1 /*
2 * Copyright © 2020 Google, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "ir3/ir3_compiler.h"
25
26 #include "util/u_math.h"
27
28 #include "adreno_pm4.xml.h"
29 #include "adreno_common.xml.h"
30 #include "a6xx.xml.h"
31
32 #include "common/freedreno_dev_info.h"
33
34 #include "ir3_asm.h"
35 #include "main.h"
36
37 #define FD_BO_NO_HARDPIN 1
38 #include "common/fd6_pack.h"
39
40 struct a6xx_backend {
41 struct backend base;
42
43 struct ir3_compiler *compiler;
44 struct fd_device *dev;
45
46 const struct fd_dev_info *info;
47
48 unsigned seqno;
49 struct fd_bo *control_mem;
50
51 struct fd_bo *query_mem;
52 const struct perfcntr *perfcntrs;
53 unsigned num_perfcntrs;
54 };
55 define_cast(backend, a6xx_backend);
56
57 /*
58 * Data structures shared with GPU:
59 */
60
61 /* This struct defines the layout of the fd6_context::control buffer: */
62 struct fd6_control {
63 uint32_t seqno; /* seqno for async CP_EVENT_WRITE, etc */
64 uint32_t _pad0;
65 volatile uint32_t vsc_overflow;
66 uint32_t _pad1;
67 /* flag set from cmdstream when VSC overflow detected: */
68 uint32_t vsc_scratch;
69 uint32_t _pad2;
70 uint32_t _pad3;
71 uint32_t _pad4;
72
73 /* scratch space for VPC_SO[i].FLUSH_BASE_LO/HI, start on 32 byte boundary. */
74 struct {
75 uint32_t offset;
76 uint32_t pad[7];
77 } flush_base[4];
78 };
79
80 #define control_ptr(a6xx_backend, member) \
81 (a6xx_backend)->control_mem, offsetof(struct fd6_control, member), 0, 0
82
83 struct PACKED fd6_query_sample {
84 uint64_t start;
85 uint64_t result;
86 uint64_t stop;
87 };
88
89 /* offset of a single field of an array of fd6_query_sample: */
90 #define query_sample_idx(a6xx_backend, idx, field) \
91 (a6xx_backend)->query_mem, \
92 (idx * sizeof(struct fd6_query_sample)) + \
93 offsetof(struct fd6_query_sample, field), \
94 0, 0
95
96 /*
97 * Backend implementation:
98 */
99
100 static struct kernel *
a6xx_assemble(struct backend * b,FILE * in)101 a6xx_assemble(struct backend *b, FILE *in)
102 {
103 struct a6xx_backend *a6xx_backend = to_a6xx_backend(b);
104 struct ir3_kernel *ir3_kernel = ir3_asm_assemble(a6xx_backend->compiler, in);
105 ir3_kernel->backend = b;
106 return &ir3_kernel->base;
107 }
108
109 static void
a6xx_disassemble(struct kernel * kernel,FILE * out)110 a6xx_disassemble(struct kernel *kernel, FILE *out)
111 {
112 ir3_asm_disassemble(to_ir3_kernel(kernel), out);
113 }
114
115 template<chip CHIP>
116 static void
cs_program_emit(struct fd_ringbuffer * ring,struct kernel * kernel)117 cs_program_emit(struct fd_ringbuffer *ring, struct kernel *kernel)
118 {
119 struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
120 struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
121 struct ir3_shader_variant *v = ir3_kernel->v;
122 const unsigned *local_size = kernel->local_size;
123 const struct ir3_info *i = &v->info;
124 enum a6xx_threadsize thrsz = i->double_threadsize ? THREAD128 : THREAD64;
125
126 OUT_REG(ring, A6XX_SP_MODE_CONTROL(.constant_demotion_enable = true,
127 .isammode = ISAMMODE_GL,
128 .shared_consts_enable = false));
129
130 OUT_PKT4(ring, REG_A6XX_SP_PERFCTR_ENABLE, 1);
131 OUT_RING(ring, A6XX_SP_PERFCTR_ENABLE_CS);
132
133 OUT_PKT4(ring, REG_A6XX_SP_FLOAT_CNTL, 1);
134 OUT_RING(ring, 0);
135
136 for (size_t i = 0; i < ARRAY_SIZE(a6xx_backend->info->a6xx.magic_raw); i++) {
137 auto magic_reg = a6xx_backend->info->a6xx.magic_raw[i];
138 if (!magic_reg.reg)
139 break;
140
141 OUT_PKT4(ring, magic_reg.reg, 1);
142 OUT_RING(ring, magic_reg.value);
143 }
144
145 OUT_REG(ring, HLSQ_INVALIDATE_CMD(CHIP,
146 .vs_state = true,
147 .hs_state = true,
148 .ds_state = true,
149 .gs_state = true,
150 .fs_state = true,
151 .cs_state = true,
152 .gfx_ibo = true,
153 ));
154
155 unsigned constlen = align(v->constlen, 4);
156 OUT_REG(ring, HLSQ_CS_CNTL(CHIP, .constlen = constlen, .enabled = true, ));
157
158 OUT_PKT4(ring, REG_A6XX_SP_CS_CONFIG, 2);
159 OUT_RING(ring, A6XX_SP_CS_CONFIG_ENABLED |
160 A6XX_SP_CS_CONFIG_NIBO(kernel->num_bufs) |
161 A6XX_SP_CS_CONFIG_NTEX(v->num_samp) |
162 A6XX_SP_CS_CONFIG_NSAMP(v->num_samp)); /* SP_VS_CONFIG */
163 OUT_RING(ring, v->instrlen); /* SP_VS_INSTRLEN */
164
165 OUT_PKT4(ring, REG_A6XX_SP_CS_CTRL_REG0, 1);
166 OUT_RING(ring,
167 A6XX_SP_CS_CTRL_REG0_THREADSIZE(thrsz) |
168 A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(i->max_reg + 1) |
169 A6XX_SP_CS_CTRL_REG0_HALFREGFOOTPRINT(i->max_half_reg + 1) |
170 COND(v->mergedregs, A6XX_SP_CS_CTRL_REG0_MERGEDREGS) |
171 COND(ir3_kernel->info.early_preamble, A6XX_SP_CS_CTRL_REG0_EARLYPREAMBLE) |
172 A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(ir3_shader_branchstack_hw(v)));
173 if (CHIP == A7XX) {
174 OUT_REG(ring, HLSQ_FS_CNTL_0(CHIP, .threadsize = THREAD64));
175
176 OUT_REG(ring, HLSQ_CONTROL_2_REG(CHIP, .dword = 0xfcfcfcfc),
177 HLSQ_CONTROL_3_REG(CHIP, .dword = 0xfcfcfcfc),
178 HLSQ_CONTROL_4_REG(CHIP, .dword = 0xfcfcfcfc),
179 HLSQ_CONTROL_5_REG(CHIP, .dword = 0x0000fc00), );
180 }
181
182 OUT_PKT4(ring, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
183 OUT_RING(ring, A6XX_SP_CS_UNKNOWN_A9B1_SHARED_SIZE(1) |
184 A6XX_SP_CS_UNKNOWN_A9B1_UNK6);
185
186 if (CHIP == A6XX && a6xx_backend->info->a6xx.has_lpac) {
187 OUT_PKT4(ring, REG_A6XX_HLSQ_CS_UNKNOWN_B9D0, 1);
188 OUT_RING(ring, A6XX_HLSQ_CS_UNKNOWN_B9D0_SHARED_SIZE(1) |
189 A6XX_HLSQ_CS_UNKNOWN_B9D0_UNK6);
190 }
191
192 uint32_t local_invocation_id, work_group_id;
193 local_invocation_id =
194 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
195 work_group_id = ir3_find_sysval_regid(v, SYSTEM_VALUE_WORKGROUP_ID);
196
197 if (CHIP == A6XX) {
198 OUT_PKT4(ring, REG_A6XX_HLSQ_CS_CNTL_0, 2);
199 OUT_RING(ring, A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
200 A6XX_HLSQ_CS_CNTL_0_WGSIZECONSTID(regid(63, 0)) |
201 A6XX_HLSQ_CS_CNTL_0_WGOFFSETCONSTID(regid(63, 0)) |
202 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
203 OUT_RING(ring, A6XX_HLSQ_CS_CNTL_1_LINEARLOCALIDREGID(regid(63, 0)) |
204 A6XX_HLSQ_CS_CNTL_1_THREADSIZE(thrsz));
205 } else {
206 enum a7xx_cs_yalign yalign = (local_size[1] % 8 == 0) ? CS_YALIGN_8
207 : (local_size[1] % 4 == 0) ? CS_YALIGN_4
208 : (local_size[1] % 2 == 0) ? CS_YALIGN_2
209 : CS_YALIGN_1;
210
211 OUT_REG(ring, A7XX_HLSQ_CS_CNTL_1(.linearlocalidregid = regid(63, 0),
212 .threadsize = thrsz,
213 .unk11 = true,
214 .unk22 = true,
215 .yalign = yalign, ));
216 }
217
218 if (CHIP == A7XX || a6xx_backend->info->a6xx.has_lpac) {
219 OUT_PKT4(ring, REG_A6XX_SP_CS_CNTL_0, 1);
220 OUT_RING(ring, A6XX_SP_CS_CNTL_0_WGIDCONSTID(work_group_id) |
221 A6XX_SP_CS_CNTL_0_WGSIZECONSTID(regid(63, 0)) |
222 A6XX_SP_CS_CNTL_0_WGOFFSETCONSTID(regid(63, 0)) |
223 A6XX_SP_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
224 OUT_REG(ring,
225 SP_CS_CNTL_1(CHIP, .linearlocalidregid = regid(63, 0),
226 .threadsize = thrsz, ));
227 }
228
229 OUT_PKT4(ring, REG_A6XX_SP_CS_OBJ_START, 2);
230 OUT_RELOC(ring, v->bo, 0, 0, 0); /* SP_CS_OBJ_START_LO/HI */
231
232 OUT_PKT4(ring, REG_A6XX_SP_CS_INSTRLEN, 1);
233 OUT_RING(ring, v->instrlen);
234
235 OUT_PKT4(ring, REG_A6XX_SP_CS_OBJ_START, 2);
236 OUT_RELOC(ring, v->bo, 0, 0, 0);
237
238 uint32_t shader_preload_size =
239 MIN2(v->instrlen, a6xx_backend->info->a6xx.instr_cache_size);
240 OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3);
241 OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) |
242 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
243 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
244 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) |
245 CP_LOAD_STATE6_0_NUM_UNIT(shader_preload_size));
246 OUT_RELOC(ring, v->bo, 0, 0, 0);
247
248 if (v->pvtmem_size > 0) {
249 uint32_t per_fiber_size = v->pvtmem_size;
250 uint32_t per_sp_size =
251 ALIGN(per_fiber_size * a6xx_backend->info->fibers_per_sp, 1 << 12);
252 uint32_t total_size = per_sp_size * a6xx_backend->info->num_sp_cores;
253
254 struct fd_bo *pvtmem = fd_bo_new(a6xx_backend->dev, total_size, 0, "pvtmem");
255 OUT_PKT4(ring, REG_A6XX_SP_CS_PVT_MEM_PARAM, 4);
256 OUT_RING(ring, A6XX_SP_CS_PVT_MEM_PARAM_MEMSIZEPERITEM(per_fiber_size));
257 OUT_RELOC(ring, pvtmem, 0, 0, 0);
258 OUT_RING(ring, A6XX_SP_CS_PVT_MEM_SIZE_TOTALPVTMEMSIZE(per_sp_size) |
259 COND(v->pvtmem_per_wave,
260 A6XX_SP_CS_PVT_MEM_SIZE_PERWAVEMEMLAYOUT));
261
262 OUT_PKT4(ring, REG_A6XX_SP_CS_PVT_MEM_HW_STACK_OFFSET, 1);
263 OUT_RING(ring, A6XX_SP_CS_PVT_MEM_HW_STACK_OFFSET_OFFSET(per_sp_size));
264 }
265 }
266
267 template<chip CHIP>
268 static void
emit_const(struct fd_ringbuffer * ring,uint32_t regid,uint32_t sizedwords,const uint32_t * dwords)269 emit_const(struct fd_ringbuffer *ring, uint32_t regid, uint32_t sizedwords,
270 const uint32_t *dwords)
271 {
272 uint32_t align_sz;
273
274 assert((regid % 4) == 0);
275
276 align_sz = align(sizedwords, 4);
277
278 OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3 + align_sz);
279 OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(regid / 4) |
280 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
281 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
282 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) |
283 CP_LOAD_STATE6_0_NUM_UNIT(DIV_ROUND_UP(sizedwords, 4)));
284 OUT_RING(ring, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
285 OUT_RING(ring, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
286
287 for (uint32_t i = 0; i < sizedwords; i++) {
288 OUT_RING(ring, dwords[i]);
289 }
290
291 /* Zero-pad to multiple of 4 dwords */
292 for (uint32_t i = sizedwords; i < align_sz; i++) {
293 OUT_RING(ring, 0);
294 }
295 }
296
297 template<chip CHIP>
298 static void
cs_const_emit(struct fd_ringbuffer * ring,struct kernel * kernel,uint32_t grid[3])299 cs_const_emit(struct fd_ringbuffer *ring, struct kernel *kernel,
300 uint32_t grid[3])
301 {
302 struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
303 struct ir3_shader_variant *v = ir3_kernel->v;
304
305 const struct ir3_const_state *const_state = ir3_const_state(v);
306 uint32_t base = const_state->offsets.immediate;
307 int size = DIV_ROUND_UP(const_state->immediates_count, 4);
308
309 if (ir3_kernel->info.numwg != INVALID_REG) {
310 assert((ir3_kernel->info.numwg & 0x3) == 0);
311 int idx = ir3_kernel->info.numwg >> 2;
312 const_state->immediates[idx * 4 + 0] = grid[0];
313 const_state->immediates[idx * 4 + 1] = grid[1];
314 const_state->immediates[idx * 4 + 2] = grid[2];
315 }
316
317 for (int i = 0; i < MAX_BUFS; i++) {
318 if (kernel->buf_addr_regs[i] != INVALID_REG) {
319 assert((kernel->buf_addr_regs[i] & 0x3) == 0);
320 int idx = kernel->buf_addr_regs[i] >> 2;
321
322 uint64_t iova = fd_bo_get_iova(kernel->bufs[i]);
323
324 const_state->immediates[idx * 4 + 1] = iova >> 32;
325 const_state->immediates[idx * 4 + 0] = (iova << 32) >> 32;
326 }
327 }
328
329 /* truncate size to avoid writing constants that shader
330 * does not use:
331 */
332 size = MIN2(size + base, v->constlen) - base;
333
334 /* convert out of vec4: */
335 base *= 4;
336 size *= 4;
337
338 if (size > 0) {
339 emit_const<CHIP>(ring, base, size, const_state->immediates);
340 }
341 }
342
343 template<chip CHIP>
344 static void
cs_ibo_emit(struct fd_ringbuffer * ring,struct fd_submit * submit,struct kernel * kernel)345 cs_ibo_emit(struct fd_ringbuffer *ring, struct fd_submit *submit,
346 struct kernel *kernel)
347 {
348 struct fd_ringbuffer *state = fd_submit_new_ringbuffer(
349 submit, kernel->num_bufs * 16 * 4, FD_RINGBUFFER_STREAMING);
350
351 for (unsigned i = 0; i < kernel->num_bufs; i++) {
352 /* size is encoded with low 15b in WIDTH and high bits in HEIGHT,
353 * in units of elements:
354 */
355 unsigned sz = kernel->buf_sizes[i];
356 unsigned width = sz & MASK(15);
357 unsigned height = sz >> 15;
358
359 OUT_RING(state, A6XX_TEX_CONST_0_FMT(FMT6_32_UINT) | A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR));
360 OUT_RING(state, A6XX_TEX_CONST_1_WIDTH(width) | A6XX_TEX_CONST_1_HEIGHT(height));
361 OUT_RING(state, A6XX_TEX_CONST_2_PITCH(0) |
362 A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
363 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER));
364 OUT_RING(state, A6XX_TEX_CONST_3_ARRAY_PITCH(0));
365 OUT_RELOC(state, kernel->bufs[i], 0, 0, 0);
366 OUT_RING(state, 0x00000000);
367 OUT_RING(state, 0x00000000);
368 OUT_RING(state, 0x00000000);
369 OUT_RING(state, 0x00000000);
370 OUT_RING(state, 0x00000000);
371 OUT_RING(state, 0x00000000);
372 OUT_RING(state, 0x00000000);
373 OUT_RING(state, 0x00000000);
374 OUT_RING(state, 0x00000000);
375 OUT_RING(state, 0x00000000);
376 }
377
378 OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3);
379 OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) |
380 CP_LOAD_STATE6_0_STATE_TYPE(ST6_IBO) |
381 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
382 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) |
383 CP_LOAD_STATE6_0_NUM_UNIT(kernel->num_bufs));
384 OUT_RB(ring, state);
385
386 OUT_PKT4(ring, REG_A6XX_SP_CS_IBO, 2);
387 OUT_RB(ring, state);
388
389 OUT_PKT4(ring, REG_A6XX_SP_CS_IBO_COUNT, 1);
390 OUT_RING(ring, kernel->num_bufs);
391
392 fd_ringbuffer_del(state);
393 }
394
395 template<chip CHIP>
396 static inline unsigned
event_write(struct fd_ringbuffer * ring,struct kernel * kernel,enum vgt_event_type evt,bool timestamp)397 event_write(struct fd_ringbuffer *ring, struct kernel *kernel,
398 enum vgt_event_type evt, bool timestamp)
399 {
400 unsigned seqno = 0;
401
402 if (CHIP == A6XX) {
403 OUT_PKT7(ring, CP_EVENT_WRITE, timestamp ? 4 : 1);
404 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(evt));
405 } else {
406 OUT_PKT7(ring, CP_EVENT_WRITE7, timestamp ? 4 : 1);
407 OUT_RING(ring,
408 CP_EVENT_WRITE7_0_EVENT(evt) |
409 COND(timestamp, CP_EVENT_WRITE7_0_WRITE_ENABLED |
410 CP_EVENT_WRITE7_0_WRITE_SRC(EV_WRITE_USER_32B)));
411 }
412
413 if (timestamp) {
414 struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
415 struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
416 seqno = ++a6xx_backend->seqno;
417 OUT_RELOC(ring, control_ptr(a6xx_backend, seqno)); /* ADDR_LO/HI */
418 OUT_RING(ring, seqno);
419 }
420
421 return seqno;
422 }
423
424 template<chip CHIP>
425 static inline void
cache_flush(struct fd_ringbuffer * ring,struct kernel * kernel)426 cache_flush(struct fd_ringbuffer *ring, struct kernel *kernel)
427 {
428 struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
429 struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
430 unsigned seqno;
431
432 seqno = event_write<CHIP>(ring, kernel, RB_DONE_TS, true);
433
434 OUT_PKT7(ring, CP_WAIT_REG_MEM, 6);
435 OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
436 CP_WAIT_REG_MEM_0_POLL(POLL_MEMORY));
437 OUT_RELOC(ring, control_ptr(a6xx_backend, seqno));
438 OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(seqno));
439 OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(~0));
440 OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(16));
441
442 if (CHIP == A6XX) {
443 seqno = event_write<CHIP>(ring, kernel, CACHE_FLUSH_TS, true);
444
445 OUT_PKT7(ring, CP_WAIT_MEM_GTE, 4);
446 OUT_RING(ring, CP_WAIT_MEM_GTE_0_RESERVED(0));
447 OUT_RELOC(ring, control_ptr(a6xx_backend, seqno));
448 OUT_RING(ring, CP_WAIT_MEM_GTE_3_REF(seqno));
449 } else {
450 event_write<CHIP>(ring, kernel, CACHE_FLUSH7, false);
451 }
452 }
453
454 template<chip CHIP>
455 static void
a6xx_emit_grid(struct kernel * kernel,uint32_t grid[3],struct fd_submit * submit)456 a6xx_emit_grid(struct kernel *kernel, uint32_t grid[3],
457 struct fd_submit *submit)
458 {
459 struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
460 struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
461 struct fd_ringbuffer *ring = fd_submit_new_ringbuffer(
462 submit, 0,
463 (enum fd_ringbuffer_flags)(FD_RINGBUFFER_PRIMARY | FD_RINGBUFFER_GROWABLE));
464
465 cs_program_emit<CHIP>(ring, kernel);
466 cs_const_emit<CHIP>(ring, kernel, grid);
467 cs_ibo_emit<CHIP>(ring, submit, kernel);
468
469 OUT_PKT7(ring, CP_SET_MARKER, 1);
470 OUT_RING(ring, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
471
472 const unsigned *local_size = kernel->local_size;
473 const unsigned *num_groups = grid;
474
475 unsigned work_dim = 0;
476 for (int i = 0; i < 3; i++) {
477 if (!grid[i])
478 break;
479 work_dim++;
480 }
481
482 OUT_REG(ring, HLSQ_CS_NDRANGE_0(CHIP,
483 .kerneldim = work_dim,
484 .localsizex = local_size[0] - 1,
485 .localsizey = local_size[1] - 1,
486 .localsizez = local_size[2] - 1,
487 ));
488 if (CHIP == A7XX) {
489 OUT_REG(ring, A7XX_HLSQ_CS_LOCAL_SIZE(.localsizex = local_size[0] - 1,
490 .localsizey = local_size[1] - 1,
491 .localsizez = local_size[2] - 1, ));
492 }
493
494 OUT_REG(ring, HLSQ_CS_NDRANGE_1(CHIP,
495 .globalsize_x = local_size[0] * num_groups[0],
496 ));
497 OUT_REG(ring, HLSQ_CS_NDRANGE_2(CHIP, 0));
498 OUT_REG(ring, HLSQ_CS_NDRANGE_3(CHIP,
499 .globalsize_y = local_size[1] * num_groups[1],
500 ));
501 OUT_REG(ring, HLSQ_CS_NDRANGE_4(CHIP, 0));
502 OUT_REG(ring, HLSQ_CS_NDRANGE_5(CHIP,
503 .globalsize_z = local_size[2] * num_groups[2],
504 ));
505 OUT_REG(ring, HLSQ_CS_NDRANGE_6(CHIP, 0));
506
507 OUT_REG(ring, HLSQ_CS_KERNEL_GROUP_X(CHIP, 1));
508 OUT_REG(ring, HLSQ_CS_KERNEL_GROUP_Y(CHIP, 1));
509 OUT_REG(ring, HLSQ_CS_KERNEL_GROUP_Z(CHIP, 1));
510
511 if (a6xx_backend->num_perfcntrs > 0) {
512 a6xx_backend->query_mem = fd_bo_new(
513 a6xx_backend->dev,
514 a6xx_backend->num_perfcntrs * sizeof(struct fd6_query_sample), 0, "query");
515
516 /* configure the performance counters to count the requested
517 * countables:
518 */
519 for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
520 const struct perfcntr *counter = &a6xx_backend->perfcntrs[i];
521
522 OUT_PKT4(ring, counter->select_reg, 1);
523 OUT_RING(ring, counter->selector);
524 }
525
526 OUT_PKT7(ring, CP_WAIT_FOR_IDLE, 0);
527
528 /* and snapshot the start values: */
529 for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
530 const struct perfcntr *counter = &a6xx_backend->perfcntrs[i];
531
532 OUT_PKT7(ring, CP_REG_TO_MEM, 3);
533 OUT_RING(ring, CP_REG_TO_MEM_0_64B |
534 CP_REG_TO_MEM_0_REG(counter->counter_reg_lo));
535 OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, start));
536 }
537 }
538
539 OUT_PKT7(ring, CP_EXEC_CS, 4);
540 OUT_RING(ring, 0x00000000);
541 OUT_RING(ring, CP_EXEC_CS_1_NGROUPS_X(grid[0]));
542 OUT_RING(ring, CP_EXEC_CS_2_NGROUPS_Y(grid[1]));
543 OUT_RING(ring, CP_EXEC_CS_3_NGROUPS_Z(grid[2]));
544
545 OUT_PKT7(ring, CP_WAIT_FOR_IDLE, 0);
546
547 if (a6xx_backend->num_perfcntrs > 0) {
548 /* snapshot the end values: */
549 for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
550 const struct perfcntr *counter = &a6xx_backend->perfcntrs[i];
551
552 OUT_PKT7(ring, CP_REG_TO_MEM, 3);
553 OUT_RING(ring, CP_REG_TO_MEM_0_64B |
554 CP_REG_TO_MEM_0_REG(counter->counter_reg_lo));
555 OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, stop));
556 }
557
558 /* and compute the result: */
559 for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
560 /* result += stop - start: */
561 OUT_PKT7(ring, CP_MEM_TO_MEM, 9);
562 OUT_RING(ring, CP_MEM_TO_MEM_0_DOUBLE | CP_MEM_TO_MEM_0_NEG_C);
563 OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, result)); /* dst */
564 OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, result)); /* srcA */
565 OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, stop)); /* srcB */
566 OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, start)); /* srcC */
567 }
568 }
569
570 cache_flush<CHIP>(ring, kernel);
571 }
572
573 static void
a6xx_set_perfcntrs(struct backend * b,const struct perfcntr * perfcntrs,unsigned num_perfcntrs)574 a6xx_set_perfcntrs(struct backend *b, const struct perfcntr *perfcntrs,
575 unsigned num_perfcntrs)
576 {
577 struct a6xx_backend *a6xx_backend = to_a6xx_backend(b);
578
579 a6xx_backend->perfcntrs = perfcntrs;
580 a6xx_backend->num_perfcntrs = num_perfcntrs;
581 }
582
583 static void
a6xx_read_perfcntrs(struct backend * b,uint64_t * results)584 a6xx_read_perfcntrs(struct backend *b, uint64_t *results)
585 {
586 struct a6xx_backend *a6xx_backend = to_a6xx_backend(b);
587
588 fd_bo_cpu_prep(a6xx_backend->query_mem, NULL, FD_BO_PREP_READ);
589 struct fd6_query_sample *samples =
590 (struct fd6_query_sample *)fd_bo_map(a6xx_backend->query_mem);
591
592 for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
593 results[i] = samples[i].result;
594 }
595 }
596
597 template<chip CHIP>
598 struct backend *
a6xx_init(struct fd_device * dev,const struct fd_dev_id * dev_id)599 a6xx_init(struct fd_device *dev, const struct fd_dev_id *dev_id)
600 {
601 struct a6xx_backend *a6xx_backend =
602 (struct a6xx_backend *)calloc(1, sizeof(*a6xx_backend));
603
604 a6xx_backend->base = (struct backend){
605 .assemble = a6xx_assemble,
606 .disassemble = a6xx_disassemble,
607 .emit_grid = a6xx_emit_grid<CHIP>,
608 .set_perfcntrs = a6xx_set_perfcntrs,
609 .read_perfcntrs = a6xx_read_perfcntrs,
610 };
611
612 struct ir3_compiler_options compiler_options = {};
613 a6xx_backend->compiler =
614 ir3_compiler_create(dev, dev_id, fd_dev_info_raw(dev_id), &compiler_options);
615 a6xx_backend->dev = dev;
616
617 a6xx_backend->info = fd_dev_info_raw(dev_id);
618
619 a6xx_backend->control_mem =
620 fd_bo_new(dev, 0x1000, 0, "control");
621
622 return &a6xx_backend->base;
623 }
624
625 template
626 struct backend *a6xx_init<A6XX>(struct fd_device *dev, const struct fd_dev_id *dev_id);
627
628 template
629 struct backend *a6xx_init<A7XX>(struct fd_device *dev, const struct fd_dev_id *dev_id);
630