1 /*
2 * Copyright 2021 Alyssa Rosenzweig
3 * Copyright 2020 Collabora Ltd.
4 * Copyright 2016 Broadcom
5 * SPDX-License-Identifier: MIT
6 */
7
8 #include "agx_compile.h"
9 #include "compiler/nir/nir_builder.h"
10 #include "util/glheader.h"
11 #include "util/macros.h"
12 #include "util/u_debug.h"
13 #include "agx_builder.h"
14 #include "agx_compiler.h"
15 #include "agx_debug.h"
16 #include "agx_internal_formats.h"
17 #include "agx_nir.h"
18 #include "glsl_types.h"
19 #include "nir.h"
20 #include "nir_intrinsics.h"
21 #include "nir_intrinsics_indices.h"
22 #include "shader_enums.h"
23
24 /* Alignment for shader programs. I'm not sure what the optimal value is. */
25 #define AGX_CODE_ALIGN 0x100
26
27 /* clang-format off */
28 static const struct debug_named_value agx_debug_options[] = {
29 {"shaders", AGX_DBG_SHADERS, "Dump shaders in NIR and AIR"},
30 {"shaderdb", AGX_DBG_SHADERDB, "Print statistics"},
31 {"verbose", AGX_DBG_VERBOSE, "Disassemble verbosely"},
32 {"internal", AGX_DBG_INTERNAL, "Dump even internal shaders"},
33 {"novalidate",AGX_DBG_NOVALIDATE,"Skip IR validation in debug builds"},
34 {"noopt", AGX_DBG_NOOPT, "Disable backend optimizations"},
35 {"wait", AGX_DBG_WAIT, "Wait after all async instructions"},
36 {"nopreamble",AGX_DBG_NOPREAMBLE,"Do not use shader preambles"},
37 {"demand", AGX_DBG_DEMAND, "Bound tightly to register demand"},
38 {"nosched", AGX_DBG_NOSCHED, "Do not schedule the shader"},
39 {"spill", AGX_DBG_SPILL, "Spill (almost) everything"},
40 DEBUG_NAMED_VALUE_END
41 };
42 /* clang-format on */
43
44 DEBUG_GET_ONCE_FLAGS_OPTION(agx_compiler_debug, "AGX_MESA_DEBUG",
45 agx_debug_options, 0)
46
47 int agx_compiler_debug = 0;
48
49 uint64_t
agx_get_compiler_debug(void)50 agx_get_compiler_debug(void)
51 {
52 return debug_get_option_agx_compiler_debug();
53 }
54
55 static agx_index
agx_cached_preload(agx_context * ctx,agx_index * cache,unsigned base,enum agx_size size)56 agx_cached_preload(agx_context *ctx, agx_index *cache, unsigned base,
57 enum agx_size size)
58 {
59 if (agx_is_null(*cache)) {
60 agx_block *block = agx_start_block(ctx);
61 agx_builder b = agx_init_builder(ctx, agx_before_block(block));
62 *cache = agx_preload(&b, agx_register(base, size));
63 }
64
65 return *cache;
66 }
67
68 static agx_index
agx_vertex_id(agx_builder * b)69 agx_vertex_id(agx_builder *b)
70 {
71 return agx_cached_preload(b->shader, &b->shader->vertex_id, 10, AGX_SIZE_32);
72 }
73
74 static agx_index
agx_instance_id(agx_builder * b)75 agx_instance_id(agx_builder *b)
76 {
77 return agx_cached_preload(b->shader, &b->shader->instance_id, 12,
78 AGX_SIZE_32);
79 }
80
81 static agx_index
agx_get_cf(agx_context * ctx,bool smooth,bool perspective,gl_varying_slot slot,unsigned offset,unsigned count)82 agx_get_cf(agx_context *ctx, bool smooth, bool perspective,
83 gl_varying_slot slot, unsigned offset, unsigned count)
84 {
85 struct agx_varyings_fs *varyings = &ctx->out->varyings.fs;
86 unsigned cf_base = varyings->nr_cf;
87
88 if (slot == VARYING_SLOT_POS) {
89 assert(offset == 2 || offset == 3);
90 varyings->reads_z |= (offset == 2);
91 }
92
93 /* Forcibly vectorize pointcoord reads, since there's no (known) way to index
94 * Y alone.
95 */
96 bool is_pntc = (slot == VARYING_SLOT_PNTC);
97 bool is_tex = slot >= VARYING_SLOT_TEX0 && slot <= VARYING_SLOT_TEX7;
98 unsigned cf_offset = 0;
99
100 if (is_pntc || is_tex) {
101 cf_offset = offset;
102 offset = 0;
103 count = is_tex ? 4 : MAX2(2, count + offset);
104 }
105
106 /* First, search for an appropriate binding. This is O(n) to the number of
107 * bindings, which isn't great, but n should be small in practice.
108 */
109 for (unsigned b = 0; b < varyings->nr_bindings; ++b) {
110 if ((varyings->bindings[b].slot == slot) &&
111 (varyings->bindings[b].offset == offset) &&
112 (varyings->bindings[b].count == count) &&
113 (varyings->bindings[b].smooth == smooth) &&
114 (varyings->bindings[b].perspective == perspective)) {
115
116 return agx_immediate(varyings->bindings[b].cf_base + cf_offset);
117 }
118 }
119
120 /* If we didn't find one, make one */
121 unsigned b = varyings->nr_bindings++;
122 varyings->bindings[b].cf_base = varyings->nr_cf;
123 varyings->bindings[b].slot = slot;
124 varyings->bindings[b].offset = offset;
125 varyings->bindings[b].count = count;
126 varyings->bindings[b].smooth = smooth;
127 varyings->bindings[b].perspective = perspective;
128 varyings->nr_cf += count;
129
130 return agx_immediate(cf_base + cf_offset);
131 }
132
133 /* Builds a 64-bit hash table key for an index */
134 static uint64_t
agx_index_to_key(agx_index idx)135 agx_index_to_key(agx_index idx)
136 {
137 STATIC_ASSERT(sizeof(idx) <= sizeof(uint64_t));
138
139 uint64_t key = 0;
140 memcpy(&key, &idx, sizeof(idx));
141 return key;
142 }
143
144 /*
145 * Extract a single channel out of a vector source. We split vectors with
146 * p_split so we can use the split components directly, without emitting a
147 * machine instruction. This has advantages of RA, as the split can usually be
148 * optimized away.
149 */
150 static agx_index
agx_emit_extract(agx_builder * b,agx_index vec,unsigned channel)151 agx_emit_extract(agx_builder *b, agx_index vec, unsigned channel)
152 {
153 agx_index *components = _mesa_hash_table_u64_search(b->shader->allocated_vec,
154 agx_index_to_key(vec));
155
156 assert(components != NULL && "missing agx_emit_collect_to");
157
158 return components[channel];
159 }
160
161 static agx_index
agx_extract_nir_src(agx_builder * b,nir_src src,unsigned channel)162 agx_extract_nir_src(agx_builder *b, nir_src src, unsigned channel)
163 {
164 agx_index idx = agx_src_index(&src);
165
166 /* We only deal with scalars, extract a single scalar if needed */
167 if (nir_src_num_components(src) > 1)
168 return agx_emit_extract(b, idx, channel);
169 else
170 return idx;
171 }
172
173 static void
agx_cache_collect(agx_builder * b,agx_index dst,unsigned nr_srcs,agx_index * srcs)174 agx_cache_collect(agx_builder *b, agx_index dst, unsigned nr_srcs,
175 agx_index *srcs)
176 {
177 /* Lifetime of a hash table entry has to be at least as long as the table */
178 agx_index *channels = ralloc_array(b->shader, agx_index, nr_srcs);
179
180 for (unsigned i = 0; i < nr_srcs; ++i)
181 channels[i] = srcs[i];
182
183 _mesa_hash_table_u64_insert(b->shader->allocated_vec, agx_index_to_key(dst),
184 channels);
185 }
186
187 /*
188 * Combine multiple scalars into a vector destination. This corresponds to
189 * collect, lowered to moves (a shuffle in general) after register allocation.
190 *
191 * To optimize vector extractions, we record the individual channels
192 */
193 static agx_instr *
agx_emit_collect_to(agx_builder * b,agx_index dst,unsigned nr_srcs,agx_index * srcs)194 agx_emit_collect_to(agx_builder *b, agx_index dst, unsigned nr_srcs,
195 agx_index *srcs)
196 {
197 agx_cache_collect(b, dst, nr_srcs, srcs);
198
199 if (nr_srcs == 1)
200 return agx_mov_to(b, dst, srcs[0]);
201
202 agx_instr *I = agx_collect_to(b, dst, nr_srcs);
203
204 agx_foreach_src(I, s)
205 I->src[s] = srcs[s];
206
207 return I;
208 }
209
210 static agx_index
agx_emit_collect(agx_builder * b,unsigned nr_srcs,agx_index * srcs)211 agx_emit_collect(agx_builder *b, unsigned nr_srcs, agx_index *srcs)
212 {
213 agx_index dst = agx_vec_temp(b->shader, srcs[0].size, nr_srcs);
214 agx_emit_collect_to(b, dst, nr_srcs, srcs);
215 return dst;
216 }
217
218 static agx_index
agx_vec2(agx_builder * b,agx_index s0,agx_index s1)219 agx_vec2(agx_builder *b, agx_index s0, agx_index s1)
220 {
221 return agx_emit_collect(b, 2, (agx_index[]){s0, s1});
222 }
223
224 static agx_index
agx_recollect_vector(agx_builder * b,nir_src vec)225 agx_recollect_vector(agx_builder *b, nir_src vec)
226 {
227 agx_index comps[4];
228 unsigned nr = nir_src_num_components(vec);
229
230 for (unsigned i = 0; i < nr; ++i)
231 comps[i] = agx_extract_nir_src(b, vec, i);
232
233 return agx_emit_collect(b, nr, comps);
234 }
235
236 /*
237 * Extract the lower or upper N-bits from a (2*N)-bit quantity. We use a split
238 * without null destinations to let us CSE (and coalesce) the splits when both x
239 * and y are split.
240 */
241 static agx_instr *
agx_subdivide_to(agx_builder * b,agx_index dst,agx_index s0,unsigned comp)242 agx_subdivide_to(agx_builder *b, agx_index dst, agx_index s0, unsigned comp)
243 {
244 assert((s0.size == (dst.size + 1)) && "only 2x subdivide handled");
245 assert((comp == 0 || comp == 1) && "too many components");
246
247 /* Handle immediates specially so we don't have to constant fold splits. */
248 if (s0.type == AGX_INDEX_IMMEDIATE) {
249 unsigned bits = 16 * agx_size_align_16(dst.size);
250 return agx_mov_imm_to(b, dst, (s0.value >> bits) & BITFIELD64_MASK(bits));
251 }
252
253 agx_instr *split = agx_split(b, 2, s0);
254 split->dest[comp] = dst;
255 split->dest[1 - comp] = agx_temp(b->shader, dst.size);
256 return split;
257 }
258
259 static void
agx_block_add_successor(agx_block * block,agx_block * successor)260 agx_block_add_successor(agx_block *block, agx_block *successor)
261 {
262 assert(block != NULL && successor != NULL);
263
264 /* Cull impossible edges */
265 if (block->unconditional_jumps)
266 return;
267
268 for (unsigned i = 0; i < ARRAY_SIZE(block->successors); ++i) {
269 if (block->successors[i]) {
270 if (block->successors[i] == successor)
271 return;
272 else
273 continue;
274 }
275
276 block->successors[i] = successor;
277 util_dynarray_append(&successor->predecessors, agx_block *, block);
278 return;
279 }
280
281 unreachable("Too many successors");
282 }
283
284 /*
285 * Splits an n-component vector (vec) into n scalar destinations (dests) using a
286 * split pseudo-instruction.
287 *
288 * Pre-condition: dests is filled with agx_null().
289 */
290 static void
agx_emit_split(agx_builder * b,agx_index * dests,agx_index vec,unsigned n)291 agx_emit_split(agx_builder *b, agx_index *dests, agx_index vec, unsigned n)
292 {
293 agx_instr *I = agx_split(b, n, vec);
294
295 agx_foreach_dest(I, d) {
296 dests[d] = agx_temp(b->shader, vec.size);
297 I->dest[d] = dests[d];
298 }
299 }
300
301 static void
agx_emit_cached_split(agx_builder * b,agx_index vec,unsigned n)302 agx_emit_cached_split(agx_builder *b, agx_index vec, unsigned n)
303 {
304 agx_index dests[4] = {agx_null(), agx_null(), agx_null(), agx_null()};
305 agx_emit_split(b, dests, vec, n);
306 agx_cache_collect(b, vec, n, dests);
307 }
308
309 static void
agx_emit_load_const(agx_builder * b,nir_load_const_instr * instr)310 agx_emit_load_const(agx_builder *b, nir_load_const_instr *instr)
311 {
312 /* Ensure we've been scalarized and bit size lowered */
313 unsigned bit_size = instr->def.bit_size;
314 assert(instr->def.num_components == 1);
315
316 /* Emit move, later passes can inline/push if useful */
317 agx_mov_imm_to(b, agx_def_index(&instr->def),
318 nir_const_value_as_uint(instr->value[0], bit_size));
319 }
320
321 /*
322 * Implement mul_high of 32-bit sources by doing a 32x32->64-bit multiply and
323 * extracting only the high word.
324 */
325 static agx_instr *
agx_mul_high_to(agx_builder * b,agx_index dst,agx_index P,agx_index Q,bool is_signed)326 agx_mul_high_to(agx_builder *b, agx_index dst, agx_index P, agx_index Q,
327 bool is_signed)
328 {
329 assert(P.size == Q.size && "source sizes must match");
330 assert(P.size == dst.size && "dest size must match");
331 assert(P.size != AGX_SIZE_64 && "64x64 multiply should have been lowered");
332
333 static_assert(AGX_SIZE_64 == (AGX_SIZE_32 + 1), "enum wrong");
334 static_assert(AGX_SIZE_32 == (AGX_SIZE_16 + 1), "enum wrong");
335
336 if (!is_signed) {
337 P = agx_abs(P);
338 Q = agx_abs(Q);
339 }
340
341 agx_index product = agx_temp(b->shader, P.size + 1);
342 agx_imad_to(b, product, P, Q, agx_zero(), 0);
343
344 return agx_subdivide_to(b, dst, product, 1);
345 }
346
347 static enum agx_format
agx_format_for_pipe(enum pipe_format format)348 agx_format_for_pipe(enum pipe_format format)
349 {
350 #define CASE(x) \
351 if (format == (enum pipe_format)AGX_INTERNAL_FORMAT_##x) \
352 return AGX_FORMAT_##x;
353
354 CASE(I8);
355 CASE(I16);
356 CASE(I32);
357 CASE(F16);
358 CASE(U8NORM);
359 CASE(S8NORM);
360 CASE(U16NORM);
361 CASE(S16NORM);
362 CASE(RGB10A2);
363 CASE(SRGBA8);
364 CASE(RG11B10F);
365 CASE(RGB9E5);
366
367 #undef CASE
368 unreachable("Invalid format");
369 }
370
371 static void
agx_emit_load_coefficients(agx_builder * b,agx_index dest,nir_intrinsic_instr * instr)372 agx_emit_load_coefficients(agx_builder *b, agx_index dest,
373 nir_intrinsic_instr *instr)
374 {
375 enum glsl_interp_mode mode = nir_intrinsic_interp_mode(instr);
376 bool smooth = (mode != INTERP_MODE_FLAT);
377 bool perspective = smooth && (mode != INTERP_MODE_NOPERSPECTIVE);
378
379 agx_index cf = agx_get_cf(b->shader, smooth, perspective,
380 nir_intrinsic_io_semantics(instr).location,
381 nir_intrinsic_component(instr), 1);
382
383 agx_ldcf_to(b, dest, cf, 1);
384 agx_emit_cached_split(b, dest, 3);
385 }
386
387 static enum agx_interpolation
agx_interp_for_bary(nir_intrinsic_instr * bary,agx_index * sample_index)388 agx_interp_for_bary(nir_intrinsic_instr *bary, agx_index *sample_index)
389 {
390 switch (bary->intrinsic) {
391 case nir_intrinsic_load_barycentric_pixel:
392 return AGX_INTERPOLATION_CENTER;
393
394 case nir_intrinsic_load_barycentric_centroid:
395 return AGX_INTERPOLATION_CENTROID;
396
397 case nir_intrinsic_load_barycentric_at_sample:
398 *sample_index = agx_src_index(&bary->src[0]);
399 return AGX_INTERPOLATION_SAMPLE;
400
401 default:
402 unreachable("should have been lowered");
403 }
404 }
405
406 static void
agx_emit_load_vary(agx_builder * b,agx_index dest,nir_intrinsic_instr * instr)407 agx_emit_load_vary(agx_builder *b, agx_index dest, nir_intrinsic_instr *instr)
408 {
409 ASSERTED unsigned components = instr->num_components;
410 nir_intrinsic_instr *bary = nir_src_as_intrinsic(instr->src[0]);
411
412 assert(components >= 1 && components <= 4);
413
414 agx_index sample_index = agx_zero();
415 enum agx_interpolation interp = agx_interp_for_bary(bary, &sample_index);
416
417 bool perspective =
418 nir_intrinsic_interp_mode(bary) != INTERP_MODE_NOPERSPECTIVE;
419
420 nir_io_semantics sem = nir_intrinsic_io_semantics(instr);
421 nir_src *offset = nir_get_io_offset_src(instr);
422 assert(nir_src_is_const(*offset) && "no indirects");
423
424 assert(nir_def_components_read(&instr->def) ==
425 nir_component_mask(components) &&
426 "iter does not handle write-after-write hazards");
427
428 agx_index I = agx_get_cf(b->shader, true, perspective,
429 sem.location + nir_src_as_uint(*offset),
430 nir_intrinsic_component(instr), components);
431
432 /* For perspective interpolation, we project (multiply by 1/W) */
433 if (perspective) {
434 agx_index J = agx_get_cf(b->shader, true, false, VARYING_SLOT_POS, 3, 1);
435 agx_iterproj_to(b, dest, I, J, sample_index, components, interp);
436 } else {
437 agx_iter_to(b, dest, I, sample_index, components, interp);
438 }
439
440 agx_emit_cached_split(b, dest, components);
441 }
442
443 static agx_instr *
agx_emit_store_vary(agx_builder * b,nir_intrinsic_instr * instr)444 agx_emit_store_vary(agx_builder *b, nir_intrinsic_instr *instr)
445 {
446 nir_io_semantics sem = nir_intrinsic_io_semantics(instr);
447 nir_src *offset = nir_get_io_offset_src(instr);
448 assert(nir_src_is_const(*offset) && "todo: indirects");
449
450 unsigned imm_index = b->shader->out->varyings.vs.slots[sem.location];
451
452 if (sem.location == VARYING_SLOT_LAYER ||
453 sem.location == VARYING_SLOT_CLIP_DIST0) {
454 /* Separate slots used for the sysval vs the varying. The default slot
455 * above is for the varying. Change for the sysval.
456 */
457 assert(sem.no_sysval_output || sem.no_varying);
458
459 if (sem.no_varying) {
460 imm_index = sem.location == VARYING_SLOT_LAYER
461 ? b->shader->out->varyings.vs.layer_viewport_slot
462 : b->shader->out->varyings.vs.clip_dist_slot;
463 }
464 }
465
466 assert(imm_index < ~0);
467 imm_index += (nir_src_as_uint(*offset) * 4) + nir_intrinsic_component(instr);
468
469 /* nir_lower_io_to_scalar */
470 assert(nir_intrinsic_write_mask(instr) == 0x1);
471
472 return agx_st_vary(b, agx_immediate(imm_index),
473 agx_src_index(&instr->src[0]));
474 }
475
476 static agx_instr *
agx_emit_local_store_pixel(agx_builder * b,nir_intrinsic_instr * instr)477 agx_emit_local_store_pixel(agx_builder *b, nir_intrinsic_instr *instr)
478 {
479 /* TODO: Reverse-engineer interactions with MRT */
480 if (b->shader->key->fs.ignore_tib_dependencies) {
481 assert(b->shader->nir->info.internal && "only for clear shaders");
482 } else if (b->shader->did_writeout) {
483 agx_wait_pix(b, 0x0004);
484 } else {
485 agx_wait_pix(b, 0x000C);
486 }
487
488 /* Compact the registers according to the mask */
489 agx_index compacted[4] = {agx_null()};
490
491 unsigned compact_count = 0;
492 u_foreach_bit(i, nir_intrinsic_write_mask(instr)) {
493 compacted[compact_count++] = agx_extract_nir_src(b, instr->src[0], i);
494 }
495
496 agx_index collected = agx_emit_collect(b, compact_count, compacted);
497
498 b->shader->did_writeout = true;
499 b->shader->out->tag_write_disable = false;
500 return agx_st_tile(b, collected, agx_src_index(&instr->src[1]),
501 agx_format_for_pipe(nir_intrinsic_format(instr)),
502 nir_intrinsic_write_mask(instr),
503 nir_intrinsic_base(instr));
504 }
505
506 static agx_instr *
agx_emit_store_zs(agx_builder * b,nir_intrinsic_instr * instr)507 agx_emit_store_zs(agx_builder *b, nir_intrinsic_instr *instr)
508 {
509 unsigned base = nir_intrinsic_base(instr);
510 bool write_z = base & 1;
511 bool write_s = base & 2;
512
513 /* TODO: Handle better */
514 assert(!b->shader->key->fs.ignore_tib_dependencies && "not used");
515 agx_wait_pix(b, 0x0001);
516
517 agx_index z = agx_src_index(&instr->src[1]);
518 agx_index s = agx_src_index(&instr->src[2]);
519
520 assert(!write_z || z.size == AGX_SIZE_32);
521 assert(!write_s || s.size == AGX_SIZE_16);
522
523 if (write_z && write_s) {
524 agx_index u2u32 = agx_temp(b->shader, AGX_SIZE_32);
525 agx_mov_to(b, u2u32, s);
526 s = u2u32;
527 }
528
529 agx_index zs = (write_z && write_s) ? agx_vec2(b, z, s) : write_z ? z : s;
530
531 /* Not necessarily a sample mask but overlapping hw mechanism... Should
532 * maybe rename this flag to something more general.
533 */
534 b->shader->out->writes_sample_mask = true;
535
536 return agx_zs_emit(b, agx_src_index(&instr->src[0]), zs, base);
537 }
538
539 static void
agx_emit_local_load_pixel(agx_builder * b,agx_index dest,nir_intrinsic_instr * instr)540 agx_emit_local_load_pixel(agx_builder *b, agx_index dest,
541 nir_intrinsic_instr *instr)
542 {
543 /* TODO: Reverse-engineer interactions with MRT */
544 assert(!b->shader->key->fs.ignore_tib_dependencies && "invalid usage");
545 agx_wait_pix(b, 0x0008);
546 b->shader->did_writeout = true;
547 b->shader->out->reads_tib = true;
548
549 unsigned nr_comps = instr->def.num_components;
550 agx_ld_tile_to(b, dest, agx_src_index(&instr->src[0]),
551 agx_format_for_pipe(nir_intrinsic_format(instr)),
552 BITFIELD_MASK(nr_comps), nir_intrinsic_base(instr));
553 agx_emit_cached_split(b, dest, nr_comps);
554 }
555
556 static void
agx_emit_load(agx_builder * b,agx_index dest,nir_intrinsic_instr * instr)557 agx_emit_load(agx_builder *b, agx_index dest, nir_intrinsic_instr *instr)
558 {
559 agx_index addr = agx_src_index(&instr->src[0]);
560 agx_index offset = agx_src_index(&instr->src[1]);
561 enum agx_format fmt = agx_format_for_pipe(nir_intrinsic_format(instr));
562 unsigned shift = nir_intrinsic_base(instr);
563
564 /* Zero-extend offset if we're not sign-extending */
565 if (!nir_intrinsic_sign_extend(instr))
566 offset = agx_abs(offset);
567
568 agx_device_load_to(b, dest, addr, offset, fmt,
569 BITFIELD_MASK(instr->def.num_components), shift);
570 agx_emit_cached_split(b, dest, instr->def.num_components);
571 }
572
573 static void
agx_emit_store(agx_builder * b,nir_intrinsic_instr * instr)574 agx_emit_store(agx_builder *b, nir_intrinsic_instr *instr)
575 {
576 agx_index addr = agx_src_index(&instr->src[1]);
577 agx_index offset = agx_src_index(&instr->src[2]);
578 enum agx_format fmt = agx_format_for_pipe(nir_intrinsic_format(instr));
579 unsigned shift = nir_intrinsic_base(instr);
580
581 /* Zero-extend offset if we're not sign-extending */
582 if (!nir_intrinsic_sign_extend(instr))
583 offset = agx_abs(offset);
584
585 agx_device_store(b, agx_recollect_vector(b, instr->src[0]), addr, offset,
586 fmt, BITFIELD_MASK(nir_src_num_components(instr->src[0])),
587 shift);
588 }
589
590 /* Preambles write directly to uniform registers, so move from uniform to GPR */
591 static agx_instr *
agx_emit_load_preamble(agx_builder * b,agx_index dst,nir_intrinsic_instr * instr)592 agx_emit_load_preamble(agx_builder *b, agx_index dst,
593 nir_intrinsic_instr *instr)
594 {
595 agx_index srcs[4] = {agx_null()};
596 unsigned dim = instr->def.num_components;
597 assert(dim <= ARRAY_SIZE(srcs) && "shouldn't see larger vectors");
598
599 unsigned base = nir_intrinsic_base(instr);
600 unsigned stride = agx_size_align_16(dst.size);
601
602 for (unsigned i = 0; i < dim; ++i)
603 srcs[i] = agx_uniform(base + i * stride, dst.size);
604
605 return agx_emit_collect_to(b, dst, dim, srcs);
606 }
607
608 static agx_instr *
agx_emit_store_preamble(agx_builder * b,nir_intrinsic_instr * instr)609 agx_emit_store_preamble(agx_builder *b, nir_intrinsic_instr *instr)
610 {
611 agx_index vec = agx_src_index(&instr->src[0]);
612 unsigned base = nir_intrinsic_base(instr);
613 unsigned stride = agx_size_align_16(vec.size);
614
615 for (unsigned i = 0; i < nir_src_num_components(instr->src[0]); ++i) {
616 agx_uniform_store(b, agx_extract_nir_src(b, instr->src[0], i),
617 agx_immediate(base + i * stride));
618 }
619
620 return NULL;
621 }
622
623 static enum agx_dim
agx_tex_dim(enum glsl_sampler_dim dim,bool array)624 agx_tex_dim(enum glsl_sampler_dim dim, bool array)
625 {
626 switch (dim) {
627 case GLSL_SAMPLER_DIM_1D:
628 return array ? AGX_DIM_1D_ARRAY : AGX_DIM_1D;
629
630 case GLSL_SAMPLER_DIM_2D:
631 case GLSL_SAMPLER_DIM_RECT:
632 case GLSL_SAMPLER_DIM_EXTERNAL:
633 return array ? AGX_DIM_2D_ARRAY : AGX_DIM_2D;
634
635 case GLSL_SAMPLER_DIM_MS:
636 return array ? AGX_DIM_2D_MS_ARRAY : AGX_DIM_2D_MS;
637
638 case GLSL_SAMPLER_DIM_3D:
639 assert(!array && "3D arrays unsupported");
640 return AGX_DIM_3D;
641
642 case GLSL_SAMPLER_DIM_CUBE:
643 return array ? AGX_DIM_CUBE_ARRAY : AGX_DIM_CUBE;
644
645 case GLSL_SAMPLER_DIM_BUF:
646 unreachable("Buffer textures should have been lowered");
647
648 default:
649 unreachable("Invalid sampler dim\n");
650 }
651 }
652
653 static agx_instr *
agx_emit_block_image_store(agx_builder * b,nir_intrinsic_instr * instr)654 agx_emit_block_image_store(agx_builder *b, nir_intrinsic_instr *instr)
655 {
656 unsigned image = nir_src_as_uint(instr->src[0]);
657 agx_index offset = agx_src_index(&instr->src[1]);
658 agx_index layer = agx_src_index(&instr->src[2]);
659 enum agx_format format = agx_format_for_pipe(nir_intrinsic_format(instr));
660
661 bool ms = nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_MS;
662 bool array = nir_intrinsic_image_array(instr);
663 enum agx_dim dim = agx_tex_dim(nir_intrinsic_image_dim(instr), array);
664
665 /* 32-bit source physically, 16-bit in NIR, top half ignored but needed
666 * logically to ensure alignment.
667 */
668 offset = agx_vec2(b, offset, agx_undef(AGX_SIZE_16));
669 offset.channels_m1--;
670 offset.size = AGX_SIZE_32;
671
672 /* Modified coordinate descriptor */
673 agx_index coords;
674 if (array) {
675 coords = agx_temp(b->shader, AGX_SIZE_32);
676 agx_emit_collect_to(b, coords, 2,
677 (agx_index[]){
678 ms ? agx_mov_imm(b, 16, 0) : layer,
679 ms ? layer : agx_undef(AGX_SIZE_16),
680 });
681 } else {
682 coords = agx_null();
683 }
684
685 // XXX: how does this possibly work
686 if (format == AGX_FORMAT_F16)
687 format = AGX_FORMAT_I16;
688
689 return agx_block_image_store(b, agx_immediate(image), offset, coords, format,
690 dim);
691 }
692
693 static agx_instr *
agx_load_compute_dimension(agx_builder * b,agx_index dst,nir_intrinsic_instr * instr,enum agx_sr base)694 agx_load_compute_dimension(agx_builder *b, agx_index dst,
695 nir_intrinsic_instr *instr, enum agx_sr base)
696 {
697 unsigned dim = instr->def.num_components;
698 unsigned size = instr->def.bit_size;
699 assert(size == 16 || size == 32);
700
701 agx_index srcs[] = {
702 agx_get_sr(b, size, base + 0),
703 agx_get_sr(b, size, base + 1),
704 agx_get_sr(b, size, base + 2),
705 };
706
707 return agx_emit_collect_to(b, dst, dim, srcs);
708 }
709
710 static enum agx_atomic_opc
translate_atomic_opcode(nir_atomic_op op)711 translate_atomic_opcode(nir_atomic_op op)
712 {
713 /* clang-format off */
714 switch (op) {
715 case nir_atomic_op_iadd: return AGX_ATOMIC_OPC_ADD;
716 case nir_atomic_op_imin: return AGX_ATOMIC_OPC_IMIN;
717 case nir_atomic_op_umin: return AGX_ATOMIC_OPC_UMIN;
718 case nir_atomic_op_imax: return AGX_ATOMIC_OPC_IMAX;
719 case nir_atomic_op_umax: return AGX_ATOMIC_OPC_UMAX;
720 case nir_atomic_op_iand: return AGX_ATOMIC_OPC_AND;
721 case nir_atomic_op_ior: return AGX_ATOMIC_OPC_OR;
722 case nir_atomic_op_ixor: return AGX_ATOMIC_OPC_XOR;
723 case nir_atomic_op_xchg: return AGX_ATOMIC_OPC_XCHG;
724 case nir_atomic_op_cmpxchg: return AGX_ATOMIC_OPC_CMPXCHG;
725 default: unreachable("unknown atomic opcode");
726 }
727 /* clang-format on */
728 }
729
730 /*
731 * The "base" of a local load/store/atomic can be zero but no other immediates.
732 * This would be a little silly to handle when inlining immediates, so we
733 * instead exclude these ops from immediate inlining and just handle 0 specially
734 * when translating.
735 */
736 static agx_index
agx_local_base(nir_src src)737 agx_local_base(nir_src src)
738 {
739 if (nir_src_is_const(src) && nir_src_as_uint(src) == 0)
740 return agx_zero();
741 else
742 return agx_src_index(&src);
743 }
744
745 static void
agx_emit_atomic(agx_builder * b,agx_index dst,nir_intrinsic_instr * instr,bool local)746 agx_emit_atomic(agx_builder *b, agx_index dst, nir_intrinsic_instr *instr,
747 bool local)
748 {
749 enum agx_atomic_opc op =
750 translate_atomic_opcode(nir_intrinsic_atomic_op(instr));
751 agx_index base =
752 local ? agx_local_base(instr->src[0]) : agx_src_index(&instr->src[0]);
753 agx_index value = agx_src_index(&instr->src[local ? 1 : 2]);
754 agx_index index = local ? agx_zero() : agx_src_index(&instr->src[1]);
755
756 /* cmpxchg (only) takes 2 sources, passed in consecutive registers */
757 if (op == AGX_ATOMIC_OPC_CMPXCHG) {
758 agx_index value2 = agx_src_index(&instr->src[local ? 2 : 3]);
759 value = agx_vec2(b, value2, value);
760 }
761
762 if (local) {
763 assert(base.size == AGX_SIZE_16);
764 agx_local_atomic_to(b, dst, value, base, index, op);
765 } else {
766 assert(base.size == AGX_SIZE_64);
767 agx_atomic_to(b, dst, value, base, index, op);
768 }
769 }
770
771 static enum agx_format
format_for_bitsize(unsigned bitsize)772 format_for_bitsize(unsigned bitsize)
773 {
774 switch (bitsize) {
775 case 8:
776 return AGX_FORMAT_I8;
777 case 16:
778 return AGX_FORMAT_I16;
779 case 32:
780 return AGX_FORMAT_I32;
781 default:
782 unreachable("should've been lowered");
783 }
784 }
785
786 static void
agx_emit_local_load(agx_builder * b,agx_index dst,nir_intrinsic_instr * instr)787 agx_emit_local_load(agx_builder *b, agx_index dst, nir_intrinsic_instr *instr)
788 {
789 agx_index base = agx_local_base(instr->src[0]);
790 agx_index index = agx_zero(); /* TODO: optimize address arithmetic */
791 assert(base.size == AGX_SIZE_16);
792
793 enum agx_format format = format_for_bitsize(instr->def.bit_size);
794 unsigned nr = instr->def.num_components;
795 unsigned mask = BITFIELD_MASK(nr);
796
797 agx_local_load_to(b, dst, base, index, format, mask);
798 agx_emit_cached_split(b, dst, nr);
799 }
800
801 static void
agx_emit_local_store(agx_builder * b,nir_intrinsic_instr * instr)802 agx_emit_local_store(agx_builder *b, nir_intrinsic_instr *instr)
803 {
804 agx_index value = agx_src_index(&instr->src[0]);
805 agx_index base = agx_local_base(instr->src[1]);
806 agx_index index = agx_zero(); /* TODO: optimize address arithmetic */
807 assert(base.size == AGX_SIZE_16);
808
809 enum agx_format format = format_for_bitsize(nir_src_bit_size(instr->src[0]));
810 unsigned mask = BITFIELD_MASK(
811 nir_src_num_components(instr->src[0])); /* XXX: there's a write mask */
812
813 agx_local_store(b, value, base, index, format, mask);
814 }
815
816 static void
agx_emit_load_scratch(agx_builder * b,agx_index dst,nir_intrinsic_instr * instr)817 agx_emit_load_scratch(agx_builder *b, agx_index dst, nir_intrinsic_instr *instr)
818 {
819 agx_index offset = agx_src_index(&instr->src[0]);
820 enum agx_format format = format_for_bitsize(instr->def.bit_size);
821 unsigned nr = instr->def.num_components;
822 unsigned mask = BITFIELD_MASK(nr);
823
824 agx_stack_load_to(b, dst, offset, format, mask);
825 agx_emit_cached_split(b, dst, nr);
826 b->shader->any_scratch = true;
827 }
828
829 static void
agx_emit_store_scratch(agx_builder * b,nir_intrinsic_instr * instr)830 agx_emit_store_scratch(agx_builder *b, nir_intrinsic_instr *instr)
831 {
832 agx_index value = agx_recollect_vector(b, instr->src[0]);
833 agx_index offset = agx_src_index(&instr->src[1]);
834 enum agx_format format = format_for_bitsize(nir_src_bit_size(instr->src[0]));
835 unsigned mask = BITFIELD_MASK(nir_src_num_components(instr->src[0]));
836
837 agx_stack_store(b, value, offset, format, mask);
838 b->shader->any_scratch = true;
839 }
840
841 /*
842 * In the hardware, bindless texture sources are specified as a 64-bit uniform
843 * base address summed with a 32-bit register index. In NIR, we model this as a
844 * vec2, where the first source is the (constant) uniform register number and
845 * the second source is the (dynamic) byte offset.
846 */
847 static agx_index
agx_translate_bindless_handle(agx_builder * b,nir_src * handle,agx_index * base)848 agx_translate_bindless_handle(agx_builder *b, nir_src *handle, agx_index *base)
849 {
850 nir_scalar base_scalar = nir_scalar_resolved(handle->ssa, 0);
851 assert(nir_scalar_is_const(base_scalar) && "base must be constant");
852
853 unsigned base_uint = nir_scalar_as_uint(base_scalar);
854 *base = agx_uniform(base_uint, AGX_SIZE_64);
855
856 return agx_emit_extract(b, agx_src_index(handle), 1);
857 }
858
859 /*
860 * Contrary to NIR, in the hardware txf requires a special sampler. The sampler
861 * cannot be arbitrary, since the hardware honours the clamps so particular
862 * configuration is required for correct out-of-bounds behaviour for txf. This
863 * helper gets the shader's txf sampler, allocating one if needed.
864 */
865 static agx_index
agx_txf_sampler(agx_context * ctx)866 agx_txf_sampler(agx_context *ctx)
867 {
868 if (!ctx->out->uses_txf) {
869 ctx->out->txf_sampler = BITSET_LAST_BIT(ctx->nir->info.samplers_used);
870 ctx->out->uses_txf = true;
871 }
872
873 return agx_immediate(ctx->out->txf_sampler);
874 }
875
876 static unsigned
agx_expand_tex_to(agx_builder * b,nir_def * def,agx_index src,bool masked)877 agx_expand_tex_to(agx_builder *b, nir_def *def, agx_index src, bool masked)
878 {
879 unsigned nr_channels = def->num_components;
880 nir_component_mask_t mask = nir_def_components_read(def);
881
882 if (!masked)
883 mask = (nir_component_mask_t)BITFIELD_MASK(nr_channels);
884
885 agx_index packed_channels[4] = {agx_null()};
886 agx_index unpacked_channels[4] = {agx_null()};
887
888 /* Hardware writes the masked components contiguously, expand out for NIR */
889 agx_emit_split(b, packed_channels, src, 4 /* XXX: why not nr_channels */);
890
891 for (unsigned i = 0; i < nr_channels; ++i) {
892 unpacked_channels[i] =
893 (mask & BITFIELD_BIT(i))
894 ? packed_channels[util_bitcount(mask & BITFIELD_MASK(i))]
895 : agx_undef(src.size);
896 }
897
898 agx_emit_collect_to(b, agx_def_index(def), nr_channels, unpacked_channels);
899 return mask;
900 }
901
902 static agx_instr *
agx_emit_image_load(agx_builder * b,agx_index dst,nir_intrinsic_instr * intr)903 agx_emit_image_load(agx_builder *b, agx_index dst, nir_intrinsic_instr *intr)
904 {
905 agx_index ms_index = agx_src_index(&intr->src[2]);
906 agx_index lod = agx_src_index(&intr->src[3]);
907 enum agx_lod_mode lod_mode = AGX_LOD_MODE_LOD_MIN;
908
909 agx_index bindless = agx_immediate(0), texture;
910 if (intr->intrinsic == nir_intrinsic_bindless_image_load)
911 texture = agx_translate_bindless_handle(b, &intr->src[0], &bindless);
912 else if (nir_src_is_const(intr->src[0]) &&
913 nir_src_as_uint(intr->src[0]) < 0x100)
914 texture = agx_immediate(nir_src_as_uint(intr->src[0]));
915 else
916 texture = agx_src_index(&intr->src[0]);
917
918 assert(nir_src_num_components(intr->src[1]) == 4);
919 agx_index coord[4] = {
920 agx_extract_nir_src(b, intr->src[1], 0),
921 agx_extract_nir_src(b, intr->src[1], 1),
922 agx_extract_nir_src(b, intr->src[1], 2),
923 agx_extract_nir_src(b, intr->src[1], 3),
924 };
925
926 /* Get the image dimension. Cubes are lowered to 2D, since they are logically
927 * equivalent for imageLoad, but out-of-bounds behaviour for cubes on G13
928 * is wrong according to Piglit's arb_shader_image_load_store-invalid.
929 *
930 * This requires a matching transform in the driver.
931 */
932 enum glsl_sampler_dim dim = nir_intrinsic_image_dim(intr);
933 bool is_array = nir_intrinsic_image_array(intr);
934
935 if (dim == GLSL_SAMPLER_DIM_CUBE) {
936 dim = GLSL_SAMPLER_DIM_2D;
937 is_array = true;
938 }
939
940 bool is_ms = dim == GLSL_SAMPLER_DIM_MS;
941 unsigned coord_comps = glsl_get_sampler_dim_coordinate_components(dim);
942 if (is_array && is_ms) {
943 agx_index layer = agx_temp(b->shader, AGX_SIZE_16);
944 agx_subdivide_to(b, layer, coord[coord_comps], 0);
945
946 assert(ms_index.size == AGX_SIZE_16);
947 agx_index vec = agx_vec2(b, ms_index, layer);
948 vec.size = AGX_SIZE_32;
949 vec.channels_m1 = 1 - 1;
950 coord[coord_comps++] = vec;
951 } else if (is_ms) {
952 agx_index tmp = agx_temp(b->shader, AGX_SIZE_32);
953 agx_mov_to(b, tmp, ms_index);
954 coord[coord_comps++] = tmp;
955 } else if (is_array) {
956 coord_comps++;
957 }
958
959 /* Multisampled images do not support mipmapping */
960 if (is_ms) {
961 lod_mode = AGX_LOD_MODE_AUTO_LOD;
962 lod = agx_zero();
963 }
964
965 agx_index coords = agx_emit_collect(b, coord_comps, coord);
966 agx_index tmp = agx_vec_temp(b->shader, dst.size, 4);
967
968 agx_instr *I = agx_image_load_to(
969 b, tmp, coords, lod, bindless, texture, agx_txf_sampler(b->shader),
970 agx_null(), agx_tex_dim(dim, is_array), lod_mode, 0, false);
971 I->mask = agx_expand_tex_to(b, &intr->def, tmp, true);
972 return NULL;
973 }
974
975 static agx_instr *
agx_emit_image_store(agx_builder * b,nir_intrinsic_instr * instr)976 agx_emit_image_store(agx_builder *b, nir_intrinsic_instr *instr)
977 {
978 /* See remarks in agx_emit_image_load */
979 enum glsl_sampler_dim glsl_dim = nir_intrinsic_image_dim(instr);
980 bool is_array = nir_intrinsic_image_array(instr);
981
982 if (glsl_dim == GLSL_SAMPLER_DIM_CUBE) {
983 glsl_dim = GLSL_SAMPLER_DIM_2D;
984 is_array = true;
985 }
986
987 enum agx_dim dim = agx_tex_dim(glsl_dim, is_array);
988 assert(glsl_dim != GLSL_SAMPLER_DIM_MS && "needs to be lowered");
989
990 agx_index base, index;
991 if (instr->intrinsic == nir_intrinsic_bindless_image_store) {
992 index = agx_translate_bindless_handle(b, &instr->src[0], &base);
993
994 assert(base.size == AGX_SIZE_64);
995 assert(index.size == AGX_SIZE_32);
996 } else {
997 base = agx_zero();
998 index = agx_src_index(&instr->src[0]);
999
1000 assert(index.size == AGX_SIZE_16);
1001 }
1002
1003 agx_index coords4 = agx_src_index(&instr->src[1]);
1004 agx_index lod = agx_src_index(&instr->src[4]);
1005 assert(lod.size == AGX_SIZE_16);
1006
1007 int coord_components = glsl_get_sampler_dim_coordinate_components(glsl_dim);
1008 if (is_array)
1009 coord_components++;
1010
1011 agx_index coord_comps[4] = {};
1012 for (unsigned i = 0; i < coord_components; ++i)
1013 coord_comps[i] = agx_emit_extract(b, coords4, i);
1014
1015 agx_index coords = agx_emit_collect(b, coord_components, coord_comps);
1016 agx_index data = agx_src_index(&instr->src[3]);
1017
1018 /* If the image format has less than 4 components, nir_opt_shrink_stores can
1019 * shrink the store. But the IR still expects 4 components: pad with undef.
1020 */
1021 if (nir_src_num_components(instr->src[3]) < 4) {
1022 agx_index chan[4] = {agx_null()};
1023
1024 for (unsigned i = 0; i < 4; ++i) {
1025 if (i < nir_src_num_components(instr->src[3]))
1026 chan[i] = agx_extract_nir_src(b, instr->src[3], i);
1027 else
1028 chan[i] = agx_undef(data.size);
1029 }
1030
1031 data = agx_emit_collect(b, 4, chan);
1032 }
1033
1034 return agx_image_write(b, data, coords, lod, base, index, dim);
1035 }
1036
1037 static agx_instr *
agx_emit_intrinsic(agx_builder * b,nir_intrinsic_instr * instr)1038 agx_emit_intrinsic(agx_builder *b, nir_intrinsic_instr *instr)
1039 {
1040 agx_index dst = nir_intrinsic_infos[instr->intrinsic].has_dest
1041 ? agx_def_index(&instr->def)
1042 : agx_null();
1043 gl_shader_stage stage = b->shader->stage;
1044
1045 switch (instr->intrinsic) {
1046 case nir_intrinsic_load_barycentric_pixel:
1047 case nir_intrinsic_load_barycentric_centroid:
1048 case nir_intrinsic_load_barycentric_at_sample:
1049 case nir_intrinsic_load_barycentric_at_offset:
1050 /* handled later via load_vary */
1051 return NULL;
1052 case nir_intrinsic_load_interpolated_input:
1053 assert(stage == MESA_SHADER_FRAGMENT);
1054 agx_emit_load_vary(b, dst, instr);
1055 return NULL;
1056
1057 case nir_intrinsic_load_coefficients_agx:
1058 assert(stage == MESA_SHADER_FRAGMENT);
1059 agx_emit_load_coefficients(b, dst, instr);
1060 return NULL;
1061
1062 case nir_intrinsic_load_agx:
1063 case nir_intrinsic_load_constant_agx:
1064 agx_emit_load(b, dst, instr);
1065 return NULL;
1066
1067 case nir_intrinsic_store_output:
1068 assert(stage == MESA_SHADER_VERTEX);
1069 return agx_emit_store_vary(b, instr);
1070
1071 case nir_intrinsic_store_agx:
1072 agx_emit_store(b, instr);
1073 return NULL;
1074
1075 case nir_intrinsic_store_shared:
1076 agx_emit_local_store(b, instr);
1077 return NULL;
1078
1079 case nir_intrinsic_load_shared:
1080 agx_emit_local_load(b, dst, instr);
1081 return NULL;
1082
1083 case nir_intrinsic_global_atomic_agx:
1084 case nir_intrinsic_global_atomic_swap_agx:
1085 agx_emit_atomic(b, dst, instr, false);
1086 return NULL;
1087
1088 case nir_intrinsic_shared_atomic:
1089 case nir_intrinsic_shared_atomic_swap:
1090 agx_emit_atomic(b, dst, instr, true);
1091 return NULL;
1092
1093 case nir_intrinsic_store_zs_agx:
1094 assert(stage == MESA_SHADER_FRAGMENT);
1095 return agx_emit_store_zs(b, instr);
1096
1097 case nir_intrinsic_store_local_pixel_agx:
1098 assert(stage == MESA_SHADER_FRAGMENT);
1099 return agx_emit_local_store_pixel(b, instr);
1100
1101 case nir_intrinsic_load_local_pixel_agx:
1102 assert(stage == MESA_SHADER_FRAGMENT);
1103 agx_emit_local_load_pixel(b, dst, instr);
1104 return NULL;
1105
1106 case nir_intrinsic_load_pixel_coord:
1107 return agx_emit_collect_to(
1108 b, dst, 2,
1109 (agx_index[2]){
1110 agx_get_sr(b, 16, AGX_SR_THREAD_POSITION_IN_GRID_X),
1111 agx_get_sr(b, 16, AGX_SR_THREAD_POSITION_IN_GRID_Y),
1112 });
1113
1114 case nir_intrinsic_load_frag_coord_zw: {
1115 agx_index cf = agx_get_cf(b->shader, true, false, VARYING_SLOT_POS,
1116 nir_intrinsic_component(instr), 1);
1117
1118 return agx_iter_to(b, dst, cf, agx_zero(), 1, AGX_INTERPOLATION_CENTER);
1119 }
1120
1121 case nir_intrinsic_sample_mask_agx: {
1122 assert(stage == MESA_SHADER_FRAGMENT);
1123 b->shader->out->writes_sample_mask = true;
1124
1125 agx_wait_pix(b, 0x0001);
1126 return agx_sample_mask(b, agx_src_index(&instr->src[0]),
1127 agx_src_index(&instr->src[1]));
1128 }
1129
1130 case nir_intrinsic_load_back_face_agx:
1131 return agx_get_sr_to(b, dst, AGX_SR_BACKFACING);
1132
1133 case nir_intrinsic_load_sample_mask_in:
1134 return agx_get_sr_to(b, dst, AGX_SR_INPUT_SAMPLE_MASK);
1135
1136 case nir_intrinsic_load_sample_mask:
1137 return agx_get_sr_coverage_to(b, dst, AGX_SR_COVERAGE_MASK);
1138
1139 case nir_intrinsic_load_helper_invocation:
1140 /* Compare special register to zero. We could lower this in NIR (letting
1141 * us fold in an inot) but meh?
1142 */
1143 return agx_icmp_to(b, dst,
1144 agx_get_sr_coverage(b, 32, AGX_SR_IS_ACTIVE_THREAD),
1145 agx_zero(), AGX_ICOND_UEQ, false);
1146
1147 case nir_intrinsic_load_vertex_id:
1148 assert(b->shader->stage == MESA_SHADER_VERTEX);
1149 return agx_mov_to(b, dst, agx_abs(agx_vertex_id(b)));
1150
1151 case nir_intrinsic_load_instance_id:
1152 assert(b->shader->stage == MESA_SHADER_VERTEX);
1153 return agx_mov_to(b, dst, agx_abs(agx_instance_id(b)));
1154
1155 case nir_intrinsic_load_preamble:
1156 return agx_emit_load_preamble(b, dst, instr);
1157
1158 case nir_intrinsic_store_preamble:
1159 return agx_emit_store_preamble(b, instr);
1160
1161 case nir_intrinsic_image_load:
1162 case nir_intrinsic_bindless_image_load:
1163 return agx_emit_image_load(b, dst, instr);
1164
1165 case nir_intrinsic_image_store:
1166 case nir_intrinsic_bindless_image_store:
1167 return agx_emit_image_store(b, instr);
1168
1169 case nir_intrinsic_block_image_store_agx:
1170 return agx_emit_block_image_store(b, instr);
1171
1172 case nir_intrinsic_load_workgroup_id:
1173 return agx_load_compute_dimension(b, dst, instr,
1174 AGX_SR_THREADGROUP_POSITION_IN_GRID_X);
1175
1176 case nir_intrinsic_load_workgroup_size:
1177 return agx_load_compute_dimension(b, dst, instr,
1178 AGX_SR_THREADS_PER_THREADGROUP_X);
1179
1180 case nir_intrinsic_load_global_invocation_id:
1181 case nir_intrinsic_load_global_invocation_id_zero_base:
1182 return agx_load_compute_dimension(b, dst, instr,
1183 AGX_SR_THREAD_POSITION_IN_GRID_X);
1184
1185 case nir_intrinsic_load_local_invocation_id:
1186 return agx_load_compute_dimension(
1187 b, dst, instr, AGX_SR_THREAD_POSITION_IN_THREADGROUP_X);
1188
1189 case nir_intrinsic_load_local_invocation_index:
1190 return agx_get_sr_to(b, dst, AGX_SR_THREAD_INDEX_IN_THREADGROUP);
1191
1192 case nir_intrinsic_barrier: {
1193 assert(!b->shader->is_preamble && "invalid");
1194
1195 bool needs_image_barriers = false;
1196
1197 if (nir_intrinsic_memory_scope(instr) != SCOPE_NONE) {
1198 nir_variable_mode modes = nir_intrinsic_memory_modes(instr);
1199
1200 if (modes & (nir_var_mem_global | nir_var_image))
1201 agx_memory_barrier(b);
1202
1203 if (modes & nir_var_image) {
1204 agx_image_barrier_1(b);
1205 agx_image_barrier_2(b);
1206 needs_image_barriers = true;
1207 }
1208 }
1209
1210 if (nir_intrinsic_execution_scope(instr) != SCOPE_NONE) {
1211 assert(nir_intrinsic_execution_scope(instr) > SCOPE_SUBGROUP &&
1212 "todo: subgroup barriers");
1213 assert(gl_shader_stage_is_compute(b->shader->nir->info.stage));
1214
1215 agx_threadgroup_barrier(b);
1216 }
1217
1218 if (needs_image_barriers) {
1219 agx_image_barrier_3(b);
1220 agx_image_barrier_4(b);
1221 }
1222
1223 return NULL;
1224 }
1225
1226 case nir_intrinsic_fence_pbe_to_tex_agx: {
1227 agx_image_barrier_1(b);
1228 agx_image_barrier_2(b);
1229 agx_image_barrier_3(b);
1230 agx_image_barrier_4(b);
1231 return NULL;
1232 }
1233
1234 case nir_intrinsic_fence_mem_to_tex_agx: {
1235 /* Flush out the atomic to main memory... Found experimentally... */
1236 agx_memory_barrier(b);
1237 agx_memory_barrier_2(b);
1238
1239 /* TODO: Which ones do we actually need? */
1240 agx_image_barrier_1(b);
1241 agx_image_barrier_2(b);
1242 agx_image_barrier_3(b);
1243 agx_image_barrier_4(b);
1244
1245 /* Flush out the texture cache */
1246 agx_flush_memory_to_texture(b);
1247 return NULL;
1248 }
1249
1250 case nir_intrinsic_fence_pbe_to_tex_pixel_agx: {
1251 agx_image_barrier_1(b);
1252 agx_image_barrier_2(b);
1253 agx_flush_memory_to_texture(b);
1254 agx_image_barrier_3(b);
1255 return NULL;
1256 }
1257
1258 case nir_intrinsic_fence_helper_exit_agx: {
1259 assert(b->shader->key->is_helper);
1260 agx_memory_barrier(b);
1261 agx_unknown_barrier_1(b);
1262 agx_memory_barrier_2(b);
1263 agx_unknown_barrier_2(b);
1264 agx_memory_barrier_3(b);
1265 return NULL;
1266 }
1267
1268 case nir_intrinsic_begin_invocation_interlock: {
1269 if (!b->shader->did_writeout &&
1270 !b->shader->key->fs.ignore_tib_dependencies)
1271 agx_wait_pix(b, 0x000C);
1272
1273 b->shader->did_writeout = true;
1274 return NULL;
1275 }
1276
1277 case nir_intrinsic_load_subgroup_invocation:
1278 return agx_get_sr_to(b, dst, AGX_SR_THREAD_INDEX_IN_SUBGROUP);
1279
1280 case nir_intrinsic_load_active_subgroup_invocation_agx:
1281 return agx_get_sr_coverage_to(b, dst,
1282 AGX_SR_ACTIVE_THREAD_INDEX_IN_SUBGROUP);
1283
1284 case nir_intrinsic_reduce: {
1285 assert(nir_intrinsic_reduction_op(instr) == nir_op_iadd &&
1286 "other reductions todo");
1287
1288 return agx_simd_iadd_to(b, dst, agx_src_index(&instr->src[0]));
1289 }
1290
1291 case nir_intrinsic_exclusive_scan: {
1292 assert(nir_intrinsic_reduction_op(instr) == nir_op_iadd &&
1293 "other reductions todo");
1294
1295 return agx_simd_prefix_iadd_to(b, dst, agx_src_index(&instr->src[0]));
1296 }
1297
1298 case nir_intrinsic_read_invocation: {
1299 /* Lane ID guaranteed to be uniform */
1300 return agx_simd_shuffle_to(b, dst, agx_src_index(&instr->src[0]),
1301 agx_src_index(&instr->src[1]));
1302 }
1303
1304 case nir_intrinsic_ballot: {
1305 return agx_ballot_to(b, dst, agx_src_index(&instr->src[0]));
1306 }
1307
1308 case nir_intrinsic_doorbell_agx: {
1309 return agx_doorbell(b, nir_src_as_uint(instr->src[0]));
1310 }
1311
1312 case nir_intrinsic_stack_map_agx: {
1313 return agx_stack_map(b, agx_src_index(&instr->src[1]),
1314 nir_src_as_uint(instr->src[0]));
1315 }
1316
1317 case nir_intrinsic_stack_unmap_agx: {
1318 return agx_stack_unmap_to(b, dst, nir_src_as_uint(instr->src[0]));
1319 }
1320
1321 case nir_intrinsic_load_scratch:
1322 agx_emit_load_scratch(b, dst, instr);
1323 return NULL;
1324
1325 case nir_intrinsic_store_scratch:
1326 agx_emit_store_scratch(b, instr);
1327 return NULL;
1328
1329 case nir_intrinsic_load_core_id_agx:
1330 return agx_get_sr_to(b, dst, AGX_SR_CORE_ID);
1331
1332 case nir_intrinsic_load_helper_op_id_agx:
1333 assert(b->shader->key->is_helper);
1334 return agx_get_sr_barrier_to(b, dst, AGX_SR_HELPER_OP);
1335
1336 case nir_intrinsic_load_helper_arg_lo_agx:
1337 assert(b->shader->key->is_helper);
1338 return agx_get_sr_barrier_to(b, dst, AGX_SR_HELPER_ARG_L);
1339
1340 case nir_intrinsic_load_helper_arg_hi_agx:
1341 assert(b->shader->key->is_helper);
1342 return agx_get_sr_barrier_to(b, dst, AGX_SR_HELPER_ARG_H);
1343
1344 case nir_intrinsic_load_barycentric_sample:
1345 case nir_intrinsic_load_sample_id:
1346 case nir_intrinsic_load_sample_pos:
1347 unreachable("Sample shading should have been lowered");
1348
1349 default:
1350 fprintf(stderr, "Unhandled intrinsic %s\n",
1351 nir_intrinsic_infos[instr->intrinsic].name);
1352 unreachable("Unhandled intrinsic");
1353 }
1354 }
1355
1356 static agx_index
agx_alu_src_index(agx_builder * b,nir_alu_src src)1357 agx_alu_src_index(agx_builder *b, nir_alu_src src)
1358 {
1359 /* Check well-formedness of the input NIR */
1360 ASSERTED unsigned bitsize = nir_src_bit_size(src.src);
1361 unsigned comps = nir_src_num_components(src.src);
1362 unsigned channel = src.swizzle[0];
1363
1364 assert(bitsize == 1 || bitsize == 8 || bitsize == 16 || bitsize == 32 ||
1365 bitsize == 64);
1366 assert(channel < comps);
1367
1368 return agx_extract_nir_src(b, src.src, channel);
1369 }
1370
1371 /*
1372 * Emit an instruction translating (s0 * s1) + (s2 << s3). Assuming s3 is
1373 * constant, this is an imad instruction. If s1 == 1, then this is optimized to
1374 * an iadd instruction, which is faster.
1375 */
1376 static agx_instr *
agx_emit_imadshl_agx(agx_builder * b,nir_alu_instr * alu,agx_index dst,agx_index s0,agx_index s1,agx_index s2,agx_index s3)1377 agx_emit_imadshl_agx(agx_builder *b, nir_alu_instr *alu, agx_index dst,
1378 agx_index s0, agx_index s1, agx_index s2, agx_index s3)
1379 {
1380 /* If the shift is not constant, use a variable shift. This should never
1381 * happen in practice but we don't want to constrain the NIR.
1382 */
1383 unsigned shift;
1384 if (!nir_src_is_const(alu->src[3].src)) {
1385 s2 = agx_bfi(b, agx_immediate(0), s2, s3, 0);
1386 shift = 0;
1387 } else {
1388 shift = nir_alu_src_as_uint(alu->src[3]);
1389 }
1390
1391 assert(shift <= 4 && "domain restriction on the input NIR");
1392
1393 /* Emit iadd if possible, else imad */
1394 if (nir_src_is_const(alu->src[1].src) &&
1395 nir_alu_src_as_uint(alu->src[1]) == 1) {
1396
1397 return agx_iadd_to(b, dst, s0, s2, shift);
1398 } else {
1399 return agx_imad_to(b, dst, s0, s1, s2, shift);
1400 }
1401 }
1402
1403 static bool
is_conversion_to_8bit(nir_op op)1404 is_conversion_to_8bit(nir_op op)
1405 {
1406 switch (op) {
1407 case nir_op_i2i8:
1408 case nir_op_u2u8:
1409 case nir_op_f2i8:
1410 case nir_op_f2u8:
1411 case nir_op_b2i8:
1412 return true;
1413 default:
1414 return false;
1415 }
1416 }
1417
1418 static agx_instr *
agx_emit_alu(agx_builder * b,nir_alu_instr * instr)1419 agx_emit_alu(agx_builder *b, nir_alu_instr *instr)
1420 {
1421 unsigned srcs = nir_op_infos[instr->op].num_inputs;
1422 unsigned sz = instr->def.bit_size;
1423 unsigned src_sz = srcs ? nir_src_bit_size(instr->src[0].src) : 0;
1424 ASSERTED unsigned comps = instr->def.num_components;
1425
1426 assert(comps == 1 || nir_op_is_vec_or_mov(instr->op));
1427 assert(
1428 sz == 1 ||
1429 ((nir_op_is_vec_or_mov(instr->op) || is_conversion_to_8bit(instr->op)) &&
1430 sz == 8) ||
1431 sz == 16 || sz == 32 || sz == 64);
1432
1433 agx_index dst = agx_def_index(&instr->def);
1434 agx_index s0 = srcs > 0 ? agx_alu_src_index(b, instr->src[0]) : agx_null();
1435 agx_index s1 = srcs > 1 ? agx_alu_src_index(b, instr->src[1]) : agx_null();
1436 agx_index s2 = srcs > 2 ? agx_alu_src_index(b, instr->src[2]) : agx_null();
1437 agx_index s3 = srcs > 3 ? agx_alu_src_index(b, instr->src[3]) : agx_null();
1438
1439 agx_index i0 = agx_immediate(0);
1440 agx_index i1 = agx_immediate(1);
1441
1442 #define UNOP(nop, aop) \
1443 case nir_op_##nop: \
1444 return agx_##aop##_to(b, dst, s0);
1445 #define BINOP(nop, aop) \
1446 case nir_op_##nop: \
1447 return agx_##aop##_to(b, dst, s0, s1);
1448 #define TRIOP(nop, aop) \
1449 case nir_op_##nop: \
1450 return agx_##aop##_to(b, dst, s0, s1, s2);
1451
1452 switch (instr->op) {
1453 BINOP(fadd, fadd);
1454 BINOP(fmul, fmul);
1455 TRIOP(ffma, fma);
1456
1457 UNOP(f2f16, fmov);
1458 UNOP(f2f16_rtne, fmov);
1459 UNOP(f2f32, fmov);
1460 UNOP(fround_even, roundeven);
1461 UNOP(ftrunc, trunc);
1462 UNOP(ffloor, floor);
1463 UNOP(fceil, ceil);
1464 UNOP(frcp, rcp);
1465 UNOP(frsq, rsqrt);
1466 UNOP(flog2, log2);
1467 UNOP(fexp2, exp2);
1468
1469 UNOP(fddx, dfdx);
1470 UNOP(fddx_coarse, dfdx);
1471 UNOP(fddx_fine, dfdx);
1472
1473 UNOP(fddy, dfdy);
1474 UNOP(fddy_coarse, dfdy);
1475 UNOP(fddy_fine, dfdy);
1476
1477 UNOP(mov, mov);
1478 UNOP(u2u32, mov);
1479 UNOP(bitfield_reverse, bitrev);
1480 UNOP(bit_count, popcount);
1481 UNOP(ufind_msb, ffs);
1482 BINOP(iand, and);
1483 BINOP(ior, or);
1484 BINOP(ixor, xor);
1485 BINOP(interleave_agx, intl);
1486
1487 case nir_op_feq:
1488 return agx_fcmp_to(b, dst, s0, s1, AGX_FCOND_EQ, false);
1489 case nir_op_flt:
1490 return agx_fcmp_to(b, dst, s0, s1, AGX_FCOND_LT, false);
1491 case nir_op_fge:
1492 return agx_fcmp_to(b, dst, s0, s1, AGX_FCOND_GE, false);
1493 case nir_op_fneu:
1494 return agx_fcmp_to(b, dst, s0, s1, AGX_FCOND_EQ, true);
1495
1496 case nir_op_ieq:
1497 return agx_icmp_to(b, dst, s0, s1, AGX_ICOND_UEQ, false);
1498 case nir_op_ine:
1499 return agx_icmp_to(b, dst, s0, s1, AGX_ICOND_UEQ, true);
1500 case nir_op_ilt:
1501 return agx_icmp_to(b, dst, s0, s1, AGX_ICOND_SLT, false);
1502 case nir_op_ige:
1503 return agx_icmp_to(b, dst, s0, s1, AGX_ICOND_SLT, true);
1504 case nir_op_ult:
1505 return agx_icmp_to(b, dst, s0, s1, AGX_ICOND_ULT, false);
1506 case nir_op_uge:
1507 return agx_icmp_to(b, dst, s0, s1, AGX_ICOND_ULT, true);
1508
1509 case nir_op_inot:
1510 if (sz == 1)
1511 return agx_xor_to(b, dst, s0, i1);
1512 else
1513 return agx_not_to(b, dst, s0);
1514
1515 case nir_op_b2b1:
1516 return agx_icmp_to(b, dst, s0, i0, AGX_ICOND_UEQ, true);
1517
1518 case nir_op_fsqrt:
1519 return agx_fmul_to(b, dst, s0, agx_srsqrt(b, s0));
1520 case nir_op_fabs:
1521 return agx_fmov_to(b, dst, agx_abs(s0));
1522 case nir_op_fneg:
1523 return agx_fmov_to(b, dst, agx_neg(s0));
1524
1525 case nir_op_fmin: {
1526 agx_index tmp = agx_fcmpsel(b, s0, s1, s0, s1, AGX_FCOND_LTN);
1527 /* flush denorms */
1528 return agx_fadd_to(b, dst, tmp, agx_negzero());
1529 }
1530 case nir_op_fmax: {
1531 agx_index tmp = agx_fcmpsel(b, s0, s1, s0, s1, AGX_FCOND_GTN);
1532 /* flush denorms */
1533 return agx_fadd_to(b, dst, tmp, agx_negzero());
1534 }
1535 case nir_op_imin:
1536 return agx_icmpsel_to(b, dst, s0, s1, s0, s1, AGX_ICOND_SLT);
1537 case nir_op_imax:
1538 return agx_icmpsel_to(b, dst, s0, s1, s0, s1, AGX_ICOND_SGT);
1539 case nir_op_umin:
1540 return agx_icmpsel_to(b, dst, s0, s1, s0, s1, AGX_ICOND_ULT);
1541 case nir_op_umax:
1542 return agx_icmpsel_to(b, dst, s0, s1, s0, s1, AGX_ICOND_UGT);
1543
1544 case nir_op_iadd:
1545 return agx_iadd_to(b, dst, s0, s1, 0);
1546 case nir_op_imadshl_agx:
1547 return agx_emit_imadshl_agx(b, instr, dst, s0, s1, s2, s3);
1548 case nir_op_imsubshl_agx:
1549 return agx_emit_imadshl_agx(b, instr, dst, s0, s1, agx_neg(s2), s3);
1550 case nir_op_isub:
1551 return agx_iadd_to(b, dst, s0, agx_neg(s1), 0);
1552 case nir_op_ineg:
1553 return agx_iadd_to(b, dst, i0, agx_neg(s0), 0);
1554 case nir_op_imul:
1555 return agx_imad_to(b, dst, s0, s1, i0, 0);
1556 case nir_op_umul_2x32_64:
1557 return agx_imad_to(b, dst, agx_abs(s0), agx_abs(s1), i0, 0);
1558 case nir_op_imul_2x32_64:
1559 return agx_imad_to(b, dst, s0, s1, i0, 0);
1560 case nir_op_umul_high:
1561 return agx_mul_high_to(b, dst, s0, s1, false);
1562 case nir_op_imul_high:
1563 return agx_mul_high_to(b, dst, s0, s1, true);
1564
1565 case nir_op_ishl:
1566 return agx_bfi_to(b, dst, i0, s0, s1, 0);
1567 case nir_op_ushr:
1568 return agx_ushr_to(b, dst, s0, s1);
1569 case nir_op_ishr:
1570 return agx_asr_to(b, dst, s0, s1);
1571
1572 case nir_op_extr_agx:
1573 return agx_extr_to(b, dst, s0, s1, s2,
1574 nir_alu_src_as_uint(instr->src[3]));
1575
1576 case nir_op_ubitfield_extract: {
1577 unsigned m = nir_alu_src_as_uint(instr->src[2]);
1578 assert(m != 0 && "should've been optimized");
1579
1580 /* Disable masking if the whole thing is used */
1581 if (m >= 32)
1582 m = 0;
1583
1584 return agx_bfeil_to(b, dst, i0, s0, s1, m);
1585 }
1586
1587 case nir_op_bcsel:
1588 return agx_icmpsel_to(b, dst, s0, i0, s2, s1, AGX_ICOND_UEQ);
1589
1590 case nir_op_i2i32: {
1591 if (src_sz == 8) {
1592 /* Sign extend in software, NIR likes 8-bit conversions */
1593 agx_index ishl16 = agx_bfi(b, i0, s0, agx_immediate(8), 0);
1594 return agx_asr_to(b, dst, ishl16, agx_immediate(8));
1595 } else {
1596 assert(s0.size == AGX_SIZE_16 && "other conversions lowered");
1597 return agx_iadd_to(b, dst, s0, i0, 0);
1598 }
1599 }
1600
1601 case nir_op_i2i16: {
1602 if (src_sz == 8) {
1603 /* Sign extend in software, NIR likes 8-bit conversions */
1604 agx_index ishl16 = agx_bfi(b, i0, s0, agx_immediate(8), 0);
1605 return agx_asr_to(b, dst, ishl16, agx_immediate(8));
1606 } else {
1607 assert(s0.size == AGX_SIZE_32 && "other conversions lowered");
1608 return agx_subdivide_to(b, dst, s0, 0);
1609 }
1610 }
1611
1612 case nir_op_u2u16: {
1613 if (s0.size == AGX_SIZE_32)
1614 return agx_subdivide_to(b, dst, s0, 0);
1615 else
1616 return agx_mov_to(b, dst, s0);
1617 }
1618
1619 /* It will be put into a 16-bit register, but zero out the garbage. We could
1620 * optimize this in the future but it ensures correctness for u2u16(u2u8(x))
1621 * sequences.
1622 */
1623 case nir_op_u2u8:
1624 case nir_op_i2i8:
1625 return agx_and_to(b, dst, s0, agx_immediate(0xFF));
1626
1627 case nir_op_iadd_sat: {
1628 agx_instr *I = agx_iadd_to(b, dst, s0, s1, 0);
1629 I->saturate = true;
1630 return I;
1631 }
1632
1633 case nir_op_isub_sat: {
1634 agx_instr *I = agx_iadd_to(b, dst, s0, agx_neg(s1), 0);
1635 I->saturate = true;
1636 return I;
1637 }
1638
1639 case nir_op_uadd_sat: {
1640 agx_instr *I = agx_iadd_to(b, dst, agx_abs(s0), agx_abs(s1), 0);
1641 I->saturate = true;
1642 return I;
1643 }
1644
1645 case nir_op_usub_sat: {
1646 agx_instr *I = agx_iadd_to(b, dst, agx_abs(s0), agx_neg(agx_abs(s1)), 0);
1647 I->saturate = true;
1648 return I;
1649 }
1650
1651 case nir_op_fsat: {
1652 agx_instr *I = agx_fadd_to(b, dst, s0, agx_negzero());
1653 I->saturate = true;
1654 return I;
1655 }
1656
1657 case nir_op_fsin_agx: {
1658 agx_index fixup = agx_sin_pt_1(b, s0);
1659 agx_index sinc = agx_sin_pt_2(b, fixup);
1660 return agx_fmul_to(b, dst, sinc, fixup);
1661 }
1662
1663 case nir_op_f2i16:
1664 return agx_convert_to(b, dst, agx_immediate(AGX_CONVERT_F_TO_S16), s0,
1665 AGX_ROUND_RTZ);
1666
1667 case nir_op_f2i32:
1668 return agx_convert_to(b, dst, agx_immediate(AGX_CONVERT_F_TO_S32), s0,
1669 AGX_ROUND_RTZ);
1670
1671 case nir_op_f2u16:
1672 return agx_convert_to(b, dst, agx_immediate(AGX_CONVERT_F_TO_U16), s0,
1673 AGX_ROUND_RTZ);
1674
1675 case nir_op_f2u32:
1676 return agx_convert_to(b, dst, agx_immediate(AGX_CONVERT_F_TO_U32), s0,
1677 AGX_ROUND_RTZ);
1678
1679 case nir_op_u2f16:
1680 case nir_op_u2f32: {
1681 if (src_sz == 64)
1682 unreachable("64-bit conversions unimplemented");
1683
1684 enum agx_convert mode = (src_sz == 32) ? AGX_CONVERT_U32_TO_F
1685 : (src_sz == 16) ? AGX_CONVERT_U16_TO_F
1686 : AGX_CONVERT_U8_TO_F;
1687
1688 return agx_convert_to(b, dst, agx_immediate(mode), s0, AGX_ROUND_RTE);
1689 }
1690
1691 case nir_op_i2f16:
1692 case nir_op_i2f32: {
1693 if (src_sz == 64)
1694 unreachable("64-bit conversions unimplemented");
1695
1696 enum agx_convert mode = (src_sz == 32) ? AGX_CONVERT_S32_TO_F
1697 : (src_sz == 16) ? AGX_CONVERT_S16_TO_F
1698 : AGX_CONVERT_S8_TO_F;
1699
1700 return agx_convert_to(b, dst, agx_immediate(mode), s0, AGX_ROUND_RTE);
1701 }
1702
1703 case nir_op_pack_32_2x16_split:
1704 case nir_op_pack_64_2x32_split: {
1705 agx_index idx[] = {s0, s1};
1706 return agx_emit_collect_to(b, dst, 2, idx);
1707 }
1708
1709 case nir_op_unpack_64_2x32_split_x:
1710 case nir_op_unpack_32_2x16_split_x:
1711 return agx_subdivide_to(b, dst, s0, 0);
1712
1713 case nir_op_unpack_64_2x32_split_y:
1714 case nir_op_unpack_32_2x16_split_y:
1715 return agx_subdivide_to(b, dst, s0, 1);
1716
1717 case nir_op_vec2:
1718 case nir_op_vec3:
1719 case nir_op_vec4: {
1720 agx_index idx[] = {s0, s1, s2, s3};
1721 return agx_emit_collect_to(b, dst, srcs, idx);
1722 }
1723
1724 case nir_op_vec8:
1725 case nir_op_vec16:
1726 unreachable("should've been lowered");
1727
1728 default:
1729 fprintf(stderr, "Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1730 unreachable("Unhandled ALU instruction");
1731 }
1732 }
1733
1734 static enum agx_lod_mode
agx_lod_mode_for_nir(nir_texop op,bool biased)1735 agx_lod_mode_for_nir(nir_texop op, bool biased)
1736 {
1737 switch (op) {
1738 case nir_texop_tex:
1739 case nir_texop_tg4:
1740 return AGX_LOD_MODE_AUTO_LOD;
1741 case nir_texop_txb:
1742 return AGX_LOD_MODE_AUTO_LOD_BIAS;
1743 case nir_texop_lod:
1744 return biased ? AGX_LOD_MODE_AUTO_LOD_BIAS : AGX_LOD_MODE_AUTO_LOD;
1745 case nir_texop_txd:
1746 return AGX_LOD_MODE_LOD_GRAD;
1747 case nir_texop_txl:
1748 return AGX_LOD_MODE_LOD_MIN;
1749 case nir_texop_txf:
1750 return AGX_LOD_MODE_LOD_MIN;
1751 case nir_texop_txf_ms:
1752 return AGX_LOD_MODE_AUTO_LOD; /* no mipmapping */
1753 default:
1754 unreachable("Unhandled texture op");
1755 }
1756 }
1757
1758 static enum agx_gather
agx_gather_for_nir(nir_tex_instr * tex)1759 agx_gather_for_nir(nir_tex_instr *tex)
1760 {
1761 if (tex->op == nir_texop_tg4) {
1762 enum agx_gather components[] = {
1763 AGX_GATHER_R,
1764 AGX_GATHER_G,
1765 AGX_GATHER_B,
1766 AGX_GATHER_A,
1767 };
1768
1769 assert(tex->component < ARRAY_SIZE(components));
1770 return components[tex->component];
1771 } else {
1772 return AGX_GATHER_NONE;
1773 }
1774 }
1775
1776 static void
agx_emit_tex(agx_builder * b,nir_tex_instr * instr)1777 agx_emit_tex(agx_builder *b, nir_tex_instr *instr)
1778 {
1779 agx_index coords = agx_null(), bindless = agx_immediate(0),
1780 texture = agx_immediate(instr->texture_index),
1781 sampler = agx_immediate(instr->sampler_index),
1782 lod = agx_immediate(0), compare = agx_null(),
1783 packed_offset = agx_null();
1784
1785 bool txf = (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms);
1786
1787 if (txf)
1788 sampler = agx_txf_sampler(b->shader);
1789
1790 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1791 agx_index index = agx_src_index(&instr->src[i].src);
1792
1793 switch (instr->src[i].src_type) {
1794 case nir_tex_src_backend1:
1795 coords = index;
1796 break;
1797
1798 case nir_tex_src_backend2:
1799 packed_offset = index;
1800 break;
1801
1802 case nir_tex_src_lod:
1803 case nir_tex_src_bias:
1804 lod = index;
1805 break;
1806
1807 case nir_tex_src_comparator:
1808 assert(index.size == AGX_SIZE_32);
1809 compare = index;
1810 break;
1811
1812 case nir_tex_src_texture_offset:
1813 texture = index;
1814 break;
1815 case nir_tex_src_sampler_offset:
1816 case nir_tex_src_sampler_handle:
1817 sampler = index;
1818 break;
1819
1820 case nir_tex_src_texture_handle:
1821 texture =
1822 agx_translate_bindless_handle(b, &instr->src[i].src, &bindless);
1823 break;
1824
1825 case nir_tex_src_ddx: {
1826 int y_idx = nir_tex_instr_src_index(instr, nir_tex_src_ddy);
1827 assert(y_idx >= 0 && "we only handle gradients");
1828
1829 unsigned n = nir_tex_instr_src_size(instr, y_idx);
1830 assert((n == 2 || n == 3) && "other sizes not supported");
1831
1832 agx_index index2 = agx_src_index(&instr->src[y_idx].src);
1833
1834 /* We explicitly don't cache about the split cache for this */
1835 lod = agx_vec_temp(b->shader, AGX_SIZE_32, 2 * n);
1836 agx_instr *I = agx_collect_to(b, lod, 2 * n);
1837
1838 for (unsigned i = 0; i < n; ++i) {
1839 I->src[(2 * i) + 0] = agx_emit_extract(b, index, i);
1840 I->src[(2 * i) + 1] = agx_emit_extract(b, index2, i);
1841 }
1842
1843 break;
1844 }
1845
1846 case nir_tex_src_ddy:
1847 /* handled above */
1848 break;
1849
1850 default:
1851 unreachable("Unexpected texture source");
1852 }
1853 }
1854
1855 agx_index dst = agx_def_index(&instr->def);
1856
1857 /* Pack shadow reference value (compare) and packed offset together */
1858 agx_index compare_offset = agx_null();
1859
1860 if (!agx_is_null(compare) && !agx_is_null(packed_offset))
1861 compare_offset = agx_vec2(b, compare, packed_offset);
1862 else if (!agx_is_null(packed_offset))
1863 compare_offset = packed_offset;
1864 else if (!agx_is_null(compare))
1865 compare_offset = compare;
1866
1867 agx_index tmp = agx_vec_temp(b->shader, dst.size, 4);
1868 agx_instr *I = agx_texture_sample_to(
1869 b, tmp, coords, lod, bindless, texture, sampler, compare_offset,
1870 agx_tex_dim(instr->sampler_dim, instr->is_array),
1871 agx_lod_mode_for_nir(
1872 instr->op, nir_tex_instr_src_index(instr, nir_tex_src_bias) >= 0),
1873 0, !agx_is_null(packed_offset), !agx_is_null(compare),
1874 instr->op == nir_texop_lod, agx_gather_for_nir(instr));
1875
1876 if (txf)
1877 I->op = AGX_OPCODE_TEXTURE_LOAD;
1878
1879 /* Destination masking doesn't seem to work properly for gathers (because
1880 * it's mostly pointless), but it does show up in the lowering of
1881 * textureGatherOffsets. Don't try to mask the destination for gathers.
1882 */
1883 bool masked = (instr->op != nir_texop_tg4);
1884 I->mask = agx_expand_tex_to(b, &instr->def, tmp, masked);
1885 }
1886
1887 /*
1888 * Determine if a NIR loop (CF list) uses a continue jump, including within
1889 * if-else statements but not including nested loops.
1890 */
1891 static bool
cf_list_uses_continue(struct exec_list * list)1892 cf_list_uses_continue(struct exec_list *list)
1893 {
1894 foreach_list_typed(nir_cf_node, node, node, list) {
1895 if (node->type == nir_cf_node_block) {
1896 nir_block *block = nir_cf_node_as_block(node);
1897
1898 nir_foreach_instr(instr, block) {
1899 if (instr->type == nir_instr_type_jump &&
1900 nir_instr_as_jump(instr)->type == nir_jump_continue)
1901 return true;
1902 }
1903 } else if (node->type == nir_cf_node_if) {
1904 nir_if *nif = nir_cf_node_as_if(node);
1905
1906 if (cf_list_uses_continue(&nif->then_list) ||
1907 cf_list_uses_continue(&nif->else_list))
1908 return true;
1909 } else {
1910 assert(node->type == nir_cf_node_loop && "don't care about nesting");
1911 }
1912 }
1913
1914 return false;
1915 }
1916
1917 static bool
loop_uses_continue(nir_loop * loop)1918 loop_uses_continue(nir_loop *loop)
1919 {
1920 return cf_list_uses_continue(&loop->body);
1921 }
1922
1923 /*
1924 * NIR loops are treated as a pair of AGX loops:
1925 *
1926 * do {
1927 * do {
1928 * ...
1929 * } while (0);
1930 * } while (cond);
1931 *
1932 * By manipulating the nesting counter, we may break out of nested loops, so
1933 * under the model, both break and continue may be implemented as breaks, where
1934 * break breaks out of the outer loop (2 layers) and continue breaks out of the
1935 * inner loop (1 layer).
1936 *
1937 * After manipulating the nesting counter directly, pop_exec #0 must be used to
1938 * flush the update to the execution mask.
1939 */
1940 static void
agx_emit_jump(agx_builder * b,nir_jump_instr * instr)1941 agx_emit_jump(agx_builder *b, nir_jump_instr *instr)
1942 {
1943 agx_context *ctx = b->shader;
1944 assert(instr->type == nir_jump_break || instr->type == nir_jump_continue);
1945
1946 /* Break out of either one or two loops */
1947 unsigned nestings = b->shader->loop_nesting;
1948
1949 if (instr->type == nir_jump_continue) {
1950 nestings += 1;
1951 agx_block_add_successor(ctx->current_block, ctx->continue_block);
1952 } else if (instr->type == nir_jump_break) {
1953 nestings += ctx->loop_continues ? 2 : 1;
1954 agx_block_add_successor(ctx->current_block, ctx->break_block);
1955 }
1956
1957 agx_break(b, nestings, ctx->break_block);
1958 ctx->current_block->unconditional_jumps = true;
1959 }
1960
1961 static void
agx_emit_phi(agx_builder * b,nir_phi_instr * instr)1962 agx_emit_phi(agx_builder *b, nir_phi_instr *instr)
1963 {
1964 agx_instr *I =
1965 agx_phi_to(b, agx_def_index(&instr->def), exec_list_length(&instr->srcs));
1966
1967 /* Deferred */
1968 I->phi = instr;
1969 }
1970
1971 /* Look up the AGX block corresponding to a given NIR block. Used when
1972 * translating phi nodes after emitting all blocks.
1973 */
1974 static agx_block *
agx_from_nir_block(agx_context * ctx,nir_block * block)1975 agx_from_nir_block(agx_context *ctx, nir_block *block)
1976 {
1977 return ctx->indexed_nir_blocks[block->index];
1978 }
1979
1980 static void
agx_emit_phi_deferred(agx_context * ctx,agx_block * block,agx_instr * I)1981 agx_emit_phi_deferred(agx_context *ctx, agx_block *block, agx_instr *I)
1982 {
1983 nir_phi_instr *phi = I->phi;
1984
1985 /* Guaranteed by lower_phis_to_scalar */
1986 assert(phi->def.num_components == 1);
1987
1988 nir_foreach_phi_src(src, phi) {
1989 agx_block *pred = agx_from_nir_block(ctx, src->pred);
1990 unsigned i = agx_predecessor_index(block, pred);
1991 assert(i < I->nr_srcs);
1992
1993 I->src[i] = agx_src_index(&src->src);
1994 }
1995 }
1996
1997 static void
agx_emit_phis_deferred(agx_context * ctx)1998 agx_emit_phis_deferred(agx_context *ctx)
1999 {
2000 agx_foreach_block(ctx, block) {
2001 agx_foreach_phi_in_block(block, I)
2002 agx_emit_phi_deferred(ctx, block, I);
2003 }
2004 }
2005
2006 static void
agx_emit_undef(agx_builder * b,nir_undef_instr * instr)2007 agx_emit_undef(agx_builder *b, nir_undef_instr *instr)
2008 {
2009 /* For now, just lower undefs to zero. This doesn't matter too much, since
2010 * the lowering happens in NIR and this just allows for late lowering passes
2011 * to result in undefs.
2012 */
2013 if (instr->def.num_components > 1) {
2014 assert(instr->def.num_components <= 4);
2015 agx_index zero = agx_mov_imm(b, instr->def.bit_size, 0);
2016
2017 agx_emit_collect_to(b, agx_def_index(&instr->def),
2018 instr->def.num_components,
2019 (agx_index[4]){zero, zero, zero, zero});
2020 } else {
2021 agx_mov_imm_to(b, agx_def_index(&instr->def), 0);
2022 }
2023 }
2024
2025 static void
agx_emit_instr(agx_builder * b,struct nir_instr * instr)2026 agx_emit_instr(agx_builder *b, struct nir_instr *instr)
2027 {
2028 switch (instr->type) {
2029 case nir_instr_type_load_const:
2030 agx_emit_load_const(b, nir_instr_as_load_const(instr));
2031 break;
2032
2033 case nir_instr_type_intrinsic:
2034 agx_emit_intrinsic(b, nir_instr_as_intrinsic(instr));
2035 break;
2036
2037 case nir_instr_type_alu:
2038 agx_emit_alu(b, nir_instr_as_alu(instr));
2039 break;
2040
2041 case nir_instr_type_tex:
2042 agx_emit_tex(b, nir_instr_as_tex(instr));
2043 break;
2044
2045 case nir_instr_type_jump:
2046 agx_emit_jump(b, nir_instr_as_jump(instr));
2047 break;
2048
2049 case nir_instr_type_phi:
2050 agx_emit_phi(b, nir_instr_as_phi(instr));
2051 break;
2052
2053 case nir_instr_type_undef:
2054 agx_emit_undef(b, nir_instr_as_undef(instr));
2055 break;
2056
2057 default:
2058 unreachable("should've been lowered");
2059 }
2060 }
2061
2062 static agx_block *
agx_create_block(agx_context * ctx)2063 agx_create_block(agx_context *ctx)
2064 {
2065 agx_block *blk = rzalloc(ctx, agx_block);
2066
2067 util_dynarray_init(&blk->predecessors, blk);
2068
2069 return blk;
2070 }
2071
2072 static agx_block *
emit_block(agx_context * ctx,nir_block * block)2073 emit_block(agx_context *ctx, nir_block *block)
2074 {
2075 if (ctx->after_block) {
2076 ctx->current_block = ctx->after_block;
2077 ctx->after_block = NULL;
2078 } else {
2079 ctx->current_block = agx_create_block(ctx);
2080 }
2081
2082 agx_block *blk = ctx->current_block;
2083 list_addtail(&blk->link, &ctx->blocks);
2084 list_inithead(&blk->instructions);
2085
2086 ctx->indexed_nir_blocks[block->index] = blk;
2087
2088 agx_builder _b = agx_init_builder(ctx, agx_after_block(blk));
2089
2090 nir_foreach_instr(instr, block) {
2091 agx_emit_instr(&_b, instr);
2092 }
2093
2094 return blk;
2095 }
2096
2097 static agx_block *emit_cf_list(agx_context *ctx, struct exec_list *list);
2098
2099 /* Emit if-else as
2100 *
2101 * if_icmp cond != 0
2102 * ...
2103 * else_icmp cond == 0
2104 * ...
2105 * pop_exec
2106 *
2107 * If the else is empty, we can omit the else_icmp. This happens elsewhere, as
2108 * an empty else block can become nonempty after RA due to phi lowering. This is
2109 * not usually optimal, but it's a start.
2110 */
2111
2112 static void
emit_if(agx_context * ctx,nir_if * nif)2113 emit_if(agx_context *ctx, nir_if *nif)
2114 {
2115 agx_block *first_block = ctx->current_block;
2116 agx_builder _b = agx_init_builder(ctx, agx_after_block(first_block));
2117 agx_index cond = agx_src_index(&nif->condition);
2118
2119 agx_instr *if_ = agx_if_icmp(&_b, cond, agx_zero(), 1, AGX_ICOND_UEQ, true,
2120 NULL /* filled in later */);
2121 ctx->loop_nesting++;
2122 ctx->total_nesting++;
2123
2124 /* Emit the two subblocks. */
2125 agx_block *if_block = emit_cf_list(ctx, &nif->then_list);
2126 agx_block *end_then = ctx->current_block;
2127
2128 _b.cursor = agx_after_block(ctx->current_block);
2129
2130 agx_block *else_block = emit_cf_list(ctx, &nif->else_list);
2131 agx_block *end_else = ctx->current_block;
2132
2133 /* If the "if" fails, we fallthrough to the else */
2134 if_->target = else_block;
2135
2136 /* Insert an else instruction at the beginning of the else block. We use
2137 * "else_fcmp 0.0, 0.0, eq" as unconditional else, matching the blob.
2138 *
2139 * If it fails, we fall through to the logical end of the last else block.
2140 */
2141 _b.cursor = agx_before_block(else_block);
2142 agx_else_fcmp(&_b, agx_zero(), agx_zero(), 1, AGX_FCOND_EQ, false, end_else);
2143
2144 ctx->after_block = agx_create_block(ctx);
2145
2146 agx_block_add_successor(first_block, if_block);
2147 agx_block_add_successor(first_block, else_block);
2148 agx_block_add_successor(end_then, ctx->after_block);
2149 agx_block_add_successor(end_else, ctx->after_block);
2150
2151 _b.cursor = agx_after_block(ctx->current_block);
2152 agx_pop_exec(&_b, 1);
2153 ctx->loop_nesting--;
2154 ctx->total_nesting--;
2155 }
2156
2157 static void
emit_loop(agx_context * ctx,nir_loop * nloop)2158 emit_loop(agx_context *ctx, nir_loop *nloop)
2159 {
2160 assert(!nir_loop_has_continue_construct(nloop));
2161 /* We only track nesting within the innermost loop, so push and reset */
2162 unsigned pushed_nesting = ctx->loop_nesting;
2163 ctx->loop_nesting = 0;
2164 ctx->total_nesting++;
2165
2166 bool old_continues = ctx->loop_continues;
2167 ctx->loop_continues = loop_uses_continue(nloop);
2168
2169 agx_block *popped_break = ctx->break_block;
2170 agx_block *popped_continue = ctx->continue_block;
2171
2172 ctx->break_block = agx_create_block(ctx);
2173 ctx->continue_block = agx_create_block(ctx);
2174
2175 /* If we are emitting a loop inside other control flow, there might be
2176 * threads masked off (TODO: divergence analysis), so push_exec them so
2177 * we get the lower nesting count values to ourselves.
2178 */
2179 agx_builder _b = agx_init_builder(ctx, agx_after_block(ctx->current_block));
2180 if (ctx->total_nesting > 1)
2181 agx_push_exec(&_b, ctx->loop_continues ? 2 : 1);
2182
2183 /* Fallthrough to body */
2184 agx_block_add_successor(ctx->current_block, ctx->continue_block);
2185
2186 /* Emit the body */
2187 ctx->after_block = ctx->continue_block;
2188 ctx->after_block->loop_header = true;
2189 agx_block *start_block = emit_cf_list(ctx, &nloop->body);
2190
2191 /* If we used any continue jumps, we need to reactivate the continued
2192 * threads. We do this with an always true while_icmp, which behaves like:
2193 *
2194 * if (r0l == 1) {
2195 * r0l = 0;
2196 * }
2197 * update_exec
2198 *
2199 * If we did not use continue, this would be a no-op so it is omitted.
2200 */
2201 _b.cursor = agx_after_block(ctx->current_block);
2202
2203 if (ctx->loop_continues) {
2204 agx_while_icmp(
2205 &_b, agx_zero(), agx_zero(), 2, AGX_ICOND_UEQ, false,
2206 NULL /* no semantic target, used purely for side effects */);
2207 }
2208
2209 agx_jmp_exec_any(&_b, start_block);
2210 agx_pop_exec(&_b, ctx->loop_continues ? 2 : 1);
2211 agx_block_add_successor(ctx->current_block, ctx->continue_block);
2212
2213 /* Pop off */
2214 ctx->after_block = ctx->break_block;
2215 ctx->break_block = popped_break;
2216 ctx->continue_block = popped_continue;
2217
2218 /* Update shader-db stats */
2219 ++ctx->loop_count;
2220
2221 /* All nested control flow must have finished */
2222 assert(ctx->loop_nesting == 0);
2223
2224 /* Restore loop nesting (we might be inside an if inside an outer loop) */
2225 ctx->loop_nesting = pushed_nesting;
2226 ctx->total_nesting--;
2227 ctx->loop_continues = old_continues;
2228 }
2229
2230 /* Before the first control flow structure, the nesting counter needs to be
2231 * zeroed for correct operation. This only happens at most once, since by
2232 * definition this occurs at the end of the first block, which dominates the
2233 * rest of the program. */
2234
2235 static void
emit_first_cf(agx_context * ctx)2236 emit_first_cf(agx_context *ctx)
2237 {
2238 if (ctx->any_cf)
2239 return;
2240
2241 agx_builder _b = agx_init_builder(ctx, agx_after_block(ctx->current_block));
2242 agx_begin_cf(&_b);
2243 ctx->any_cf = true;
2244 }
2245
2246 static agx_block *
emit_cf_list(agx_context * ctx,struct exec_list * list)2247 emit_cf_list(agx_context *ctx, struct exec_list *list)
2248 {
2249 agx_block *start_block = NULL;
2250
2251 foreach_list_typed(nir_cf_node, node, node, list) {
2252 switch (node->type) {
2253 case nir_cf_node_block: {
2254 agx_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2255
2256 if (!start_block)
2257 start_block = block;
2258
2259 break;
2260 }
2261
2262 case nir_cf_node_if:
2263 emit_first_cf(ctx);
2264 emit_if(ctx, nir_cf_node_as_if(node));
2265 break;
2266
2267 case nir_cf_node_loop:
2268 emit_first_cf(ctx);
2269 emit_loop(ctx, nir_cf_node_as_loop(node));
2270 break;
2271
2272 default:
2273 unreachable("Unknown control flow");
2274 }
2275 }
2276
2277 return start_block;
2278 }
2279
2280 static void
agx_set_st_vary_final(agx_context * ctx)2281 agx_set_st_vary_final(agx_context *ctx)
2282 {
2283 agx_foreach_instr_global_rev(ctx, I) {
2284 if (I->op == AGX_OPCODE_ST_VARY) {
2285 I->last = true;
2286 return;
2287 }
2288 }
2289
2290 /* If we got here, there was no varying written. We need to mark that. */
2291 agx_block *last_block = list_last_entry(&ctx->blocks, agx_block, link);
2292 agx_builder _b = agx_init_builder(ctx, agx_after_block_logical(last_block));
2293 agx_no_varyings(&_b);
2294 }
2295
2296 static int
agx_dump_stats(agx_context * ctx,unsigned size,char ** out)2297 agx_dump_stats(agx_context *ctx, unsigned size, char **out)
2298 {
2299 unsigned nr_ins = 0;
2300
2301 /* Count instructions */
2302 agx_foreach_instr_global(ctx, I)
2303 nr_ins++;
2304
2305 unsigned nr_threads =
2306 agx_occupancy_for_register_count(ctx->max_reg).max_threads;
2307
2308 return asprintf(out,
2309 "%s shader: %u inst, %u bytes, %u halfregs, %u threads, "
2310 "%u loops, %u:%u spills:fills",
2311 gl_shader_stage_name(ctx->stage), nr_ins, size, ctx->max_reg,
2312 nr_threads, ctx->loop_count, ctx->spills, ctx->fills);
2313 }
2314
2315 static int
glsl_type_size(const struct glsl_type * type,bool bindless)2316 glsl_type_size(const struct glsl_type *type, bool bindless)
2317 {
2318 return glsl_count_attribute_slots(type, false);
2319 }
2320
2321 static bool
agx_lower_sincos_filter(const nir_instr * instr,UNUSED const void * _)2322 agx_lower_sincos_filter(const nir_instr *instr, UNUSED const void *_)
2323 {
2324 if (instr->type != nir_instr_type_alu)
2325 return false;
2326
2327 nir_alu_instr *alu = nir_instr_as_alu(instr);
2328 return alu->op == nir_op_fsin || alu->op == nir_op_fcos;
2329 }
2330
2331 /* Sine and cosine are implemented via the sin_pt_1 and sin_pt_2 opcodes for
2332 * heavy lifting. sin_pt_2 implements sinc in the first quadrant, expressed in
2333 * turns (sin (tau x) / x), while sin_pt_1 implements a piecewise sign/offset
2334 * fixup to transform a quadrant angle [0, 4] to [-1, 1]. The NIR opcode
2335 * fsin_agx models the fixup, sinc, and multiply to obtain sine, so we just
2336 * need to change units from radians to quadrants modulo turns. Cosine is
2337 * implemented by shifting by one quadrant: cos(x) = sin(x + tau/4).
2338 */
2339
2340 static nir_def *
agx_lower_sincos_impl(struct nir_builder * b,nir_instr * instr,UNUSED void * _)2341 agx_lower_sincos_impl(struct nir_builder *b, nir_instr *instr, UNUSED void *_)
2342 {
2343 nir_alu_instr *alu = nir_instr_as_alu(instr);
2344 nir_def *x = nir_mov_alu(b, alu->src[0], 1);
2345 nir_def *turns = nir_fmul_imm(b, x, M_1_PI * 0.5f);
2346
2347 if (alu->op == nir_op_fcos)
2348 turns = nir_fadd_imm(b, turns, 0.25f);
2349
2350 nir_def *quadrants = nir_fmul_imm(b, nir_ffract(b, turns), 4.0);
2351 return nir_fsin_agx(b, quadrants);
2352 }
2353
2354 static bool
agx_lower_sincos(nir_shader * shader)2355 agx_lower_sincos(nir_shader *shader)
2356 {
2357 return nir_shader_lower_instructions(shader, agx_lower_sincos_filter,
2358 agx_lower_sincos_impl, NULL);
2359 }
2360
2361 static bool
agx_lower_front_face(struct nir_builder * b,nir_intrinsic_instr * intr,UNUSED void * data)2362 agx_lower_front_face(struct nir_builder *b, nir_intrinsic_instr *intr,
2363 UNUSED void *data)
2364 {
2365 if (intr->intrinsic != nir_intrinsic_load_front_face)
2366 return false;
2367
2368 nir_def *def = &intr->def;
2369 assert(def->bit_size == 1);
2370
2371 b->cursor = nir_before_instr(&intr->instr);
2372 nir_def_rewrite_uses(def, nir_inot(b, nir_load_back_face_agx(b, 1)));
2373 return true;
2374 }
2375
2376 /*
2377 * Standard NIR optimization loop. This is run in agx_preprocess_nir, then once
2378 * again at shader variant compile time. Unless there was a complex shader key,
2379 * the latter run should be almost a no-op.
2380 */
2381 static void
agx_optimize_loop_nir(nir_shader * nir)2382 agx_optimize_loop_nir(nir_shader *nir)
2383 {
2384 bool progress;
2385
2386 do {
2387 progress = false;
2388
2389 NIR_PASS(progress, nir, nir_copy_prop);
2390 NIR_PASS(progress, nir, nir_opt_remove_phis);
2391 NIR_PASS(progress, nir, nir_opt_dce);
2392 NIR_PASS(progress, nir, nir_opt_dead_cf);
2393 NIR_PASS(progress, nir, nir_opt_cse);
2394 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
2395 NIR_PASS(progress, nir, nir_opt_phi_precision);
2396 NIR_PASS(progress, nir, nir_opt_algebraic);
2397 NIR_PASS(progress, nir, nir_opt_constant_folding);
2398 NIR_PASS(progress, nir, nir_opt_undef);
2399 NIR_PASS(progress, nir, nir_opt_shrink_vectors);
2400 NIR_PASS(progress, nir, nir_opt_loop_unroll);
2401 } while (progress);
2402 }
2403
2404 static bool
mem_vectorize_cb(unsigned align_mul,unsigned align_offset,unsigned bit_size,unsigned num_components,nir_intrinsic_instr * low,nir_intrinsic_instr * high,void * data)2405 mem_vectorize_cb(unsigned align_mul, unsigned align_offset, unsigned bit_size,
2406 unsigned num_components, nir_intrinsic_instr *low,
2407 nir_intrinsic_instr *high, void *data)
2408 {
2409 /* Must be aligned to the size of the load */
2410 unsigned align = nir_combined_align(align_mul, align_offset);
2411 if ((bit_size / 8) > align)
2412 return false;
2413
2414 if (num_components > 4)
2415 return false;
2416
2417 if (bit_size > 32)
2418 return false;
2419
2420 return true;
2421 }
2422
2423 static void
agx_optimize_nir(nir_shader * nir,unsigned * preamble_size)2424 agx_optimize_nir(nir_shader *nir, unsigned *preamble_size)
2425 {
2426 /* This runs only once up front since other optimizations don't affect it */
2427 NIR_PASS(_, nir, nir_opt_shrink_stores, true);
2428
2429 agx_optimize_loop_nir(nir);
2430
2431 NIR_PASS(_, nir, nir_opt_load_store_vectorize,
2432 &(const nir_load_store_vectorize_options){
2433 .modes = nir_var_mem_global | nir_var_mem_constant,
2434 .callback = mem_vectorize_cb,
2435 });
2436 NIR_PASS(_, nir, nir_lower_pack);
2437
2438 bool progress = false;
2439 NIR_PASS(progress, nir, agx_nir_lower_address);
2440
2441 /* If address lowering made progress, clean up before forming preambles.
2442 * Otherwise the optimized preambles might just be constants! Do it before
2443 * lowering int64 too, to avoid lowering constant int64 arithmetic.
2444 */
2445 if (progress) {
2446 NIR_PASS(_, nir, nir_opt_constant_folding);
2447 NIR_PASS(_, nir, nir_opt_dce);
2448 }
2449
2450 /* Only lower int64 after optimizing address arithmetic, so that u2u64/i2i64
2451 * conversions remain.
2452 */
2453 progress = false;
2454 NIR_PASS(progress, nir, nir_lower_int64);
2455
2456 /* If we lowered actual int64 arithmetic (not folded into the address
2457 * calculations), then clean up after the lowering.
2458 */
2459 if (progress) {
2460 do {
2461 progress = false;
2462
2463 NIR_PASS(progress, nir, nir_opt_algebraic);
2464 NIR_PASS(progress, nir, nir_opt_constant_folding);
2465 NIR_PASS(progress, nir, nir_opt_dce);
2466 } while (progress);
2467 }
2468
2469 if (likely(!(agx_compiler_debug & AGX_DBG_NOPREAMBLE)))
2470 NIR_PASS(_, nir, agx_nir_opt_preamble, preamble_size);
2471
2472 /* Forming preambles may dramatically reduce the instruction count
2473 * in certain blocks, causing some if-else statements to become
2474 * trivial. We want to peephole select those, given that control flow
2475 * prediction instructions are costly.
2476 */
2477 NIR_PASS(_, nir, nir_opt_peephole_select, 64, false, true);
2478
2479 NIR_PASS(_, nir, nir_opt_algebraic_late);
2480
2481 /* Fuse add/sub/multiplies/shifts after running opt_algebraic_late to fuse
2482 * isub but before shifts are lowered.
2483 */
2484 do {
2485 progress = false;
2486
2487 NIR_PASS(progress, nir, nir_opt_dce);
2488 NIR_PASS(progress, nir, nir_opt_cse);
2489 NIR_PASS(progress, nir, agx_nir_fuse_algebraic_late);
2490 } while (progress);
2491
2492 /* Do remaining lowering late, since this inserts &s for shifts so we want to
2493 * do it after fusing constant shifts. Constant folding will clean up.
2494 */
2495 NIR_PASS(_, nir, agx_nir_lower_algebraic_late);
2496 NIR_PASS(_, nir, nir_opt_constant_folding);
2497 NIR_PASS(_, nir, nir_opt_combine_barriers, NULL, NULL);
2498
2499 /* Must run after uses are fixed but before a last round of copyprop + DCE */
2500 if (nir->info.stage == MESA_SHADER_FRAGMENT)
2501 NIR_PASS(_, nir, agx_nir_lower_load_mask);
2502
2503 NIR_PASS(_, nir, nir_copy_prop);
2504 NIR_PASS(_, nir, nir_opt_dce);
2505 NIR_PASS(_, nir, nir_opt_cse);
2506 NIR_PASS(_, nir, nir_lower_alu_to_scalar, NULL, NULL);
2507 NIR_PASS(_, nir, nir_lower_load_const_to_scalar);
2508
2509 /* Cleanup optimizations */
2510 nir_move_options move_all = nir_move_const_undef | nir_move_load_ubo |
2511 nir_move_load_input | nir_move_comparisons |
2512 nir_move_copies | nir_move_load_ssbo |
2513 nir_move_alu;
2514
2515 NIR_PASS(_, nir, nir_opt_sink, move_all);
2516 NIR_PASS(_, nir, nir_opt_move, move_all);
2517 NIR_PASS(_, nir, nir_lower_phis_to_scalar, true);
2518 }
2519
2520 /* ABI: position first, then user, then psiz */
2521 static void
agx_remap_varyings_vs(nir_shader * nir,struct agx_varyings_vs * varyings,struct agx_shader_key * key)2522 agx_remap_varyings_vs(nir_shader *nir, struct agx_varyings_vs *varyings,
2523 struct agx_shader_key *key)
2524 {
2525 unsigned base = 0;
2526
2527 /* Initialize to "nothing is written" */
2528 for (unsigned i = 0; i < ARRAY_SIZE(varyings->slots); ++i)
2529 varyings->slots[i] = ~0;
2530
2531 /* gl_Position is implicitly written, although it may validly be absent in
2532 * vertex programs run only for transform feedback. Those ignore their
2533 * varyings so it doesn't matter what we do here as long as we don't fail.
2534 */
2535 varyings->slots[VARYING_SLOT_POS] = base;
2536 base += 4;
2537
2538 /* These are always flat-shaded from the FS perspective */
2539 key->vs.outputs_flat_shaded |= VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT;
2540
2541 /* The internal cull distance slots are always linearly-interpolated */
2542 key->vs.outputs_linear_shaded |=
2543 BITFIELD64_RANGE(VARYING_SLOT_CULL_PRIMITIVE, 2);
2544
2545 assert(!(key->vs.outputs_flat_shaded & key->vs.outputs_linear_shaded));
2546
2547 /* Smooth 32-bit user bindings go next */
2548 u_foreach_bit64(loc, nir->info.outputs_written &
2549 ~key->vs.outputs_flat_shaded &
2550 ~key->vs.outputs_linear_shaded) {
2551 if (loc == VARYING_SLOT_POS || loc == VARYING_SLOT_PSIZ)
2552 continue;
2553
2554 assert(loc < ARRAY_SIZE(varyings->slots));
2555 varyings->slots[loc] = base;
2556 base += 4;
2557 varyings->num_32_smooth += 4;
2558 }
2559
2560 /* Flat 32-bit user bindings go next */
2561 u_foreach_bit64(loc,
2562 nir->info.outputs_written & key->vs.outputs_flat_shaded) {
2563 if (loc == VARYING_SLOT_POS || loc == VARYING_SLOT_PSIZ)
2564 continue;
2565
2566 assert(loc < ARRAY_SIZE(varyings->slots));
2567 varyings->slots[loc] = base;
2568 base += 4;
2569 varyings->num_32_flat += 4;
2570 }
2571
2572 /* Linear 32-bit user bindings go next */
2573 u_foreach_bit64(loc,
2574 nir->info.outputs_written & key->vs.outputs_linear_shaded) {
2575 if (loc == VARYING_SLOT_POS || loc == VARYING_SLOT_PSIZ)
2576 continue;
2577
2578 assert(loc < ARRAY_SIZE(varyings->slots));
2579 varyings->slots[loc] = base;
2580 base += 4;
2581 varyings->num_32_linear += 4;
2582 }
2583
2584 /* TODO: Link FP16 varyings */
2585 varyings->base_index_fp16 = base;
2586 varyings->num_16_smooth = 0;
2587 varyings->num_16_flat = 0;
2588 varyings->num_16_linear = 0;
2589
2590 if (nir->info.outputs_written & VARYING_BIT_PSIZ) {
2591 varyings->slots[VARYING_SLOT_PSIZ] = base;
2592 base += 1;
2593 }
2594
2595 if (nir->info.outputs_written & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) {
2596 varyings->layer_viewport_slot = base;
2597 base += 1;
2598 }
2599
2600 if (nir->info.outputs_written & VARYING_BIT_CLIP_DIST0) {
2601 varyings->clip_dist_slot = base;
2602 varyings->nr_clip_dists = nir->info.clip_distance_array_size;
2603 base += varyings->nr_clip_dists;
2604 }
2605
2606 /* All varyings linked now */
2607 varyings->nr_index = base;
2608 }
2609
2610 /*
2611 * Varyings that are used as texture coordinates should be kept at fp32, because
2612 * fp16 does not have enough precision for large textures. It's technically
2613 * conformant not to, but every app gets this wrong.
2614 */
2615 static bool
agx_gather_texcoords(nir_builder * b,nir_instr * instr,void * data)2616 agx_gather_texcoords(nir_builder *b, nir_instr *instr, void *data)
2617 {
2618 uint64_t *mask = data;
2619
2620 if (instr->type != nir_instr_type_tex)
2621 return false;
2622
2623 nir_tex_instr *tex = nir_instr_as_tex(instr);
2624
2625 int coord_idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
2626 if (coord_idx < 0)
2627 return false;
2628
2629 nir_src src = tex->src[coord_idx].src;
2630 nir_scalar x = nir_scalar_resolved(src.ssa, 0);
2631 nir_scalar y = nir_scalar_resolved(src.ssa, 1);
2632
2633 if (x.def != y.def)
2634 return false;
2635
2636 nir_instr *parent = x.def->parent_instr;
2637
2638 if (parent->type != nir_instr_type_intrinsic)
2639 return false;
2640
2641 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(parent);
2642
2643 if (intr->intrinsic != nir_intrinsic_load_interpolated_input)
2644 return false;
2645
2646 nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
2647 *mask |= BITFIELD64_BIT(sem.location);
2648 return false;
2649 }
2650
2651 struct interp_masks {
2652 uint64_t flat;
2653 uint64_t linear;
2654 };
2655
2656 static bool
agx_gather_interp(nir_builder * b,nir_intrinsic_instr * intr,void * data)2657 agx_gather_interp(nir_builder *b, nir_intrinsic_instr *intr, void *data)
2658 {
2659 struct interp_masks *masks = data;
2660
2661 if (intr->intrinsic == nir_intrinsic_load_input) {
2662 nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
2663 masks->flat |= BITFIELD64_RANGE(sem.location, sem.num_slots);
2664 } else if (intr->intrinsic == nir_intrinsic_load_interpolated_input &&
2665 nir_intrinsic_interp_mode(nir_src_as_intrinsic(intr->src[0])) ==
2666 INTERP_MODE_NOPERSPECTIVE) {
2667 nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
2668 masks->linear |= BITFIELD64_RANGE(sem.location, sem.num_slots);
2669 }
2670
2671 return false;
2672 }
2673
2674 /*
2675 * Build a bit mask of varyings (by location) that are flatshaded and linear
2676 * shaded. This information is needed by lower_mediump_io and
2677 * agx_uncompiled_shader_info.
2678 */
2679 static struct interp_masks
agx_interp_masks(nir_shader * nir)2680 agx_interp_masks(nir_shader *nir)
2681 {
2682 assert(nir->info.stage == MESA_SHADER_FRAGMENT);
2683
2684 struct interp_masks masks = {0};
2685 nir_shader_intrinsics_pass(nir, agx_gather_interp, nir_metadata_all, &masks);
2686 return masks;
2687 }
2688
2689 /*
2690 * Build a bit mask of varyings (by location) that are used as texture
2691 * coordinates. This information is needed by lower_mediump_io.
2692 */
2693 static uint64_t
agx_texcoord_mask(nir_shader * nir)2694 agx_texcoord_mask(nir_shader *nir)
2695 {
2696 assert(nir->info.stage == MESA_SHADER_FRAGMENT);
2697
2698 uint64_t mask = 0;
2699 nir_shader_instructions_pass(nir, agx_gather_texcoords, nir_metadata_all,
2700 &mask);
2701 return mask;
2702 }
2703
2704 static nir_mem_access_size_align
mem_access_size_align_cb(nir_intrinsic_op intrin,uint8_t bytes,uint8_t bit_size,uint32_t align,uint32_t align_offset,bool offset_is_const,const void * cb_data)2705 mem_access_size_align_cb(nir_intrinsic_op intrin, uint8_t bytes,
2706 uint8_t bit_size, uint32_t align,
2707 uint32_t align_offset, bool offset_is_const,
2708 const void *cb_data)
2709 {
2710 align = nir_combined_align(align, align_offset);
2711
2712 assert(util_is_power_of_two_nonzero(align));
2713
2714 if ((bytes & 1) || (align == 1))
2715 bit_size = 8;
2716 else if ((bytes & 2) || (align == 2))
2717 bit_size = 16;
2718 else if (bit_size >= 32)
2719 bit_size = 32;
2720
2721 return (nir_mem_access_size_align){
2722 .num_components = MIN2(bytes / (bit_size / 8), 4),
2723 .bit_size = bit_size,
2724 .align = bit_size / 8,
2725 };
2726 }
2727
2728 static unsigned
lower_bit_size_callback(const nir_instr * instr,UNUSED void * _)2729 lower_bit_size_callback(const nir_instr *instr, UNUSED void *_)
2730 {
2731 if (instr->type != nir_instr_type_alu)
2732 return 0;
2733
2734 /* Lower 8-bit ALU to 16-bit. We check the destination, as we do not want to
2735 * lower conversions from 8-bit to larger types. Those conversions get
2736 * implemented natively.
2737 */
2738 nir_alu_instr *alu = nir_instr_as_alu(instr);
2739 if (alu->def.bit_size == 8 && !is_conversion_to_8bit(alu->op))
2740 return 16;
2741 else if (alu->def.bit_size == 1 && alu->src[0].src.ssa->bit_size == 8)
2742 return 16 /* comparisons */;
2743 else
2744 return 0;
2745 }
2746
2747 static bool
lower_load_from_texture_handle(nir_builder * b,nir_intrinsic_instr * intr,void * data)2748 lower_load_from_texture_handle(nir_builder *b, nir_intrinsic_instr *intr,
2749 void *data)
2750 {
2751 if (intr->intrinsic != nir_intrinsic_load_from_texture_handle_agx)
2752 return false;
2753
2754 /* Bindless handles are a vec2, where the first source is the (constant)
2755 * uniform register number and the second source is the byte offset.
2756 */
2757 nir_scalar uniform = nir_scalar_resolved(intr->src[0].ssa, 0);
2758 unsigned uniform_idx = nir_scalar_as_uint(uniform);
2759
2760 b->cursor = nir_instr_remove(&intr->instr);
2761 nir_def *base = nir_load_preamble(b, 1, 64, uniform_idx);
2762 nir_def *offset = nir_u2u64(b, nir_channel(b, intr->src[0].ssa, 1));
2763
2764 nir_def_rewrite_uses(&intr->def, nir_iadd(b, base, offset));
2765 return true;
2766 }
2767
2768 static bool
agx_should_dump(nir_shader * nir,unsigned agx_dbg_bit)2769 agx_should_dump(nir_shader *nir, unsigned agx_dbg_bit)
2770 {
2771 return (agx_compiler_debug & agx_dbg_bit) &&
2772 !(nir->info.internal && !(agx_compiler_debug & AGX_DBG_INTERNAL));
2773 }
2774
2775 static unsigned
agx_compile_function_nir(nir_shader * nir,nir_function_impl * impl,struct agx_shader_key * key,struct util_debug_callback * debug,struct util_dynarray * binary,struct agx_shader_info * out)2776 agx_compile_function_nir(nir_shader *nir, nir_function_impl *impl,
2777 struct agx_shader_key *key,
2778 struct util_debug_callback *debug,
2779 struct util_dynarray *binary,
2780 struct agx_shader_info *out)
2781 {
2782 nir_index_blocks(impl);
2783 nir_index_ssa_defs(impl);
2784
2785 agx_context *ctx = rzalloc(NULL, agx_context);
2786 ctx->nir = nir;
2787 ctx->is_preamble = impl->function->is_preamble;
2788 ctx->out = out;
2789 ctx->key = key;
2790 ctx->stage = nir->info.stage;
2791 ctx->allocated_vec = _mesa_hash_table_u64_create(ctx);
2792 ctx->indexed_nir_blocks = rzalloc_array(ctx, agx_block *, impl->num_blocks);
2793 list_inithead(&ctx->blocks);
2794
2795 ctx->alloc = impl->ssa_alloc;
2796 emit_cf_list(ctx, &impl->body);
2797 agx_emit_phis_deferred(ctx);
2798
2799 /* Only allocate scratch if it's statically used, regardless of if the NIR
2800 * info claims otherwise.
2801 */
2802 if (ctx->any_scratch) {
2803 assert(!ctx->is_preamble && "preambles don't use scratch");
2804 ctx->scratch_size = ALIGN(nir->scratch_size, 16);
2805 }
2806
2807 /* Stop the main shader or preamble shader after the exit block. For real
2808 * functions, we would return here.
2809 */
2810 agx_block *last_block = list_last_entry(&ctx->blocks, agx_block, link);
2811 agx_builder _b = agx_init_builder(ctx, agx_after_block(last_block));
2812 agx_stop(&_b);
2813
2814 /* Index blocks now that we're done emitting so the order is consistent */
2815 agx_foreach_block(ctx, block)
2816 block->index = ctx->num_blocks++;
2817
2818 agx_validate(ctx, "IR translation");
2819
2820 if (likely(!(agx_compiler_debug & AGX_DBG_NOOPT))) {
2821 /* Eliminate dead instructions before CSE to avoid silly scheduling */
2822 agx_dce(ctx, false);
2823
2824 /* CSE before eliminating dead destinations so that subdivision is
2825 * optimized properly.
2826 */
2827 agx_opt_cse(ctx);
2828
2829 /* After DCE, use counts are right so we can run the optimizer. */
2830 agx_optimizer(ctx);
2831 }
2832
2833 /* For correctness, lower uniform sources after copyprop (for correctness,
2834 * as copyprop creates uniform sources). To keep register pressure in
2835 * check, lower after CSE, since moves are cheaper than registers.
2836 */
2837 agx_lower_uniform_sources(ctx);
2838
2839 /* RA correctness depends on DCE */
2840 agx_dce(ctx, true);
2841 agx_validate(ctx, "Pre-RA passes");
2842
2843 if (agx_should_dump(nir, AGX_DBG_SHADERS))
2844 agx_print_shader(ctx, stdout);
2845
2846 if (likely(!(agx_compiler_debug & AGX_DBG_NOSCHED))) {
2847 agx_pressure_schedule(ctx);
2848 agx_validate(ctx, "Pre-RA scheduler");
2849 }
2850
2851 if (agx_should_dump(nir, AGX_DBG_SHADERS))
2852 agx_print_shader(ctx, stdout);
2853
2854 agx_ra(ctx);
2855 agx_validate(ctx, "RA");
2856 agx_lower_64bit_postra(ctx);
2857
2858 if (ctx->scratch_size > 0) {
2859 /* Apple always allocate 40 more bytes in the entrypoint and align to 4. */
2860 uint64_t stack_size = ALIGN(DIV_ROUND_UP(ctx->scratch_size, 4) + 10, 4);
2861
2862 assert(stack_size < INT16_MAX);
2863
2864 agx_block *start_block = agx_start_block(ctx);
2865 agx_builder _b = agx_init_builder(ctx, agx_before_block(start_block));
2866 agx_stack_adjust(&_b, stack_size);
2867
2868 if (ctx->is_preamble)
2869 out->preamble_scratch_size = stack_size;
2870 else
2871 out->scratch_size = stack_size;
2872 }
2873
2874 if (ctx->stage == MESA_SHADER_VERTEX && !impl->function->is_preamble)
2875 agx_set_st_vary_final(ctx);
2876
2877 agx_insert_waits(ctx);
2878 agx_opt_empty_else(ctx);
2879 agx_opt_break_if(ctx);
2880 agx_opt_jmp_none(ctx);
2881 agx_lower_pseudo(ctx);
2882
2883 if (agx_should_dump(nir, AGX_DBG_SHADERS))
2884 agx_print_shader(ctx, stdout);
2885
2886 /* Pad binary */
2887 if (binary->size % AGX_CODE_ALIGN) {
2888 unsigned ngrow = AGX_CODE_ALIGN - (binary->size % AGX_CODE_ALIGN);
2889 memset(util_dynarray_grow_bytes(binary, ngrow, 1), 0, ngrow);
2890 }
2891
2892 unsigned offset = binary->size;
2893 assert((offset % AGX_CODE_ALIGN) == 0);
2894
2895 agx_pack_binary(ctx, binary);
2896
2897 unsigned nr_gprs = ctx->max_reg + 1;
2898
2899 /* If the preamble uses scratch (due to spilling), we need to set maximal
2900 * GPRs. Do it here so the driver doesn't have to worry about it.
2901 */
2902 if (impl->function->is_preamble)
2903 out->nr_preamble_gprs = ctx->scratch_size ? 256 : nr_gprs;
2904 else
2905 out->nr_gprs = nr_gprs;
2906
2907 /* Don't dump statistics for preambles, since they're not worth optimizing */
2908 if (!impl->function->is_preamble) {
2909 char *stats;
2910 int ret = agx_dump_stats(ctx, binary->size, &stats);
2911
2912 if (ret >= 0) {
2913 if (agx_should_dump(nir, AGX_DBG_SHADERDB)) {
2914 fprintf(stderr, "SHADER-DB: %s - %s\n", nir->info.label ?: "",
2915 stats);
2916 }
2917
2918 if (debug)
2919 util_debug_message(debug, SHADER_INFO, "%s", stats);
2920
2921 free(stats);
2922 }
2923 }
2924
2925 ralloc_free(ctx);
2926
2927 return offset;
2928 }
2929
2930 static void
link_libagx(nir_shader * nir,const nir_shader * libagx)2931 link_libagx(nir_shader *nir, const nir_shader *libagx)
2932 {
2933 nir_link_shader_functions(nir, libagx);
2934 NIR_PASS(_, nir, nir_inline_functions);
2935 nir_remove_non_entrypoints(nir);
2936 NIR_PASS(_, nir, nir_opt_deref);
2937 NIR_PASS(_, nir, nir_lower_vars_to_ssa);
2938 NIR_PASS(_, nir, nir_remove_dead_derefs);
2939 NIR_PASS(_, nir, nir_remove_dead_variables,
2940 nir_var_function_temp | nir_var_shader_temp, NULL);
2941 NIR_PASS(_, nir, nir_lower_vars_to_explicit_types,
2942 nir_var_shader_temp | nir_var_function_temp | nir_var_mem_shared |
2943 nir_var_mem_global,
2944 glsl_get_cl_type_size_align);
2945 }
2946
2947 /*
2948 * Preprocess NIR. In particular, this lowers I/O. Drivers should call this
2949 * as soon as they don't need unlowered I/O.
2950 *
2951 * This also lowers as much as possible. After preprocessing NIR, the following
2952 * NIR passes are called by the GL driver:
2953 *
2954 * - nir_lower_blend
2955 * - nir_lower_texcoord_replace_late
2956 * - agx_nir_lower_vbo
2957 * - agx_nir_lower_tilebuffer
2958 *
2959 * Unless an instruction is constructed by one of the above passes, it should be
2960 * lowered here to avoid duplicate work with shader variants.
2961 */
2962 void
agx_preprocess_nir(nir_shader * nir,const nir_shader * libagx,bool allow_mediump,struct agx_uncompiled_shader_info * out)2963 agx_preprocess_nir(nir_shader *nir, const nir_shader *libagx,
2964 bool allow_mediump, struct agx_uncompiled_shader_info *out)
2965 {
2966 if (out) {
2967 memset(out, 0, sizeof(*out));
2968
2969 out->nr_bindful_textures = BITSET_LAST_BIT(nir->info.textures_used);
2970 out->nr_bindful_images = BITSET_LAST_BIT(nir->info.images_used);
2971 }
2972
2973 NIR_PASS(_, nir, nir_lower_vars_to_ssa);
2974
2975 /* Lower large arrays to scratch and small arrays to csel */
2976 NIR_PASS(_, nir, nir_lower_vars_to_scratch, nir_var_function_temp, 16,
2977 glsl_get_natural_size_align_bytes);
2978 NIR_PASS(_, nir, nir_lower_indirect_derefs, nir_var_function_temp, ~0);
2979 NIR_PASS(_, nir, nir_split_var_copies);
2980 NIR_PASS(_, nir, nir_lower_global_vars_to_local);
2981 NIR_PASS(_, nir, nir_lower_var_copies);
2982 NIR_PASS(_, nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out,
2983 glsl_type_size, nir_lower_io_lower_64bit_to_32);
2984 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
2985 struct interp_masks masks = agx_interp_masks(nir);
2986
2987 NIR_PASS(_, nir, agx_nir_lower_frag_sidefx);
2988
2989 /* Interpolate varyings at fp16 and write to the tilebuffer at fp16. As an
2990 * exception, interpolate flat shaded at fp32. This works around a
2991 * hardware limitation. The resulting code (with an extra f2f16 at the end
2992 * if needed) matches what Metal produces.
2993 */
2994 if (likely(allow_mediump)) {
2995 uint64_t texcoord = agx_texcoord_mask(nir);
2996
2997 NIR_PASS(_, nir, nir_lower_mediump_io,
2998 nir_var_shader_in | nir_var_shader_out,
2999 ~(masks.flat | texcoord), false);
3000 }
3001
3002 if (out) {
3003 out->inputs_flat_shaded = masks.flat;
3004 out->inputs_linear_shaded = masks.linear;
3005 }
3006 } else if (nir->info.stage == MESA_SHADER_VERTEX ||
3007 nir->info.stage == MESA_SHADER_TESS_EVAL) {
3008 out->has_edgeflags = nir->info.outputs_written & VARYING_BIT_EDGE;
3009 out->cull_distance_size = nir->info.cull_distance_array_size;
3010
3011 if (out->cull_distance_size)
3012 NIR_PASS(_, nir, agx_nir_lower_cull_distance_vs);
3013 }
3014
3015 /* Clean up deref gunk after lowering I/O */
3016 NIR_PASS(_, nir, nir_opt_dce);
3017
3018 link_libagx(nir, libagx);
3019
3020 /* Runs before we lower away idiv, to work at all. But runs after lowering
3021 * textures, since the cube map array lowering generates division by 6.
3022 */
3023 NIR_PASS(_, nir, nir_opt_idiv_const, 16);
3024
3025 nir_lower_idiv_options idiv_options = {
3026 .allow_fp16 = true,
3027 };
3028
3029 NIR_PASS(_, nir, nir_lower_idiv, &idiv_options);
3030 NIR_PASS(_, nir, nir_lower_frexp);
3031 NIR_PASS(_, nir, nir_lower_alu_to_scalar, NULL, NULL);
3032 NIR_PASS(_, nir, nir_lower_load_const_to_scalar);
3033 NIR_PASS(_, nir, nir_lower_flrp, 16 | 32 | 64, false);
3034 NIR_PASS(_, nir, agx_lower_sincos);
3035 NIR_PASS(_, nir, nir_shader_intrinsics_pass, agx_lower_front_face,
3036 nir_metadata_block_index | nir_metadata_dominance, NULL);
3037 NIR_PASS(_, nir, nir_lower_frag_coord_to_pixel_coord);
3038 NIR_PASS(_, nir, agx_nir_lower_subgroups);
3039 NIR_PASS(_, nir, nir_lower_phis_to_scalar, true);
3040
3041 /* After lowering, run through the standard suite of NIR optimizations. We
3042 * will run through the loop later, once we have the shader key, but if we
3043 * run now, that run will ideally be almost a no-op.
3044 */
3045 agx_optimize_loop_nir(nir);
3046
3047 NIR_PASS(_, nir, nir_opt_deref);
3048 NIR_PASS(_, nir, nir_lower_vars_to_ssa);
3049 NIR_PASS(_, nir, nir_lower_explicit_io,
3050 nir_var_shader_temp | nir_var_function_temp | nir_var_mem_shared |
3051 nir_var_mem_global,
3052 nir_address_format_62bit_generic);
3053
3054 /* We're lowered away all variables. Remove them all for smaller shaders. */
3055 NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_all, NULL);
3056 nir->info.io_lowered = true;
3057
3058 /* Move before lowering */
3059 nir_move_options move_all = nir_move_const_undef | nir_move_load_ubo |
3060 nir_move_load_input | nir_move_comparisons |
3061 nir_move_copies | nir_move_load_ssbo;
3062
3063 NIR_PASS(_, nir, nir_opt_sink, move_all);
3064 NIR_PASS(_, nir, nir_opt_move, move_all);
3065 NIR_PASS(_, nir, agx_nir_lower_shared_bitsize);
3066 }
3067
3068 void
agx_compile_shader_nir(nir_shader * nir,struct agx_shader_key * key,struct util_debug_callback * debug,struct util_dynarray * binary,struct agx_shader_info * out)3069 agx_compile_shader_nir(nir_shader *nir, struct agx_shader_key *key,
3070 struct util_debug_callback *debug,
3071 struct util_dynarray *binary,
3072 struct agx_shader_info *out)
3073 {
3074 agx_compiler_debug = agx_get_compiler_debug();
3075
3076 memset(out, 0, sizeof *out);
3077
3078 assert(nir->info.io_lowered &&
3079 "agx_preprocess_nir is called first, then the shader is specalized,"
3080 "then the specialized shader is compiled");
3081
3082 /* If required, tag writes will be enabled by instruction selection */
3083 if (nir->info.stage == MESA_SHADER_FRAGMENT)
3084 out->tag_write_disable = !nir->info.writes_memory;
3085
3086 if (nir->info.stage == MESA_SHADER_VERTEX &&
3087 (nir->info.outputs_written & VARYING_BIT_CLIP_DIST0))
3088 NIR_PASS(_, nir, agx_nir_lower_clip_distance);
3089
3090 bool needs_libagx = true /* TODO: Optimize */;
3091
3092 if (nir->info.stage == MESA_SHADER_FRAGMENT)
3093 NIR_PASS(_, nir, agx_nir_lower_interpolation);
3094
3095 NIR_PASS(_, nir, nir_lower_vars_to_ssa);
3096
3097 if (needs_libagx) {
3098 link_libagx(nir, key->libagx);
3099
3100 NIR_PASS(_, nir, nir_opt_deref);
3101 NIR_PASS(_, nir, nir_lower_vars_to_ssa);
3102 NIR_PASS(_, nir, nir_lower_explicit_io,
3103 nir_var_shader_temp | nir_var_function_temp |
3104 nir_var_mem_shared | nir_var_mem_global,
3105 nir_address_format_62bit_generic);
3106 }
3107
3108 /* Late sysval lowering creates large loads. Load lowering creates unpacks */
3109 nir_lower_mem_access_bit_sizes_options lower_mem_access_options = {
3110 .modes = nir_var_mem_ssbo | nir_var_mem_constant |
3111 nir_var_mem_task_payload | nir_var_shader_temp |
3112 nir_var_function_temp | nir_var_mem_global | nir_var_mem_shared,
3113 .callback = mem_access_size_align_cb,
3114 };
3115 NIR_PASS(_, nir, nir_lower_mem_access_bit_sizes, &lower_mem_access_options);
3116
3117 /* Cleanup 8-bit math before lowering */
3118 bool progress;
3119 do {
3120 progress = false;
3121
3122 NIR_PASS(progress, nir, nir_opt_algebraic);
3123 NIR_PASS(progress, nir, nir_opt_constant_folding);
3124 NIR_PASS(progress, nir, nir_opt_dce);
3125 } while (progress);
3126
3127 NIR_PASS(_, nir, nir_lower_bit_size, lower_bit_size_callback, NULL);
3128
3129 /* Late blend lowering creates vectors */
3130 NIR_PASS(_, nir, nir_lower_alu_to_scalar, NULL, NULL);
3131 NIR_PASS(_, nir, nir_lower_load_const_to_scalar);
3132
3133 /* Late VBO lowering creates constant udiv instructions */
3134 NIR_PASS(_, nir, nir_opt_idiv_const, 16);
3135
3136 /* Varying output is scalar, other I/O is vector. Lowered late because
3137 * transform feedback programs will use vector output.
3138 */
3139 if (nir->info.stage == MESA_SHADER_VERTEX) {
3140 NIR_PASS(_, nir, nir_lower_io_to_scalar, nir_var_shader_out, NULL, NULL);
3141
3142 if (nir->info.outputs_written &
3143 (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) {
3144
3145 NIR_PASS(_, nir, agx_nir_lower_layer);
3146 }
3147 }
3148
3149 NIR_PASS(_, nir, nir_opt_constant_folding);
3150 NIR_PASS(_, nir, nir_shader_intrinsics_pass, lower_load_from_texture_handle,
3151 nir_metadata_block_index | nir_metadata_dominance, NULL);
3152
3153 out->push_count = key->reserved_preamble;
3154 agx_optimize_nir(nir, &out->push_count);
3155
3156 /* Must be last since NIR passes can remap driver_location freely */
3157 if (nir->info.stage == MESA_SHADER_VERTEX)
3158 agx_remap_varyings_vs(nir, &out->varyings.vs, key);
3159
3160 if (agx_should_dump(nir, AGX_DBG_SHADERS))
3161 nir_print_shader(nir, stdout);
3162
3163 out->local_size = nir->info.shared_size;
3164
3165 nir_foreach_function_with_impl(func, impl, nir) {
3166 unsigned offset =
3167 agx_compile_function_nir(nir, impl, key, debug, binary, out);
3168
3169 if (func->is_preamble) {
3170 out->preamble_offset = offset;
3171 out->has_preamble = true;
3172 } else if (func->is_entrypoint) {
3173 out->main_offset = offset;
3174 } else {
3175 unreachable("General functions not yet supported");
3176 }
3177 }
3178
3179 if (nir->info.stage == MESA_SHADER_VERTEX) {
3180 out->writes_psiz =
3181 nir->info.outputs_written & BITFIELD_BIT(VARYING_SLOT_PSIZ);
3182
3183 out->nonzero_viewport = nir->info.outputs_written & VARYING_BIT_VIEWPORT;
3184
3185 out->writes_layer_viewport =
3186 nir->info.outputs_written & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
3187
3188 out->uses_draw_id =
3189 BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID);
3190
3191 out->uses_base_param =
3192 BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_VERTEX) ||
3193 BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE);
3194 } else if (nir->info.stage == MESA_SHADER_FRAGMENT) {
3195 out->disable_tri_merging = nir->info.uses_wide_subgroup_intrinsics ||
3196 nir->info.fs.needs_quad_helper_invocations ||
3197 nir->info.writes_memory;
3198
3199 /* Writing the sample mask requires tag writes */
3200 out->tag_write_disable &= !out->writes_sample_mask;
3201
3202 /* Report a canonical depth layout. This happens at the end because the
3203 * sample mask lowering affects it.
3204 */
3205 enum gl_frag_depth_layout layout = nir->info.fs.depth_layout;
3206
3207 if (!(nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)))
3208 out->depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3209 else if (layout == FRAG_DEPTH_LAYOUT_NONE)
3210 out->depth_layout = FRAG_DEPTH_LAYOUT_ANY;
3211 else
3212 out->depth_layout = layout;
3213 }
3214 }
3215