• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2019 Raspberry Pi Ltd
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "v3dv_private.h"
25 
26 #include "drm-uapi/drm_fourcc.h"
27 #include "util/format/u_format.h"
28 #include "util/u_math.h"
29 #include "vk_util.h"
30 #include "vulkan/wsi/wsi_common.h"
31 #if DETECT_OS_ANDROID
32 #include "vk_android.h"
33 #endif
34 
35 /**
36  * Computes the HW's UIFblock padding for a given height/cpp.
37  *
38  * The goal of the padding is to keep pages of the same color (bank number) at
39  * least half a page away from each other vertically when crossing between
40  * columns of UIF blocks.
41  */
42 static uint32_t
v3d_get_ub_pad(uint32_t cpp,uint32_t height)43 v3d_get_ub_pad(uint32_t cpp, uint32_t height)
44 {
45    uint32_t utile_h = v3d_utile_height(cpp);
46    uint32_t uif_block_h = utile_h * 2;
47    uint32_t height_ub = height / uif_block_h;
48 
49    uint32_t height_offset_in_pc = height_ub % PAGE_CACHE_UB_ROWS;
50 
51    /* For the perfectly-aligned-for-UIF-XOR case, don't add any pad. */
52    if (height_offset_in_pc == 0)
53       return 0;
54 
55    /* Try padding up to where we're offset by at least half a page. */
56    if (height_offset_in_pc < PAGE_UB_ROWS_TIMES_1_5) {
57       /* If we fit entirely in the page cache, don't pad. */
58       if (height_ub < PAGE_CACHE_UB_ROWS)
59          return 0;
60       else
61          return PAGE_UB_ROWS_TIMES_1_5 - height_offset_in_pc;
62    }
63 
64    /* If we're close to being aligned to page cache size, then round up
65     * and rely on XOR.
66     */
67    if (height_offset_in_pc > PAGE_CACHE_MINUS_1_5_UB_ROWS)
68       return PAGE_CACHE_UB_ROWS - height_offset_in_pc;
69 
70    /* Otherwise, we're far enough away (top and bottom) to not need any
71     * padding.
72     */
73    return 0;
74 }
75 
76 /**
77  * Computes the dimension with required padding for mip levels.
78  *
79  * This padding is required for width and height dimensions when the mip
80  * level is greater than 1, and for the depth dimension when the mip level
81  * is greater than 0. This function expects to be passed a mip level >= 1.
82  *
83  * Note: Hardware documentation seems to suggest that the third argument
84  * should be the utile dimensions, but through testing it was found that
85  * the block dimension should be used instead.
86  */
87 static uint32_t
v3d_get_dimension_mpad(uint32_t dimension,uint32_t level,uint32_t block_dimension)88 v3d_get_dimension_mpad(uint32_t dimension, uint32_t level, uint32_t block_dimension)
89 {
90    assert(level >= 1);
91    uint32_t pot_dim = u_minify(dimension, 1);
92    pot_dim = util_next_power_of_two(DIV_ROUND_UP(pot_dim, block_dimension));
93    uint32_t padded_dim = block_dimension * pot_dim;
94    return u_minify(padded_dim, level - 1);
95 }
96 
97 static bool
v3d_setup_plane_slices(struct v3dv_image * image,uint8_t plane,uint32_t plane_offset,const VkSubresourceLayout * plane_layouts)98 v3d_setup_plane_slices(struct v3dv_image *image, uint8_t plane,
99                        uint32_t plane_offset,
100                        const VkSubresourceLayout *plane_layouts)
101 {
102    assert(image->planes[plane].cpp > 0);
103 
104    uint32_t width = image->planes[plane].width;
105    uint32_t height = image->planes[plane].height;
106    uint32_t depth = image->vk.extent.depth;
107 
108    uint32_t utile_w = v3d_utile_width(image->planes[plane].cpp);
109    uint32_t utile_h = v3d_utile_height(image->planes[plane].cpp);
110    uint32_t uif_block_w = utile_w * 2;
111    uint32_t uif_block_h = utile_h * 2;
112 
113    uint32_t block_width = vk_format_get_blockwidth(image->vk.format);
114    uint32_t block_height = vk_format_get_blockheight(image->vk.format);
115 
116    /* Note that power-of-two padding is based on level 1.  These are not
117     * equivalent to just util_next_power_of_two(dimension), because at a
118     * level 0 dimension of 9, the level 1 power-of-two padded value is 4,
119     * not 8. Additionally the pot padding is based on the block size.
120     */
121    uint32_t pot_width = 2 * v3d_get_dimension_mpad(width,
122                                                    1,
123                                                    block_width);
124    uint32_t pot_height = 2 * v3d_get_dimension_mpad(height,
125                                                     1,
126                                                     block_height);
127    uint32_t pot_depth = 2 * v3d_get_dimension_mpad(depth,
128                                                    1,
129                                                    1);
130 
131    assert(image->vk.samples == VK_SAMPLE_COUNT_1_BIT ||
132           image->vk.samples == VK_SAMPLE_COUNT_4_BIT);
133    bool msaa = image->vk.samples != VK_SAMPLE_COUNT_1_BIT;
134 
135    bool uif_top = msaa;
136 
137    assert(image->vk.array_layers > 0);
138    assert(depth > 0);
139    assert(image->vk.mip_levels >= 1);
140 
141    /* Texture Base Address needs to be 64-byte aligned. If we have an explicit
142     * plane layout we will return false to fail image creation with appropriate
143     * error code.
144     */
145    uint32_t offset;
146    if (plane_layouts) {
147       offset = plane_layouts[plane].offset;
148       if (offset % 64 != 0)
149          return false;
150    } else {
151       offset = plane_offset;
152    }
153    assert(plane_offset % 64 == 0);
154 
155    for (int32_t i = image->vk.mip_levels - 1; i >= 0; i--) {
156       struct v3d_resource_slice *slice = &image->planes[plane].slices[i];
157 
158       slice->width = u_minify(width, i);
159       slice->height = u_minify(height, i);
160 
161       uint32_t level_width, level_height, level_depth;
162       if (i < 2) {
163          level_width = slice->width;
164          level_height = slice->height;
165       } else {
166          level_width = u_minify(pot_width, i);
167          level_height = u_minify(pot_height, i);
168       }
169 
170       if (i < 1)
171          level_depth = u_minify(depth, i);
172       else
173          level_depth = u_minify(pot_depth, i);
174 
175       if (msaa) {
176          level_width *= 2;
177          level_height *= 2;
178       }
179 
180       level_width = DIV_ROUND_UP(level_width, block_width);
181       level_height = DIV_ROUND_UP(level_height, block_height);
182 
183       if (!image->tiled) {
184          slice->tiling = V3D_TILING_RASTER;
185          if (image->vk.image_type == VK_IMAGE_TYPE_1D)
186             level_width = align(level_width, 64 / image->planes[plane].cpp);
187       } else {
188          if ((i != 0 || !uif_top) &&
189              (level_width <= utile_w || level_height <= utile_h)) {
190             slice->tiling = V3D_TILING_LINEARTILE;
191             level_width = align(level_width, utile_w);
192             level_height = align(level_height, utile_h);
193          } else if ((i != 0 || !uif_top) && level_width <= uif_block_w) {
194             slice->tiling = V3D_TILING_UBLINEAR_1_COLUMN;
195             level_width = align(level_width, uif_block_w);
196             level_height = align(level_height, uif_block_h);
197          } else if ((i != 0 || !uif_top) && level_width <= 2 * uif_block_w) {
198             slice->tiling = V3D_TILING_UBLINEAR_2_COLUMN;
199             level_width = align(level_width, 2 * uif_block_w);
200             level_height = align(level_height, uif_block_h);
201          } else {
202             /* We align the width to a 4-block column of UIF blocks, but we
203              * only align height to UIF blocks.
204              */
205             level_width = align(level_width, 4 * uif_block_w);
206             level_height = align(level_height, uif_block_h);
207 
208             slice->ub_pad = v3d_get_ub_pad(image->planes[plane].cpp,
209                                            level_height);
210             level_height += slice->ub_pad * uif_block_h;
211 
212             /* If the padding set us to to be aligned to the page cache size,
213              * then the HW will use the XOR bit on odd columns to get us
214              * perfectly misaligned.
215              */
216             if ((level_height / uif_block_h) %
217                 (V3D_PAGE_CACHE_SIZE / V3D_UIFBLOCK_ROW_SIZE) == 0) {
218                slice->tiling = V3D_TILING_UIF_XOR;
219             } else {
220                slice->tiling = V3D_TILING_UIF_NO_XOR;
221             }
222          }
223       }
224 
225       slice->offset = offset;
226       slice->stride = level_width * image->planes[plane].cpp;
227 
228       /* We assume that rowPitch in the plane layout refers to level 0 */
229       if (plane_layouts && i == 0) {
230          if (plane_layouts[plane].rowPitch < slice->stride)
231             return false;
232          if (plane_layouts[plane].rowPitch % image->planes[plane].cpp)
233             return false;
234          if (image->tiled && (plane_layouts[plane].rowPitch % (4 * uif_block_w)))
235             return false;
236          slice->stride = plane_layouts[plane].rowPitch;
237       }
238 
239       slice->padded_height = level_height;
240       if (slice->tiling == V3D_TILING_UIF_NO_XOR ||
241           slice->tiling == V3D_TILING_UIF_XOR) {
242          slice->padded_height_of_output_image_in_uif_blocks =
243             slice->padded_height /
244                (2 * v3d_utile_height(image->planes[plane].cpp));
245       }
246 
247       slice->size = level_height * slice->stride;
248       uint32_t slice_total_size = slice->size * level_depth;
249 
250       /* The HW aligns level 1's base to a page if any of level 1 or
251        * below could be UIF XOR.  The lower levels then inherit the
252        * alignment for as long as necessary, thanks to being power of
253        * two aligned.
254        */
255       if (i == 1 &&
256           level_width > 4 * uif_block_w &&
257           level_height > PAGE_CACHE_MINUS_1_5_UB_ROWS * uif_block_h) {
258          slice_total_size = align(slice_total_size, V3D_UIFCFG_PAGE_SIZE);
259       }
260 
261       offset += slice_total_size;
262    }
263 
264    image->planes[plane].size = offset - plane_offset;
265 
266    /* UIF/UBLINEAR levels need to be aligned to UIF-blocks, and LT only
267     * needs to be aligned to utile boundaries.  Since tiles are laid out
268     * from small to big in memory, we need to align the later UIF slices
269     * to UIF blocks, if they were preceded by non-UIF-block-aligned LT
270     * slices.
271     *
272     * We additionally align to 4k, which improves UIF XOR performance.
273     *
274     * Finally, because the Texture Base Address field must be 64-byte aligned,
275     * we also need to align linear images to 64 if the image is going to be
276     * used for transfer.
277     */
278    if (image->tiled) {
279       image->planes[plane].alignment = 4096;
280    } else {
281       image->planes[plane].alignment =
282          (image->vk.usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) ?
283             64 : image->planes[plane].cpp;
284    }
285 
286    uint32_t align_offset =
287       align(image->planes[plane].slices[0].offset,
288             image->planes[plane].alignment) -
289             image->planes[plane].slices[0].offset;
290    if (align_offset) {
291       image->planes[plane].size += align_offset;
292       for (int i = 0; i < image->vk.mip_levels; i++)
293          image->planes[plane].slices[i].offset += align_offset;
294    }
295 
296    /* Arrays and cube textures have a stride which is the distance from
297     * one full mipmap tree to the next (64b aligned).  For 3D textures,
298     * we need to program the stride between slices of miplevel 0.
299     */
300    if (image->vk.image_type != VK_IMAGE_TYPE_3D) {
301       image->planes[plane].cube_map_stride =
302          align(image->planes[plane].slices[0].offset +
303                image->planes[plane].slices[0].size, 64);
304 
305       if (plane_layouts && image->vk.array_layers > 1) {
306          if (plane_layouts[plane].arrayPitch % 64 != 0)
307             return false;
308          if (plane_layouts[plane].arrayPitch <
309              image->planes[plane].cube_map_stride) {
310             return false;
311          }
312          image->planes[plane].cube_map_stride = plane_layouts[plane].arrayPitch;
313       }
314 
315       image->planes[plane].size += image->planes[plane].cube_map_stride *
316                                    (image->vk.array_layers - 1);
317    } else {
318       image->planes[plane].cube_map_stride = image->planes[plane].slices[0].size;
319       if (plane_layouts) {
320          /* We assume that depthPitch in the plane layout refers to level 0 */
321          if (plane_layouts[plane].depthPitch !=
322              image->planes[plane].slices[0].size) {
323                return false;
324          }
325       }
326    }
327 
328    return true;
329 }
330 
331 static bool
v3d_setup_slices(struct v3dv_image * image,bool disjoint,const VkSubresourceLayout * plane_layouts)332 v3d_setup_slices(struct v3dv_image *image, bool disjoint,
333                  const VkSubresourceLayout *plane_layouts)
334 {
335    if (disjoint && image->plane_count == 1)
336       disjoint = false;
337 
338    uint32_t offset = 0;
339    for (uint8_t plane = 0; plane < image->plane_count; plane++) {
340       offset = disjoint ? 0 : offset;
341       if (!v3d_setup_plane_slices(image, plane, offset, plane_layouts)) {
342          assert(plane_layouts);
343          return false;
344       }
345       offset += align(image->planes[plane].size, 64);
346    }
347 
348    image->non_disjoint_size = disjoint ? 0 : offset;
349    return true;
350 }
351 
352 uint32_t
v3dv_layer_offset(const struct v3dv_image * image,uint32_t level,uint32_t layer,uint8_t plane)353 v3dv_layer_offset(const struct v3dv_image *image, uint32_t level, uint32_t layer,
354                   uint8_t plane)
355 {
356    const struct v3d_resource_slice *slice = &image->planes[plane].slices[level];
357 
358    if (image->vk.image_type == VK_IMAGE_TYPE_3D)
359       return image->planes[plane].mem_offset + slice->offset + layer * slice->size;
360    else
361       return image->planes[plane].mem_offset + slice->offset +
362          layer * image->planes[plane].cube_map_stride;
363 }
364 
365 VkResult
v3dv_update_image_layout(struct v3dv_device * device,struct v3dv_image * image,uint64_t modifier,bool disjoint,const VkImageDrmFormatModifierExplicitCreateInfoEXT * explicit_mod_info)366 v3dv_update_image_layout(struct v3dv_device *device,
367                          struct v3dv_image *image,
368                          uint64_t modifier,
369                          bool disjoint,
370                          const VkImageDrmFormatModifierExplicitCreateInfoEXT *explicit_mod_info)
371 {
372    assert(!explicit_mod_info ||
373           image->plane_count == explicit_mod_info->drmFormatModifierPlaneCount);
374 
375    assert(!explicit_mod_info ||
376           modifier == explicit_mod_info->drmFormatModifier);
377 
378    image->tiled = modifier != DRM_FORMAT_MOD_LINEAR;
379 
380    image->vk.drm_format_mod = modifier;
381 
382    bool ok =
383       v3d_setup_slices(image, disjoint,
384                        explicit_mod_info ? explicit_mod_info->pPlaneLayouts : NULL);
385    if (!ok) {
386       assert(explicit_mod_info);
387       return VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT;
388    }
389 
390    return VK_SUCCESS;
391 }
392 
393 VkResult
v3dv_image_init(struct v3dv_device * device,const VkImageCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,struct v3dv_image * image)394 v3dv_image_init(struct v3dv_device *device,
395                 const VkImageCreateInfo *pCreateInfo,
396                 const VkAllocationCallbacks *pAllocator,
397                 struct v3dv_image *image)
398 {
399    /* When using the simulator the WSI common code will see that our
400     * driver wsi device doesn't match the display device and because of that
401     * it will not attempt to present directly from the swapchain images,
402     * instead it will use the prime blit path (use_buffer_blit flag in
403     * struct wsi_swapchain), where it copies the contents of the swapchain
404     * images to a linear buffer with appropriate row stride for presentation.
405     * As a result, on that path, swapchain images do not have any special
406     * requirements and are not created with the pNext structs below.
407     */
408    VkImageTiling tiling = pCreateInfo->tiling;
409    uint64_t modifier = DRM_FORMAT_MOD_INVALID;
410    const VkImageDrmFormatModifierListCreateInfoEXT *mod_info = NULL;
411    const VkImageDrmFormatModifierExplicitCreateInfoEXT *explicit_mod_info = NULL;
412 #if DETECT_OS_ANDROID
413    if (image->is_native_buffer_memory) {
414       assert(image->android_explicit_layout);
415       explicit_mod_info = image->android_explicit_layout;
416       modifier = explicit_mod_info->drmFormatModifier;
417    }
418 #endif
419    if (tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
420       mod_info =
421          vk_find_struct_const(pCreateInfo->pNext,
422                               IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT);
423       explicit_mod_info =
424          vk_find_struct_const(pCreateInfo->pNext,
425                               IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT);
426       assert(mod_info || explicit_mod_info);
427 
428       if (mod_info) {
429          for (uint32_t i = 0; i < mod_info->drmFormatModifierCount; i++) {
430             switch (mod_info->pDrmFormatModifiers[i]) {
431             case DRM_FORMAT_MOD_LINEAR:
432                if (modifier == DRM_FORMAT_MOD_INVALID)
433                   modifier = DRM_FORMAT_MOD_LINEAR;
434                break;
435             case DRM_FORMAT_MOD_BROADCOM_UIF:
436                modifier = DRM_FORMAT_MOD_BROADCOM_UIF;
437                break;
438             }
439          }
440       } else {
441          modifier = explicit_mod_info->drmFormatModifier;
442       }
443       assert(modifier == DRM_FORMAT_MOD_LINEAR ||
444              modifier == DRM_FORMAT_MOD_BROADCOM_UIF);
445    } else if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D ||
446               image->vk.wsi_legacy_scanout) {
447       tiling = VK_IMAGE_TILING_LINEAR;
448    }
449 
450    if (modifier == DRM_FORMAT_MOD_INVALID)
451       modifier = (tiling == VK_IMAGE_TILING_OPTIMAL) ? DRM_FORMAT_MOD_BROADCOM_UIF
452                                                      : DRM_FORMAT_MOD_LINEAR;
453 
454    const struct v3dv_format *format =
455       v3dv_X(device, get_format)(image->vk.format);
456    v3dv_assert(format != NULL && format->plane_count);
457 
458    assert(pCreateInfo->samples == VK_SAMPLE_COUNT_1_BIT ||
459           pCreateInfo->samples == VK_SAMPLE_COUNT_4_BIT);
460 
461    image->format = format;
462 
463    image->plane_count = vk_format_get_plane_count(image->vk.format);
464 
465    const struct vk_format_ycbcr_info *ycbcr_info =
466       vk_format_get_ycbcr_info(image->vk.format);
467 
468    for (uint8_t plane = 0; plane < image->plane_count; plane++) {
469       VkFormat plane_format =
470          vk_format_get_plane_format(image->vk.format, plane);
471       image->planes[plane].cpp =
472          vk_format_get_blocksize(plane_format);
473       image->planes[plane].vk_format = plane_format;
474 
475       image->planes[plane].width = image->vk.extent.width;
476       image->planes[plane].height = image->vk.extent.height;
477 
478       if (ycbcr_info) {
479          image->planes[plane].width /=
480             ycbcr_info->planes[plane].denominator_scales[0];
481 
482          image->planes[plane].height /=
483             ycbcr_info->planes[plane].denominator_scales[1];
484       }
485    }
486 
487    /* Our meta paths can create image views with compatible formats for any
488     * image, so always set this flag to keep the common Vulkan image code
489     * happy.
490     */
491    image->vk.create_flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
492 
493 #if DETECT_OS_ANDROID
494    /* At this time, an AHB handle is not yet provided.
495     * Image layout will be filled up during vkBindImageMemory2
496     */
497    if (image->is_ahb)
498       return VK_SUCCESS;
499 #endif
500 
501    bool disjoint = image->vk.create_flags & VK_IMAGE_CREATE_DISJOINT_BIT;
502 
503    return v3dv_update_image_layout(device, image, modifier, disjoint,
504                                    explicit_mod_info);
505 }
506 
507 static VkResult
create_image(struct v3dv_device * device,const VkImageCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImage * pImage)508 create_image(struct v3dv_device *device,
509              const VkImageCreateInfo *pCreateInfo,
510              const VkAllocationCallbacks *pAllocator,
511              VkImage *pImage)
512 {
513    VkResult result;
514    struct v3dv_image *image = NULL;
515 
516    image = vk_image_create(&device->vk, pCreateInfo, pAllocator, sizeof(*image));
517    if (image == NULL)
518       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
519 
520 #if DETECT_OS_ANDROID
521    const VkExternalMemoryImageCreateInfo *external_info =
522       vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_MEMORY_IMAGE_CREATE_INFO);
523 
524    const VkNativeBufferANDROID *native_buffer =
525       vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
526 
527    if (native_buffer != NULL)
528       image->is_native_buffer_memory = true;
529 
530    image->is_ahb = external_info && (external_info->handleTypes &
531       VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID);
532 
533    assert(!(image->is_ahb && image->is_native_buffer_memory));
534 
535    if (image->is_ahb || image->is_native_buffer_memory) {
536       image->android_explicit_layout = vk_alloc2(&device->vk.alloc, pAllocator,
537                                                  sizeof(VkImageDrmFormatModifierExplicitCreateInfoEXT),
538                                                  8,
539                                                  VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
540       if (!image->android_explicit_layout) {
541          result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
542          goto fail;
543       }
544 
545       image->android_plane_layouts = vk_alloc2(&device->vk.alloc, pAllocator,
546          sizeof(VkSubresourceLayout) * V3DV_MAX_PLANE_COUNT,
547          8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
548       if (!image->android_plane_layouts) {
549          result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
550          goto fail;
551       }
552    }
553 
554    if (image->is_native_buffer_memory) {
555       struct u_gralloc_buffer_handle gr_handle = {
556          .handle = native_buffer->handle,
557          .hal_format = native_buffer->format,
558          .pixel_stride = native_buffer->stride,
559       };
560 
561       result = v3dv_gralloc_to_drm_explicit_layout(device->gralloc,
562                                                    &gr_handle,
563                                                    image->android_explicit_layout,
564                                                    image->android_plane_layouts,
565                                                    V3DV_MAX_PLANE_COUNT);
566       if (result != VK_SUCCESS)
567          goto fail;
568    }
569 #endif
570 
571    result = v3dv_image_init(device, pCreateInfo, pAllocator, image);
572    if (result != VK_SUCCESS)
573       goto fail;
574 
575 #if DETECT_OS_ANDROID
576    if (image->is_native_buffer_memory) {
577       result = v3dv_import_native_buffer_fd(v3dv_device_to_handle(device),
578                                             native_buffer->handle->data[0], pAllocator,
579                                             v3dv_image_to_handle(image));
580       if (result != VK_SUCCESS)
581          goto fail;
582    }
583 #endif
584 
585    *pImage = v3dv_image_to_handle(image);
586 
587    return VK_SUCCESS;
588 
589 fail:
590 #if DETECT_OS_ANDROID
591    if (image->android_explicit_layout)
592       vk_free2(&device->vk.alloc, pAllocator, image->android_explicit_layout);
593    if (image->android_plane_layouts)
594       vk_free2(&device->vk.alloc, pAllocator, image->android_plane_layouts);
595 #endif
596 
597    vk_image_destroy(&device->vk, pAllocator, &image->vk);
598    return result;
599 }
600 
601 static VkResult
create_image_from_swapchain(struct v3dv_device * device,const VkImageCreateInfo * pCreateInfo,const VkImageSwapchainCreateInfoKHR * swapchain_info,const VkAllocationCallbacks * pAllocator,VkImage * pImage)602 create_image_from_swapchain(struct v3dv_device *device,
603                             const VkImageCreateInfo *pCreateInfo,
604                             const VkImageSwapchainCreateInfoKHR *swapchain_info,
605                             const VkAllocationCallbacks *pAllocator,
606                             VkImage *pImage)
607 {
608    struct v3dv_image *swapchain_image =
609       v3dv_wsi_get_image_from_swapchain(swapchain_info->swapchain, 0);
610    assert(swapchain_image);
611 
612    VkImageCreateInfo local_create_info = *pCreateInfo;
613    local_create_info.pNext = NULL;
614 
615    /* Added by wsi code. */
616    local_create_info.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
617 
618    /* The spec requires TILING_OPTIMAL as input, but the swapchain image may
619     * privately use a different tiling.  See spec anchor
620     * #swapchain-wsi-image-create-info .
621     */
622    assert(local_create_info.tiling == VK_IMAGE_TILING_OPTIMAL);
623    local_create_info.tiling = swapchain_image->vk.tiling;
624 
625    VkImageDrmFormatModifierListCreateInfoEXT local_modifier_info = {
626       .sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT,
627       .drmFormatModifierCount = 1,
628       .pDrmFormatModifiers = &swapchain_image->vk.drm_format_mod,
629    };
630 
631    if (swapchain_image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID)
632       __vk_append_struct(&local_create_info, &local_modifier_info);
633 
634    assert(swapchain_image->vk.image_type == local_create_info.imageType);
635    assert(swapchain_image->vk.format == local_create_info.format);
636    assert(swapchain_image->vk.extent.width == local_create_info.extent.width);
637    assert(swapchain_image->vk.extent.height == local_create_info.extent.height);
638    assert(swapchain_image->vk.extent.depth == local_create_info.extent.depth);
639    assert(swapchain_image->vk.array_layers == local_create_info.arrayLayers);
640    assert(swapchain_image->vk.samples == local_create_info.samples);
641    assert(swapchain_image->vk.tiling == local_create_info.tiling);
642    assert((swapchain_image->vk.usage & local_create_info.usage) ==
643           local_create_info.usage);
644 
645    return create_image(device, &local_create_info, pAllocator, pImage);
646 }
647 
648 VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateImage(VkDevice _device,const VkImageCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImage * pImage)649 v3dv_CreateImage(VkDevice _device,
650                  const VkImageCreateInfo *pCreateInfo,
651                  const VkAllocationCallbacks *pAllocator,
652                  VkImage *pImage)
653 {
654    V3DV_FROM_HANDLE(v3dv_device, device, _device);
655 
656 #if DETECT_OS_ANDROID
657    /* VkImageSwapchainCreateInfoKHR is not useful at all */
658    const VkImageSwapchainCreateInfoKHR *swapchain_info = NULL;
659 #else
660    const VkImageSwapchainCreateInfoKHR *swapchain_info =
661       vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);
662 #endif
663 
664    if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE)
665       return create_image_from_swapchain(device, pCreateInfo, swapchain_info,
666                                          pAllocator, pImage);
667 
668    return create_image(device, pCreateInfo, pAllocator, pImage);
669 }
670 
671 VKAPI_ATTR void VKAPI_CALL
v3dv_GetImageSubresourceLayout(VkDevice device,VkImage _image,const VkImageSubresource * subresource,VkSubresourceLayout * layout)672 v3dv_GetImageSubresourceLayout(VkDevice device,
673                                VkImage _image,
674                                const VkImageSubresource *subresource,
675                                VkSubresourceLayout *layout)
676 {
677    V3DV_FROM_HANDLE(v3dv_image, image, _image);
678 
679    uint8_t plane = v3dv_plane_from_aspect(subresource->aspectMask);
680    const struct v3d_resource_slice *slice =
681       &image->planes[plane].slices[subresource->mipLevel];
682 
683    /* About why the offset below works for both disjoint and non-disjoint
684     * cases, from the Vulkan spec:
685     *
686     *   "If the image is disjoint, then the offset is relative to the base
687     *    address of the plane."
688     *
689     *   "If the image is non-disjoint, then the offset is relative to the base
690     *    address of the image."
691     *
692     * In our case, the per-plane mem_offset for non-disjoint images is the
693     * same for all planes and matches the base address of the image.
694     */
695    layout->offset =
696       v3dv_layer_offset(image, subresource->mipLevel, subresource->arrayLayer,
697                         plane) - image->planes[plane].mem_offset;
698    layout->rowPitch = slice->stride;
699    layout->depthPitch = image->vk.image_type == VK_IMAGE_TYPE_3D ?
700                         image->planes[plane].cube_map_stride : 0;
701    layout->arrayPitch = image->vk.array_layers > 1 ?
702                         image->planes[plane].cube_map_stride : 0;
703 
704    if (image->vk.image_type != VK_IMAGE_TYPE_3D) {
705       layout->size = slice->size;
706    } else {
707       /* For 3D images, the size of the slice represents the size of a 2D slice
708        * in the 3D image, so we have to multiply by the depth extent of the
709        * miplevel. For levels other than the first, we just compute the size
710        * as the distance between consecutive levels (notice that mip levels are
711        * arranged in memory from last to first).
712        */
713       if (subresource->mipLevel == 0) {
714          layout->size = slice->size * image->vk.extent.depth;
715       } else {
716             const struct v3d_resource_slice *prev_slice =
717                &image->planes[plane].slices[subresource->mipLevel - 1];
718             layout->size = prev_slice->offset - slice->offset;
719       }
720    }
721 }
722 
723 VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyImage(VkDevice _device,VkImage _image,const VkAllocationCallbacks * pAllocator)724 v3dv_DestroyImage(VkDevice _device,
725                   VkImage _image,
726                   const VkAllocationCallbacks* pAllocator)
727 {
728    V3DV_FROM_HANDLE(v3dv_device, device, _device);
729    V3DV_FROM_HANDLE(v3dv_image, image, _image);
730 
731    if (image == NULL)
732       return;
733 
734    /* If we have created a shadow tiled image for this image we must also free
735     * it (along with its memory allocation).
736     */
737    if (image->shadow) {
738       bool disjoint = image->vk.create_flags & VK_IMAGE_CREATE_DISJOINT_BIT;
739       for (int i = 0; i < (disjoint ? image->plane_count : 1); i++) {
740          if (image->shadow->planes[i].mem) {
741             v3dv_FreeMemory(_device,
742                             v3dv_device_memory_to_handle(image->shadow->planes[i].mem),
743                             pAllocator);
744          }
745       }
746       v3dv_DestroyImage(_device, v3dv_image_to_handle(image->shadow),
747                         pAllocator);
748       image->shadow = NULL;
749    }
750 
751 #if DETECT_OS_ANDROID
752    if (image->is_native_buffer_memory)
753       v3dv_FreeMemory(_device,
754                       v3dv_device_memory_to_handle(image->planes[0].mem),
755                       pAllocator);
756 
757    if (image->android_explicit_layout)
758       vk_free2(&device->vk.alloc, pAllocator, image->android_explicit_layout);
759    if (image->android_plane_layouts)
760       vk_free2(&device->vk.alloc, pAllocator, image->android_plane_layouts);
761 #endif
762 
763    vk_image_destroy(&device->vk, pAllocator, &image->vk);
764 }
765 
766 VkImageViewType
v3dv_image_type_to_view_type(VkImageType type)767 v3dv_image_type_to_view_type(VkImageType type)
768 {
769    switch (type) {
770    case VK_IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D;
771    case VK_IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D;
772    case VK_IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D;
773    default:
774       unreachable("Invalid image type");
775    }
776 }
777 
778 static VkResult
create_image_view(struct v3dv_device * device,bool driver_internal,const VkImageViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImageView * pView)779 create_image_view(struct v3dv_device *device,
780                   bool driver_internal,
781                   const VkImageViewCreateInfo *pCreateInfo,
782                   const VkAllocationCallbacks *pAllocator,
783                   VkImageView *pView)
784 {
785    V3DV_FROM_HANDLE(v3dv_image, image, pCreateInfo->image);
786    struct v3dv_image_view *iview;
787 
788    iview = vk_image_view_create(&device->vk, driver_internal, pCreateInfo,
789                                 pAllocator, sizeof(*iview));
790    if (iview == NULL)
791       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
792 
793    const VkImageAspectFlagBits any_plane_aspect =
794       VK_IMAGE_ASPECT_PLANE_0_BIT |
795       VK_IMAGE_ASPECT_PLANE_1_BIT |
796       VK_IMAGE_ASPECT_PLANE_2_BIT;
797 
798    if (image->vk.aspects & any_plane_aspect) {
799       assert((image->vk.aspects & ~any_plane_aspect) == 0);
800       iview->plane_count = 0;
801       static const VkImageAspectFlagBits plane_aspects[]= {
802          VK_IMAGE_ASPECT_PLANE_0_BIT,
803          VK_IMAGE_ASPECT_PLANE_1_BIT,
804          VK_IMAGE_ASPECT_PLANE_2_BIT
805       };
806       for (uint8_t plane = 0; plane < V3DV_MAX_PLANE_COUNT; plane++) {
807          if (iview->vk.aspects & plane_aspects[plane])
808             iview->planes[iview->plane_count++].image_plane = plane;
809       }
810    } else {
811       iview->plane_count = 1;
812       iview->planes[0].image_plane = 0;
813    }
814    /* At this point we should have at least one plane */
815    assert(iview->plane_count > 0);
816 
817    const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
818 
819    /* If we have D24S8 format but the view only selects the stencil aspect
820     * we want to re-interpret the format as RGBA8_UINT, then map our stencil
821     * data reads to the R component and ignore the GBA channels that contain
822     * the depth aspect data.
823     *
824     * FIXME: thwe code belows calls vk_component_mapping_to_pipe_swizzle
825     * only so it can then call util_format_compose_swizzles later. Maybe it
826     * makes sense to implement swizzle composition using VkSwizzle directly.
827     */
828    VkFormat format;
829    if (image->vk.format == VK_FORMAT_D24_UNORM_S8_UINT &&
830        range->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) {
831       format = VK_FORMAT_R8G8B8A8_UINT;
832       uint8_t stencil_aspect_swizzle[4] = {
833          PIPE_SWIZZLE_X, PIPE_SWIZZLE_0, PIPE_SWIZZLE_0, PIPE_SWIZZLE_1,
834       };
835       uint8_t view_swizzle[4];
836       vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle, view_swizzle);
837 
838       util_format_compose_swizzles(stencil_aspect_swizzle, view_swizzle,
839                                    iview->view_swizzle);
840    } else {
841       format = iview->vk.format;
842       vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle,
843                                            iview->view_swizzle);
844    }
845 
846    iview->vk.view_format = format;
847    iview->format = v3dv_X(device, get_format)(format);
848    assert(iview->format && iview->format->plane_count);
849 
850    for (uint8_t plane = 0; plane < iview->plane_count; plane++) {
851       iview->planes[plane].offset = v3dv_layer_offset(image,
852                                                       iview->vk.base_mip_level,
853                                                       iview->vk.base_array_layer,
854                                                       plane);
855 
856       if (vk_format_is_depth_or_stencil(iview->vk.view_format)) {
857          iview->planes[plane].internal_type =
858             v3dv_X(device, get_internal_depth_type)(iview->vk.view_format);
859       } else {
860          v3dv_X(device, get_internal_type_bpp_for_output_format)
861             (iview->format->planes[plane].rt_type,
862              &iview->planes[plane].internal_type,
863              &iview->planes[plane].internal_bpp);
864       }
865 
866       const uint8_t *format_swizzle =
867          v3dv_get_format_swizzle(device, format, plane);
868       util_format_compose_swizzles(format_swizzle, iview->view_swizzle,
869                                    iview->planes[plane].swizzle);
870 
871       iview->planes[plane].swap_rb = v3dv_format_swizzle_needs_rb_swap(format_swizzle);
872       iview->planes[plane].channel_reverse = v3dv_format_swizzle_needs_reverse(format_swizzle);
873    }
874 
875    v3dv_X(device, pack_texture_shader_state)(device, iview);
876 
877    *pView = v3dv_image_view_to_handle(iview);
878 
879    return VK_SUCCESS;
880 }
881 
882 VkResult
v3dv_create_image_view(struct v3dv_device * device,const VkImageViewCreateInfo * pCreateInfo,VkImageView * pView)883 v3dv_create_image_view(struct v3dv_device *device,
884                        const VkImageViewCreateInfo *pCreateInfo,
885                        VkImageView *pView)
886 {
887    return create_image_view(device, true, pCreateInfo, NULL, pView);
888 }
889 
890 VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateImageView(VkDevice _device,const VkImageViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImageView * pView)891 v3dv_CreateImageView(VkDevice _device,
892                      const VkImageViewCreateInfo *pCreateInfo,
893                      const VkAllocationCallbacks *pAllocator,
894                      VkImageView *pView)
895 {
896    V3DV_FROM_HANDLE(v3dv_device, device, _device);
897 
898    return create_image_view(device, false, pCreateInfo, pAllocator, pView);
899 }
900 
901 VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyImageView(VkDevice _device,VkImageView imageView,const VkAllocationCallbacks * pAllocator)902 v3dv_DestroyImageView(VkDevice _device,
903                       VkImageView imageView,
904                       const VkAllocationCallbacks* pAllocator)
905 {
906    V3DV_FROM_HANDLE(v3dv_device, device, _device);
907    V3DV_FROM_HANDLE(v3dv_image_view, image_view, imageView);
908 
909    if (image_view == NULL)
910       return;
911 
912    if (image_view->shadow) {
913       v3dv_DestroyImageView(_device,
914                             v3dv_image_view_to_handle(image_view->shadow),
915                             pAllocator);
916       image_view->shadow = NULL;
917    }
918 
919    vk_image_view_destroy(&device->vk, pAllocator, &image_view->vk);
920 }
921 
922 VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateBufferView(VkDevice _device,const VkBufferViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBufferView * pView)923 v3dv_CreateBufferView(VkDevice _device,
924                       const VkBufferViewCreateInfo *pCreateInfo,
925                       const VkAllocationCallbacks *pAllocator,
926                       VkBufferView *pView)
927 {
928    V3DV_FROM_HANDLE(v3dv_device, device, _device);
929 
930    struct v3dv_buffer *buffer =
931       v3dv_buffer_from_handle(pCreateInfo->buffer);
932 
933    struct v3dv_buffer_view *view =
934       vk_object_zalloc(&device->vk, pAllocator, sizeof(*view),
935                        VK_OBJECT_TYPE_BUFFER_VIEW);
936    if (!view)
937       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
938 
939    uint32_t range;
940    if (pCreateInfo->range == VK_WHOLE_SIZE)
941       range = buffer->size - pCreateInfo->offset;
942    else
943       range = pCreateInfo->range;
944 
945    enum pipe_format pipe_format = vk_format_to_pipe_format(pCreateInfo->format);
946    uint32_t num_elements = range / util_format_get_blocksize(pipe_format);
947 
948    view->buffer = buffer;
949    view->offset = pCreateInfo->offset;
950    view->size = view->offset + range;
951    view->num_elements = num_elements;
952    view->vk_format = pCreateInfo->format;
953    view->format = v3dv_X(device, get_format)(view->vk_format);
954 
955    /* We don't support multi-plane formats for buffer views */
956    assert(view->format->plane_count == 1);
957    v3dv_X(device, get_internal_type_bpp_for_output_format)
958       (view->format->planes[0].rt_type, &view->internal_type, &view->internal_bpp);
959 
960    if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT ||
961        buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT)
962       v3dv_X(device, pack_texture_shader_state_from_buffer_view)(device, view);
963 
964    *pView = v3dv_buffer_view_to_handle(view);
965 
966    return VK_SUCCESS;
967 }
968 
969 VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyBufferView(VkDevice _device,VkBufferView bufferView,const VkAllocationCallbacks * pAllocator)970 v3dv_DestroyBufferView(VkDevice _device,
971                        VkBufferView bufferView,
972                        const VkAllocationCallbacks *pAllocator)
973 {
974    V3DV_FROM_HANDLE(v3dv_device, device, _device);
975    V3DV_FROM_HANDLE(v3dv_buffer_view, buffer_view, bufferView);
976 
977    if (buffer_view == NULL)
978       return;
979 
980    vk_object_free(&device->vk, pAllocator, buffer_view);
981 }
982