• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017-2018 Rob Clark <robclark@freedesktop.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Rob Clark <robclark@freedesktop.org>
25  */
26 
27 #define GPU 600
28 
29 #include "ir3_context.h"
30 #include "ir3_image.h"
31 
32 /*
33  * Handlers for instructions changed/added in a6xx:
34  *
35  * Starting with a6xx, isam and stbi is used for SSBOs as well; stbi and the
36  * atomic instructions (used for both SSBO and image) use a new instruction
37  * encoding compared to a4xx/a5xx.
38  */
39 
40 /* src[] = { buffer_index, offset }. No const_index */
41 static void
emit_intrinsic_load_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)42 emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
43                          struct ir3_instruction **dst)
44 {
45    struct ir3_block *b = ctx->block;
46    struct ir3_instruction *offset;
47    struct ir3_instruction *ldib;
48 
49    offset = ir3_get_src(ctx, &intr->src[2])[0];
50 
51    ldib = ir3_LDIB(b, ir3_ssbo_to_ibo(ctx, intr->src[0]), 0, offset, 0);
52    ldib->dsts[0]->wrmask = MASK(intr->num_components);
53    ldib->cat6.iim_val = intr->num_components;
54    ldib->cat6.d = 1;
55    ldib->cat6.type = intr->def.bit_size == 16 ? TYPE_U16 : TYPE_U32;
56    ldib->barrier_class = IR3_BARRIER_BUFFER_R;
57    ldib->barrier_conflict = IR3_BARRIER_BUFFER_W;
58    ir3_handle_bindless_cat6(ldib, intr->src[0]);
59    ir3_handle_nonuniform(ldib, intr);
60 
61    ir3_split_dest(b, dst, ldib, 0, intr->num_components);
62 }
63 
64 /* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
65 static void
emit_intrinsic_store_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr)66 emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
67 {
68    struct ir3_block *b = ctx->block;
69    struct ir3_instruction *stib, *val, *offset;
70    unsigned wrmask = nir_intrinsic_write_mask(intr);
71    unsigned ncomp = ffs(~wrmask) - 1;
72 
73    assert(wrmask == BITFIELD_MASK(intr->num_components));
74 
75    /* src0 is offset, src1 is value:
76     */
77    val = ir3_create_collect(b, ir3_get_src(ctx, &intr->src[0]), ncomp);
78    offset = ir3_get_src(ctx, &intr->src[3])[0];
79 
80    stib = ir3_STIB(b, ir3_ssbo_to_ibo(ctx, intr->src[1]), 0, offset, 0, val, 0);
81    stib->cat6.iim_val = ncomp;
82    stib->cat6.d = 1;
83    stib->cat6.type = intr->src[0].ssa->bit_size == 16 ? TYPE_U16 : TYPE_U32;
84    stib->barrier_class = IR3_BARRIER_BUFFER_W;
85    stib->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
86    ir3_handle_bindless_cat6(stib, intr->src[1]);
87    ir3_handle_nonuniform(stib, intr);
88 
89    array_insert(b, b->keeps, stib);
90 }
91 
92 static struct ir3_instruction *
emit_atomic(struct ir3_block * b,nir_atomic_op op,struct ir3_instruction * ibo,struct ir3_instruction * src0,struct ir3_instruction * src1)93 emit_atomic(struct ir3_block *b,
94             nir_atomic_op op,
95             struct ir3_instruction *ibo,
96             struct ir3_instruction *src0,
97             struct ir3_instruction *src1)
98 {
99    switch (op) {
100    case nir_atomic_op_iadd:
101       return ir3_ATOMIC_B_ADD(b, ibo, 0, src0, 0, src1, 0);
102    case nir_atomic_op_imin:
103       return ir3_ATOMIC_B_MIN(b, ibo, 0, src0, 0, src1, 0);
104    case nir_atomic_op_umin:
105       return ir3_ATOMIC_B_MIN(b, ibo, 0, src0, 0, src1, 0);
106    case nir_atomic_op_imax:
107       return ir3_ATOMIC_B_MAX(b, ibo, 0, src0, 0, src1, 0);
108    case nir_atomic_op_umax:
109       return ir3_ATOMIC_B_MAX(b, ibo, 0, src0, 0, src1, 0);
110    case nir_atomic_op_iand:
111       return ir3_ATOMIC_B_AND(b, ibo, 0, src0, 0, src1, 0);
112    case nir_atomic_op_ior:
113       return ir3_ATOMIC_B_OR(b, ibo, 0, src0, 0, src1, 0);
114    case nir_atomic_op_ixor:
115       return ir3_ATOMIC_B_XOR(b, ibo, 0, src0, 0, src1, 0);
116    case nir_atomic_op_xchg:
117       return ir3_ATOMIC_B_XCHG(b, ibo, 0, src0, 0, src1, 0);
118    case nir_atomic_op_cmpxchg:
119       return ir3_ATOMIC_B_CMPXCHG(b, ibo, 0, src0, 0, src1, 0);
120    default:
121       unreachable("boo");
122    }
123 }
124 
125 /*
126  * SSBO atomic intrinsics
127  *
128  * All of the SSBO atomic memory operations read a value from memory,
129  * compute a new value using one of the operations below, write the new
130  * value to memory, and return the original value read.
131  *
132  * All operations take 3 sources except CompSwap that takes 4. These
133  * sources represent:
134  *
135  * 0: The SSBO buffer index.
136  * 1: The offset into the SSBO buffer of the variable that the atomic
137  *    operation will operate on.
138  * 2: The data parameter to the atomic function (i.e. the value to add
139  *    in, etc).
140  * 3: For CompSwap only: the second data parameter.
141  */
142 static struct ir3_instruction *
emit_intrinsic_atomic_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr)143 emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
144 {
145    struct ir3_block *b = ctx->block;
146    struct ir3_instruction *atomic, *ibo, *src0, *src1, *data, *dummy;
147    nir_atomic_op op = nir_intrinsic_atomic_op(intr);
148    type_t type = nir_atomic_op_type(op) == nir_type_int ? TYPE_S32 : TYPE_U32;
149 
150    ibo = ir3_ssbo_to_ibo(ctx, intr->src[0]);
151 
152    data = ir3_get_src(ctx, &intr->src[2])[0];
153 
154    /* So this gets a bit creative:
155     *
156     *    src0    - vecN offset/coords
157     *    src1.x  - is actually destination register
158     *    src1.y  - is 'data' except for cmpxchg where src2.y is 'compare'
159     *    src1.z  - is 'data' for cmpxchg
160     *
161     * The combining src and dest kinda doesn't work out so well with how
162     * scheduling and RA work. So we create a dummy src2 which is tied to the
163     * destination in RA (i.e. must be allocated to the same vec2/vec3
164     * register) and then immediately extract the first component.
165     *
166     * Note that nir already multiplies the offset by four
167     */
168    dummy = create_immed(b, 0);
169 
170    if (op == nir_atomic_op_cmpxchg) {
171       src0 = ir3_get_src(ctx, &intr->src[4])[0];
172       struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[3])[0];
173       src1 = ir3_collect(b, dummy, compare, data);
174    } else {
175       src0 = ir3_get_src(ctx, &intr->src[3])[0];
176       src1 = ir3_collect(b, dummy, data);
177    }
178 
179    atomic = emit_atomic(b, op, ibo, src0, src1);
180    atomic->cat6.iim_val = 1;
181    atomic->cat6.d = 1;
182    atomic->cat6.type = type;
183    atomic->barrier_class = IR3_BARRIER_BUFFER_W;
184    atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
185    ir3_handle_bindless_cat6(atomic, intr->src[0]);
186 
187    /* even if nothing consume the result, we can't DCE the instruction: */
188    array_insert(b, b->keeps, atomic);
189 
190    atomic->dsts[0]->wrmask = src1->dsts[0]->wrmask;
191    ir3_reg_tie(atomic->dsts[0], atomic->srcs[2]);
192    ir3_handle_nonuniform(atomic, intr);
193    struct ir3_instruction *split;
194    ir3_split_dest(b, &split, atomic, 0, 1);
195    return split;
196 }
197 
198 /* src[] = { deref, coord, sample_index }. const_index[] = {} */
199 static void
emit_intrinsic_load_image(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)200 emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
201                           struct ir3_instruction **dst)
202 {
203    struct ir3_block *b = ctx->block;
204    struct ir3_instruction *ldib;
205    struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
206    unsigned ncoords = ir3_get_image_coords(intr, NULL);
207 
208    ldib = ir3_LDIB(b, ir3_image_to_ibo(ctx, intr->src[0]), 0,
209                    ir3_create_collect(b, coords, ncoords), 0);
210    ldib->dsts[0]->wrmask = MASK(intr->num_components);
211    ldib->cat6.iim_val = intr->num_components;
212    ldib->cat6.d = ncoords;
213    ldib->cat6.type = ir3_get_type_for_image_intrinsic(intr);
214    ldib->cat6.typed = true;
215    ldib->barrier_class = IR3_BARRIER_IMAGE_R;
216    ldib->barrier_conflict = IR3_BARRIER_IMAGE_W;
217    ir3_handle_bindless_cat6(ldib, intr->src[0]);
218    ir3_handle_nonuniform(ldib, intr);
219 
220    ir3_split_dest(b, dst, ldib, 0, intr->num_components);
221 }
222 
223 /* src[] = { deref, coord, sample_index, value }. const_index[] = {} */
224 static void
emit_intrinsic_store_image(struct ir3_context * ctx,nir_intrinsic_instr * intr)225 emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
226 {
227    struct ir3_block *b = ctx->block;
228    struct ir3_instruction *stib;
229    struct ir3_instruction *const *value = ir3_get_src(ctx, &intr->src[3]);
230    struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
231    unsigned ncoords = ir3_get_image_coords(intr, NULL);
232    enum pipe_format format = nir_intrinsic_format(intr);
233    unsigned ncomp = ir3_get_num_components_for_image_format(format);
234 
235    /* src0 is offset, src1 is value:
236     */
237    stib = ir3_STIB(b, ir3_image_to_ibo(ctx, intr->src[0]), 0,
238                    ir3_create_collect(b, coords, ncoords), 0,
239                    ir3_create_collect(b, value, ncomp), 0);
240    stib->cat6.iim_val = ncomp;
241    stib->cat6.d = ncoords;
242    stib->cat6.type = ir3_get_type_for_image_intrinsic(intr);
243    stib->cat6.typed = true;
244    stib->barrier_class = IR3_BARRIER_IMAGE_W;
245    stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
246    ir3_handle_bindless_cat6(stib, intr->src[0]);
247    ir3_handle_nonuniform(stib, intr);
248 
249    array_insert(b, b->keeps, stib);
250 }
251 
252 /* src[] = { deref, coord, sample_index, value, compare }. const_index[] = {} */
253 static struct ir3_instruction *
emit_intrinsic_atomic_image(struct ir3_context * ctx,nir_intrinsic_instr * intr)254 emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
255 {
256    struct ir3_block *b = ctx->block;
257    struct ir3_instruction *atomic, *ibo, *src0, *src1, *dummy;
258    struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
259    struct ir3_instruction *value = ir3_get_src(ctx, &intr->src[3])[0];
260    unsigned ncoords = ir3_get_image_coords(intr, NULL);
261    nir_atomic_op op = nir_intrinsic_atomic_op(intr);
262 
263    ibo = ir3_image_to_ibo(ctx, intr->src[0]);
264 
265    /* So this gets a bit creative:
266     *
267     *    src0    - vecN offset/coords
268     *    src1.x  - is actually destination register
269     *    src1.y  - is 'value' except for cmpxchg where src2.y is 'compare'
270     *    src1.z  - is 'value' for cmpxchg
271     *
272     * The combining src and dest kinda doesn't work out so well with how
273     * scheduling and RA work. So we create a dummy src2 which is tied to the
274     * destination in RA (i.e. must be allocated to the same vec2/vec3
275     * register) and then immediately extract the first component.
276     */
277    dummy = create_immed(b, 0);
278    src0 = ir3_create_collect(b, coords, ncoords);
279 
280    if (op == nir_atomic_op_cmpxchg) {
281       struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[4])[0];
282       src1 = ir3_collect(b, dummy, compare, value);
283    } else {
284       src1 = ir3_collect(b, dummy, value);
285    }
286 
287    atomic = emit_atomic(b, op, ibo, src0, src1);
288    atomic->cat6.iim_val = 1;
289    atomic->cat6.d = ncoords;
290    atomic->cat6.type = ir3_get_type_for_image_intrinsic(intr);
291    atomic->cat6.typed = true;
292    atomic->barrier_class = IR3_BARRIER_IMAGE_W;
293    atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
294    ir3_handle_bindless_cat6(atomic, intr->src[0]);
295 
296    /* even if nothing consume the result, we can't DCE the instruction: */
297    array_insert(b, b->keeps, atomic);
298 
299    atomic->dsts[0]->wrmask = src1->dsts[0]->wrmask;
300    ir3_reg_tie(atomic->dsts[0], atomic->srcs[2]);
301    ir3_handle_nonuniform(atomic, intr);
302    struct ir3_instruction *split;
303    ir3_split_dest(b, &split, atomic, 0, 1);
304    return split;
305 }
306 
307 static void
emit_intrinsic_image_size(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)308 emit_intrinsic_image_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
309                           struct ir3_instruction **dst)
310 {
311    struct ir3_block *b = ctx->block;
312    struct ir3_instruction *ibo = ir3_image_to_ibo(ctx, intr->src[0]);
313    struct ir3_instruction *resinfo = ir3_RESINFO(b, ibo, 0);
314    resinfo->cat6.iim_val = 1;
315    resinfo->cat6.d = intr->num_components;
316    resinfo->cat6.type = TYPE_U32;
317    resinfo->cat6.typed = false;
318    /* resinfo has no writemask and always writes out 3 components: */
319    compile_assert(ctx, intr->num_components <= 3);
320    resinfo->dsts[0]->wrmask = MASK(3);
321    ir3_handle_bindless_cat6(resinfo, intr->src[0]);
322    ir3_handle_nonuniform(resinfo, intr);
323 
324    ir3_split_dest(b, dst, resinfo, 0, intr->num_components);
325 }
326 
327 static void
emit_intrinsic_load_global_ir3(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)328 emit_intrinsic_load_global_ir3(struct ir3_context *ctx,
329                                nir_intrinsic_instr *intr,
330                                struct ir3_instruction **dst)
331 {
332    struct ir3_block *b = ctx->block;
333    unsigned dest_components = nir_intrinsic_dest_components(intr);
334    struct ir3_instruction *addr, *offset;
335 
336    addr = ir3_collect(b, ir3_get_src(ctx, &intr->src[0])[0],
337                       ir3_get_src(ctx, &intr->src[0])[1]);
338 
339    struct ir3_instruction *load;
340 
341    unsigned shift = ctx->compiler->gen >= 7 ? 2 : 0;
342    bool const_offset_in_bounds =
343       nir_src_is_const(intr->src[1]) &&
344       nir_src_as_int(intr->src[1]) < ((1 << 10) >> shift) &&
345       nir_src_as_int(intr->src[1]) > -((1 << 10) >> shift);
346 
347    if (const_offset_in_bounds) {
348       load = ir3_LDG(b, addr, 0,
349                      create_immed(b, nir_src_as_int(intr->src[1]) << shift),
350                      0, create_immed(b, dest_components), 0);
351    } else {
352       offset = ir3_get_src(ctx, &intr->src[1])[0];
353       if (shift) {
354          /* A7XX TODO: Move to NIR for it to be properly optimized? */
355          offset = ir3_SHL_B(b, offset, 0, create_immed(b, shift), 0);
356       }
357       load =
358          ir3_LDG_A(b, addr, 0, offset, 0, create_immed(b, 0), 0,
359                    create_immed(b, 0), 0, create_immed(b, dest_components), 0);
360    }
361 
362    load->cat6.type = type_uint_size(intr->def.bit_size);
363    load->dsts[0]->wrmask = MASK(dest_components);
364 
365    load->barrier_class = IR3_BARRIER_BUFFER_R;
366    load->barrier_conflict = IR3_BARRIER_BUFFER_W;
367 
368    ir3_split_dest(b, dst, load, 0, dest_components);
369 }
370 
371 static void
emit_intrinsic_store_global_ir3(struct ir3_context * ctx,nir_intrinsic_instr * intr)372 emit_intrinsic_store_global_ir3(struct ir3_context *ctx,
373                                 nir_intrinsic_instr *intr)
374 {
375    struct ir3_block *b = ctx->block;
376    struct ir3_instruction *value, *addr, *offset;
377    unsigned ncomp = nir_intrinsic_src_components(intr, 0);
378 
379    addr = ir3_collect(b, ir3_get_src(ctx, &intr->src[1])[0],
380                       ir3_get_src(ctx, &intr->src[1])[1]);
381 
382    value = ir3_create_collect(b, ir3_get_src(ctx, &intr->src[0]), ncomp);
383 
384    struct ir3_instruction *stg;
385 
386    bool const_offset_in_bounds = nir_src_is_const(intr->src[2]) &&
387                                  nir_src_as_int(intr->src[2]) < (1 << 10) &&
388                                  nir_src_as_int(intr->src[2]) > -(1 << 10);
389 
390    if (const_offset_in_bounds) {
391       stg = ir3_STG(b, addr, 0,
392                     create_immed(b, nir_src_as_int(intr->src[2])), 0,
393                     value, 0,
394                     create_immed(b, ncomp), 0);
395    } else {
396       offset = ir3_get_src(ctx, &intr->src[2])[0];
397       if (ctx->compiler->gen >= 7) {
398          /* A7XX TODO: Move to NIR for it to be properly optimized? */
399          offset = ir3_SHL_B(b, offset, 0, create_immed(b, 2), 0);
400       }
401       stg =
402          ir3_STG_A(b, addr, 0, offset, 0, create_immed(b, 0), 0,
403                    create_immed(b, 0), 0, value, 0, create_immed(b, ncomp), 0);
404    }
405 
406    stg->cat6.type = type_uint_size(intr->src[0].ssa->bit_size);
407    stg->cat6.iim_val = 1;
408 
409    array_insert(b, b->keeps, stg);
410 
411    stg->barrier_class = IR3_BARRIER_BUFFER_W;
412    stg->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
413 }
414 
415 static struct ir3_instruction *
emit_intrinsic_atomic_global(struct ir3_context * ctx,nir_intrinsic_instr * intr)416 emit_intrinsic_atomic_global(struct ir3_context *ctx, nir_intrinsic_instr *intr)
417 {
418    struct ir3_block *b = ctx->block;
419    struct ir3_instruction *addr, *atomic, *src1;
420    struct ir3_instruction *value = ir3_get_src(ctx, &intr->src[1])[0];
421    nir_atomic_op op = nir_intrinsic_atomic_op(intr);
422    type_t type = nir_atomic_op_type(op) == nir_type_int ? TYPE_S32 : TYPE_U32;
423 
424    addr = ir3_collect(b, ir3_get_src(ctx, &intr->src[0])[0],
425                       ir3_get_src(ctx, &intr->src[0])[1]);
426 
427    if (op == nir_atomic_op_cmpxchg) {
428       struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[2])[0];
429       src1 = ir3_collect(b, compare, value);
430    } else {
431       src1 = value;
432    }
433 
434    switch (op) {
435    case nir_atomic_op_iadd:
436       atomic = ir3_ATOMIC_G_ADD(b, addr, 0, src1, 0);
437       break;
438    case nir_atomic_op_imin:
439       atomic = ir3_ATOMIC_G_MIN(b, addr, 0, src1, 0);
440       type = TYPE_S32;
441       break;
442    case nir_atomic_op_umin:
443       atomic = ir3_ATOMIC_G_MIN(b, addr, 0, src1, 0);
444       break;
445    case nir_atomic_op_imax:
446       atomic = ir3_ATOMIC_G_MAX(b, addr, 0, src1, 0);
447       type = TYPE_S32;
448       break;
449    case nir_atomic_op_umax:
450       atomic = ir3_ATOMIC_G_MAX(b, addr, 0, src1, 0);
451       break;
452    case nir_atomic_op_iand:
453       atomic = ir3_ATOMIC_G_AND(b, addr, 0, src1, 0);
454       break;
455    case nir_atomic_op_ior:
456       atomic = ir3_ATOMIC_G_OR(b, addr, 0, src1, 0);
457       break;
458    case nir_atomic_op_ixor:
459       atomic = ir3_ATOMIC_G_XOR(b, addr, 0, src1, 0);
460       break;
461    case nir_atomic_op_xchg:
462       atomic = ir3_ATOMIC_G_XCHG(b, addr, 0, src1, 0);
463       break;
464    case nir_atomic_op_cmpxchg:
465       atomic = ir3_ATOMIC_G_CMPXCHG(b, addr, 0, src1, 0);
466       break;
467    default:
468       unreachable("Unknown global atomic op");
469    }
470 
471    atomic->cat6.iim_val = 1;
472    atomic->cat6.d = 1;
473    atomic->cat6.type = type;
474    atomic->barrier_class = IR3_BARRIER_BUFFER_W;
475    atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
476 
477    /* even if nothing consume the result, we can't DCE the instruction: */
478    array_insert(b, b->keeps, atomic);
479 
480    return atomic;
481 }
482 
483 const struct ir3_context_funcs ir3_a6xx_funcs = {
484    .emit_intrinsic_load_ssbo = emit_intrinsic_load_ssbo,
485    .emit_intrinsic_store_ssbo = emit_intrinsic_store_ssbo,
486    .emit_intrinsic_atomic_ssbo = emit_intrinsic_atomic_ssbo,
487    .emit_intrinsic_load_image = emit_intrinsic_load_image,
488    .emit_intrinsic_store_image = emit_intrinsic_store_image,
489    .emit_intrinsic_atomic_image = emit_intrinsic_atomic_image,
490    .emit_intrinsic_image_size = emit_intrinsic_image_size,
491    .emit_intrinsic_load_global_ir3 = emit_intrinsic_load_global_ir3,
492    .emit_intrinsic_store_global_ir3 = emit_intrinsic_store_global_ir3,
493    .emit_intrinsic_atomic_global = emit_intrinsic_atomic_global,
494 };
495