1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "compiler/glsl_types.h"
27 #include "ir.h"
28 #include "linker_util.h"
29 #include "main/shader_types.h"
30 #include "main/consts_exts.h"
31 #include "main/shaderobj.h"
32 #include "builtin_functions.h"
33
34 static ir_rvalue *
35 convert_component(ir_rvalue *src, const glsl_type *desired_type);
36
37 static unsigned
process_parameters(exec_list * instructions,exec_list * actual_parameters,exec_list * parameters,struct _mesa_glsl_parse_state * state)38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 void *mem_ctx = state;
43 unsigned count = 0;
44
45 foreach_list_typed(ast_node, ast, link, parameters) {
46 /* We need to process the parameters first in order to know if we can
47 * raise or not a unitialized warning. Calling set_is_lhs silence the
48 * warning for now. Raising the warning or not will be checked at
49 * verify_parameter_modes.
50 */
51 ast->set_is_lhs(true);
52 ir_rvalue *result = ast->hir(instructions, state);
53
54 /* Error happened processing function parameter */
55 if (!result) {
56 actual_parameters->push_tail(ir_rvalue::error_value(mem_ctx));
57 count++;
58 continue;
59 }
60
61 ir_constant *const constant =
62 result->constant_expression_value(mem_ctx);
63
64 if (constant != NULL)
65 result = constant;
66
67 actual_parameters->push_tail(result);
68 count++;
69 }
70
71 return count;
72 }
73
74
75 /**
76 * Generate a source prototype for a function signature
77 *
78 * \param return_type Return type of the function. May be \c NULL.
79 * \param name Name of the function.
80 * \param parameters List of \c ir_instruction nodes representing the
81 * parameter list for the function. This may be either a
82 * formal (\c ir_variable) or actual (\c ir_rvalue)
83 * parameter list. Only the type is used.
84 *
85 * \return
86 * A ralloced string representing the prototype of the function.
87 */
88 char *
prototype_string(const glsl_type * return_type,const char * name,exec_list * parameters)89 prototype_string(const glsl_type *return_type, const char *name,
90 exec_list *parameters)
91 {
92 char *str = NULL;
93
94 if (return_type != NULL)
95 str = ralloc_asprintf(NULL, "%s ", glsl_get_type_name(return_type));
96
97 ralloc_asprintf_append(&str, "%s(", name);
98
99 const char *comma = "";
100 foreach_in_list(const ir_variable, param, parameters) {
101 ralloc_asprintf_append(&str, "%s%s", comma, glsl_get_type_name(param->type));
102 comma = ", ";
103 }
104
105 ralloc_strcat(&str, ")");
106 return str;
107 }
108
109 static bool
verify_image_parameter(YYLTYPE * loc,_mesa_glsl_parse_state * state,const ir_variable * formal,const ir_variable * actual)110 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
111 const ir_variable *formal, const ir_variable *actual)
112 {
113 /**
114 * From the ARB_shader_image_load_store specification:
115 *
116 * "The values of image variables qualified with coherent,
117 * volatile, restrict, readonly, or writeonly may not be passed
118 * to functions whose formal parameters lack such
119 * qualifiers. [...] It is legal to have additional qualifiers
120 * on a formal parameter, but not to have fewer."
121 */
122 if (actual->data.memory_coherent && !formal->data.memory_coherent) {
123 _mesa_glsl_error(loc, state,
124 "function call parameter `%s' drops "
125 "`coherent' qualifier", formal->name);
126 return false;
127 }
128
129 if (actual->data.memory_volatile && !formal->data.memory_volatile) {
130 _mesa_glsl_error(loc, state,
131 "function call parameter `%s' drops "
132 "`volatile' qualifier", formal->name);
133 return false;
134 }
135
136 if (actual->data.memory_restrict && !formal->data.memory_restrict) {
137 _mesa_glsl_error(loc, state,
138 "function call parameter `%s' drops "
139 "`restrict' qualifier", formal->name);
140 return false;
141 }
142
143 if (actual->data.memory_read_only && !formal->data.memory_read_only) {
144 _mesa_glsl_error(loc, state,
145 "function call parameter `%s' drops "
146 "`readonly' qualifier", formal->name);
147 return false;
148 }
149
150 if (actual->data.memory_write_only && !formal->data.memory_write_only) {
151 _mesa_glsl_error(loc, state,
152 "function call parameter `%s' drops "
153 "`writeonly' qualifier", formal->name);
154 return false;
155 }
156
157 return true;
158 }
159
160 static bool
verify_first_atomic_parameter(YYLTYPE * loc,_mesa_glsl_parse_state * state,ir_variable * var)161 verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
162 ir_variable *var)
163 {
164 if (!var ||
165 (!var->is_in_shader_storage_block() &&
166 var->data.mode != ir_var_shader_shared)) {
167 _mesa_glsl_error(loc, state, "First argument to atomic function "
168 "must be a buffer or shared variable");
169 return false;
170 }
171 return true;
172 }
173
174 static bool
is_atomic_function(const char * func_name)175 is_atomic_function(const char *func_name)
176 {
177 return !strcmp(func_name, "atomicAdd") ||
178 !strcmp(func_name, "atomicMin") ||
179 !strcmp(func_name, "atomicMax") ||
180 !strcmp(func_name, "atomicAnd") ||
181 !strcmp(func_name, "atomicOr") ||
182 !strcmp(func_name, "atomicXor") ||
183 !strcmp(func_name, "atomicExchange") ||
184 !strcmp(func_name, "atomicCompSwap");
185 }
186
187 static bool
verify_atomic_image_parameter_qualifier(YYLTYPE * loc,_mesa_glsl_parse_state * state,ir_variable * var)188 verify_atomic_image_parameter_qualifier(YYLTYPE *loc, _mesa_glsl_parse_state *state,
189 ir_variable *var)
190 {
191 if (!var ||
192 (var->data.image_format != PIPE_FORMAT_R32_UINT &&
193 var->data.image_format != PIPE_FORMAT_R32_SINT &&
194 var->data.image_format != PIPE_FORMAT_R32_FLOAT)) {
195 _mesa_glsl_error(loc, state, "Image atomic functions should use r32i/r32ui "
196 "format qualifier");
197 return false;
198 }
199 return true;
200 }
201
202 static bool
is_atomic_image_function(const char * func_name)203 is_atomic_image_function(const char *func_name)
204 {
205 return !strcmp(func_name, "imageAtomicAdd") ||
206 !strcmp(func_name, "imageAtomicMin") ||
207 !strcmp(func_name, "imageAtomicMax") ||
208 !strcmp(func_name, "imageAtomicAnd") ||
209 !strcmp(func_name, "imageAtomicOr") ||
210 !strcmp(func_name, "imageAtomicXor") ||
211 !strcmp(func_name, "imageAtomicExchange") ||
212 !strcmp(func_name, "imageAtomicCompSwap") ||
213 !strcmp(func_name, "imageAtomicIncWrap") ||
214 !strcmp(func_name, "imageAtomicDecWrap");
215 }
216
217
218 /**
219 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
220 * that 'const_in' formal parameters (an extension in our IR) correspond to
221 * ir_constant actual parameters.
222 */
223 static bool
verify_parameter_modes(_mesa_glsl_parse_state * state,ir_function_signature * sig,exec_list & actual_ir_parameters,exec_list & actual_ast_parameters)224 verify_parameter_modes(_mesa_glsl_parse_state *state,
225 ir_function_signature *sig,
226 exec_list &actual_ir_parameters,
227 exec_list &actual_ast_parameters)
228 {
229 exec_node *actual_ir_node = actual_ir_parameters.get_head_raw();
230 exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();
231
232 foreach_in_list(const ir_variable, formal, &sig->parameters) {
233 /* The lists must be the same length. */
234 assert(!actual_ir_node->is_tail_sentinel());
235 assert(!actual_ast_node->is_tail_sentinel());
236
237 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
238 const ast_expression *const actual_ast =
239 exec_node_data(ast_expression, actual_ast_node, link);
240
241 YYLTYPE loc = actual_ast->get_location();
242
243 /* Verify that 'const_in' parameters are ir_constants. */
244 if (formal->data.mode == ir_var_const_in &&
245 actual->ir_type != ir_type_constant) {
246 _mesa_glsl_error(&loc, state,
247 "parameter `in %s' must be a constant expression",
248 formal->name);
249 return false;
250 }
251
252 /* Verify that shader_in parameters are shader inputs */
253 if (formal->data.must_be_shader_input) {
254 const ir_rvalue *val = actual;
255
256 /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
257 if (val->ir_type == ir_type_swizzle) {
258 if (!state->is_version(440, 0)) {
259 _mesa_glsl_error(&loc, state,
260 "parameter `%s` must not be swizzled",
261 formal->name);
262 return false;
263 }
264 val = ((ir_swizzle *)val)->val;
265 }
266
267 for (;;) {
268 if (val->ir_type == ir_type_dereference_array) {
269 val = ((ir_dereference_array *)val)->array;
270 } else if (val->ir_type == ir_type_dereference_record &&
271 !state->es_shader) {
272 val = ((ir_dereference_record *)val)->record;
273 } else
274 break;
275 }
276
277 ir_variable *var = NULL;
278 if (const ir_dereference_variable *deref_var = val->as_dereference_variable())
279 var = deref_var->variable_referenced();
280
281 if (!var || var->data.mode != ir_var_shader_in) {
282 _mesa_glsl_error(&loc, state,
283 "parameter `%s` must be a shader input",
284 formal->name);
285 return false;
286 }
287
288 var->data.must_be_shader_input = 1;
289 }
290
291 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
292 if (formal->data.mode == ir_var_function_out
293 || formal->data.mode == ir_var_function_inout) {
294 const char *mode = NULL;
295 switch (formal->data.mode) {
296 case ir_var_function_out: mode = "out"; break;
297 case ir_var_function_inout: mode = "inout"; break;
298 default: assert(false); break;
299 }
300
301 /* This AST-based check catches errors like f(i++). The IR-based
302 * is_lvalue() is insufficient because the actual parameter at the
303 * IR-level is just a temporary value, which is an l-value.
304 */
305 if (actual_ast->non_lvalue_description != NULL) {
306 _mesa_glsl_error(&loc, state,
307 "function parameter '%s %s' references a %s",
308 mode, formal->name,
309 actual_ast->non_lvalue_description);
310 return false;
311 }
312
313 ir_variable *var = actual->variable_referenced();
314
315 if (var && formal->data.mode == ir_var_function_inout) {
316 if ((var->data.mode == ir_var_auto ||
317 var->data.mode == ir_var_shader_out) &&
318 !var->data.assigned &&
319 !is_gl_identifier(var->name)) {
320 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
321 var->name);
322 }
323 }
324
325 if (var)
326 var->data.assigned = true;
327
328 if (var && var->data.read_only) {
329 _mesa_glsl_error(&loc, state,
330 "function parameter '%s %s' references the "
331 "read-only variable '%s'",
332 mode, formal->name,
333 actual->variable_referenced()->name);
334 return false;
335 } else if (!actual->is_lvalue(state)) {
336 _mesa_glsl_error(&loc, state,
337 "function parameter '%s %s' is not an lvalue",
338 mode, formal->name);
339 return false;
340 }
341 } else {
342 assert(formal->data.mode == ir_var_function_in ||
343 formal->data.mode == ir_var_const_in);
344 ir_variable *var = actual->variable_referenced();
345 if (var) {
346 if ((var->data.mode == ir_var_auto ||
347 var->data.mode == ir_var_shader_out) &&
348 !var->data.assigned &&
349 !is_gl_identifier(var->name)) {
350 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
351 var->name);
352 }
353 }
354 }
355
356 if (glsl_type_is_image(formal->type) &&
357 actual->variable_referenced()) {
358 if (!verify_image_parameter(&loc, state, formal,
359 actual->variable_referenced()))
360 return false;
361 }
362
363 actual_ir_node = actual_ir_node->next;
364 actual_ast_node = actual_ast_node->next;
365 }
366
367 /* The first parameter of atomic functions must be a buffer variable */
368 const char *func_name = sig->function_name();
369 bool is_atomic = is_atomic_function(func_name);
370 if (is_atomic) {
371 const ir_rvalue *const actual =
372 (ir_rvalue *) actual_ir_parameters.get_head_raw();
373
374 const ast_expression *const actual_ast =
375 exec_node_data(ast_expression,
376 actual_ast_parameters.get_head_raw(), link);
377 YYLTYPE loc = actual_ast->get_location();
378
379 if (!verify_first_atomic_parameter(&loc, state,
380 actual->variable_referenced())) {
381 return false;
382 }
383 } else if (is_atomic_image_function(func_name)) {
384 const ir_rvalue *const actual =
385 (ir_rvalue *) actual_ir_parameters.get_head_raw();
386
387 const ast_expression *const actual_ast =
388 exec_node_data(ast_expression,
389 actual_ast_parameters.get_head_raw(), link);
390 YYLTYPE loc = actual_ast->get_location();
391
392 if (!verify_atomic_image_parameter_qualifier(&loc, state,
393 actual->variable_referenced())) {
394 return false;
395 }
396 }
397
398 return true;
399 }
400
401 struct copy_index_deref_data {
402 void *mem_ctx;
403 exec_list *before_instructions;
404 };
405
406 static void
copy_index_derefs_to_temps(ir_instruction * ir,void * data)407 copy_index_derefs_to_temps(ir_instruction *ir, void *data)
408 {
409 struct copy_index_deref_data *d = (struct copy_index_deref_data *)data;
410
411 if (ir->ir_type == ir_type_dereference_array) {
412 ir_dereference_array *a = (ir_dereference_array *) ir;
413 ir = a->array->as_dereference();
414
415 ir_rvalue *idx = a->array_index;
416 ir_variable *var = idx->variable_referenced();
417
418 /* If the index is read only it cannot change so there is no need
419 * to copy it.
420 */
421 if (!var || var->data.read_only || var->data.memory_read_only)
422 return;
423
424 ir_variable *tmp = new(d->mem_ctx) ir_variable(idx->type, "idx_tmp",
425 ir_var_temporary);
426 d->before_instructions->push_tail(tmp);
427
428 ir_dereference_variable *const deref_tmp_1 =
429 new(d->mem_ctx) ir_dereference_variable(tmp);
430 ir_assignment *const assignment =
431 new(d->mem_ctx) ir_assignment(deref_tmp_1,
432 idx->clone(d->mem_ctx, NULL));
433 d->before_instructions->push_tail(assignment);
434
435 /* Replace the array index with a dereference of the new temporary */
436 ir_dereference_variable *const deref_tmp_2 =
437 new(d->mem_ctx) ir_dereference_variable(tmp);
438 a->array_index = deref_tmp_2;
439 }
440 }
441
442 static void
fix_parameter(void * mem_ctx,ir_rvalue * actual,const glsl_type * formal_type,exec_list * before_instructions,exec_list * after_instructions,bool parameter_is_inout)443 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
444 exec_list *before_instructions, exec_list *after_instructions,
445 bool parameter_is_inout)
446 {
447 ir_expression *const expr = actual->as_expression();
448
449 /* If the types match exactly and the parameter is not a vector-extract,
450 * nothing needs to be done to fix the parameter.
451 */
452 if (formal_type == actual->type
453 && (expr == NULL || expr->operation != ir_binop_vector_extract)
454 && actual->as_dereference_variable())
455 return;
456
457 /* An array index could also be an out variable so we need to make a copy
458 * of them before the function is called.
459 */
460 if (!actual->as_dereference_variable()) {
461 struct copy_index_deref_data data;
462 data.mem_ctx = mem_ctx;
463 data.before_instructions = before_instructions;
464
465 visit_tree(actual, copy_index_derefs_to_temps, &data);
466 }
467
468 /* To convert an out parameter, we need to create a temporary variable to
469 * hold the value before conversion, and then perform the conversion after
470 * the function call returns.
471 *
472 * This has the effect of transforming code like this:
473 *
474 * void f(out int x);
475 * float value;
476 * f(value);
477 *
478 * Into IR that's equivalent to this:
479 *
480 * void f(out int x);
481 * float value;
482 * int out_parameter_conversion;
483 * f(out_parameter_conversion);
484 * value = float(out_parameter_conversion);
485 *
486 * If the parameter is an ir_expression of ir_binop_vector_extract,
487 * additional conversion is needed in the post-call re-write.
488 */
489 ir_variable *tmp =
490 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
491
492 before_instructions->push_tail(tmp);
493
494 /* If the parameter is an inout parameter, copy the value of the actual
495 * parameter to the new temporary. Note that no type conversion is allowed
496 * here because inout parameters must match types exactly.
497 */
498 if (parameter_is_inout) {
499 /* Inout parameters should never require conversion, since that would
500 * require an implicit conversion to exist both to and from the formal
501 * parameter type, and there are no bidirectional implicit conversions.
502 */
503 assert (actual->type == formal_type);
504
505 ir_dereference_variable *const deref_tmp_1 =
506 new(mem_ctx) ir_dereference_variable(tmp);
507 ir_assignment *const assignment =
508 new(mem_ctx) ir_assignment(deref_tmp_1, actual->clone(mem_ctx, NULL));
509 before_instructions->push_tail(assignment);
510 }
511
512 /* Replace the parameter in the call with a dereference of the new
513 * temporary.
514 */
515 ir_dereference_variable *const deref_tmp_2 =
516 new(mem_ctx) ir_dereference_variable(tmp);
517 actual->replace_with(deref_tmp_2);
518
519
520 /* Copy the temporary variable to the actual parameter with optional
521 * type conversion applied.
522 */
523 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
524 if (actual->type != formal_type)
525 rhs = convert_component(rhs, actual->type);
526
527 ir_rvalue *lhs = actual;
528 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
529 lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
530 NULL),
531 expr->operands[1]->clone(mem_ctx,
532 NULL));
533 }
534
535 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
536 after_instructions->push_tail(assignment_2);
537 }
538
539 /**
540 * Generate a function call.
541 *
542 * For non-void functions, this returns a dereference of the temporary
543 * variable which stores the return value for the call. For void functions,
544 * this returns NULL.
545 */
546 static ir_rvalue *
generate_call(exec_list * instructions,ir_function_signature * sig,exec_list * actual_parameters,ir_variable * sub_var,ir_rvalue * array_idx,struct _mesa_glsl_parse_state * state)547 generate_call(exec_list *instructions, ir_function_signature *sig,
548 exec_list *actual_parameters,
549 ir_variable *sub_var,
550 ir_rvalue *array_idx,
551 struct _mesa_glsl_parse_state *state)
552 {
553 void *ctx = state;
554 exec_list post_call_conversions;
555
556 /* Perform implicit conversion of arguments. For out parameters, we need
557 * to place them in a temporary variable and do the conversion after the
558 * call takes place. Since we haven't emitted the call yet, we'll place
559 * the post-call conversions in a temporary exec_list, and emit them later.
560 */
561 foreach_two_lists(formal_node, &sig->parameters,
562 actual_node, actual_parameters) {
563 ir_rvalue *actual = (ir_rvalue *) actual_node;
564 ir_variable *formal = (ir_variable *) formal_node;
565
566 if (glsl_type_is_numeric(formal->type) || glsl_type_is_boolean(formal->type)) {
567 switch (formal->data.mode) {
568 case ir_var_const_in:
569 case ir_var_function_in: {
570 ir_rvalue *converted
571 = convert_component(actual, formal->type);
572 actual->replace_with(converted);
573 break;
574 }
575 case ir_var_function_out:
576 case ir_var_function_inout:
577 fix_parameter(ctx, actual, formal->type,
578 instructions, &post_call_conversions,
579 formal->data.mode == ir_var_function_inout);
580 break;
581 default:
582 assert (!"Illegal formal parameter mode");
583 break;
584 }
585 }
586 }
587
588 /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
589 *
590 * "Initializers for const declarations must be formed from literal
591 * values, other const variables (not including function call
592 * paramaters), or expressions of these.
593 *
594 * Constructors may be used in such expressions, but function calls may
595 * not."
596 *
597 * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
598 *
599 * "A constant expression is one of
600 *
601 * ...
602 *
603 * - a built-in function call whose arguments are all constant
604 * expressions, with the exception of the texture lookup
605 * functions, the noise functions, and ftransform. The built-in
606 * functions dFdx, dFdy, and fwidth must return 0 when evaluated
607 * inside an initializer with an argument that is a constant
608 * expression."
609 *
610 * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
611 *
612 * "A constant expression is one of
613 *
614 * ...
615 *
616 * - a built-in function call whose arguments are all constant
617 * expressions, with the exception of the texture lookup
618 * functions."
619 *
620 * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
621 *
622 * "A constant expression is one of
623 *
624 * ...
625 *
626 * - a built-in function call whose arguments are all constant
627 * expressions, with the exception of the texture lookup
628 * functions. The built-in functions dFdx, dFdy, and fwidth must
629 * return 0 when evaluated inside an initializer with an argument
630 * that is a constant expression."
631 *
632 * If the function call is a constant expression, don't generate any
633 * instructions; just generate an ir_constant.
634 */
635 if (state->is_version(120, 100) ||
636 state->consts->AllowGLSLBuiltinConstantExpression) {
637 ir_constant *value = sig->constant_expression_value(ctx,
638 actual_parameters,
639 NULL);
640 if (value != NULL) {
641 return value;
642 }
643 }
644
645 ir_dereference_variable *deref = NULL;
646 if (!glsl_type_is_void(sig->return_type)) {
647 /* Create a new temporary to hold the return value. */
648 char *const name = ir_variable::temporaries_allocate_names
649 ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
650 : NULL;
651
652 ir_variable *var;
653
654 var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
655 var->data.precision = sig->return_precision;
656 instructions->push_tail(var);
657
658 ralloc_free(name);
659
660 deref = new(ctx) ir_dereference_variable(var);
661 }
662
663 ir_call *call = new(ctx) ir_call(sig, deref,
664 actual_parameters, sub_var, array_idx);
665 instructions->push_tail(call);
666
667 /* Also emit any necessary out-parameter conversions. */
668 instructions->append_list(&post_call_conversions);
669
670 return deref ? deref->clone(ctx, NULL) : NULL;
671 }
672
673 /**
674 * Given a function name and parameter list, find the matching signature.
675 */
676 static ir_function_signature *
match_function_by_name(const char * name,exec_list * actual_parameters,struct _mesa_glsl_parse_state * state)677 match_function_by_name(const char *name,
678 exec_list *actual_parameters,
679 struct _mesa_glsl_parse_state *state)
680 {
681 ir_function *f = state->symbols->get_function(name);
682 ir_function_signature *local_sig = NULL;
683 ir_function_signature *sig = NULL;
684
685 /* Is the function hidden by a record type constructor? */
686 if (state->symbols->get_type(name))
687 return sig; /* no match */
688
689 /* Is the function hidden by a variable (impossible in 1.10)? */
690 if (!state->symbols->separate_function_namespace
691 && state->symbols->get_variable(name))
692 return sig; /* no match */
693
694 if (f != NULL) {
695 /* In desktop GL, the presence of a user-defined signature hides any
696 * built-in signatures, so we must ignore them. In contrast, in ES2
697 * user-defined signatures add new overloads, so we must consider them.
698 */
699 bool allow_builtins = state->es_shader || !f->has_user_signature();
700
701 /* Look for a match in the local shader. If exact, we're done. */
702 bool is_exact = false;
703 sig = local_sig = f->matching_signature(state, actual_parameters,
704 allow_builtins, &is_exact);
705 if (is_exact)
706 return sig;
707
708 if (!allow_builtins)
709 return sig;
710 }
711
712 /* Local shader has no exact candidates; check the built-ins. */
713 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
714
715 /* if _mesa_glsl_find_builtin_function failed, fall back to the result
716 * of choose_best_inexact_overload() instead. This should only affect
717 * GLES.
718 */
719 return sig ? sig : local_sig;
720 }
721
722 static ir_function_signature *
match_subroutine_by_name(const char * name,exec_list * actual_parameters,struct _mesa_glsl_parse_state * state,ir_variable ** var_r)723 match_subroutine_by_name(const char *name,
724 exec_list *actual_parameters,
725 struct _mesa_glsl_parse_state *state,
726 ir_variable **var_r)
727 {
728 void *ctx = state;
729 ir_function_signature *sig = NULL;
730 ir_function *f, *found = NULL;
731 const char *new_name;
732 ir_variable *var;
733 bool is_exact = false;
734
735 new_name =
736 ralloc_asprintf(ctx, "%s_%s",
737 _mesa_shader_stage_to_subroutine_prefix(state->stage),
738 name);
739 var = state->symbols->get_variable(new_name);
740 if (!var)
741 return NULL;
742
743 for (int i = 0; i < state->num_subroutine_types; i++) {
744 f = state->subroutine_types[i];
745 if (strcmp(f->name, glsl_get_type_name(glsl_without_array(var->type))))
746 continue;
747 found = f;
748 break;
749 }
750
751 if (!found)
752 return NULL;
753 *var_r = var;
754 sig = found->matching_signature(state, actual_parameters,
755 false, &is_exact);
756 return sig;
757 }
758
759 static ir_rvalue *
generate_array_index(void * mem_ctx,exec_list * instructions,struct _mesa_glsl_parse_state * state,YYLTYPE loc,const ast_expression * array,ast_expression * idx,const char ** function_name,exec_list * actual_parameters)760 generate_array_index(void *mem_ctx, exec_list *instructions,
761 struct _mesa_glsl_parse_state *state, YYLTYPE loc,
762 const ast_expression *array, ast_expression *idx,
763 const char **function_name, exec_list *actual_parameters)
764 {
765 if (array->oper == ast_array_index) {
766 /* This handles arrays of arrays */
767 ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
768 state, loc,
769 array->subexpressions[0],
770 array->subexpressions[1],
771 function_name,
772 actual_parameters);
773 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
774
775 YYLTYPE index_loc = idx->get_location();
776 return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
777 outer_array_idx, loc,
778 index_loc);
779 } else {
780 ir_variable *sub_var = NULL;
781 *function_name = array->primary_expression.identifier;
782
783 if (!match_subroutine_by_name(*function_name, actual_parameters,
784 state, &sub_var)) {
785 _mesa_glsl_error(&loc, state, "Unknown subroutine `%s'",
786 *function_name);
787 *function_name = NULL; /* indicate error condition to caller */
788 return NULL;
789 }
790
791 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
792 return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
793 }
794 }
795
796 static bool
function_exists(_mesa_glsl_parse_state * state,struct glsl_symbol_table * symbols,const char * name)797 function_exists(_mesa_glsl_parse_state *state,
798 struct glsl_symbol_table *symbols, const char *name)
799 {
800 ir_function *f = symbols->get_function(name);
801 if (f != NULL) {
802 foreach_in_list(ir_function_signature, sig, &f->signatures) {
803 if (sig->is_builtin() && !sig->is_builtin_available(state))
804 continue;
805 return true;
806 }
807 }
808 return false;
809 }
810
811 static void
print_function_prototypes(_mesa_glsl_parse_state * state,YYLTYPE * loc,ir_function * f)812 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
813 ir_function *f)
814 {
815 if (f == NULL)
816 return;
817
818 foreach_in_list(ir_function_signature, sig, &f->signatures) {
819 if (sig->is_builtin() && !sig->is_builtin_available(state))
820 continue;
821
822 char *str = prototype_string(sig->return_type, f->name,
823 &sig->parameters);
824 _mesa_glsl_error(loc, state, " %s", str);
825 ralloc_free(str);
826 }
827 }
828
829 /**
830 * Raise a "no matching function" error, listing all possible overloads the
831 * compiler considered so developers can figure out what went wrong.
832 */
833 static void
no_matching_function_error(const char * name,YYLTYPE * loc,exec_list * actual_parameters,_mesa_glsl_parse_state * state)834 no_matching_function_error(const char *name,
835 YYLTYPE *loc,
836 exec_list *actual_parameters,
837 _mesa_glsl_parse_state *state)
838 {
839 gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
840
841 if (!function_exists(state, state->symbols, name)
842 && (!state->uses_builtin_functions
843 || !function_exists(state, sh->symbols, name))) {
844 _mesa_glsl_error(loc, state, "no function with name '%s'", name);
845 } else {
846 char *str = prototype_string(NULL, name, actual_parameters);
847 _mesa_glsl_error(loc, state,
848 "no matching function for call to `%s';"
849 " candidates are:",
850 str);
851 ralloc_free(str);
852
853 print_function_prototypes(state, loc,
854 state->symbols->get_function(name));
855
856 if (state->uses_builtin_functions) {
857 print_function_prototypes(state, loc,
858 sh->symbols->get_function(name));
859 }
860 }
861 }
862
863 /**
864 * Perform automatic type conversion of constructor parameters
865 *
866 * This implements the rules in the "Conversion and Scalar Constructors"
867 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
868 */
869 static ir_rvalue *
convert_component(ir_rvalue * src,const glsl_type * desired_type)870 convert_component(ir_rvalue *src, const glsl_type *desired_type)
871 {
872 void *ctx = ralloc_parent(src);
873 const unsigned a = desired_type->base_type;
874 const unsigned b = src->type->base_type;
875 ir_expression *result = NULL;
876
877 if (glsl_type_is_error(src->type))
878 return src;
879
880 assert(a <= GLSL_TYPE_IMAGE);
881 assert(b <= GLSL_TYPE_IMAGE);
882
883 if (a == b)
884 return src;
885
886 switch (a) {
887 case GLSL_TYPE_UINT:
888 switch (b) {
889 case GLSL_TYPE_INT:
890 result = new(ctx) ir_expression(ir_unop_i2u, src);
891 break;
892 case GLSL_TYPE_FLOAT16:
893 result = new(ctx) ir_expression(ir_unop_f162u, src);
894 break;
895 case GLSL_TYPE_FLOAT:
896 result = new(ctx) ir_expression(ir_unop_f2u, src);
897 break;
898 case GLSL_TYPE_BOOL:
899 result = new(ctx) ir_expression(ir_unop_i2u,
900 new(ctx) ir_expression(ir_unop_b2i,
901 src));
902 break;
903 case GLSL_TYPE_DOUBLE:
904 result = new(ctx) ir_expression(ir_unop_d2u, src);
905 break;
906 case GLSL_TYPE_UINT64:
907 result = new(ctx) ir_expression(ir_unop_u642u, src);
908 break;
909 case GLSL_TYPE_INT64:
910 result = new(ctx) ir_expression(ir_unop_i642u, src);
911 break;
912 case GLSL_TYPE_SAMPLER:
913 result = new(ctx) ir_expression(ir_unop_unpack_sampler_2x32, src);
914 break;
915 case GLSL_TYPE_IMAGE:
916 result = new(ctx) ir_expression(ir_unop_unpack_image_2x32, src);
917 break;
918 }
919 break;
920 case GLSL_TYPE_INT:
921 switch (b) {
922 case GLSL_TYPE_UINT:
923 result = new(ctx) ir_expression(ir_unop_u2i, src);
924 break;
925 case GLSL_TYPE_FLOAT16:
926 result = new(ctx) ir_expression(ir_unop_f162i, src);
927 break;
928 case GLSL_TYPE_FLOAT:
929 result = new(ctx) ir_expression(ir_unop_f2i, src);
930 break;
931 case GLSL_TYPE_BOOL:
932 result = new(ctx) ir_expression(ir_unop_b2i, src);
933 break;
934 case GLSL_TYPE_DOUBLE:
935 result = new(ctx) ir_expression(ir_unop_d2i, src);
936 break;
937 case GLSL_TYPE_UINT64:
938 result = new(ctx) ir_expression(ir_unop_u642i, src);
939 break;
940 case GLSL_TYPE_INT64:
941 result = new(ctx) ir_expression(ir_unop_i642i, src);
942 break;
943 }
944 break;
945 case GLSL_TYPE_FLOAT16:
946 switch (b) {
947 case GLSL_TYPE_UINT:
948 result = new(ctx) ir_expression(ir_unop_u2f16, desired_type, src, NULL);
949 break;
950 case GLSL_TYPE_INT:
951 result = new(ctx) ir_expression(ir_unop_i2f16, desired_type, src, NULL);
952 break;
953 case GLSL_TYPE_BOOL:
954 result = new(ctx) ir_expression(ir_unop_b2f16, desired_type, src, NULL);
955 break;
956 case GLSL_TYPE_FLOAT:
957 result = new(ctx) ir_expression(ir_unop_f2f16, desired_type, src, NULL);
958 break;
959 case GLSL_TYPE_DOUBLE:
960 result = new(ctx) ir_expression(ir_unop_d2f16, desired_type, src, NULL);
961 break;
962 case GLSL_TYPE_UINT64:
963 result = new(ctx) ir_expression(ir_unop_u642f16, desired_type, src, NULL);
964 break;
965 case GLSL_TYPE_INT64:
966 result = new(ctx) ir_expression(ir_unop_i642f16, desired_type, src, NULL);
967 break;
968 }
969 break;
970 case GLSL_TYPE_FLOAT:
971 switch (b) {
972 case GLSL_TYPE_UINT:
973 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
974 break;
975 case GLSL_TYPE_INT:
976 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
977 break;
978 case GLSL_TYPE_BOOL:
979 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
980 break;
981 case GLSL_TYPE_FLOAT16:
982 result = new(ctx) ir_expression(ir_unop_f162f, desired_type, src, NULL);
983 break;
984 case GLSL_TYPE_DOUBLE:
985 result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
986 break;
987 case GLSL_TYPE_UINT64:
988 result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL);
989 break;
990 case GLSL_TYPE_INT64:
991 result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL);
992 break;
993 }
994 break;
995 case GLSL_TYPE_BOOL:
996 switch (b) {
997 case GLSL_TYPE_UINT:
998 result = new(ctx) ir_expression(ir_unop_i2b,
999 new(ctx) ir_expression(ir_unop_u2i,
1000 src));
1001 break;
1002 case GLSL_TYPE_INT:
1003 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
1004 break;
1005 case GLSL_TYPE_FLOAT16:
1006 result = new(ctx) ir_expression(ir_unop_f162b, desired_type, src, NULL);
1007 break;
1008 case GLSL_TYPE_FLOAT:
1009 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
1010 break;
1011 case GLSL_TYPE_DOUBLE:
1012 result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
1013 break;
1014 case GLSL_TYPE_UINT64:
1015 result = new(ctx) ir_expression(ir_unop_i642b,
1016 new(ctx) ir_expression(ir_unop_u642i64,
1017 src));
1018 break;
1019 case GLSL_TYPE_INT64:
1020 result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL);
1021 break;
1022 }
1023 break;
1024 case GLSL_TYPE_DOUBLE:
1025 switch (b) {
1026 case GLSL_TYPE_INT:
1027 result = new(ctx) ir_expression(ir_unop_i2d, src);
1028 break;
1029 case GLSL_TYPE_UINT:
1030 result = new(ctx) ir_expression(ir_unop_u2d, src);
1031 break;
1032 case GLSL_TYPE_BOOL:
1033 result = new(ctx) ir_expression(ir_unop_f2d,
1034 new(ctx) ir_expression(ir_unop_b2f,
1035 src));
1036 break;
1037 case GLSL_TYPE_FLOAT16:
1038 result = new(ctx) ir_expression(ir_unop_f162d, desired_type, src, NULL);
1039 break;
1040 case GLSL_TYPE_FLOAT:
1041 result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
1042 break;
1043 case GLSL_TYPE_UINT64:
1044 result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL);
1045 break;
1046 case GLSL_TYPE_INT64:
1047 result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL);
1048 break;
1049 }
1050 break;
1051 case GLSL_TYPE_UINT64:
1052 switch (b) {
1053 case GLSL_TYPE_INT:
1054 result = new(ctx) ir_expression(ir_unop_i2u64, src);
1055 break;
1056 case GLSL_TYPE_UINT:
1057 result = new(ctx) ir_expression(ir_unop_u2u64, src);
1058 break;
1059 case GLSL_TYPE_BOOL:
1060 result = new(ctx) ir_expression(ir_unop_i642u64,
1061 new(ctx) ir_expression(ir_unop_b2i64,
1062 src));
1063 break;
1064 case GLSL_TYPE_FLOAT16:
1065 result = new(ctx) ir_expression(ir_unop_f162u64, src);
1066 break;
1067 case GLSL_TYPE_FLOAT:
1068 result = new(ctx) ir_expression(ir_unop_f2u64, src);
1069 break;
1070 case GLSL_TYPE_DOUBLE:
1071 result = new(ctx) ir_expression(ir_unop_d2u64, src);
1072 break;
1073 case GLSL_TYPE_INT64:
1074 result = new(ctx) ir_expression(ir_unop_i642u64, src);
1075 break;
1076 }
1077 break;
1078 case GLSL_TYPE_INT64:
1079 switch (b) {
1080 case GLSL_TYPE_INT:
1081 result = new(ctx) ir_expression(ir_unop_i2i64, src);
1082 break;
1083 case GLSL_TYPE_UINT:
1084 result = new(ctx) ir_expression(ir_unop_u2i64, src);
1085 break;
1086 case GLSL_TYPE_BOOL:
1087 result = new(ctx) ir_expression(ir_unop_b2i64, src);
1088 break;
1089 case GLSL_TYPE_FLOAT16:
1090 result = new(ctx) ir_expression(ir_unop_f162i64, src);
1091 break;
1092 case GLSL_TYPE_FLOAT:
1093 result = new(ctx) ir_expression(ir_unop_f2i64, src);
1094 break;
1095 case GLSL_TYPE_DOUBLE:
1096 result = new(ctx) ir_expression(ir_unop_d2i64, src);
1097 break;
1098 case GLSL_TYPE_UINT64:
1099 result = new(ctx) ir_expression(ir_unop_u642i64, src);
1100 break;
1101 }
1102 break;
1103 case GLSL_TYPE_SAMPLER:
1104 switch (b) {
1105 case GLSL_TYPE_UINT:
1106 result = new(ctx)
1107 ir_expression(ir_unop_pack_sampler_2x32, desired_type, src);
1108 break;
1109 }
1110 break;
1111 case GLSL_TYPE_IMAGE:
1112 switch (b) {
1113 case GLSL_TYPE_UINT:
1114 result = new(ctx)
1115 ir_expression(ir_unop_pack_image_2x32, desired_type, src);
1116 break;
1117 }
1118 break;
1119 }
1120
1121 assert(result != NULL);
1122 assert(result->type == desired_type);
1123
1124 /* Try constant folding; it may fold in the conversion we just added. */
1125 ir_constant *const constant = result->constant_expression_value(ctx);
1126 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
1127 }
1128
1129
1130 /**
1131 * Perform automatic type and constant conversion of constructor parameters
1132 *
1133 * This implements the rules in the "Implicit Conversions" rules, not the
1134 * "Conversion and Scalar Constructors".
1135 *
1136 * After attempting the implicit conversion, an attempt to convert into a
1137 * constant valued expression is also done.
1138 *
1139 * The \c from \c ir_rvalue is converted "in place".
1140 *
1141 * \param from Operand that is being converted
1142 * \param to Base type the operand will be converted to
1143 * \param state GLSL compiler state
1144 *
1145 * \return
1146 * If the attempt to convert into a constant expression succeeds, \c true is
1147 * returned. Otherwise \c false is returned.
1148 */
1149 static bool
implicitly_convert_component(ir_rvalue * & from,const glsl_base_type to,struct _mesa_glsl_parse_state * state)1150 implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
1151 struct _mesa_glsl_parse_state *state)
1152 {
1153 void *mem_ctx = state;
1154 ir_rvalue *result = from;
1155
1156 if (to != from->type->base_type) {
1157 const glsl_type *desired_type =
1158 glsl_simple_type(to,
1159 from->type->vector_elements,
1160 from->type->matrix_columns);
1161
1162 if (_mesa_glsl_can_implicitly_convert(from->type, desired_type, state)) {
1163 /* Even though convert_component() implements the constructor
1164 * conversion rules (not the implicit conversion rules), its safe
1165 * to use it here because we already checked that the implicit
1166 * conversion is legal.
1167 */
1168 result = convert_component(from, desired_type);
1169 }
1170 }
1171
1172 ir_rvalue *const constant = result->constant_expression_value(mem_ctx);
1173
1174 if (constant != NULL)
1175 result = constant;
1176
1177 if (from != result) {
1178 from->replace_with(result);
1179 from = result;
1180 }
1181
1182 return constant != NULL;
1183 }
1184
1185
1186 /**
1187 * Dereference a specific component from a scalar, vector, or matrix
1188 */
1189 static ir_rvalue *
dereference_component(ir_rvalue * src,unsigned component)1190 dereference_component(ir_rvalue *src, unsigned component)
1191 {
1192 void *ctx = ralloc_parent(src);
1193 assert(component < glsl_get_components(src->type));
1194
1195 /* If the source is a constant, just create a new constant instead of a
1196 * dereference of the existing constant.
1197 */
1198 ir_constant *constant = src->as_constant();
1199 if (constant)
1200 return new(ctx) ir_constant(constant, component);
1201
1202 if (glsl_type_is_scalar(src->type)) {
1203 return src;
1204 } else if (glsl_type_is_vector(src->type)) {
1205 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
1206 } else {
1207 assert(glsl_type_is_matrix(src->type));
1208
1209 /* Dereference a row of the matrix, then call this function again to get
1210 * a specific element from that row.
1211 */
1212 const int c = component / glsl_get_column_type(src->type)->vector_elements;
1213 const int r = component % glsl_get_column_type(src->type)->vector_elements;
1214 ir_constant *const col_index = new(ctx) ir_constant(c);
1215 ir_dereference *const col = new(ctx) ir_dereference_array(src,
1216 col_index);
1217
1218 col->type = glsl_get_column_type(src->type);
1219
1220 return dereference_component(col, r);
1221 }
1222
1223 assert(!"Should not get here.");
1224 return NULL;
1225 }
1226
1227
1228 static ir_rvalue *
process_vec_mat_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1229 process_vec_mat_constructor(exec_list *instructions,
1230 const glsl_type *constructor_type,
1231 YYLTYPE *loc, exec_list *parameters,
1232 struct _mesa_glsl_parse_state *state)
1233 {
1234 void *ctx = state;
1235
1236 /* The ARB_shading_language_420pack spec says:
1237 *
1238 * "If an initializer is a list of initializers enclosed in curly braces,
1239 * the variable being declared must be a vector, a matrix, an array, or a
1240 * structure.
1241 *
1242 * int i = { 1 }; // illegal, i is not an aggregate"
1243 */
1244 if (constructor_type->vector_elements <= 1) {
1245 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
1246 "matrices, arrays, and structs");
1247 return ir_rvalue::error_value(ctx);
1248 }
1249
1250 exec_list actual_parameters;
1251 const unsigned parameter_count =
1252 process_parameters(instructions, &actual_parameters, parameters, state);
1253
1254 if (parameter_count == 0
1255 || (glsl_type_is_vector(constructor_type) &&
1256 constructor_type->vector_elements != parameter_count)
1257 || (glsl_type_is_matrix(constructor_type) &&
1258 constructor_type->matrix_columns != parameter_count)) {
1259 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
1260 glsl_type_is_vector(constructor_type) ? "vector" : "matrix",
1261 constructor_type->vector_elements);
1262 return ir_rvalue::error_value(ctx);
1263 }
1264
1265 bool all_parameters_are_constant = true;
1266
1267 /* Type cast each parameter and, if possible, fold constants. */
1268 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1269 /* Apply implicit conversions (not the scalar constructor rules, see the
1270 * spec quote above!) and attempt to convert the parameter to a constant
1271 * valued expression. After doing so, track whether or not all the
1272 * parameters to the constructor are trivially constant valued
1273 * expressions.
1274 */
1275 all_parameters_are_constant &=
1276 implicitly_convert_component(ir, constructor_type->base_type, state);
1277
1278 if (glsl_type_is_matrix(constructor_type)) {
1279 if (ir->type != glsl_get_column_type(constructor_type)) {
1280 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
1281 "expected: %s, found %s",
1282 glsl_get_type_name(glsl_get_column_type(constructor_type)),
1283 glsl_get_type_name(ir->type));
1284 return ir_rvalue::error_value(ctx);
1285 }
1286 } else if (ir->type != glsl_get_scalar_type(constructor_type)) {
1287 _mesa_glsl_error(loc, state, "type error in vector constructor: "
1288 "expected: %s, found %s",
1289 glsl_get_type_name(glsl_get_scalar_type(constructor_type)),
1290 glsl_get_type_name(ir->type));
1291 return ir_rvalue::error_value(ctx);
1292 }
1293 }
1294
1295 if (all_parameters_are_constant)
1296 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1297
1298 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
1299 ir_var_temporary);
1300 instructions->push_tail(var);
1301
1302 int i = 0;
1303
1304 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1305 ir_instruction *assignment = NULL;
1306
1307 if (glsl_type_is_matrix(var->type)) {
1308 ir_rvalue *lhs =
1309 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1310 assignment = new(ctx) ir_assignment(lhs, rhs);
1311 } else {
1312 /* use writemask rather than index for vector */
1313 assert(glsl_type_is_vector(var->type));
1314 assert(i < 4);
1315 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1316 assignment = new(ctx) ir_assignment(lhs, rhs, 1u << i);
1317 }
1318
1319 instructions->push_tail(assignment);
1320
1321 i++;
1322 }
1323
1324 return new(ctx) ir_dereference_variable(var);
1325 }
1326
1327
1328 static ir_rvalue *
process_array_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1329 process_array_constructor(exec_list *instructions,
1330 const glsl_type *constructor_type,
1331 YYLTYPE *loc, exec_list *parameters,
1332 struct _mesa_glsl_parse_state *state)
1333 {
1334 void *ctx = state;
1335 /* Array constructors come in two forms: sized and unsized. Sized array
1336 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
1337 * variables. In this case the number of parameters must exactly match the
1338 * specified size of the array.
1339 *
1340 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
1341 * are vec4 variables. In this case the size of the array being constructed
1342 * is determined by the number of parameters.
1343 *
1344 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
1345 *
1346 * "There must be exactly the same number of arguments as the size of
1347 * the array being constructed. If no size is present in the
1348 * constructor, then the array is explicitly sized to the number of
1349 * arguments provided. The arguments are assigned in order, starting at
1350 * element 0, to the elements of the constructed array. Each argument
1351 * must be the same type as the element type of the array, or be a type
1352 * that can be converted to the element type of the array according to
1353 * Section 4.1.10 "Implicit Conversions.""
1354 */
1355 exec_list actual_parameters;
1356 const unsigned parameter_count =
1357 process_parameters(instructions, &actual_parameters, parameters, state);
1358 bool is_unsized_array = glsl_type_is_unsized_array(constructor_type);
1359
1360 if ((parameter_count == 0) ||
1361 (!is_unsized_array && (constructor_type->length != parameter_count))) {
1362 const unsigned min_param = is_unsized_array
1363 ? 1 : constructor_type->length;
1364
1365 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
1366 "parameter%s",
1367 is_unsized_array ? "at least" : "exactly",
1368 min_param, (min_param <= 1) ? "" : "s");
1369 return ir_rvalue::error_value(ctx);
1370 }
1371
1372 if (is_unsized_array) {
1373 constructor_type =
1374 glsl_array_type(constructor_type->fields.array,
1375 parameter_count, 0);
1376 assert(constructor_type != NULL);
1377 assert(constructor_type->length == parameter_count);
1378 }
1379
1380 bool all_parameters_are_constant = true;
1381 const glsl_type *element_type = constructor_type->fields.array;
1382
1383 /* Type cast each parameter and, if possible, fold constants. */
1384 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1385 /* Apply implicit conversions (not the scalar constructor rules, see the
1386 * spec quote above!) and attempt to convert the parameter to a constant
1387 * valued expression. After doing so, track whether or not all the
1388 * parameters to the constructor are trivially constant valued
1389 * expressions.
1390 */
1391 all_parameters_are_constant &=
1392 implicitly_convert_component(ir, element_type->base_type, state);
1393
1394 if (glsl_type_is_unsized_array(constructor_type->fields.array)) {
1395 /* As the inner parameters of the constructor are created without
1396 * knowledge of each other we need to check to make sure unsized
1397 * parameters of unsized constructors all end up with the same size.
1398 *
1399 * e.g we make sure to fail for a constructor like this:
1400 * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
1401 * vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
1402 * vec4[](vec4(0.0), vec4(1.0)));
1403 */
1404 if (glsl_type_is_unsized_array(element_type)) {
1405 /* This is the first parameter so just get the type */
1406 element_type = ir->type;
1407 } else if (element_type != ir->type) {
1408 _mesa_glsl_error(loc, state, "type error in array constructor: "
1409 "expected: %s, found %s",
1410 glsl_get_type_name(element_type),
1411 glsl_get_type_name(ir->type));
1412 return ir_rvalue::error_value(ctx);
1413 }
1414 } else if (ir->type != constructor_type->fields.array) {
1415 _mesa_glsl_error(loc, state, "type error in array constructor: "
1416 "expected: %s, found %s",
1417 glsl_get_type_name(constructor_type->fields.array),
1418 glsl_get_type_name(ir->type));
1419 return ir_rvalue::error_value(ctx);
1420 } else {
1421 element_type = ir->type;
1422 }
1423 }
1424
1425 if (glsl_type_is_unsized_array(constructor_type->fields.array)) {
1426 constructor_type =
1427 glsl_array_type(element_type, parameter_count, 0);
1428 assert(constructor_type != NULL);
1429 assert(constructor_type->length == parameter_count);
1430 }
1431
1432 if (all_parameters_are_constant)
1433 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1434
1435 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
1436 ir_var_temporary);
1437 instructions->push_tail(var);
1438
1439 int i = 0;
1440 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1441 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
1442 new(ctx) ir_constant(i));
1443
1444 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs);
1445 instructions->push_tail(assignment);
1446
1447 i++;
1448 }
1449
1450 return new(ctx) ir_dereference_variable(var);
1451 }
1452
1453
1454 /**
1455 * Determine if a list consists of a single scalar r-value
1456 */
1457 static bool
single_scalar_parameter(exec_list * parameters)1458 single_scalar_parameter(exec_list *parameters)
1459 {
1460 const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
1461 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
1462
1463 return (glsl_type_is_scalar(p->type) && p->next->is_tail_sentinel());
1464 }
1465
1466
1467 /**
1468 * Generate inline code for a vector constructor
1469 *
1470 * The generated constructor code will consist of a temporary variable
1471 * declaration of the same type as the constructor. A sequence of assignments
1472 * from constructor parameters to the temporary will follow.
1473 *
1474 * \return
1475 * An \c ir_dereference_variable of the temprorary generated in the constructor
1476 * body.
1477 */
1478 static ir_rvalue *
emit_inline_vector_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * ctx)1479 emit_inline_vector_constructor(const glsl_type *type,
1480 exec_list *instructions,
1481 exec_list *parameters,
1482 void *ctx)
1483 {
1484 assert(!parameters->is_empty());
1485
1486 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
1487 instructions->push_tail(var);
1488
1489 /* There are three kinds of vector constructors.
1490 *
1491 * - Construct a vector from a single scalar by replicating that scalar to
1492 * all components of the vector.
1493 *
1494 * - Construct a vector from at least a matrix. This case should already
1495 * have been taken care of in ast_function_expression::hir by breaking
1496 * down the matrix into a series of column vectors.
1497 *
1498 * - Construct a vector from an arbirary combination of vectors and
1499 * scalars. The components of the constructor parameters are assigned
1500 * to the vector in order until the vector is full.
1501 */
1502 const unsigned lhs_components = glsl_get_components(type);
1503 if (single_scalar_parameter(parameters)) {
1504 ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
1505 return new(ctx) ir_swizzle(first_param, 0, 0, 0, 0, lhs_components);
1506 } else {
1507 unsigned base_component = 0;
1508 unsigned base_lhs_component = 0;
1509 ir_constant_data data;
1510 unsigned constant_mask = 0, constant_components = 0;
1511
1512 memset(&data, 0, sizeof(data));
1513
1514 foreach_in_list(ir_rvalue, param, parameters) {
1515 unsigned rhs_components = glsl_get_components(param->type);
1516
1517 /* Do not try to assign more components to the vector than it has! */
1518 if ((rhs_components + base_lhs_component) > lhs_components) {
1519 rhs_components = lhs_components - base_lhs_component;
1520 }
1521
1522 const ir_constant *const c = param->as_constant();
1523 if (c != NULL) {
1524 for (unsigned i = 0; i < rhs_components; i++) {
1525 switch (c->type->base_type) {
1526 case GLSL_TYPE_UINT:
1527 data.u[i + base_component] = c->get_uint_component(i);
1528 break;
1529 case GLSL_TYPE_INT:
1530 data.i[i + base_component] = c->get_int_component(i);
1531 break;
1532 case GLSL_TYPE_FLOAT:
1533 data.f[i + base_component] = c->get_float_component(i);
1534 break;
1535 case GLSL_TYPE_DOUBLE:
1536 data.d[i + base_component] = c->get_double_component(i);
1537 break;
1538 case GLSL_TYPE_BOOL:
1539 data.b[i + base_component] = c->get_bool_component(i);
1540 break;
1541 case GLSL_TYPE_UINT64:
1542 data.u64[i + base_component] = c->get_uint64_component(i);
1543 break;
1544 case GLSL_TYPE_INT64:
1545 data.i64[i + base_component] = c->get_int64_component(i);
1546 break;
1547 default:
1548 assert(!"Should not get here.");
1549 break;
1550 }
1551 }
1552
1553 /* Mask of fields to be written in the assignment. */
1554 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
1555 constant_components += rhs_components;
1556
1557 base_component += rhs_components;
1558 }
1559 /* Advance the component index by the number of components
1560 * that were just assigned.
1561 */
1562 base_lhs_component += rhs_components;
1563 }
1564
1565 if (constant_mask != 0) {
1566 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1567 const glsl_type *rhs_type =
1568 glsl_simple_type(var->type->base_type, constant_components, 1);
1569 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1570
1571 ir_instruction *inst =
1572 new(ctx) ir_assignment(lhs, rhs, constant_mask);
1573 instructions->push_tail(inst);
1574 }
1575
1576 base_component = 0;
1577 foreach_in_list(ir_rvalue, param, parameters) {
1578 unsigned rhs_components = glsl_get_components(param->type);
1579
1580 /* Do not try to assign more components to the vector than it has! */
1581 if ((rhs_components + base_component) > lhs_components) {
1582 rhs_components = lhs_components - base_component;
1583 }
1584
1585 /* If we do not have any components left to copy, break out of the
1586 * loop. This can happen when initializing a vec4 with a mat3 as the
1587 * mat3 would have been broken into a series of column vectors.
1588 */
1589 if (rhs_components == 0) {
1590 break;
1591 }
1592
1593 const ir_constant *const c = param->as_constant();
1594 if (c == NULL) {
1595 /* Mask of fields to be written in the assignment. */
1596 const unsigned write_mask = ((1U << rhs_components) - 1)
1597 << base_component;
1598
1599 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1600
1601 /* Generate a swizzle so that LHS and RHS sizes match. */
1602 ir_rvalue *rhs =
1603 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1604
1605 ir_instruction *inst =
1606 new(ctx) ir_assignment(lhs, rhs, write_mask);
1607 instructions->push_tail(inst);
1608 }
1609
1610 /* Advance the component index by the number of components that were
1611 * just assigned.
1612 */
1613 base_component += rhs_components;
1614 }
1615 }
1616 return new(ctx) ir_dereference_variable(var);
1617 }
1618
1619
1620 /**
1621 * Generate assignment of a portion of a vector to a portion of a matrix column
1622 *
1623 * \param src_base First component of the source to be used in assignment
1624 * \param column Column of destination to be assiged
1625 * \param row_base First component of the destination column to be assigned
1626 * \param count Number of components to be assigned
1627 *
1628 * \note
1629 * \c src_base + \c count must be less than or equal to the number of
1630 * components in the source vector.
1631 */
1632 static ir_instruction *
assign_to_matrix_column(ir_variable * var,unsigned column,unsigned row_base,ir_rvalue * src,unsigned src_base,unsigned count,void * mem_ctx)1633 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1634 ir_rvalue *src, unsigned src_base, unsigned count,
1635 void *mem_ctx)
1636 {
1637 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1638 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
1639 col_idx);
1640
1641 assert(glsl_get_components(column_ref->type) >= (row_base + count));
1642 assert(glsl_get_components(src->type) >= (src_base + count));
1643
1644 /* Generate a swizzle that extracts the number of components from the source
1645 * that are to be assigned to the column of the matrix.
1646 */
1647 if (count < src->type->vector_elements) {
1648 src = new(mem_ctx) ir_swizzle(src,
1649 src_base + 0, src_base + 1,
1650 src_base + 2, src_base + 3,
1651 count);
1652 }
1653
1654 /* Mask of fields to be written in the assignment. */
1655 const unsigned write_mask = ((1U << count) - 1) << row_base;
1656
1657 return new(mem_ctx) ir_assignment(column_ref, src, write_mask);
1658 }
1659
1660
1661 /**
1662 * Generate inline code for a matrix constructor
1663 *
1664 * The generated constructor code will consist of a temporary variable
1665 * declaration of the same type as the constructor. A sequence of assignments
1666 * from constructor parameters to the temporary will follow.
1667 *
1668 * \return
1669 * An \c ir_dereference_variable of the temprorary generated in the constructor
1670 * body.
1671 */
1672 static ir_rvalue *
emit_inline_matrix_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * ctx)1673 emit_inline_matrix_constructor(const glsl_type *type,
1674 exec_list *instructions,
1675 exec_list *parameters,
1676 void *ctx)
1677 {
1678 assert(!parameters->is_empty());
1679
1680 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1681 instructions->push_tail(var);
1682
1683 /* There are three kinds of matrix constructors.
1684 *
1685 * - Construct a matrix from a single scalar by replicating that scalar to
1686 * along the diagonal of the matrix and setting all other components to
1687 * zero.
1688 *
1689 * - Construct a matrix from an arbirary combination of vectors and
1690 * scalars. The components of the constructor parameters are assigned
1691 * to the matrix in column-major order until the matrix is full.
1692 *
1693 * - Construct a matrix from a single matrix. The source matrix is copied
1694 * to the upper left portion of the constructed matrix, and the remaining
1695 * elements take values from the identity matrix.
1696 */
1697 ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
1698 if (single_scalar_parameter(parameters)) {
1699 /* Assign the scalar to the X component of a vec4, and fill the remaining
1700 * components with zero.
1701 */
1702 glsl_base_type param_base_type = first_param->type->base_type;
1703 assert(glsl_type_is_float_16_32_64(first_param->type));
1704 ir_variable *rhs_var =
1705 new(ctx) ir_variable(glsl_simple_type(param_base_type, 4, 1),
1706 "mat_ctor_vec",
1707 ir_var_temporary);
1708 instructions->push_tail(rhs_var);
1709
1710 ir_constant_data zero;
1711 for (unsigned i = 0; i < 4; i++)
1712 if (glsl_type_is_float(first_param->type))
1713 zero.f[i] = 0.0;
1714 else
1715 zero.d[i] = 0.0;
1716
1717 ir_instruction *inst =
1718 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1719 new(ctx) ir_constant(rhs_var->type, &zero));
1720 instructions->push_tail(inst);
1721
1722 ir_dereference *const rhs_ref =
1723 new(ctx) ir_dereference_variable(rhs_var);
1724
1725 inst = new(ctx) ir_assignment(rhs_ref, first_param, 0x01);
1726 instructions->push_tail(inst);
1727
1728 /* Assign the temporary vector to each column of the destination matrix
1729 * with a swizzle that puts the X component on the diagonal of the
1730 * matrix. In some cases this may mean that the X component does not
1731 * get assigned into the column at all (i.e., when the matrix has more
1732 * columns than rows).
1733 */
1734 static const unsigned rhs_swiz[4][4] = {
1735 { 0, 1, 1, 1 },
1736 { 1, 0, 1, 1 },
1737 { 1, 1, 0, 1 },
1738 { 1, 1, 1, 0 }
1739 };
1740
1741 const unsigned cols_to_init = MIN2(type->matrix_columns,
1742 type->vector_elements);
1743 for (unsigned i = 0; i < cols_to_init; i++) {
1744 ir_constant *const col_idx = new(ctx) ir_constant(i);
1745 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1746 col_idx);
1747
1748 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1749 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1750 type->vector_elements);
1751
1752 inst = new(ctx) ir_assignment(col_ref, rhs);
1753 instructions->push_tail(inst);
1754 }
1755
1756 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1757 ir_constant *const col_idx = new(ctx) ir_constant(i);
1758 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1759 col_idx);
1760
1761 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1762 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1763 type->vector_elements);
1764
1765 inst = new(ctx) ir_assignment(col_ref, rhs);
1766 instructions->push_tail(inst);
1767 }
1768 } else if (glsl_type_is_matrix(first_param->type)) {
1769 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1770 *
1771 * "If a matrix is constructed from a matrix, then each component
1772 * (column i, row j) in the result that has a corresponding
1773 * component (column i, row j) in the argument will be initialized
1774 * from there. All other components will be initialized to the
1775 * identity matrix. If a matrix argument is given to a matrix
1776 * constructor, it is an error to have any other arguments."
1777 */
1778 assert(first_param->next->is_tail_sentinel());
1779 ir_rvalue *const src_matrix = first_param;
1780
1781 /* If the source matrix is smaller, pre-initialize the relavent parts of
1782 * the destination matrix to the identity matrix.
1783 */
1784 if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
1785 (src_matrix->type->vector_elements < var->type->vector_elements)) {
1786
1787 /* If the source matrix has fewer rows, every column of the
1788 * destination must be initialized. Otherwise only the columns in
1789 * the destination that do not exist in the source must be
1790 * initialized.
1791 */
1792 unsigned col =
1793 (src_matrix->type->vector_elements < var->type->vector_elements)
1794 ? 0 : src_matrix->type->matrix_columns;
1795
1796 const glsl_type *const col_type = glsl_get_column_type(var->type);
1797 for (/* empty */; col < var->type->matrix_columns; col++) {
1798 ir_constant_data ident;
1799
1800 if (!glsl_type_is_double(col_type)) {
1801 ident.f[0] = 0.0f;
1802 ident.f[1] = 0.0f;
1803 ident.f[2] = 0.0f;
1804 ident.f[3] = 0.0f;
1805 ident.f[col] = 1.0f;
1806 } else {
1807 ident.d[0] = 0.0;
1808 ident.d[1] = 0.0;
1809 ident.d[2] = 0.0;
1810 ident.d[3] = 0.0;
1811 ident.d[col] = 1.0;
1812 }
1813
1814 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1815
1816 ir_rvalue *const lhs =
1817 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1818
1819 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs);
1820 instructions->push_tail(inst);
1821 }
1822 }
1823
1824 /* Assign columns from the source matrix to the destination matrix.
1825 *
1826 * Since the parameter will be used in the RHS of multiple assignments,
1827 * generate a temporary and copy the paramter there.
1828 */
1829 ir_variable *const rhs_var =
1830 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1831 ir_var_temporary);
1832 instructions->push_tail(rhs_var);
1833
1834 ir_dereference *const rhs_var_ref =
1835 new(ctx) ir_dereference_variable(rhs_var);
1836 ir_instruction *const inst =
1837 new(ctx) ir_assignment(rhs_var_ref, first_param);
1838 instructions->push_tail(inst);
1839
1840 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1841 var->type->vector_elements);
1842 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1843 var->type->matrix_columns);
1844
1845 unsigned swiz[4] = { 0, 0, 0, 0 };
1846 for (unsigned i = 1; i < last_row; i++)
1847 swiz[i] = i;
1848
1849 const unsigned write_mask = (1U << last_row) - 1;
1850
1851 for (unsigned i = 0; i < last_col; i++) {
1852 ir_dereference *const lhs =
1853 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1854 ir_rvalue *const rhs_col =
1855 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1856
1857 /* If one matrix has columns that are smaller than the columns of the
1858 * other matrix, wrap the column access of the larger with a swizzle
1859 * so that the LHS and RHS of the assignment have the same size (and
1860 * therefore have the same type).
1861 *
1862 * It would be perfectly valid to unconditionally generate the
1863 * swizzles, this this will typically result in a more compact IR
1864 * tree.
1865 */
1866 ir_rvalue *rhs;
1867 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1868 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1869 } else {
1870 rhs = rhs_col;
1871 }
1872
1873 ir_instruction *inst =
1874 new(ctx) ir_assignment(lhs, rhs, write_mask);
1875 instructions->push_tail(inst);
1876 }
1877 } else {
1878 const unsigned cols = type->matrix_columns;
1879 const unsigned rows = type->vector_elements;
1880 unsigned remaining_slots = rows * cols;
1881 unsigned col_idx = 0;
1882 unsigned row_idx = 0;
1883
1884 foreach_in_list(ir_rvalue, rhs, parameters) {
1885 unsigned rhs_components = glsl_get_components(rhs->type);
1886 unsigned rhs_base = 0;
1887
1888 if (remaining_slots == 0)
1889 break;
1890
1891 /* Since the parameter might be used in the RHS of two assignments,
1892 * generate a temporary and copy the paramter there.
1893 */
1894 ir_variable *rhs_var =
1895 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1896 instructions->push_tail(rhs_var);
1897
1898 ir_dereference *rhs_var_ref =
1899 new(ctx) ir_dereference_variable(rhs_var);
1900 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs);
1901 instructions->push_tail(inst);
1902
1903 do {
1904 /* Assign the current parameter to as many components of the matrix
1905 * as it will fill.
1906 *
1907 * NOTE: A single vector parameter can span two matrix columns. A
1908 * single vec4, for example, can completely fill a mat2.
1909 */
1910 unsigned count = MIN2(rows - row_idx,
1911 rhs_components - rhs_base);
1912
1913 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1914 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1915 row_idx,
1916 rhs_var_ref,
1917 rhs_base,
1918 count, ctx);
1919 instructions->push_tail(inst);
1920 rhs_base += count;
1921 row_idx += count;
1922 remaining_slots -= count;
1923
1924 /* Sometimes, there is still data left in the parameters and
1925 * components left to be set in the destination but in other
1926 * column.
1927 */
1928 if (row_idx >= rows) {
1929 row_idx = 0;
1930 col_idx++;
1931 }
1932 } while(remaining_slots > 0 && rhs_base < rhs_components);
1933 }
1934 }
1935
1936 return new(ctx) ir_dereference_variable(var);
1937 }
1938
1939
1940 static ir_rvalue *
emit_inline_record_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * mem_ctx)1941 emit_inline_record_constructor(const glsl_type *type,
1942 exec_list *instructions,
1943 exec_list *parameters,
1944 void *mem_ctx)
1945 {
1946 ir_variable *const var =
1947 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1948 ir_dereference_variable *const d =
1949 new(mem_ctx) ir_dereference_variable(var);
1950
1951 instructions->push_tail(var);
1952
1953 exec_node *node = parameters->get_head_raw();
1954 for (unsigned i = 0; i < type->length; i++) {
1955 assert(!node->is_tail_sentinel());
1956
1957 ir_dereference *const lhs =
1958 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1959 type->fields.structure[i].name);
1960
1961 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1962 assert(rhs != NULL);
1963
1964 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs);
1965
1966 instructions->push_tail(assign);
1967 node = node->next;
1968 }
1969
1970 return d;
1971 }
1972
1973
1974 static ir_rvalue *
process_record_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1975 process_record_constructor(exec_list *instructions,
1976 const glsl_type *constructor_type,
1977 YYLTYPE *loc, exec_list *parameters,
1978 struct _mesa_glsl_parse_state *state)
1979 {
1980 void *ctx = state;
1981 /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
1982 *
1983 * "The arguments to the constructor will be used to set the structure's
1984 * fields, in order, using one argument per field. Each argument must
1985 * be the same type as the field it sets, or be a type that can be
1986 * converted to the field's type according to Section 4.1.10 “Implicit
1987 * Conversions.”"
1988 *
1989 * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
1990 *
1991 * "In all cases, the innermost initializer (i.e., not a list of
1992 * initializers enclosed in curly braces) applied to an object must
1993 * have the same type as the object being initialized or be a type that
1994 * can be converted to the object's type according to section 4.1.10
1995 * "Implicit Conversions". In the latter case, an implicit conversion
1996 * will be done on the initializer before the assignment is done."
1997 */
1998 exec_list actual_parameters;
1999
2000 const unsigned parameter_count =
2001 process_parameters(instructions, &actual_parameters, parameters,
2002 state);
2003
2004 if (parameter_count != constructor_type->length) {
2005 _mesa_glsl_error(loc, state,
2006 "%s parameters in constructor for `%s'",
2007 parameter_count > constructor_type->length
2008 ? "too many": "insufficient",
2009 glsl_get_type_name(constructor_type));
2010 return ir_rvalue::error_value(ctx);
2011 }
2012
2013 bool all_parameters_are_constant = true;
2014
2015 int i = 0;
2016 /* Type cast each parameter and, if possible, fold constants. */
2017 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
2018
2019 const glsl_struct_field *struct_field =
2020 &constructor_type->fields.structure[i];
2021
2022 /* Apply implicit conversions (not the scalar constructor rules, see the
2023 * spec quote above!) and attempt to convert the parameter to a constant
2024 * valued expression. After doing so, track whether or not all the
2025 * parameters to the constructor are trivially constant valued
2026 * expressions.
2027 */
2028 all_parameters_are_constant &=
2029 implicitly_convert_component(ir, struct_field->type->base_type,
2030 state);
2031
2032 if (ir->type != struct_field->type) {
2033 _mesa_glsl_error(loc, state,
2034 "parameter type mismatch in constructor for `%s.%s' "
2035 "(%s vs %s)",
2036 glsl_get_type_name(constructor_type),
2037 struct_field->name,
2038 glsl_get_type_name(ir->type),
2039 glsl_get_type_name(struct_field->type));
2040 return ir_rvalue::error_value(ctx);
2041 }
2042
2043 i++;
2044 }
2045
2046 if (all_parameters_are_constant) {
2047 return new(ctx) ir_constant(constructor_type, &actual_parameters);
2048 } else {
2049 return emit_inline_record_constructor(constructor_type, instructions,
2050 &actual_parameters, state);
2051 }
2052 }
2053
2054 ir_rvalue *
handle_method(exec_list * instructions,struct _mesa_glsl_parse_state * state)2055 ast_function_expression::handle_method(exec_list *instructions,
2056 struct _mesa_glsl_parse_state *state)
2057 {
2058 const ast_expression *field = subexpressions[0];
2059 ir_rvalue *op;
2060 ir_rvalue *result;
2061 void *ctx = state;
2062 /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
2063 YYLTYPE loc = get_location();
2064 state->check_version(120, 300, &loc, "methods not supported");
2065
2066 const char *method;
2067 method = field->primary_expression.identifier;
2068
2069 /* This would prevent to raise "uninitialized variable" warnings when
2070 * calling array.length.
2071 */
2072 field->subexpressions[0]->set_is_lhs(true);
2073 op = field->subexpressions[0]->hir(instructions, state);
2074 if (strcmp(method, "length") == 0) {
2075 if (!this->expressions.is_empty()) {
2076 _mesa_glsl_error(&loc, state, "length method takes no arguments");
2077 goto fail;
2078 }
2079
2080 if (glsl_type_is_array(op->type)) {
2081 if (glsl_type_is_unsized_array(op->type)) {
2082 if (!state->has_shader_storage_buffer_objects()) {
2083 _mesa_glsl_error(&loc, state,
2084 "length called on unsized array"
2085 " only available with"
2086 " ARB_shader_storage_buffer_object");
2087 goto fail;
2088 } else if (op->variable_referenced()->is_in_shader_storage_block()) {
2089 /* Calculate length of an unsized array in run-time */
2090 result = new(ctx)
2091 ir_expression(ir_unop_ssbo_unsized_array_length, op);
2092 } else {
2093 /* When actual size is known at link-time, this will be
2094 * replaced with a constant expression.
2095 */
2096 result = new (ctx)
2097 ir_expression(ir_unop_implicitly_sized_array_length, op);
2098 }
2099 } else {
2100 result = new(ctx) ir_constant(glsl_array_size(op->type));
2101 }
2102 } else if (glsl_type_is_vector(op->type)) {
2103 if (state->has_420pack()) {
2104 /* .length() returns int. */
2105 result = new(ctx) ir_constant((int) op->type->vector_elements);
2106 } else {
2107 _mesa_glsl_error(&loc, state, "length method on matrix only"
2108 " available with ARB_shading_language_420pack");
2109 goto fail;
2110 }
2111 } else if (glsl_type_is_matrix(op->type)) {
2112 if (state->has_420pack()) {
2113 /* .length() returns int. */
2114 result = new(ctx) ir_constant((int) op->type->matrix_columns);
2115 } else {
2116 _mesa_glsl_error(&loc, state, "length method on matrix only"
2117 " available with ARB_shading_language_420pack");
2118 goto fail;
2119 }
2120 } else {
2121 _mesa_glsl_error(&loc, state, "length called on scalar.");
2122 goto fail;
2123 }
2124 } else {
2125 _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
2126 goto fail;
2127 }
2128 return result;
2129 fail:
2130 return ir_rvalue::error_value(ctx);
2131 }
2132
is_valid_constructor(const glsl_type * type,struct _mesa_glsl_parse_state * state)2133 static inline bool is_valid_constructor(const glsl_type *type,
2134 struct _mesa_glsl_parse_state *state)
2135 {
2136 return glsl_type_is_numeric(type) || glsl_type_is_boolean(type) ||
2137 (state->has_bindless() && (glsl_type_is_sampler(type) || glsl_type_is_image(type)));
2138 }
2139
2140 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2141 ast_function_expression::hir(exec_list *instructions,
2142 struct _mesa_glsl_parse_state *state)
2143 {
2144 void *ctx = state;
2145 /* There are three sorts of function calls.
2146 *
2147 * 1. constructors - The first subexpression is an ast_type_specifier.
2148 * 2. methods - Only the .length() method of array types.
2149 * 3. functions - Calls to regular old functions.
2150 *
2151 */
2152 if (is_constructor()) {
2153 const ast_type_specifier *type =
2154 (ast_type_specifier *) subexpressions[0];
2155 YYLTYPE loc = type->get_location();
2156 const char *name;
2157
2158 const glsl_type *const constructor_type = type->glsl_type(& name, state);
2159
2160 /* constructor_type can be NULL if a variable with the same name as the
2161 * structure has come into scope.
2162 */
2163 if (constructor_type == NULL) {
2164 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
2165 "may be shadowed by a variable with the same name)",
2166 type->type_name);
2167 return ir_rvalue::error_value(ctx);
2168 }
2169
2170
2171 /* Constructors for opaque types are illegal.
2172 *
2173 * From section 4.1.7 of the ARB_bindless_texture spec:
2174 *
2175 * "Samplers are represented using 64-bit integer handles, and may be "
2176 * converted to and from 64-bit integers using constructors."
2177 *
2178 * From section 4.1.X of the ARB_bindless_texture spec:
2179 *
2180 * "Images are represented using 64-bit integer handles, and may be
2181 * converted to and from 64-bit integers using constructors."
2182 */
2183 if (glsl_contains_atomic(constructor_type) ||
2184 (!state->has_bindless() && glsl_contains_opaque(constructor_type))) {
2185 _mesa_glsl_error(& loc, state, "cannot construct %s type `%s'",
2186 state->has_bindless() ? "atomic" : "opaque",
2187 glsl_get_type_name(constructor_type));
2188 return ir_rvalue::error_value(ctx);
2189 }
2190
2191 if (glsl_type_is_subroutine(constructor_type)) {
2192 _mesa_glsl_error(& loc, state,
2193 "subroutine name cannot be a constructor `%s'",
2194 glsl_get_type_name(constructor_type));
2195 return ir_rvalue::error_value(ctx);
2196 }
2197
2198 if (glsl_type_is_array(constructor_type)) {
2199 if (!state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120,
2200 300, &loc, "array constructors forbidden")) {
2201 return ir_rvalue::error_value(ctx);
2202 }
2203
2204 return process_array_constructor(instructions, constructor_type,
2205 & loc, &this->expressions, state);
2206 }
2207
2208
2209 /* There are two kinds of constructor calls. Constructors for arrays and
2210 * structures must have the exact number of arguments with matching types
2211 * in the correct order. These constructors follow essentially the same
2212 * type matching rules as functions.
2213 *
2214 * Constructors for built-in language types, such as mat4 and vec2, are
2215 * free form. The only requirements are that the parameters must provide
2216 * enough values of the correct scalar type and that no arguments are
2217 * given past the last used argument.
2218 *
2219 * When using the C-style initializer syntax from GLSL 4.20, constructors
2220 * must have the exact number of arguments with matching types in the
2221 * correct order.
2222 */
2223 if (glsl_type_is_struct(constructor_type)) {
2224 return process_record_constructor(instructions, constructor_type,
2225 &loc, &this->expressions,
2226 state);
2227 }
2228
2229 if (!is_valid_constructor(constructor_type, state))
2230 return ir_rvalue::error_value(ctx);
2231
2232 /* Total number of components of the type being constructed. */
2233 const unsigned type_components = glsl_get_components(constructor_type);
2234
2235 /* Number of components from parameters that have actually been
2236 * consumed. This is used to perform several kinds of error checking.
2237 */
2238 unsigned components_used = 0;
2239
2240 unsigned matrix_parameters = 0;
2241 unsigned nonmatrix_parameters = 0;
2242 exec_list actual_parameters;
2243
2244 foreach_list_typed(ast_node, ast, link, &this->expressions) {
2245 ir_rvalue *result = ast->hir(instructions, state);
2246
2247 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2248 *
2249 * "It is an error to provide extra arguments beyond this
2250 * last used argument."
2251 */
2252 if (components_used >= type_components) {
2253 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
2254 "constructor",
2255 glsl_get_type_name(constructor_type));
2256 return ir_rvalue::error_value(ctx);
2257 }
2258
2259 if (!is_valid_constructor(result->type, state)) {
2260 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
2261 "non-numeric data type",
2262 glsl_get_type_name(constructor_type));
2263 return ir_rvalue::error_value(ctx);
2264 }
2265
2266 /* Count the number of matrix and nonmatrix parameters. This
2267 * is used below to enforce some of the constructor rules.
2268 */
2269 if (glsl_type_is_matrix(result->type))
2270 matrix_parameters++;
2271 else
2272 nonmatrix_parameters++;
2273
2274 actual_parameters.push_tail(result);
2275 components_used += glsl_get_components(result->type);
2276 }
2277
2278 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2279 *
2280 * "It is an error to construct matrices from other matrices. This
2281 * is reserved for future use."
2282 */
2283 if (matrix_parameters > 0
2284 && glsl_type_is_matrix(constructor_type)
2285 && !state->check_version(120, 100, &loc,
2286 "cannot construct `%s' from a matrix",
2287 glsl_get_type_name(constructor_type))) {
2288 return ir_rvalue::error_value(ctx);
2289 }
2290
2291 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2292 *
2293 * "If a matrix argument is given to a matrix constructor, it is
2294 * an error to have any other arguments."
2295 */
2296 if ((matrix_parameters > 0)
2297 && ((matrix_parameters + nonmatrix_parameters) > 1)
2298 && glsl_type_is_matrix(constructor_type)) {
2299 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
2300 "matrix must be only parameter",
2301 glsl_get_type_name(constructor_type));
2302 return ir_rvalue::error_value(ctx);
2303 }
2304
2305 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2306 *
2307 * "In these cases, there must be enough components provided in the
2308 * arguments to provide an initializer for every component in the
2309 * constructed value."
2310 */
2311 if (components_used < type_components && components_used != 1
2312 && matrix_parameters == 0) {
2313 _mesa_glsl_error(& loc, state, "too few components to construct "
2314 "`%s'",
2315 glsl_get_type_name(constructor_type));
2316 return ir_rvalue::error_value(ctx);
2317 }
2318
2319 /* Matrices can never be consumed as is by any constructor but matrix
2320 * constructors. If the constructor type is not matrix, always break the
2321 * matrix up into a series of column vectors.
2322 */
2323 if (!glsl_type_is_matrix(constructor_type)) {
2324 foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
2325 if (!glsl_type_is_matrix(matrix->type))
2326 continue;
2327
2328 /* Create a temporary containing the matrix. */
2329 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
2330 ir_var_temporary);
2331 instructions->push_tail(var);
2332 instructions->push_tail(
2333 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
2334 matrix));
2335 var->constant_value = matrix->constant_expression_value(ctx);
2336
2337 /* Replace the matrix with dereferences of its columns. */
2338 for (int i = 0; i < matrix->type->matrix_columns; i++) {
2339 matrix->insert_before(
2340 new (ctx) ir_dereference_array(var,
2341 new(ctx) ir_constant(i)));
2342 }
2343 matrix->remove();
2344 }
2345 }
2346
2347 bool all_parameters_are_constant = true;
2348
2349 /* Type cast each parameter and, if possible, fold constants.*/
2350 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
2351 const glsl_type *desired_type;
2352
2353 /* From section 5.4.1 of the ARB_bindless_texture spec:
2354 *
2355 * "In the following four constructors, the low 32 bits of the sampler
2356 * type correspond to the .x component of the uvec2 and the high 32
2357 * bits correspond to the .y component."
2358 *
2359 * uvec2(any sampler type) // Converts a sampler type to a
2360 * // pair of 32-bit unsigned integers
2361 * any sampler type(uvec2) // Converts a pair of 32-bit unsigned integers to
2362 * // a sampler type
2363 * uvec2(any image type) // Converts an image type to a
2364 * // pair of 32-bit unsigned integers
2365 * any image type(uvec2) // Converts a pair of 32-bit unsigned integers to
2366 * // an image type
2367 */
2368 if (glsl_type_is_sampler(ir->type) || glsl_type_is_image(ir->type)) {
2369 /* Convert a sampler/image type to a pair of 32-bit unsigned
2370 * integers as defined by ARB_bindless_texture.
2371 */
2372 if (constructor_type != &glsl_type_builtin_uvec2) {
2373 _mesa_glsl_error(&loc, state, "sampler and image types can only "
2374 "be converted to a pair of 32-bit unsigned "
2375 "integers");
2376 }
2377 desired_type = &glsl_type_builtin_uvec2;
2378 } else if (glsl_type_is_sampler(constructor_type) ||
2379 glsl_type_is_image(constructor_type)) {
2380 /* Convert a pair of 32-bit unsigned integers to a sampler or image
2381 * type as defined by ARB_bindless_texture.
2382 */
2383 if (ir->type != &glsl_type_builtin_uvec2) {
2384 _mesa_glsl_error(&loc, state, "sampler and image types can only "
2385 "be converted from a pair of 32-bit unsigned "
2386 "integers");
2387 }
2388 desired_type = constructor_type;
2389 } else {
2390 desired_type =
2391 glsl_simple_type(constructor_type->base_type,
2392 ir->type->vector_elements,
2393 ir->type->matrix_columns);
2394 }
2395
2396 ir_rvalue *result = convert_component(ir, desired_type);
2397
2398 /* Attempt to convert the parameter to a constant valued expression.
2399 * After doing so, track whether or not all the parameters to the
2400 * constructor are trivially constant valued expressions.
2401 */
2402 ir_rvalue *const constant = result->constant_expression_value(ctx);
2403
2404 if (constant != NULL)
2405 result = constant;
2406 else
2407 all_parameters_are_constant = false;
2408
2409 if (result != ir) {
2410 ir->replace_with(result);
2411 }
2412 }
2413
2414 /* If all of the parameters are trivially constant, create a
2415 * constant representing the complete collection of parameters.
2416 */
2417 if (all_parameters_are_constant) {
2418 return new(ctx) ir_constant(constructor_type, &actual_parameters);
2419 } else if (glsl_type_is_scalar(constructor_type)) {
2420 return dereference_component((ir_rvalue *)
2421 actual_parameters.get_head_raw(),
2422 0);
2423 } else if (glsl_type_is_vector(constructor_type)) {
2424 return emit_inline_vector_constructor(constructor_type,
2425 instructions,
2426 &actual_parameters,
2427 ctx);
2428 } else {
2429 assert(glsl_type_is_matrix(constructor_type));
2430 return emit_inline_matrix_constructor(constructor_type,
2431 instructions,
2432 &actual_parameters,
2433 ctx);
2434 }
2435 } else if (subexpressions[0]->oper == ast_field_selection) {
2436 return handle_method(instructions, state);
2437 } else {
2438 const ast_expression *id = subexpressions[0];
2439 const char *func_name = NULL;
2440 YYLTYPE loc = get_location();
2441 exec_list actual_parameters;
2442 ir_variable *sub_var = NULL;
2443 ir_rvalue *array_idx = NULL;
2444
2445 process_parameters(instructions, &actual_parameters, &this->expressions,
2446 state);
2447
2448 if (id->oper == ast_array_index) {
2449 array_idx = generate_array_index(ctx, instructions, state, loc,
2450 id->subexpressions[0],
2451 id->subexpressions[1], &func_name,
2452 &actual_parameters);
2453 } else if (id->oper == ast_identifier) {
2454 func_name = id->primary_expression.identifier;
2455 } else {
2456 _mesa_glsl_error(&loc, state, "function name is not an identifier");
2457 }
2458
2459 /* an error was emitted earlier */
2460 if (!func_name)
2461 return ir_rvalue::error_value(ctx);
2462
2463 ir_function_signature *sig =
2464 match_function_by_name(func_name, &actual_parameters, state);
2465
2466 ir_rvalue *value = NULL;
2467 if (sig == NULL) {
2468 sig = match_subroutine_by_name(func_name, &actual_parameters,
2469 state, &sub_var);
2470 }
2471
2472 if (sig == NULL) {
2473 no_matching_function_error(func_name, &loc,
2474 &actual_parameters, state);
2475 value = ir_rvalue::error_value(ctx);
2476 } else if (!verify_parameter_modes(state, sig,
2477 actual_parameters,
2478 this->expressions)) {
2479 /* an error has already been emitted */
2480 value = ir_rvalue::error_value(ctx);
2481 } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
2482 /* ftransform refers to global variables, and we don't have any code
2483 * for remapping the variable references in the built-in shader.
2484 */
2485 ir_variable *mvp =
2486 state->symbols->get_variable("gl_ModelViewProjectionMatrix");
2487 ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
2488 value = new(ctx) ir_expression(ir_binop_mul, &glsl_type_builtin_vec4,
2489 new(ctx) ir_dereference_variable(mvp),
2490 new(ctx) ir_dereference_variable(vtx));
2491 } else {
2492 bool is_begin_interlock = false;
2493 bool is_end_interlock = false;
2494 if (sig->is_builtin() &&
2495 state->stage == MESA_SHADER_FRAGMENT &&
2496 state->ARB_fragment_shader_interlock_enable) {
2497 is_begin_interlock = strcmp(func_name, "beginInvocationInterlockARB") == 0;
2498 is_end_interlock = strcmp(func_name, "endInvocationInterlockARB") == 0;
2499 }
2500
2501 if (sig->is_builtin() &&
2502 ((state->stage == MESA_SHADER_TESS_CTRL &&
2503 strcmp(func_name, "barrier") == 0) ||
2504 is_begin_interlock || is_end_interlock)) {
2505 if (state->current_function == NULL ||
2506 strcmp(state->current_function->function_name(), "main") != 0) {
2507 _mesa_glsl_error(&loc, state,
2508 "%s() may only be used in main()", func_name);
2509 }
2510
2511 if (state->found_return) {
2512 _mesa_glsl_error(&loc, state,
2513 "%s() may not be used after return", func_name);
2514 }
2515
2516 if (instructions != &state->current_function->body) {
2517 _mesa_glsl_error(&loc, state,
2518 "%s() may not be used in control flow", func_name);
2519 }
2520 }
2521
2522 /* There can be only one begin/end interlock pair in the function. */
2523 if (is_begin_interlock) {
2524 if (state->found_begin_interlock)
2525 _mesa_glsl_error(&loc, state,
2526 "beginInvocationInterlockARB may not be used twice");
2527 state->found_begin_interlock = true;
2528 } else if (is_end_interlock) {
2529 if (!state->found_begin_interlock)
2530 _mesa_glsl_error(&loc, state,
2531 "endInvocationInterlockARB may not be used "
2532 "before beginInvocationInterlockARB");
2533 if (state->found_end_interlock)
2534 _mesa_glsl_error(&loc, state,
2535 "endInvocationInterlockARB may not be used twice");
2536 state->found_end_interlock = true;
2537 }
2538
2539 value = generate_call(instructions, sig, &actual_parameters, sub_var,
2540 array_idx, state);
2541 if (!value) {
2542 ir_variable *const tmp = new(ctx) ir_variable(&glsl_type_builtin_void,
2543 "void_var",
2544 ir_var_temporary);
2545 instructions->push_tail(tmp);
2546 value = new(ctx) ir_dereference_variable(tmp);
2547 }
2548 }
2549
2550 return value;
2551 }
2552
2553 unreachable("not reached");
2554 }
2555
2556 bool
has_sequence_subexpression() const2557 ast_function_expression::has_sequence_subexpression() const
2558 {
2559 foreach_list_typed(const ast_node, ast, link, &this->expressions) {
2560 if (ast->has_sequence_subexpression())
2561 return true;
2562 }
2563
2564 return false;
2565 }
2566
2567 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2568 ast_aggregate_initializer::hir(exec_list *instructions,
2569 struct _mesa_glsl_parse_state *state)
2570 {
2571 void *ctx = state;
2572 YYLTYPE loc = this->get_location();
2573
2574 if (!this->constructor_type) {
2575 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
2576 return ir_rvalue::error_value(ctx);
2577 }
2578 const glsl_type *const constructor_type = this->constructor_type;
2579
2580 if (!state->has_420pack()) {
2581 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
2582 "GL_ARB_shading_language_420pack extension");
2583 return ir_rvalue::error_value(ctx);
2584 }
2585
2586 if (glsl_type_is_array(constructor_type)) {
2587 return process_array_constructor(instructions, constructor_type, &loc,
2588 &this->expressions, state);
2589 }
2590
2591 if (glsl_type_is_struct(constructor_type)) {
2592 return process_record_constructor(instructions, constructor_type, &loc,
2593 &this->expressions, state);
2594 }
2595
2596 return process_vec_mat_constructor(instructions, constructor_type, &loc,
2597 &this->expressions, state);
2598 }
2599