VkBlendOp * func,VkBlendFactor * src_factor,VkBlendFactor * dst_factor,VkBlendFactor expected_dst,VkBlendFactor replacement_src)126 radv_blend_remove_dst(VkBlendOp *func, VkBlendFactor *src_factor, VkBlendFactor *dst_factor, VkBlendFactor expected_dst,
127 VkBlendFactor replacement_src)
128 {
129 if (*src_factor == expected_dst && *dst_factor == VK_BLEND_FACTOR_ZERO) {
130 *src_factor = VK_BLEND_FACTOR_ZERO;
131 *dst_factor = replacement_src;
132
133 /* Commuting the operands requires reversing subtractions. */
134 if (*func == VK_BLEND_OP_SUBTRACT)
135 *func = VK_BLEND_OP_REVERSE_SUBTRACT;
136 else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT)
137 *func = VK_BLEND_OP_SUBTRACT;
138 }
139 }
140
141 static unsigned
radv_choose_spi_color_format(const struct radv_device * device,VkFormat vk_format,bool blend_enable,bool blend_need_alpha)142 radv_choose_spi_color_format(const struct radv_device *device, VkFormat vk_format, bool blend_enable,
143 bool blend_need_alpha)
144 {
145 const struct util_format_description *desc = vk_format_description(vk_format);
146 bool use_rbplus = device->physical_device->rad_info.rbplus_allowed;
147 struct ac_spi_color_formats formats = {0};
148 unsigned format, ntype, swap;
149
150 format = ac_get_cb_format(device->physical_device->rad_info.gfx_level, desc->format);
151 ntype = ac_get_cb_number_type(desc->format);
152 swap = radv_translate_colorswap(vk_format, false);
153
154 ac_choose_spi_color_formats(format, swap, ntype, false, use_rbplus, &formats);
155
156 if (blend_enable && blend_need_alpha)
157 return formats.blend_alpha;
158 else if (blend_need_alpha)
159 return formats.alpha;
160 else if (blend_enable)
161 return formats.blend;
162 else
163 return formats.normal;
164 }
165
166 static bool
format_is_int8(VkFormat format)167 format_is_int8(VkFormat format)
168 {
169 const struct util_format_description *desc = vk_format_description(format);
170 int channel = vk_format_get_first_non_void_channel(format);
171
172 return channel >= 0 && desc->channel[channel].pure_integer && desc->channel[channel].size == 8;
173 }
174
175 static bool
format_is_int10(VkFormat format)176 format_is_int10(VkFormat format)
177 {
178 const struct util_format_description *desc = vk_format_description(format);
179
180 if (desc->nr_channels != 4)
181 return false;
182 for (unsigned i = 0; i < 4; i++) {
183 if (desc->channel[i].pure_integer && desc->channel[i].size == 10)
184 return true;
185 }
186 return false;
187 }
188
189 static bool
format_is_float32(VkFormat format)190 format_is_float32(VkFormat format)
191 {
192 const struct util_format_description *desc = vk_format_description(format);
193 int channel = vk_format_get_first_non_void_channel(format);
194
195 return channel >= 0 && desc->channel[channel].type == UTIL_FORMAT_TYPE_FLOAT && desc->channel[channel].size == 32;
196 }
197
198 unsigned
radv_compact_spi_shader_col_format(const struct radv_shader * ps,uint32_t spi_shader_col_format)199 radv_compact_spi_shader_col_format(const struct radv_shader *ps, uint32_t spi_shader_col_format)
200 {
201 unsigned value = 0, num_mrts = 0;
202 unsigned i, num_targets;
203
204 /* Make sure to clear color attachments without exports because MRT holes are removed during
205 * compilation for optimal performance.
206 */
207 spi_shader_col_format &= ps->info.ps.colors_written;
208
209 /* Compute the number of MRTs. */
210 num_targets = DIV_ROUND_UP(util_last_bit(spi_shader_col_format), 4);
211
212 /* Remove holes in spi_shader_col_format. */
213 for (i = 0; i < num_targets; i++) {
214 unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
215
216 if (spi_format) {
217 value |= spi_format << (num_mrts * 4);
218 num_mrts++;
219 }
220 }
221
222 return value;
223 }
224
225 /*
226 * Ordered so that for each i,
227 * radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i.
228 */
229 const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = {
230 VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R8G8B8A8_UNORM,
231 VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_R16G16B16A16_UINT,
232 VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R8G8B8A8_UINT,
233 VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_SINT_PACK32,
234 };
235
236 unsigned
radv_format_meta_fs_key(struct radv_device * device,VkFormat format)237 radv_format_meta_fs_key(struct radv_device *device, VkFormat format)
238 {
239 unsigned col_format = radv_choose_spi_color_format(device, format, false, false);
240 assert(col_format != V_028714_SPI_SHADER_32_AR);
241
242 bool is_int8 = format_is_int8(format);
243 bool is_int10 = format_is_int10(format);
244
245 if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int8)
246 return 8;
247 else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int8)
248 return 9;
249 else if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int10)
250 return 10;
251 else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int10)
252 return 11;
253 else {
254 if (col_format >= V_028714_SPI_SHADER_32_AR)
255 --col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */
256
257 --col_format; /* Skip V_028714_SPI_SHADER_ZERO */
258 return col_format;
259 }
260 }
261
262 static bool
radv_pipeline_needs_ps_epilog(const struct radv_graphics_pipeline * pipeline,VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)263 radv_pipeline_needs_ps_epilog(const struct radv_graphics_pipeline *pipeline,
264 VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)
265 {
266 /* Use a PS epilog when the fragment shader is compiled without the fragment output interface. */
267 if ((pipeline->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT) &&
268 (lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) &&
269 !(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT))
270 return true;
271
272 /* These dynamic states need to compile PS epilogs on-demand. */
273 if (pipeline->dynamic_states & (RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK |
274 RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE | RADV_DYNAMIC_COLOR_BLEND_EQUATION))
275 return true;
276
277 return false;
278 }
279
280 static struct radv_blend_state
radv_pipeline_init_blend_state(struct radv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state,VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)281 radv_pipeline_init_blend_state(struct radv_graphics_pipeline *pipeline, const struct vk_graphics_pipeline_state *state,
282 VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)
283 {
284 const struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
285 struct radv_blend_state blend = {0};
286 unsigned spi_shader_col_format = 0;
287
288 if (radv_pipeline_needs_ps_epilog(pipeline, lib_flags))
289 return blend;
290
291 if (ps) {
292 spi_shader_col_format = ps->info.ps.spi_shader_col_format;
293 }
294
295 blend.cb_shader_mask = ac_get_cb_shader_mask(spi_shader_col_format);
296 blend.spi_shader_col_format = spi_shader_col_format;
297
298 return blend;
299 }
300
301 static bool
radv_pipeline_uses_vrs_attachment(const struct radv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state)302 radv_pipeline_uses_vrs_attachment(const struct radv_graphics_pipeline *pipeline,
303 const struct vk_graphics_pipeline_state *state)
304 {
305 VkPipelineCreateFlags2KHR create_flags = pipeline->base.create_flags;
306 if (state->rp)
307 create_flags |= state->pipeline_flags;
308
309 return (create_flags & VK_PIPELINE_CREATE_2_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR) != 0;
310 }
311
312 static void
radv_pipeline_init_multisample_state(const struct radv_device * device,struct radv_graphics_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo,const struct vk_graphics_pipeline_state * state)313 radv_pipeline_init_multisample_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
314 const VkGraphicsPipelineCreateInfo *pCreateInfo,
315 const struct vk_graphics_pipeline_state *state)
316 {
317 struct radv_multisample_state *ms = &pipeline->ms;
318
319 /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading:
320 *
321 * "Sample shading is enabled for a graphics pipeline:
322 *
323 * - If the interface of the fragment shader entry point of the
324 * graphics pipeline includes an input variable decorated
325 * with SampleId or SamplePosition. In this case
326 * minSampleShadingFactor takes the value 1.0.
327 * - Else if the sampleShadingEnable member of the
328 * VkPipelineMultisampleStateCreateInfo structure specified
329 * when creating the graphics pipeline is set to VK_TRUE. In
330 * this case minSampleShadingFactor takes the value of
331 * VkPipelineMultisampleStateCreateInfo::minSampleShading.
332 *
333 * Otherwise, sample shading is considered disabled."
334 */
335 if (state->ms && state->ms->sample_shading_enable) {
336 ms->sample_shading_enable = true;
337 ms->min_sample_shading = state->ms->min_sample_shading;
338 }
339 }
340
341 static uint32_t
radv_conv_tess_prim_to_gs_out(enum tess_primitive_mode prim)342 radv_conv_tess_prim_to_gs_out(enum tess_primitive_mode prim)
343 {
344 switch (prim) {
345 case TESS_PRIMITIVE_TRIANGLES:
346 case TESS_PRIMITIVE_QUADS:
347 return V_028A6C_TRISTRIP;
348 case TESS_PRIMITIVE_ISOLINES:
349 return V_028A6C_LINESTRIP;
350 default:
351 assert(0);
352 return 0;
353 }
354 }
355
356 static uint32_t
radv_conv_gl_prim_to_gs_out(unsigned gl_prim)357 radv_conv_gl_prim_to_gs_out(unsigned gl_prim)
358 {
359 switch (gl_prim) {
360 case MESA_PRIM_POINTS:
361 return V_028A6C_POINTLIST;
362 case MESA_PRIM_LINES:
363 case MESA_PRIM_LINE_STRIP:
364 case MESA_PRIM_LINES_ADJACENCY:
365 return V_028A6C_LINESTRIP;
366
367 case MESA_PRIM_TRIANGLES:
368 case MESA_PRIM_TRIANGLE_STRIP_ADJACENCY:
369 case MESA_PRIM_TRIANGLE_STRIP:
370 case MESA_PRIM_QUADS:
371 return V_028A6C_TRISTRIP;
372 default:
373 assert(0);
374 return 0;
375 }
376 }
377
378 static uint64_t
radv_dynamic_state_mask(VkDynamicState state)379 radv_dynamic_state_mask(VkDynamicState state)
380 {
381 switch (state) {
382 case VK_DYNAMIC_STATE_VIEWPORT:
383 case VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT:
384 return RADV_DYNAMIC_VIEWPORT;
385 case VK_DYNAMIC_STATE_SCISSOR:
386 case VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT:
387 return RADV_DYNAMIC_SCISSOR;
388 case VK_DYNAMIC_STATE_LINE_WIDTH:
389 return RADV_DYNAMIC_LINE_WIDTH;
390 case VK_DYNAMIC_STATE_DEPTH_BIAS:
391 return RADV_DYNAMIC_DEPTH_BIAS;
392 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
393 return RADV_DYNAMIC_BLEND_CONSTANTS;
394 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
395 return RADV_DYNAMIC_DEPTH_BOUNDS;
396 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
397 return RADV_DYNAMIC_STENCIL_COMPARE_MASK;
398 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
399 return RADV_DYNAMIC_STENCIL_WRITE_MASK;
400 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
401 return RADV_DYNAMIC_STENCIL_REFERENCE;
402 case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT:
403 return RADV_DYNAMIC_DISCARD_RECTANGLE;
404 case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
405 return RADV_DYNAMIC_SAMPLE_LOCATIONS;
406 case VK_DYNAMIC_STATE_LINE_STIPPLE_KHR:
407 return RADV_DYNAMIC_LINE_STIPPLE;
408 case VK_DYNAMIC_STATE_CULL_MODE:
409 return RADV_DYNAMIC_CULL_MODE;
410 case VK_DYNAMIC_STATE_FRONT_FACE:
411 return RADV_DYNAMIC_FRONT_FACE;
412 case VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY:
413 return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
414 case VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE:
415 return RADV_DYNAMIC_DEPTH_TEST_ENABLE;
416 case VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE:
417 return RADV_DYNAMIC_DEPTH_WRITE_ENABLE;
418 case VK_DYNAMIC_STATE_DEPTH_COMPARE_OP:
419 return RADV_DYNAMIC_DEPTH_COMPARE_OP;
420 case VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE:
421 return RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE;
422 case VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE:
423 return RADV_DYNAMIC_STENCIL_TEST_ENABLE;
424 case VK_DYNAMIC_STATE_STENCIL_OP:
425 return RADV_DYNAMIC_STENCIL_OP;
426 case VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE:
427 return RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE;
428 case VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR:
429 return RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
430 case VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT:
431 return RADV_DYNAMIC_PATCH_CONTROL_POINTS;
432 case VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE:
433 return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
434 case VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE:
435 return RADV_DYNAMIC_DEPTH_BIAS_ENABLE;
436 case VK_DYNAMIC_STATE_LOGIC_OP_EXT:
437 return RADV_DYNAMIC_LOGIC_OP;
438 case VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE:
439 return RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
440 case VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT:
441 return RADV_DYNAMIC_COLOR_WRITE_ENABLE;
442 case VK_DYNAMIC_STATE_VERTEX_INPUT_EXT:
443 return RADV_DYNAMIC_VERTEX_INPUT;
444 case VK_DYNAMIC_STATE_POLYGON_MODE_EXT:
445 return RADV_DYNAMIC_POLYGON_MODE;
446 case VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT:
447 return RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
448 case VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT:
449 return RADV_DYNAMIC_LOGIC_OP_ENABLE;
450 case VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT:
451 return RADV_DYNAMIC_LINE_STIPPLE_ENABLE;
452 case VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT:
453 return RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE;
454 case VK_DYNAMIC_STATE_SAMPLE_MASK_EXT:
455 return RADV_DYNAMIC_SAMPLE_MASK;
456 case VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT:
457 return RADV_DYNAMIC_DEPTH_CLIP_ENABLE;
458 case VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT:
459 return RADV_DYNAMIC_CONSERVATIVE_RAST_MODE;
460 case VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT:
461 return RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE;
462 case VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT:
463 return RADV_DYNAMIC_PROVOKING_VERTEX_MODE;
464 case VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT:
465 return RADV_DYNAMIC_DEPTH_CLAMP_ENABLE;
466 case VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT:
467 return RADV_DYNAMIC_COLOR_WRITE_MASK;
468 case VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT:
469 return RADV_DYNAMIC_COLOR_BLEND_ENABLE;
470 case VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT:
471 return RADV_DYNAMIC_RASTERIZATION_SAMPLES;
472 case VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT:
473 return RADV_DYNAMIC_LINE_RASTERIZATION_MODE;
474 case VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT:
475 return RADV_DYNAMIC_COLOR_BLEND_EQUATION;
476 case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT:
477 return RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE;
478 case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT:
479 return RADV_DYNAMIC_DISCARD_RECTANGLE_MODE;
480 case VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT:
481 return RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE;
482 case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT:
483 return RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE;
484 default:
485 unreachable("Unhandled dynamic state");
486 }
487 }
488
489 #define RADV_DYNAMIC_CB_STATES \
490 (RADV_DYNAMIC_LOGIC_OP_ENABLE | RADV_DYNAMIC_LOGIC_OP | RADV_DYNAMIC_COLOR_WRITE_ENABLE | \
491 RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_BLEND_EQUATION | \
492 RADV_DYNAMIC_BLEND_CONSTANTS)
493
494 static bool
radv_pipeline_is_blend_enabled(const struct radv_graphics_pipeline * pipeline,const struct vk_color_blend_state * cb)495 radv_pipeline_is_blend_enabled(const struct radv_graphics_pipeline *pipeline, const struct vk_color_blend_state *cb)
496 {
497 /* If we don't know then we have to assume that blend may be enabled. cb may also be NULL in this
498 * case.
499 */
500 if (pipeline->dynamic_states & (RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK))
501 return true;
502
503 /* If we have the blend enable state, then cb being NULL indicates no attachments are written. */
504 if (cb) {
505 for (uint32_t i = 0; i < cb->attachment_count; i++) {
506 if (cb->attachments[i].write_mask && cb->attachments[i].blend_enable)
507 return true;
508 }
509 }
510
511 return false;
512 }
513
514 static uint64_t
radv_pipeline_needed_dynamic_state(const struct radv_device * device,const struct radv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state)515 radv_pipeline_needed_dynamic_state(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline,
516 const struct vk_graphics_pipeline_state *state)
517 {
518 bool has_color_att = radv_pipeline_has_color_attachments(state->rp);
519 bool raster_enabled =
520 !state->rs->rasterizer_discard_enable || (pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE);
521 uint64_t states = RADV_DYNAMIC_ALL;
522
523 if (device->physical_device->rad_info.gfx_level < GFX10_3)
524 states &= ~RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
525
526 /* Disable dynamic states that are useless to mesh shading. */
527 if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
528 if (!raster_enabled)
529 return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
530
531 states &= ~(RADV_DYNAMIC_VERTEX_INPUT | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
532 RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY);
533 }
534
535 /* Disable dynamic states that are useless when rasterization is disabled. */
536 if (!raster_enabled) {
537 states = RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
538 RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE |
539 RADV_DYNAMIC_VERTEX_INPUT;
540
541 if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT)
542 states |= RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
543
544 return states;
545 }
546
547 if (!state->rs->depth_bias.enable && !(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE))
548 states &= ~RADV_DYNAMIC_DEPTH_BIAS;
549
550 if (!(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) &&
551 (!state->ds || !state->ds->depth.bounds_test.enable))
552 states &= ~RADV_DYNAMIC_DEPTH_BOUNDS;
553
554 if (!(pipeline->dynamic_states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) &&
555 (!state->ds || !state->ds->stencil.test_enable))
556 states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK | RADV_DYNAMIC_STENCIL_WRITE_MASK | RADV_DYNAMIC_STENCIL_REFERENCE |
557 RADV_DYNAMIC_STENCIL_OP);
558
559 if (!(pipeline->dynamic_states & RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE) && !state->dr->rectangle_count)
560 states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE;
561
562 if (!(pipeline->dynamic_states & RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE) &&
563 (!state->ms || !state->ms->sample_locations_enable))
564 states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS;
565
566 if (!has_color_att || !radv_pipeline_is_blend_enabled(pipeline, state->cb))
567 states &= ~RADV_DYNAMIC_BLEND_CONSTANTS;
568
569 if (!(pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT))
570 states &= ~(RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN);
571
572 return states;
573 }
574
575 struct radv_ia_multi_vgt_param_helpers
radv_compute_ia_multi_vgt_param(const struct radv_device * device,struct radv_shader * const * shaders)576 radv_compute_ia_multi_vgt_param(const struct radv_device *device, struct radv_shader *const *shaders)
577 {
578 const struct radv_physical_device *pdevice = device->physical_device;
579 struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0};
580
581 ia_multi_vgt_param.ia_switch_on_eoi = false;
582 if (shaders[MESA_SHADER_FRAGMENT] && shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input)
583 ia_multi_vgt_param.ia_switch_on_eoi = true;
584 if (shaders[MESA_SHADER_GEOMETRY] && shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)
585 ia_multi_vgt_param.ia_switch_on_eoi = true;
586 if (shaders[MESA_SHADER_TESS_CTRL]) {
587 /* SWITCH_ON_EOI must be set if PrimID is used. */
588 if (shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
589 radv_get_shader(shaders, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
590 ia_multi_vgt_param.ia_switch_on_eoi = true;
591 }
592
593 ia_multi_vgt_param.partial_vs_wave = false;
594 if (shaders[MESA_SHADER_TESS_CTRL]) {
595 /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
596 if ((pdevice->rad_info.family == CHIP_TAHITI || pdevice->rad_info.family == CHIP_PITCAIRN ||
597 pdevice->rad_info.family == CHIP_BONAIRE) &&
598 shaders[MESA_SHADER_GEOMETRY])
599 ia_multi_vgt_param.partial_vs_wave = true;
600 /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
601 if (pdevice->rad_info.has_distributed_tess) {
602 if (shaders[MESA_SHADER_GEOMETRY]) {
603 if (pdevice->rad_info.gfx_level <= GFX8)
604 ia_multi_vgt_param.partial_es_wave = true;
605 } else {
606 ia_multi_vgt_param.partial_vs_wave = true;
607 }
608 }
609 }
610
611 if (shaders[MESA_SHADER_GEOMETRY]) {
612 /* On these chips there is the possibility of a hang if the
613 * pipeline uses a GS and partial_vs_wave is not set.
614 *
615 * This mostly does not hit 4-SE chips, as those typically set
616 * ia_switch_on_eoi and then partial_vs_wave is set for pipelines
617 * with GS due to another workaround.
618 *
619 * Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242
620 */
621 if (pdevice->rad_info.family == CHIP_TONGA || pdevice->rad_info.family == CHIP_FIJI ||
622 pdevice->rad_info.family == CHIP_POLARIS10 || pdevice->rad_info.family == CHIP_POLARIS11 ||
623 pdevice->rad_info.family == CHIP_POLARIS12 || pdevice->rad_info.family == CHIP_VEGAM) {
624 ia_multi_vgt_param.partial_vs_wave = true;
625 }
626 }
627
628 ia_multi_vgt_param.base =
629 /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
630 S_028AA8_MAX_PRIMGRP_IN_WAVE(pdevice->rad_info.gfx_level == GFX8 ? 2 : 0) |
631 S_030960_EN_INST_OPT_BASIC(pdevice->rad_info.gfx_level >= GFX9) |
632 S_030960_EN_INST_OPT_ADV(pdevice->rad_info.gfx_level >= GFX9);
633
634 return ia_multi_vgt_param;
635 }
636
637 static uint32_t
radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo * vi,uint32_t attrib_binding)638 radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *vi, uint32_t attrib_binding)
639 {
640 for (uint32_t i = 0; i < vi->vertexBindingDescriptionCount; i++) {
641 const VkVertexInputBindingDescription *input_binding = &vi->pVertexBindingDescriptions[i];
642
643 if (input_binding->binding == attrib_binding)
644 return input_binding->stride;
645 }
646
647 return 0;
648 }
649
650 #define ALL_GRAPHICS_LIB_FLAGS \
651 (VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT | \
652 VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT | \
653 VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT | \
654 VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT)
655
656 static VkGraphicsPipelineLibraryFlagBitsEXT
shader_stage_to_pipeline_library_flags(VkShaderStageFlagBits stage)657 shader_stage_to_pipeline_library_flags(VkShaderStageFlagBits stage)
658 {
659 assert(util_bitcount(stage) == 1);
660 switch (stage) {
661 case VK_SHADER_STAGE_VERTEX_BIT:
662 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
663 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
664 case VK_SHADER_STAGE_GEOMETRY_BIT:
665 case VK_SHADER_STAGE_TASK_BIT_EXT:
666 case VK_SHADER_STAGE_MESH_BIT_EXT:
667 return VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT;
668 case VK_SHADER_STAGE_FRAGMENT_BIT:
669 return VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT;
670 default:
671 unreachable("Invalid shader stage");
672 }
673 }
674
675 static VkResult
radv_pipeline_import_graphics_info(struct radv_device * device,struct radv_graphics_pipeline * pipeline,struct vk_graphics_pipeline_state * state,struct radv_pipeline_layout * layout,const VkGraphicsPipelineCreateInfo * pCreateInfo,VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)676 radv_pipeline_import_graphics_info(struct radv_device *device, struct radv_graphics_pipeline *pipeline,
677 struct vk_graphics_pipeline_state *state, struct radv_pipeline_layout *layout,
678 const VkGraphicsPipelineCreateInfo *pCreateInfo,
679 VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)
680 {
681 RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
682 VkResult result;
683
684 /* Mark all states declared dynamic at pipeline creation. */
685 if (pCreateInfo->pDynamicState) {
686 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
687 for (uint32_t s = 0; s < count; s++) {
688 pipeline->dynamic_states |= radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]);
689 }
690 }
691
692 /* Mark all active stages at pipeline creation. */
693 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
694 const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i];
695
696 /* Ignore shader stages that don't need to be imported. */
697 if (!(shader_stage_to_pipeline_library_flags(sinfo->stage) & lib_flags))
698 continue;
699
700 pipeline->active_stages |= sinfo->stage;
701 }
702
703 result = vk_graphics_pipeline_state_fill(&device->vk, state, pCreateInfo, NULL, 0, NULL, NULL,
704 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT, &pipeline->state_data);
705 if (result != VK_SUCCESS)
706 return result;
707
708 if (pipeline->active_stages & VK_SHADER_STAGE_MESH_BIT_EXT) {
709 pipeline->last_vgt_api_stage = MESA_SHADER_MESH;
710 } else {
711 pipeline->last_vgt_api_stage = util_last_bit(pipeline->active_stages & BITFIELD_MASK(MESA_SHADER_FRAGMENT)) - 1;
712 }
713
714 if (lib_flags == ALL_GRAPHICS_LIB_FLAGS) {
715 radv_pipeline_layout_finish(device, layout);
716 radv_pipeline_layout_init(device, layout, false /* independent_sets */);
717 }
718
719 if (pipeline_layout) {
720 /* As explained in the specification, the application can provide a non
721 * compatible pipeline layout when doing optimized linking :
722 *
723 * "However, in the specific case that a final link is being
724 * performed between stages and
725 * `VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT` is specified,
726 * the application can override the pipeline layout with one that is
727 * compatible with that union but does not have the
728 * `VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT` flag set,
729 * allowing a more optimal pipeline layout to be used when
730 * generating the final pipeline."
731 *
732 * In that case discard whatever was imported before.
733 */
734 if (pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT &&
735 !pipeline_layout->independent_sets) {
736 radv_pipeline_layout_finish(device, layout);
737 radv_pipeline_layout_init(device, layout, false /* independent_sets */);
738 } else {
739 /* Otherwise if we include a layout that had independent_sets,
740 * propagate that property.
741 */
742 layout->independent_sets |= pipeline_layout->independent_sets;
743 }
744
745 for (uint32_t s = 0; s < pipeline_layout->num_sets; s++) {
746 if (pipeline_layout->set[s].layout == NULL)
747 continue;
748
749 radv_pipeline_layout_add_set(layout, s, pipeline_layout->set[s].layout);
750 }
751
752 layout->push_constant_size = pipeline_layout->push_constant_size;
753 }
754
755 return result;
756 }
757
758 static void
radv_graphics_pipeline_import_lib(const struct radv_device * device,struct radv_graphics_pipeline * pipeline,struct vk_graphics_pipeline_state * state,struct radv_pipeline_layout * layout,struct radv_graphics_lib_pipeline * lib,bool link_optimize)759 radv_graphics_pipeline_import_lib(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
760 struct vk_graphics_pipeline_state *state, struct radv_pipeline_layout *layout,
761 struct radv_graphics_lib_pipeline *lib, bool link_optimize)
762 {
763 bool import_binaries = false;
764
765 /* There should be no common blocks between a lib we import and the current
766 * pipeline we're building.
767 */
768 assert((pipeline->active_stages & lib->base.active_stages) == 0);
769
770 pipeline->dynamic_states |= lib->base.dynamic_states;
771 pipeline->active_stages |= lib->base.active_stages;
772
773 vk_graphics_pipeline_state_merge(state, &lib->graphics_state);
774
775 /* Import binaries when LTO is disabled and when the library doesn't retain any shaders. */
776 if (!link_optimize && !pipeline->retain_shaders) {
777 import_binaries = true;
778 }
779
780 if (import_binaries) {
781 /* Import the compiled shaders. */
782 for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.base.shaders); s++) {
783 if (!lib->base.base.shaders[s])
784 continue;
785
786 pipeline->base.shaders[s] = radv_shader_ref(lib->base.base.shaders[s]);
787 }
788
789 /* Import the GS copy shader if present. */
790 if (lib->base.base.gs_copy_shader) {
791 assert(!pipeline->base.gs_copy_shader);
792 pipeline->base.gs_copy_shader = radv_shader_ref(lib->base.base.gs_copy_shader);
793 }
794 }
795
796 /* Import the pipeline layout. */
797 struct radv_pipeline_layout *lib_layout = &lib->layout;
798 for (uint32_t s = 0; s < lib_layout->num_sets; s++) {
799 if (!lib_layout->set[s].layout)
800 continue;
801
802 radv_pipeline_layout_add_set(layout, s, lib_layout->set[s].layout);
803 }
804
805 layout->independent_sets = lib_layout->independent_sets;
806 layout->push_constant_size = MAX2(layout->push_constant_size, lib_layout->push_constant_size);
807 }
808
809 static void
radv_pipeline_init_input_assembly_state(const struct radv_device * device,struct radv_graphics_pipeline * pipeline)810 radv_pipeline_init_input_assembly_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline)
811 {
812 pipeline->ia_multi_vgt_param = radv_compute_ia_multi_vgt_param(device, pipeline->base.shaders);
813 }
814
815 static bool
radv_pipeline_uses_ds_feedback_loop(const struct radv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state)816 radv_pipeline_uses_ds_feedback_loop(const struct radv_graphics_pipeline *pipeline,
817 const struct vk_graphics_pipeline_state *state)
818 {
819 VkPipelineCreateFlags2KHR create_flags = pipeline->base.create_flags;
820 if (state->rp)
821 create_flags |= state->pipeline_flags;
822
823 return (create_flags & VK_PIPELINE_CREATE_2_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT) != 0;
824 }
825
826 static void
radv_pipeline_init_dynamic_state(const struct radv_device * device,struct radv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state,const VkGraphicsPipelineCreateInfo * pCreateInfo)827 radv_pipeline_init_dynamic_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
828 const struct vk_graphics_pipeline_state *state,
829 const VkGraphicsPipelineCreateInfo *pCreateInfo)
830 {
831 uint64_t needed_states = radv_pipeline_needed_dynamic_state(device, pipeline, state);
832 struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
833 uint64_t states = needed_states;
834
835 /* Initialize non-zero values for default dynamic state. */
836 dynamic->vk.rs.line.width = 1.0f;
837 dynamic->vk.fsr.fragment_size.width = 1u;
838 dynamic->vk.fsr.fragment_size.height = 1u;
839 dynamic->vk.ds.depth.bounds_test.max = 1.0f;
840 dynamic->vk.ds.stencil.front.compare_mask = ~0;
841 dynamic->vk.ds.stencil.front.write_mask = ~0;
842 dynamic->vk.ds.stencil.back.compare_mask = ~0;
843 dynamic->vk.ds.stencil.back.write_mask = ~0;
844 dynamic->vk.ms.rasterization_samples = VK_SAMPLE_COUNT_1_BIT;
845
846 pipeline->needed_dynamic_state = needed_states;
847
848 states &= ~pipeline->dynamic_states;
849
850 /* Input assembly. */
851 if (states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) {
852 dynamic->vk.ia.primitive_topology = radv_translate_prim(state->ia->primitive_topology);
853 }
854
855 if (states & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE) {
856 dynamic->vk.ia.primitive_restart_enable = state->ia->primitive_restart_enable;
857 }
858
859 /* Tessellation. */
860 if (states & RADV_DYNAMIC_PATCH_CONTROL_POINTS) {
861 dynamic->vk.ts.patch_control_points = state->ts->patch_control_points;
862 }
863
864 if (states & RADV_DYNAMIC_TESS_DOMAIN_ORIGIN) {
865 dynamic->vk.ts.domain_origin = state->ts->domain_origin;
866 }
867
868 /* Viewport. */
869 if (needed_states & RADV_DYNAMIC_VIEWPORT) {
870 dynamic->vk.vp.viewport_count = state->vp->viewport_count;
871 if (states & RADV_DYNAMIC_VIEWPORT) {
872 typed_memcpy(dynamic->vk.vp.viewports, state->vp->viewports, state->vp->viewport_count);
873 for (unsigned i = 0; i < dynamic->vk.vp.viewport_count; i++)
874 radv_get_viewport_xform(&dynamic->vk.vp.viewports[i], dynamic->hw_vp.xform[i].scale,
875 dynamic->hw_vp.xform[i].translate);
876 }
877 }
878
879 if (needed_states & RADV_DYNAMIC_SCISSOR) {
880 dynamic->vk.vp.scissor_count = state->vp->scissor_count;
881 if (states & RADV_DYNAMIC_SCISSOR) {
882 typed_memcpy(dynamic->vk.vp.scissors, state->vp->scissors, state->vp->scissor_count);
883 }
884 }
885
886 if (states & RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE) {
887 dynamic->vk.vp.depth_clip_negative_one_to_one = state->vp->depth_clip_negative_one_to_one;
888 }
889
890 /* Discard rectangles. */
891 if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
892 dynamic->vk.dr.rectangle_count = state->dr->rectangle_count;
893 if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
894 typed_memcpy(dynamic->vk.dr.rectangles, state->dr->rectangles, state->dr->rectangle_count);
895 }
896 }
897
898 /* Rasterization. */
899 if (states & RADV_DYNAMIC_LINE_WIDTH) {
900 dynamic->vk.rs.line.width = state->rs->line.width;
901 }
902
903 if (states & RADV_DYNAMIC_DEPTH_BIAS) {
904 dynamic->vk.rs.depth_bias.constant = state->rs->depth_bias.constant;
905 dynamic->vk.rs.depth_bias.clamp = state->rs->depth_bias.clamp;
906 dynamic->vk.rs.depth_bias.slope = state->rs->depth_bias.slope;
907 dynamic->vk.rs.depth_bias.representation = state->rs->depth_bias.representation;
908 }
909
910 if (states & RADV_DYNAMIC_CULL_MODE) {
911 dynamic->vk.rs.cull_mode = state->rs->cull_mode;
912 }
913
914 if (states & RADV_DYNAMIC_FRONT_FACE) {
915 dynamic->vk.rs.front_face = state->rs->front_face;
916 }
917
918 if (states & RADV_DYNAMIC_LINE_STIPPLE) {
919 dynamic->vk.rs.line.stipple.factor = state->rs->line.stipple.factor;
920 dynamic->vk.rs.line.stipple.pattern = state->rs->line.stipple.pattern;
921 }
922
923 if (states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE) {
924 dynamic->vk.rs.depth_bias.enable = state->rs->depth_bias.enable;
925 }
926
927 if (states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE) {
928 dynamic->vk.rs.rasterizer_discard_enable = state->rs->rasterizer_discard_enable;
929 }
930
931 if (states & RADV_DYNAMIC_POLYGON_MODE) {
932 dynamic->vk.rs.polygon_mode = radv_translate_fill(state->rs->polygon_mode);
933 }
934
935 if (states & RADV_DYNAMIC_LINE_STIPPLE_ENABLE) {
936 dynamic->vk.rs.line.stipple.enable = state->rs->line.stipple.enable;
937 }
938
939 if (states & RADV_DYNAMIC_DEPTH_CLIP_ENABLE) {
940 dynamic->vk.rs.depth_clip_enable = state->rs->depth_clip_enable;
941 }
942
943 if (states & RADV_DYNAMIC_CONSERVATIVE_RAST_MODE) {
944 dynamic->vk.rs.conservative_mode = state->rs->conservative_mode;
945 }
946
947 if (states & RADV_DYNAMIC_PROVOKING_VERTEX_MODE) {
948 dynamic->vk.rs.provoking_vertex = state->rs->provoking_vertex;
949 }
950
951 if (states & RADV_DYNAMIC_DEPTH_CLAMP_ENABLE) {
952 dynamic->vk.rs.depth_clamp_enable = state->rs->depth_clamp_enable;
953 }
954
955 if (states & RADV_DYNAMIC_LINE_RASTERIZATION_MODE) {
956 dynamic->vk.rs.line.mode = state->rs->line.mode;
957 }
958
959 /* Fragment shading rate. */
960 if (states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE) {
961 dynamic->vk.fsr = *state->fsr;
962 }
963
964 /* Multisample. */
965 if (states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE) {
966 dynamic->vk.ms.alpha_to_coverage_enable = state->ms->alpha_to_coverage_enable;
967 }
968
969 if (states & RADV_DYNAMIC_SAMPLE_MASK) {
970 dynamic->vk.ms.sample_mask = state->ms->sample_mask & 0xffff;
971 }
972
973 if (states & RADV_DYNAMIC_RASTERIZATION_SAMPLES) {
974 dynamic->vk.ms.rasterization_samples = state->ms->rasterization_samples;
975 }
976
977 if (states & RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE) {
978 dynamic->vk.ms.sample_locations_enable = state->ms->sample_locations_enable;
979 }
980
981 if (states & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
982 unsigned count = state->ms->sample_locations->per_pixel * state->ms->sample_locations->grid_size.width *
983 state->ms->sample_locations->grid_size.height;
984
985 dynamic->sample_location.per_pixel = state->ms->sample_locations->per_pixel;
986 dynamic->sample_location.grid_size = state->ms->sample_locations->grid_size;
987 dynamic->sample_location.count = count;
988 typed_memcpy(&dynamic->sample_location.locations[0], state->ms->sample_locations->locations, count);
989 }
990
991 /* Depth stencil. */
992 /* If there is no depthstencil attachment, then don't read
993 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
994 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
995 * no need to override the depthstencil defaults in
996 * radv_pipeline::dynamic_state when there is no depthstencil attachment.
997 *
998 * Section 9.2 of the Vulkan 1.0.15 spec says:
999 *
1000 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1001 * disabled or if the subpass of the render pass the pipeline is created
1002 * against does not use a depth/stencil attachment.
1003 */
1004 if (needed_states && radv_pipeline_has_ds_attachments(state->rp)) {
1005 if (states & RADV_DYNAMIC_DEPTH_BOUNDS) {
1006 dynamic->vk.ds.depth.bounds_test.min = state->ds->depth.bounds_test.min;
1007 dynamic->vk.ds.depth.bounds_test.max = state->ds->depth.bounds_test.max;
1008 }
1009
1010 if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) {
1011 dynamic->vk.ds.stencil.front.compare_mask = state->ds->stencil.front.compare_mask;
1012 dynamic->vk.ds.stencil.back.compare_mask = state->ds->stencil.back.compare_mask;
1013 }
1014
1015 if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) {
1016 dynamic->vk.ds.stencil.front.write_mask = state->ds->stencil.front.write_mask;
1017 dynamic->vk.ds.stencil.back.write_mask = state->ds->stencil.back.write_mask;
1018 }
1019
1020 if (states & RADV_DYNAMIC_STENCIL_REFERENCE) {
1021 dynamic->vk.ds.stencil.front.reference = state->ds->stencil.front.reference;
1022 dynamic->vk.ds.stencil.back.reference = state->ds->stencil.back.reference;
1023 }
1024
1025 if (states & RADV_DYNAMIC_DEPTH_TEST_ENABLE) {
1026 dynamic->vk.ds.depth.test_enable = state->ds->depth.test_enable;
1027 }
1028
1029 if (states & RADV_DYNAMIC_DEPTH_WRITE_ENABLE) {
1030 dynamic->vk.ds.depth.write_enable = state->ds->depth.write_enable;
1031 }
1032
1033 if (states & RADV_DYNAMIC_DEPTH_COMPARE_OP) {
1034 dynamic->vk.ds.depth.compare_op = state->ds->depth.compare_op;
1035 }
1036
1037 if (states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) {
1038 dynamic->vk.ds.depth.bounds_test.enable = state->ds->depth.bounds_test.enable;
1039 }
1040
1041 if (states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) {
1042 dynamic->vk.ds.stencil.test_enable = state->ds->stencil.test_enable;
1043 }
1044
1045 if (states & RADV_DYNAMIC_STENCIL_OP) {
1046 dynamic->vk.ds.stencil.front.op.compare = state->ds->stencil.front.op.compare;
1047 dynamic->vk.ds.stencil.front.op.fail = state->ds->stencil.front.op.fail;
1048 dynamic->vk.ds.stencil.front.op.pass = state->ds->stencil.front.op.pass;
1049 dynamic->vk.ds.stencil.front.op.depth_fail = state->ds->stencil.front.op.depth_fail;
1050
1051 dynamic->vk.ds.stencil.back.op.compare = state->ds->stencil.back.op.compare;
1052 dynamic->vk.ds.stencil.back.op.fail = state->ds->stencil.back.op.fail;
1053 dynamic->vk.ds.stencil.back.op.pass = state->ds->stencil.back.op.pass;
1054 dynamic->vk.ds.stencil.back.op.depth_fail = state->ds->stencil.back.op.depth_fail;
1055 }
1056 }
1057
1058 /* Color blend. */
1059 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1060 *
1061 * pColorBlendState is [...] NULL if the pipeline has rasterization
1062 * disabled or if the subpass of the render pass the pipeline is
1063 * created against does not use any color attachments.
1064 */
1065 if (states & RADV_DYNAMIC_BLEND_CONSTANTS) {
1066 typed_memcpy(dynamic->vk.cb.blend_constants, state->cb->blend_constants, 4);
1067 }
1068
1069 if (radv_pipeline_has_color_attachments(state->rp)) {
1070 if (states & RADV_DYNAMIC_LOGIC_OP) {
1071 if ((pipeline->dynamic_states & RADV_DYNAMIC_LOGIC_OP_ENABLE) || state->cb->logic_op_enable) {
1072 dynamic->vk.cb.logic_op = radv_translate_blend_logic_op(state->cb->logic_op);
1073 }
1074 }
1075
1076 if (states & RADV_DYNAMIC_COLOR_WRITE_ENABLE) {
1077 dynamic->vk.cb.color_write_enables = state->cb->color_write_enables;
1078 }
1079
1080 if (states & RADV_DYNAMIC_LOGIC_OP_ENABLE) {
1081 dynamic->vk.cb.logic_op_enable = state->cb->logic_op_enable;
1082 }
1083
1084 if (states & RADV_DYNAMIC_COLOR_WRITE_MASK) {
1085 for (unsigned i = 0; i < state->cb->attachment_count; i++) {
1086 dynamic->vk.cb.attachments[i].write_mask = state->cb->attachments[i].write_mask;
1087 }
1088 }
1089
1090 if (states & RADV_DYNAMIC_COLOR_BLEND_ENABLE) {
1091 for (unsigned i = 0; i < state->cb->attachment_count; i++) {
1092 dynamic->vk.cb.attachments[i].blend_enable = state->cb->attachments[i].blend_enable;
1093 }
1094 }
1095
1096 if (states & RADV_DYNAMIC_COLOR_BLEND_EQUATION) {
1097 for (unsigned i = 0; i < state->cb->attachment_count; i++) {
1098 const struct vk_color_blend_attachment_state *att = &state->cb->attachments[i];
1099
1100 dynamic->vk.cb.attachments[i].src_color_blend_factor = att->src_color_blend_factor;
1101 dynamic->vk.cb.attachments[i].dst_color_blend_factor = att->dst_color_blend_factor;
1102 dynamic->vk.cb.attachments[i].color_blend_op = att->color_blend_op;
1103 dynamic->vk.cb.attachments[i].src_alpha_blend_factor = att->src_alpha_blend_factor;
1104 dynamic->vk.cb.attachments[i].dst_alpha_blend_factor = att->dst_alpha_blend_factor;
1105 dynamic->vk.cb.attachments[i].alpha_blend_op = att->alpha_blend_op;
1106 }
1107 }
1108 }
1109
1110 if (states & RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE) {
1111 dynamic->vk.dr.enable = state->dr->rectangle_count > 0;
1112 }
1113
1114 if (states & RADV_DYNAMIC_DISCARD_RECTANGLE_MODE) {
1115 dynamic->vk.dr.mode = state->dr->mode;
1116 }
1117
1118 if (states & RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE) {
1119 bool uses_ds_feedback_loop = radv_pipeline_uses_ds_feedback_loop(pipeline, state);
1120
1121 dynamic->feedback_loop_aspects =
1122 uses_ds_feedback_loop ? (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT) : VK_IMAGE_ASPECT_NONE;
1123 }
1124
1125 pipeline->dynamic_state.mask = states;
1126 }
1127
1128 static void
gfx10_emit_ge_pc_alloc(struct radeon_cmdbuf * cs,enum amd_gfx_level gfx_level,uint32_t oversub_pc_lines)1129 gfx10_emit_ge_pc_alloc(struct radeon_cmdbuf *cs, enum amd_gfx_level gfx_level, uint32_t oversub_pc_lines)
1130 {
1131 radeon_set_uconfig_reg(cs, R_030980_GE_PC_ALLOC,
1132 S_030980_OVERSUB_EN(oversub_pc_lines > 0) | S_030980_NUM_PC_LINES(oversub_pc_lines - 1));
1133 }
1134
1135 struct radv_shader *
radv_get_shader(struct radv_shader * const * shaders,gl_shader_stage stage)1136 radv_get_shader(struct radv_shader *const *shaders, gl_shader_stage stage)
1137 {
1138 if (stage == MESA_SHADER_VERTEX) {
1139 if (shaders[MESA_SHADER_VERTEX])
1140 return shaders[MESA_SHADER_VERTEX];
1141 if (shaders[MESA_SHADER_TESS_CTRL])
1142 return shaders[MESA_SHADER_TESS_CTRL];
1143 if (shaders[MESA_SHADER_GEOMETRY])
1144 return shaders[MESA_SHADER_GEOMETRY];
1145 } else if (stage == MESA_SHADER_TESS_EVAL) {
1146 if (!shaders[MESA_SHADER_TESS_CTRL])
1147 return NULL;
1148 if (shaders[MESA_SHADER_TESS_EVAL])
1149 return shaders[MESA_SHADER_TESS_EVAL];
1150 if (shaders[MESA_SHADER_GEOMETRY])
1151 return shaders[MESA_SHADER_GEOMETRY];
1152 }
1153 return shaders[stage];
1154 }
1155
1156 static const struct radv_shader *
radv_get_last_vgt_shader(const struct radv_graphics_pipeline * pipeline)1157 radv_get_last_vgt_shader(const struct radv_graphics_pipeline *pipeline)
1158 {
1159 if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1160 if (radv_pipeline_has_ngg(pipeline))
1161 return pipeline->base.shaders[MESA_SHADER_GEOMETRY];
1162 else
1163 return pipeline->base.gs_copy_shader;
1164 else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL))
1165 return pipeline->base.shaders[MESA_SHADER_TESS_EVAL];
1166 else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
1167 return pipeline->base.shaders[MESA_SHADER_MESH];
1168 else
1169 return pipeline->base.shaders[MESA_SHADER_VERTEX];
1170 }
1171
1172 static const struct radv_vs_output_info *
get_vs_output_info(const struct radv_graphics_pipeline * pipeline)1173 get_vs_output_info(const struct radv_graphics_pipeline *pipeline)
1174 {
1175 return &radv_get_last_vgt_shader(pipeline)->info.outinfo;
1176 }
1177
1178 static bool
radv_should_export_multiview(const struct radv_shader_stage * stage,const struct radv_graphics_state_key * gfx_state)1179 radv_should_export_multiview(const struct radv_shader_stage *stage, const struct radv_graphics_state_key *gfx_state)
1180 {
1181 /* Export the layer in the last VGT stage if multiview is used.
1182 * Also checks for NONE stage, which happens when we have depth-only rendering.
1183 * When the next stage is unknown (with graphics pipeline library), the layer is exported unconditionally.
1184 */
1185 return gfx_state->has_multiview_view_index &&
1186 (stage->info.next_stage == MESA_SHADER_FRAGMENT || stage->info.next_stage == MESA_SHADER_NONE ||
1187 !(gfx_state->lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT)) &&
1188 !(stage->nir->info.outputs_written & VARYING_BIT_LAYER);
1189 }
1190
1191 static void
radv_remove_point_size(const struct radv_graphics_state_key * gfx_state,nir_shader * producer,nir_shader * consumer)1192 radv_remove_point_size(const struct radv_graphics_state_key *gfx_state, nir_shader *producer, nir_shader *consumer)
1193 {
1194 if ((consumer->info.inputs_read & VARYING_BIT_PSIZ) || !(producer->info.outputs_written & VARYING_BIT_PSIZ))
1195 return;
1196
1197 /* Do not remove PSIZ if the shader uses XFB because it might be stored. */
1198 if (producer->xfb_info)
1199 return;
1200
1201 /* Do not remove PSIZ if the rasterization primitive uses points. */
1202 if (consumer->info.stage == MESA_SHADER_FRAGMENT &&
1203 ((producer->info.stage == MESA_SHADER_TESS_EVAL && producer->info.tess.point_mode) ||
1204 (producer->info.stage == MESA_SHADER_GEOMETRY && producer->info.gs.output_primitive == MESA_PRIM_POINTS) ||
1205 (producer->info.stage == MESA_SHADER_MESH && producer->info.mesh.primitive_type == MESA_PRIM_POINTS)))
1206 return;
1207
1208 nir_variable *var = nir_find_variable_with_location(producer, nir_var_shader_out, VARYING_SLOT_PSIZ);
1209 assert(var);
1210
1211 /* Change PSIZ to a global variable which allows it to be DCE'd. */
1212 var->data.location = 0;
1213 var->data.mode = nir_var_shader_temp;
1214
1215 producer->info.outputs_written &= ~VARYING_BIT_PSIZ;
1216 NIR_PASS_V(producer, nir_fixup_deref_modes);
1217 NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_temp, NULL);
1218 NIR_PASS(_, producer, nir_opt_dce);
1219 }
1220
1221 static void
radv_remove_color_exports(const struct radv_graphics_state_key * gfx_state,nir_shader * nir)1222 radv_remove_color_exports(const struct radv_graphics_state_key *gfx_state, nir_shader *nir)
1223 {
1224 bool fixup_derefs = false;
1225
1226 /* Do not remove color exports when a PS epilog is used because the format isn't known and the color write mask can
1227 * be dynamic. */
1228 if (gfx_state->ps.has_epilog)
1229 return;
1230
1231 nir_foreach_shader_out_variable (var, nir) {
1232 int idx = var->data.location;
1233 idx -= FRAG_RESULT_DATA0;
1234
1235 if (idx < 0)
1236 continue;
1237
1238 unsigned col_format = (gfx_state->ps.epilog.spi_shader_col_format >> (4 * idx)) & 0xf;
1239
1240 if (col_format == V_028714_SPI_SHADER_ZERO) {
1241 /* Remove the color export if it's unused or in presence of holes. */
1242 nir->info.outputs_written &= ~BITFIELD64_BIT(var->data.location);
1243 var->data.location = 0;
1244 var->data.mode = nir_var_shader_temp;
1245 fixup_derefs = true;
1246 }
1247 }
1248
1249 if (fixup_derefs) {
1250 NIR_PASS_V(nir, nir_fixup_deref_modes);
1251 NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
1252 NIR_PASS(_, nir, nir_opt_dce);
1253 }
1254 }
1255
1256 static void
merge_tess_info(struct shader_info * tes_info,struct shader_info * tcs_info)1257 merge_tess_info(struct shader_info *tes_info, struct shader_info *tcs_info)
1258 {
1259 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
1260 *
1261 * "PointMode. Controls generation of points rather than triangles
1262 * or lines. This functionality defaults to disabled, and is
1263 * enabled if either shader stage includes the execution mode.
1264 *
1265 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
1266 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
1267 * and OutputVertices, it says:
1268 *
1269 * "One mode must be set in at least one of the tessellation
1270 * shader stages."
1271 *
1272 * So, the fields can be set in either the TCS or TES, but they must
1273 * agree if set in both. Our backend looks at TES, so bitwise-or in
1274 * the values from the TCS.
1275 */
1276 assert(tcs_info->tess.tcs_vertices_out == 0 || tes_info->tess.tcs_vertices_out == 0 ||
1277 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
1278 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
1279
1280 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
1281 tcs_info->tess.spacing == tes_info->tess.spacing);
1282 tes_info->tess.spacing |= tcs_info->tess.spacing;
1283
1284 assert(tcs_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED ||
1285 tes_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED ||
1286 tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode);
1287 tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode;
1288 tes_info->tess.ccw |= tcs_info->tess.ccw;
1289 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
1290
1291 /* Copy the merged info back to the TCS */
1292 tcs_info->tess.tcs_vertices_out = tes_info->tess.tcs_vertices_out;
1293 tcs_info->tess._primitive_mode = tes_info->tess._primitive_mode;
1294 }
1295
1296 static void
radv_link_shaders(const struct radv_device * device,struct radv_shader_stage * producer_stage,struct radv_shader_stage * consumer_stage,const struct radv_graphics_state_key * gfx_state)1297 radv_link_shaders(const struct radv_device *device, struct radv_shader_stage *producer_stage,
1298 struct radv_shader_stage *consumer_stage, const struct radv_graphics_state_key *gfx_state)
1299 {
1300 const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
1301 nir_shader *producer = producer_stage->nir;
1302 nir_shader *consumer = consumer_stage->nir;
1303 bool progress;
1304
1305 if (consumer->info.stage == MESA_SHADER_FRAGMENT) {
1306 /* Lower the viewport index to zero when the last vertex stage doesn't export it. */
1307 if ((consumer->info.inputs_read & VARYING_BIT_VIEWPORT) &&
1308 !(producer->info.outputs_written & VARYING_BIT_VIEWPORT)) {
1309 NIR_PASS(_, consumer, radv_nir_lower_viewport_to_zero);
1310 }
1311
1312 /* Lower the view index to map on the layer. */
1313 NIR_PASS(_, consumer, radv_nir_lower_view_index, producer->info.stage == MESA_SHADER_MESH);
1314 }
1315
1316 if (producer_stage->key.optimisations_disabled || consumer_stage->key.optimisations_disabled)
1317 return;
1318
1319 if (consumer->info.stage == MESA_SHADER_FRAGMENT && producer->info.has_transform_feedback_varyings) {
1320 nir_link_xfb_varyings(producer, consumer);
1321 }
1322
1323 unsigned array_deref_of_vec_options =
1324 nir_lower_direct_array_deref_of_vec_load | nir_lower_indirect_array_deref_of_vec_load |
1325 nir_lower_direct_array_deref_of_vec_store | nir_lower_indirect_array_deref_of_vec_store;
1326
1327 NIR_PASS(progress, producer, nir_lower_array_deref_of_vec, nir_var_shader_out, array_deref_of_vec_options);
1328 NIR_PASS(progress, consumer, nir_lower_array_deref_of_vec, nir_var_shader_in, array_deref_of_vec_options);
1329
1330 nir_lower_io_arrays_to_elements(producer, consumer);
1331 nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements");
1332 nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements");
1333
1334 radv_nir_lower_io_to_scalar_early(producer, nir_var_shader_out);
1335 radv_nir_lower_io_to_scalar_early(consumer, nir_var_shader_in);
1336
1337 /* Remove PSIZ from shaders when it's not needed.
1338 * This is typically produced by translation layers like Zink or D9VK.
1339 */
1340 if (gfx_state->enable_remove_point_size)
1341 radv_remove_point_size(gfx_state, producer, consumer);
1342
1343 if (nir_link_opt_varyings(producer, consumer)) {
1344 nir_validate_shader(producer, "after nir_link_opt_varyings");
1345 nir_validate_shader(consumer, "after nir_link_opt_varyings");
1346
1347 NIR_PASS(_, consumer, nir_opt_constant_folding);
1348 NIR_PASS(_, consumer, nir_opt_algebraic);
1349 NIR_PASS(_, consumer, nir_opt_dce);
1350 }
1351
1352 NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
1353 NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);
1354
1355 progress = nir_remove_unused_varyings(producer, consumer);
1356
1357 nir_compact_varyings(producer, consumer, true);
1358
1359 /* nir_compact_varyings changes deleted varyings into shader_temp.
1360 * We need to remove these otherwise we risk them being lowered to scratch.
1361 * This can especially happen to arrayed outputs.
1362 */
1363 NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_temp, NULL);
1364 NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_temp, NULL);
1365
1366 nir_validate_shader(producer, "after nir_compact_varyings");
1367 nir_validate_shader(consumer, "after nir_compact_varyings");
1368
1369 if (producer->info.stage == MESA_SHADER_MESH) {
1370 /* nir_compact_varyings can change the location of per-vertex and per-primitive outputs */
1371 nir_shader_gather_info(producer, nir_shader_get_entrypoint(producer));
1372 }
1373
1374 const bool has_geom_or_tess =
1375 consumer->info.stage == MESA_SHADER_GEOMETRY || consumer->info.stage == MESA_SHADER_TESS_CTRL;
1376 const bool merged_gs = consumer->info.stage == MESA_SHADER_GEOMETRY && gfx_level >= GFX9;
1377
1378 if (producer->info.stage == MESA_SHADER_TESS_CTRL || producer->info.stage == MESA_SHADER_MESH ||
1379 (producer->info.stage == MESA_SHADER_VERTEX && has_geom_or_tess) ||
1380 (producer->info.stage == MESA_SHADER_TESS_EVAL && merged_gs)) {
1381 NIR_PASS(_, producer, nir_lower_io_to_vector, nir_var_shader_out);
1382
1383 if (producer->info.stage == MESA_SHADER_TESS_CTRL)
1384 NIR_PASS(_, producer, nir_vectorize_tess_levels);
1385
1386 NIR_PASS(_, producer, nir_opt_combine_stores, nir_var_shader_out);
1387 }
1388
1389 if (consumer->info.stage == MESA_SHADER_GEOMETRY || consumer->info.stage == MESA_SHADER_TESS_CTRL ||
1390 consumer->info.stage == MESA_SHADER_TESS_EVAL) {
1391 NIR_PASS(_, consumer, nir_lower_io_to_vector, nir_var_shader_in);
1392 }
1393
1394 if (progress) {
1395 progress = false;
1396 NIR_PASS(progress, producer, nir_lower_global_vars_to_local);
1397 if (progress) {
1398 ac_nir_lower_indirect_derefs(producer, gfx_level);
1399 /* remove dead writes, which can remove input loads */
1400 NIR_PASS(_, producer, nir_lower_vars_to_ssa);
1401 NIR_PASS(_, producer, nir_opt_dce);
1402 }
1403
1404 progress = false;
1405 NIR_PASS(progress, consumer, nir_lower_global_vars_to_local);
1406 if (progress) {
1407 ac_nir_lower_indirect_derefs(consumer, gfx_level);
1408 }
1409 }
1410 }
1411
1412 static const gl_shader_stage graphics_shader_order[] = {
1413 MESA_SHADER_VERTEX, MESA_SHADER_TESS_CTRL, MESA_SHADER_TESS_EVAL, MESA_SHADER_GEOMETRY,
1414
1415 MESA_SHADER_TASK, MESA_SHADER_MESH,
1416
1417 MESA_SHADER_FRAGMENT,
1418 };
1419
1420 static void
radv_link_vs(const struct radv_device * device,struct radv_shader_stage * vs_stage,struct radv_shader_stage * next_stage,const struct radv_graphics_state_key * gfx_state)1421 radv_link_vs(const struct radv_device *device, struct radv_shader_stage *vs_stage, struct radv_shader_stage *next_stage,
1422 const struct radv_graphics_state_key *gfx_state)
1423 {
1424 assert(vs_stage->nir->info.stage == MESA_SHADER_VERTEX);
1425
1426 if (radv_should_export_multiview(vs_stage, gfx_state)) {
1427 NIR_PASS(_, vs_stage->nir, radv_nir_export_multiview);
1428 }
1429
1430 if (next_stage) {
1431 assert(next_stage->nir->info.stage == MESA_SHADER_TESS_CTRL ||
1432 next_stage->nir->info.stage == MESA_SHADER_GEOMETRY ||
1433 next_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
1434
1435 radv_link_shaders(device, vs_stage, next_stage, gfx_state);
1436 }
1437
1438 nir_foreach_shader_in_variable (var, vs_stage->nir) {
1439 var->data.driver_location = var->data.location;
1440 }
1441
1442 if (next_stage && next_stage->nir->info.stage == MESA_SHADER_TESS_CTRL) {
1443 nir_linked_io_var_info vs2tcs = nir_assign_linked_io_var_locations(vs_stage->nir, next_stage->nir);
1444
1445 vs_stage->info.vs.num_linked_outputs = vs2tcs.num_linked_io_vars;
1446 vs_stage->info.outputs_linked = true;
1447
1448 next_stage->info.tcs.num_linked_inputs = vs2tcs.num_linked_io_vars;
1449 next_stage->info.inputs_linked = true;
1450 } else if (next_stage && next_stage->nir->info.stage == MESA_SHADER_GEOMETRY) {
1451 nir_linked_io_var_info vs2gs = nir_assign_linked_io_var_locations(vs_stage->nir, next_stage->nir);
1452
1453 vs_stage->info.vs.num_linked_outputs = vs2gs.num_linked_io_vars;
1454 vs_stage->info.outputs_linked = true;
1455
1456 next_stage->info.gs.num_linked_inputs = vs2gs.num_linked_io_vars;
1457 next_stage->info.inputs_linked = true;
1458 } else {
1459 nir_foreach_shader_out_variable (var, vs_stage->nir) {
1460 var->data.driver_location = var->data.location;
1461 }
1462 }
1463 }
1464
1465 static void
radv_link_tcs(const struct radv_device * device,struct radv_shader_stage * tcs_stage,struct radv_shader_stage * tes_stage,const struct radv_graphics_state_key * gfx_state)1466 radv_link_tcs(const struct radv_device *device, struct radv_shader_stage *tcs_stage,
1467 struct radv_shader_stage *tes_stage, const struct radv_graphics_state_key *gfx_state)
1468 {
1469 if (!tes_stage)
1470 return;
1471
1472 assert(tcs_stage->nir->info.stage == MESA_SHADER_TESS_CTRL);
1473 assert(tes_stage->nir->info.stage == MESA_SHADER_TESS_EVAL);
1474
1475 radv_link_shaders(device, tcs_stage, tes_stage, gfx_state);
1476
1477 /* Copy TCS info into the TES info */
1478 merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
1479
1480 nir_linked_io_var_info tcs2tes = nir_assign_linked_io_var_locations(tcs_stage->nir, tes_stage->nir);
1481
1482 tcs_stage->info.tcs.num_linked_outputs = tcs2tes.num_linked_io_vars;
1483 tcs_stage->info.tcs.num_linked_patch_outputs = tcs2tes.num_linked_patch_io_vars;
1484 tcs_stage->info.outputs_linked = true;
1485
1486 tes_stage->info.tes.num_linked_inputs = tcs2tes.num_linked_io_vars;
1487 tes_stage->info.inputs_linked = true;
1488 }
1489
1490 static void
radv_link_tes(const struct radv_device * device,struct radv_shader_stage * tes_stage,struct radv_shader_stage * next_stage,const struct radv_graphics_state_key * gfx_state)1491 radv_link_tes(const struct radv_device *device, struct radv_shader_stage *tes_stage,
1492 struct radv_shader_stage *next_stage, const struct radv_graphics_state_key *gfx_state)
1493 {
1494 assert(tes_stage->nir->info.stage == MESA_SHADER_TESS_EVAL);
1495
1496 if (radv_should_export_multiview(tes_stage, gfx_state)) {
1497 NIR_PASS(_, tes_stage->nir, radv_nir_export_multiview);
1498 }
1499
1500 if (next_stage) {
1501 assert(next_stage->nir->info.stage == MESA_SHADER_GEOMETRY ||
1502 next_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
1503
1504 radv_link_shaders(device, tes_stage, next_stage, gfx_state);
1505 }
1506
1507 if (next_stage && next_stage->nir->info.stage == MESA_SHADER_GEOMETRY) {
1508 nir_linked_io_var_info tes2gs = nir_assign_linked_io_var_locations(tes_stage->nir, next_stage->nir);
1509
1510 tes_stage->info.tes.num_linked_outputs = tes2gs.num_linked_io_vars;
1511 tes_stage->info.outputs_linked = true;
1512
1513 next_stage->info.gs.num_linked_inputs = tes2gs.num_linked_io_vars;
1514 next_stage->info.inputs_linked = true;
1515 } else {
1516 nir_foreach_shader_out_variable (var, tes_stage->nir) {
1517 var->data.driver_location = var->data.location;
1518 }
1519 }
1520 }
1521
1522 static void
radv_link_gs(const struct radv_device * device,struct radv_shader_stage * gs_stage,struct radv_shader_stage * fs_stage,const struct radv_graphics_state_key * gfx_state)1523 radv_link_gs(const struct radv_device *device, struct radv_shader_stage *gs_stage, struct radv_shader_stage *fs_stage,
1524 const struct radv_graphics_state_key *gfx_state)
1525 {
1526 assert(gs_stage->nir->info.stage == MESA_SHADER_GEOMETRY);
1527
1528 if (radv_should_export_multiview(gs_stage, gfx_state)) {
1529 NIR_PASS(_, gs_stage->nir, radv_nir_export_multiview);
1530 }
1531
1532 if (fs_stage) {
1533 assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
1534
1535 radv_link_shaders(device, gs_stage, fs_stage, gfx_state);
1536 }
1537
1538 nir_foreach_shader_out_variable (var, gs_stage->nir) {
1539 var->data.driver_location = var->data.location;
1540 }
1541 }
1542
1543 static void
radv_link_task(const struct radv_device * device,struct radv_shader_stage * task_stage,struct radv_shader_stage * mesh_stage,const struct radv_graphics_state_key * gfx_state)1544 radv_link_task(const struct radv_device *device, struct radv_shader_stage *task_stage,
1545 struct radv_shader_stage *mesh_stage, const struct radv_graphics_state_key *gfx_state)
1546 {
1547 assert(task_stage->nir->info.stage == MESA_SHADER_TASK);
1548
1549 if (mesh_stage) {
1550 assert(mesh_stage->nir->info.stage == MESA_SHADER_MESH);
1551
1552 /* Linking task and mesh shaders shouldn't do anything for now but keep it for consistency. */
1553 radv_link_shaders(device, task_stage, mesh_stage, gfx_state);
1554 }
1555 }
1556
1557 static void
radv_link_mesh(const struct radv_device * device,struct radv_shader_stage * mesh_stage,struct radv_shader_stage * fs_stage,const struct radv_graphics_state_key * gfx_state)1558 radv_link_mesh(const struct radv_device *device, struct radv_shader_stage *mesh_stage,
1559 struct radv_shader_stage *fs_stage, const struct radv_graphics_state_key *gfx_state)
1560 {
1561 assert(mesh_stage->nir->info.stage == MESA_SHADER_MESH);
1562
1563 if (fs_stage) {
1564 assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
1565
1566 nir_foreach_shader_in_variable (var, fs_stage->nir) {
1567 /* These variables are per-primitive when used with a mesh shader. */
1568 if (var->data.location == VARYING_SLOT_PRIMITIVE_ID || var->data.location == VARYING_SLOT_VIEWPORT ||
1569 var->data.location == VARYING_SLOT_LAYER) {
1570 var->data.per_primitive = true;
1571 }
1572 }
1573
1574 radv_link_shaders(device, mesh_stage, fs_stage, gfx_state);
1575 }
1576
1577 /* ac_nir_lower_ngg ignores driver locations for mesh shaders, but set them to all zero just to
1578 * be on the safe side.
1579 */
1580 nir_foreach_shader_out_variable (var, mesh_stage->nir) {
1581 var->data.driver_location = 0;
1582 }
1583 }
1584
1585 static void
radv_link_fs(struct radv_shader_stage * fs_stage,const struct radv_graphics_state_key * gfx_state)1586 radv_link_fs(struct radv_shader_stage *fs_stage, const struct radv_graphics_state_key *gfx_state)
1587 {
1588 assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
1589
1590 radv_remove_color_exports(gfx_state, fs_stage->nir);
1591
1592 nir_foreach_shader_out_variable (var, fs_stage->nir) {
1593 var->data.driver_location = var->data.location + var->data.index;
1594 }
1595 }
1596
1597 static bool
radv_pipeline_needs_noop_fs(struct radv_graphics_pipeline * pipeline,const struct radv_graphics_state_key * gfx_state)1598 radv_pipeline_needs_noop_fs(struct radv_graphics_pipeline *pipeline, const struct radv_graphics_state_key *gfx_state)
1599 {
1600 if (pipeline->base.type == RADV_PIPELINE_GRAPHICS &&
1601 !(radv_pipeline_to_graphics(&pipeline->base)->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT))
1602 return true;
1603
1604 if (pipeline->base.type == RADV_PIPELINE_GRAPHICS_LIB &&
1605 (gfx_state->lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) &&
1606 !(radv_pipeline_to_graphics_lib(&pipeline->base)->base.active_stages & VK_SHADER_STAGE_FRAGMENT_BIT))
1607 return true;
1608
1609 return false;
1610 }
1611
1612 static void
radv_remove_varyings(nir_shader * nir)1613 radv_remove_varyings(nir_shader *nir)
1614 {
1615 /* We can't demote mesh outputs to nir_var_shader_temp yet, because
1616 * they don't support array derefs of vectors.
1617 */
1618 if (nir->info.stage == MESA_SHADER_MESH)
1619 return;
1620
1621 bool fixup_derefs = false;
1622
1623 nir_foreach_shader_out_variable (var, nir) {
1624 if (var->data.always_active_io)
1625 continue;
1626
1627 if (var->data.location < VARYING_SLOT_VAR0)
1628 continue;
1629
1630 nir->info.outputs_written &= ~BITFIELD64_BIT(var->data.location);
1631 var->data.location = 0;
1632 var->data.mode = nir_var_shader_temp;
1633 fixup_derefs = true;
1634 }
1635
1636 if (fixup_derefs) {
1637 NIR_PASS_V(nir, nir_fixup_deref_modes);
1638 NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
1639 NIR_PASS(_, nir, nir_opt_dce);
1640 }
1641 }
1642
1643 static void
radv_graphics_shaders_link(const struct radv_device * device,const struct radv_graphics_state_key * gfx_state,struct radv_shader_stage * stages)1644 radv_graphics_shaders_link(const struct radv_device *device, const struct radv_graphics_state_key *gfx_state,
1645 struct radv_shader_stage *stages)
1646 {
1647 /* Walk backwards to link */
1648 struct radv_shader_stage *next_stage = NULL;
1649 for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) {
1650 gl_shader_stage s = graphics_shader_order[i];
1651 if (!stages[s].nir)
1652 continue;
1653
1654 switch (s) {
1655 case MESA_SHADER_VERTEX:
1656 radv_link_vs(device, &stages[s], next_stage, gfx_state);
1657 break;
1658 case MESA_SHADER_TESS_CTRL:
1659 radv_link_tcs(device, &stages[s], next_stage, gfx_state);
1660 break;
1661 case MESA_SHADER_TESS_EVAL:
1662 radv_link_tes(device, &stages[s], next_stage, gfx_state);
1663 break;
1664 case MESA_SHADER_GEOMETRY:
1665 radv_link_gs(device, &stages[s], next_stage, gfx_state);
1666 break;
1667 case MESA_SHADER_TASK:
1668 radv_link_task(device, &stages[s], next_stage, gfx_state);
1669 break;
1670 case MESA_SHADER_MESH:
1671 radv_link_mesh(device, &stages[s], next_stage, gfx_state);
1672 break;
1673 case MESA_SHADER_FRAGMENT:
1674 radv_link_fs(&stages[s], gfx_state);
1675 break;
1676 default:
1677 unreachable("Invalid graphics shader stage");
1678 }
1679
1680 next_stage = &stages[s];
1681 }
1682 }
1683
1684 struct radv_ps_epilog_key
radv_generate_ps_epilog_key(const struct radv_device * device,const struct radv_ps_epilog_state * state)1685 radv_generate_ps_epilog_key(const struct radv_device *device, const struct radv_ps_epilog_state *state)
1686 {
1687 unsigned col_format = 0, is_int8 = 0, is_int10 = 0, is_float32 = 0, z_format = 0;
1688 struct radv_ps_epilog_key key;
1689
1690 memset(&key, 0, sizeof(key));
1691
1692 for (unsigned i = 0; i < state->color_attachment_count; ++i) {
1693 unsigned cf;
1694 VkFormat fmt = state->color_attachment_formats[i];
1695
1696 if (fmt == VK_FORMAT_UNDEFINED || !(state->color_write_mask & (0xfu << (i * 4)))) {
1697 cf = V_028714_SPI_SHADER_ZERO;
1698 } else {
1699 bool blend_enable = state->color_blend_enable & (0xfu << (i * 4));
1700
1701 cf = radv_choose_spi_color_format(device, fmt, blend_enable, state->need_src_alpha & (1 << i));
1702
1703 if (format_is_int8(fmt))
1704 is_int8 |= 1 << i;
1705 if (format_is_int10(fmt))
1706 is_int10 |= 1 << i;
1707 if (format_is_float32(fmt))
1708 is_float32 |= 1 << i;
1709 }
1710
1711 col_format |= cf << (4 * i);
1712 }
1713
1714 if (!(col_format & 0xf) && state->need_src_alpha & (1 << 0)) {
1715 /* When a subpass doesn't have any color attachments, write the alpha channel of MRT0 when
1716 * alpha coverage is enabled because the depth attachment needs it.
1717 */
1718 col_format |= V_028714_SPI_SHADER_32_AR;
1719 }
1720
1721 /* The output for dual source blending should have the same format as the first output. */
1722 if (state->mrt0_is_dual_src) {
1723 assert(!(col_format >> 4));
1724 col_format |= (col_format & 0xf) << 4;
1725 }
1726
1727 if (state->alpha_to_coverage_via_mrtz)
1728 z_format = ac_get_spi_shader_z_format(state->export_depth, state->export_stencil, state->export_sample_mask,
1729 state->alpha_to_coverage_via_mrtz);
1730
1731 key.spi_shader_col_format = col_format;
1732 key.color_is_int8 = device->physical_device->rad_info.gfx_level < GFX8 ? is_int8 : 0;
1733 key.color_is_int10 = device->physical_device->rad_info.gfx_level < GFX8 ? is_int10 : 0;
1734 key.enable_mrt_output_nan_fixup = device->instance->drirc.enable_mrt_output_nan_fixup ? is_float32 : 0;
1735 key.colors_written = state->colors_written;
1736 key.mrt0_is_dual_src = state->mrt0_is_dual_src;
1737 key.export_depth = state->export_depth;
1738 key.export_stencil = state->export_stencil;
1739 key.export_sample_mask = state->export_sample_mask;
1740 key.alpha_to_coverage_via_mrtz = state->alpha_to_coverage_via_mrtz;
1741 key.spi_shader_z_format = z_format;
1742
1743 return key;
1744 }
1745
1746 static struct radv_ps_epilog_key
radv_pipeline_generate_ps_epilog_key(const struct radv_device * device,const struct vk_graphics_pipeline_state * state)1747 radv_pipeline_generate_ps_epilog_key(const struct radv_device *device, const struct vk_graphics_pipeline_state *state)
1748 {
1749 struct radv_ps_epilog_state ps_epilog = {0};
1750
1751 if (state->ms && state->ms->alpha_to_coverage_enable)
1752 ps_epilog.need_src_alpha |= 0x1;
1753
1754 if (state->cb) {
1755 for (uint32_t i = 0; i < state->cb->attachment_count; i++) {
1756 VkBlendOp eqRGB = state->cb->attachments[i].color_blend_op;
1757 VkBlendFactor srcRGB = state->cb->attachments[i].src_color_blend_factor;
1758 VkBlendFactor dstRGB = state->cb->attachments[i].dst_color_blend_factor;
1759
1760 /* Ignore other blend targets if dual-source blending is enabled to prevent wrong
1761 * behaviour.
1762 */
1763 if (i > 0 && ps_epilog.mrt0_is_dual_src)
1764 continue;
1765
1766 ps_epilog.color_write_mask |= (unsigned)state->cb->attachments[i].write_mask << (4 * i);
1767 if (!((ps_epilog.color_write_mask >> (i * 4)) & 0xf))
1768 continue;
1769
1770 if (state->cb->attachments[i].blend_enable)
1771 ps_epilog.color_blend_enable |= 0xfu << (i * 4);
1772
1773 if (!((ps_epilog.color_blend_enable >> (i * 4)) & 0xf))
1774 continue;
1775
1776 if (i == 0 && radv_can_enable_dual_src(&state->cb->attachments[i])) {
1777 ps_epilog.mrt0_is_dual_src = true;
1778 }
1779
1780 if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
1781 srcRGB = VK_BLEND_FACTOR_ONE;
1782 dstRGB = VK_BLEND_FACTOR_ONE;
1783 }
1784
1785 if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
1786 srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
1787 srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
1788 ps_epilog.need_src_alpha |= 1 << i;
1789 }
1790 }
1791
1792 if (state->rp) {
1793 ps_epilog.color_attachment_count = state->rp->color_attachment_count;
1794
1795 for (uint32_t i = 0; i < ps_epilog.color_attachment_count; i++) {
1796 ps_epilog.color_attachment_formats[i] = state->rp->color_attachment_formats[i];
1797 }
1798 }
1799
1800 return radv_generate_ps_epilog_key(device, &ps_epilog);
1801 }
1802
1803 static struct radv_graphics_state_key
radv_generate_graphics_state_key(const struct radv_device * device,const struct radv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state,VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)1804 radv_generate_graphics_state_key(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline,
1805 const struct vk_graphics_pipeline_state *state,
1806 VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)
1807 {
1808 const struct radv_physical_device *pdevice = device->physical_device;
1809 struct radv_graphics_state_key key;
1810
1811 memset(&key, 0, sizeof(key));
1812
1813 key.lib_flags = lib_flags;
1814 key.has_multiview_view_index = state->rp ? !!state->rp->view_mask : 0;
1815
1816 if (pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT) {
1817 key.vs.has_prolog = true;
1818 }
1819
1820 /* Compile the pre-rasterization stages only when the vertex input interface is missing. */
1821 if ((lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT) &&
1822 !(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT)) {
1823 key.vs.has_prolog = true;
1824 }
1825
1826 /* Vertex input state */
1827 if (state->vi) {
1828 u_foreach_bit (i, state->vi->attributes_valid) {
1829 uint32_t binding = state->vi->attributes[i].binding;
1830 uint32_t offset = state->vi->attributes[i].offset;
1831 enum pipe_format format = vk_format_to_pipe_format(state->vi->attributes[i].format);
1832
1833 key.vi.vertex_attribute_formats[i] = format;
1834 key.vi.vertex_attribute_bindings[i] = binding;
1835 key.vi.vertex_attribute_offsets[i] = offset;
1836 key.vi.instance_rate_divisors[i] = state->vi->bindings[binding].divisor;
1837
1838 /* vertex_attribute_strides is only needed to workaround GFX6/7 offset>=stride checks. */
1839 if (!(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE) &&
1840 pdevice->rad_info.gfx_level < GFX8) {
1841 /* From the Vulkan spec 1.2.157:
1842 *
1843 * "If the bound pipeline state object was created with the
1844 * VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE dynamic state enabled then pStrides[i]
1845 * specifies the distance in bytes between two consecutive elements within the
1846 * corresponding buffer. In this case the VkVertexInputBindingDescription::stride state
1847 * from the pipeline state object is ignored."
1848 *
1849 * Make sure the vertex attribute stride is zero to avoid computing a wrong offset if
1850 * it's initialized to something else than zero.
1851 */
1852 key.vi.vertex_attribute_strides[i] = state->vi->bindings[binding].stride;
1853 }
1854
1855 if (state->vi->bindings[binding].input_rate) {
1856 key.vi.instance_rate_inputs |= 1u << i;
1857 }
1858
1859 const struct ac_vtx_format_info *vtx_info =
1860 ac_get_vtx_format_info(pdevice->rad_info.gfx_level, pdevice->rad_info.family, format);
1861 unsigned attrib_align = vtx_info->chan_byte_size ? vtx_info->chan_byte_size : vtx_info->element_size;
1862
1863 /* If offset is misaligned, then the buffer offset must be too. Just skip updating
1864 * vertex_binding_align in this case.
1865 */
1866 if (offset % attrib_align == 0) {
1867 key.vi.vertex_binding_align[binding] = MAX2(key.vi.vertex_binding_align[binding], attrib_align);
1868 }
1869 }
1870 }
1871
1872 if (state->ts)
1873 key.ts.patch_control_points = state->ts->patch_control_points;
1874
1875 if (state->ms) {
1876 key.ms.sample_shading_enable = state->ms->sample_shading_enable;
1877 if (!(pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZATION_SAMPLES) && state->ms->rasterization_samples > 1) {
1878 key.ms.rasterization_samples = state->ms->rasterization_samples;
1879 }
1880 }
1881
1882 if (device->physical_device->rad_info.gfx_level >= GFX11 && state->ms) {
1883 key.ms.alpha_to_coverage_via_mrtz = state->ms->alpha_to_coverage_enable;
1884 }
1885
1886 if (state->ia) {
1887 key.ia.topology = radv_translate_prim(state->ia->primitive_topology);
1888 }
1889
1890 if (pipeline->base.type == RADV_PIPELINE_GRAPHICS_LIB &&
1891 (!(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT) ||
1892 !(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT))) {
1893 key.unknown_rast_prim = true;
1894 }
1895
1896 if (device->physical_device->rad_info.gfx_level >= GFX10 && state->rs) {
1897 key.rs.provoking_vtx_last = state->rs->provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT;
1898 }
1899
1900 key.ps.force_vrs_enabled = device->force_vrs_enabled && !radv_is_static_vrs_enabled(pipeline, state);
1901
1902 if ((radv_is_vrs_enabled(pipeline, state) || key.ps.force_vrs_enabled) &&
1903 (device->physical_device->rad_info.family == CHIP_NAVI21 ||
1904 device->physical_device->rad_info.family == CHIP_NAVI22 ||
1905 device->physical_device->rad_info.family == CHIP_VANGOGH))
1906 key.adjust_frag_coord_z = true;
1907
1908 if (radv_pipeline_needs_ps_epilog(pipeline, lib_flags))
1909 key.ps.has_epilog = true;
1910
1911 key.ps.epilog = radv_pipeline_generate_ps_epilog_key(device, state);
1912
1913 if (device->physical_device->rad_info.gfx_level >= GFX11) {
1914 /* On GFX11, alpha to coverage is exported via MRTZ when depth/stencil/samplemask are also
1915 * exported. Though, when a PS epilog is needed and the MS state is NULL (with dynamic
1916 * rendering), it's not possible to know the info at compile time and MRTZ needs to be
1917 * exported in the epilog.
1918 */
1919 key.ps.exports_mrtz_via_epilog =
1920 key.ps.has_epilog && (!state->ms || (pipeline->dynamic_states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE));
1921 }
1922
1923 key.dynamic_rasterization_samples = !!(pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZATION_SAMPLES) ||
1924 (!!(pipeline->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT) && !state->ms);
1925
1926 if (device->physical_device->use_ngg) {
1927 VkShaderStageFlags ngg_stage;
1928
1929 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
1930 ngg_stage = VK_SHADER_STAGE_GEOMETRY_BIT;
1931 } else if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
1932 ngg_stage = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
1933 } else {
1934 ngg_stage = VK_SHADER_STAGE_VERTEX_BIT;
1935 }
1936
1937 key.dynamic_provoking_vtx_mode =
1938 !!(pipeline->dynamic_states & RADV_DYNAMIC_PROVOKING_VERTEX_MODE) &&
1939 (ngg_stage == VK_SHADER_STAGE_VERTEX_BIT || ngg_stage == VK_SHADER_STAGE_GEOMETRY_BIT);
1940 }
1941
1942 if (!(pipeline->dynamic_states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) && state->ia &&
1943 state->ia->primitive_topology != VK_PRIMITIVE_TOPOLOGY_POINT_LIST &&
1944 !(pipeline->dynamic_states & RADV_DYNAMIC_POLYGON_MODE) && state->rs &&
1945 state->rs->polygon_mode != VK_POLYGON_MODE_POINT) {
1946 key.enable_remove_point_size = true;
1947 }
1948
1949 if (device->vk.enabled_features.smoothLines) {
1950 /* For GPL, when the fragment shader is compiled without any pre-rasterization information,
1951 * ensure the line rasterization mode is considered dynamic because we can't know if it's
1952 * going to draw lines or not.
1953 */
1954 if (pipeline->dynamic_states & RADV_DYNAMIC_LINE_RASTERIZATION_MODE ||
1955 ((lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) &&
1956 !(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT))) {
1957 key.dynamic_line_rast_mode = true;
1958 } else {
1959 key.rs.line_smooth_enabled =
1960 state->rs && state->rs->line.mode == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR;
1961 }
1962 }
1963
1964 return key;
1965 }
1966
1967 static struct radv_graphics_pipeline_key
radv_generate_graphics_pipeline_key(const struct radv_device * device,const struct radv_graphics_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo,const struct vk_graphics_pipeline_state * state,VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)1968 radv_generate_graphics_pipeline_key(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline,
1969 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1970 const struct vk_graphics_pipeline_state *state,
1971 VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)
1972 {
1973 struct radv_graphics_pipeline_key key = {0};
1974
1975 key.gfx_state = radv_generate_graphics_state_key(device, pipeline, state, lib_flags);
1976
1977 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
1978 const VkPipelineShaderStageCreateInfo *stage = &pCreateInfo->pStages[i];
1979 gl_shader_stage s = vk_to_mesa_shader_stage(stage->stage);
1980
1981 key.stage_info[s] = radv_pipeline_get_shader_key(device, stage, pipeline->base.create_flags, pCreateInfo->pNext);
1982
1983 if (s == MESA_SHADER_MESH && (pipeline->active_stages & VK_SHADER_STAGE_TASK_BIT_EXT))
1984 key.stage_info[s].has_task_shader = true;
1985 }
1986
1987 return key;
1988 }
1989
1990 static void
radv_fill_shader_info_ngg(struct radv_device * device,struct radv_shader_stage * stages,VkShaderStageFlagBits active_nir_stages)1991 radv_fill_shader_info_ngg(struct radv_device *device, struct radv_shader_stage *stages,
1992 VkShaderStageFlagBits active_nir_stages)
1993 {
1994 if (!device->physical_device->cache_key.use_ngg)
1995 return;
1996
1997 if (stages[MESA_SHADER_VERTEX].nir && stages[MESA_SHADER_VERTEX].info.next_stage != MESA_SHADER_TESS_CTRL) {
1998 stages[MESA_SHADER_VERTEX].info.is_ngg = true;
1999 } else if (stages[MESA_SHADER_TESS_EVAL].nir) {
2000 stages[MESA_SHADER_TESS_EVAL].info.is_ngg = true;
2001 } else if (stages[MESA_SHADER_MESH].nir) {
2002 stages[MESA_SHADER_MESH].info.is_ngg = true;
2003 }
2004
2005 if (device->physical_device->rad_info.gfx_level >= GFX11) {
2006 if (stages[MESA_SHADER_GEOMETRY].nir)
2007 stages[MESA_SHADER_GEOMETRY].info.is_ngg = true;
2008 } else {
2009 /* GFX10/GFX10.3 can't always enable NGG due to HW bugs/limitations. */
2010 if (stages[MESA_SHADER_TESS_EVAL].nir && stages[MESA_SHADER_GEOMETRY].nir &&
2011 stages[MESA_SHADER_GEOMETRY].nir->info.gs.invocations *
2012 stages[MESA_SHADER_GEOMETRY].nir->info.gs.vertices_out >
2013 256) {
2014 /* Fallback to the legacy path if tessellation is
2015 * enabled with extreme geometry because
2016 * EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it
2017 * might hang.
2018 */
2019 stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false;
2020 }
2021
2022 struct radv_shader_stage *last_vgt_stage = NULL;
2023 radv_foreach_stage(i, active_nir_stages)
2024 {
2025 if (radv_is_last_vgt_stage(&stages[i])) {
2026 last_vgt_stage = &stages[i];
2027 }
2028 }
2029
2030 if ((last_vgt_stage && last_vgt_stage->nir->xfb_info) ||
2031 ((device->instance->debug_flags & RADV_DEBUG_NO_NGG_GS) && stages[MESA_SHADER_GEOMETRY].nir)) {
2032 /* NGG needs to be disabled on GFX10/GFX10.3 when:
2033 * - streamout is used because NGG streamout isn't supported
2034 * - NGG GS is explictly disabled to workaround performance issues
2035 */
2036 if (stages[MESA_SHADER_TESS_EVAL].nir)
2037 stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false;
2038 else
2039 stages[MESA_SHADER_VERTEX].info.is_ngg = false;
2040 }
2041
2042 if (stages[MESA_SHADER_GEOMETRY].nir) {
2043 if (stages[MESA_SHADER_TESS_EVAL].nir)
2044 stages[MESA_SHADER_GEOMETRY].info.is_ngg = stages[MESA_SHADER_TESS_EVAL].info.is_ngg;
2045 else
2046 stages[MESA_SHADER_GEOMETRY].info.is_ngg = stages[MESA_SHADER_VERTEX].info.is_ngg;
2047 }
2048 }
2049 }
2050
2051 static bool
radv_consider_force_vrs(const struct radv_graphics_state_key * gfx_state,const struct radv_shader_stage * last_vgt_stage,const struct radv_shader_stage * fs_stage)2052 radv_consider_force_vrs(const struct radv_graphics_state_key *gfx_state, const struct radv_shader_stage *last_vgt_stage,
2053 const struct radv_shader_stage *fs_stage)
2054 {
2055 if (!gfx_state->ps.force_vrs_enabled)
2056 return false;
2057
2058 /* Mesh shaders aren't considered. */
2059 if (last_vgt_stage->info.stage == MESA_SHADER_MESH)
2060 return false;
2061
2062 if (last_vgt_stage->nir->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE))
2063 return false;
2064
2065 /* VRS has no effect if there is no pixel shader. */
2066 if (last_vgt_stage->info.next_stage == MESA_SHADER_NONE)
2067 return false;
2068
2069 /* Do not enable if the PS uses gl_FragCoord because it breaks postprocessing in some games, or with Primitive
2070 * Ordered Pixel Shading (regardless of whether per-pixel data is addressed with gl_FragCoord or a custom
2071 * interpolator) as that'd result in races between adjacent primitives with no common fine pixels.
2072 */
2073 nir_shader *fs_shader = fs_stage->nir;
2074 if (fs_shader && (BITSET_TEST(fs_shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) ||
2075 fs_shader->info.fs.sample_interlock_ordered || fs_shader->info.fs.sample_interlock_unordered ||
2076 fs_shader->info.fs.pixel_interlock_ordered || fs_shader->info.fs.pixel_interlock_unordered)) {
2077 return false;
2078 }
2079
2080 return true;
2081 }
2082
2083 static gl_shader_stage
radv_get_next_stage(gl_shader_stage stage,VkShaderStageFlagBits active_nir_stages)2084 radv_get_next_stage(gl_shader_stage stage, VkShaderStageFlagBits active_nir_stages)
2085 {
2086 switch (stage) {
2087 case MESA_SHADER_VERTEX:
2088 if (active_nir_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
2089 return MESA_SHADER_TESS_CTRL;
2090 } else if (active_nir_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
2091 return MESA_SHADER_GEOMETRY;
2092 } else if (active_nir_stages & VK_SHADER_STAGE_FRAGMENT_BIT) {
2093 return MESA_SHADER_FRAGMENT;
2094 } else {
2095 return MESA_SHADER_NONE;
2096 }
2097 case MESA_SHADER_TESS_CTRL:
2098 return MESA_SHADER_TESS_EVAL;
2099 case MESA_SHADER_TESS_EVAL:
2100 if (active_nir_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
2101 return MESA_SHADER_GEOMETRY;
2102 } else if (active_nir_stages & VK_SHADER_STAGE_FRAGMENT_BIT) {
2103 return MESA_SHADER_FRAGMENT;
2104 } else {
2105 return MESA_SHADER_NONE;
2106 }
2107 case MESA_SHADER_GEOMETRY:
2108 case MESA_SHADER_MESH:
2109 if (active_nir_stages & VK_SHADER_STAGE_FRAGMENT_BIT) {
2110 return MESA_SHADER_FRAGMENT;
2111 } else {
2112 return MESA_SHADER_NONE;
2113 }
2114 case MESA_SHADER_TASK:
2115 return MESA_SHADER_MESH;
2116 case MESA_SHADER_FRAGMENT:
2117 return MESA_SHADER_NONE;
2118 default:
2119 unreachable("invalid graphics shader stage");
2120 }
2121 }
2122
2123 static void
radv_fill_shader_info(struct radv_device * device,const enum radv_pipeline_type pipeline_type,const struct radv_graphics_state_key * gfx_state,struct radv_shader_stage * stages,VkShaderStageFlagBits active_nir_stages)2124 radv_fill_shader_info(struct radv_device *device, const enum radv_pipeline_type pipeline_type,
2125 const struct radv_graphics_state_key *gfx_state, struct radv_shader_stage *stages,
2126 VkShaderStageFlagBits active_nir_stages)
2127 {
2128 radv_foreach_stage(i, active_nir_stages)
2129 {
2130 bool consider_force_vrs = false;
2131
2132 if (radv_is_last_vgt_stage(&stages[i])) {
2133 consider_force_vrs = radv_consider_force_vrs(gfx_state, &stages[i], &stages[MESA_SHADER_FRAGMENT]);
2134 }
2135
2136 radv_nir_shader_info_pass(device, stages[i].nir, &stages[i].layout, &stages[i].key, gfx_state, pipeline_type,
2137 consider_force_vrs, &stages[i].info);
2138 }
2139
2140 radv_nir_shader_info_link(device, gfx_state, stages);
2141 }
2142
2143 static void
radv_declare_pipeline_args(struct radv_device * device,struct radv_shader_stage * stages,const struct radv_graphics_state_key * gfx_state,VkShaderStageFlagBits active_nir_stages)2144 radv_declare_pipeline_args(struct radv_device *device, struct radv_shader_stage *stages,
2145 const struct radv_graphics_state_key *gfx_state, VkShaderStageFlagBits active_nir_stages)
2146 {
2147 enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
2148
2149 if (gfx_level >= GFX9 && stages[MESA_SHADER_TESS_CTRL].nir) {
2150 radv_declare_shader_args(device, gfx_state, &stages[MESA_SHADER_TESS_CTRL].info, MESA_SHADER_TESS_CTRL,
2151 MESA_SHADER_VERTEX, &stages[MESA_SHADER_TESS_CTRL].args);
2152 stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].args.user_sgprs_locs;
2153 stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask =
2154 stages[MESA_SHADER_TESS_CTRL].args.ac.inline_push_const_mask;
2155
2156 stages[MESA_SHADER_VERTEX].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs;
2157 stages[MESA_SHADER_VERTEX].info.inline_push_constant_mask =
2158 stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask;
2159 stages[MESA_SHADER_VERTEX].args = stages[MESA_SHADER_TESS_CTRL].args;
2160
2161 active_nir_stages &= ~(1 << MESA_SHADER_VERTEX);
2162 active_nir_stages &= ~(1 << MESA_SHADER_TESS_CTRL);
2163 }
2164
2165 if (gfx_level >= GFX9 && stages[MESA_SHADER_GEOMETRY].nir) {
2166 gl_shader_stage pre_stage = stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
2167 radv_declare_shader_args(device, gfx_state, &stages[MESA_SHADER_GEOMETRY].info, MESA_SHADER_GEOMETRY, pre_stage,
2168 &stages[MESA_SHADER_GEOMETRY].args);
2169 stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].args.user_sgprs_locs;
2170 stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask =
2171 stages[MESA_SHADER_GEOMETRY].args.ac.inline_push_const_mask;
2172
2173 stages[pre_stage].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs;
2174 stages[pre_stage].info.inline_push_constant_mask = stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask;
2175 stages[pre_stage].args = stages[MESA_SHADER_GEOMETRY].args;
2176 active_nir_stages &= ~(1 << pre_stage);
2177 active_nir_stages &= ~(1 << MESA_SHADER_GEOMETRY);
2178 }
2179
2180 u_foreach_bit (i, active_nir_stages) {
2181 radv_declare_shader_args(device, gfx_state, &stages[i].info, i, MESA_SHADER_NONE, &stages[i].args);
2182 stages[i].info.user_sgprs_locs = stages[i].args.user_sgprs_locs;
2183 stages[i].info.inline_push_constant_mask = stages[i].args.ac.inline_push_const_mask;
2184 }
2185 }
2186
2187 static struct radv_shader *
radv_create_gs_copy_shader(struct radv_device * device,struct vk_pipeline_cache * cache,struct radv_shader_stage * gs_stage,const struct radv_graphics_state_key * gfx_state,bool keep_executable_info,bool keep_statistic_info,struct radv_shader_binary ** gs_copy_binary)2188 radv_create_gs_copy_shader(struct radv_device *device, struct vk_pipeline_cache *cache,
2189 struct radv_shader_stage *gs_stage, const struct radv_graphics_state_key *gfx_state,
2190 bool keep_executable_info, bool keep_statistic_info,
2191 struct radv_shader_binary **gs_copy_binary)
2192 {
2193 const struct radv_shader_info *gs_info = &gs_stage->info;
2194 ac_nir_gs_output_info output_info = {
2195 .streams = gs_info->gs.output_streams,
2196 .usage_mask = gs_info->gs.output_usage_mask,
2197 };
2198 nir_shader *nir = ac_nir_create_gs_copy_shader(
2199 gs_stage->nir, device->physical_device->rad_info.gfx_level,
2200 gs_info->outinfo.clip_dist_mask | gs_info->outinfo.cull_dist_mask, gs_info->outinfo.vs_output_param_offset,
2201 gs_info->outinfo.param_exports, false, false, false, gs_info->force_vrs_per_vertex, &output_info);
2202
2203 nir_validate_shader(nir, "after ac_nir_create_gs_copy_shader");
2204 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
2205
2206 struct radv_shader_stage gs_copy_stage = {
2207 .stage = MESA_SHADER_VERTEX,
2208 .shader_sha1 = {0},
2209 .key =
2210 {
2211 .optimisations_disabled = gs_stage->key.optimisations_disabled,
2212 },
2213 };
2214 radv_nir_shader_info_init(gs_copy_stage.stage, MESA_SHADER_FRAGMENT, &gs_copy_stage.info);
2215 radv_nir_shader_info_pass(device, nir, &gs_stage->layout, &gs_stage->key, gfx_state, RADV_PIPELINE_GRAPHICS, false,
2216 &gs_copy_stage.info);
2217 gs_copy_stage.info.wave_size = 64; /* Wave32 not supported. */
2218 gs_copy_stage.info.workgroup_size = 64; /* HW VS: separate waves, no workgroups */
2219 gs_copy_stage.info.so = gs_info->so;
2220 gs_copy_stage.info.outinfo = gs_info->outinfo;
2221 gs_copy_stage.info.force_vrs_per_vertex = gs_info->force_vrs_per_vertex;
2222 gs_copy_stage.info.type = RADV_SHADER_TYPE_GS_COPY;
2223
2224 radv_declare_shader_args(device, gfx_state, &gs_copy_stage.info, MESA_SHADER_VERTEX, MESA_SHADER_NONE,
2225 &gs_copy_stage.args);
2226 gs_copy_stage.info.user_sgprs_locs = gs_copy_stage.args.user_sgprs_locs;
2227 gs_copy_stage.info.inline_push_constant_mask = gs_copy_stage.args.ac.inline_push_const_mask;
2228
2229 NIR_PASS_V(nir, ac_nir_lower_intrinsics_to_args, device->physical_device->rad_info.gfx_level, AC_HW_VERTEX_SHADER,
2230 &gs_copy_stage.args.ac);
2231 NIR_PASS_V(nir, radv_nir_lower_abi, device->physical_device->rad_info.gfx_level, &gs_copy_stage, gfx_state,
2232 device->physical_device->rad_info.address32_hi);
2233
2234 struct radv_graphics_pipeline_key key = {0};
2235 bool dump_shader = radv_can_dump_shader(device, nir, true);
2236
2237 *gs_copy_binary = radv_shader_nir_to_asm(device, &gs_copy_stage, &nir, 1, &key.gfx_state, keep_executable_info,
2238 keep_statistic_info);
2239 struct radv_shader *copy_shader =
2240 radv_shader_create(device, cache, *gs_copy_binary, keep_executable_info || dump_shader);
2241 if (copy_shader)
2242 radv_shader_generate_debug_info(device, dump_shader, keep_executable_info, *gs_copy_binary, copy_shader, &nir, 1,
2243 &gs_copy_stage.info);
2244 return copy_shader;
2245 }
2246
2247 static void
radv_graphics_shaders_nir_to_asm(struct radv_device * device,struct vk_pipeline_cache * cache,struct radv_shader_stage * stages,const struct radv_graphics_state_key * gfx_state,bool keep_executable_info,bool keep_statistic_info,VkShaderStageFlagBits active_nir_stages,struct radv_shader ** shaders,struct radv_shader_binary ** binaries,struct radv_shader ** gs_copy_shader,struct radv_shader_binary ** gs_copy_binary)2248 radv_graphics_shaders_nir_to_asm(struct radv_device *device, struct vk_pipeline_cache *cache,
2249 struct radv_shader_stage *stages, const struct radv_graphics_state_key *gfx_state,
2250 bool keep_executable_info, bool keep_statistic_info,
2251 VkShaderStageFlagBits active_nir_stages, struct radv_shader **shaders,
2252 struct radv_shader_binary **binaries, struct radv_shader **gs_copy_shader,
2253 struct radv_shader_binary **gs_copy_binary)
2254 {
2255 for (int s = MESA_VULKAN_SHADER_STAGES - 1; s >= 0; s--) {
2256 if (!(active_nir_stages & (1 << s)))
2257 continue;
2258
2259 nir_shader *nir_shaders[2] = {stages[s].nir, NULL};
2260 unsigned shader_count = 1;
2261
2262 /* On GFX9+, TES is merged with GS and VS is merged with TCS or GS. */
2263 if (device->physical_device->rad_info.gfx_level >= GFX9 &&
2264 ((s == MESA_SHADER_GEOMETRY &&
2265 (active_nir_stages & (VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT))) ||
2266 (s == MESA_SHADER_TESS_CTRL && (active_nir_stages & VK_SHADER_STAGE_VERTEX_BIT)))) {
2267 gl_shader_stage pre_stage;
2268
2269 if (s == MESA_SHADER_GEOMETRY && (active_nir_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)) {
2270 pre_stage = MESA_SHADER_TESS_EVAL;
2271 } else {
2272 pre_stage = MESA_SHADER_VERTEX;
2273 }
2274
2275 nir_shaders[0] = stages[pre_stage].nir;
2276 nir_shaders[1] = stages[s].nir;
2277 shader_count = 2;
2278 }
2279
2280 int64_t stage_start = os_time_get_nano();
2281
2282 bool dump_shader = radv_can_dump_shader(device, nir_shaders[0], false);
2283
2284 binaries[s] = radv_shader_nir_to_asm(device, &stages[s], nir_shaders, shader_count, gfx_state,
2285 keep_executable_info, keep_statistic_info);
2286 shaders[s] = radv_shader_create(device, cache, binaries[s], keep_executable_info || dump_shader);
2287 radv_shader_generate_debug_info(device, dump_shader, keep_executable_info, binaries[s], shaders[s], nir_shaders,
2288 shader_count, &stages[s].info);
2289
2290 if (s == MESA_SHADER_GEOMETRY && !stages[s].info.is_ngg) {
2291 *gs_copy_shader = radv_create_gs_copy_shader(device, cache, &stages[MESA_SHADER_GEOMETRY], gfx_state,
2292 keep_executable_info, keep_statistic_info, gs_copy_binary);
2293 }
2294
2295 stages[s].feedback.duration += os_time_get_nano() - stage_start;
2296
2297 active_nir_stages &= ~(1 << nir_shaders[0]->info.stage);
2298 if (nir_shaders[1])
2299 active_nir_stages &= ~(1 << nir_shaders[1]->info.stage);
2300 }
2301 }
2302
2303 static void
radv_pipeline_retain_shaders(struct radv_retained_shaders * retained_shaders,struct radv_shader_stage * stages)2304 radv_pipeline_retain_shaders(struct radv_retained_shaders *retained_shaders, struct radv_shader_stage *stages)
2305 {
2306 for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) {
2307 if (!stages[s].entrypoint)
2308 continue;
2309
2310 int64_t stage_start = os_time_get_nano();
2311
2312 /* Serialize the NIR shader to reduce memory pressure. */
2313 struct blob blob;
2314
2315 blob_init(&blob);
2316 nir_serialize(&blob, stages[s].nir, true);
2317 blob_finish_get_buffer(&blob, &retained_shaders->stages[s].serialized_nir,
2318 &retained_shaders->stages[s].serialized_nir_size);
2319
2320 memcpy(retained_shaders->stages[s].shader_sha1, stages[s].shader_sha1, sizeof(stages[s].shader_sha1));
2321 memcpy(&retained_shaders->stages[s].key, &stages[s].key, sizeof(stages[s].key));
2322
2323 stages[s].feedback.duration += os_time_get_nano() - stage_start;
2324 }
2325 }
2326
2327 static void
radv_pipeline_import_retained_shaders(const struct radv_device * device,struct radv_graphics_pipeline * pipeline,struct radv_graphics_lib_pipeline * lib,struct radv_shader_stage * stages)2328 radv_pipeline_import_retained_shaders(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
2329 struct radv_graphics_lib_pipeline *lib, struct radv_shader_stage *stages)
2330 {
2331 struct radv_retained_shaders *retained_shaders = &lib->retained_shaders;
2332
2333 /* Import the stages (SPIR-V only in case of cache hits). */
2334 for (uint32_t i = 0; i < lib->stage_count; i++) {
2335 const VkPipelineShaderStageCreateInfo *sinfo = &lib->stages[i];
2336 gl_shader_stage s = vk_to_mesa_shader_stage(sinfo->stage);
2337
2338 /* Ignore graphics shader stages that don't need to be imported. */
2339 if (!(shader_stage_to_pipeline_library_flags(sinfo->stage) & lib->lib_flags))
2340 continue;
2341
2342 radv_pipeline_stage_init(sinfo, &lib->layout, &lib->stage_keys[s], &stages[s]);
2343 }
2344
2345 /* Import the NIR shaders (after SPIRV->NIR). */
2346 for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.base.shaders); s++) {
2347 if (!retained_shaders->stages[s].serialized_nir_size)
2348 continue;
2349
2350 int64_t stage_start = os_time_get_nano();
2351
2352 /* Deserialize the NIR shader. */
2353 const struct nir_shader_compiler_options *options = &device->physical_device->nir_options[s];
2354 struct blob_reader blob_reader;
2355 blob_reader_init(&blob_reader, retained_shaders->stages[s].serialized_nir,
2356 retained_shaders->stages[s].serialized_nir_size);
2357
2358 stages[s].stage = s;
2359 stages[s].nir = nir_deserialize(NULL, options, &blob_reader);
2360 stages[s].entrypoint = nir_shader_get_entrypoint(stages[s].nir)->function->name;
2361 memcpy(stages[s].shader_sha1, retained_shaders->stages[s].shader_sha1, sizeof(stages[s].shader_sha1));
2362 memcpy(&stages[s].key, &retained_shaders->stages[s].key, sizeof(stages[s].key));
2363
2364 radv_shader_layout_init(&lib->layout, s, &stages[s].layout);
2365
2366 stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
2367
2368 stages[s].feedback.duration += os_time_get_nano() - stage_start;
2369 }
2370 }
2371
2372 static void
radv_pipeline_load_retained_shaders(const struct radv_device * device,struct radv_graphics_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo,struct radv_shader_stage * stages)2373 radv_pipeline_load_retained_shaders(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
2374 const VkGraphicsPipelineCreateInfo *pCreateInfo, struct radv_shader_stage *stages)
2375 {
2376 const VkPipelineLibraryCreateInfoKHR *libs_info =
2377 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
2378 const bool link_optimize = (pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
2379
2380 /* Nothing to load if no libs are imported. */
2381 if (!libs_info)
2382 return;
2383
2384 /* Nothing to load if fast-linking is enabled and if there is no retained shaders. */
2385 if (!link_optimize && !pipeline->retain_shaders)
2386 return;
2387
2388 for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
2389 RADV_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
2390 struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib);
2391
2392 radv_pipeline_import_retained_shaders(device, pipeline, gfx_pipeline_lib, stages);
2393 }
2394 }
2395
2396 static unsigned
radv_get_rasterization_prim(const struct radv_shader_stage * stages,const struct radv_graphics_state_key * gfx_state)2397 radv_get_rasterization_prim(const struct radv_shader_stage *stages, const struct radv_graphics_state_key *gfx_state)
2398 {
2399 unsigned rast_prim;
2400
2401 if (gfx_state->unknown_rast_prim)
2402 return -1;
2403
2404 if (stages[MESA_SHADER_GEOMETRY].nir) {
2405 rast_prim = radv_conv_gl_prim_to_gs_out(stages[MESA_SHADER_GEOMETRY].nir->info.gs.output_primitive);
2406 } else if (stages[MESA_SHADER_TESS_EVAL].nir) {
2407 if (stages[MESA_SHADER_TESS_EVAL].nir->info.tess.point_mode) {
2408 rast_prim = V_028A6C_POINTLIST;
2409 } else {
2410 rast_prim = radv_conv_tess_prim_to_gs_out(stages[MESA_SHADER_TESS_EVAL].nir->info.tess._primitive_mode);
2411 }
2412 } else if (stages[MESA_SHADER_MESH].nir) {
2413 rast_prim = radv_conv_gl_prim_to_gs_out(stages[MESA_SHADER_MESH].nir->info.mesh.primitive_type);
2414 } else {
2415 rast_prim = radv_conv_prim_to_gs_out(gfx_state->ia.topology, false);
2416 }
2417
2418 return rast_prim;
2419 }
2420
2421 static bool
radv_skip_graphics_pipeline_compile(const struct radv_device * device,const struct radv_graphics_pipeline * pipeline,VkGraphicsPipelineLibraryFlagBitsEXT lib_flags,bool fast_linking_enabled)2422 radv_skip_graphics_pipeline_compile(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline,
2423 VkGraphicsPipelineLibraryFlagBitsEXT lib_flags, bool fast_linking_enabled)
2424 {
2425 VkShaderStageFlagBits binary_stages = 0;
2426
2427 /* Do not skip when fast-linking isn't enabled. */
2428 if (!fast_linking_enabled)
2429 return false;
2430
2431 /* Determine which shader stages have been imported. */
2432 if (pipeline->base.shaders[MESA_SHADER_MESH]) {
2433 binary_stages |= VK_SHADER_STAGE_MESH_BIT_EXT;
2434 if (pipeline->base.shaders[MESA_SHADER_TASK]) {
2435 binary_stages |= VK_SHADER_STAGE_TASK_BIT_EXT;
2436 }
2437 } else {
2438 for (uint32_t i = 0; i < MESA_SHADER_COMPUTE; i++) {
2439 if (!pipeline->base.shaders[i])
2440 continue;
2441
2442 binary_stages |= mesa_to_vk_shader_stage(i);
2443 }
2444
2445 if (device->physical_device->rad_info.gfx_level >= GFX9) {
2446 /* On GFX9+, TES is merged with GS and VS is merged with TCS or GS. */
2447 if (binary_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
2448 binary_stages |= VK_SHADER_STAGE_VERTEX_BIT;
2449 }
2450
2451 if (binary_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
2452 if (binary_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
2453 binary_stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
2454 } else {
2455 binary_stages |= VK_SHADER_STAGE_VERTEX_BIT;
2456 }
2457 }
2458 }
2459 }
2460
2461 /* Only skip compilation when all binaries have been imported. */
2462 return binary_stages == pipeline->active_stages;
2463 }
2464
2465 void
radv_graphics_shaders_compile(struct radv_device * device,struct vk_pipeline_cache * cache,struct radv_shader_stage * stages,const struct radv_graphics_state_key * gfx_state,bool keep_executable_info,bool keep_statistic_info,bool is_internal,struct radv_retained_shaders * retained_shaders,bool noop_fs,struct radv_shader ** shaders,struct radv_shader_binary ** binaries,struct radv_shader ** gs_copy_shader,struct radv_shader_binary ** gs_copy_binary)2466 radv_graphics_shaders_compile(struct radv_device *device, struct vk_pipeline_cache *cache,
2467 struct radv_shader_stage *stages, const struct radv_graphics_state_key *gfx_state,
2468 bool keep_executable_info, bool keep_statistic_info, bool is_internal,
2469 struct radv_retained_shaders *retained_shaders, bool noop_fs,
2470 struct radv_shader **shaders, struct radv_shader_binary **binaries,
2471 struct radv_shader **gs_copy_shader, struct radv_shader_binary **gs_copy_binary)
2472 {
2473 const bool nir_cache = device->instance->perftest_flags & RADV_PERFTEST_NIR_CACHE;
2474 for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) {
2475 if (!stages[s].entrypoint)
2476 continue;
2477
2478 int64_t stage_start = os_time_get_nano();
2479
2480 /* NIR might already have been imported from a library. */
2481 if (!stages[s].nir) {
2482 struct radv_spirv_to_nir_options options = {
2483 .lower_view_index_to_zero = !gfx_state->has_multiview_view_index,
2484 .fix_dual_src_mrt1_export =
2485 gfx_state->ps.epilog.mrt0_is_dual_src && device->instance->drirc.dual_color_blend_by_location,
2486 };
2487 blake3_hash key;
2488
2489 if (nir_cache) {
2490 radv_hash_graphics_spirv_to_nir(key, &stages[s], &options);
2491 stages[s].nir = radv_pipeline_cache_lookup_nir(device, cache, s, key);
2492 }
2493 if (!stages[s].nir) {
2494 stages[s].nir = radv_shader_spirv_to_nir(device, &stages[s], &options, is_internal);
2495 if (nir_cache)
2496 radv_pipeline_cache_insert_nir(device, cache, key, stages[s].nir);
2497 }
2498 }
2499
2500 stages[s].feedback.duration += os_time_get_nano() - stage_start;
2501 }
2502
2503 if (retained_shaders) {
2504 radv_pipeline_retain_shaders(retained_shaders, stages);
2505 }
2506
2507 VkShaderStageFlagBits active_nir_stages = 0;
2508 for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
2509 if (stages[i].nir)
2510 active_nir_stages |= mesa_to_vk_shader_stage(i);
2511 }
2512
2513 if (!device->physical_device->mesh_fast_launch_2 && stages[MESA_SHADER_MESH].nir &&
2514 BITSET_TEST(stages[MESA_SHADER_MESH].nir->info.system_values_read, SYSTEM_VALUE_WORKGROUP_ID)) {
2515 nir_shader *mesh = stages[MESA_SHADER_MESH].nir;
2516 nir_shader *task = stages[MESA_SHADER_TASK].nir;
2517
2518 /* Mesh shaders only have a 1D "vertex index" which we use
2519 * as "workgroup index" to emulate the 3D workgroup ID.
2520 */
2521 nir_lower_compute_system_values_options o = {
2522 .lower_workgroup_id_to_index = true,
2523 .shortcut_1d_workgroup_id = true,
2524 .num_workgroups[0] = task ? task->info.mesh.ts_mesh_dispatch_dimensions[0] : 0,
2525 .num_workgroups[1] = task ? task->info.mesh.ts_mesh_dispatch_dimensions[1] : 0,
2526 .num_workgroups[2] = task ? task->info.mesh.ts_mesh_dispatch_dimensions[2] : 0,
2527 };
2528
2529 NIR_PASS(_, mesh, nir_lower_compute_system_values, &o);
2530 }
2531
2532 radv_foreach_stage(i, active_nir_stages)
2533 {
2534 gl_shader_stage next_stage;
2535
2536 if (stages[i].next_stage != MESA_SHADER_NONE) {
2537 next_stage = stages[i].next_stage;
2538 } else {
2539 next_stage = radv_get_next_stage(i, active_nir_stages);
2540 }
2541
2542 radv_nir_shader_info_init(i, next_stage, &stages[i].info);
2543 }
2544
2545 /* Determine if shaders uses NGG before linking because it's needed for some NIR pass. */
2546 radv_fill_shader_info_ngg(device, stages, active_nir_stages);
2547
2548 if (stages[MESA_SHADER_GEOMETRY].nir) {
2549 unsigned nir_gs_flags = nir_lower_gs_intrinsics_per_stream;
2550
2551 if (stages[MESA_SHADER_GEOMETRY].info.is_ngg) {
2552 nir_gs_flags |= nir_lower_gs_intrinsics_count_primitives |
2553 nir_lower_gs_intrinsics_count_vertices_per_primitive |
2554 nir_lower_gs_intrinsics_overwrite_incomplete;
2555 }
2556
2557 NIR_PASS(_, stages[MESA_SHADER_GEOMETRY].nir, nir_lower_gs_intrinsics, nir_gs_flags);
2558 }
2559
2560 /* Remove all varyings when the fragment shader is a noop. */
2561 if (noop_fs) {
2562 radv_foreach_stage(i, active_nir_stages)
2563 {
2564 if (radv_is_last_vgt_stage(&stages[i])) {
2565 radv_remove_varyings(stages[i].nir);
2566 break;
2567 }
2568 }
2569 }
2570
2571 radv_graphics_shaders_link(device, gfx_state, stages);
2572
2573 if (stages[MESA_SHADER_FRAGMENT].nir) {
2574 unsigned rast_prim = radv_get_rasterization_prim(stages, gfx_state);
2575
2576 NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, radv_nir_lower_fs_barycentric, gfx_state, rast_prim);
2577 }
2578
2579 radv_foreach_stage(i, active_nir_stages)
2580 {
2581 int64_t stage_start = os_time_get_nano();
2582
2583 radv_optimize_nir(stages[i].nir, stages[i].key.optimisations_disabled);
2584
2585 /* Gather info again, information such as outputs_read can be out-of-date. */
2586 nir_shader_gather_info(stages[i].nir, nir_shader_get_entrypoint(stages[i].nir));
2587 radv_nir_lower_io(device, stages[i].nir);
2588
2589 stages[i].feedback.duration += os_time_get_nano() - stage_start;
2590 }
2591
2592 if (stages[MESA_SHADER_FRAGMENT].nir) {
2593 radv_nir_lower_poly_line_smooth(stages[MESA_SHADER_FRAGMENT].nir, gfx_state);
2594 }
2595
2596 radv_fill_shader_info(device, RADV_PIPELINE_GRAPHICS, gfx_state, stages, active_nir_stages);
2597
2598 radv_declare_pipeline_args(device, stages, gfx_state, active_nir_stages);
2599
2600 radv_foreach_stage(i, active_nir_stages)
2601 {
2602 int64_t stage_start = os_time_get_nano();
2603
2604 radv_postprocess_nir(device, gfx_state, &stages[i]);
2605
2606 stages[i].feedback.duration += os_time_get_nano() - stage_start;
2607
2608 if (radv_can_dump_shader(device, stages[i].nir, false))
2609 nir_print_shader(stages[i].nir, stderr);
2610 }
2611
2612 /* Compile NIR shaders to AMD assembly. */
2613 radv_graphics_shaders_nir_to_asm(device, cache, stages, gfx_state, keep_executable_info, keep_statistic_info,
2614 active_nir_stages, shaders, binaries, gs_copy_shader, gs_copy_binary);
2615
2616 if (keep_executable_info) {
2617 for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
2618 struct radv_shader *shader = shaders[i];
2619 if (!shader)
2620 continue;
2621
2622 if (!stages[i].spirv.size)
2623 continue;
2624
2625 shader->spirv = malloc(stages[i].spirv.size);
2626 memcpy(shader->spirv, stages[i].spirv.data, stages[i].spirv.size);
2627 shader->spirv_size = stages[i].spirv.size;
2628 }
2629 }
2630 }
2631
2632 static bool
radv_should_compute_pipeline_hash(const struct radv_device * device,const struct radv_graphics_pipeline * pipeline,bool fast_linking_enabled)2633 radv_should_compute_pipeline_hash(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline,
2634 bool fast_linking_enabled)
2635 {
2636 /* Skip computing the pipeline hash when GPL fast-linking is enabled because these shaders aren't
2637 * supposed to be cached and computing the hash is costly. Though, make sure it's always computed
2638 * when RGP is enabled, otherwise ISA isn't reported.
2639 */
2640 return !fast_linking_enabled ||
2641 ((device->instance->vk.trace_mode & RADV_TRACE_MODE_RGP) && pipeline->base.type == RADV_PIPELINE_GRAPHICS);
2642 }
2643
2644 static VkResult
radv_graphics_pipeline_compile(struct radv_graphics_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo,struct radv_pipeline_layout * pipeline_layout,struct radv_device * device,struct vk_pipeline_cache * cache,const struct radv_graphics_pipeline_key * pipeline_key,VkGraphicsPipelineLibraryFlagBitsEXT lib_flags,bool fast_linking_enabled)2645 radv_graphics_pipeline_compile(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo,
2646 struct radv_pipeline_layout *pipeline_layout, struct radv_device *device,
2647 struct vk_pipeline_cache *cache, const struct radv_graphics_pipeline_key *pipeline_key,
2648 VkGraphicsPipelineLibraryFlagBitsEXT lib_flags, bool fast_linking_enabled)
2649 {
2650 struct radv_shader_binary *binaries[MESA_VULKAN_SHADER_STAGES] = {NULL};
2651 struct radv_shader_binary *gs_copy_binary = NULL;
2652 unsigned char hash[20];
2653 bool keep_executable_info = radv_pipeline_capture_shaders(device, pipeline->base.create_flags);
2654 bool keep_statistic_info = radv_pipeline_capture_shader_stats(device, pipeline->base.create_flags);
2655 struct radv_shader_stage stages[MESA_VULKAN_SHADER_STAGES];
2656 const VkPipelineCreationFeedbackCreateInfo *creation_feedback =
2657 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
2658 VkPipelineCreationFeedback pipeline_feedback = {
2659 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
2660 };
2661 bool skip_shaders_cache = false;
2662 VkResult result = VK_SUCCESS;
2663 const bool retain_shaders =
2664 !!(pipeline->base.create_flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT);
2665 struct radv_retained_shaders *retained_shaders = NULL;
2666
2667 int64_t pipeline_start = os_time_get_nano();
2668
2669 for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
2670 stages[i].entrypoint = NULL;
2671 stages[i].nir = NULL;
2672 stages[i].spirv.size = 0;
2673 stages[i].next_stage = MESA_SHADER_NONE;
2674 }
2675
2676 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
2677 const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i];
2678 gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
2679
2680 /* Ignore graphics shader stages that don't need to be imported. */
2681 if (!(shader_stage_to_pipeline_library_flags(sinfo->stage) & lib_flags))
2682 continue;
2683
2684 radv_pipeline_stage_init(sinfo, pipeline_layout, &pipeline_key->stage_info[stage], &stages[stage]);
2685 }
2686
2687 radv_pipeline_load_retained_shaders(device, pipeline, pCreateInfo, stages);
2688
2689 if (radv_should_compute_pipeline_hash(device, pipeline, fast_linking_enabled)) {
2690 radv_hash_shaders(device, hash, stages, MESA_VULKAN_SHADER_STAGES, pipeline_layout, &pipeline_key->gfx_state);
2691
2692 pipeline->base.pipeline_hash = *(uint64_t *)hash;
2693 }
2694
2695 /* Skip the shaders cache when any of the below are true:
2696 * - fast-linking is enabled because it's useless to cache unoptimized pipelines
2697 * - shaders are captured because it's for debugging purposes
2698 * - graphics pipeline libraries are created with the RETAIN_LINK_TIME_OPTIMIZATION flag and
2699 * module identifiers are used (ie. no SPIR-V provided).
2700 */
2701 if (fast_linking_enabled || keep_executable_info) {
2702 skip_shaders_cache = true;
2703 } else if (retain_shaders) {
2704 assert(pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR);
2705 for (uint32_t i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
2706 if (stages[i].entrypoint && !stages[i].spirv.size) {
2707 skip_shaders_cache = true;
2708 break;
2709 }
2710 }
2711 }
2712
2713 bool found_in_application_cache = true;
2714 if (!skip_shaders_cache &&
2715 radv_pipeline_cache_search(device, cache, &pipeline->base, hash, &found_in_application_cache)) {
2716 if (found_in_application_cache)
2717 pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
2718
2719 if (retain_shaders) {
2720 /* For graphics pipeline libraries created with the RETAIN_LINK_TIME_OPTIMIZATION flag, we
2721 * need to retain the stage info because we can't know if the LTO pipelines will
2722 * be find in the shaders cache.
2723 */
2724 struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(&pipeline->base);
2725
2726 gfx_pipeline_lib->stages = radv_copy_shader_stage_create_info(device, pCreateInfo->stageCount,
2727 pCreateInfo->pStages, gfx_pipeline_lib->mem_ctx);
2728 if (!gfx_pipeline_lib->stages)
2729 return VK_ERROR_OUT_OF_HOST_MEMORY;
2730
2731 gfx_pipeline_lib->stage_count = pCreateInfo->stageCount;
2732
2733 for (unsigned i = 0; i < pCreateInfo->stageCount; i++) {
2734 gl_shader_stage s = vk_to_mesa_shader_stage(pCreateInfo->pStages[i].stage);
2735 gfx_pipeline_lib->stage_keys[s] = pipeline_key->stage_info[s];
2736 }
2737 }
2738
2739 result = VK_SUCCESS;
2740 goto done;
2741 }
2742
2743 if (pipeline->base.create_flags & VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR)
2744 return VK_PIPELINE_COMPILE_REQUIRED;
2745
2746 if (retain_shaders) {
2747 struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(&pipeline->base);
2748 retained_shaders = &gfx_pipeline_lib->retained_shaders;
2749 }
2750
2751 const bool noop_fs = radv_pipeline_needs_noop_fs(pipeline, &pipeline_key->gfx_state);
2752
2753 radv_graphics_shaders_compile(device, cache, stages, &pipeline_key->gfx_state, keep_executable_info,
2754 keep_statistic_info, pipeline->base.is_internal, retained_shaders, noop_fs,
2755 pipeline->base.shaders, binaries, &pipeline->base.gs_copy_shader, &gs_copy_binary);
2756
2757 if (!skip_shaders_cache) {
2758 radv_pipeline_cache_insert(device, cache, &pipeline->base, hash);
2759 }
2760
2761 free(gs_copy_binary);
2762 for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
2763 free(binaries[i]);
2764 if (stages[i].nir) {
2765 if (radv_can_dump_shader_stats(device, stages[i].nir) && pipeline->base.shaders[i]) {
2766 radv_dump_shader_stats(device, &pipeline->base, pipeline->base.shaders[i], i, stderr);
2767 }
2768 }
2769 }
2770
2771 done:
2772 for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
2773 ralloc_free(stages[i].nir);
2774 }
2775 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
2776
2777 if (creation_feedback) {
2778 *creation_feedback->pPipelineCreationFeedback = pipeline_feedback;
2779
2780 if (creation_feedback->pipelineStageCreationFeedbackCount > 0) {
2781 uint32_t num_feedbacks = 0;
2782
2783 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
2784 gl_shader_stage s = vk_to_mesa_shader_stage(pCreateInfo->pStages[i].stage);
2785 creation_feedback->pPipelineStageCreationFeedbacks[num_feedbacks++] = stages[s].feedback;
2786 }
2787
2788 /* Stages imported from graphics pipeline libraries are defined as additional entries in the
2789 * order they were imported.
2790 */
2791 const VkPipelineLibraryCreateInfoKHR *libs_info =
2792 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
2793 if (libs_info) {
2794 for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
2795 RADV_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
2796 struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib);
2797
2798 if (!gfx_pipeline_lib->base.active_stages)
2799 continue;
2800
2801 radv_foreach_stage(s, gfx_pipeline_lib->base.active_stages)
2802 {
2803 creation_feedback->pPipelineStageCreationFeedbacks[num_feedbacks++] = stages[s].feedback;
2804 }
2805 }
2806 }
2807
2808 assert(num_feedbacks == creation_feedback->pipelineStageCreationFeedbackCount);
2809 }
2810 }
2811
2812 return result;
2813 }
2814
2815 static void
radv_pipeline_emit_blend_state(struct radeon_cmdbuf * ctx_cs,const struct radv_graphics_pipeline * pipeline,const struct radv_blend_state * blend)2816 radv_pipeline_emit_blend_state(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline,
2817 const struct radv_blend_state *blend)
2818 {
2819 struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
2820
2821 if (ps && ps->info.has_epilog)
2822 return;
2823
2824 radeon_set_context_reg(ctx_cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format);
2825
2826 radeon_set_context_reg(ctx_cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask);
2827 }
2828
2829 void
radv_emit_vgt_gs_mode(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,const struct radv_shader * last_vgt_api_shader)2830 radv_emit_vgt_gs_mode(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs,
2831 const struct radv_shader *last_vgt_api_shader)
2832 {
2833 const struct radv_physical_device *pdevice = device->physical_device;
2834 const struct radv_shader_info *info = &last_vgt_api_shader->info;
2835 unsigned vgt_primitiveid_en = 0;
2836 uint32_t vgt_gs_mode = 0;
2837
2838 if (info->is_ngg)
2839 return;
2840
2841 if (info->stage == MESA_SHADER_GEOMETRY) {
2842 vgt_gs_mode = ac_vgt_gs_mode(info->gs.vertices_out, pdevice->rad_info.gfx_level);
2843 } else if (info->outinfo.export_prim_id || info->uses_prim_id) {
2844 vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
2845 vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1);
2846 }
2847
2848 radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en);
2849 radeon_set_context_reg(ctx_cs, R_028A40_VGT_GS_MODE, vgt_gs_mode);
2850 }
2851
2852 static void
radv_emit_hw_vs(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,struct radeon_cmdbuf * cs,const struct radv_shader * shader)2853 radv_emit_hw_vs(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
2854 const struct radv_shader *shader)
2855 {
2856 const struct radv_physical_device *pdevice = device->physical_device;
2857 uint64_t va = radv_shader_get_va(shader);
2858
2859 radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4);
2860 radeon_emit(cs, va >> 8);
2861 radeon_emit(cs, S_00B124_MEM_BASE(va >> 40));
2862 radeon_emit(cs, shader->config.rsrc1);
2863 radeon_emit(cs, shader->config.rsrc2);
2864
2865 const struct radv_vs_output_info *outinfo = &shader->info.outinfo;
2866 unsigned clip_dist_mask, cull_dist_mask, total_mask;
2867 clip_dist_mask = outinfo->clip_dist_mask;
2868 cull_dist_mask = outinfo->cull_dist_mask;
2869 total_mask = clip_dist_mask | cull_dist_mask;
2870
2871 bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index ||
2872 outinfo->writes_primitive_shading_rate;
2873 unsigned spi_vs_out_config, nparams;
2874
2875 /* VS is required to export at least one param. */
2876 nparams = MAX2(outinfo->param_exports, 1);
2877 spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
2878
2879 if (pdevice->rad_info.gfx_level >= GFX10) {
2880 spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0);
2881 }
2882
2883 radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, spi_vs_out_config);
2884
2885 radeon_set_context_reg(
2886 ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
2887 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
2888 S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) |
2889 S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) |
2890 S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE));
2891
2892 radeon_set_context_reg(
2893 ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
2894 S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
2895 S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
2896 S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
2897 S_02881C_USE_VTX_VRS_RATE(outinfo->writes_primitive_shading_rate) |
2898 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
2899 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena ||
2900 (pdevice->rad_info.gfx_level >= GFX10_3 && outinfo->pos_exports > 1)) |
2901 S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
2902 S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | total_mask << 8 | clip_dist_mask);
2903
2904 if (pdevice->rad_info.gfx_level <= GFX8)
2905 radeon_set_context_reg(ctx_cs, R_028AB4_VGT_REUSE_OFF, outinfo->writes_viewport_index);
2906
2907 unsigned late_alloc_wave64, cu_mask;
2908 ac_compute_late_alloc(&pdevice->rad_info, false, false, shader->config.scratch_bytes_per_wave > 0,
2909 &late_alloc_wave64, &cu_mask);
2910
2911 if (pdevice->rad_info.gfx_level >= GFX7) {
2912 radeon_set_sh_reg_idx(
2913 pdevice, cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, 3,
2914 ac_apply_cu_en(S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F), C_00B118_CU_EN, 0, &pdevice->rad_info));
2915 radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(late_alloc_wave64));
2916 }
2917 if (pdevice->rad_info.gfx_level >= GFX10) {
2918 uint32_t oversub_pc_lines = late_alloc_wave64 ? pdevice->rad_info.pc_lines / 4 : 0;
2919 gfx10_emit_ge_pc_alloc(cs, pdevice->rad_info.gfx_level, oversub_pc_lines);
2920
2921 /* Required programming for tessellation (legacy pipeline only). */
2922 if (shader->info.stage == MESA_SHADER_TESS_EVAL) {
2923 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
2924 S_028A44_ES_VERTS_PER_SUBGRP(250) | S_028A44_GS_PRIMS_PER_SUBGRP(126) |
2925 S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
2926 }
2927 }
2928 }
2929
2930 static void
radv_emit_hw_es(struct radeon_cmdbuf * cs,const struct radv_shader * shader)2931 radv_emit_hw_es(struct radeon_cmdbuf *cs, const struct radv_shader *shader)
2932 {
2933 uint64_t va = radv_shader_get_va(shader);
2934
2935 radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4);
2936 radeon_emit(cs, va >> 8);
2937 radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
2938 radeon_emit(cs, shader->config.rsrc1);
2939 radeon_emit(cs, shader->config.rsrc2);
2940 }
2941
2942 static void
radv_emit_hw_ls(struct radeon_cmdbuf * cs,const struct radv_shader * shader)2943 radv_emit_hw_ls(struct radeon_cmdbuf *cs, const struct radv_shader *shader)
2944 {
2945 uint64_t va = radv_shader_get_va(shader);
2946
2947 radeon_set_sh_reg(cs, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
2948
2949 radeon_set_sh_reg(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, shader->config.rsrc1);
2950 }
2951
2952 static void
radv_emit_hw_ngg(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,struct radeon_cmdbuf * cs,const struct radv_shader * es,const struct radv_shader * shader)2953 radv_emit_hw_ngg(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
2954 const struct radv_shader *es, const struct radv_shader *shader)
2955 {
2956 const struct radv_physical_device *pdevice = device->physical_device;
2957 uint64_t va = radv_shader_get_va(shader);
2958 gl_shader_stage es_type;
2959 const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info;
2960
2961 if (shader->info.stage == MESA_SHADER_GEOMETRY) {
2962 if (shader->info.merged_shader_compiled_separately) {
2963 es_type = es->info.stage;
2964 } else {
2965 es_type = shader->info.gs.es_type;
2966 }
2967 } else {
2968 es_type = shader->info.stage;
2969 }
2970
2971 radeon_set_sh_reg(cs, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
2972
2973 radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
2974 radeon_emit(cs, shader->config.rsrc1);
2975 radeon_emit(cs, shader->config.rsrc2);
2976
2977 const struct radv_vs_output_info *outinfo = &shader->info.outinfo;
2978 unsigned clip_dist_mask, cull_dist_mask, total_mask;
2979 clip_dist_mask = outinfo->clip_dist_mask;
2980 cull_dist_mask = outinfo->cull_dist_mask;
2981 total_mask = clip_dist_mask | cull_dist_mask;
2982
2983 bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index ||
2984 outinfo->writes_primitive_shading_rate;
2985 bool es_enable_prim_id = outinfo->export_prim_id || (es && es->info.uses_prim_id);
2986 bool break_wave_at_eoi = false;
2987 unsigned ge_cntl;
2988
2989 if (es_type == MESA_SHADER_TESS_EVAL) {
2990 if (es_enable_prim_id || (shader->info.uses_prim_id))
2991 break_wave_at_eoi = true;
2992 }
2993
2994 bool no_pc_export = outinfo->param_exports == 0 && outinfo->prim_param_exports == 0;
2995 unsigned num_params = MAX2(outinfo->param_exports, 1);
2996 unsigned num_prim_params = outinfo->prim_param_exports;
2997 radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG,
2998 S_0286C4_VS_EXPORT_COUNT(num_params - 1) | S_0286C4_PRIM_EXPORT_COUNT(num_prim_params) |
2999 S_0286C4_NO_PC_EXPORT(no_pc_export));
3000
3001 unsigned idx_format = V_028708_SPI_SHADER_1COMP;
3002 if (outinfo->writes_layer_per_primitive || outinfo->writes_viewport_index_per_primitive ||
3003 outinfo->writes_primitive_shading_rate_per_primitive)
3004 idx_format = V_028708_SPI_SHADER_2COMP;
3005
3006 radeon_set_context_reg(ctx_cs, R_028708_SPI_SHADER_IDX_FORMAT, S_028708_IDX0_EXPORT_FORMAT(idx_format));
3007 radeon_set_context_reg(
3008 ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
3009 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
3010 S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) |
3011 S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) |
3012 S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE));
3013
3014 radeon_set_context_reg(
3015 ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
3016 S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
3017 S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
3018 S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
3019 S_02881C_USE_VTX_VRS_RATE(outinfo->writes_primitive_shading_rate) |
3020 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
3021 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena ||
3022 (pdevice->rad_info.gfx_level >= GFX10_3 && outinfo->pos_exports > 1)) |
3023 S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
3024 S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | total_mask << 8 | clip_dist_mask);
3025
3026 radeon_set_context_reg(
3027 ctx_cs, R_028A84_VGT_PRIMITIVEID_EN,
3028 S_028A84_PRIMITIVEID_EN(es_enable_prim_id) | S_028A84_NGG_DISABLE_PROVOK_REUSE(outinfo->export_prim_id));
3029
3030 /* NGG specific registers. */
3031 uint32_t gs_num_invocations = shader->info.stage == MESA_SHADER_GEOMETRY ? shader->info.gs.invocations : 1;
3032
3033 if (pdevice->rad_info.gfx_level < GFX11) {
3034 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
3035 S_028A44_ES_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) |
3036 S_028A44_GS_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) |
3037 S_028A44_GS_INST_PRIMS_IN_SUBGRP(ngg_state->max_gsprims * gs_num_invocations));
3038 }
3039
3040 radeon_set_context_reg(ctx_cs, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
3041 S_0287FC_MAX_VERTS_PER_SUBGROUP(ngg_state->max_out_verts));
3042 radeon_set_context_reg(
3043 ctx_cs, R_028B4C_GE_NGG_SUBGRP_CNTL,
3044 S_028B4C_PRIM_AMP_FACTOR(ngg_state->prim_amp_factor) | S_028B4C_THDS_PER_SUBGRP(0)); /* for fast launch */
3045 radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
3046 S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) |
3047 S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(ngg_state->max_vert_out_per_gs_instance));
3048
3049 if (pdevice->rad_info.gfx_level >= GFX11) {
3050 ge_cntl = S_03096C_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) |
3051 S_03096C_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) |
3052 S_03096C_BREAK_PRIMGRP_AT_EOI(break_wave_at_eoi) | S_03096C_PRIM_GRP_SIZE_GFX11(252);
3053 } else {
3054 ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(ngg_state->max_gsprims) |
3055 S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts) | S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
3056 }
3057
3058 /* Bug workaround for a possible hang with non-tessellation cases.
3059 * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
3060 *
3061 * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
3062 */
3063 if (pdevice->rad_info.gfx_level == GFX10 && es_type != MESA_SHADER_TESS_EVAL && ngg_state->hw_max_esverts != 256) {
3064 ge_cntl &= C_03096C_VERT_GRP_SIZE;
3065
3066 if (ngg_state->hw_max_esverts > 5) {
3067 ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5);
3068 }
3069 }
3070
3071 radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, ge_cntl);
3072
3073 unsigned late_alloc_wave64, cu_mask;
3074 ac_compute_late_alloc(&pdevice->rad_info, true, shader->info.has_ngg_culling,
3075 shader->config.scratch_bytes_per_wave > 0, &late_alloc_wave64, &cu_mask);
3076
3077 radeon_set_sh_reg_idx(
3078 pdevice, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
3079 ac_apply_cu_en(S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F), C_00B21C_CU_EN, 0, &pdevice->rad_info));
3080
3081 if (pdevice->rad_info.gfx_level >= GFX11) {
3082 radeon_set_sh_reg_idx(
3083 pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
3084 ac_apply_cu_en(S_00B204_CU_EN_GFX11(0x1) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64),
3085 C_00B204_CU_EN_GFX11, 16, &pdevice->rad_info));
3086 } else {
3087 radeon_set_sh_reg_idx(
3088 pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
3089 ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64),
3090 C_00B204_CU_EN_GFX10, 16, &pdevice->rad_info));
3091 }
3092
3093 uint32_t oversub_pc_lines = late_alloc_wave64 ? pdevice->rad_info.pc_lines / 4 : 0;
3094 if (shader->info.has_ngg_culling) {
3095 unsigned oversub_factor = 2;
3096
3097 if (outinfo->param_exports > 4)
3098 oversub_factor = 4;
3099 else if (outinfo->param_exports > 2)
3100 oversub_factor = 3;
3101
3102 oversub_pc_lines *= oversub_factor;
3103 }
3104
3105 gfx10_emit_ge_pc_alloc(cs, pdevice->rad_info.gfx_level, oversub_pc_lines);
3106 }
3107
3108 static void
radv_emit_hw_hs(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * shader)3109 radv_emit_hw_hs(const struct radv_device *device, struct radeon_cmdbuf *cs, const struct radv_shader *shader)
3110 {
3111 const struct radv_physical_device *pdevice = device->physical_device;
3112 uint64_t va = radv_shader_get_va(shader);
3113
3114 if (pdevice->rad_info.gfx_level >= GFX9) {
3115 if (pdevice->rad_info.gfx_level >= GFX10) {
3116 radeon_set_sh_reg(cs, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
3117 } else {
3118 radeon_set_sh_reg(cs, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
3119 }
3120
3121 radeon_set_sh_reg(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, shader->config.rsrc1);
3122 } else {
3123 radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4);
3124 radeon_emit(cs, va >> 8);
3125 radeon_emit(cs, S_00B424_MEM_BASE(va >> 40));
3126 radeon_emit(cs, shader->config.rsrc1);
3127 radeon_emit(cs, shader->config.rsrc2);
3128 }
3129 }
3130
3131 void
radv_emit_vertex_shader(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,struct radeon_cmdbuf * cs,const struct radv_shader * vs,const struct radv_shader * next_stage)3132 radv_emit_vertex_shader(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
3133 const struct radv_shader *vs, const struct radv_shader *next_stage)
3134 {
3135 if (vs->info.merged_shader_compiled_separately) {
3136 const struct radv_userdata_info *loc = &vs->info.user_sgprs_locs.shader_data[AC_UD_NEXT_STAGE_PC];
3137 const uint32_t base_reg = vs->info.user_data_0;
3138
3139 assert(loc->sgpr_idx != -1 && loc->num_sgprs == 1);
3140
3141 if (!vs->info.vs.has_prolog) {
3142 uint32_t rsrc1, rsrc2;
3143
3144 if (vs->info.next_stage == MESA_SHADER_TESS_CTRL) {
3145 radv_shader_combine_cfg_vs_tcs(vs, next_stage, &rsrc1, NULL);
3146
3147 if (device->physical_device->rad_info.gfx_level >= GFX10) {
3148 radeon_set_sh_reg(cs, R_00B520_SPI_SHADER_PGM_LO_LS, vs->va >> 8);
3149 } else {
3150 radeon_set_sh_reg(cs, R_00B410_SPI_SHADER_PGM_LO_LS, vs->va >> 8);
3151 }
3152
3153 radeon_set_sh_reg(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, rsrc1);
3154 } else {
3155 radv_shader_combine_cfg_vs_gs(vs, next_stage, &rsrc1, &rsrc2);
3156
3157 if (device->physical_device->rad_info.gfx_level >= GFX10) {
3158 radeon_set_sh_reg(cs, R_00B320_SPI_SHADER_PGM_LO_ES, vs->va >> 8);
3159 } else {
3160 radeon_set_sh_reg(cs, R_00B210_SPI_SHADER_PGM_LO_ES, vs->va >> 8);
3161 }
3162
3163 radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
3164 radeon_emit(cs, rsrc1);
3165 radeon_emit(cs, rsrc2 | S_00B22C_LDS_SIZE(next_stage->info.gs_ring_info.lds_size));
3166 }
3167 }
3168
3169 radv_emit_shader_pointer(device, cs, base_reg + loc->sgpr_idx * 4, next_stage->va, false);
3170 return;
3171 }
3172
3173 if (vs->info.vs.as_ls)
3174 radv_emit_hw_ls(cs, vs);
3175 else if (vs->info.vs.as_es)
3176 radv_emit_hw_es(cs, vs);
3177 else if (vs->info.is_ngg)
3178 radv_emit_hw_ngg(device, ctx_cs, cs, NULL, vs);
3179 else
3180 radv_emit_hw_vs(device, ctx_cs, cs, vs);
3181 }
3182
3183 void
radv_emit_tess_ctrl_shader(const struct radv_device * device,struct radeon_cmdbuf * cs,const struct radv_shader * tcs)3184 radv_emit_tess_ctrl_shader(const struct radv_device *device, struct radeon_cmdbuf *cs, const struct radv_shader *tcs)
3185 {
3186 if (tcs->info.merged_shader_compiled_separately) {
3187 /* When VS+TCS are compiled separately on GFX9+, the VS will jump to the TCS and everything is
3188 * emitted as part of the VS.
3189 */
3190 return;
3191 }
3192
3193 radv_emit_hw_hs(device, cs, tcs);
3194 }
3195
3196 void
radv_emit_tess_eval_shader(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,struct radeon_cmdbuf * cs,const struct radv_shader * tes,const struct radv_shader * gs)3197 radv_emit_tess_eval_shader(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
3198 const struct radv_shader *tes, const struct radv_shader *gs)
3199 {
3200 if (tes->info.merged_shader_compiled_separately) {
3201 const struct radv_userdata_info *loc = &tes->info.user_sgprs_locs.shader_data[AC_UD_NEXT_STAGE_PC];
3202 const uint32_t base_reg = tes->info.user_data_0;
3203 uint32_t rsrc1, rsrc2;
3204
3205 assert(loc->sgpr_idx != -1 && loc->num_sgprs == 1);
3206
3207 radv_shader_combine_cfg_tes_gs(tes, gs, &rsrc1, &rsrc2);
3208
3209 radeon_set_sh_reg(cs, R_00B210_SPI_SHADER_PGM_LO_ES, tes->va >> 8);
3210
3211 radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
3212 radeon_emit(cs, rsrc1);
3213 radeon_emit(cs, rsrc2 | S_00B22C_LDS_SIZE(gs->info.gs_ring_info.lds_size));
3214
3215 radv_emit_shader_pointer(device, cs, base_reg + loc->sgpr_idx * 4, gs->va, false);
3216 return;
3217 }
3218
3219 if (tes->info.is_ngg) {
3220 radv_emit_hw_ngg(device, ctx_cs, cs, NULL, tes);
3221 } else if (tes->info.tes.as_es) {
3222 radv_emit_hw_es(cs, tes);
3223 } else {
3224 radv_emit_hw_vs(device, ctx_cs, cs, tes);
3225 }
3226 }
3227
3228 static void
radv_emit_hw_gs(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,struct radeon_cmdbuf * cs,const struct radv_shader * gs)3229 radv_emit_hw_gs(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
3230 const struct radv_shader *gs)
3231 {
3232 const struct radv_physical_device *pdevice = device->physical_device;
3233 const struct radv_legacy_gs_info *gs_state = &gs->info.gs_ring_info;
3234 unsigned gs_max_out_vertices;
3235 const uint8_t *num_components;
3236 uint8_t max_stream;
3237 unsigned offset;
3238 uint64_t va;
3239
3240 gs_max_out_vertices = gs->info.gs.vertices_out;
3241 max_stream = gs->info.gs.max_stream;
3242 num_components = gs->info.gs.num_stream_output_components;
3243
3244 offset = num_components[0] * gs_max_out_vertices;
3245
3246 radeon_set_context_reg_seq(ctx_cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3);
3247 radeon_emit(ctx_cs, offset);
3248 if (max_stream >= 1)
3249 offset += num_components[1] * gs_max_out_vertices;
3250 radeon_emit(ctx_cs, offset);
3251 if (max_stream >= 2)
3252 offset += num_components[2] * gs_max_out_vertices;
3253 radeon_emit(ctx_cs, offset);
3254 if (max_stream >= 3)
3255 offset += num_components[3] * gs_max_out_vertices;
3256 radeon_set_context_reg(ctx_cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
3257
3258 radeon_set_context_reg_seq(ctx_cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4);
3259 radeon_emit(ctx_cs, num_components[0]);
3260 radeon_emit(ctx_cs, (max_stream >= 1) ? num_components[1] : 0);
3261 radeon_emit(ctx_cs, (max_stream >= 2) ? num_components[2] : 0);
3262 radeon_emit(ctx_cs, (max_stream >= 3) ? num_components[3] : 0);
3263
3264 uint32_t gs_num_invocations = gs->info.gs.invocations;
3265 radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
3266 S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0));
3267
3268 if (pdevice->rad_info.gfx_level <= GFX8) {
3269 /* GFX6-8: ESGS offchip ring buffer is allocated according to VGT_ESGS_RING_ITEMSIZE.
3270 * GFX9+: Only used to set the GS input VGPRs, emulated in shaders.
3271 */
3272 radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE, gs_state->vgt_esgs_ring_itemsize);
3273 }
3274
3275 va = radv_shader_get_va(gs);
3276
3277 if (pdevice->rad_info.gfx_level >= GFX9) {
3278 if (!gs->info.merged_shader_compiled_separately) {
3279
3280 if (pdevice->rad_info.gfx_level >= GFX10) {
3281 radeon_set_sh_reg(cs, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
3282 } else {
3283 radeon_set_sh_reg(cs, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
3284 }
3285
3286 radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
3287 radeon_emit(cs, gs->config.rsrc1);
3288 radeon_emit(cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size));
3289 }
3290
3291 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl);
3292 radeon_set_context_reg(ctx_cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, gs_state->vgt_gs_max_prims_per_subgroup);
3293 } else {
3294 radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4);
3295 radeon_emit(cs, va >> 8);
3296 radeon_emit(cs, S_00B224_MEM_BASE(va >> 40));
3297 radeon_emit(cs, gs->config.rsrc1);
3298 radeon_emit(cs, gs->config.rsrc2);
3299 }
3300
3301 radeon_set_sh_reg_idx(
3302 pdevice, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
3303 ac_apply_cu_en(S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F), C_00B21C_CU_EN, 0, &pdevice->rad_info));
3304
3305 if (pdevice->rad_info.gfx_level >= GFX10) {
3306 radeon_set_sh_reg_idx(pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
3307 ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0),
3308 C_00B204_CU_EN_GFX10, 16, &pdevice->rad_info));
3309 }
3310 }
3311
3312 void
radv_emit_geometry_shader(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,struct radeon_cmdbuf * cs,const struct radv_shader * gs,const struct radv_shader * es,const struct radv_shader * gs_copy_shader)3313 radv_emit_geometry_shader(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
3314 const struct radv_shader *gs, const struct radv_shader *es,
3315 const struct radv_shader *gs_copy_shader)
3316 {
3317 if (gs->info.is_ngg) {
3318 radv_emit_hw_ngg(device, ctx_cs, cs, es, gs);
3319 } else {
3320 radv_emit_hw_gs(device, ctx_cs, cs, gs);
3321 radv_emit_hw_vs(device, ctx_cs, cs, gs_copy_shader);
3322 }
3323
3324 radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT, gs->info.gs.vertices_out);
3325
3326 if (gs->info.merged_shader_compiled_separately) {
3327 const struct radv_userdata_info *vgt_esgs_ring_itemsize = radv_get_user_sgpr(gs, AC_UD_VGT_ESGS_RING_ITEMSIZE);
3328
3329 assert(vgt_esgs_ring_itemsize->sgpr_idx != -1 && vgt_esgs_ring_itemsize->num_sgprs == 1);
3330
3331 radeon_set_sh_reg(cs, gs->info.user_data_0 + vgt_esgs_ring_itemsize->sgpr_idx * 4, es->info.esgs_itemsize / 4);
3332 }
3333 }
3334
3335 void
radv_emit_mesh_shader(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,struct radeon_cmdbuf * cs,const struct radv_shader * ms)3336 radv_emit_mesh_shader(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
3337 const struct radv_shader *ms)
3338 {
3339 const struct radv_physical_device *pdevice = device->physical_device;
3340
3341 radv_emit_hw_ngg(device, ctx_cs, cs, NULL, ms);
3342 radeon_set_context_reg(
3343 ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT,
3344 device->physical_device->mesh_fast_launch_2 ? ms->info.ngg_info.max_out_verts : ms->info.workgroup_size);
3345 radeon_set_uconfig_reg_idx(pdevice, ctx_cs, R_030908_VGT_PRIMITIVE_TYPE, 1, V_008958_DI_PT_POINTLIST);
3346
3347 if (device->physical_device->mesh_fast_launch_2) {
3348 radeon_set_sh_reg_seq(cs, R_00B2B0_SPI_SHADER_GS_MESHLET_DIM, 2);
3349 radeon_emit(cs, S_00B2B0_MESHLET_NUM_THREAD_X(ms->info.cs.block_size[0] - 1) |
3350 S_00B2B0_MESHLET_NUM_THREAD_Y(ms->info.cs.block_size[1] - 1) |
3351 S_00B2B0_MESHLET_NUM_THREAD_Z(ms->info.cs.block_size[2] - 1) |
3352 S_00B2B0_MESHLET_THREADGROUP_SIZE(ms->info.workgroup_size - 1));
3353 radeon_emit(cs, S_00B2B4_MAX_EXP_VERTS(ms->info.ngg_info.max_out_verts) |
3354 S_00B2B4_MAX_EXP_PRIMS(ms->info.ngg_info.prim_amp_factor));
3355 }
3356 }
3357
3358 static uint32_t
offset_to_ps_input(uint32_t offset,bool flat_shade,bool explicit,bool per_vertex,bool float16,bool per_prim_gfx11)3359 offset_to_ps_input(uint32_t offset, bool flat_shade, bool explicit, bool per_vertex, bool float16, bool per_prim_gfx11)
3360 {
3361 uint32_t ps_input_cntl;
3362 if (offset <= AC_EXP_PARAM_OFFSET_31) {
3363 ps_input_cntl = S_028644_OFFSET(offset) | S_028644_PRIM_ATTR(per_prim_gfx11);
3364 if (flat_shade || explicit || per_vertex)
3365 ps_input_cntl |= S_028644_FLAT_SHADE(1);
3366 if (explicit || per_vertex) {
3367 /* Force parameter cache to be read in passthrough
3368 * mode.
3369 */
3370 ps_input_cntl |= S_028644_OFFSET(1 << 5) | S_028644_ROTATE_PC_PTR(per_vertex);
3371 }
3372 if (float16) {
3373 ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | S_028644_ATTR0_VALID(1);
3374 }
3375 } else {
3376 /* The input is a DEFAULT_VAL constant. */
3377 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
3378 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
3379 ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset);
3380 }
3381 return ps_input_cntl;
3382 }
3383
3384 static void
single_slot_to_ps_input(const struct radv_vs_output_info * outinfo,unsigned slot,uint32_t * ps_input_cntl,unsigned * ps_offset,bool skip_undef,bool use_default_0,bool flat_shade,bool per_prim_gfx11)3385 single_slot_to_ps_input(const struct radv_vs_output_info *outinfo, unsigned slot, uint32_t *ps_input_cntl,
3386 unsigned *ps_offset, bool skip_undef, bool use_default_0, bool flat_shade, bool per_prim_gfx11)
3387 {
3388 unsigned vs_offset = outinfo->vs_output_param_offset[slot];
3389
3390 if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
3391 if (skip_undef)
3392 return;
3393 else if (use_default_0)
3394 vs_offset = AC_EXP_PARAM_DEFAULT_VAL_0000;
3395 else
3396 unreachable("vs_offset should not be AC_EXP_PARAM_UNDEFINED.");
3397 }
3398
3399 ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, flat_shade, false, false, false, per_prim_gfx11);
3400 ++(*ps_offset);
3401 }
3402
3403 static void
input_mask_to_ps_inputs(const struct radv_vs_output_info * outinfo,const struct radv_shader * ps,uint32_t input_mask,uint32_t * ps_input_cntl,unsigned * ps_offset,bool per_prim_gfx11)3404 input_mask_to_ps_inputs(const struct radv_vs_output_info *outinfo, const struct radv_shader *ps, uint32_t input_mask,
3405 uint32_t *ps_input_cntl, unsigned *ps_offset, bool per_prim_gfx11)
3406 {
3407 u_foreach_bit (i, input_mask) {
3408 unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
3409 if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
3410 ps_input_cntl[*ps_offset] = S_028644_OFFSET(0x20);
3411 ++(*ps_offset);
3412 continue;
3413 }
3414
3415 bool flat_shade = !!(ps->info.ps.flat_shaded_mask & (1u << *ps_offset));
3416 bool explicit = !!(ps->info.ps.explicit_shaded_mask & (1u << *ps_offset));
3417 bool per_vertex = !!(ps->info.ps.per_vertex_shaded_mask & (1u << *ps_offset));
3418 bool float16 = !!(ps->info.ps.float16_shaded_mask & (1u << *ps_offset));
3419
3420 ps_input_cntl[*ps_offset] =
3421 offset_to_ps_input(vs_offset, flat_shade, explicit, per_vertex, float16, per_prim_gfx11);
3422 ++(*ps_offset);
3423 }
3424 }
3425
3426 void
radv_emit_ps_inputs(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,const struct radv_shader * last_vgt_shader,const struct radv_shader * ps)3427 radv_emit_ps_inputs(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs,
3428 const struct radv_shader *last_vgt_shader, const struct radv_shader *ps)
3429 {
3430 const struct radv_vs_output_info *outinfo = &last_vgt_shader->info.outinfo;
3431 bool mesh = last_vgt_shader->info.stage == MESA_SHADER_MESH;
3432 bool gfx11plus = device->physical_device->rad_info.gfx_level >= GFX11;
3433 uint32_t ps_input_cntl[32];
3434
3435 unsigned ps_offset = 0;
3436
3437 if (ps->info.ps.prim_id_input && !mesh)
3438 single_slot_to_ps_input(outinfo, VARYING_SLOT_PRIMITIVE_ID, ps_input_cntl, &ps_offset, true, false, true, false);
3439
3440 if (ps->info.ps.layer_input && !mesh)
3441 single_slot_to_ps_input(outinfo, VARYING_SLOT_LAYER, ps_input_cntl, &ps_offset, false, true, true, false);
3442
3443 if (ps->info.ps.viewport_index_input && !mesh)
3444 single_slot_to_ps_input(outinfo, VARYING_SLOT_VIEWPORT, ps_input_cntl, &ps_offset, false, true, true, false);
3445
3446 if (ps->info.ps.has_pcoord)
3447 ps_input_cntl[ps_offset++] = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
3448
3449 if (ps->info.ps.num_input_clips_culls) {
3450 single_slot_to_ps_input(outinfo, VARYING_SLOT_CLIP_DIST0, ps_input_cntl, &ps_offset, true, false, false, false);
3451
3452 if (ps->info.ps.num_input_clips_culls > 4)
3453 single_slot_to_ps_input(outinfo, VARYING_SLOT_CLIP_DIST1, ps_input_cntl, &ps_offset, true, false, false,
3454 false);
3455 }
3456
3457 input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_mask, ps_input_cntl, &ps_offset, false);
3458
3459 /* Per-primitive PS inputs: the HW needs these to be last. */
3460
3461 if (ps->info.ps.prim_id_input && mesh)
3462 single_slot_to_ps_input(outinfo, VARYING_SLOT_PRIMITIVE_ID, ps_input_cntl, &ps_offset, true, false, false,
3463 gfx11plus);
3464
3465 if (ps->info.ps.layer_input && mesh)
3466 single_slot_to_ps_input(outinfo, VARYING_SLOT_LAYER, ps_input_cntl, &ps_offset, false, true, false, gfx11plus);
3467
3468 if (ps->info.ps.viewport_index_input && mesh)
3469 single_slot_to_ps_input(outinfo, VARYING_SLOT_VIEWPORT, ps_input_cntl, &ps_offset, false, true, false, gfx11plus);
3470
3471 input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_per_primitive_mask, ps_input_cntl, &ps_offset, gfx11plus);
3472 if (ps_offset) {
3473 radeon_set_context_reg_seq(ctx_cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset);
3474 for (unsigned i = 0; i < ps_offset; i++) {
3475 radeon_emit(ctx_cs, ps_input_cntl[i]);
3476 }
3477 }
3478 }
3479
3480 void
radv_emit_fragment_shader(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,struct radeon_cmdbuf * cs,const struct radv_shader * ps)3481 radv_emit_fragment_shader(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
3482 const struct radv_shader *ps)
3483 {
3484 const struct radv_physical_device *pdevice = device->physical_device;
3485 bool param_gen;
3486 uint64_t va;
3487
3488 va = radv_shader_get_va(ps);
3489
3490 radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4);
3491 radeon_emit(cs, va >> 8);
3492 radeon_emit(cs, S_00B024_MEM_BASE(va >> 40));
3493 radeon_emit(cs, ps->config.rsrc1);
3494 radeon_emit(cs, ps->config.rsrc2);
3495
3496 radeon_set_context_reg_seq(ctx_cs, R_0286CC_SPI_PS_INPUT_ENA, 2);
3497 radeon_emit(ctx_cs, ps->config.spi_ps_input_ena);
3498 radeon_emit(ctx_cs, ps->config.spi_ps_input_addr);
3499
3500 /* Workaround when there are no PS inputs but LDS is used. */
3501 param_gen = pdevice->rad_info.gfx_level >= GFX11 && !ps->info.ps.num_interp && ps->config.lds_size;
3502
3503 radeon_set_context_reg(ctx_cs, R_0286D8_SPI_PS_IN_CONTROL,
3504 S_0286D8_NUM_INTERP(ps->info.ps.num_interp) |
3505 S_0286D8_NUM_PRIM_INTERP(ps->info.ps.num_prim_interp) |
3506 S_0286D8_PS_W32_EN(ps->info.wave_size == 32) | S_0286D8_PARAM_GEN(param_gen));
3507
3508 radeon_set_context_reg(ctx_cs, R_028710_SPI_SHADER_Z_FORMAT,
3509 ac_get_spi_shader_z_format(ps->info.ps.writes_z, ps->info.ps.writes_stencil,
3510 ps->info.ps.writes_sample_mask, ps->info.ps.writes_mrt0_alpha));
3511
3512 if (pdevice->rad_info.gfx_level >= GFX9 && pdevice->rad_info.gfx_level < GFX11)
3513 radeon_set_context_reg(ctx_cs, R_028C40_PA_SC_SHADER_CONTROL, S_028C40_LOAD_COLLISION_WAVEID(ps->info.ps.pops));
3514 }
3515
3516 void
radv_emit_vgt_vertex_reuse(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,const struct radv_shader * tes)3517 radv_emit_vgt_vertex_reuse(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs,
3518 const struct radv_shader *tes)
3519 {
3520 const struct radv_physical_device *pdevice = device->physical_device;
3521
3522 if (pdevice->rad_info.family < CHIP_POLARIS10 || pdevice->rad_info.gfx_level >= GFX10)
3523 return;
3524
3525 unsigned vtx_reuse_depth = 30;
3526 if (tes && tes->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) {
3527 vtx_reuse_depth = 14;
3528 }
3529 radeon_set_context_reg(ctx_cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth));
3530 }
3531
3532 static struct radv_vgt_shader_key
radv_pipeline_generate_vgt_shader_key(const struct radv_device * device,const struct radv_graphics_pipeline * pipeline)3533 radv_pipeline_generate_vgt_shader_key(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline)
3534 {
3535 uint8_t hs_size = 64, gs_size = 64, vs_size = 64;
3536 struct radv_vgt_shader_key key;
3537
3538 memset(&key, 0, sizeof(key));
3539
3540 if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL))
3541 hs_size = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.wave_size;
3542
3543 if (pipeline->base.shaders[MESA_SHADER_GEOMETRY]) {
3544 vs_size = gs_size = pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.wave_size;
3545 if (radv_pipeline_has_gs_copy_shader(&pipeline->base))
3546 vs_size = pipeline->base.gs_copy_shader->info.wave_size;
3547 } else if (pipeline->base.shaders[MESA_SHADER_TESS_EVAL])
3548 vs_size = pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.wave_size;
3549 else if (pipeline->base.shaders[MESA_SHADER_VERTEX])
3550 vs_size = pipeline->base.shaders[MESA_SHADER_VERTEX]->info.wave_size;
3551 else if (pipeline->base.shaders[MESA_SHADER_MESH])
3552 vs_size = gs_size = pipeline->base.shaders[MESA_SHADER_MESH]->info.wave_size;
3553
3554 if (radv_pipeline_has_ngg(pipeline)) {
3555 assert(!radv_pipeline_has_gs_copy_shader(&pipeline->base));
3556 gs_size = vs_size;
3557 }
3558
3559 key.tess = radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL);
3560 key.gs = radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY);
3561 if (radv_pipeline_has_ngg(pipeline)) {
3562 key.ngg = 1;
3563 key.ngg_passthrough = radv_pipeline_has_ngg_passthrough(pipeline);
3564 key.ngg_streamout = !!pipeline->streamout_shader;
3565 }
3566 if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
3567 key.mesh = 1;
3568 key.mesh_scratch_ring = pipeline->base.shaders[MESA_SHADER_MESH]->info.ms.needs_ms_scratch_ring;
3569 }
3570
3571 key.hs_wave32 = hs_size == 32;
3572 key.vs_wave32 = vs_size == 32;
3573 key.gs_wave32 = gs_size == 32;
3574
3575 return key;
3576 }
3577
3578 void
radv_emit_vgt_shader_config(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,const struct radv_vgt_shader_key * key)3579 radv_emit_vgt_shader_config(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs,
3580 const struct radv_vgt_shader_key *key)
3581 {
3582 const struct radv_physical_device *pdevice = device->physical_device;
3583 uint32_t stages = 0;
3584
3585 if (key->tess) {
3586 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
3587
3588 if (key->gs)
3589 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1);
3590 else if (key->ngg)
3591 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
3592 else
3593 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
3594 } else if (key->gs) {
3595 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1);
3596 } else if (key->mesh) {
3597 assert(!key->ngg_passthrough);
3598 unsigned gs_fast_launch = device->physical_device->mesh_fast_launch_2 ? 2 : 1;
3599 stages |=
3600 S_028B54_GS_EN(1) | S_028B54_GS_FAST_LAUNCH(gs_fast_launch) | S_028B54_NGG_WAVE_ID_EN(key->mesh_scratch_ring);
3601 } else if (key->ngg) {
3602 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
3603 }
3604
3605 if (key->ngg) {
3606 stages |= S_028B54_PRIMGEN_EN(1) | S_028B54_NGG_WAVE_ID_EN(key->ngg_streamout) |
3607 S_028B54_PRIMGEN_PASSTHRU_EN(key->ngg_passthrough) |
3608 S_028B54_PRIMGEN_PASSTHRU_NO_MSG(key->ngg_passthrough && pdevice->rad_info.family >= CHIP_NAVI23);
3609 } else if (key->gs) {
3610 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
3611 }
3612
3613 if (pdevice->rad_info.gfx_level >= GFX9)
3614 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
3615
3616 if (pdevice->rad_info.gfx_level >= GFX10) {
3617 stages |= S_028B54_HS_W32_EN(key->hs_wave32) | S_028B54_GS_W32_EN(key->gs_wave32) |
3618 S_028B54_VS_W32_EN(pdevice->rad_info.gfx_level < GFX11 && key->vs_wave32);
3619 /* Legacy GS only supports Wave64. Read it as an implication. */
3620 assert(!(key->gs && !key->ngg) || !key->gs_wave32);
3621 }
3622
3623 radeon_set_context_reg(ctx_cs, R_028B54_VGT_SHADER_STAGES_EN, stages);
3624 }
3625
3626 void
radv_emit_vgt_gs_out(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,uint32_t vgt_gs_out_prim_type)3627 radv_emit_vgt_gs_out(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, uint32_t vgt_gs_out_prim_type)
3628 {
3629 const struct radv_physical_device *pdevice = device->physical_device;
3630
3631 if (pdevice->rad_info.gfx_level >= GFX11) {
3632 radeon_set_uconfig_reg(ctx_cs, R_030998_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type);
3633 } else {
3634 radeon_set_context_reg(ctx_cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type);
3635 }
3636 }
3637
3638 void
gfx103_emit_vgt_draw_payload_cntl(struct radeon_cmdbuf * ctx_cs,const struct radv_shader * mesh_shader,bool enable_vrs)3639 gfx103_emit_vgt_draw_payload_cntl(struct radeon_cmdbuf *ctx_cs, const struct radv_shader *mesh_shader, bool enable_vrs)
3640 {
3641 bool enable_prim_payload = false;
3642
3643 /* Enables the second channel of the primitive export instruction.
3644 * This channel contains: VRS rate x, y, viewport and layer.
3645 */
3646 if (mesh_shader) {
3647 const struct radv_vs_output_info *outinfo = &mesh_shader->info.outinfo;
3648
3649 enable_prim_payload = (outinfo->writes_viewport_index_per_primitive || outinfo->writes_layer_per_primitive ||
3650 outinfo->writes_primitive_shading_rate_per_primitive);
3651 }
3652
3653 radeon_set_context_reg(ctx_cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL,
3654 S_028A98_EN_VRS_RATE(enable_vrs) | S_028A98_EN_PRIM_PAYLOAD(enable_prim_payload));
3655 }
3656
3657 static bool
gfx103_pipeline_vrs_coarse_shading(const struct radv_device * device,const struct radv_graphics_pipeline * pipeline)3658 gfx103_pipeline_vrs_coarse_shading(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline)
3659 {
3660 struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
3661
3662 if (device->physical_device->rad_info.gfx_level != GFX10_3)
3663 return false;
3664
3665 if (device->instance->debug_flags & RADV_DEBUG_NO_VRS_FLAT_SHADING)
3666 return false;
3667
3668 if (ps && !ps->info.ps.allow_flat_shading)
3669 return false;
3670
3671 return true;
3672 }
3673
3674 void
gfx103_emit_vrs_state(const struct radv_device * device,struct radeon_cmdbuf * ctx_cs,const struct radv_shader * ps,bool enable_vrs,bool enable_vrs_coarse_shading,bool force_vrs_per_vertex)3675 gfx103_emit_vrs_state(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, const struct radv_shader *ps,
3676 bool enable_vrs, bool enable_vrs_coarse_shading, bool force_vrs_per_vertex)
3677 {
3678 const struct radv_physical_device *pdevice = device->physical_device;
3679 uint32_t mode = V_028064_SC_VRS_COMB_MODE_PASSTHRU;
3680 uint8_t rate_x = 0, rate_y = 0;
3681
3682 if (!enable_vrs && enable_vrs_coarse_shading) {
3683 /* When per-draw VRS is not enabled at all, try enabling VRS coarse shading 2x2 if the driver
3684 * determined that it's safe to enable.
3685 */
3686 mode = V_028064_SC_VRS_COMB_MODE_OVERRIDE;
3687 rate_x = rate_y = 1;
3688 } else if (force_vrs_per_vertex) {
3689 /* Otherwise, if per-draw VRS is not enabled statically, try forcing per-vertex VRS if
3690 * requested by the user. Note that vkd3d-proton always has to declare VRS as dynamic because
3691 * in DX12 it's fully dynamic.
3692 */
3693 radeon_set_context_reg(ctx_cs, R_028848_PA_CL_VRS_CNTL,
3694 S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE) |
3695 S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE));
3696
3697 /* If the shader is using discard, turn off coarse shading because discard at 2x2 pixel
3698 * granularity degrades quality too much. MIN allows sample shading but not coarse shading.
3699 */
3700 mode = ps->info.ps.can_discard ? V_028064_SC_VRS_COMB_MODE_MIN : V_028064_SC_VRS_COMB_MODE_PASSTHRU;
3701 }
3702
3703 if (pdevice->rad_info.gfx_level < GFX11) {
3704 radeon_set_context_reg(ctx_cs, R_028064_DB_VRS_OVERRIDE_CNTL,
3705 S_028064_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) | S_028064_VRS_OVERRIDE_RATE_X(rate_x) |
3706 S_028064_VRS_OVERRIDE_RATE_Y(rate_y));
3707 }
3708 }
3709
3710 static void
radv_pipeline_emit_pm4(const struct radv_device * device,struct radv_graphics_pipeline * pipeline,const struct radv_blend_state * blend,uint32_t vgt_gs_out_prim_type,const struct vk_graphics_pipeline_state * state)3711 radv_pipeline_emit_pm4(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
3712 const struct radv_blend_state *blend, uint32_t vgt_gs_out_prim_type,
3713 const struct vk_graphics_pipeline_state *state)
3714
3715 {
3716 const struct radv_physical_device *pdevice = device->physical_device;
3717 const struct radv_shader *last_vgt_shader = radv_get_last_vgt_shader(pipeline);
3718 const struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
3719 struct radeon_cmdbuf *ctx_cs = &pipeline->base.ctx_cs;
3720 struct radeon_cmdbuf *cs = &pipeline->base.cs;
3721
3722 cs->reserved_dw = cs->max_dw = 64;
3723 ctx_cs->reserved_dw = ctx_cs->max_dw = 256;
3724 cs->buf = malloc(4 * (cs->max_dw + ctx_cs->max_dw));
3725 ctx_cs->buf = cs->buf + cs->max_dw;
3726
3727 struct radv_vgt_shader_key vgt_shader_key = radv_pipeline_generate_vgt_shader_key(device, pipeline);
3728
3729 radv_pipeline_emit_blend_state(ctx_cs, pipeline, blend);
3730 radv_emit_vgt_gs_mode(device, ctx_cs, pipeline->base.shaders[pipeline->last_vgt_api_stage]);
3731
3732 if (radv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX)) {
3733 radv_emit_vertex_shader(device, ctx_cs, cs, pipeline->base.shaders[MESA_SHADER_VERTEX], NULL);
3734 }
3735
3736 if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
3737 radv_emit_mesh_shader(device, ctx_cs, cs, pipeline->base.shaders[MESA_SHADER_MESH]);
3738 }
3739
3740 if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
3741 radv_emit_tess_ctrl_shader(device, cs, pipeline->base.shaders[MESA_SHADER_TESS_CTRL]);
3742
3743 if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
3744 radv_emit_tess_eval_shader(device, ctx_cs, cs, pipeline->base.shaders[MESA_SHADER_TESS_EVAL], NULL);
3745 }
3746 }
3747
3748 if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
3749 const struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY];
3750 const struct radv_shader *es = pipeline->base.shaders[gs->info.gs.es_type];
3751
3752 radv_emit_geometry_shader(device, ctx_cs, cs, gs, es, pipeline->base.gs_copy_shader);
3753 }
3754
3755 if (ps) {
3756 radv_emit_fragment_shader(device, ctx_cs, cs, ps);
3757 radv_emit_ps_inputs(device, ctx_cs, last_vgt_shader, ps);
3758 }
3759
3760 radv_emit_vgt_vertex_reuse(device, ctx_cs, radv_get_shader(pipeline->base.shaders, MESA_SHADER_TESS_EVAL));
3761 radv_emit_vgt_shader_config(device, ctx_cs, &vgt_shader_key);
3762 radv_emit_vgt_gs_out(device, ctx_cs, vgt_gs_out_prim_type);
3763
3764 if (pdevice->rad_info.gfx_level >= GFX10_3) {
3765 const bool enable_vrs = radv_is_vrs_enabled(pipeline, state);
3766
3767 gfx103_emit_vgt_draw_payload_cntl(ctx_cs, pipeline->base.shaders[MESA_SHADER_MESH], enable_vrs);
3768 gfx103_emit_vrs_state(device, ctx_cs, pipeline->base.shaders[MESA_SHADER_FRAGMENT], enable_vrs,
3769 gfx103_pipeline_vrs_coarse_shading(device, pipeline), pipeline->force_vrs_per_vertex);
3770 }
3771
3772 pipeline->base.ctx_cs_hash = _mesa_hash_data(ctx_cs->buf, ctx_cs->cdw * 4);
3773
3774 assert(ctx_cs->cdw <= ctx_cs->max_dw);
3775 assert(cs->cdw <= cs->max_dw);
3776 }
3777
3778 static void
radv_pipeline_init_vertex_input_state(const struct radv_device * device,struct radv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state)3779 radv_pipeline_init_vertex_input_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
3780 const struct vk_graphics_pipeline_state *state)
3781 {
3782 const struct radv_physical_device *pdevice = device->physical_device;
3783 const struct radv_shader_info *vs_info = &radv_get_shader(pipeline->base.shaders, MESA_SHADER_VERTEX)->info;
3784
3785 if (state->vi) {
3786 u_foreach_bit (i, state->vi->attributes_valid) {
3787 uint32_t binding = state->vi->attributes[i].binding;
3788 uint32_t offset = state->vi->attributes[i].offset;
3789 VkFormat format = state->vi->attributes[i].format;
3790
3791 pipeline->attrib_ends[i] = offset + vk_format_get_blocksize(format);
3792 pipeline->attrib_bindings[i] = binding;
3793
3794 if (state->vi->bindings[binding].stride) {
3795 pipeline->attrib_index_offset[i] = offset / state->vi->bindings[binding].stride;
3796 }
3797 }
3798
3799 u_foreach_bit (i, state->vi->bindings_valid) {
3800 pipeline->binding_stride[i] = state->vi->bindings[i].stride;
3801 }
3802 }
3803
3804 /* Prepare the VS input state for prologs created inside a library. */
3805 if (vs_info->vs.has_prolog && !(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT)) {
3806 const enum amd_gfx_level gfx_level = pdevice->rad_info.gfx_level;
3807 const enum radeon_family family = pdevice->rad_info.family;
3808 const struct ac_vtx_format_info *vtx_info_table = ac_get_vtx_format_info_table(gfx_level, family);
3809
3810 pipeline->vs_input_state.bindings_match_attrib = true;
3811
3812 u_foreach_bit (i, state->vi->attributes_valid) {
3813 uint32_t binding = state->vi->attributes[i].binding;
3814 uint32_t offset = state->vi->attributes[i].offset;
3815
3816 pipeline->vs_input_state.attribute_mask |= BITFIELD_BIT(i);
3817 pipeline->vs_input_state.bindings[i] = binding;
3818 pipeline->vs_input_state.bindings_match_attrib &= binding == i;
3819
3820 if (state->vi->bindings[binding].input_rate) {
3821 pipeline->vs_input_state.instance_rate_inputs |= BITFIELD_BIT(i);
3822 pipeline->vs_input_state.divisors[i] = state->vi->bindings[binding].divisor;
3823
3824 if (state->vi->bindings[binding].divisor == 0) {
3825 pipeline->vs_input_state.zero_divisors |= BITFIELD_BIT(i);
3826 } else if (state->vi->bindings[binding].divisor > 1) {
3827 pipeline->vs_input_state.nontrivial_divisors |= BITFIELD_BIT(i);
3828 }
3829 }
3830
3831 pipeline->vs_input_state.offsets[i] = offset;
3832
3833 enum pipe_format format = vk_format_to_pipe_format(state->vi->attributes[i].format);
3834 const struct ac_vtx_format_info *vtx_info = &vtx_info_table[format];
3835
3836 pipeline->vs_input_state.formats[i] = format;
3837 uint8_t align_req_minus_1 = vtx_info->chan_byte_size >= 4 ? 3 : (vtx_info->element_size - 1);
3838 pipeline->vs_input_state.format_align_req_minus_1[i] = align_req_minus_1;
3839 pipeline->vs_input_state.format_sizes[i] = vtx_info->element_size;
3840 pipeline->vs_input_state.alpha_adjust_lo |= (vtx_info->alpha_adjust & 0x1) << i;
3841 pipeline->vs_input_state.alpha_adjust_hi |= (vtx_info->alpha_adjust >> 1) << i;
3842 if (G_008F0C_DST_SEL_X(vtx_info->dst_sel) == V_008F0C_SQ_SEL_Z) {
3843 pipeline->vs_input_state.post_shuffle |= BITFIELD_BIT(i);
3844 }
3845
3846 if (!(vtx_info->has_hw_format & BITFIELD_BIT(vtx_info->num_channels - 1))) {
3847 pipeline->vs_input_state.nontrivial_formats |= BITFIELD_BIT(i);
3848 }
3849 }
3850 }
3851 }
3852
3853 static struct radv_shader *
radv_pipeline_get_streamout_shader(struct radv_graphics_pipeline * pipeline)3854 radv_pipeline_get_streamout_shader(struct radv_graphics_pipeline *pipeline)
3855 {
3856 int i;
3857
3858 for (i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
3859 struct radv_shader *shader = radv_get_shader(pipeline->base.shaders, i);
3860
3861 if (shader && shader->info.so.num_outputs > 0)
3862 return shader;
3863 }
3864
3865 return NULL;
3866 }
3867 static void
radv_pipeline_init_shader_stages_state(const struct radv_device * device,struct radv_graphics_pipeline * pipeline)3868 radv_pipeline_init_shader_stages_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline)
3869 {
3870 for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
3871 bool shader_exists = !!pipeline->base.shaders[i];
3872 if (shader_exists || i < MESA_SHADER_COMPUTE) {
3873 if (shader_exists)
3874 pipeline->base.need_indirect_descriptor_sets |=
3875 radv_shader_need_indirect_descriptor_sets(pipeline->base.shaders[i]);
3876 }
3877 }
3878
3879 gl_shader_stage first_stage =
3880 radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH) ? MESA_SHADER_MESH : MESA_SHADER_VERTEX;
3881
3882 const struct radv_shader *shader = radv_get_shader(pipeline->base.shaders, first_stage);
3883 const struct radv_userdata_info *loc = radv_get_user_sgpr(shader, AC_UD_VS_BASE_VERTEX_START_INSTANCE);
3884
3885 if (loc->sgpr_idx != -1) {
3886 pipeline->vtx_base_sgpr = shader->info.user_data_0;
3887 pipeline->vtx_base_sgpr += loc->sgpr_idx * 4;
3888 pipeline->vtx_emit_num = loc->num_sgprs;
3889 pipeline->uses_drawid = radv_get_shader(pipeline->base.shaders, first_stage)->info.vs.needs_draw_id;
3890 pipeline->uses_baseinstance = radv_get_shader(pipeline->base.shaders, first_stage)->info.vs.needs_base_instance;
3891
3892 assert(first_stage != MESA_SHADER_MESH || !pipeline->uses_baseinstance);
3893 }
3894 }
3895
3896 uint32_t
radv_get_vgt_gs_out(struct radv_shader ** shaders,uint32_t primitive_topology)3897 radv_get_vgt_gs_out(struct radv_shader **shaders, uint32_t primitive_topology)
3898 {
3899 uint32_t gs_out;
3900
3901 if (shaders[MESA_SHADER_GEOMETRY]) {
3902 gs_out = radv_conv_gl_prim_to_gs_out(shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim);
3903 } else if (shaders[MESA_SHADER_TESS_CTRL]) {
3904 if (shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode) {
3905 gs_out = V_028A6C_POINTLIST;
3906 } else {
3907 gs_out = radv_conv_tess_prim_to_gs_out(shaders[MESA_SHADER_TESS_EVAL]->info.tes._primitive_mode);
3908 }
3909 } else if (shaders[MESA_SHADER_MESH]) {
3910 gs_out = radv_conv_gl_prim_to_gs_out(shaders[MESA_SHADER_MESH]->info.ms.output_prim);
3911 } else {
3912 gs_out = radv_conv_prim_to_gs_out(primitive_topology, false);
3913 }
3914
3915 return gs_out;
3916 }
3917
3918 static uint32_t
radv_pipeline_init_vgt_gs_out(struct radv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state)3919 radv_pipeline_init_vgt_gs_out(struct radv_graphics_pipeline *pipeline, const struct vk_graphics_pipeline_state *state)
3920 {
3921 uint32_t primitive_topology = 0;
3922
3923 if (pipeline->last_vgt_api_stage == MESA_SHADER_VERTEX)
3924 primitive_topology = radv_translate_prim(state->ia->primitive_topology);
3925
3926 return radv_get_vgt_gs_out(pipeline->base.shaders, primitive_topology);
3927 }
3928
3929 static void
radv_pipeline_init_extra(struct radv_graphics_pipeline * pipeline,const struct radv_graphics_pipeline_create_info * extra,struct radv_blend_state * blend_state,const struct vk_graphics_pipeline_state * state,uint32_t * vgt_gs_out_prim_type)3930 radv_pipeline_init_extra(struct radv_graphics_pipeline *pipeline,
3931 const struct radv_graphics_pipeline_create_info *extra, struct radv_blend_state *blend_state,
3932 const struct vk_graphics_pipeline_state *state, uint32_t *vgt_gs_out_prim_type)
3933 {
3934 if (extra->custom_blend_mode == V_028808_CB_ELIMINATE_FAST_CLEAR ||
3935 extra->custom_blend_mode == V_028808_CB_FMASK_DECOMPRESS ||
3936 extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX8 ||
3937 extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX11 ||
3938 extra->custom_blend_mode == V_028808_CB_RESOLVE) {
3939 /* According to the CB spec states, CB_SHADER_MASK should be set to enable writes to all four
3940 * channels of MRT0.
3941 */
3942 blend_state->cb_shader_mask = 0xf;
3943
3944 pipeline->custom_blend_mode = extra->custom_blend_mode;
3945 }
3946
3947 if (extra->use_rectlist) {
3948 struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
3949 dynamic->vk.ia.primitive_topology = V_008958_DI_PT_RECTLIST;
3950
3951 *vgt_gs_out_prim_type =
3952 radv_conv_prim_to_gs_out(dynamic->vk.ia.primitive_topology, radv_pipeline_has_ngg(pipeline));
3953
3954 pipeline->rast_prim = *vgt_gs_out_prim_type;
3955 }
3956
3957 if (radv_pipeline_has_ds_attachments(state->rp)) {
3958 pipeline->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
3959 pipeline->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
3960 pipeline->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->resummarize_enable);
3961 pipeline->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->depth_compress_disable);
3962 pipeline->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->stencil_compress_disable);
3963 }
3964 }
3965
3966 static bool
radv_is_fast_linking_enabled(const struct radv_graphics_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo)3967 radv_is_fast_linking_enabled(const struct radv_graphics_pipeline *pipeline,
3968 const VkGraphicsPipelineCreateInfo *pCreateInfo)
3969 {
3970 const VkPipelineLibraryCreateInfoKHR *libs_info =
3971 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
3972
3973 if (!libs_info)
3974 return false;
3975
3976 return !(pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT);
3977 }
3978
3979 bool
radv_needs_null_export_workaround(const struct radv_device * device,const struct radv_shader * ps,unsigned custom_blend_mode)3980 radv_needs_null_export_workaround(const struct radv_device *device, const struct radv_shader *ps,
3981 unsigned custom_blend_mode)
3982 {
3983 const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
3984
3985 if (!ps)
3986 return false;
3987
3988 /* Ensure that some export memory is always allocated, for two reasons:
3989 *
3990 * 1) Correctness: The hardware ignores the EXEC mask if no export
3991 * memory is allocated, so KILL and alpha test do not work correctly
3992 * without this.
3993 * 2) Performance: Every shader needs at least a NULL export, even when
3994 * it writes no color/depth output. The NULL export instruction
3995 * stalls without this setting.
3996 *
3997 * Don't add this to CB_SHADER_MASK.
3998 *
3999 * GFX10 supports pixel shaders without exports by setting both the
4000 * color and Z formats to SPI_SHADER_ZERO. The hw will skip export
4001 * instructions if any are present.
4002 *
4003 * GFX11 requires one color output, otherwise the DCC decompression does nothing.
4004 *
4005 * Primitive Ordered Pixel Shading also requires an export, otherwise interlocking doesn't work
4006 * correctly before GFX11, and a hang happens on GFX11.
4007 */
4008 return (gfx_level <= GFX9 || ps->info.ps.can_discard || ps->info.ps.pops ||
4009 (custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX11 && gfx_level >= GFX11)) &&
4010 !ps->info.ps.writes_z && !ps->info.ps.writes_stencil && !ps->info.ps.writes_sample_mask;
4011 }
4012
4013 static VkResult
radv_graphics_pipeline_init(struct radv_graphics_pipeline * pipeline,struct radv_device * device,struct vk_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const struct radv_graphics_pipeline_create_info * extra)4014 radv_graphics_pipeline_init(struct radv_graphics_pipeline *pipeline, struct radv_device *device,
4015 struct vk_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo,
4016 const struct radv_graphics_pipeline_create_info *extra)
4017 {
4018 VkGraphicsPipelineLibraryFlagBitsEXT needed_lib_flags = ALL_GRAPHICS_LIB_FLAGS;
4019 bool fast_linking_enabled = radv_is_fast_linking_enabled(pipeline, pCreateInfo);
4020 struct radv_pipeline_layout pipeline_layout;
4021 struct vk_graphics_pipeline_state state = {0};
4022 VkResult result = VK_SUCCESS;
4023
4024 pipeline->last_vgt_api_stage = MESA_SHADER_NONE;
4025
4026 const VkPipelineLibraryCreateInfoKHR *libs_info =
4027 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
4028
4029 radv_pipeline_layout_init(device, &pipeline_layout, false);
4030
4031 /* If we have libraries, import them first. */
4032 if (libs_info) {
4033 const bool link_optimize =
4034 (pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
4035
4036 for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
4037 RADV_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
4038 struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib);
4039
4040 assert(pipeline_lib->type == RADV_PIPELINE_GRAPHICS_LIB);
4041
4042 /* If we have link time optimization, all libraries must be created with
4043 * VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT.
4044 */
4045 assert(!link_optimize || gfx_pipeline_lib->base.retain_shaders);
4046
4047 radv_graphics_pipeline_import_lib(device, pipeline, &state, &pipeline_layout, gfx_pipeline_lib, link_optimize);
4048
4049 needed_lib_flags &= ~gfx_pipeline_lib->lib_flags;
4050 }
4051 }
4052
4053 /* Import graphics pipeline info that was not included in the libraries. */
4054 result =
4055 radv_pipeline_import_graphics_info(device, pipeline, &state, &pipeline_layout, pCreateInfo, needed_lib_flags);
4056 if (result != VK_SUCCESS) {
4057 radv_pipeline_layout_finish(device, &pipeline_layout);
4058 return result;
4059 }
4060
4061 if (radv_should_compute_pipeline_hash(device, pipeline, fast_linking_enabled))
4062 radv_pipeline_layout_hash(&pipeline_layout);
4063
4064 if (!radv_skip_graphics_pipeline_compile(device, pipeline, needed_lib_flags, fast_linking_enabled)) {
4065 struct radv_graphics_pipeline_key key =
4066 radv_generate_graphics_pipeline_key(device, pipeline, pCreateInfo, &state, needed_lib_flags);
4067
4068 result = radv_graphics_pipeline_compile(pipeline, pCreateInfo, &pipeline_layout, device, cache, &key,
4069 needed_lib_flags, fast_linking_enabled);
4070 if (result != VK_SUCCESS) {
4071 radv_pipeline_layout_finish(device, &pipeline_layout);
4072 return result;
4073 }
4074 }
4075
4076 uint32_t vgt_gs_out_prim_type = radv_pipeline_init_vgt_gs_out(pipeline, &state);
4077
4078 radv_pipeline_init_multisample_state(device, pipeline, pCreateInfo, &state);
4079
4080 if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
4081 radv_pipeline_init_input_assembly_state(device, pipeline);
4082 radv_pipeline_init_dynamic_state(device, pipeline, &state, pCreateInfo);
4083
4084 struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, &state, needed_lib_flags);
4085
4086 /* Copy the non-compacted SPI_SHADER_COL_FORMAT which is used to emit RBPLUS state. */
4087 pipeline->col_format_non_compacted = blend.spi_shader_col_format;
4088
4089 struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
4090 bool enable_mrt_compaction = ps && !ps->info.has_epilog && !ps->info.ps.mrt0_is_dual_src;
4091 if (enable_mrt_compaction) {
4092 blend.spi_shader_col_format = radv_compact_spi_shader_col_format(ps, blend.spi_shader_col_format);
4093
4094 /* In presence of MRT holes (ie. the FS exports MRT1 but not MRT0), the compiler will remap
4095 * them, so that only MRT0 is exported and the driver will compact SPI_SHADER_COL_FORMAT to
4096 * match what the FS actually exports. Though, to make sure the hw remapping works as
4097 * expected, we should also clear color attachments without exports in CB_SHADER_MASK.
4098 */
4099 blend.cb_shader_mask &= ps->info.ps.colors_written;
4100 }
4101
4102 unsigned custom_blend_mode = extra ? extra->custom_blend_mode : 0;
4103 if (radv_needs_null_export_workaround(device, ps, custom_blend_mode) && !blend.spi_shader_col_format) {
4104 blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
4105 pipeline->col_format_non_compacted = V_028714_SPI_SHADER_32_R;
4106 }
4107
4108 if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
4109 radv_pipeline_init_vertex_input_state(device, pipeline, &state);
4110
4111 radv_pipeline_init_shader_stages_state(device, pipeline);
4112
4113 /* Find the last vertex shader stage that eventually uses streamout. */
4114 pipeline->streamout_shader = radv_pipeline_get_streamout_shader(pipeline);
4115
4116 pipeline->is_ngg = radv_pipeline_has_ngg(pipeline);
4117 pipeline->has_ngg_culling =
4118 pipeline->is_ngg && pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.has_ngg_culling;
4119 pipeline->force_vrs_per_vertex = pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.force_vrs_per_vertex;
4120 pipeline->rast_prim = vgt_gs_out_prim_type;
4121 pipeline->uses_out_of_order_rast = state.rs->rasterization_order_amd == VK_RASTERIZATION_ORDER_RELAXED_AMD;
4122 pipeline->uses_vrs_attachment = radv_pipeline_uses_vrs_attachment(pipeline, &state);
4123
4124 pipeline->base.push_constant_size = pipeline_layout.push_constant_size;
4125 pipeline->base.dynamic_offset_count = pipeline_layout.dynamic_offset_count;
4126
4127 for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
4128 if (pipeline->base.shaders[i]) {
4129 pipeline->base.shader_upload_seq =
4130 MAX2(pipeline->base.shader_upload_seq, pipeline->base.shaders[i]->upload_seq);
4131 }
4132 }
4133
4134 if (pipeline->base.gs_copy_shader) {
4135 pipeline->base.shader_upload_seq =
4136 MAX2(pipeline->base.shader_upload_seq, pipeline->base.gs_copy_shader->upload_seq);
4137 }
4138
4139 if (extra) {
4140 radv_pipeline_init_extra(pipeline, extra, &blend, &state, &vgt_gs_out_prim_type);
4141 }
4142
4143 radv_pipeline_emit_pm4(device, pipeline, &blend, vgt_gs_out_prim_type, &state);
4144
4145 radv_pipeline_layout_finish(device, &pipeline_layout);
4146 return result;
4147 }
4148
4149 VkResult
radv_graphics_pipeline_create(VkDevice _device,VkPipelineCache _cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const struct radv_graphics_pipeline_create_info * extra,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)4150 radv_graphics_pipeline_create(VkDevice _device, VkPipelineCache _cache, const VkGraphicsPipelineCreateInfo *pCreateInfo,
4151 const struct radv_graphics_pipeline_create_info *extra,
4152 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline)
4153 {
4154 RADV_FROM_HANDLE(radv_device, device, _device);
4155 VK_FROM_HANDLE(vk_pipeline_cache, cache, _cache);
4156 struct radv_graphics_pipeline *pipeline;
4157 VkResult result;
4158
4159 pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4160 if (pipeline == NULL)
4161 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
4162
4163 radv_pipeline_init(device, &pipeline->base, RADV_PIPELINE_GRAPHICS);
4164 pipeline->base.create_flags = vk_graphics_pipeline_create_flags(pCreateInfo);
4165 pipeline->base.is_internal = _cache == device->meta_state.cache;
4166
4167 result = radv_graphics_pipeline_init(pipeline, device, cache, pCreateInfo, extra);
4168 if (result != VK_SUCCESS) {
4169 radv_pipeline_destroy(device, &pipeline->base, pAllocator);
4170 return result;
4171 }
4172
4173 *pPipeline = radv_pipeline_to_handle(&pipeline->base);
4174 radv_rmv_log_graphics_pipeline_create(device, &pipeline->base, pipeline->base.is_internal);
4175 return VK_SUCCESS;
4176 }
4177
4178 void
radv_destroy_graphics_pipeline(struct radv_device * device,struct radv_graphics_pipeline * pipeline)4179 radv_destroy_graphics_pipeline(struct radv_device *device, struct radv_graphics_pipeline *pipeline)
4180 {
4181 for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
4182 if (pipeline->base.shaders[i])
4183 radv_shader_unref(device, pipeline->base.shaders[i]);
4184 }
4185
4186 if (pipeline->base.gs_copy_shader)
4187 radv_shader_unref(device, pipeline->base.gs_copy_shader);
4188
4189 vk_free(&device->vk.alloc, pipeline->state_data);
4190 }
4191
4192 static VkResult
radv_graphics_lib_pipeline_init(struct radv_graphics_lib_pipeline * pipeline,struct radv_device * device,struct vk_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * pCreateInfo)4193 radv_graphics_lib_pipeline_init(struct radv_graphics_lib_pipeline *pipeline, struct radv_device *device,
4194 struct vk_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo)
4195 {
4196 VkResult result;
4197
4198 const VkGraphicsPipelineLibraryCreateInfoEXT *lib_info =
4199 vk_find_struct_const(pCreateInfo->pNext, GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT);
4200 VkGraphicsPipelineLibraryFlagBitsEXT needed_lib_flags = lib_info ? lib_info->flags : 0;
4201 const VkPipelineLibraryCreateInfoKHR *libs_info =
4202 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
4203 bool fast_linking_enabled = radv_is_fast_linking_enabled(&pipeline->base, pCreateInfo);
4204
4205 struct vk_graphics_pipeline_state *state = &pipeline->graphics_state;
4206 struct radv_pipeline_layout *pipeline_layout = &pipeline->layout;
4207
4208 pipeline->base.last_vgt_api_stage = MESA_SHADER_NONE;
4209 pipeline->base.retain_shaders =
4210 (pipeline->base.base.create_flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT) != 0;
4211 pipeline->lib_flags = needed_lib_flags;
4212
4213 radv_pipeline_layout_init(device, pipeline_layout, false);
4214
4215 /* If we have libraries, import them first. */
4216 if (libs_info) {
4217 const bool link_optimize =
4218 (pipeline->base.base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
4219
4220 for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
4221 RADV_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
4222 struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib);
4223
4224 radv_graphics_pipeline_import_lib(device, &pipeline->base, state, pipeline_layout, gfx_pipeline_lib,
4225 link_optimize);
4226
4227 pipeline->lib_flags |= gfx_pipeline_lib->lib_flags;
4228
4229 needed_lib_flags &= ~gfx_pipeline_lib->lib_flags;
4230 }
4231 }
4232
4233 result = radv_pipeline_import_graphics_info(device, &pipeline->base, state, pipeline_layout, pCreateInfo,
4234 needed_lib_flags);
4235 if (result != VK_SUCCESS)
4236 return result;
4237
4238 if (radv_should_compute_pipeline_hash(device, &pipeline->base, fast_linking_enabled))
4239 radv_pipeline_layout_hash(pipeline_layout);
4240
4241 struct radv_graphics_pipeline_key key =
4242 radv_generate_graphics_pipeline_key(device, &pipeline->base, pCreateInfo, state, needed_lib_flags);
4243
4244 return radv_graphics_pipeline_compile(&pipeline->base, pCreateInfo, pipeline_layout, device, cache, &key,
4245 needed_lib_flags, fast_linking_enabled);
4246 }
4247
4248 static VkResult
radv_graphics_lib_pipeline_create(VkDevice _device,VkPipelineCache _cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)4249 radv_graphics_lib_pipeline_create(VkDevice _device, VkPipelineCache _cache,
4250 const VkGraphicsPipelineCreateInfo *pCreateInfo,
4251 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline)
4252 {
4253 VK_FROM_HANDLE(vk_pipeline_cache, cache, _cache);
4254 RADV_FROM_HANDLE(radv_device, device, _device);
4255 struct radv_graphics_lib_pipeline *pipeline;
4256 VkResult result;
4257
4258 pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4259 if (pipeline == NULL)
4260 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
4261
4262 radv_pipeline_init(device, &pipeline->base.base, RADV_PIPELINE_GRAPHICS_LIB);
4263 pipeline->base.base.create_flags = vk_graphics_pipeline_create_flags(pCreateInfo);
4264
4265 pipeline->mem_ctx = ralloc_context(NULL);
4266
4267 result = radv_graphics_lib_pipeline_init(pipeline, device, cache, pCreateInfo);
4268 if (result != VK_SUCCESS) {
4269 radv_pipeline_destroy(device, &pipeline->base.base, pAllocator);
4270 return result;
4271 }
4272
4273 *pPipeline = radv_pipeline_to_handle(&pipeline->base.base);
4274
4275 return VK_SUCCESS;
4276 }
4277
4278 void
radv_destroy_graphics_lib_pipeline(struct radv_device * device,struct radv_graphics_lib_pipeline * pipeline)4279 radv_destroy_graphics_lib_pipeline(struct radv_device *device, struct radv_graphics_lib_pipeline *pipeline)
4280 {
4281 struct radv_retained_shaders *retained_shaders = &pipeline->retained_shaders;
4282
4283 radv_pipeline_layout_finish(device, &pipeline->layout);
4284
4285 for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
4286 free(retained_shaders->stages[i].serialized_nir);
4287 }
4288
4289 ralloc_free(pipeline->mem_ctx);
4290
4291 radv_destroy_graphics_pipeline(device, &pipeline->base);
4292 }
4293
4294 VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateGraphicsPipelines(VkDevice _device,VkPipelineCache pipelineCache,uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)4295 radv_CreateGraphicsPipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count,
4296 const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator,
4297 VkPipeline *pPipelines)
4298 {
4299 VkResult result = VK_SUCCESS;
4300 unsigned i = 0;
4301
4302 for (; i < count; i++) {
4303 const VkPipelineCreateFlagBits2KHR create_flags = vk_graphics_pipeline_create_flags(&pCreateInfos[i]);
4304 VkResult r;
4305 if (create_flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) {
4306 r = radv_graphics_lib_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator, &pPipelines[i]);
4307 } else {
4308 r = radv_graphics_pipeline_create(_device, pipelineCache, &pCreateInfos[i], NULL, pAllocator, &pPipelines[i]);
4309 }
4310 if (r != VK_SUCCESS) {
4311 result = r;
4312 pPipelines[i] = VK_NULL_HANDLE;
4313
4314 if (create_flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
4315 break;
4316 }
4317 }
4318
4319 for (; i < count; ++i)
4320 pPipelines[i] = VK_NULL_HANDLE;
4321
4322 return result;
4323 }
4324