1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir_instr_set.h"
25 #include "util/half_float.h"
26 #include "nir_vla.h"
27
28 /* This function determines if uses of an instruction can safely be rewritten
29 * to use another identical instruction instead. Note that this function must
30 * be kept in sync with hash_instr() and nir_instrs_equal() -- only
31 * instructions that pass this test will be handed on to those functions, and
32 * conversely they must handle everything that this function returns true for.
33 */
34 static bool
instr_can_rewrite(const nir_instr * instr)35 instr_can_rewrite(const nir_instr *instr)
36 {
37 switch (instr->type) {
38 case nir_instr_type_alu:
39 case nir_instr_type_deref:
40 case nir_instr_type_tex:
41 case nir_instr_type_load_const:
42 case nir_instr_type_phi:
43 return true;
44 case nir_instr_type_intrinsic:
45 return nir_intrinsic_can_reorder(nir_instr_as_intrinsic(instr));
46 case nir_instr_type_call:
47 case nir_instr_type_jump:
48 case nir_instr_type_undef:
49 return false;
50 case nir_instr_type_parallel_copy:
51 default:
52 unreachable("Invalid instruction type");
53 }
54
55 return false;
56 }
57
58 #define HASH(hash, data) XXH32(&(data), sizeof(data), hash)
59
60 static uint32_t
hash_src(uint32_t hash,const nir_src * src)61 hash_src(uint32_t hash, const nir_src *src)
62 {
63 hash = HASH(hash, src->ssa);
64 return hash;
65 }
66
67 static uint32_t
hash_alu_src(uint32_t hash,const nir_alu_src * src,unsigned num_components)68 hash_alu_src(uint32_t hash, const nir_alu_src *src, unsigned num_components)
69 {
70 for (unsigned i = 0; i < num_components; i++)
71 hash = HASH(hash, src->swizzle[i]);
72
73 hash = hash_src(hash, &src->src);
74 return hash;
75 }
76
77 static uint32_t
hash_alu(uint32_t hash,const nir_alu_instr * instr)78 hash_alu(uint32_t hash, const nir_alu_instr *instr)
79 {
80 hash = HASH(hash, instr->op);
81
82 /* We explicitly don't hash instr->exact. */
83 uint8_t flags = instr->no_signed_wrap |
84 instr->no_unsigned_wrap << 1;
85 hash = HASH(hash, flags);
86
87 hash = HASH(hash, instr->def.num_components);
88 hash = HASH(hash, instr->def.bit_size);
89
90 if (nir_op_infos[instr->op].algebraic_properties & NIR_OP_IS_2SRC_COMMUTATIVE) {
91 assert(nir_op_infos[instr->op].num_inputs >= 2);
92
93 uint32_t hash0 = hash_alu_src(hash, &instr->src[0],
94 nir_ssa_alu_instr_src_components(instr, 0));
95 uint32_t hash1 = hash_alu_src(hash, &instr->src[1],
96 nir_ssa_alu_instr_src_components(instr, 1));
97 /* For commutative operations, we need some commutative way of
98 * combining the hashes. One option would be to XOR them but that
99 * means that anything with two identical sources will hash to 0 and
100 * that's common enough we probably don't want the guaranteed
101 * collision. Either addition or multiplication will also work.
102 */
103 hash = hash0 * hash1;
104
105 for (unsigned i = 2; i < nir_op_infos[instr->op].num_inputs; i++) {
106 hash = hash_alu_src(hash, &instr->src[i],
107 nir_ssa_alu_instr_src_components(instr, i));
108 }
109 } else {
110 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
111 hash = hash_alu_src(hash, &instr->src[i],
112 nir_ssa_alu_instr_src_components(instr, i));
113 }
114 }
115
116 return hash;
117 }
118
119 static uint32_t
hash_deref(uint32_t hash,const nir_deref_instr * instr)120 hash_deref(uint32_t hash, const nir_deref_instr *instr)
121 {
122 hash = HASH(hash, instr->deref_type);
123 hash = HASH(hash, instr->modes);
124 hash = HASH(hash, instr->type);
125
126 if (instr->deref_type == nir_deref_type_var)
127 return HASH(hash, instr->var);
128
129 hash = hash_src(hash, &instr->parent);
130
131 switch (instr->deref_type) {
132 case nir_deref_type_struct:
133 hash = HASH(hash, instr->strct.index);
134 break;
135
136 case nir_deref_type_array:
137 case nir_deref_type_ptr_as_array:
138 hash = hash_src(hash, &instr->arr.index);
139 hash = HASH(hash, instr->arr.in_bounds);
140 break;
141
142 case nir_deref_type_cast:
143 hash = HASH(hash, instr->cast.ptr_stride);
144 hash = HASH(hash, instr->cast.align_mul);
145 hash = HASH(hash, instr->cast.align_offset);
146 break;
147
148 case nir_deref_type_var:
149 case nir_deref_type_array_wildcard:
150 /* Nothing to do */
151 break;
152
153 default:
154 unreachable("Invalid instruction deref type");
155 }
156
157 return hash;
158 }
159
160 static uint32_t
hash_load_const(uint32_t hash,const nir_load_const_instr * instr)161 hash_load_const(uint32_t hash, const nir_load_const_instr *instr)
162 {
163 hash = HASH(hash, instr->def.num_components);
164
165 if (instr->def.bit_size == 1) {
166 for (unsigned i = 0; i < instr->def.num_components; i++) {
167 uint8_t b = instr->value[i].b;
168 hash = HASH(hash, b);
169 }
170 } else {
171 unsigned size = instr->def.num_components * sizeof(*instr->value);
172 hash = XXH32(instr->value, size, hash);
173 }
174
175 return hash;
176 }
177
178 static int
cmp_phi_src(const void * data1,const void * data2)179 cmp_phi_src(const void *data1, const void *data2)
180 {
181 nir_phi_src *src1 = *(nir_phi_src **)data1;
182 nir_phi_src *src2 = *(nir_phi_src **)data2;
183 return src1->pred > src2->pred ? 1 : (src1->pred == src2->pred ? 0 : -1);
184 }
185
186 static uint32_t
hash_phi(uint32_t hash,const nir_phi_instr * instr)187 hash_phi(uint32_t hash, const nir_phi_instr *instr)
188 {
189 hash = HASH(hash, instr->instr.block);
190
191 /* sort sources by predecessor, since the order shouldn't matter */
192 unsigned num_preds = instr->instr.block->predecessors->entries;
193 NIR_VLA(nir_phi_src *, srcs, num_preds);
194 unsigned i = 0;
195 nir_foreach_phi_src(src, instr) {
196 srcs[i++] = src;
197 }
198
199 qsort(srcs, num_preds, sizeof(nir_phi_src *), cmp_phi_src);
200
201 for (i = 0; i < num_preds; i++) {
202 hash = hash_src(hash, &srcs[i]->src);
203 hash = HASH(hash, srcs[i]->pred);
204 }
205
206 return hash;
207 }
208
209 static uint32_t
hash_intrinsic(uint32_t hash,const nir_intrinsic_instr * instr)210 hash_intrinsic(uint32_t hash, const nir_intrinsic_instr *instr)
211 {
212 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
213 hash = HASH(hash, instr->intrinsic);
214
215 if (info->has_dest) {
216 hash = HASH(hash, instr->def.num_components);
217 hash = HASH(hash, instr->def.bit_size);
218 }
219
220 hash = XXH32(instr->const_index, info->num_indices * sizeof(instr->const_index[0]), hash);
221
222 for (unsigned i = 0; i < nir_intrinsic_infos[instr->intrinsic].num_srcs; i++)
223 hash = hash_src(hash, &instr->src[i]);
224
225 return hash;
226 }
227
228 static uint32_t
hash_tex(uint32_t hash,const nir_tex_instr * instr)229 hash_tex(uint32_t hash, const nir_tex_instr *instr)
230 {
231 hash = HASH(hash, instr->op);
232 hash = HASH(hash, instr->num_srcs);
233
234 for (unsigned i = 0; i < instr->num_srcs; i++) {
235 hash = HASH(hash, instr->src[i].src_type);
236 hash = hash_src(hash, &instr->src[i].src);
237 }
238
239 hash = HASH(hash, instr->coord_components);
240 hash = HASH(hash, instr->sampler_dim);
241 hash = HASH(hash, instr->is_array);
242 hash = HASH(hash, instr->is_shadow);
243 hash = HASH(hash, instr->is_new_style_shadow);
244 hash = HASH(hash, instr->is_sparse);
245 unsigned component = instr->component;
246 hash = HASH(hash, component);
247 for (unsigned i = 0; i < 4; ++i)
248 for (unsigned j = 0; j < 2; ++j)
249 hash = HASH(hash, instr->tg4_offsets[i][j]);
250 hash = HASH(hash, instr->texture_index);
251 hash = HASH(hash, instr->sampler_index);
252 hash = HASH(hash, instr->texture_non_uniform);
253 hash = HASH(hash, instr->sampler_non_uniform);
254 hash = HASH(hash, instr->backend_flags);
255
256 return hash;
257 }
258
259 /* Computes a hash of an instruction for use in a hash table. Note that this
260 * will only work for instructions where instr_can_rewrite() returns true, and
261 * it should return identical hashes for two instructions that are the same
262 * according nir_instrs_equal().
263 */
264
265 static uint32_t
hash_instr(const void * data)266 hash_instr(const void *data)
267 {
268 const nir_instr *instr = data;
269 uint32_t hash = 0;
270
271 switch (instr->type) {
272 case nir_instr_type_alu:
273 hash = hash_alu(hash, nir_instr_as_alu(instr));
274 break;
275 case nir_instr_type_deref:
276 hash = hash_deref(hash, nir_instr_as_deref(instr));
277 break;
278 case nir_instr_type_load_const:
279 hash = hash_load_const(hash, nir_instr_as_load_const(instr));
280 break;
281 case nir_instr_type_phi:
282 hash = hash_phi(hash, nir_instr_as_phi(instr));
283 break;
284 case nir_instr_type_intrinsic:
285 hash = hash_intrinsic(hash, nir_instr_as_intrinsic(instr));
286 break;
287 case nir_instr_type_tex:
288 hash = hash_tex(hash, nir_instr_as_tex(instr));
289 break;
290 default:
291 unreachable("Invalid instruction type");
292 }
293
294 return hash;
295 }
296
297 bool
nir_srcs_equal(nir_src src1,nir_src src2)298 nir_srcs_equal(nir_src src1, nir_src src2)
299 {
300 return src1.ssa == src2.ssa;
301 }
302
303 /**
304 * If the \p s is an SSA value that was generated by a negation instruction,
305 * that instruction is returned as a \c nir_alu_instr. Otherwise \c NULL is
306 * returned.
307 */
308 static nir_alu_instr *
get_neg_instr(nir_src s)309 get_neg_instr(nir_src s)
310 {
311 nir_alu_instr *alu = nir_src_as_alu_instr(s);
312
313 return alu != NULL && (alu->op == nir_op_fneg || alu->op == nir_op_ineg)
314 ? alu
315 : NULL;
316 }
317
318 bool
nir_const_value_negative_equal(nir_const_value c1,nir_const_value c2,nir_alu_type full_type)319 nir_const_value_negative_equal(nir_const_value c1,
320 nir_const_value c2,
321 nir_alu_type full_type)
322 {
323 assert(nir_alu_type_get_base_type(full_type) != nir_type_invalid);
324 assert(nir_alu_type_get_type_size(full_type) != 0);
325
326 switch (full_type) {
327 case nir_type_float16:
328 return _mesa_half_to_float(c1.u16) == -_mesa_half_to_float(c2.u16);
329
330 case nir_type_float32:
331 return c1.f32 == -c2.f32;
332
333 case nir_type_float64:
334 return c1.f64 == -c2.f64;
335
336 case nir_type_int8:
337 case nir_type_uint8:
338 return c1.i8 == -c2.i8;
339
340 case nir_type_int16:
341 case nir_type_uint16:
342 return c1.i16 == -c2.i16;
343
344 case nir_type_int32:
345 case nir_type_uint32:
346 return c1.i32 == -c2.i32;
347
348 case nir_type_int64:
349 case nir_type_uint64:
350 return c1.i64 == -c2.i64;
351
352 default:
353 break;
354 }
355
356 return false;
357 }
358
359 /**
360 * Shallow compare of ALU srcs to determine if one is the negation of the other
361 *
362 * This function detects cases where \p alu1 is a constant and \p alu2 is a
363 * constant that is its negation. It will also detect cases where \p alu2 is
364 * an SSA value that is a \c nir_op_fneg applied to \p alu1 (and vice versa).
365 *
366 * This function does not detect the general case when \p alu1 and \p alu2 are
367 * SSA values that are the negations of each other (e.g., \p alu1 represents
368 * (a * b) and \p alu2 represents (-a * b)).
369 *
370 * \warning
371 * It is the responsibility of the caller to ensure that the component counts,
372 * write masks, and base types of the sources being compared are compatible.
373 */
374 bool
nir_alu_srcs_negative_equal(const nir_alu_instr * alu1,const nir_alu_instr * alu2,unsigned src1,unsigned src2)375 nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
376 const nir_alu_instr *alu2,
377 unsigned src1, unsigned src2)
378 {
379 #ifndef NDEBUG
380 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
381 assert(nir_alu_instr_channel_used(alu1, src1, i) ==
382 nir_alu_instr_channel_used(alu2, src2, i));
383 }
384
385 if (nir_alu_type_get_base_type(nir_op_infos[alu1->op].input_types[src1]) == nir_type_float) {
386 assert(nir_op_infos[alu1->op].input_types[src1] ==
387 nir_op_infos[alu2->op].input_types[src2]);
388 } else {
389 assert(nir_op_infos[alu1->op].input_types[src1] == nir_type_int);
390 assert(nir_op_infos[alu2->op].input_types[src2] == nir_type_int);
391 }
392 #endif
393
394 /* Handling load_const instructions is tricky. */
395
396 const nir_const_value *const const1 =
397 nir_src_as_const_value(alu1->src[src1].src);
398
399 if (const1 != NULL) {
400 const nir_const_value *const const2 =
401 nir_src_as_const_value(alu2->src[src2].src);
402
403 if (const2 == NULL)
404 return false;
405
406 if (nir_src_bit_size(alu1->src[src1].src) !=
407 nir_src_bit_size(alu2->src[src2].src))
408 return false;
409
410 const nir_alu_type full_type = nir_op_infos[alu1->op].input_types[src1] |
411 nir_src_bit_size(alu1->src[src1].src);
412 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
413 if (nir_alu_instr_channel_used(alu1, src1, i) &&
414 !nir_const_value_negative_equal(const1[alu1->src[src1].swizzle[i]],
415 const2[alu2->src[src2].swizzle[i]],
416 full_type))
417 return false;
418 }
419
420 return true;
421 }
422
423 uint8_t alu1_swizzle[NIR_MAX_VEC_COMPONENTS] = { 0 };
424 nir_src alu1_actual_src;
425 nir_alu_instr *neg1 = get_neg_instr(alu1->src[src1].src);
426 bool parity = false;
427
428 if (neg1) {
429 parity = !parity;
430 alu1_actual_src = neg1->src[0].src;
431
432 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(neg1, 0); i++)
433 alu1_swizzle[i] = neg1->src[0].swizzle[i];
434 } else {
435 alu1_actual_src = alu1->src[src1].src;
436
437 for (unsigned i = 0; i < nir_src_num_components(alu1_actual_src); i++)
438 alu1_swizzle[i] = i;
439 }
440
441 uint8_t alu2_swizzle[NIR_MAX_VEC_COMPONENTS] = { 0 };
442 nir_src alu2_actual_src;
443 nir_alu_instr *neg2 = get_neg_instr(alu2->src[src2].src);
444
445 if (neg2) {
446 parity = !parity;
447 alu2_actual_src = neg2->src[0].src;
448
449 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(neg2, 0); i++)
450 alu2_swizzle[i] = neg2->src[0].swizzle[i];
451 } else {
452 alu2_actual_src = alu2->src[src2].src;
453
454 for (unsigned i = 0; i < nir_src_num_components(alu2_actual_src); i++)
455 alu2_swizzle[i] = i;
456 }
457
458 /* Bail early if sources are not equal or we don't have parity. */
459 if (!parity || !nir_srcs_equal(alu1_actual_src, alu2_actual_src))
460 return false;
461
462 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
463 if (alu1_swizzle[alu1->src[src1].swizzle[i]] !=
464 alu2_swizzle[alu2->src[src2].swizzle[i]])
465 return false;
466 }
467
468 return true;
469 }
470
471 bool
nir_alu_srcs_equal(const nir_alu_instr * alu1,const nir_alu_instr * alu2,unsigned src1,unsigned src2)472 nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
473 unsigned src1, unsigned src2)
474 {
475 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
476 if (alu1->src[src1].swizzle[i] != alu2->src[src2].swizzle[i])
477 return false;
478 }
479
480 return nir_srcs_equal(alu1->src[src1].src, alu2->src[src2].src);
481 }
482
483 /* Returns "true" if two instructions are equal. Note that this will only
484 * work for the subset of instructions defined by instr_can_rewrite(). Also,
485 * it should only return "true" for instructions that hash_instr() will return
486 * the same hash for (ignoring collisions, of course).
487 */
488
489 bool
nir_instrs_equal(const nir_instr * instr1,const nir_instr * instr2)490 nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2)
491 {
492 assert(instr_can_rewrite(instr1) && instr_can_rewrite(instr2));
493
494 if (instr1->type != instr2->type)
495 return false;
496
497 switch (instr1->type) {
498 case nir_instr_type_alu: {
499 nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
500 nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
501
502 if (alu1->op != alu2->op)
503 return false;
504
505 /* We explicitly don't compare instr->exact. */
506
507 if (alu1->no_signed_wrap != alu2->no_signed_wrap)
508 return false;
509
510 if (alu1->no_unsigned_wrap != alu2->no_unsigned_wrap)
511 return false;
512
513 /* TODO: We can probably acutally do something more inteligent such
514 * as allowing different numbers and taking a maximum or something
515 * here */
516 if (alu1->def.num_components != alu2->def.num_components)
517 return false;
518
519 if (alu1->def.bit_size != alu2->def.bit_size)
520 return false;
521
522 if (nir_op_infos[alu1->op].algebraic_properties & NIR_OP_IS_2SRC_COMMUTATIVE) {
523 if ((!nir_alu_srcs_equal(alu1, alu2, 0, 0) ||
524 !nir_alu_srcs_equal(alu1, alu2, 1, 1)) &&
525 (!nir_alu_srcs_equal(alu1, alu2, 0, 1) ||
526 !nir_alu_srcs_equal(alu1, alu2, 1, 0)))
527 return false;
528
529 for (unsigned i = 2; i < nir_op_infos[alu1->op].num_inputs; i++) {
530 if (!nir_alu_srcs_equal(alu1, alu2, i, i))
531 return false;
532 }
533 } else {
534 for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
535 if (!nir_alu_srcs_equal(alu1, alu2, i, i))
536 return false;
537 }
538 }
539 return true;
540 }
541 case nir_instr_type_deref: {
542 nir_deref_instr *deref1 = nir_instr_as_deref(instr1);
543 nir_deref_instr *deref2 = nir_instr_as_deref(instr2);
544
545 if (deref1->deref_type != deref2->deref_type ||
546 deref1->modes != deref2->modes ||
547 deref1->type != deref2->type)
548 return false;
549
550 if (deref1->deref_type == nir_deref_type_var)
551 return deref1->var == deref2->var;
552
553 if (!nir_srcs_equal(deref1->parent, deref2->parent))
554 return false;
555
556 switch (deref1->deref_type) {
557 case nir_deref_type_struct:
558 if (deref1->strct.index != deref2->strct.index)
559 return false;
560 break;
561
562 case nir_deref_type_array:
563 case nir_deref_type_ptr_as_array:
564 if (!nir_srcs_equal(deref1->arr.index, deref2->arr.index))
565 return false;
566 if (deref1->arr.in_bounds != deref2->arr.in_bounds)
567 return false;
568 break;
569
570 case nir_deref_type_cast:
571 if (deref1->cast.ptr_stride != deref2->cast.ptr_stride ||
572 deref1->cast.align_mul != deref2->cast.align_mul ||
573 deref1->cast.align_offset != deref2->cast.align_offset)
574 return false;
575 break;
576
577 case nir_deref_type_var:
578 case nir_deref_type_array_wildcard:
579 /* Nothing to do */
580 break;
581
582 default:
583 unreachable("Invalid instruction deref type");
584 }
585 return true;
586 }
587 case nir_instr_type_tex: {
588 nir_tex_instr *tex1 = nir_instr_as_tex(instr1);
589 nir_tex_instr *tex2 = nir_instr_as_tex(instr2);
590
591 if (tex1->op != tex2->op)
592 return false;
593
594 if (tex1->num_srcs != tex2->num_srcs)
595 return false;
596 for (unsigned i = 0; i < tex1->num_srcs; i++) {
597 if (tex1->src[i].src_type != tex2->src[i].src_type ||
598 !nir_srcs_equal(tex1->src[i].src, tex2->src[i].src)) {
599 return false;
600 }
601 }
602
603 if (tex1->coord_components != tex2->coord_components ||
604 tex1->sampler_dim != tex2->sampler_dim ||
605 tex1->is_array != tex2->is_array ||
606 tex1->is_shadow != tex2->is_shadow ||
607 tex1->is_new_style_shadow != tex2->is_new_style_shadow ||
608 tex1->component != tex2->component ||
609 tex1->texture_index != tex2->texture_index ||
610 tex1->sampler_index != tex2->sampler_index ||
611 tex1->backend_flags != tex2->backend_flags) {
612 return false;
613 }
614
615 if (memcmp(tex1->tg4_offsets, tex2->tg4_offsets,
616 sizeof(tex1->tg4_offsets)))
617 return false;
618
619 return true;
620 }
621 case nir_instr_type_load_const: {
622 nir_load_const_instr *load1 = nir_instr_as_load_const(instr1);
623 nir_load_const_instr *load2 = nir_instr_as_load_const(instr2);
624
625 if (load1->def.num_components != load2->def.num_components)
626 return false;
627
628 if (load1->def.bit_size != load2->def.bit_size)
629 return false;
630
631 if (load1->def.bit_size == 1) {
632 for (unsigned i = 0; i < load1->def.num_components; ++i) {
633 if (load1->value[i].b != load2->value[i].b)
634 return false;
635 }
636 } else {
637 unsigned size = load1->def.num_components * sizeof(*load1->value);
638 if (memcmp(load1->value, load2->value, size) != 0)
639 return false;
640 }
641 return true;
642 }
643 case nir_instr_type_phi: {
644 nir_phi_instr *phi1 = nir_instr_as_phi(instr1);
645 nir_phi_instr *phi2 = nir_instr_as_phi(instr2);
646
647 if (phi1->instr.block != phi2->instr.block)
648 return false;
649
650 /* In case of phis with no sources, the dest needs to be checked
651 * to ensure that phis with incompatible dests won't get merged
652 * during CSE. */
653 if (phi1->def.num_components != phi2->def.num_components)
654 return false;
655 if (phi1->def.bit_size != phi2->def.bit_size)
656 return false;
657
658 nir_foreach_phi_src(src1, phi1) {
659 nir_foreach_phi_src(src2, phi2) {
660 if (src1->pred == src2->pred) {
661 if (!nir_srcs_equal(src1->src, src2->src))
662 return false;
663
664 break;
665 }
666 }
667 }
668
669 return true;
670 }
671 case nir_instr_type_intrinsic: {
672 nir_intrinsic_instr *intrinsic1 = nir_instr_as_intrinsic(instr1);
673 nir_intrinsic_instr *intrinsic2 = nir_instr_as_intrinsic(instr2);
674 const nir_intrinsic_info *info =
675 &nir_intrinsic_infos[intrinsic1->intrinsic];
676
677 if (intrinsic1->intrinsic != intrinsic2->intrinsic ||
678 intrinsic1->num_components != intrinsic2->num_components)
679 return false;
680
681 if (info->has_dest && intrinsic1->def.num_components !=
682 intrinsic2->def.num_components)
683 return false;
684
685 if (info->has_dest && intrinsic1->def.bit_size !=
686 intrinsic2->def.bit_size)
687 return false;
688
689 for (unsigned i = 0; i < info->num_srcs; i++) {
690 if (!nir_srcs_equal(intrinsic1->src[i], intrinsic2->src[i]))
691 return false;
692 }
693
694 for (unsigned i = 0; i < info->num_indices; i++) {
695 if (intrinsic1->const_index[i] != intrinsic2->const_index[i])
696 return false;
697 }
698
699 return true;
700 }
701 case nir_instr_type_call:
702 case nir_instr_type_jump:
703 case nir_instr_type_undef:
704 case nir_instr_type_parallel_copy:
705 default:
706 unreachable("Invalid instruction type");
707 }
708
709 unreachable("All cases in the above switch should return");
710 }
711
712 static nir_def *
nir_instr_get_def_def(nir_instr * instr)713 nir_instr_get_def_def(nir_instr *instr)
714 {
715 switch (instr->type) {
716 case nir_instr_type_alu:
717 return &nir_instr_as_alu(instr)->def;
718 case nir_instr_type_deref:
719 return &nir_instr_as_deref(instr)->def;
720 case nir_instr_type_load_const:
721 return &nir_instr_as_load_const(instr)->def;
722 case nir_instr_type_phi:
723 return &nir_instr_as_phi(instr)->def;
724 case nir_instr_type_intrinsic:
725 return &nir_instr_as_intrinsic(instr)->def;
726 case nir_instr_type_tex:
727 return &nir_instr_as_tex(instr)->def;
728 default:
729 unreachable("We never ask for any of these");
730 }
731 }
732
733 static bool
cmp_func(const void * data1,const void * data2)734 cmp_func(const void *data1, const void *data2)
735 {
736 return nir_instrs_equal(data1, data2);
737 }
738
739 struct set *
nir_instr_set_create(void * mem_ctx)740 nir_instr_set_create(void *mem_ctx)
741 {
742 return _mesa_set_create(mem_ctx, hash_instr, cmp_func);
743 }
744
745 void
nir_instr_set_destroy(struct set * instr_set)746 nir_instr_set_destroy(struct set *instr_set)
747 {
748 _mesa_set_destroy(instr_set, NULL);
749 }
750
751 bool
nir_instr_set_add_or_rewrite(struct set * instr_set,nir_instr * instr,bool (* cond_function)(const nir_instr * a,const nir_instr * b))752 nir_instr_set_add_or_rewrite(struct set *instr_set, nir_instr *instr,
753 bool (*cond_function)(const nir_instr *a,
754 const nir_instr *b))
755 {
756 if (!instr_can_rewrite(instr))
757 return false;
758
759 struct set_entry *e = _mesa_set_search_or_add(instr_set, instr, NULL);
760 nir_instr *match = (nir_instr *)e->key;
761 if (match == instr)
762 return false;
763
764 if (!cond_function || cond_function(match, instr)) {
765 /* rewrite instruction if condition is matched */
766 nir_def *def = nir_instr_get_def_def(instr);
767 nir_def *new_def = nir_instr_get_def_def(match);
768
769 /* It's safe to replace an exact instruction with an inexact one as
770 * long as we make it exact. If we got here, the two instructions are
771 * exactly identical in every other way so, once we've set the exact
772 * bit, they are the same.
773 */
774 if (instr->type == nir_instr_type_alu && nir_instr_as_alu(instr)->exact)
775 nir_instr_as_alu(match)->exact = true;
776
777 nir_def_rewrite_uses(def, new_def);
778
779 nir_instr_remove(instr);
780
781 return true;
782 } else {
783 /* otherwise, replace hashed instruction */
784 e->key = instr;
785 return false;
786 }
787 }
788
789 void
nir_instr_set_remove(struct set * instr_set,nir_instr * instr)790 nir_instr_set_remove(struct set *instr_set, nir_instr *instr)
791 {
792 if (!instr_can_rewrite(instr))
793 return;
794
795 struct set_entry *entry = _mesa_set_search(instr_set, instr);
796 if (entry)
797 _mesa_set_remove(instr_set, entry);
798 }
799