• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017-2018 Rob Clark <robclark@freedesktop.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Rob Clark <robclark@freedesktop.org>
25  */
26 
27 /* 500 gets us LDIB but doesn't change any other a4xx instructions */
28 #define GPU 500
29 
30 #include "ir3_context.h"
31 #include "ir3_image.h"
32 
33 /* SSBO data is available at this CB address, addressed like regular consts
34  * containing the following data in each vec4:
35  *
36  * [ base address, pitch, array_pitch, cpp ]
37  *
38  * These mirror the values uploaded to A4XX_SSBO_0 state. For A5XX, these are
39  * uploaded manually by the driver.
40  */
41 #define A4XX_SSBO_CB_BASE(i) (0x700 + ((i) << 2))
42 
43 /*
44  * Handlers for instructions changed/added in a4xx:
45  */
46 
47 /* Convert byte offset to address of appropriate width for GPU */
48 static struct ir3_instruction *
byte_offset_to_address(struct ir3_context * ctx,nir_src * ssbo,struct ir3_instruction * byte_offset)49 byte_offset_to_address(struct ir3_context *ctx,
50       nir_src *ssbo,
51       struct ir3_instruction *byte_offset)
52 {
53    struct ir3_block *b = ctx->block;
54 
55    if (ctx->compiler->gen == 4) {
56       uint32_t index = nir_src_as_uint(*ssbo);
57       unsigned cb = A4XX_SSBO_CB_BASE(index);
58       byte_offset = ir3_ADD_U(b, create_uniform(b, cb), 0, byte_offset, 0);
59    }
60 
61    if (ctx->compiler->is_64bit) {
62       return ir3_collect(b, byte_offset, create_immed(b, 0));
63    } else {
64       return byte_offset;
65    }
66 }
67 
68 /* src[] = { buffer_index, offset }. No const_index */
69 static void
emit_intrinsic_load_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)70 emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
71                          struct ir3_instruction **dst)
72 {
73    struct ir3_block *b = ctx->block;
74    struct ir3_instruction *ldgb, *src0, *src1, *byte_offset, *offset;
75 
76    struct ir3_instruction *ssbo = ir3_ssbo_to_ibo(ctx, intr->src[0]);
77 
78    byte_offset = ir3_get_src(ctx, &intr->src[1])[0];
79    offset = ir3_get_src(ctx, &intr->src[2])[0];
80 
81    /* src0 is uvec2(offset*4, 0), src1 is offset.. nir already *= 4: */
82    src0 = byte_offset_to_address(ctx, &intr->src[0], byte_offset);
83    src1 = offset;
84 
85    ldgb = ir3_LDGB(b, ssbo, 0, src0, 0, src1, 0);
86    ldgb->dsts[0]->wrmask = MASK(intr->num_components);
87    ldgb->cat6.iim_val = intr->num_components;
88    ldgb->cat6.d = 4;
89    ldgb->cat6.type = TYPE_U32;
90    ldgb->barrier_class = IR3_BARRIER_BUFFER_R;
91    ldgb->barrier_conflict = IR3_BARRIER_BUFFER_W;
92 
93    ir3_split_dest(b, dst, ldgb, 0, intr->num_components);
94 }
95 
96 /* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
97 static void
emit_intrinsic_store_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr)98 emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
99 {
100    struct ir3_block *b = ctx->block;
101    struct ir3_instruction *stgb, *src0, *src1, *src2, *byte_offset, *offset;
102    unsigned wrmask = nir_intrinsic_write_mask(intr);
103    unsigned ncomp = ffs(~wrmask) - 1;
104 
105    assert(wrmask == BITFIELD_MASK(intr->num_components));
106 
107    struct ir3_instruction *ssbo = ir3_ssbo_to_ibo(ctx, intr->src[1]);
108 
109    byte_offset = ir3_get_src(ctx, &intr->src[2])[0];
110    offset = ir3_get_src(ctx, &intr->src[3])[0];
111 
112    /* src0 is value, src1 is offset, src2 is uvec2(offset*4, 0)..
113     * nir already *= 4:
114     */
115    src0 = ir3_create_collect(b, ir3_get_src(ctx, &intr->src[0]), ncomp);
116    src1 = offset;
117    src2 = byte_offset_to_address(ctx, &intr->src[1], byte_offset);
118 
119    stgb = ir3_STGB(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
120    stgb->cat6.iim_val = ncomp;
121    stgb->cat6.d = 4;
122    stgb->cat6.type = TYPE_U32;
123    stgb->barrier_class = IR3_BARRIER_BUFFER_W;
124    stgb->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
125 
126    array_insert(b, b->keeps, stgb);
127 }
128 
129 static struct ir3_instruction *
emit_atomic(struct ir3_block * b,nir_atomic_op op,struct ir3_instruction * bo,struct ir3_instruction * data,struct ir3_instruction * offset,struct ir3_instruction * byte_offset)130 emit_atomic(struct ir3_block *b,
131             nir_atomic_op op,
132             struct ir3_instruction *bo,
133             struct ir3_instruction *data,
134             struct ir3_instruction *offset,
135             struct ir3_instruction *byte_offset)
136 {
137    switch (op) {
138    case nir_atomic_op_iadd:
139       return ir3_ATOMIC_S_ADD(b, bo, 0, data, 0, offset, 0, byte_offset, 0);
140    case nir_atomic_op_imin:
141       return ir3_ATOMIC_S_MIN(b, bo, 0, data, 0, offset, 0, byte_offset, 0);
142    case nir_atomic_op_umin:
143       return ir3_ATOMIC_S_MIN(b, bo, 0, data, 0, offset, 0, byte_offset, 0);
144    case nir_atomic_op_imax:
145       return ir3_ATOMIC_S_MAX(b, bo, 0, data, 0, offset, 0, byte_offset, 0);
146    case nir_atomic_op_umax:
147       return ir3_ATOMIC_S_MAX(b, bo, 0, data, 0, offset, 0, byte_offset, 0);
148    case nir_atomic_op_iand:
149       return ir3_ATOMIC_S_AND(b, bo, 0, data, 0, offset, 0, byte_offset, 0);
150    case nir_atomic_op_ior:
151       return ir3_ATOMIC_S_OR(b, bo, 0, data, 0, offset, 0, byte_offset, 0);
152    case nir_atomic_op_ixor:
153       return ir3_ATOMIC_S_XOR(b, bo, 0, data, 0, offset, 0, byte_offset, 0);
154    case nir_atomic_op_xchg:
155       return ir3_ATOMIC_S_XCHG(b, bo, 0, data, 0, offset, 0, byte_offset, 0);
156    case nir_atomic_op_cmpxchg:
157       return ir3_ATOMIC_S_CMPXCHG(b, bo, 0, data, 0, offset, 0, byte_offset, 0);
158    default:
159       unreachable("boo");
160    }
161 }
162 
163 /*
164  * SSBO atomic intrinsics
165  *
166  * All of the SSBO atomic memory operations read a value from memory,
167  * compute a new value using one of the operations below, write the new
168  * value to memory, and return the original value read.
169  *
170  * All operations take 3 sources except CompSwap that takes 4. These
171  * sources represent:
172  *
173  * 0: The SSBO buffer index.
174  * 1: The byte offset into the SSBO buffer of the variable that the atomic
175  *    operation will operate on.
176  * 2: The data parameter to the atomic function (i.e. the value to add
177  *    in, etc).
178  * 3: CompSwap: the second data parameter.
179  *    Non-CompSwap: The dword offset into the SSBO buffer variable.
180  * 4: CompSwap: The dword offset into the SSBO buffer variable.
181  *
182  * We use custom ssbo_*_ir3 intrinsics generated by ir3_nir_lower_io_offsets()
183  * so we can have the dword offset generated in NIR.
184  */
185 static struct ir3_instruction *
emit_intrinsic_atomic_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr)186 emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
187 {
188    struct ir3_block *b = ctx->block;
189    nir_atomic_op op = nir_intrinsic_atomic_op(intr);
190    type_t type = nir_atomic_op_type(op) == nir_type_int ? TYPE_S32 : TYPE_U32;
191 
192    struct ir3_instruction *ssbo = ir3_ssbo_to_ibo(ctx, intr->src[0]);
193 
194    struct ir3_instruction *data = ir3_get_src(ctx, &intr->src[2])[0];
195    /* 64b byte offset */
196    struct ir3_instruction *byte_offset =
197       byte_offset_to_address(ctx, &intr->src[0], ir3_get_src(ctx, &intr->src[1])[0]);
198    /* dword offset for everything but cmpxchg */
199    struct ir3_instruction *src3 = ir3_get_src(ctx, &intr->src[3])[0];
200 
201    if (op == nir_atomic_op_cmpxchg) {
202       /* for cmpxchg, src0 is [ui]vec2(data, compare): */
203       data = ir3_collect(b, src3, data);
204       src3 = ir3_get_src(ctx, &intr->src[4])[0];
205    }
206 
207    struct ir3_instruction *atomic =
208       emit_atomic(b, op, ssbo, data, src3, byte_offset);
209 
210    atomic->cat6.iim_val = 1;
211    atomic->cat6.d = 4;
212    atomic->cat6.type = type;
213    atomic->barrier_class = IR3_BARRIER_BUFFER_W;
214    atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
215 
216    /* even if nothing consume the result, we can't DCE the instruction: */
217    array_insert(b, b->keeps, atomic);
218 
219    return atomic;
220 }
221 
222 static struct ir3_instruction *
get_image_offset(struct ir3_context * ctx,const nir_intrinsic_instr * instr,struct ir3_instruction * const * coords,bool byteoff)223 get_image_offset(struct ir3_context *ctx, const nir_intrinsic_instr *instr,
224                  struct ir3_instruction *const *coords, bool byteoff)
225 {
226    struct ir3_block *b = ctx->block;
227    struct ir3_instruction *offset;
228    unsigned index = nir_src_as_uint(instr->src[0]);
229    unsigned ncoords = ir3_get_image_coords(instr, NULL);
230 
231    /* to calculate the byte offset (yes, uggg) we need (up to) three
232     * const values to know the bytes per pixel, and y and z stride:
233     */
234    unsigned cb;
235    if (ctx->compiler->gen > 4) {
236       const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
237       assert(const_state->image_dims.mask & (1 << index));
238 
239       cb = regid(const_state->offsets.image_dims, 0) +
240          const_state->image_dims.off[index];
241    } else {
242       index += ctx->s->info.num_ssbos;
243       cb = A4XX_SSBO_CB_BASE(index);
244    }
245 
246    /* offset = coords.x * bytes_per_pixel: */
247    if (ctx->compiler->gen == 4)
248       offset = ir3_MUL_S24(b, coords[0], 0, create_uniform(b, cb + 3), 0);
249    else
250       offset = ir3_MUL_S24(b, coords[0], 0, create_uniform(b, cb + 0), 0);
251    if (ncoords > 1) {
252       /* offset += coords.y * y_pitch: */
253       offset =
254          ir3_MAD_S24(b, create_uniform(b, cb + 1), 0, coords[1], 0, offset, 0);
255    }
256    if (ncoords > 2) {
257       /* offset += coords.z * z_pitch: */
258       offset =
259          ir3_MAD_S24(b, create_uniform(b, cb + 2), 0, coords[2], 0, offset, 0);
260    }
261 
262    /* a4xx: must add in the base address: */
263    if (ctx->compiler->gen == 4)
264       offset = ir3_ADD_U(b, offset, 0, create_uniform(b, cb + 0), 0);
265 
266    if (!byteoff) {
267       /* Some cases, like atomics, seem to use dword offset instead
268        * of byte offsets.. blob just puts an extra shr.b in there
269        * in those cases:
270        */
271       offset = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
272    }
273 
274    if (ctx->compiler->is_64bit)
275       return ir3_collect(b, offset, create_immed(b, 0));
276    else
277       return offset;
278 }
279 
280 /* src[] = { deref, coord, sample_index }. const_index[] = {} */
281 static void
emit_intrinsic_load_image(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)282 emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
283                           struct ir3_instruction **dst)
284 {
285    struct ir3_block *b = ctx->block;
286    struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
287    struct ir3_instruction *ibo = ir3_image_to_ibo(ctx, intr->src[0]);
288    struct ir3_instruction *offset = get_image_offset(ctx, intr, coords, true);
289    unsigned ncoords = ir3_get_image_coords(intr, NULL);
290    unsigned ncomp =
291       ir3_get_num_components_for_image_format(nir_intrinsic_format(intr));
292 
293    struct ir3_instruction *ldib;
294    /* At least A420 does not have LDIB. Use LDGB and perform conversion
295     * ourselves.
296     *
297     * TODO: Actually do the conversion. ES 3.1 only requires this for
298     * single-component 32-bit types anyways.
299     */
300    if (ctx->compiler->gen > 4) {
301       ldib = ir3_LDIB(
302             b, ibo, 0, offset, 0, ir3_create_collect(b, coords, ncoords), 0);
303    } else {
304       ldib = ir3_LDGB(
305             b, ibo, 0, offset, 0, ir3_create_collect(b, coords, ncoords), 0);
306       switch (nir_intrinsic_format(intr)) {
307       case PIPE_FORMAT_R32_UINT:
308       case PIPE_FORMAT_R32_SINT:
309       case PIPE_FORMAT_R32_FLOAT:
310          break;
311       default:
312          /* For some reason even more 32-bit components don't work. */
313          assert(0);
314          break;
315       }
316    }
317    ldib->dsts[0]->wrmask = MASK(intr->num_components);
318    ldib->cat6.iim_val = ncomp;
319    ldib->cat6.d = ncoords;
320    ldib->cat6.type = ir3_get_type_for_image_intrinsic(intr);
321    ldib->cat6.typed = true;
322    ldib->barrier_class = IR3_BARRIER_IMAGE_R;
323    ldib->barrier_conflict = IR3_BARRIER_IMAGE_W;
324 
325    ir3_split_dest(b, dst, ldib, 0, intr->num_components);
326 }
327 
328 /* src[] = { index, coord, sample_index, value }. const_index[] = {} */
329 static void
emit_intrinsic_store_image(struct ir3_context * ctx,nir_intrinsic_instr * intr)330 emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
331 {
332    struct ir3_block *b = ctx->block;
333    struct ir3_instruction *stib, *offset;
334    struct ir3_instruction *const *value = ir3_get_src(ctx, &intr->src[3]);
335    struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
336    struct ir3_instruction *ibo = ir3_image_to_ibo(ctx, intr->src[0]);
337    unsigned ncoords = ir3_get_image_coords(intr, NULL);
338    unsigned ncomp =
339       ir3_get_num_components_for_image_format(nir_intrinsic_format(intr));
340 
341    /* src0 is value
342     * src1 is coords
343     * src2 is 64b byte offset
344     */
345 
346    offset = get_image_offset(ctx, intr, coords, true);
347 
348    /* NOTE: stib seems to take byte offset, but stgb.typed can be used
349     * too and takes a dword offset.. not quite sure yet why blob uses
350     * one over the other in various cases.
351     */
352 
353    stib = ir3_STIB(b, ibo, 0, ir3_create_collect(b, value, ncomp), 0,
354                    ir3_create_collect(b, coords, ncoords), 0, offset, 0);
355    stib->cat6.iim_val = ncomp;
356    stib->cat6.d = ncoords;
357    stib->cat6.type = ir3_get_type_for_image_intrinsic(intr);
358    stib->cat6.typed = true;
359    stib->barrier_class = IR3_BARRIER_IMAGE_W;
360    stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
361 
362    array_insert(b, b->keeps, stib);
363 }
364 
365 /* src[] = { deref, coord, sample_index, value, compare }. const_index[] = {} */
366 static struct ir3_instruction *
emit_intrinsic_atomic_image(struct ir3_context * ctx,nir_intrinsic_instr * intr)367 emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
368 {
369    struct ir3_block *b = ctx->block;
370    struct ir3_instruction *atomic, *src0, *src1, *src2;
371    struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
372    struct ir3_instruction *image = ir3_image_to_ibo(ctx, intr->src[0]);
373    unsigned ncoords = ir3_get_image_coords(intr, NULL);
374    nir_atomic_op op = nir_intrinsic_atomic_op(intr);
375 
376    /* src0 is value (or uvec2(value, compare))
377     * src1 is coords
378     * src2 is 64b byte offset
379     */
380    src0 = ir3_get_src(ctx, &intr->src[3])[0];
381    src1 = ir3_create_collect(b, coords, ncoords);
382    src2 = get_image_offset(ctx, intr, coords, ctx->compiler->gen == 4);
383 
384    if (op == nir_atomic_op_cmpxchg)
385       src0 = ir3_collect(b, ir3_get_src(ctx, &intr->src[4])[0], src0);
386 
387    atomic = emit_atomic(b, op, image, src0, src1, src2);
388    atomic->cat6.iim_val = 1;
389    atomic->cat6.d = ncoords;
390    atomic->cat6.type = ir3_get_type_for_image_intrinsic(intr);
391    atomic->cat6.typed = ctx->compiler->gen == 5;
392    atomic->barrier_class = IR3_BARRIER_IMAGE_W;
393    atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
394 
395    /* even if nothing consume the result, we can't DCE the instruction: */
396    array_insert(b, b->keeps, atomic);
397 
398    return atomic;
399 }
400 
401 static struct ir3_instruction *
emit_intrinsic_atomic_global(struct ir3_context * ctx,nir_intrinsic_instr * intr)402 emit_intrinsic_atomic_global(struct ir3_context *ctx, nir_intrinsic_instr *intr)
403 {
404    unreachable("Global atomic are unimplemented on A5xx");
405 }
406 
407 const struct ir3_context_funcs ir3_a4xx_funcs = {
408    .emit_intrinsic_load_ssbo = emit_intrinsic_load_ssbo,
409    .emit_intrinsic_store_ssbo = emit_intrinsic_store_ssbo,
410    .emit_intrinsic_atomic_ssbo = emit_intrinsic_atomic_ssbo,
411    .emit_intrinsic_load_image = emit_intrinsic_load_image,
412    .emit_intrinsic_store_image = emit_intrinsic_store_image,
413    .emit_intrinsic_atomic_image = emit_intrinsic_atomic_image,
414    .emit_intrinsic_image_size = emit_intrinsic_image_size_tex,
415    .emit_intrinsic_load_global_ir3 = NULL,
416    .emit_intrinsic_store_global_ir3 = NULL,
417    .emit_intrinsic_atomic_global = emit_intrinsic_atomic_global,
418 };
419