• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  * SPDX-License-Identifier: MIT
5  *
6  * based in part on anv driver which is:
7  * Copyright © 2015 Intel Corporation
8  */
9 
10 #include "tu_cmd_buffer.h"
11 
12 #include "vk_render_pass.h"
13 #include "vk_util.h"
14 #include "vk_common_entrypoints.h"
15 
16 #include "tu_clear_blit.h"
17 #include "tu_cs.h"
18 #include "tu_image.h"
19 #include "tu_tracepoints.h"
20 
21 #include "common/freedreno_gpu_event.h"
22 
23 static void
tu_clone_trace_range(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct u_trace_iterator begin,struct u_trace_iterator end)24 tu_clone_trace_range(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
25                      struct u_trace_iterator begin, struct u_trace_iterator end)
26 {
27    if (u_trace_iterator_equal(begin, end))
28       return;
29 
30    tu_cs_emit_wfi(cs);
31    tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
32    u_trace_clone_append(begin, end, &cmd->trace, cs,
33          tu_copy_timestamp_buffer);
34 }
35 
36 static void
tu_clone_trace(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct u_trace * trace)37 tu_clone_trace(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
38                struct u_trace *trace)
39 {
40    tu_clone_trace_range(cmd, cs, u_trace_begin_iterator(trace),
41          u_trace_end_iterator(trace));
42 }
43 
44 template <chip CHIP>
45 static void
tu_emit_raw_event_write(struct tu_cmd_buffer * cmd,struct tu_cs * cs,enum vgt_event_type event,bool needs_seqno)46 tu_emit_raw_event_write(struct tu_cmd_buffer *cmd,
47                         struct tu_cs *cs,
48                         enum vgt_event_type event,
49                         bool needs_seqno)
50 {
51    if (CHIP == A6XX) {
52       tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, needs_seqno ? 4 : 1);
53       tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
54    } else {
55       tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, needs_seqno ? 4 : 1);
56       tu_cs_emit(cs,
57          CP_EVENT_WRITE7_0(.event = event,
58                            .write_src = EV_WRITE_USER_32B,
59                            .write_dst = EV_DST_RAM,
60                            .write_enabled = needs_seqno).value);
61    }
62 
63    if (needs_seqno) {
64       tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
65       tu_cs_emit(cs, 0);
66    }
67 }
68 
69 template <chip CHIP>
70 void
tu_emit_event_write(struct tu_cmd_buffer * cmd,struct tu_cs * cs,enum fd_gpu_event event)71 tu_emit_event_write(struct tu_cmd_buffer *cmd,
72                     struct tu_cs *cs,
73                     enum fd_gpu_event event)
74 {
75    struct fd_gpu_event_info event_info = fd_gpu_events<CHIP>[event];
76    tu_emit_raw_event_write<CHIP>(cmd, cs, event_info.raw_event,
77                                  event_info.needs_seqno);
78 }
79 TU_GENX(tu_emit_event_write);
80 
81 /* Emits the tessfactor address to the top-level CS if it hasn't been already.
82  * Updating this register requires a WFI if outstanding drawing is using it, but
83  * tu6_init_hardware() will have WFIed before we started and no other draws
84  * could be using the tessfactor address yet since we only emit one per cmdbuf.
85  */
86 template <chip CHIP>
87 static void
tu6_lazy_emit_tessfactor_addr(struct tu_cmd_buffer * cmd)88 tu6_lazy_emit_tessfactor_addr(struct tu_cmd_buffer *cmd)
89 {
90    if (cmd->state.tessfactor_addr_set)
91       return;
92 
93    tu_cs_emit_regs(&cmd->cs, PC_TESSFACTOR_ADDR(CHIP, .qword = cmd->device->tess_bo->iova));
94    /* Updating PC_TESSFACTOR_ADDR could race with the next draw which uses it. */
95    cmd->state.cache.flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
96    cmd->state.tessfactor_addr_set = true;
97 }
98 
99 static void
tu6_lazy_emit_vsc(struct tu_cmd_buffer * cmd,struct tu_cs * cs)100 tu6_lazy_emit_vsc(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
101 {
102    struct tu_device *dev = cmd->device;
103    uint32_t num_vsc_pipes = dev->physical_device->info->num_vsc_pipes;
104 
105    /* VSC buffers:
106     * use vsc pitches from the largest values used so far with this device
107     * if there hasn't been overflow, there will already be a scratch bo
108     * allocated for these sizes
109     *
110     * if overflow is detected, the stream size is increased by 2x
111     */
112    mtx_lock(&dev->mutex);
113 
114    struct tu6_global *global = dev->global_bo_map;
115 
116    uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
117    uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
118 
119    if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
120       dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
121 
122    if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
123       dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
124 
125    cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
126    cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
127 
128    mtx_unlock(&dev->mutex);
129 
130    struct tu_bo *vsc_bo;
131    uint32_t size0 = cmd->vsc_prim_strm_pitch * num_vsc_pipes +
132                     cmd->vsc_draw_strm_pitch * num_vsc_pipes;
133 
134    tu_get_scratch_bo(dev, size0 + num_vsc_pipes * 4, &vsc_bo);
135 
136    tu_cs_emit_regs(cs,
137                    A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
138    tu_cs_emit_regs(cs,
139                    A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
140    tu_cs_emit_regs(
141       cs, A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
142                                      .bo_offset = cmd->vsc_prim_strm_pitch *
143                                                   num_vsc_pipes));
144 
145    cmd->vsc_initialized = true;
146 }
147 
148 template <chip CHIP>
149 static void
tu6_emit_flushes(struct tu_cmd_buffer * cmd_buffer,struct tu_cs * cs,struct tu_cache_state * cache)150 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
151                  struct tu_cs *cs,
152                  struct tu_cache_state *cache)
153 {
154    BITMASK_ENUM(tu_cmd_flush_bits) flushes = cache->flush_bits;
155    cache->flush_bits = 0;
156 
157    if (TU_DEBUG(FLUSHALL))
158       flushes |= TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_ALL_INVALIDATE;
159 
160    if (TU_DEBUG(SYNCDRAW))
161       flushes |= TU_CMD_FLAG_WAIT_MEM_WRITES |
162                  TU_CMD_FLAG_WAIT_FOR_IDLE |
163                  TU_CMD_FLAG_WAIT_FOR_ME;
164 
165    /* Experiments show that invalidating CCU while it still has data in it
166     * doesn't work, so make sure to always flush before invalidating in case
167     * any data remains that hasn't yet been made available through a barrier.
168     * However it does seem to work for UCHE.
169     */
170    if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
171                   TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
172       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_FLUSH_COLOR);
173    if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
174                   TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
175       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_FLUSH_DEPTH);
176    if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
177       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_COLOR);
178    if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
179       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_DEPTH);
180    if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
181       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_FLUSH);
182    if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
183       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_INVALIDATE);
184    if (flushes & TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE) {
185       tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP,
186             .cs_bindless = CHIP == A6XX ? 0x1f : 0xff,
187             .gfx_bindless = CHIP == A6XX ? 0x1f : 0xff,
188       ));
189    }
190    if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES)
191       tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
192    if (flushes & TU_CMD_FLAG_WAIT_FOR_IDLE)
193       tu_cs_emit_wfi(cs);
194    if (flushes & TU_CMD_FLAG_WAIT_FOR_ME)
195       tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
196 }
197 
198 /* "Normal" cache flushes outside the renderpass, that don't require any special handling */
199 template <chip CHIP>
200 void
tu_emit_cache_flush(struct tu_cmd_buffer * cmd_buffer)201 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer)
202 {
203    tu6_emit_flushes<CHIP>(cmd_buffer, &cmd_buffer->cs, &cmd_buffer->state.cache);
204 }
205 TU_GENX(tu_emit_cache_flush);
206 
207 /* Renderpass cache flushes inside the draw_cs */
208 template <chip CHIP>
209 void
tu_emit_cache_flush_renderpass(struct tu_cmd_buffer * cmd_buffer)210 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer)
211 {
212    if (!cmd_buffer->state.renderpass_cache.flush_bits &&
213        likely(!tu_env.debug))
214       return;
215    tu6_emit_flushes<CHIP>(cmd_buffer, &cmd_buffer->draw_cs,
216                     &cmd_buffer->state.renderpass_cache);
217 }
218 TU_GENX(tu_emit_cache_flush_renderpass);
219 
220 template <chip CHIP>
221 static void
emit_rb_ccu_cntl(struct tu_cs * cs,struct tu_device * dev,bool gmem)222 emit_rb_ccu_cntl(struct tu_cs *cs, struct tu_device *dev, bool gmem)
223 {
224    /* The CCUs are a cache that allocates memory from GMEM while facilitating
225     * framebuffer caching for sysmem rendering. The CCU is split into two parts,
226     * one for color and one for depth. The size and offset of these in GMEM can
227     * be configured separately.
228     *
229     * The most common configuration for the CCU is to occupy as much as possible
230     * of GMEM (CACHE_SIZE_FULL) during sysmem rendering as GMEM is unused. On
231     * the other hand, when rendering to GMEM, the CCUs can be left enabled at
232     * any configuration as they don't interfere with GMEM rendering and only
233     * overwrite GMEM when sysmem operations are performed.
234     *
235     * The vast majority of GMEM rendering doesn't need any sysmem operations
236     * but there are some cases where it is required. For example, when the
237     * framebuffer isn't aligned to the tile size or with certain MSAA resolves.
238     *
239     * To correctly handle these cases, we need to be able to switch between
240     * sysmem and GMEM rendering. We do this by allocating a carveout at the
241     * end of GMEM for the color CCU (as none of these operations are depth)
242     * which the color CCU offset is set to and the GMEM size available to the
243     * GMEM layout calculations is adjusted accordingly.
244     */
245    uint32_t color_offset = gmem ? dev->physical_device->ccu_offset_gmem
246                                 : dev->physical_device->ccu_offset_bypass;
247 
248    uint32_t color_offset_hi = color_offset >> 21;
249    color_offset &= 0x1fffff;
250 
251    uint32_t depth_offset = gmem ? 0
252                                 : dev->physical_device->ccu_depth_offset_bypass;
253 
254    uint32_t depth_offset_hi = depth_offset >> 21;
255    depth_offset &= 0x1fffff;
256 
257    enum a6xx_ccu_cache_size cache_size = !gmem ? CCU_CACHE_SIZE_FULL :
258       (a6xx_ccu_cache_size)(dev->physical_device->info->a6xx.gmem_ccu_color_cache_fraction);
259    bool concurrent_resolve = dev->physical_device->info->a6xx.concurrent_resolve;
260 
261    if (CHIP == A7XX) {
262       tu_cs_emit_regs(cs, A7XX_RB_CCU_CNTL(
263          .gmem_fast_clear_disable =
264             !dev->physical_device->info->a6xx.has_gmem_fast_clear,
265          .concurrent_resolve = concurrent_resolve,
266       ));
267       tu_cs_emit_regs(cs, A7XX_RB_CCU_CNTL2(
268          .depth_offset_hi = depth_offset_hi,
269          .color_offset_hi = color_offset_hi,
270          .depth_cache_size = CCU_CACHE_SIZE_FULL,
271          .depth_offset = depth_offset,
272          .color_cache_size = cache_size,
273          .color_offset = color_offset
274       ));
275 
276       if (dev->physical_device->info->a7xx.has_gmem_vpc_attr_buf) {
277          tu_cs_emit_regs(cs,
278             A7XX_VPC_ATTR_BUF_SIZE_GMEM(
279                   .size_gmem =
280                      gmem ? dev->physical_device->vpc_attr_buf_size_gmem
281                           : dev->physical_device->vpc_attr_buf_size_bypass),
282             A7XX_VPC_ATTR_BUF_BASE_GMEM(
283                   .base_gmem =
284                      gmem ? dev->physical_device->vpc_attr_buf_offset_gmem
285                           : dev->physical_device->vpc_attr_buf_offset_bypass), );
286          tu_cs_emit_regs(cs,
287             A7XX_PC_ATTR_BUF_SIZE_GMEM(
288                   .size_gmem =
289                      gmem ? dev->physical_device->vpc_attr_buf_size_gmem
290                           : dev->physical_device->vpc_attr_buf_size_bypass), );
291       }
292    } else {
293       tu_cs_emit_regs(cs, A6XX_RB_CCU_CNTL(
294          .gmem_fast_clear_disable =
295             !dev->physical_device->info->a6xx.has_gmem_fast_clear,
296          .concurrent_resolve = concurrent_resolve,
297          .depth_offset_hi = 0,
298          .color_offset_hi = color_offset_hi,
299          .depth_cache_size = CCU_CACHE_SIZE_FULL,
300          .depth_offset = 0,
301          .color_cache_size = cache_size,
302          .color_offset = color_offset
303       ));
304    }
305 }
306 
307 /* Cache flushes for things that use the color/depth read/write path (i.e.
308  * blits and draws). This deals with changing CCU state as well as the usual
309  * cache flushing.
310  */
311 template <chip CHIP>
312 void
tu_emit_cache_flush_ccu(struct tu_cmd_buffer * cmd_buffer,struct tu_cs * cs,enum tu_cmd_ccu_state ccu_state)313 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
314                         struct tu_cs *cs,
315                         enum tu_cmd_ccu_state ccu_state)
316 {
317    assert(ccu_state != TU_CMD_CCU_UNKNOWN);
318    /* It's unsafe to flush inside condition because we clear flush_bits */
319    assert(!cs->cond_stack_depth);
320 
321    /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
322     * the CCU may also contain data that we haven't flushed out yet, so we
323     * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
324     * emit a WFI as it isn't pipelined.
325     */
326    if (ccu_state != cmd_buffer->state.ccu_state) {
327       if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
328          cmd_buffer->state.cache.flush_bits |=
329             TU_CMD_FLAG_CCU_FLUSH_COLOR |
330             TU_CMD_FLAG_CCU_FLUSH_DEPTH;
331          cmd_buffer->state.cache.pending_flush_bits &= ~(
332             TU_CMD_FLAG_CCU_FLUSH_COLOR |
333             TU_CMD_FLAG_CCU_FLUSH_DEPTH);
334       }
335       cmd_buffer->state.cache.flush_bits |=
336          TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
337          TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
338          TU_CMD_FLAG_WAIT_FOR_IDLE;
339       cmd_buffer->state.cache.pending_flush_bits &= ~(
340          TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
341          TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
342          TU_CMD_FLAG_WAIT_FOR_IDLE);
343    }
344 
345    tu6_emit_flushes<CHIP>(cmd_buffer, cs, &cmd_buffer->state.cache);
346 
347    if (ccu_state != cmd_buffer->state.ccu_state) {
348       emit_rb_ccu_cntl<CHIP>(cs, cmd_buffer->device,
349                              ccu_state == TU_CMD_CCU_GMEM);
350       cmd_buffer->state.ccu_state = ccu_state;
351    }
352 }
353 TU_GENX(tu_emit_cache_flush_ccu);
354 
355 template <chip CHIP>
356 static void
tu6_emit_zs(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs)357 tu6_emit_zs(struct tu_cmd_buffer *cmd,
358             const struct tu_subpass *subpass,
359             struct tu_cs *cs)
360 {
361    const uint32_t a = subpass->depth_stencil_attachment.attachment;
362    if (a == VK_ATTACHMENT_UNUSED) {
363       tu_cs_emit_regs(cs,
364                       A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
365                       A6XX_RB_DEPTH_BUFFER_PITCH(0),
366                       A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
367                       A6XX_RB_DEPTH_BUFFER_BASE(0),
368                       A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
369 
370       tu_cs_emit_regs(cs,
371                       A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
372 
373       tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
374 
375       return;
376    }
377 
378    const struct tu_image_view *iview = cmd->state.attachments[a];
379    const struct tu_render_pass_attachment *attachment =
380       &cmd->state.pass->attachments[a];
381    enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
382 
383    tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
384    tu_cs_emit(cs, RB_DEPTH_BUFFER_INFO(CHIP,
385                      .depth_format = fmt,
386                      .tilemode = TILE6_3,
387                      .losslesscompen = iview->view.ubwc_enabled,
388                      ).value);
389    if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT)
390       tu_cs_image_depth_ref(cs, iview, 0);
391    else
392       tu_cs_image_ref(cs, &iview->view, 0);
393    tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0));
394 
395    tu_cs_emit_regs(cs,
396                    A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
397 
398    tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE, 3);
399    tu_cs_image_flag_ref(cs, &iview->view, 0);
400 
401    if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
402        attachment->format == VK_FORMAT_S8_UINT) {
403 
404       tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
405       tu_cs_emit(cs, RB_STENCIL_INFO(CHIP,
406                         .separate_stencil = true,
407                         .tilemode = TILE6_3,
408                         ).value);
409       if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
410          tu_cs_image_stencil_ref(cs, iview, 0);
411          tu_cs_emit(cs, tu_attachment_gmem_offset_stencil(cmd, attachment, 0));
412       } else {
413          tu_cs_image_ref(cs, &iview->view, 0);
414          tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0));
415       }
416    } else {
417       tu_cs_emit_regs(cs,
418                      A6XX_RB_STENCIL_INFO(0));
419    }
420 }
421 
422 static void
tu6_emit_mrt(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs)423 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
424              const struct tu_subpass *subpass,
425              struct tu_cs *cs)
426 {
427    const struct tu_framebuffer *fb = cmd->state.framebuffer;
428 
429    enum a6xx_format mrt0_format = FMT6_NONE;
430 
431    for (uint32_t i = 0; i < subpass->color_count; ++i) {
432       uint32_t a = subpass->color_attachments[i].attachment;
433       if (a == VK_ATTACHMENT_UNUSED) {
434          /* From the VkPipelineRenderingCreateInfo definition:
435           *
436           *    Valid formats indicate that an attachment can be used - but it
437           *    is still valid to set the attachment to NULL when beginning
438           *    rendering.
439           *
440           * This means that with dynamic rendering, pipelines may write to
441           * some attachments that are UNUSED here. Setting the format to 0
442           * here should prevent them from writing to anything. This also seems
443           * to also be required for alpha-to-coverage which can use the alpha
444           * value for an otherwise-unused attachment.
445           */
446          tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
447          for (unsigned i = 0; i < 6; i++)
448             tu_cs_emit(cs, 0);
449 
450          tu_cs_emit_regs(cs,
451                          A6XX_SP_FS_MRT_REG(i, .dword = 0));
452          continue;
453       }
454 
455       const struct tu_image_view *iview = cmd->state.attachments[a];
456 
457       tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
458       tu_cs_emit(cs, iview->view.RB_MRT_BUF_INFO);
459       tu_cs_image_ref(cs, &iview->view, 0);
460       tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, &cmd->state.pass->attachments[a], 0));
461 
462       tu_cs_emit_regs(cs,
463                       A6XX_SP_FS_MRT_REG(i, .dword = iview->view.SP_FS_MRT_REG));
464 
465       tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR(i), 3);
466       tu_cs_image_flag_ref(cs, &iview->view, 0);
467 
468       if (i == 0)
469          mrt0_format = (enum a6xx_format) (iview->view.SP_FS_MRT_REG & 0xff);
470    }
471 
472    tu_cs_emit_regs(cs, A6XX_GRAS_LRZ_MRT_BUF_INFO_0(.color_format = mrt0_format));
473 
474    tu_cs_emit_regs(cs,
475                    A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
476    tu_cs_emit_regs(cs,
477                    A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
478 
479    unsigned layers = MAX2(fb->layers, util_logbase2(subpass->multiview_mask) + 1);
480    tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(layers - 1));
481 }
482 
483 struct tu_bin_size_params {
484    enum a6xx_render_mode render_mode;
485    bool force_lrz_write_dis;
486    enum a6xx_buffers_location buffers_location;
487    unsigned lrz_feedback_zmode_mask;
488 };
489 
490 template <chip CHIP>
491 static void
tu6_emit_bin_size(struct tu_cs * cs,uint32_t bin_w,uint32_t bin_h,struct tu_bin_size_params && p)492 tu6_emit_bin_size(struct tu_cs *cs,
493                   uint32_t bin_w,
494                   uint32_t bin_h,
495                   struct tu_bin_size_params &&p)
496 {
497    if (CHIP == A6XX) {
498       tu_cs_emit_regs(
499          cs, A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
500                                    .binh = bin_h,
501                                    .render_mode = p.render_mode,
502                                    .force_lrz_write_dis = p.force_lrz_write_dis,
503                                    .buffers_location = p.buffers_location,
504                                    .lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, ));
505    } else {
506       tu_cs_emit_regs(cs,
507                       A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
508                                             .binh = bin_h,
509                                             .render_mode = p.render_mode,
510                                             .force_lrz_write_dis = p.force_lrz_write_dis,
511                                             .lrz_feedback_zmode_mask =
512                                                p.lrz_feedback_zmode_mask, ));
513    }
514 
515    tu_cs_emit_regs(cs, RB_BIN_CONTROL(CHIP,
516                         .binw = bin_w,
517                         .binh = bin_h,
518                         .render_mode = p.render_mode,
519                         .force_lrz_write_dis = p.force_lrz_write_dis,
520                         .buffers_location = p.buffers_location,
521                         .lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, ));
522 
523    /* no flag for RB_BIN_CONTROL2... */
524    tu_cs_emit_regs(cs,
525                    A6XX_RB_BIN_CONTROL2(.binw = bin_w,
526                                         .binh = bin_h));
527 }
528 
529 template <chip CHIP>
530 static void
531 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
532                      const struct tu_subpass *subpass,
533                      struct tu_cs *cs,
534                      bool binning);
535 
536 template <>
537 void
tu6_emit_render_cntl(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs,bool binning)538 tu6_emit_render_cntl<A6XX>(struct tu_cmd_buffer *cmd,
539                      const struct tu_subpass *subpass,
540                      struct tu_cs *cs,
541                      bool binning)
542 {
543    /* doesn't RB_RENDER_CNTL set differently for binning pass: */
544    bool no_track = !cmd->device->physical_device->info->a6xx.has_cp_reg_write;
545    uint32_t cntl = 0;
546    cntl |= A6XX_RB_RENDER_CNTL_CCUSINGLECACHELINESIZE(2);
547    if (binning) {
548       if (no_track)
549          return;
550       cntl |= A6XX_RB_RENDER_CNTL_BINNING;
551    } else {
552       uint32_t mrts_ubwc_enable = 0;
553       for (uint32_t i = 0; i < subpass->color_count; ++i) {
554          uint32_t a = subpass->color_attachments[i].attachment;
555          if (a == VK_ATTACHMENT_UNUSED)
556             continue;
557 
558          const struct tu_image_view *iview = cmd->state.attachments[a];
559          if (iview->view.ubwc_enabled)
560             mrts_ubwc_enable |= 1 << i;
561       }
562 
563       cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
564 
565       const uint32_t a = subpass->depth_stencil_attachment.attachment;
566       if (a != VK_ATTACHMENT_UNUSED) {
567          const struct tu_image_view *iview = cmd->state.attachments[a];
568          if (iview->view.ubwc_enabled)
569             cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
570       }
571 
572       if (no_track) {
573          tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CNTL, 1);
574          tu_cs_emit(cs, cntl);
575          return;
576       }
577 
578       /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
579        * in order to set it correctly for the different subpasses. However,
580        * that means the packets we're emitting also happen during binning. So
581        * we need to guard the write on !BINNING at CP execution time.
582        */
583       tu_cs_reserve(cs, 3 + 4);
584       tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
585       tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
586                      CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
587       tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4));
588    }
589 
590    tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
591    tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
592    tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
593    tu_cs_emit(cs, cntl);
594 }
595 
596 template <>
597 void
tu6_emit_render_cntl(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs,bool binning)598 tu6_emit_render_cntl<A7XX>(struct tu_cmd_buffer *cmd,
599                      const struct tu_subpass *subpass,
600                      struct tu_cs *cs,
601                      bool binning)
602 {
603    tu_cs_emit_regs(
604       cs, A7XX_RB_RENDER_CNTL(.binning = binning, .raster_mode = TYPE_TILED,
605                               .raster_direction = LR_TB));
606    tu_cs_emit_regs(cs, A7XX_GRAS_SU_RENDER_CNTL(.binning = binning));
607 }
608 
609 static void
tu6_emit_blit_scissor(struct tu_cmd_buffer * cmd,struct tu_cs * cs,bool align)610 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
611 {
612    struct tu_physical_device *phys_dev = cmd->device->physical_device;
613    const VkRect2D *render_area = &cmd->state.render_area;
614 
615    /* Avoid assertion fails with an empty render area at (0, 0) where the
616     * subtraction below wraps around. Empty render areas should be forced to
617     * the sysmem path by use_sysmem_rendering(). It's not even clear whether
618     * an empty scissor here works, and the blob seems to force sysmem too as
619     * it sets something wrong (non-empty) for the scissor.
620     */
621    if (render_area->extent.width == 0 ||
622        render_area->extent.height == 0)
623       return;
624 
625    uint32_t x1 = render_area->offset.x;
626    uint32_t y1 = render_area->offset.y;
627    uint32_t x2 = x1 + render_area->extent.width - 1;
628    uint32_t y2 = y1 + render_area->extent.height - 1;
629 
630    if (align) {
631       x1 = x1 & ~(phys_dev->info->gmem_align_w - 1);
632       y1 = y1 & ~(phys_dev->info->gmem_align_h - 1);
633       x2 = ALIGN_POT(x2 + 1, phys_dev->info->gmem_align_w) - 1;
634       y2 = ALIGN_POT(y2 + 1, phys_dev->info->gmem_align_h) - 1;
635    }
636 
637    tu_cs_emit_regs(cs,
638                    A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
639                    A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
640 }
641 
642 void
tu6_emit_window_scissor(struct tu_cs * cs,uint32_t x1,uint32_t y1,uint32_t x2,uint32_t y2)643 tu6_emit_window_scissor(struct tu_cs *cs,
644                         uint32_t x1,
645                         uint32_t y1,
646                         uint32_t x2,
647                         uint32_t y2)
648 {
649    tu_cs_emit_regs(cs,
650                    A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
651                    A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
652 
653    tu_cs_emit_regs(cs,
654                    A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
655                    A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
656 }
657 
658 template <chip CHIP>
659 void
tu6_emit_window_offset(struct tu_cs * cs,uint32_t x1,uint32_t y1)660 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
661 {
662    tu_cs_emit_regs(cs,
663                    A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
664 
665    tu_cs_emit_regs(cs,
666                    A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
667 
668    tu_cs_emit_regs(cs,
669                    SP_WINDOW_OFFSET(CHIP, .x = x1, .y = y1));
670 
671    tu_cs_emit_regs(cs,
672                    A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
673 }
674 
675 void
tu6_apply_depth_bounds_workaround(struct tu_device * device,uint32_t * rb_depth_cntl)676 tu6_apply_depth_bounds_workaround(struct tu_device *device,
677                                   uint32_t *rb_depth_cntl)
678 {
679    if (!device->physical_device->info->a6xx.depth_bounds_require_depth_test_quirk)
680       return;
681 
682    /* On some GPUs it is necessary to enable z test for depth bounds test when
683     * UBWC is enabled. Otherwise, the GPU would hang. FUNC_ALWAYS is required to
684     * pass z test. Relevant tests:
685     *  dEQP-VK.pipeline.extended_dynamic_state.two_draws_dynamic.depth_bounds_test_disable
686     *  dEQP-VK.dynamic_state.ds_state.depth_bounds_1
687     */
688    *rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE |
689                      A6XX_RB_DEPTH_CNTL_ZFUNC(FUNC_ALWAYS);
690 }
691 
692 static void
tu_cs_emit_draw_state(struct tu_cs * cs,uint32_t id,struct tu_draw_state state)693 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
694 {
695    uint32_t enable_mask;
696    switch (id) {
697    case TU_DRAW_STATE_VS:
698    case TU_DRAW_STATE_FS:
699    case TU_DRAW_STATE_VPC:
700    /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
701     * when resources would actually be used in the binning shader.
702     * Presumably the overhead of prefetching the resources isn't
703     * worth it.
704     */
705    case TU_DRAW_STATE_DESC_SETS_LOAD:
706       enable_mask = CP_SET_DRAW_STATE__0_GMEM |
707                     CP_SET_DRAW_STATE__0_SYSMEM;
708       break;
709    case TU_DRAW_STATE_VS_BINNING:
710    case TU_DRAW_STATE_GS_BINNING:
711       enable_mask = CP_SET_DRAW_STATE__0_BINNING;
712       break;
713    case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
714    case TU_DRAW_STATE_PRIM_MODE_GMEM:
715       enable_mask = CP_SET_DRAW_STATE__0_GMEM;
716       break;
717    case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
718       enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
719       break;
720    case TU_DRAW_STATE_PRIM_MODE_SYSMEM:
721       /* By also applying the state during binning we ensure that there
722        * is no rotation applied, by previous A6XX_GRAS_SC_CNTL::rotation.
723        */
724       enable_mask =
725          CP_SET_DRAW_STATE__0_SYSMEM | CP_SET_DRAW_STATE__0_BINNING;
726       break;
727    default:
728       enable_mask = CP_SET_DRAW_STATE__0_GMEM |
729                     CP_SET_DRAW_STATE__0_SYSMEM |
730                     CP_SET_DRAW_STATE__0_BINNING;
731       break;
732    }
733 
734    STATIC_ASSERT(TU_DRAW_STATE_COUNT <= 32);
735 
736    /* We need to reload the descriptors every time the descriptor sets
737     * change. However, the commands we send only depend on the pipeline
738     * because the whole point is to cache descriptors which are used by the
739     * pipeline. There's a problem here, in that the firmware has an
740     * "optimization" which skips executing groups that are set to the same
741     * value as the last draw. This means that if the descriptor sets change
742     * but not the pipeline, we'd try to re-execute the same buffer which
743     * the firmware would ignore and we wouldn't pre-load the new
744     * descriptors. Set the DIRTY bit to avoid this optimization.
745     *
746     * We set the dirty bit for shader draw states because they contain
747     * CP_LOAD_STATE packets that are invalidated by the PROGRAM_CONFIG draw
748     * state, so if PROGRAM_CONFIG changes but one of the shaders stays the
749     * same then we still need to re-emit everything. The GLES blob which
750     * implements separate shader draw states does the same thing.
751     *
752     * We also need to set this bit for draw states which may be patched by the
753     * GPU, because their underlying memory may change between setting the draw
754     * state.
755     */
756    if (id == TU_DRAW_STATE_DESC_SETS_LOAD ||
757        id == TU_DRAW_STATE_VS ||
758        id == TU_DRAW_STATE_VS_BINNING ||
759        id == TU_DRAW_STATE_HS ||
760        id == TU_DRAW_STATE_DS ||
761        id == TU_DRAW_STATE_GS ||
762        id == TU_DRAW_STATE_GS_BINNING ||
763        id == TU_DRAW_STATE_FS ||
764        state.writeable)
765       enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
766 
767    tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
768                   enable_mask |
769                   CP_SET_DRAW_STATE__0_GROUP_ID(id) |
770                   COND(!state.size || !state.iova, CP_SET_DRAW_STATE__0_DISABLE));
771    tu_cs_emit_qw(cs, state.iova);
772 }
773 
774 void
tu6_emit_msaa(struct tu_cs * cs,VkSampleCountFlagBits vk_samples,bool msaa_disable)775 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples,
776               bool msaa_disable)
777 {
778    const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
779    msaa_disable |= (samples == MSAA_ONE);
780    tu_cs_emit_regs(cs,
781                    A6XX_SP_TP_RAS_MSAA_CNTL(samples),
782                    A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
783                                              .msaa_disable = msaa_disable));
784 
785    tu_cs_emit_regs(cs,
786                    A6XX_GRAS_RAS_MSAA_CNTL(samples),
787                    A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
788                                             .msaa_disable = msaa_disable));
789 
790    tu_cs_emit_regs(cs,
791                    A6XX_RB_RAS_MSAA_CNTL(samples),
792                    A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
793                                           .msaa_disable = msaa_disable));
794 }
795 
796 static void
tu6_update_msaa(struct tu_cmd_buffer * cmd)797 tu6_update_msaa(struct tu_cmd_buffer *cmd)
798 {
799    VkSampleCountFlagBits samples =
800       cmd->vk.dynamic_graphics_state.ms.rasterization_samples;;
801 
802    /* The samples may not be set by the pipeline or dynamically if raster
803     * discard is enabled. We can set any valid value, but don't set the
804     * default invalid value of 0.
805     */
806    if (samples == 0)
807       samples = VK_SAMPLE_COUNT_1_BIT;
808    tu6_emit_msaa(&cmd->draw_cs, samples, cmd->state.msaa_disable);
809 }
810 
811 static void
tu6_update_msaa_disable(struct tu_cmd_buffer * cmd)812 tu6_update_msaa_disable(struct tu_cmd_buffer *cmd)
813 {
814    VkPrimitiveTopology topology =
815       (VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology;
816    bool is_line =
817       topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST ||
818       topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY ||
819       topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP ||
820       topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY ||
821       (topology == VK_PRIMITIVE_TOPOLOGY_PATCH_LIST &&
822        cmd->state.shaders[MESA_SHADER_TESS_EVAL] &&
823        cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant &&
824        cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant->key.tessellation == IR3_TESS_ISOLINES);
825    bool msaa_disable = is_line &&
826       cmd->vk.dynamic_graphics_state.rs.line.mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT;
827 
828    if (cmd->state.msaa_disable != msaa_disable) {
829       cmd->state.msaa_disable = msaa_disable;
830       tu6_update_msaa(cmd);
831    }
832 }
833 
834 static bool
use_hw_binning(struct tu_cmd_buffer * cmd)835 use_hw_binning(struct tu_cmd_buffer *cmd)
836 {
837    const struct tu_framebuffer *fb = cmd->state.framebuffer;
838    const struct tu_tiling_config *tiling = &fb->tiling[cmd->state.gmem_layout];
839 
840    /* XFB commands are emitted for BINNING || SYSMEM, which makes it
841     * incompatible with non-hw binning GMEM rendering. this is required because
842     * some of the XFB commands need to only be executed once.
843     * use_sysmem_rendering() should have made sure we only ended up here if no
844     * XFB was used.
845     */
846    if (cmd->state.rp.xfb_used) {
847       assert(tiling->binning_possible);
848       return true;
849    }
850 
851    /* VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT emulates GL_PRIMITIVES_GENERATED,
852     * which wasn't designed to care about tilers and expects the result not to
853     * be multiplied by tile count.
854     * See https://gitlab.khronos.org/vulkan/vulkan/-/issues/3131
855     */
856    if (cmd->state.rp.has_prim_generated_query_in_rp ||
857        cmd->state.prim_generated_query_running_before_rp) {
858       assert(tiling->binning_possible);
859       return true;
860    }
861 
862    return tiling->binning;
863 }
864 
865 static bool
use_sysmem_rendering(struct tu_cmd_buffer * cmd,struct tu_renderpass_result ** autotune_result)866 use_sysmem_rendering(struct tu_cmd_buffer *cmd,
867                      struct tu_renderpass_result **autotune_result)
868 {
869    if (TU_DEBUG(SYSMEM))
870       return true;
871 
872    /* A7XX TODO: Add gmem support */
873    if (cmd->device->physical_device->info->chip >= 7)
874       return true;
875 
876    /* can't fit attachments into gmem */
877    if (!cmd->state.tiling->possible)
878       return true;
879 
880    if (cmd->state.framebuffer->layers > 1)
881       return true;
882 
883    /* Use sysmem for empty render areas */
884    if (cmd->state.render_area.extent.width == 0 ||
885        cmd->state.render_area.extent.height == 0)
886       return true;
887 
888    if (cmd->state.rp.has_tess)
889       return true;
890 
891    if (cmd->state.rp.disable_gmem)
892       return true;
893 
894    /* XFB is incompatible with non-hw binning GMEM rendering, see use_hw_binning */
895    if (cmd->state.rp.xfb_used && !cmd->state.tiling->binning_possible)
896       return true;
897 
898    /* QUERY_TYPE_PRIMITIVES_GENERATED is incompatible with non-hw binning
899     * GMEM rendering, see use_hw_binning.
900     */
901    if ((cmd->state.rp.has_prim_generated_query_in_rp ||
902         cmd->state.prim_generated_query_running_before_rp) &&
903        !cmd->state.tiling->binning_possible)
904       return true;
905 
906    if (TU_DEBUG(GMEM))
907       return false;
908 
909    bool use_sysmem = tu_autotune_use_bypass(&cmd->device->autotune,
910                                             cmd, autotune_result);
911    if (*autotune_result) {
912       list_addtail(&(*autotune_result)->node, &cmd->renderpass_autotune_results);
913    }
914 
915    return use_sysmem;
916 }
917 
918 /* Optimization: there is no reason to load gmem if there is no
919  * geometry to process. COND_REG_EXEC predicate is set here,
920  * but the actual skip happens in tu_load_gmem_attachment() and tile_store_cs,
921  * for each blit separately.
922  */
923 static void
tu6_emit_cond_for_load_stores(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t pipe,uint32_t slot,bool skip_wfm)924 tu6_emit_cond_for_load_stores(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
925                               uint32_t pipe, uint32_t slot, bool skip_wfm)
926 {
927    if (cmd->state.tiling->binning_possible &&
928        cmd->state.pass->has_cond_load_store) {
929       tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
930       tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(REG_A6XX_VSC_STATE_REG(pipe)) |
931                      A6XX_CP_REG_TEST_0_BIT(slot) |
932                      COND(skip_wfm, A6XX_CP_REG_TEST_0_SKIP_WAIT_FOR_ME));
933    } else {
934       /* COND_REG_EXECs are not emitted in non-binning case */
935    }
936 }
937 
938 template <chip CHIP>
939 static void
tu6_emit_tile_select(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t tx,uint32_t ty,uint32_t pipe,uint32_t slot,const struct tu_image_view * fdm)940 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
941                      struct tu_cs *cs,
942                      uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot,
943                      const struct tu_image_view *fdm)
944 {
945    const struct tu_tiling_config *tiling = cmd->state.tiling;
946 
947    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
948    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
949 
950    const uint32_t x1 = tiling->tile0.width * tx;
951    const uint32_t y1 = tiling->tile0.height * ty;
952    const uint32_t x2 = MIN2(x1 + tiling->tile0.width, MAX_VIEWPORT_SIZE);
953    const uint32_t y2 = MIN2(y1 + tiling->tile0.height, MAX_VIEWPORT_SIZE);
954    tu6_emit_window_scissor(cs, x1, y1, x2 - 1, y2 - 1);
955    tu6_emit_window_offset<CHIP>(cs, x1, y1);
956 
957    bool hw_binning = use_hw_binning(cmd);
958 
959    if (hw_binning) {
960       tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
961 
962       tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
963       tu_cs_emit(cs, 0x0);
964 
965       tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
966       tu_cs_emit(cs, tiling->pipe_sizes[pipe] |
967                      CP_SET_BIN_DATA5_0_VSC_N(slot));
968       tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
969       tu_cs_emit(cs, pipe * 4);
970       tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
971    }
972 
973    tu6_emit_cond_for_load_stores(cmd, cs, pipe, slot, hw_binning);
974 
975    tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
976    tu_cs_emit(cs, !hw_binning);
977 
978    tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
979    tu_cs_emit(cs, 0x0);
980 
981    if (fdm || (TU_DEBUG(FDM) && cmd->state.pass->has_fdm)) {
982       unsigned views =
983          cmd->state.pass->num_views ? cmd->state.pass->num_views : 1;
984       const struct tu_framebuffer *fb = cmd->state.framebuffer;
985       struct tu_frag_area raw_areas[views];
986       if (fdm) {
987          tu_fragment_density_map_sample(fdm,
988                                         (x1 + MIN2(x2, fb->width)) / 2,
989                                         (y1 + MIN2(y2, fb->height)) / 2,
990                                         fb->width, fb->height, views,
991                                         raw_areas);
992       } else {
993          for (unsigned i = 0; i < views; i++)
994             raw_areas[i].width = raw_areas[i].height = 1.0f;
995       }
996 
997       VkExtent2D frag_areas[views];
998       for (unsigned i = 0; i < views; i++) {
999          float floor_x, floor_y;
1000          float area = raw_areas[i].width * raw_areas[i].height;
1001          float frac_x = modff(raw_areas[i].width, &floor_x);
1002          float frac_y = modff(raw_areas[i].height, &floor_y);
1003          /* The spec allows rounding up one of the axes as long as the total
1004           * area is less than or equal to the original area. Take advantage of
1005           * this to try rounding up the number with the largest fraction.
1006           */
1007          if ((frac_x > frac_y ? (floor_x + 1.f) * floor_y :
1008                                  floor_x * (floor_y + 1.f)) <= area) {
1009             if (frac_x > frac_y)
1010                floor_x += 1.f;
1011             else
1012                floor_y += 1.f;
1013          }
1014          frag_areas[i].width = floor_x;
1015          frag_areas[i].height = floor_y;
1016 
1017          /* Make sure that the width/height divides the tile width/height so
1018           * we don't have to do extra awkward clamping of the edges of each
1019           * bin when resolving. Note that because the tile width is rounded to
1020           * a multiple of 32 any power of two 32 or less will work.
1021           *
1022           * TODO: Try to take advantage of the total area allowance here, too.
1023           */
1024          while (tiling->tile0.width % frag_areas[i].width != 0)
1025             frag_areas[i].width--;
1026          while (tiling->tile0.height % frag_areas[i].height != 0)
1027             frag_areas[i].height--;
1028       }
1029 
1030       /* If at any point we were forced to use the same scaling for all
1031        * viewports, we need to make sure that any users *not* using shared
1032        * scaling, including loads/stores, also consistently share the scaling.
1033        */
1034       if (cmd->state.rp.shared_viewport) {
1035          VkExtent2D frag_area = { UINT32_MAX, UINT32_MAX };
1036          for (unsigned i = 0; i < views; i++) {
1037             frag_area.width = MIN2(frag_area.width, frag_areas[i].width);
1038             frag_area.height = MIN2(frag_area.height, frag_areas[i].height);
1039          }
1040 
1041          for (unsigned i = 0; i < views; i++)
1042             frag_areas[i] = frag_area;
1043       }
1044 
1045       VkRect2D bin = { { x1, y1 }, { x2 - x1, y2 - y1 } };
1046       util_dynarray_foreach (&cmd->fdm_bin_patchpoints,
1047                              struct tu_fdm_bin_patchpoint, patch) {
1048          tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size);
1049          tu_cs_emit_qw(cs, patch->iova);
1050          patch->apply(cmd, cs, patch->data, bin, views, frag_areas);
1051       }
1052 
1053       /* Make the CP wait until the CP_MEM_WRITE's to the command buffers
1054        * land.
1055        */
1056       tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1057       tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1058    }
1059 }
1060 
1061 template <chip CHIP>
1062 static void
tu6_emit_sysmem_resolve(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t layer_mask,uint32_t a,uint32_t gmem_a)1063 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
1064                         struct tu_cs *cs,
1065                         uint32_t layer_mask,
1066                         uint32_t a,
1067                         uint32_t gmem_a)
1068 {
1069    const struct tu_framebuffer *fb = cmd->state.framebuffer;
1070    const struct tu_image_view *dst = cmd->state.attachments[a];
1071    const struct tu_image_view *src = cmd->state.attachments[gmem_a];
1072 
1073    tu_resolve_sysmem<CHIP>(cmd, cs, src, dst, layer_mask, fb->layers, &cmd->state.render_area);
1074 }
1075 
1076 template <chip CHIP>
1077 static void
tu6_emit_sysmem_resolves(struct tu_cmd_buffer * cmd,struct tu_cs * cs,const struct tu_subpass * subpass)1078 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
1079                          struct tu_cs *cs,
1080                          const struct tu_subpass *subpass)
1081 {
1082    if (subpass->resolve_attachments) {
1083       /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
1084        * Commands":
1085        *
1086        *    End-of-subpass multisample resolves are treated as color
1087        *    attachment writes for the purposes of synchronization.
1088        *    This applies to resolve operations for both color and
1089        *    depth/stencil attachments. That is, they are considered to
1090        *    execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
1091        *    pipeline stage and their writes are synchronized with
1092        *    VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
1093        *    rendering within a subpass and any resolve operations at the end
1094        *    of the subpass occurs automatically, without need for explicit
1095        *    dependencies or pipeline barriers. However, if the resolve
1096        *    attachment is also used in a different subpass, an explicit
1097        *    dependency is needed.
1098        *
1099        * We use the CP_BLIT path for sysmem resolves, which is really a
1100        * transfer command, so we have to manually flush similar to the gmem
1101        * resolve case. However, a flush afterwards isn't needed because of the
1102        * last sentence and the fact that we're in sysmem mode.
1103        */
1104       tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_FLUSH_COLOR);
1105       if (subpass->resolve_depth_stencil)
1106          tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_FLUSH_DEPTH);
1107 
1108       tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1109 
1110       /* Wait for the flushes to land before using the 2D engine */
1111       tu_cs_emit_wfi(cs);
1112 
1113       for (unsigned i = 0; i < subpass->resolve_count; i++) {
1114          uint32_t a = subpass->resolve_attachments[i].attachment;
1115          if (a == VK_ATTACHMENT_UNUSED)
1116             continue;
1117 
1118          uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
1119 
1120          tu6_emit_sysmem_resolve<CHIP>(cmd, cs, subpass->multiview_mask, a, gmem_a);
1121       }
1122    }
1123 }
1124 
1125 template <chip CHIP>
1126 static void
tu6_emit_tile_store(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1127 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1128 {
1129    const struct tu_render_pass *pass = cmd->state.pass;
1130    const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
1131    const struct tu_framebuffer *fb = cmd->state.framebuffer;
1132 
1133    if (pass->has_fdm)
1134       tu_cs_set_writeable(cs, true);
1135 
1136    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1137    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
1138 
1139    tu6_emit_blit_scissor(cmd, cs, true);
1140 
1141    for (uint32_t a = 0; a < pass->attachment_count; ++a) {
1142       if (pass->attachments[a].gmem) {
1143          const bool cond_exec_allowed = cmd->state.tiling->binning_possible &&
1144                                         cmd->state.pass->has_cond_load_store;
1145          tu_store_gmem_attachment<CHIP>(cmd, cs, a, a,
1146                                   fb->layers, subpass->multiview_mask,
1147                                   cond_exec_allowed);
1148       }
1149    }
1150 
1151    if (subpass->resolve_attachments) {
1152       for (unsigned i = 0; i < subpass->resolve_count; i++) {
1153          uint32_t a = subpass->resolve_attachments[i].attachment;
1154          if (a != VK_ATTACHMENT_UNUSED) {
1155             uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
1156             tu_store_gmem_attachment<CHIP>(cmd, cs, a, gmem_a, fb->layers,
1157                                      subpass->multiview_mask, false);
1158          }
1159       }
1160    }
1161 
1162    if (pass->has_fdm)
1163       tu_cs_set_writeable(cs, false);
1164 }
1165 
1166 void
tu_disable_draw_states(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1167 tu_disable_draw_states(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1168 {
1169    tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1170    tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1171                      CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1172                      CP_SET_DRAW_STATE__0_GROUP_ID(0));
1173    tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1174    tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1175 
1176    cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
1177 }
1178 
1179 template <chip CHIP>
1180 static void
tu6_init_hw(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1181 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1182 {
1183    struct tu_device *dev = cmd->device;
1184    const struct tu_physical_device *phys_dev = dev->physical_device;
1185 
1186    if (CHIP == A6XX) {
1187       tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1188    } else {
1189       tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
1190       tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR));
1191 
1192       tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_COLOR);
1193       tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_DEPTH);
1194       tu_emit_raw_event_write<CHIP>(cmd, cs, UNK_40, false);
1195       tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1196       tu_cs_emit_wfi(cs);
1197    }
1198 
1199    tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP,
1200          .vs_state = true,
1201          .hs_state = true,
1202          .ds_state = true,
1203          .gs_state = true,
1204          .fs_state = true,
1205          .cs_state = true,
1206          .cs_ibo = true,
1207          .gfx_ibo = true,
1208          .cs_shared_const = true,
1209          .gfx_shared_const = true,
1210          .cs_bindless = CHIP == A6XX ? 0x1f : 0xff,
1211          .gfx_bindless = CHIP == A6XX ? 0x1f : 0xff,));
1212 
1213    tu_cs_emit_wfi(cs);
1214 
1215    if (dev->dbg_cmdbuf_stomp_cs) {
1216       tu_cs_emit_call(cs, dev->dbg_cmdbuf_stomp_cs);
1217    }
1218 
1219    cmd->state.cache.pending_flush_bits &=
1220       ~(TU_CMD_FLAG_WAIT_FOR_IDLE | TU_CMD_FLAG_CACHE_INVALIDATE);
1221 
1222    emit_rb_ccu_cntl<CHIP>(cs, cmd->device, false);
1223    cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
1224 
1225    for (size_t i = 0; i < ARRAY_SIZE(phys_dev->info->a6xx.magic_raw); i++) {
1226       auto magic_reg = phys_dev->info->a6xx.magic_raw[i];
1227       if (!magic_reg.reg)
1228          break;
1229 
1230       tu_cs_emit_write_reg(cs, magic_reg.reg, magic_reg.value);
1231    }
1232 
1233    tu_cs_emit_write_reg(cs, REG_A6XX_RB_DBG_ECO_CNTL,
1234                         phys_dev->info->a6xx.magic.RB_DBG_ECO_CNTL);
1235    tu_cs_emit_write_reg(cs, REG_A6XX_SP_FLOAT_CNTL, 0);
1236    tu_cs_emit_write_reg(cs, REG_A6XX_SP_DBG_ECO_CNTL,
1237                         phys_dev->info->a6xx.magic.SP_DBG_ECO_CNTL);
1238    tu_cs_emit_write_reg(cs, REG_A6XX_SP_PERFCTR_ENABLE, 0x3f);
1239    if (CHIP == A6XX)
1240       tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_UNKNOWN_B605, 0x44);
1241    tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_DBG_ECO_CNTL,
1242                         phys_dev->info->a6xx.magic.TPL1_DBG_ECO_CNTL);
1243    if (CHIP == A6XX) {
1244       tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
1245       tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
1246    }
1247 
1248    tu_cs_emit_write_reg(cs, REG_A6XX_VPC_DBG_ECO_CNTL,
1249                         phys_dev->info->a6xx.magic.VPC_DBG_ECO_CNTL);
1250    tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_DBG_ECO_CNTL,
1251                         phys_dev->info->a6xx.magic.GRAS_DBG_ECO_CNTL);
1252    if (CHIP == A6XX) {
1253       tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_DBG_ECO_CNTL,
1254                            phys_dev->info->a6xx.magic.HLSQ_DBG_ECO_CNTL);
1255    }
1256    tu_cs_emit_write_reg(cs, REG_A6XX_SP_CHICKEN_BITS,
1257                         phys_dev->info->a6xx.magic.SP_CHICKEN_BITS);
1258    tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0); // 2 on a740 ???
1259    tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
1260    if (CHIP == A6XX)
1261       tu_cs_emit_regs(cs, A6XX_HLSQ_SHARED_CONSTS(.enable = false));
1262    tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12,
1263                         phys_dev->info->a6xx.magic.UCHE_UNKNOWN_0E12);
1264    tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF,
1265                         phys_dev->info->a6xx.magic.UCHE_CLIENT_PF);
1266    tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01,
1267                         phys_dev->info->a6xx.magic.RB_UNKNOWN_8E01);
1268    tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
1269    tu_cs_emit_regs(cs, A6XX_SP_MODE_CONTROL(.constant_demotion_enable = true,
1270                                             .isammode = ISAMMODE_GL,
1271                                             .shared_consts_enable = false));
1272 
1273    /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
1274    tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
1275    tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
1276    tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL,
1277                         phys_dev->info->a6xx.magic.PC_MODE_CNTL);
1278 
1279    tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
1280 
1281    tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
1282 
1283    if (CHIP == A6XX) {
1284       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
1285       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
1286       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
1287       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
1288       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
1289       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
1290    }
1291 
1292    tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
1293 
1294    tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
1295    tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
1296 
1297    tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
1298 
1299    tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
1300 
1301    tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_SU_CONSERVATIVE_RAS_CNTL, 0);
1302    tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
1303    if (CHIP == A6XX) {
1304       tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
1305       tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
1306    }
1307    tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
1308    tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
1309    tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_MODE_CNTL,
1310                         0x000000a0 |
1311                         A6XX_SP_TP_MODE_CNTL_ISAMMODE(ISAMMODE_GL));
1312    tu_cs_emit_regs(cs, HLSQ_CONTROL_5_REG(CHIP, .dword = 0xfc));
1313 
1314    tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
1315 
1316    tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, phys_dev->info->a6xx.magic.PC_MODE_CNTL);
1317 
1318    tu_cs_emit_regs(cs, A6XX_RB_ALPHA_CONTROL()); /* always disable alpha test */
1319    tu_cs_emit_regs(cs, A6XX_RB_DITHER_CNTL()); /* always disable dithering */
1320 
1321    tu_disable_draw_states(cmd, cs);
1322 
1323    tu_cs_emit_regs(cs,
1324                    A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = dev->global_bo,
1325                                                      .bo_offset = gb_offset(bcolor_builtin)));
1326    tu_cs_emit_regs(cs,
1327                    A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = dev->global_bo,
1328                                                         .bo_offset = gb_offset(bcolor_builtin)));
1329 
1330    if (CHIP == A7XX) {
1331       tu_cs_emit_regs(cs, A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0(0),
1332                       A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1(0x3fe05ff4),
1333                       A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2(0x3fa0ebee),
1334                       A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3(0x3f5193ed),
1335                       A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4(0x3f0243f0), );
1336    }
1337 
1338    if (phys_dev->info->a7xx.cmdbuf_start_a725_quirk) {
1339       tu_cs_reserve(cs, 3 + 4);
1340       tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
1341       tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
1342                      CP_COND_REG_EXEC_0_BR | CP_COND_REG_EXEC_0_LPAC);
1343       tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4));
1344       tu_cs_emit_ib(cs, dev->cmdbuf_start_a725_quirk_entry);
1345    }
1346 
1347    tu_cs_sanity_check(cs);
1348 }
1349 
1350 static void
update_vsc_pipe(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t num_vsc_pipes)1351 update_vsc_pipe(struct tu_cmd_buffer *cmd,
1352                 struct tu_cs *cs,
1353                 uint32_t num_vsc_pipes)
1354 {
1355    const struct tu_tiling_config *tiling = cmd->state.tiling;
1356 
1357    tu_cs_emit_regs(cs,
1358                    A6XX_VSC_BIN_SIZE(.width = tiling->tile0.width,
1359                                      .height = tiling->tile0.height));
1360 
1361    tu_cs_emit_regs(cs,
1362                    A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width,
1363                                       .ny = tiling->tile_count.height));
1364 
1365    tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), num_vsc_pipes);
1366    tu_cs_emit_array(cs, tiling->pipe_config, num_vsc_pipes);
1367 
1368    tu_cs_emit_regs(cs,
1369                    A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
1370                    A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
1371 
1372    tu_cs_emit_regs(cs,
1373                    A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
1374                    A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
1375 }
1376 
1377 static void
emit_vsc_overflow_test(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1378 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1379 {
1380    const struct tu_tiling_config *tiling = cmd->state.tiling;
1381    const uint32_t used_pipe_count =
1382       tiling->pipe_count.width * tiling->pipe_count.height;
1383 
1384    for (int i = 0; i < used_pipe_count; i++) {
1385       tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1386       tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1387             CP_COND_WRITE5_0_WRITE_MEMORY);
1388       tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
1389       tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1390       tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
1391       tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1392       tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
1393       tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
1394 
1395       tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1396       tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1397             CP_COND_WRITE5_0_WRITE_MEMORY);
1398       tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
1399       tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1400       tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
1401       tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1402       tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
1403       tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
1404    }
1405 
1406    tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1407 }
1408 
1409 template <chip CHIP>
1410 static void
tu6_emit_binning_pass(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1411 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1412 {
1413    struct tu_physical_device *phys_dev = cmd->device->physical_device;
1414    const struct tu_framebuffer *fb = cmd->state.framebuffer;
1415 
1416    /* If this command buffer may be executed multiple times, then
1417     * viewports/scissor states may have been changed by previous executions
1418     * and we need to reset them before executing the binning IB.
1419     */
1420    if (!(cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT) &&
1421        cmd->fdm_bin_patchpoints.size != 0) {
1422       unsigned num_views = MAX2(cmd->state.pass->num_views, 1);
1423       VkExtent2D unscaled_frag_areas[num_views];
1424       for (unsigned i = 0; i < num_views; i++)
1425          unscaled_frag_areas[i] = (VkExtent2D) { 1, 1 };
1426       VkRect2D bin = { { 0, 0 }, { fb->width, fb->height } };
1427       util_dynarray_foreach (&cmd->fdm_bin_patchpoints,
1428                              struct tu_fdm_bin_patchpoint, patch) {
1429          tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size);
1430          tu_cs_emit_qw(cs, patch->iova);
1431          patch->apply(cmd, cs, patch->data, bin, num_views, unscaled_frag_areas);
1432       }
1433 
1434       tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1435       tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1436    }
1437 
1438    tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1439 
1440    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1441    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
1442 
1443    tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1444    tu_cs_emit(cs, 0x1);
1445 
1446    tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1447    tu_cs_emit(cs, 0x1);
1448 
1449    tu_cs_emit_wfi(cs);
1450 
1451    tu_cs_emit_regs(cs,
1452                    A6XX_VFD_MODE_CNTL(.render_mode = BINNING_PASS));
1453 
1454    update_vsc_pipe(cmd, cs, phys_dev->info->num_vsc_pipes);
1455 
1456    tu_cs_emit_regs(cs,
1457                    A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1458 
1459    tu_cs_emit_regs(cs,
1460                    A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1461 
1462    tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1463    tu_cs_emit(cs, UNK_2C);
1464 
1465    tu_cs_emit_regs(cs,
1466                    A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1467 
1468    tu_cs_emit_regs(cs,
1469                    A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1470 
1471    trace_start_binning_ib(&cmd->trace, cs);
1472 
1473    /* emit IB to binning drawcmds: */
1474    tu_cs_emit_call(cs, &cmd->draw_cs);
1475 
1476    trace_end_binning_ib(&cmd->trace, cs);
1477 
1478    /* switching from binning pass to GMEM pass will cause a switch from
1479     * PROGRAM_BINNING to PROGRAM, which invalidates const state (XS_CONST states)
1480     * so make sure these states are re-emitted
1481     * (eventually these states shouldn't exist at all with shader prologue)
1482     * only VS and GS are invalidated, as FS isn't emitted in binning pass,
1483     * and we don't use HW binning when tesselation is used
1484     */
1485    tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1486    tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1487                   CP_SET_DRAW_STATE__0_DISABLE |
1488                   CP_SET_DRAW_STATE__0_GROUP_ID(TU_DRAW_STATE_CONST));
1489    tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1490    tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1491 
1492    tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1493    tu_cs_emit(cs, UNK_2D);
1494 
1495    /* This flush is probably required because the VSC, which produces the
1496     * visibility stream, is a client of UCHE, whereas the CP needs to read the
1497     * visibility stream (without caching) to do draw skipping. The
1498     * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1499     * submitted are finished before reading the VSC regs (in
1500     * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1501     * part of draws).
1502     */
1503    tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_FLUSH);
1504 
1505    tu_cs_emit_wfi(cs);
1506 
1507    tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1508 
1509    emit_vsc_overflow_test(cmd, cs);
1510 
1511    tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1512    tu_cs_emit(cs, 0x0);
1513 
1514    tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1515    tu_cs_emit(cs, 0x0);
1516 }
1517 
1518 static struct tu_draw_state
tu_emit_input_attachments(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,bool gmem)1519 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1520                           const struct tu_subpass *subpass,
1521                           bool gmem)
1522 {
1523    const struct tu_tiling_config *tiling = cmd->state.tiling;
1524 
1525    /* note: we can probably emit input attachments just once for the whole
1526     * renderpass, this would avoid emitting both sysmem/gmem versions
1527     *
1528     * emit two texture descriptors for each input, as a workaround for
1529     * d24s8/d32s8, which can be sampled as both float (depth) and integer (stencil)
1530     * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1531     * in the pair
1532     * TODO: a smarter workaround
1533     */
1534 
1535    if (!subpass->input_count)
1536       return (struct tu_draw_state) {};
1537 
1538    struct tu_cs_memory texture;
1539    VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1540                                  A6XX_TEX_CONST_DWORDS, &texture);
1541    if (result != VK_SUCCESS) {
1542       vk_command_buffer_set_error(&cmd->vk, result);
1543       return (struct tu_draw_state) {};
1544    }
1545 
1546    for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1547       uint32_t a = subpass->input_attachments[i / 2].attachment;
1548       if (a == VK_ATTACHMENT_UNUSED)
1549          continue;
1550 
1551       const struct tu_image_view *iview = cmd->state.attachments[a];
1552       const struct tu_render_pass_attachment *att =
1553          &cmd->state.pass->attachments[a];
1554       uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1555       uint32_t gmem_offset = tu_attachment_gmem_offset(cmd, att, 0);
1556       uint32_t cpp = att->cpp;
1557 
1558       memcpy(dst, iview->view.descriptor, A6XX_TEX_CONST_DWORDS * 4);
1559 
1560       /* Cube descriptors require a different sampling instruction in shader,
1561        * however we don't know whether image is a cube or not until the start
1562        * of a renderpass. We have to patch the descriptor to make it compatible
1563        * with how it is sampled in shader.
1564        */
1565       enum a6xx_tex_type tex_type =
1566          (enum a6xx_tex_type)((dst[2] & A6XX_TEX_CONST_2_TYPE__MASK) >>
1567                               A6XX_TEX_CONST_2_TYPE__SHIFT);
1568       if (tex_type == A6XX_TEX_CUBE) {
1569          dst[2] &= ~A6XX_TEX_CONST_2_TYPE__MASK;
1570          dst[2] |= A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D);
1571 
1572          uint32_t depth = (dst[5] & A6XX_TEX_CONST_5_DEPTH__MASK) >>
1573                           A6XX_TEX_CONST_5_DEPTH__SHIFT;
1574          dst[5] &= ~A6XX_TEX_CONST_5_DEPTH__MASK;
1575          dst[5] |= A6XX_TEX_CONST_5_DEPTH(depth * 6);
1576       }
1577 
1578       if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1579          /* note this works because spec says fb and input attachments
1580           * must use identity swizzle
1581           *
1582           * Also we clear swap to WZYX.  This is because the view might have
1583           * picked XYZW to work better with border colors.
1584           */
1585          dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1586             A6XX_TEX_CONST_0_SWAP__MASK |
1587             A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1588             A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1589          if (!cmd->device->physical_device->info->a6xx.has_z24uint_s8uint) {
1590             dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_8_8_8_UINT) |
1591                A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_W) |
1592                A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1593                A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1594                A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1595          } else {
1596             dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_Z24_UINT_S8_UINT) |
1597                A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1598                A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1599                A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1600                A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1601          }
1602       }
1603 
1604       if (i % 2 == 1 && att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
1605          dst[0] &= ~A6XX_TEX_CONST_0_FMT__MASK;
1606          dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_UINT);
1607          dst[2] &= ~(A6XX_TEX_CONST_2_PITCHALIGN__MASK | A6XX_TEX_CONST_2_PITCH__MASK);
1608          dst[2] |= A6XX_TEX_CONST_2_PITCH(iview->stencil_pitch);
1609          dst[3] = 0;
1610          dst[4] = iview->stencil_base_addr;
1611          dst[5] = (dst[5] & 0xffff) | iview->stencil_base_addr >> 32;
1612 
1613          cpp = att->samples;
1614          gmem_offset = att->gmem_offset_stencil[cmd->state.gmem_layout];
1615       }
1616 
1617       if (!gmem || !subpass->input_attachments[i / 2].patch_input_gmem)
1618          continue;
1619 
1620       /* patched for gmem */
1621       dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1622       dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1623       dst[2] =
1624          A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1625          A6XX_TEX_CONST_2_PITCH(tiling->tile0.width * cpp);
1626       /* Note: it seems the HW implicitly calculates the array pitch with the
1627        * GMEM tiling, so we don't need to specify the pitch ourselves.
1628        */
1629       dst[3] = 0;
1630       dst[4] = cmd->device->physical_device->gmem_base + gmem_offset;
1631       dst[5] &= A6XX_TEX_CONST_5_DEPTH__MASK;
1632       for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1633          dst[i] = 0;
1634    }
1635 
1636    struct tu_cs cs;
1637    struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
1638 
1639    tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1640    tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1641                   CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1642                   CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1643                   CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1644                   CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1645    tu_cs_emit_qw(&cs, texture.iova);
1646 
1647    tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_CONST(.qword = texture.iova));
1648 
1649    tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1650 
1651    assert(cs.cur == cs.end); /* validate draw state size */
1652 
1653    return ds;
1654 }
1655 
1656 static void
tu_set_input_attachments(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass)1657 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1658 {
1659    struct tu_cs *cs = &cmd->draw_cs;
1660 
1661    tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1662    tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
1663                          tu_emit_input_attachments(cmd, subpass, true));
1664    tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
1665                          tu_emit_input_attachments(cmd, subpass, false));
1666 }
1667 
1668 static void
tu_emit_renderpass_begin(struct tu_cmd_buffer * cmd)1669 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd)
1670 {
1671    /* We need to re-emit any draw states that are patched in order for them to
1672     * be correctly added to the per-renderpass patchpoint list, even if they
1673     * are the same as before.
1674     */
1675    if (cmd->state.pass->has_fdm)
1676       cmd->state.dirty |= TU_CMD_DIRTY_FDM;
1677 
1678    /* We need to re-emit MSAA at the beginning of every renderpass because it
1679     * isn't part of a draw state that gets automatically re-emitted.
1680     */
1681    BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
1682               MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES);
1683    /* PC_PRIMITIVE_CNTL_0 isn't a part of a draw state and may be changed
1684     * by blits.
1685     */
1686    BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
1687               MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE);
1688 }
1689 
1690 template <chip CHIP>
1691 static void
tu6_sysmem_render_begin(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)1692 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1693                         struct tu_renderpass_result *autotune_result)
1694 {
1695    const struct tu_framebuffer *fb = cmd->state.framebuffer;
1696 
1697    tu_lrz_sysmem_begin(cmd, cs);
1698 
1699    assert(fb->width > 0 && fb->height > 0);
1700    tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1701    tu6_emit_window_offset<CHIP>(cs, 0, 0);
1702 
1703    tu6_emit_bin_size<CHIP>(cs, 0, 0, {
1704       .render_mode = RENDERING_PASS,
1705       .force_lrz_write_dis = true,
1706       .buffers_location = BUFFERS_IN_SYSMEM,
1707       .lrz_feedback_zmode_mask = 0x0,
1708    });
1709 
1710    if (CHIP == A7XX) {
1711       tu_cs_emit_regs(cs,
1712                      A7XX_RB_UNKNOWN_8812(0x3ff)); // all buffers in sysmem
1713       tu_cs_emit_regs(cs,
1714          A7XX_RB_UNKNOWN_8E06(cmd->device->physical_device->info->a6xx.magic.RB_UNKNOWN_8E06));
1715 
1716       /* These three have something to do with lrz/depth */
1717       tu_cs_emit_regs(cs, A7XX_GRAS_UNKNOWN_8007(0x0));
1718       tu_cs_emit_regs(cs, A7XX_GRAS_UNKNOWN_8113(0x4));
1719 
1720       tu_cs_emit_regs(cs, A6XX_GRAS_UNKNOWN_8110(0x2));
1721       tu_cs_emit_regs(cs, A7XX_RB_UNKNOWN_8E09(0x4));
1722    }
1723 
1724    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1725    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1726 
1727    /* A7XX TODO: blob doesn't use CP_SKIP_IB2_ENABLE_* */
1728    tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1729    tu_cs_emit(cs, 0x0);
1730 
1731    tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_SYSMEM);
1732 
1733    tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1734    tu_cs_emit(cs, 0x1);
1735 
1736    tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1737    tu_cs_emit(cs, 0x0);
1738 
1739    tu_autotune_begin_renderpass(cmd, cs, autotune_result);
1740 
1741    tu_cs_sanity_check(cs);
1742 }
1743 
1744 template <chip CHIP>
1745 static void
tu6_sysmem_render_end(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)1746 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1747                       struct tu_renderpass_result *autotune_result)
1748 {
1749    tu_autotune_end_renderpass(cmd, cs, autotune_result);
1750 
1751    /* Do any resolves of the last subpass. These are handled in the
1752     * tile_store_cs in the gmem path.
1753     */
1754    tu6_emit_sysmem_resolves<CHIP>(cmd, cs, cmd->state.subpass);
1755 
1756    tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1757 
1758    tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1759    tu_cs_emit(cs, 0x0);
1760 
1761    tu_lrz_sysmem_end(cmd, cs);
1762 
1763    tu_cs_sanity_check(cs);
1764 }
1765 
1766 template <chip CHIP>
1767 static void
tu6_tile_render_begin(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)1768 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1769                       struct tu_renderpass_result *autotune_result)
1770 {
1771    struct tu_physical_device *phys_dev = cmd->device->physical_device;
1772    const struct tu_tiling_config *tiling = cmd->state.tiling;
1773    tu_lrz_tiling_begin(cmd, cs);
1774 
1775    tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1776    tu_cs_emit(cs, 0x0);
1777 
1778    tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_GMEM);
1779 
1780    if (use_hw_binning(cmd)) {
1781       if (!cmd->vsc_initialized) {
1782          tu6_lazy_emit_vsc(cmd, cs);
1783       }
1784 
1785       tu6_emit_bin_size<CHIP>(cs, tiling->tile0.width, tiling->tile0.height,
1786                               {
1787                                  .render_mode = BINNING_PASS,
1788                                  .buffers_location = BUFFERS_IN_GMEM,
1789                                  .lrz_feedback_zmode_mask = 0x6,
1790                               });
1791 
1792       tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, cs, true);
1793 
1794       tu6_emit_binning_pass<CHIP>(cmd, cs);
1795 
1796       tu6_emit_bin_size<CHIP>(cs, tiling->tile0.width, tiling->tile0.height,
1797                               {
1798                                  .render_mode = RENDERING_PASS,
1799                                  .force_lrz_write_dis = true,
1800                                  .buffers_location = BUFFERS_IN_GMEM,
1801                                  .lrz_feedback_zmode_mask = 0x6,
1802                               });
1803 
1804       tu_cs_emit_regs(cs,
1805                       A6XX_VFD_MODE_CNTL(RENDERING_PASS));
1806 
1807       tu_cs_emit_regs(cs,
1808                       A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1809 
1810       tu_cs_emit_regs(cs,
1811                       A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1812 
1813       tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1814       tu_cs_emit(cs, 0x1);
1815       tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_LOCAL, 1);
1816       tu_cs_emit(cs, 0x1);
1817    } else {
1818       tu6_emit_bin_size<CHIP>(cs, tiling->tile0.width, tiling->tile0.height,
1819                               {
1820                                  .render_mode = RENDERING_PASS,
1821                                  .buffers_location = BUFFERS_IN_GMEM,
1822                                  .lrz_feedback_zmode_mask = 0x6,
1823                               });
1824 
1825       if (tiling->binning_possible) {
1826          /* Mark all tiles as visible for tu6_emit_cond_for_load_stores(), since
1827           * the actual binner didn't run.
1828           */
1829          int pipe_count = tiling->pipe_count.width * tiling->pipe_count.height;
1830          tu_cs_emit_pkt4(cs, REG_A6XX_VSC_STATE_REG(0), pipe_count);
1831          for (int i = 0; i < pipe_count; i++)
1832             tu_cs_emit(cs, ~0);
1833       }
1834    }
1835 
1836    tu_autotune_begin_renderpass(cmd, cs, autotune_result);
1837 
1838    tu_cs_sanity_check(cs);
1839 }
1840 
1841 template <chip CHIP>
1842 static void
tu6_render_tile(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t tx,uint32_t ty,uint32_t pipe,uint32_t slot,const struct tu_image_view * fdm)1843 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1844                 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot,
1845                 const struct tu_image_view *fdm)
1846 {
1847    tu6_emit_tile_select<CHIP>(cmd, &cmd->cs, tx, ty, pipe, slot, fdm);
1848 
1849    trace_start_draw_ib_gmem(&cmd->trace, &cmd->cs);
1850 
1851    /* Primitives that passed all tests are still counted in in each
1852     * tile even with HW binning beforehand. Do not permit it.
1853     */
1854    if (cmd->state.prim_generated_query_running_before_rp)
1855       tu_emit_event_write<CHIP>(cmd, cs, FD_STOP_PRIMITIVE_CTRS);
1856 
1857    tu_cs_emit_call(cs, &cmd->draw_cs);
1858 
1859    if (cmd->state.prim_generated_query_running_before_rp)
1860       tu_emit_event_write<CHIP>(cmd, cs, FD_START_PRIMITIVE_CTRS);
1861 
1862    if (use_hw_binning(cmd)) {
1863       tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1864       tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1865    }
1866 
1867    /* Predicate is changed in draw_cs so we have to re-emit it */
1868    if (cmd->state.rp.draw_cs_writes_to_cond_pred)
1869       tu6_emit_cond_for_load_stores(cmd, cs, pipe, slot, false);
1870 
1871    tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1872    tu_cs_emit(cs, 0x0);
1873 
1874    tu_cs_emit_call(cs, &cmd->tile_store_cs);
1875 
1876    tu_clone_trace_range(cmd, cs, cmd->trace_renderpass_start,
1877          cmd->trace_renderpass_end);
1878 
1879    tu_cs_sanity_check(cs);
1880 
1881    trace_end_draw_ib_gmem(&cmd->trace, &cmd->cs);
1882 }
1883 
1884 template <chip CHIP>
1885 static void
tu6_tile_render_end(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)1886 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1887                     struct tu_renderpass_result *autotune_result)
1888 {
1889    tu_autotune_end_renderpass(cmd, cs, autotune_result);
1890 
1891    tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1892 
1893    tu_lrz_tiling_end(cmd, cs);
1894 
1895    tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_FLUSH_BLIT_CACHE);
1896 
1897    tu_cs_sanity_check(cs);
1898 }
1899 
1900 template <chip CHIP>
1901 static void
tu_cmd_render_tiles(struct tu_cmd_buffer * cmd,struct tu_renderpass_result * autotune_result)1902 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd,
1903                     struct tu_renderpass_result *autotune_result)
1904 {
1905    const struct tu_tiling_config *tiling = cmd->state.tiling;
1906    const struct tu_image_view *fdm = NULL;
1907 
1908    if (cmd->state.pass->fragment_density_map.attachment != VK_ATTACHMENT_UNUSED) {
1909       fdm = cmd->state.attachments[cmd->state.pass->fragment_density_map.attachment];
1910    }
1911 
1912    /* Create gmem stores now (at EndRenderPass time)) because they needed to
1913     * know whether to allow their conditional execution, which was tied to a
1914     * state that was known only at the end of the renderpass.  They will be
1915     * called from tu6_render_tile().
1916     */
1917    tu_cs_begin(&cmd->tile_store_cs);
1918    tu6_emit_tile_store<CHIP>(cmd, &cmd->tile_store_cs);
1919    tu_cs_end(&cmd->tile_store_cs);
1920 
1921    cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
1922 
1923    tu6_tile_render_begin<CHIP>(cmd, &cmd->cs, autotune_result);
1924 
1925    /* Note: we reverse the order of walking the pipes and tiles on every
1926     * other row, to improve texture cache locality compared to raster order.
1927     */
1928    for (uint32_t py = 0; py < tiling->pipe_count.height; py++) {
1929       uint32_t pipe_row = py * tiling->pipe_count.width;
1930       for (uint32_t pipe_row_i = 0; pipe_row_i < tiling->pipe_count.width; pipe_row_i++) {
1931          uint32_t px;
1932          if (py & 1)
1933             px = tiling->pipe_count.width - 1 - pipe_row_i;
1934          else
1935             px = pipe_row_i;
1936          uint32_t pipe = pipe_row + px;
1937          uint32_t tx1 = px * tiling->pipe0.width;
1938          uint32_t ty1 = py * tiling->pipe0.height;
1939          uint32_t tx2 = MIN2(tx1 + tiling->pipe0.width, tiling->tile_count.width);
1940          uint32_t ty2 = MIN2(ty1 + tiling->pipe0.height, tiling->tile_count.height);
1941          uint32_t tile_row_stride = tx2 - tx1;
1942          uint32_t slot_row = 0;
1943          for (uint32_t ty = ty1; ty < ty2; ty++) {
1944             for (uint32_t tile_row_i = 0; tile_row_i < tile_row_stride; tile_row_i++) {
1945                uint32_t tx;
1946                if (ty & 1)
1947                   tx = tile_row_stride - 1 - tile_row_i;
1948                else
1949                   tx = tile_row_i;
1950                uint32_t slot = slot_row + tx;
1951                tu6_render_tile<CHIP>(cmd, &cmd->cs, tx1 + tx, ty, pipe, slot, fdm);
1952             }
1953             slot_row += tile_row_stride;
1954          }
1955       }
1956    }
1957 
1958    tu6_tile_render_end<CHIP>(cmd, &cmd->cs, autotune_result);
1959 
1960    trace_end_render_pass(&cmd->trace, &cmd->cs);
1961 
1962    /* We have trashed the dynamically-emitted viewport, scissor, and FS params
1963     * via the patchpoints, so we need to re-emit them if they are reused for a
1964     * later render pass.
1965     */
1966    if (cmd->state.pass->has_fdm)
1967       cmd->state.dirty |= TU_CMD_DIRTY_FDM;
1968 
1969    /* tu6_render_tile has cloned these tracepoints for each tile */
1970    if (!u_trace_iterator_equal(cmd->trace_renderpass_start, cmd->trace_renderpass_end))
1971       u_trace_disable_event_range(cmd->trace_renderpass_start,
1972                                   cmd->trace_renderpass_end);
1973 
1974    /* Reset the gmem store CS entry lists so that the next render pass
1975     * does its own stores.
1976     */
1977    tu_cs_discard_entries(&cmd->tile_store_cs);
1978 }
1979 
1980 template <chip CHIP>
1981 static void
tu_cmd_render_sysmem(struct tu_cmd_buffer * cmd,struct tu_renderpass_result * autotune_result)1982 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd,
1983                      struct tu_renderpass_result *autotune_result)
1984 {
1985    cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
1986 
1987    tu6_sysmem_render_begin<CHIP>(cmd, &cmd->cs, autotune_result);
1988 
1989    trace_start_draw_ib_sysmem(&cmd->trace, &cmd->cs);
1990 
1991    tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1992 
1993    trace_end_draw_ib_sysmem(&cmd->trace, &cmd->cs);
1994 
1995    tu6_sysmem_render_end<CHIP>(cmd, &cmd->cs, autotune_result);
1996 
1997    trace_end_render_pass(&cmd->trace, &cmd->cs);
1998 }
1999 
2000 template <chip CHIP>
2001 void
tu_cmd_render(struct tu_cmd_buffer * cmd_buffer)2002 tu_cmd_render(struct tu_cmd_buffer *cmd_buffer)
2003 {
2004    if (cmd_buffer->state.rp.has_tess)
2005       tu6_lazy_emit_tessfactor_addr<CHIP>(cmd_buffer);
2006 
2007    struct tu_renderpass_result *autotune_result = NULL;
2008    if (use_sysmem_rendering(cmd_buffer, &autotune_result))
2009       tu_cmd_render_sysmem<CHIP>(cmd_buffer, autotune_result);
2010    else
2011       tu_cmd_render_tiles<CHIP>(cmd_buffer, autotune_result);
2012 
2013    /* Outside of renderpasses we assume all draw states are disabled. We do
2014     * this outside the draw CS for the normal case where 3d gmem stores aren't
2015     * used.
2016     */
2017    tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs);
2018 
2019 }
2020 
tu_reset_render_pass(struct tu_cmd_buffer * cmd_buffer)2021 static void tu_reset_render_pass(struct tu_cmd_buffer *cmd_buffer)
2022 {
2023    /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
2024       rendered */
2025    tu_cs_discard_entries(&cmd_buffer->draw_cs);
2026    tu_cs_begin(&cmd_buffer->draw_cs);
2027    tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
2028    tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
2029 
2030    cmd_buffer->state.pass = NULL;
2031    cmd_buffer->state.subpass = NULL;
2032    cmd_buffer->state.framebuffer = NULL;
2033    cmd_buffer->state.attachments = NULL;
2034    cmd_buffer->state.clear_values = NULL;
2035    cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* invalid value to prevent looking up gmem offsets */
2036    memset(&cmd_buffer->state.rp, 0, sizeof(cmd_buffer->state.rp));
2037 
2038    /* LRZ is not valid next time we use it */
2039    cmd_buffer->state.lrz.valid = false;
2040    cmd_buffer->state.dirty |= TU_CMD_DIRTY_LRZ;
2041 
2042    /* Patchpoints have been executed */
2043    util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints);
2044    ralloc_free(cmd_buffer->patchpoints_ctx);
2045    cmd_buffer->patchpoints_ctx = NULL;
2046 }
2047 
2048 static VkResult
tu_create_cmd_buffer(struct vk_command_pool * pool,struct vk_command_buffer ** cmd_buffer_out)2049 tu_create_cmd_buffer(struct vk_command_pool *pool,
2050                      struct vk_command_buffer **cmd_buffer_out)
2051 {
2052    struct tu_device *device =
2053       container_of(pool->base.device, struct tu_device, vk);
2054    struct tu_cmd_buffer *cmd_buffer;
2055 
2056    cmd_buffer = (struct tu_cmd_buffer *) vk_zalloc2(
2057       &device->vk.alloc, NULL, sizeof(*cmd_buffer), 8,
2058       VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2059 
2060    if (cmd_buffer == NULL)
2061       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
2062 
2063    VkResult result =
2064       vk_command_buffer_init(pool, &cmd_buffer->vk, &tu_cmd_buffer_ops,
2065                              VK_COMMAND_BUFFER_LEVEL_PRIMARY);
2066    if (result != VK_SUCCESS) {
2067       vk_free2(&device->vk.alloc, NULL, cmd_buffer);
2068       return result;
2069    }
2070 
2071    cmd_buffer->device = device;
2072 
2073    u_trace_init(&cmd_buffer->trace, &device->trace_context);
2074    list_inithead(&cmd_buffer->renderpass_autotune_results);
2075 
2076    tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096, "cmd cs");
2077    tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096, "draw cs");
2078    tu_cs_init(&cmd_buffer->tile_store_cs, device, TU_CS_MODE_GROW, 2048, "tile store cs");
2079    tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "draw epilogue cs");
2080    tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048, "draw sub cs");
2081    tu_cs_init(&cmd_buffer->pre_chain.draw_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw cs");
2082    tu_cs_init(&cmd_buffer->pre_chain.draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw epiligoue cs");
2083 
2084    for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
2085       cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET;
2086 
2087    *cmd_buffer_out = &cmd_buffer->vk;
2088 
2089    return VK_SUCCESS;
2090 }
2091 
2092 static void
tu_cmd_buffer_destroy(struct vk_command_buffer * vk_cmd_buffer)2093 tu_cmd_buffer_destroy(struct vk_command_buffer *vk_cmd_buffer)
2094 {
2095    struct tu_cmd_buffer *cmd_buffer =
2096       container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk);
2097 
2098    tu_cs_finish(&cmd_buffer->cs);
2099    tu_cs_finish(&cmd_buffer->draw_cs);
2100    tu_cs_finish(&cmd_buffer->tile_store_cs);
2101    tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
2102    tu_cs_finish(&cmd_buffer->sub_cs);
2103    tu_cs_finish(&cmd_buffer->pre_chain.draw_cs);
2104    tu_cs_finish(&cmd_buffer->pre_chain.draw_epilogue_cs);
2105 
2106    u_trace_fini(&cmd_buffer->trace);
2107 
2108    tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
2109 
2110    for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
2111       if (cmd_buffer->descriptors[i].push_set.layout)
2112          vk_descriptor_set_layout_unref(&cmd_buffer->device->vk,
2113                                         &cmd_buffer->descriptors[i].push_set.layout->vk);
2114       vk_free(&cmd_buffer->device->vk.alloc,
2115               cmd_buffer->descriptors[i].push_set.mapped_ptr);
2116    }
2117 
2118    ralloc_free(cmd_buffer->patchpoints_ctx);
2119    util_dynarray_fini(&cmd_buffer->fdm_bin_patchpoints);
2120 
2121    vk_command_buffer_finish(&cmd_buffer->vk);
2122    vk_free2(&cmd_buffer->device->vk.alloc, &cmd_buffer->vk.pool->alloc,
2123             cmd_buffer);
2124 }
2125 
2126 static void
tu_reset_cmd_buffer(struct vk_command_buffer * vk_cmd_buffer,UNUSED VkCommandBufferResetFlags flags)2127 tu_reset_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer,
2128                     UNUSED VkCommandBufferResetFlags flags)
2129 {
2130    struct tu_cmd_buffer *cmd_buffer =
2131       container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk);
2132 
2133    vk_command_buffer_reset(&cmd_buffer->vk);
2134 
2135    tu_cs_reset(&cmd_buffer->cs);
2136    tu_cs_reset(&cmd_buffer->draw_cs);
2137    tu_cs_reset(&cmd_buffer->tile_store_cs);
2138    tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
2139    tu_cs_reset(&cmd_buffer->sub_cs);
2140    tu_cs_reset(&cmd_buffer->pre_chain.draw_cs);
2141    tu_cs_reset(&cmd_buffer->pre_chain.draw_epilogue_cs);
2142 
2143    tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
2144 
2145    for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
2146       memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
2147       if (cmd_buffer->descriptors[i].push_set.layout) {
2148          vk_descriptor_set_layout_unref(&cmd_buffer->device->vk,
2149                                         &cmd_buffer->descriptors[i].push_set.layout->vk);
2150       }
2151       memset(&cmd_buffer->descriptors[i].push_set, 0, sizeof(cmd_buffer->descriptors[i].push_set));
2152       cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET;
2153       cmd_buffer->descriptors[i].max_sets_bound = 0;
2154       cmd_buffer->descriptors[i].max_dynamic_offset_size = 0;
2155    }
2156 
2157    u_trace_fini(&cmd_buffer->trace);
2158    u_trace_init(&cmd_buffer->trace, &cmd_buffer->device->trace_context);
2159 
2160    cmd_buffer->state.max_vbs_bound = 0;
2161 
2162    cmd_buffer->vsc_initialized = false;
2163 
2164    ralloc_free(cmd_buffer->patchpoints_ctx);
2165    cmd_buffer->patchpoints_ctx = NULL;
2166    util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints);
2167 }
2168 
2169 const struct vk_command_buffer_ops tu_cmd_buffer_ops = {
2170    .create = tu_create_cmd_buffer,
2171    .reset = tu_reset_cmd_buffer,
2172    .destroy = tu_cmd_buffer_destroy,
2173 };
2174 
2175 /* Initialize the cache, assuming all necessary flushes have happened but *not*
2176  * invalidations.
2177  */
2178 static void
tu_cache_init(struct tu_cache_state * cache)2179 tu_cache_init(struct tu_cache_state *cache)
2180 {
2181    cache->flush_bits = 0;
2182    cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
2183 }
2184 
2185 /* Unlike the public entrypoint, this doesn't handle cache tracking, and
2186  * tracking the CCU state. It's used for the driver to insert its own command
2187  * buffer in the middle of a submit.
2188  */
2189 VkResult
tu_cmd_buffer_begin(struct tu_cmd_buffer * cmd_buffer,const VkCommandBufferBeginInfo * pBeginInfo)2190 tu_cmd_buffer_begin(struct tu_cmd_buffer *cmd_buffer,
2191                     const VkCommandBufferBeginInfo *pBeginInfo)
2192 {
2193    vk_command_buffer_begin(&cmd_buffer->vk, pBeginInfo);
2194 
2195    memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
2196    cmd_buffer->vk.dynamic_graphics_state = vk_default_dynamic_graphics_state;
2197    cmd_buffer->vk.dynamic_graphics_state.vi = &cmd_buffer->state.vi;
2198    cmd_buffer->vk.dynamic_graphics_state.ms.sample_locations = &cmd_buffer->state.sl;
2199    cmd_buffer->state.index_size = 0xff; /* dirty restart index */
2200    cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* dirty value */
2201 
2202    tu_cache_init(&cmd_buffer->state.cache);
2203    tu_cache_init(&cmd_buffer->state.renderpass_cache);
2204    cmd_buffer->usage_flags = pBeginInfo->flags;
2205 
2206    tu_cs_begin(&cmd_buffer->cs);
2207    tu_cs_begin(&cmd_buffer->draw_cs);
2208    tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
2209 
2210    return VK_SUCCESS;
2211 }
2212 
2213 VKAPI_ATTR VkResult VKAPI_CALL
tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,const VkCommandBufferBeginInfo * pBeginInfo)2214 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
2215                       const VkCommandBufferBeginInfo *pBeginInfo)
2216 {
2217    TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
2218    VkResult result = tu_cmd_buffer_begin(cmd_buffer, pBeginInfo);
2219    if (result != VK_SUCCESS)
2220       return result;
2221 
2222    /* setup initial configuration into command buffer */
2223    if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
2224       trace_start_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs, cmd_buffer);
2225 
2226       switch (cmd_buffer->queue_family_index) {
2227       case TU_QUEUE_GENERAL:
2228          TU_CALLX(cmd_buffer->device, tu6_init_hw)(cmd_buffer, &cmd_buffer->cs);
2229          break;
2230       default:
2231          break;
2232       }
2233    } else if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
2234       const bool pass_continue =
2235          pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
2236 
2237       trace_start_cmd_buffer(&cmd_buffer->trace,
2238             pass_continue ? &cmd_buffer->draw_cs : &cmd_buffer->cs, cmd_buffer);
2239 
2240       assert(pBeginInfo->pInheritanceInfo);
2241 
2242       cmd_buffer->inherited_pipeline_statistics =
2243          pBeginInfo->pInheritanceInfo->pipelineStatistics;
2244 
2245       vk_foreach_struct_const(ext, pBeginInfo->pInheritanceInfo) {
2246          switch (ext->sType) {
2247          case VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT: {
2248             const VkCommandBufferInheritanceConditionalRenderingInfoEXT *cond_rend =
2249                (VkCommandBufferInheritanceConditionalRenderingInfoEXT *) ext;
2250             cmd_buffer->state.predication_active = cond_rend->conditionalRenderingEnable;
2251             break;
2252          }
2253          default:
2254             break;
2255          }
2256       }
2257 
2258       if (pass_continue) {
2259          const VkCommandBufferInheritanceRenderingInfo *rendering_info =
2260             vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext,
2261                                  COMMAND_BUFFER_INHERITANCE_RENDERING_INFO);
2262 
2263          if (TU_DEBUG(DYNAMIC)) {
2264             rendering_info =
2265                vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level,
2266                                                                 pBeginInfo);
2267          }
2268 
2269          if (rendering_info) {
2270             tu_setup_dynamic_inheritance(cmd_buffer, rendering_info);
2271             cmd_buffer->state.pass = &cmd_buffer->dynamic_pass;
2272             cmd_buffer->state.subpass = &cmd_buffer->dynamic_subpass;
2273          } else {
2274             cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
2275             cmd_buffer->state.subpass =
2276                &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
2277          }
2278          tu_fill_render_pass_state(&cmd_buffer->state.vk_rp,
2279                                    cmd_buffer->state.pass,
2280                                    cmd_buffer->state.subpass);
2281          vk_cmd_set_cb_attachment_count(&cmd_buffer->vk,
2282                                         cmd_buffer->state.subpass->color_count);
2283          cmd_buffer->state.dirty |= TU_CMD_DIRTY_SUBPASS;
2284 
2285          cmd_buffer->patchpoints_ctx = ralloc_parent(NULL);
2286 
2287          /* We can't set the gmem layout here, because the state.pass only has
2288           * to be compatible (same formats/sample counts) with the primary's
2289           * renderpass, rather than exactly equal.
2290           */
2291 
2292          tu_lrz_begin_secondary_cmdbuf(cmd_buffer);
2293       } else {
2294          /* When executing in the middle of another command buffer, the CCU
2295           * state is unknown.
2296           */
2297          cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
2298       }
2299    }
2300 
2301    return VK_SUCCESS;
2302 }
2303 
2304 static struct tu_cs
tu_cmd_dynamic_state(struct tu_cmd_buffer * cmd,uint32_t id,uint32_t size)2305 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2306 {
2307    struct tu_cs cs;
2308 
2309    assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2310    cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
2311 
2312    /* note: this also avoids emitting draw states before renderpass clears,
2313     * which may use the 3D clear path (for MSAA cases)
2314     */
2315    if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)
2316       return cs;
2317 
2318    tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2319    tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2320 
2321    return cs;
2322 }
2323 
2324 static void
tu_cmd_end_dynamic_state(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t id)2325 tu_cmd_end_dynamic_state(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
2326                          uint32_t id)
2327 {
2328    assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2329    cmd->state.dynamic_state[id] = tu_cs_end_draw_state(&cmd->sub_cs, cs);
2330 
2331    /* note: this also avoids emitting draw states before renderpass clears,
2332     * which may use the 3D clear path (for MSAA cases)
2333     */
2334    if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)
2335       return;
2336 
2337    tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2338    tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2339 }
2340 
2341 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes,const VkDeviceSize * pStrides)2342 tu_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer,
2343                          uint32_t firstBinding,
2344                          uint32_t bindingCount,
2345                          const VkBuffer *pBuffers,
2346                          const VkDeviceSize *pOffsets,
2347                          const VkDeviceSize *pSizes,
2348                          const VkDeviceSize *pStrides)
2349 {
2350    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2351    struct tu_cs cs;
2352 
2353    cmd->state.max_vbs_bound = MAX2(
2354       cmd->state.max_vbs_bound, firstBinding + bindingCount);
2355 
2356    if (pStrides) {
2357       vk_cmd_set_vertex_binding_strides(&cmd->vk, firstBinding, bindingCount,
2358                                         pStrides);
2359    }
2360 
2361    cmd->state.vertex_buffers.iova =
2362       tu_cs_draw_state(&cmd->sub_cs, &cs, 4 * cmd->state.max_vbs_bound).iova;
2363 
2364    for (uint32_t i = 0; i < bindingCount; i++) {
2365       if (pBuffers[i] == VK_NULL_HANDLE) {
2366          cmd->state.vb[firstBinding + i].base = 0;
2367          cmd->state.vb[firstBinding + i].size = 0;
2368       } else {
2369          struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
2370          cmd->state.vb[firstBinding + i].base = buf->iova + pOffsets[i];
2371          cmd->state.vb[firstBinding + i].size =
2372             vk_buffer_range(&buf->vk, pOffsets[i], pSizes ? pSizes[i] : VK_WHOLE_SIZE);
2373       }
2374    }
2375 
2376    for (uint32_t i = 0; i < cmd->state.max_vbs_bound; i++) {
2377       tu_cs_emit_regs(&cs,
2378                       A6XX_VFD_FETCH_BASE(i, .qword = cmd->state.vb[i].base),
2379                       A6XX_VFD_FETCH_SIZE(i, cmd->state.vb[i].size));
2380    }
2381 
2382    cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2383 }
2384 
2385 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindIndexBuffer2KHR(VkCommandBuffer commandBuffer,VkBuffer buffer,VkDeviceSize offset,VkDeviceSize size,VkIndexType indexType)2386 tu_CmdBindIndexBuffer2KHR(VkCommandBuffer commandBuffer,
2387                           VkBuffer buffer,
2388                           VkDeviceSize offset,
2389                           VkDeviceSize size,
2390                           VkIndexType indexType)
2391 {
2392    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2393    TU_FROM_HANDLE(tu_buffer, buf, buffer);
2394 
2395    size = vk_buffer_range(&buf->vk, offset, size);
2396 
2397    uint32_t index_size, index_shift;
2398    uint32_t restart_index = vk_index_to_restart(indexType);
2399 
2400    switch (indexType) {
2401    case VK_INDEX_TYPE_UINT16:
2402       index_size = INDEX4_SIZE_16_BIT;
2403       index_shift = 1;
2404       break;
2405    case VK_INDEX_TYPE_UINT32:
2406       index_size = INDEX4_SIZE_32_BIT;
2407       index_shift = 2;
2408       break;
2409    case VK_INDEX_TYPE_UINT8_EXT:
2410       index_size = INDEX4_SIZE_8_BIT;
2411       index_shift = 0;
2412       break;
2413    default:
2414       unreachable("invalid VkIndexType");
2415    }
2416 
2417    /* initialize/update the restart index */
2418    if (cmd->state.index_size != index_size)
2419       tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
2420 
2421    cmd->state.index_va = buf->iova + offset;
2422    cmd->state.max_index_count = size >> index_shift;
2423    cmd->state.index_size = index_size;
2424 }
2425 
2426 template <chip CHIP>
2427 static void
tu6_emit_descriptor_sets(struct tu_cmd_buffer * cmd,VkPipelineBindPoint bind_point)2428 tu6_emit_descriptor_sets(struct tu_cmd_buffer *cmd,
2429                          VkPipelineBindPoint bind_point)
2430 {
2431    struct tu_descriptor_state *descriptors_state =
2432       tu_get_descriptors_state(cmd, bind_point);
2433    uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg;
2434    struct tu_cs *cs, state_cs;
2435 
2436    if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
2437       sp_bindless_base_reg = __SP_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg;
2438       hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
2439 
2440       if (CHIP == A6XX) {
2441          cmd->state.desc_sets =
2442             tu_cs_draw_state(&cmd->sub_cs, &state_cs,
2443                              4 + 4 * descriptors_state->max_sets_bound +
2444                              (descriptors_state->max_dynamic_offset_size ? 6 : 0));
2445       } else {
2446          cmd->state.desc_sets =
2447             tu_cs_draw_state(&cmd->sub_cs, &state_cs,
2448                              3 + 2 * descriptors_state->max_sets_bound +
2449                              (descriptors_state->max_dynamic_offset_size ? 3 : 0));
2450       }
2451       cs = &state_cs;
2452    } else {
2453       assert(bind_point == VK_PIPELINE_BIND_POINT_COMPUTE);
2454 
2455       sp_bindless_base_reg = __SP_CS_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg;
2456       hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
2457 
2458       cs = &cmd->cs;
2459    }
2460 
2461    tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 2 * descriptors_state->max_sets_bound);
2462    tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound);
2463    if (CHIP == A6XX) {
2464       tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 2 * descriptors_state->max_sets_bound);
2465       tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound);
2466    }
2467 
2468    /* Dynamic descriptors get the reserved descriptor set. */
2469    if (descriptors_state->max_dynamic_offset_size) {
2470       int reserved_set_idx = cmd->device->physical_device->reserved_set_idx;
2471       assert(reserved_set_idx >= 0); /* reserved set must be bound */
2472 
2473       tu_cs_emit_pkt4(cs, sp_bindless_base_reg + reserved_set_idx * 2, 2);
2474       tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]);
2475       if (CHIP == A6XX) {
2476          tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg + reserved_set_idx * 2, 2);
2477          tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]);
2478       }
2479    }
2480 
2481    tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP,
2482       .cs_bindless = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE ? CHIP == A6XX ? 0x1f : 0xff : 0,
2483       .gfx_bindless = bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS ? CHIP == A6XX ? 0x1f : 0xff : 0,
2484    ));
2485 
2486    if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
2487       assert(cs->cur == cs->end); /* validate draw state size */
2488       /* note: this also avoids emitting draw states before renderpass clears,
2489        * which may use the 3D clear path (for MSAA cases)
2490        */
2491       if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
2492          tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2493          tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
2494       }
2495    }
2496 }
2497 
2498 /* We lazily emit the draw state for desciptor sets at draw time, so that we can
2499  * batch together multiple tu_CmdBindDescriptorSets() calls.  ANGLE and zink
2500  * will often emit multiple bind calls in a draw.
2501  */
2502 static void
tu_dirty_desc_sets(struct tu_cmd_buffer * cmd,VkPipelineBindPoint pipelineBindPoint)2503 tu_dirty_desc_sets(struct tu_cmd_buffer *cmd,
2504                    VkPipelineBindPoint pipelineBindPoint)
2505 {
2506    if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2507       cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS;
2508    } else {
2509       assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2510       cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS;
2511    }
2512 }
2513 
2514 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipelineLayout _layout,uint32_t firstSet,uint32_t descriptorSetCount,const VkDescriptorSet * pDescriptorSets,uint32_t dynamicOffsetCount,const uint32_t * pDynamicOffsets)2515 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
2516                          VkPipelineBindPoint pipelineBindPoint,
2517                          VkPipelineLayout _layout,
2518                          uint32_t firstSet,
2519                          uint32_t descriptorSetCount,
2520                          const VkDescriptorSet *pDescriptorSets,
2521                          uint32_t dynamicOffsetCount,
2522                          const uint32_t *pDynamicOffsets)
2523 {
2524    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2525    TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
2526    unsigned dyn_idx = 0;
2527 
2528    struct tu_descriptor_state *descriptors_state =
2529       tu_get_descriptors_state(cmd, pipelineBindPoint);
2530 
2531    descriptors_state->max_sets_bound =
2532       MAX2(descriptors_state->max_sets_bound, firstSet + descriptorSetCount);
2533 
2534    unsigned dynamic_offset_offset = 0;
2535    for (unsigned i = 0; i < firstSet; i++) {
2536       dynamic_offset_offset += layout->set[i].layout->dynamic_offset_size;
2537    }
2538 
2539    for (unsigned i = 0; i < descriptorSetCount; ++i) {
2540       unsigned idx = i + firstSet;
2541       TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
2542 
2543       descriptors_state->sets[idx] = set;
2544       descriptors_state->set_iova[idx] = set ?
2545          (set->va | BINDLESS_DESCRIPTOR_64B) : 0;
2546 
2547       if (!set)
2548          continue;
2549 
2550       if (set->layout->has_inline_uniforms)
2551          cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2552 
2553       if (!set->layout->dynamic_offset_size)
2554          continue;
2555 
2556       uint32_t *src = set->dynamic_descriptors;
2557       uint32_t *dst = descriptors_state->dynamic_descriptors +
2558          dynamic_offset_offset / 4;
2559       for (unsigned j = 0; j < set->layout->binding_count; j++) {
2560          struct tu_descriptor_set_binding_layout *binding =
2561             &set->layout->binding[j];
2562          if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
2563              binding->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
2564             for (unsigned k = 0; k < binding->array_size; k++, dyn_idx++) {
2565                assert(dyn_idx < dynamicOffsetCount);
2566                uint32_t offset = pDynamicOffsets[dyn_idx];
2567                memcpy(dst, src, binding->size);
2568 
2569                if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) {
2570                   /* Note: we can assume here that the addition won't roll
2571                    * over and change the SIZE field.
2572                    */
2573                   uint64_t va = src[0] | ((uint64_t)src[1] << 32);
2574                   va += offset;
2575                   dst[0] = va;
2576                   dst[1] = va >> 32;
2577                } else {
2578                   uint32_t *dst_desc = dst;
2579                   for (unsigned i = 0;
2580                        i < binding->size / (4 * A6XX_TEX_CONST_DWORDS);
2581                        i++, dst_desc += A6XX_TEX_CONST_DWORDS) {
2582                      /* Note: A6XX_TEX_CONST_5_DEPTH is always 0 */
2583                      uint64_t va = dst_desc[4] | ((uint64_t)dst_desc[5] << 32);
2584                      uint32_t desc_offset =
2585                         (dst_desc[2] &
2586                          A6XX_TEX_CONST_2_STARTOFFSETTEXELS__MASK) >>
2587                         A6XX_TEX_CONST_2_STARTOFFSETTEXELS__SHIFT;
2588 
2589                      /* Without the ability to cast 16-bit as 32-bit, there is
2590                       * only one descriptor whose texels are 32 bits (4
2591                       * bytes). With casting, there are two descriptors, the
2592                       * first being 16-bit and the second being 32-bit.
2593                       */
2594                      unsigned offset_shift =
2595                         binding->size == 4 * A6XX_TEX_CONST_DWORDS || i == 1 ? 2 : 1;
2596 
2597                      va += desc_offset << offset_shift;
2598                      va += offset;
2599                      unsigned new_offset = (va & 0x3f) >> offset_shift;
2600                      va &= ~0x3full;
2601                      dst_desc[4] = va;
2602                      dst_desc[5] = va >> 32;
2603                      dst_desc[2] =
2604                         (dst_desc[2] & ~A6XX_TEX_CONST_2_STARTOFFSETTEXELS__MASK) |
2605                         A6XX_TEX_CONST_2_STARTOFFSETTEXELS(new_offset);
2606                   }
2607                }
2608 
2609                dst += binding->size / 4;
2610                src += binding->size / 4;
2611             }
2612          }
2613       }
2614 
2615       dynamic_offset_offset += layout->set[idx].layout->dynamic_offset_size;
2616    }
2617    assert(dyn_idx == dynamicOffsetCount);
2618 
2619    if (dynamic_offset_offset) {
2620       descriptors_state->max_dynamic_offset_size =
2621          MAX2(descriptors_state->max_dynamic_offset_size, dynamic_offset_offset);
2622 
2623       /* allocate and fill out dynamic descriptor set */
2624       struct tu_cs_memory dynamic_desc_set;
2625       int reserved_set_idx = cmd->device->physical_device->reserved_set_idx;
2626       VkResult result =
2627          tu_cs_alloc(&cmd->sub_cs,
2628                      descriptors_state->max_dynamic_offset_size /
2629                      (4 * A6XX_TEX_CONST_DWORDS),
2630                      A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
2631       if (result != VK_SUCCESS) {
2632          vk_command_buffer_set_error(&cmd->vk, result);
2633          return;
2634       }
2635 
2636       memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
2637              descriptors_state->max_dynamic_offset_size);
2638       assert(reserved_set_idx >= 0); /* reserved set must be bound */
2639       descriptors_state->set_iova[reserved_set_idx] = dynamic_desc_set.iova | BINDLESS_DESCRIPTOR_64B;
2640    }
2641 
2642    tu_dirty_desc_sets(cmd, pipelineBindPoint);
2643 }
2644 
2645 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorBuffersEXT(VkCommandBuffer commandBuffer,uint32_t bufferCount,const VkDescriptorBufferBindingInfoEXT * pBindingInfos)2646 tu_CmdBindDescriptorBuffersEXT(
2647    VkCommandBuffer commandBuffer,
2648    uint32_t bufferCount,
2649    const VkDescriptorBufferBindingInfoEXT *pBindingInfos)
2650 {
2651    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2652 
2653    for (unsigned i = 0; i < bufferCount; i++)
2654       cmd->state.descriptor_buffer_iova[i] = pBindingInfos[i].address;
2655 }
2656 
2657 VKAPI_ATTR void VKAPI_CALL
tu_CmdSetDescriptorBufferOffsetsEXT(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipelineLayout _layout,uint32_t firstSet,uint32_t setCount,const uint32_t * pBufferIndices,const VkDeviceSize * pOffsets)2658 tu_CmdSetDescriptorBufferOffsetsEXT(
2659    VkCommandBuffer commandBuffer,
2660    VkPipelineBindPoint pipelineBindPoint,
2661    VkPipelineLayout _layout,
2662    uint32_t firstSet,
2663    uint32_t setCount,
2664    const uint32_t *pBufferIndices,
2665    const VkDeviceSize *pOffsets)
2666 {
2667    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2668    TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
2669 
2670    struct tu_descriptor_state *descriptors_state =
2671       tu_get_descriptors_state(cmd, pipelineBindPoint);
2672 
2673    descriptors_state->max_sets_bound =
2674       MAX2(descriptors_state->max_sets_bound, firstSet + setCount);
2675 
2676    for (unsigned i = 0; i < setCount; ++i) {
2677       unsigned idx = i + firstSet;
2678       struct tu_descriptor_set_layout *set_layout = layout->set[idx].layout;
2679 
2680       descriptors_state->set_iova[idx] =
2681          (cmd->state.descriptor_buffer_iova[pBufferIndices[i]] + pOffsets[i]) |
2682          BINDLESS_DESCRIPTOR_64B;
2683 
2684       if (set_layout->has_inline_uniforms)
2685          cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2686    }
2687 
2688    tu_dirty_desc_sets(cmd, pipelineBindPoint);
2689 }
2690 
2691 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorBufferEmbeddedSamplersEXT(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipelineLayout _layout,uint32_t set)2692 tu_CmdBindDescriptorBufferEmbeddedSamplersEXT(
2693    VkCommandBuffer commandBuffer,
2694    VkPipelineBindPoint pipelineBindPoint,
2695    VkPipelineLayout _layout,
2696    uint32_t set)
2697 {
2698    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2699    TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
2700 
2701    struct tu_descriptor_set_layout *set_layout = layout->set[set].layout;
2702 
2703    struct tu_descriptor_state *descriptors_state =
2704       tu_get_descriptors_state(cmd, pipelineBindPoint);
2705 
2706    descriptors_state->max_sets_bound =
2707       MAX2(descriptors_state->max_sets_bound, set + 1);
2708 
2709    descriptors_state->set_iova[set] = set_layout->embedded_samplers->iova |
2710          BINDLESS_DESCRIPTOR_64B;
2711 
2712    tu_dirty_desc_sets(cmd, pipelineBindPoint);
2713 }
2714 
2715 static enum VkResult
tu_push_descriptor_set_update_layout(struct tu_device * device,struct tu_descriptor_set * set,struct tu_descriptor_set_layout * layout)2716 tu_push_descriptor_set_update_layout(struct tu_device *device,
2717                                      struct tu_descriptor_set *set,
2718                                      struct tu_descriptor_set_layout *layout)
2719 {
2720    if (set->layout == layout)
2721       return VK_SUCCESS;
2722 
2723    if (set->layout)
2724       vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
2725    vk_descriptor_set_layout_ref(&layout->vk);
2726    set->layout = layout;
2727 
2728    if (set->host_size < layout->size) {
2729       void *new_buf =
2730          vk_realloc(&device->vk.alloc, set->mapped_ptr, layout->size, 8,
2731                     VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2732       if (!new_buf)
2733          return VK_ERROR_OUT_OF_HOST_MEMORY;
2734       set->mapped_ptr = (uint32_t *) new_buf;
2735       set->host_size = layout->size;
2736    }
2737    return VK_SUCCESS;
2738 }
2739 
2740 VKAPI_ATTR void VKAPI_CALL
tu_CmdPushDescriptorSetKHR(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipelineLayout _layout,uint32_t _set,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites)2741 tu_CmdPushDescriptorSetKHR(VkCommandBuffer commandBuffer,
2742                            VkPipelineBindPoint pipelineBindPoint,
2743                            VkPipelineLayout _layout,
2744                            uint32_t _set,
2745                            uint32_t descriptorWriteCount,
2746                            const VkWriteDescriptorSet *pDescriptorWrites)
2747 {
2748    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2749    TU_FROM_HANDLE(tu_pipeline_layout, pipe_layout, _layout);
2750    struct tu_descriptor_set_layout *layout = pipe_layout->set[_set].layout;
2751    struct tu_descriptor_set *set =
2752       &tu_get_descriptors_state(cmd, pipelineBindPoint)->push_set;
2753 
2754    struct tu_cs_memory set_mem;
2755    VkResult result = tu_cs_alloc(&cmd->sub_cs,
2756                                  DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
2757                                  A6XX_TEX_CONST_DWORDS, &set_mem);
2758    if (result != VK_SUCCESS) {
2759       vk_command_buffer_set_error(&cmd->vk, result);
2760       return;
2761    }
2762 
2763    result = tu_push_descriptor_set_update_layout(cmd->device, set, layout);
2764    if (result != VK_SUCCESS) {
2765       vk_command_buffer_set_error(&cmd->vk, result);
2766       return;
2767    }
2768 
2769    tu_update_descriptor_sets(cmd->device, tu_descriptor_set_to_handle(set),
2770                              descriptorWriteCount, pDescriptorWrites, 0, NULL);
2771 
2772    memcpy(set_mem.map, set->mapped_ptr, layout->size);
2773    set->va = set_mem.iova;
2774 
2775    const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) };
2776    tu_CmdBindDescriptorSets(commandBuffer, pipelineBindPoint, _layout, _set,
2777                             1, desc_set, 0, NULL);
2778 }
2779 
2780 VKAPI_ATTR void VKAPI_CALL
tu_CmdPushDescriptorSetWithTemplateKHR(VkCommandBuffer commandBuffer,VkDescriptorUpdateTemplate descriptorUpdateTemplate,VkPipelineLayout _layout,uint32_t _set,const void * pData)2781 tu_CmdPushDescriptorSetWithTemplateKHR(VkCommandBuffer commandBuffer,
2782                                        VkDescriptorUpdateTemplate descriptorUpdateTemplate,
2783                                        VkPipelineLayout _layout,
2784                                        uint32_t _set,
2785                                        const void* pData)
2786 {
2787    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2788    TU_FROM_HANDLE(tu_pipeline_layout, pipe_layout, _layout);
2789    TU_FROM_HANDLE(tu_descriptor_update_template, templ, descriptorUpdateTemplate);
2790    struct tu_descriptor_set_layout *layout = pipe_layout->set[_set].layout;
2791    struct tu_descriptor_set *set =
2792       &tu_get_descriptors_state(cmd, templ->bind_point)->push_set;
2793 
2794    struct tu_cs_memory set_mem;
2795    VkResult result = tu_cs_alloc(&cmd->sub_cs,
2796                                  DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
2797                                  A6XX_TEX_CONST_DWORDS, &set_mem);
2798    if (result != VK_SUCCESS) {
2799       vk_command_buffer_set_error(&cmd->vk, result);
2800       return;
2801    }
2802 
2803    result = tu_push_descriptor_set_update_layout(cmd->device, set, layout);
2804    if (result != VK_SUCCESS) {
2805       vk_command_buffer_set_error(&cmd->vk, result);
2806       return;
2807    }
2808 
2809    tu_update_descriptor_set_with_template(cmd->device, set, descriptorUpdateTemplate, pData);
2810 
2811    memcpy(set_mem.map, set->mapped_ptr, layout->size);
2812    set->va = set_mem.iova;
2813 
2814    const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) };
2815    tu_CmdBindDescriptorSets(commandBuffer, templ->bind_point, _layout, _set,
2816                             1, desc_set, 0, NULL);
2817 }
2818 
2819 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes)2820 tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
2821                                       uint32_t firstBinding,
2822                                       uint32_t bindingCount,
2823                                       const VkBuffer *pBuffers,
2824                                       const VkDeviceSize *pOffsets,
2825                                       const VkDeviceSize *pSizes)
2826 {
2827    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2828    struct tu_cs *cs = &cmd->draw_cs;
2829 
2830    /* using COND_REG_EXEC for xfb commands matches the blob behavior
2831     * presumably there isn't any benefit using a draw state when the
2832     * condition is (SYSMEM | BINNING)
2833     */
2834    tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
2835                           CP_COND_REG_EXEC_0_SYSMEM |
2836                           CP_COND_REG_EXEC_0_BINNING);
2837 
2838    for (uint32_t i = 0; i < bindingCount; i++) {
2839       TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
2840       uint64_t iova = buf->iova + pOffsets[i];
2841       uint32_t size = buf->bo->size - (iova - buf->bo->iova);
2842       uint32_t idx = i + firstBinding;
2843 
2844       if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
2845          size = pSizes[i];
2846 
2847       /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
2848       uint32_t offset = iova & 0x1f;
2849       iova &= ~(uint64_t) 0x1f;
2850 
2851       tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
2852       tu_cs_emit_qw(cs, iova);
2853       tu_cs_emit(cs, size + offset);
2854 
2855       cmd->state.streamout_offset[idx] = offset;
2856    }
2857 
2858    tu_cond_exec_end(cs);
2859 }
2860 
2861 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)2862 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
2863                                 uint32_t firstCounterBuffer,
2864                                 uint32_t counterBufferCount,
2865                                 const VkBuffer *pCounterBuffers,
2866                                 const VkDeviceSize *pCounterBufferOffsets)
2867 {
2868    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2869    struct tu_cs *cs = &cmd->draw_cs;
2870 
2871    tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
2872                           CP_COND_REG_EXEC_0_SYSMEM |
2873                           CP_COND_REG_EXEC_0_BINNING);
2874 
2875    tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
2876 
2877    /* TODO: only update offset for active buffers */
2878    for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
2879       tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
2880 
2881    for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
2882       uint32_t idx = firstCounterBuffer + i;
2883       uint32_t offset = cmd->state.streamout_offset[idx];
2884       uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
2885 
2886       if (!pCounterBuffers[i])
2887          continue;
2888 
2889       TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
2890 
2891       tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2892       tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
2893                      CP_MEM_TO_REG_0_UNK31 |
2894                      CP_MEM_TO_REG_0_CNT(1));
2895       tu_cs_emit_qw(cs, buf->iova + counter_buffer_offset);
2896 
2897       if (offset) {
2898          tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
2899          tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
2900                         CP_REG_RMW_0_SRC1_ADD);
2901          tu_cs_emit(cs, 0xffffffff);
2902          tu_cs_emit(cs, offset);
2903       }
2904    }
2905 
2906    tu_cond_exec_end(cs);
2907 }
2908 
2909 template <chip CHIP>
2910 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)2911 tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
2912                               uint32_t firstCounterBuffer,
2913                               uint32_t counterBufferCount,
2914                               const VkBuffer *pCounterBuffers,
2915                               const VkDeviceSize *pCounterBufferOffsets)
2916 {
2917    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2918    struct tu_cs *cs = &cmd->draw_cs;
2919 
2920    tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
2921                           CP_COND_REG_EXEC_0_SYSMEM |
2922                           CP_COND_REG_EXEC_0_BINNING);
2923 
2924    tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
2925 
2926    /* TODO: only flush buffers that need to be flushed */
2927    for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
2928       /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
2929       tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
2930       tu_cs_emit_qw(cs, global_iova_arr(cmd, flush_base, i));
2931       tu_emit_event_write<CHIP>(cmd, cs, (enum fd_gpu_event) (FD_FLUSH_SO_0 + i));
2932    }
2933 
2934    for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
2935       uint32_t idx = firstCounterBuffer + i;
2936       uint32_t offset = cmd->state.streamout_offset[idx];
2937       uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
2938 
2939       if (!pCounterBuffers[i])
2940          continue;
2941 
2942       TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
2943 
2944       /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
2945       tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2946       tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2947                      COND(CHIP == A6XX, CP_MEM_TO_REG_0_SHIFT_BY_2) |
2948                      0x40000 | /* ??? */
2949                      CP_MEM_TO_REG_0_UNK31 |
2950                      CP_MEM_TO_REG_0_CNT(1));
2951       tu_cs_emit_qw(cs, global_iova_arr(cmd, flush_base, idx));
2952 
2953       if (offset) {
2954          tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
2955          tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2956                         CP_REG_RMW_0_SRC1_ADD);
2957          tu_cs_emit(cs, 0xffffffff);
2958          tu_cs_emit(cs, -offset);
2959       }
2960 
2961       tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
2962       tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2963                      CP_REG_TO_MEM_0_CNT(1));
2964       tu_cs_emit_qw(cs, buf->iova + counter_buffer_offset);
2965    }
2966 
2967    tu_cond_exec_end(cs);
2968 
2969    cmd->state.rp.xfb_used = true;
2970 }
2971 TU_GENX(tu_CmdEndTransformFeedbackEXT);
2972 
2973 VKAPI_ATTR void VKAPI_CALL
tu_CmdPushConstants(VkCommandBuffer commandBuffer,VkPipelineLayout layout,VkShaderStageFlags stageFlags,uint32_t offset,uint32_t size,const void * pValues)2974 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
2975                     VkPipelineLayout layout,
2976                     VkShaderStageFlags stageFlags,
2977                     uint32_t offset,
2978                     uint32_t size,
2979                     const void *pValues)
2980 {
2981    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2982    memcpy((char *) cmd->push_constants + offset, pValues, size);
2983    cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2984 }
2985 
2986 /* Flush everything which has been made available but we haven't actually
2987  * flushed yet.
2988  */
2989 static void
tu_flush_all_pending(struct tu_cache_state * cache)2990 tu_flush_all_pending(struct tu_cache_state *cache)
2991 {
2992    cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2993    cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
2994 }
2995 
2996 template <chip CHIP>
2997 VKAPI_ATTR VkResult VKAPI_CALL
tu_EndCommandBuffer(VkCommandBuffer commandBuffer)2998 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
2999 {
3000    TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3001 
3002    /* We currently flush CCU at the end of the command buffer, like
3003     * what the blob does. There's implicit synchronization around every
3004     * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
3005     * know yet if this command buffer will be the last in the submit so we
3006     * have to defensively flush everything else.
3007     *
3008     * TODO: We could definitely do better than this, since these flushes
3009     * aren't required by Vulkan, but we'd need kernel support to do that.
3010     * Ideally, we'd like the kernel to flush everything afterwards, so that we
3011     * wouldn't have to do any flushes here, and when submitting multiple
3012     * command buffers there wouldn't be any unnecessary flushes in between.
3013     */
3014    if (cmd_buffer->state.pass) {
3015       tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
3016       tu_emit_cache_flush_renderpass<CHIP>(cmd_buffer);
3017 
3018       trace_end_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->draw_cs);
3019    } else {
3020       tu_flush_all_pending(&cmd_buffer->state.cache);
3021       cmd_buffer->state.cache.flush_bits |=
3022          TU_CMD_FLAG_CCU_FLUSH_COLOR |
3023          TU_CMD_FLAG_CCU_FLUSH_DEPTH;
3024       tu_emit_cache_flush<CHIP>(cmd_buffer);
3025 
3026       trace_end_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs);
3027    }
3028 
3029    tu_cs_end(&cmd_buffer->cs);
3030    tu_cs_end(&cmd_buffer->draw_cs);
3031    tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3032 
3033    return vk_command_buffer_end(&cmd_buffer->vk);
3034 }
3035 TU_GENX(tu_EndCommandBuffer);
3036 
3037 static void
tu_bind_vs(struct tu_cmd_buffer * cmd,struct tu_shader * vs)3038 tu_bind_vs(struct tu_cmd_buffer *cmd, struct tu_shader *vs)
3039 {
3040    cmd->state.shaders[MESA_SHADER_VERTEX] = vs;
3041 }
3042 
3043 static void
tu_bind_tcs(struct tu_cmd_buffer * cmd,struct tu_shader * tcs)3044 tu_bind_tcs(struct tu_cmd_buffer *cmd, struct tu_shader *tcs)
3045 {
3046    cmd->state.shaders[MESA_SHADER_TESS_CTRL] = tcs;
3047 }
3048 
3049 static void
tu_bind_tes(struct tu_cmd_buffer * cmd,struct tu_shader * tes)3050 tu_bind_tes(struct tu_cmd_buffer *cmd, struct tu_shader *tes)
3051 {
3052    if (cmd->state.shaders[MESA_SHADER_TESS_EVAL] != tes) {
3053       cmd->state.shaders[MESA_SHADER_TESS_EVAL] = tes;
3054       cmd->state.dirty |= TU_CMD_DIRTY_TES;
3055 
3056       if (!cmd->state.tess_params.valid ||
3057           cmd->state.tess_params.output_upper_left !=
3058           tes->tes.tess_output_upper_left ||
3059           cmd->state.tess_params.output_lower_left !=
3060           tes->tes.tess_output_lower_left ||
3061           cmd->state.tess_params.spacing != tes->tes.tess_spacing) {
3062          cmd->state.tess_params.output_upper_left =
3063             tes->tes.tess_output_upper_left;
3064          cmd->state.tess_params.output_lower_left =
3065             tes->tes.tess_output_lower_left;
3066          cmd->state.tess_params.spacing = tes->tes.tess_spacing;
3067          cmd->state.tess_params.valid = true;
3068          cmd->state.dirty |= TU_CMD_DIRTY_TESS_PARAMS;
3069       }
3070    }
3071 }
3072 
3073 static void
tu_bind_gs(struct tu_cmd_buffer * cmd,struct tu_shader * gs)3074 tu_bind_gs(struct tu_cmd_buffer *cmd, struct tu_shader *gs)
3075 {
3076    cmd->state.shaders[MESA_SHADER_GEOMETRY] = gs;
3077 }
3078 
3079 static void
tu_bind_fs(struct tu_cmd_buffer * cmd,struct tu_shader * fs)3080 tu_bind_fs(struct tu_cmd_buffer *cmd, struct tu_shader *fs)
3081 {
3082    if (cmd->state.shaders[MESA_SHADER_FRAGMENT] != fs) {
3083       cmd->state.shaders[MESA_SHADER_FRAGMENT] = fs;
3084       cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
3085    }
3086 }
3087 
3088 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindPipeline(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipeline _pipeline)3089 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
3090                    VkPipelineBindPoint pipelineBindPoint,
3091                    VkPipeline _pipeline)
3092 {
3093    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3094    TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
3095 
3096    if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
3097       cmd->state.shaders[MESA_SHADER_COMPUTE] =
3098          pipeline->shaders[MESA_SHADER_COMPUTE];
3099       tu_cs_emit_state_ib(&cmd->cs,
3100                           pipeline->shaders[MESA_SHADER_COMPUTE]->state);
3101       cmd->state.compute_load_state = pipeline->load_state;
3102       return;
3103    }
3104 
3105    assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
3106 
3107    struct tu_graphics_pipeline *gfx_pipeline = tu_pipeline_to_graphics(pipeline);
3108    cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS | TU_CMD_DIRTY_SHADER_CONSTS |
3109                        TU_CMD_DIRTY_VS_PARAMS | TU_CMD_DIRTY_PROGRAM;
3110 
3111    tu_bind_vs(cmd, pipeline->shaders[MESA_SHADER_VERTEX]);
3112    tu_bind_tcs(cmd, pipeline->shaders[MESA_SHADER_TESS_CTRL]);
3113    tu_bind_tes(cmd, pipeline->shaders[MESA_SHADER_TESS_EVAL]);
3114    tu_bind_gs(cmd, pipeline->shaders[MESA_SHADER_GEOMETRY]);
3115    tu_bind_fs(cmd, pipeline->shaders[MESA_SHADER_FRAGMENT]);
3116 
3117    vk_cmd_set_dynamic_graphics_state(&cmd->vk,
3118                                      &gfx_pipeline->dynamic_state);
3119    cmd->state.program = pipeline->program;
3120 
3121    cmd->state.load_state = pipeline->load_state;
3122    cmd->state.prim_order_sysmem = pipeline->prim_order.state_sysmem;
3123    cmd->state.prim_order_gmem = pipeline->prim_order.state_gmem;
3124 
3125    if (gfx_pipeline->feedback_loop_may_involve_textures &&
3126        !cmd->state.rp.disable_gmem) {
3127       /* VK_EXT_attachment_feedback_loop_layout allows feedback loop to involve
3128        * not only input attachments but also sampled images or image resources.
3129        * But we cannot just patch gmem for image in the descriptors.
3130        *
3131        * At the moment, in context of DXVK, it is expected that only a few
3132        * drawcalls in a frame would use feedback loop and they would be wrapped
3133        * in their own renderpasses, so it should be ok to force sysmem.
3134        *
3135        * However, there are two further possible optimizations if need would
3136        * arise for other translation layer:
3137        * - Tiling could be enabled if we ensure that there is no barrier in
3138        *   the renderpass;
3139        * - Check that both pipeline and attachments agree that feedback loop
3140        *   is needed.
3141        */
3142       perf_debug(
3143          cmd->device,
3144          "Disabling gmem due to VK_EXT_attachment_feedback_loop_layout");
3145       cmd->state.rp.disable_gmem = true;
3146    }
3147 
3148    if (pipeline->prim_order.sysmem_single_prim_mode &&
3149        !cmd->state.rp.sysmem_single_prim_mode) {
3150       if (gfx_pipeline->feedback_loop_color ||
3151           gfx_pipeline->feedback_loop_ds) {
3152          perf_debug(cmd->device, "single_prim_mode due to feedback loop");
3153       } else {
3154          perf_debug(cmd->device, "single_prim_mode due to rast order access");
3155       }
3156       cmd->state.rp.sysmem_single_prim_mode = true;
3157    }
3158 
3159    if (pipeline->lrz_blend.valid) {
3160       if (cmd->state.blend_reads_dest != pipeline->lrz_blend.reads_dest) {
3161          cmd->state.blend_reads_dest = pipeline->lrz_blend.reads_dest;
3162          cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
3163       }
3164    }
3165    cmd->state.pipeline_blend_lrz = pipeline->lrz_blend.valid;
3166 
3167    if (pipeline->bandwidth.valid)
3168       cmd->state.bandwidth = pipeline->bandwidth;
3169    cmd->state.pipeline_bandwidth = pipeline->bandwidth.valid;
3170 
3171    struct tu_cs *cs = &cmd->draw_cs;
3172 
3173    /* note: this also avoids emitting draw states before renderpass clears,
3174     * which may use the 3D clear path (for MSAA cases)
3175     */
3176    if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
3177       uint32_t mask = pipeline->set_state_mask;
3178 
3179       tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (11 + util_bitcount(mask)));
3180       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, pipeline->program.config_state);
3181       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, pipeline->program.vs_state);
3182       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, pipeline->program.vs_binning_state);
3183       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, pipeline->program.hs_state);
3184       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->program.ds_state);
3185       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, pipeline->program.gs_state);
3186       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, pipeline->program.gs_binning_state);
3187       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, pipeline->program.fs_state);
3188       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, pipeline->program.vpc_state);
3189       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_SYSMEM, pipeline->prim_order.state_sysmem);
3190       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, pipeline->prim_order.state_gmem);
3191 
3192       u_foreach_bit(i, mask)
3193          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
3194    }
3195 
3196    cmd->state.pipeline_draw_states = pipeline->set_state_mask;
3197    u_foreach_bit(i, pipeline->set_state_mask)
3198       cmd->state.dynamic_state[i] = pipeline->dynamic_state[i];
3199 
3200    if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
3201       cmd->state.rp.has_tess = true;
3202    }
3203 
3204    if (pipeline->program.per_view_viewport != cmd->state.per_view_viewport) {
3205       cmd->state.per_view_viewport = pipeline->program.per_view_viewport;
3206       cmd->state.dirty |= TU_CMD_DIRTY_PER_VIEW_VIEWPORT;
3207    }
3208 
3209    if (gfx_pipeline->feedback_loop_ds != cmd->state.pipeline_feedback_loop_ds) {
3210       cmd->state.pipeline_feedback_loop_ds = gfx_pipeline->feedback_loop_ds;
3211       cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
3212    }
3213 }
3214 
3215 static void
tu_flush_for_access(struct tu_cache_state * cache,enum tu_cmd_access_mask src_mask,enum tu_cmd_access_mask dst_mask)3216 tu_flush_for_access(struct tu_cache_state *cache,
3217                     enum tu_cmd_access_mask src_mask,
3218                     enum tu_cmd_access_mask dst_mask)
3219 {
3220    BITMASK_ENUM(tu_cmd_flush_bits) flush_bits = 0;
3221 
3222    if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
3223       cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
3224    }
3225 
3226    if (src_mask & TU_ACCESS_CP_WRITE) {
3227       /* Flush the CP write queue.
3228        */
3229       cache->pending_flush_bits |=
3230          TU_CMD_FLAG_WAIT_MEM_WRITES |
3231          TU_CMD_FLAG_ALL_INVALIDATE;
3232    }
3233 
3234 #define SRC_FLUSH(domain, flush, invalidate) \
3235    if (src_mask & TU_ACCESS_##domain##_WRITE) {                      \
3236       cache->pending_flush_bits |= TU_CMD_FLAG_##flush |             \
3237          (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate);   \
3238    }
3239 
3240    SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
3241    SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
3242    SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
3243 
3244 #undef SRC_FLUSH
3245 
3246 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate)              \
3247    if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) {           \
3248       flush_bits |= TU_CMD_FLAG_##flush;                             \
3249       cache->pending_flush_bits |=                                   \
3250          (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate);   \
3251    }
3252 
3253    SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
3254    SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
3255 
3256 #undef SRC_INCOHERENT_FLUSH
3257 
3258    /* Treat host & sysmem write accesses the same, since the kernel implicitly
3259     * drains the queue before signalling completion to the host.
3260     */
3261    if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
3262       flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
3263    }
3264 
3265 #define DST_FLUSH(domain, flush, invalidate) \
3266    if (dst_mask & (TU_ACCESS_##domain##_READ |                 \
3267                    TU_ACCESS_##domain##_WRITE)) {              \
3268       flush_bits |= cache->pending_flush_bits &                \
3269          (TU_CMD_FLAG_##invalidate |                           \
3270           (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush));     \
3271    }
3272 
3273    DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
3274    DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
3275    DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
3276 
3277 #undef DST_FLUSH
3278 
3279 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
3280    if (dst_mask & (TU_ACCESS_##domain##_INCOHERENT_READ |      \
3281                    TU_ACCESS_##domain##_INCOHERENT_WRITE)) {   \
3282       flush_bits |= TU_CMD_FLAG_##invalidate |                 \
3283           (cache->pending_flush_bits &                         \
3284            (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush));    \
3285    }
3286 
3287    DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
3288    DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
3289 
3290    if (dst_mask & TU_ACCESS_BINDLESS_DESCRIPTOR_READ) {
3291       flush_bits |= TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE;
3292    }
3293 
3294 #undef DST_INCOHERENT_FLUSH
3295 
3296    cache->flush_bits |= flush_bits;
3297    cache->pending_flush_bits &= ~flush_bits;
3298 }
3299 
3300 /* When translating Vulkan access flags to which cache is accessed
3301  * (CCU/UCHE/sysmem), we should take into account both the access flags and
3302  * the stage so that accesses with MEMORY_READ_BIT/MEMORY_WRITE_BIT + a
3303  * specific stage return something sensible. The specification for
3304  * VK_KHR_synchronization2 says that we should do this:
3305  *
3306  *    Additionally, scoping the pipeline stages into the barrier structs
3307  *    allows the use of the MEMORY_READ and MEMORY_WRITE flags without
3308  *    sacrificing precision. The per-stage access flags should be used to
3309  *    disambiguate specific accesses in a given stage or set of stages - for
3310  *    instance, between uniform reads and sampling operations.
3311  *
3312  * Note that while in all known cases the stage is actually enough, we should
3313  * still narrow things down based on the access flags to handle "old-style"
3314  * barriers that may specify a wider range of stages but more precise access
3315  * flags. These helpers allow us to do both.
3316  */
3317 
3318 static bool
filter_read_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3319 filter_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3320                    VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3321 {
3322    return (flags & (tu_flags | VK_ACCESS_2_MEMORY_READ_BIT)) &&
3323       (stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
3324 }
3325 
3326 static bool
filter_write_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3327 filter_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3328                     VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3329 {
3330    return (flags & (tu_flags | VK_ACCESS_2_MEMORY_WRITE_BIT)) &&
3331       (stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
3332 }
3333 
3334 static bool
gfx_read_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3335 gfx_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3336                 VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3337 {
3338    return filter_read_access(flags, stages, tu_flags,
3339                              tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
3340 }
3341 
3342 static bool
gfx_write_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3343 gfx_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3344                  VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3345 {
3346    return filter_write_access(flags, stages, tu_flags,
3347                               tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
3348 }
3349 static enum tu_cmd_access_mask
vk2tu_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,bool image_only,bool gmem)3350 vk2tu_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages, bool image_only, bool gmem)
3351 {
3352    BITMASK_ENUM(tu_cmd_access_mask) mask = 0;
3353 
3354    if (gfx_read_access(flags, stages,
3355                        VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT |
3356                        VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT |
3357                        VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT |
3358                        VK_ACCESS_2_HOST_READ_BIT,
3359                        VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT |
3360                        VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT |
3361                        VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
3362                        VK_PIPELINE_STAGE_2_HOST_BIT))
3363       mask |= TU_ACCESS_SYSMEM_READ;
3364 
3365    if (gfx_write_access(flags, stages,
3366                         VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
3367                         VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT))
3368       mask |= TU_ACCESS_CP_WRITE;
3369 
3370    if (gfx_write_access(flags, stages,
3371                         VK_ACCESS_2_HOST_WRITE_BIT,
3372                         VK_PIPELINE_STAGE_2_HOST_BIT))
3373       mask |= TU_ACCESS_SYSMEM_WRITE;
3374 
3375 #define SHADER_STAGES \
3376    (VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | \
3377     VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | \
3378     VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | \
3379     VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | \
3380     VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT | \
3381     VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | \
3382     VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT)
3383 
3384 
3385    if (gfx_read_access(flags, stages,
3386                        VK_ACCESS_2_INDEX_READ_BIT |
3387                        VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT |
3388                        VK_ACCESS_2_UNIFORM_READ_BIT |
3389                        VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT |
3390                        VK_ACCESS_2_SHADER_READ_BIT,
3391                        VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT |
3392                        VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT |
3393                        VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT |
3394                        SHADER_STAGES))
3395        mask |= TU_ACCESS_UCHE_READ;
3396 
3397    if (gfx_read_access(flags, stages,
3398                        VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT,
3399                        SHADER_STAGES)) {
3400       mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_BINDLESS_DESCRIPTOR_READ;
3401    }
3402 
3403    if (gfx_write_access(flags, stages,
3404                         VK_ACCESS_2_SHADER_WRITE_BIT |
3405                         VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT,
3406                         VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
3407                         SHADER_STAGES))
3408        mask |= TU_ACCESS_UCHE_WRITE;
3409 
3410    /* When using GMEM, the CCU is always flushed automatically to GMEM, and
3411     * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
3412     * previous writes in sysmem mode when transitioning to GMEM. Therefore we
3413     * can ignore CCU and pretend that color attachments and transfers use
3414     * sysmem directly.
3415     */
3416 
3417    if (gfx_read_access(flags, stages,
3418                        VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT |
3419                        VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT,
3420                        VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
3421       if (gmem)
3422          mask |= TU_ACCESS_SYSMEM_READ;
3423       else
3424          mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
3425    }
3426 
3427    if (gfx_read_access(flags, stages,
3428                        VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
3429                        VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
3430                        VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
3431       if (gmem)
3432          mask |= TU_ACCESS_SYSMEM_READ;
3433       else
3434          mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
3435    }
3436 
3437    if (gfx_write_access(flags, stages,
3438                         VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT,
3439                         VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
3440       if (gmem) {
3441          mask |= TU_ACCESS_SYSMEM_WRITE;
3442       } else {
3443          mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3444       }
3445    }
3446 
3447    if (gfx_write_access(flags, stages,
3448                         VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
3449                         VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
3450                         VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
3451       if (gmem) {
3452          mask |= TU_ACCESS_SYSMEM_WRITE;
3453       } else {
3454          mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
3455       }
3456    }
3457 
3458    if (filter_write_access(flags, stages,
3459                            VK_ACCESS_2_TRANSFER_WRITE_BIT,
3460                            VK_PIPELINE_STAGE_2_COPY_BIT |
3461                            VK_PIPELINE_STAGE_2_BLIT_BIT |
3462                            VK_PIPELINE_STAGE_2_CLEAR_BIT |
3463                            VK_PIPELINE_STAGE_2_RESOLVE_BIT |
3464                            VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
3465       if (gmem) {
3466          mask |= TU_ACCESS_SYSMEM_WRITE;
3467       } else if (image_only) {
3468          /* Because we always split up blits/copies of images involving
3469           * multiple layers, we always access each layer in the same way, with
3470           * the same base address, same format, etc. This means we can avoid
3471           * flushing between multiple writes to the same image. This elides
3472           * flushes between e.g. multiple blits to the same image.
3473           */
3474          mask |= TU_ACCESS_CCU_COLOR_WRITE;
3475       } else {
3476          mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3477       }
3478    }
3479 
3480    if (filter_read_access(flags, stages,
3481                           VK_ACCESS_2_TRANSFER_READ_BIT,
3482                           VK_PIPELINE_STAGE_2_COPY_BIT |
3483                           VK_PIPELINE_STAGE_2_BLIT_BIT |
3484                           VK_PIPELINE_STAGE_2_RESOLVE_BIT |
3485                           VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
3486       mask |= TU_ACCESS_UCHE_READ;
3487    }
3488 
3489    return mask;
3490 }
3491 
3492 /* These helpers deal with legacy BOTTOM_OF_PIPE/TOP_OF_PIPE stages.
3493  */
3494 
3495 static VkPipelineStageFlags2
sanitize_src_stage(VkPipelineStageFlags2 stage_mask)3496 sanitize_src_stage(VkPipelineStageFlags2 stage_mask)
3497 {
3498    /* From the Vulkan spec:
3499     *
3500     *    VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is ...  equivalent to
3501     *    VK_PIPELINE_STAGE_2_NONE in the first scope.
3502     *
3503     *    VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is equivalent to
3504     *    VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
3505     *    when specified in the first synchronization scope, ...
3506     */
3507    if (stage_mask & VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT)
3508       return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
3509 
3510    return stage_mask & ~VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT;
3511 }
3512 
3513 static VkPipelineStageFlags2
sanitize_dst_stage(VkPipelineStageFlags2 stage_mask)3514 sanitize_dst_stage(VkPipelineStageFlags2 stage_mask)
3515 {
3516    /* From the Vulkan spec:
3517     *
3518     *    VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is equivalent to
3519     *    VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
3520     *    when specified in the second synchronization scope, ...
3521     *
3522     *    VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is ... equivalent to
3523     *    VK_PIPELINE_STAGE_2_NONE in the second scope.
3524     *
3525     */
3526    if (stage_mask & VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT)
3527       return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
3528 
3529    return stage_mask & ~VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT;
3530 }
3531 
3532 static enum tu_stage
vk2tu_single_stage(VkPipelineStageFlags2 vk_stage,bool dst)3533 vk2tu_single_stage(VkPipelineStageFlags2 vk_stage, bool dst)
3534 {
3535    /* If the destination stage is executed on the CP, then the CP also has to
3536     * wait for any WFI's to finish. This is already done for draw calls,
3537     * including before indirect param reads, for the most part, so we just
3538     * need to WFI and can use TU_STAGE_GPU.
3539     *
3540     * However, some indirect draw opcodes, depending on firmware, don't have
3541     * implicit CP_WAIT_FOR_ME so we have to handle it manually.
3542     *
3543     * Transform feedback counters are read via CP_MEM_TO_REG, which implicitly
3544     * does CP_WAIT_FOR_ME, so we don't include them here.
3545     *
3546     * Currently we read the draw predicate using CP_MEM_TO_MEM, which
3547     * also implicitly does CP_WAIT_FOR_ME. However CP_DRAW_PRED_SET does *not*
3548     * implicitly do CP_WAIT_FOR_ME, it seems to only wait for counters to
3549     * complete since it's written for DX11 where you can only predicate on the
3550     * result of a query object. So if we implement 64-bit comparisons in the
3551     * future, or if CP_DRAW_PRED_SET grows the capability to do 32-bit
3552     * comparisons, then this will have to be dealt with.
3553     */
3554    if (vk_stage == VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT ||
3555        vk_stage == VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT ||
3556        vk_stage == VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT)
3557       return TU_STAGE_CP;
3558 
3559    if (vk_stage == VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT ||
3560        vk_stage == VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)
3561       return dst ? TU_STAGE_CP : TU_STAGE_GPU;
3562 
3563    if (vk_stage == VK_PIPELINE_STAGE_2_HOST_BIT)
3564       return dst ? TU_STAGE_BOTTOM : TU_STAGE_CP;
3565 
3566    return TU_STAGE_GPU;
3567 }
3568 
3569 static enum tu_stage
vk2tu_src_stage(VkPipelineStageFlags2 vk_stages)3570 vk2tu_src_stage(VkPipelineStageFlags2 vk_stages)
3571 {
3572    enum tu_stage stage = TU_STAGE_CP;
3573    u_foreach_bit64 (bit, vk_stages) {
3574       enum tu_stage new_stage = vk2tu_single_stage(1ull << bit, false);
3575       stage = MAX2(stage, new_stage);
3576    }
3577 
3578    return stage;
3579 }
3580 
3581 static enum tu_stage
vk2tu_dst_stage(VkPipelineStageFlags2 vk_stages)3582 vk2tu_dst_stage(VkPipelineStageFlags2 vk_stages)
3583 {
3584    enum tu_stage stage = TU_STAGE_BOTTOM;
3585    u_foreach_bit64 (bit, vk_stages) {
3586       enum tu_stage new_stage = vk2tu_single_stage(1ull << bit, true);
3587       stage = MIN2(stage, new_stage);
3588    }
3589 
3590    return stage;
3591 }
3592 
3593 static void
tu_flush_for_stage(struct tu_cache_state * cache,enum tu_stage src_stage,enum tu_stage dst_stage)3594 tu_flush_for_stage(struct tu_cache_state *cache,
3595                    enum tu_stage src_stage, enum tu_stage dst_stage)
3596 {
3597    /* Even if the source is the host or CP, the destination access could
3598     * generate invalidates that we have to wait to complete.
3599     */
3600    if (src_stage == TU_STAGE_CP &&
3601        (cache->flush_bits & TU_CMD_FLAG_ALL_INVALIDATE))
3602       src_stage = TU_STAGE_GPU;
3603 
3604    if (src_stage >= dst_stage) {
3605       cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
3606       if (dst_stage == TU_STAGE_CP)
3607          cache->pending_flush_bits |= TU_CMD_FLAG_WAIT_FOR_ME;
3608    }
3609 }
3610 
3611 void
tu_render_pass_state_merge(struct tu_render_pass_state * dst,const struct tu_render_pass_state * src)3612 tu_render_pass_state_merge(struct tu_render_pass_state *dst,
3613                            const struct tu_render_pass_state *src)
3614 {
3615    dst->xfb_used |= src->xfb_used;
3616    dst->has_tess |= src->has_tess;
3617    dst->has_prim_generated_query_in_rp |= src->has_prim_generated_query_in_rp;
3618    dst->disable_gmem |= src->disable_gmem;
3619    dst->sysmem_single_prim_mode |= src->sysmem_single_prim_mode;
3620    dst->draw_cs_writes_to_cond_pred |= src->draw_cs_writes_to_cond_pred;
3621    dst->shared_viewport |= src->shared_viewport;
3622 
3623    dst->drawcall_count += src->drawcall_count;
3624    dst->drawcall_bandwidth_per_sample_sum +=
3625       src->drawcall_bandwidth_per_sample_sum;
3626 }
3627 
3628 void
tu_restore_suspended_pass(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * suspended)3629 tu_restore_suspended_pass(struct tu_cmd_buffer *cmd,
3630                           struct tu_cmd_buffer *suspended)
3631 {
3632    cmd->state.pass = suspended->state.suspended_pass.pass;
3633    cmd->state.subpass = suspended->state.suspended_pass.subpass;
3634    cmd->state.framebuffer = suspended->state.suspended_pass.framebuffer;
3635    cmd->state.attachments = suspended->state.suspended_pass.attachments;
3636    cmd->state.render_area = suspended->state.suspended_pass.render_area;
3637    cmd->state.gmem_layout = suspended->state.suspended_pass.gmem_layout;
3638    cmd->state.tiling = &cmd->state.framebuffer->tiling[cmd->state.gmem_layout];
3639    cmd->state.lrz = suspended->state.suspended_pass.lrz;
3640 }
3641 
3642 /* Take the saved pre-chain in "secondary" and copy its commands to "cmd",
3643  * appending it after any saved-up commands in "cmd".
3644  */
3645 void
tu_append_pre_chain(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * secondary)3646 tu_append_pre_chain(struct tu_cmd_buffer *cmd,
3647                     struct tu_cmd_buffer *secondary)
3648 {
3649    tu_cs_add_entries(&cmd->draw_cs, &secondary->pre_chain.draw_cs);
3650    tu_cs_add_entries(&cmd->draw_epilogue_cs,
3651                      &secondary->pre_chain.draw_epilogue_cs);
3652 
3653    tu_render_pass_state_merge(&cmd->state.rp,
3654                               &secondary->pre_chain.state);
3655    tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->pre_chain.trace_renderpass_start,
3656          secondary->pre_chain.trace_renderpass_end);
3657    util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
3658                                  &secondary->pre_chain.fdm_bin_patchpoints);
3659 }
3660 
3661 /* Take the saved post-chain in "secondary" and copy it to "cmd".
3662  */
3663 void
tu_append_post_chain(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * secondary)3664 tu_append_post_chain(struct tu_cmd_buffer *cmd,
3665                      struct tu_cmd_buffer *secondary)
3666 {
3667    tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
3668    tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs);
3669 
3670    tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->trace_renderpass_start,
3671          secondary->trace_renderpass_end);
3672    cmd->state.rp = secondary->state.rp;
3673    util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
3674                                  &secondary->fdm_bin_patchpoints);
3675 }
3676 
3677 /* Assuming "secondary" is just a sequence of suspended and resuming passes,
3678  * copy its state to "cmd". This also works instead of tu_append_post_chain(),
3679  * but it's a bit slower because we don't assume that the chain begins in
3680  * "secondary" and therefore have to care about the command buffer's
3681  * renderpass state.
3682  */
3683 void
tu_append_pre_post_chain(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * secondary)3684 tu_append_pre_post_chain(struct tu_cmd_buffer *cmd,
3685                          struct tu_cmd_buffer *secondary)
3686 {
3687    tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
3688    tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs);
3689 
3690    tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->trace_renderpass_start,
3691          secondary->trace_renderpass_end);
3692    tu_render_pass_state_merge(&cmd->state.rp,
3693                               &secondary->state.rp);
3694    util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
3695                                  &secondary->fdm_bin_patchpoints);
3696 }
3697 
3698 /* Take the current render pass state and save it to "pre_chain" to be
3699  * combined later.
3700  */
3701 static void
tu_save_pre_chain(struct tu_cmd_buffer * cmd)3702 tu_save_pre_chain(struct tu_cmd_buffer *cmd)
3703 {
3704    tu_cs_add_entries(&cmd->pre_chain.draw_cs,
3705                      &cmd->draw_cs);
3706    tu_cs_add_entries(&cmd->pre_chain.draw_epilogue_cs,
3707                      &cmd->draw_epilogue_cs);
3708    cmd->pre_chain.trace_renderpass_start =
3709       cmd->trace_renderpass_start;
3710    cmd->pre_chain.trace_renderpass_end =
3711       cmd->trace_renderpass_end;
3712    cmd->pre_chain.state = cmd->state.rp;
3713    util_dynarray_append_dynarray(&cmd->pre_chain.fdm_bin_patchpoints,
3714                                  &cmd->fdm_bin_patchpoints);
3715    cmd->pre_chain.patchpoints_ctx = cmd->patchpoints_ctx;
3716    cmd->patchpoints_ctx = NULL;
3717 }
3718 
3719 VKAPI_ATTR void VKAPI_CALL
tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,uint32_t commandBufferCount,const VkCommandBuffer * pCmdBuffers)3720 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
3721                       uint32_t commandBufferCount,
3722                       const VkCommandBuffer *pCmdBuffers)
3723 {
3724    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3725    VkResult result;
3726 
3727    assert(commandBufferCount > 0);
3728 
3729    /* Emit any pending flushes. */
3730    if (cmd->state.pass) {
3731       tu_flush_all_pending(&cmd->state.renderpass_cache);
3732       TU_CALLX(cmd->device, tu_emit_cache_flush_renderpass)(cmd);
3733    } else {
3734       tu_flush_all_pending(&cmd->state.cache);
3735       TU_CALLX(cmd->device, tu_emit_cache_flush)(cmd);
3736    }
3737 
3738    for (uint32_t i = 0; i < commandBufferCount; i++) {
3739       TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
3740 
3741       if (secondary->usage_flags &
3742           VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
3743          assert(tu_cs_is_empty(&secondary->cs));
3744 
3745          result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
3746          if (result != VK_SUCCESS) {
3747             vk_command_buffer_set_error(&cmd->vk, result);
3748             break;
3749          }
3750 
3751          result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
3752                &secondary->draw_epilogue_cs);
3753          if (result != VK_SUCCESS) {
3754             vk_command_buffer_set_error(&cmd->vk, result);
3755             break;
3756          }
3757 
3758          /* If LRZ was made invalid in secondary - we should disable
3759           * LRZ retroactively for the whole renderpass.
3760           */
3761          if (!secondary->state.lrz.valid)
3762             cmd->state.lrz.valid = false;
3763 
3764          tu_clone_trace(cmd, &cmd->draw_cs, &secondary->trace);
3765          tu_render_pass_state_merge(&cmd->state.rp, &secondary->state.rp);
3766          util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
3767                                        &secondary->fdm_bin_patchpoints);
3768       } else {
3769          switch (secondary->state.suspend_resume) {
3770          case SR_NONE:
3771             assert(tu_cs_is_empty(&secondary->draw_cs));
3772             assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
3773             tu_cs_add_entries(&cmd->cs, &secondary->cs);
3774             tu_clone_trace(cmd, &cmd->cs, &secondary->trace);
3775             break;
3776 
3777          case SR_IN_PRE_CHAIN:
3778             /* cmd may be empty, which means that the chain begins before cmd
3779              * in which case we have to update its state.
3780              */
3781             if (cmd->state.suspend_resume == SR_NONE) {
3782                cmd->state.suspend_resume = SR_IN_PRE_CHAIN;
3783                cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
3784             }
3785 
3786             /* The secondary is just a continuous suspend/resume chain so we
3787              * just have to append it to the the command buffer.
3788              */
3789             assert(tu_cs_is_empty(&secondary->cs));
3790             tu_append_pre_post_chain(cmd, secondary);
3791             break;
3792 
3793          case SR_AFTER_PRE_CHAIN:
3794          case SR_IN_CHAIN:
3795          case SR_IN_CHAIN_AFTER_PRE_CHAIN:
3796             if (secondary->state.suspend_resume == SR_AFTER_PRE_CHAIN ||
3797                 secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN) {
3798                /* In thse cases there is a `pre_chain` in the secondary which
3799                 * ends that we need to append to the primary.
3800                 */
3801 
3802                if (cmd->state.suspend_resume == SR_NONE)
3803                   cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
3804 
3805                tu_append_pre_chain(cmd, secondary);
3806 
3807                /* We're about to render, so we need to end the command stream
3808                 * in case there were any extra commands generated by copying
3809                 * the trace.
3810                 */
3811                tu_cs_end(&cmd->draw_cs);
3812                tu_cs_end(&cmd->draw_epilogue_cs);
3813 
3814                switch (cmd->state.suspend_resume) {
3815                case SR_NONE:
3816                case SR_IN_PRE_CHAIN:
3817                   /* The renderpass chain ends in the secondary but isn't
3818                    * started in the primary, so we have to move the state to
3819                    * `pre_chain`.
3820                    */
3821                   cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
3822                   tu_save_pre_chain(cmd);
3823                   cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN;
3824                   break;
3825                case SR_IN_CHAIN:
3826                case SR_IN_CHAIN_AFTER_PRE_CHAIN:
3827                   /* The renderpass ends in the secondary and starts somewhere
3828                    * earlier in this primary. Since the last render pass in
3829                    * the chain is in the secondary, we are technically outside
3830                    * of a render pass.  Fix that here by reusing the dynamic
3831                    * render pass that was setup for the last suspended render
3832                    * pass before the secondary.
3833                    */
3834                   tu_restore_suspended_pass(cmd, cmd);
3835 
3836                   TU_CALLX(cmd->device, tu_cmd_render)(cmd);
3837                   if (cmd->state.suspend_resume == SR_IN_CHAIN)
3838                      cmd->state.suspend_resume = SR_NONE;
3839                   else
3840                      cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN;
3841                   break;
3842                case SR_AFTER_PRE_CHAIN:
3843                   unreachable("resuming render pass is not preceded by suspending one");
3844                }
3845 
3846                tu_reset_render_pass(cmd);
3847             }
3848 
3849             tu_cs_add_entries(&cmd->cs, &secondary->cs);
3850 
3851             if (secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN ||
3852                 secondary->state.suspend_resume == SR_IN_CHAIN) {
3853                /* The secondary ends in a "post-chain" (the opposite of a
3854                 * pre-chain) that we need to copy into the current command
3855                 * buffer.
3856                 */
3857                cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
3858                tu_append_post_chain(cmd, secondary);
3859                cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
3860                cmd->state.suspended_pass = secondary->state.suspended_pass;
3861 
3862                switch (cmd->state.suspend_resume) {
3863                case SR_NONE:
3864                   cmd->state.suspend_resume = SR_IN_CHAIN;
3865                   break;
3866                case SR_AFTER_PRE_CHAIN:
3867                   cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN;
3868                   break;
3869                default:
3870                   unreachable("suspending render pass is followed by a not resuming one");
3871                }
3872             }
3873          }
3874       }
3875 
3876       cmd->state.index_size = secondary->state.index_size; /* for restart index update */
3877    }
3878    cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
3879 
3880    if (!cmd->state.lrz.gpu_dir_tracking && cmd->state.pass) {
3881       /* After a secondary command buffer is executed, LRZ is not valid
3882        * until it is cleared again.
3883        */
3884       cmd->state.lrz.valid = false;
3885    }
3886 
3887    /* After executing secondary command buffers, there may have been arbitrary
3888     * flushes executed, so when we encounter a pipeline barrier with a
3889     * srcMask, we have to assume that we need to invalidate. Therefore we need
3890     * to re-initialize the cache with all pending invalidate bits set.
3891     */
3892    if (cmd->state.pass) {
3893       tu_cache_init(&cmd->state.renderpass_cache);
3894    } else {
3895       tu_cache_init(&cmd->state.cache);
3896    }
3897 }
3898 
3899 static void
tu_subpass_barrier(struct tu_cmd_buffer * cmd_buffer,const struct tu_subpass_barrier * barrier,bool external)3900 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
3901                    const struct tu_subpass_barrier *barrier,
3902                    bool external)
3903 {
3904    /* Note: we don't know until the end of the subpass whether we'll use
3905     * sysmem, so assume sysmem here to be safe.
3906     */
3907    struct tu_cache_state *cache =
3908       external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
3909    VkPipelineStageFlags2 src_stage_vk =
3910       sanitize_src_stage(barrier->src_stage_mask);
3911    VkPipelineStageFlags2 dst_stage_vk =
3912       sanitize_dst_stage(barrier->dst_stage_mask);
3913    BITMASK_ENUM(tu_cmd_access_mask) src_flags =
3914       vk2tu_access(barrier->src_access_mask, src_stage_vk, false, false);
3915    BITMASK_ENUM(tu_cmd_access_mask) dst_flags =
3916       vk2tu_access(barrier->dst_access_mask, dst_stage_vk, false, false);
3917 
3918    if (barrier->incoherent_ccu_color)
3919       src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3920    if (barrier->incoherent_ccu_depth)
3921       src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
3922 
3923    tu_flush_for_access(cache, src_flags, dst_flags);
3924 
3925    enum tu_stage src_stage = vk2tu_src_stage(src_stage_vk);
3926    enum tu_stage dst_stage = vk2tu_dst_stage(dst_stage_vk);
3927    tu_flush_for_stage(cache, src_stage, dst_stage);
3928 }
3929 
3930 template <chip CHIP>
3931 static void
tu_emit_subpass_begin_gmem(struct tu_cmd_buffer * cmd)3932 tu_emit_subpass_begin_gmem(struct tu_cmd_buffer *cmd)
3933 {
3934    struct tu_cs *cs = &cmd->draw_cs;
3935    uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
3936 
3937    /* If we might choose to bin, then put the loads under a check for geometry
3938     * having been binned to this tile.  If we don't choose to bin in the end,
3939     * then we will have manually set those registers to say geometry is present.
3940     *
3941     * However, if the draw CS has a write to the condition for some other reason
3942     * (perf queries), then we can't do this optimization since the
3943     * start-of-the-CS geometry condition will have been overwritten.
3944     */
3945    bool cond_load_allowed = cmd->state.tiling->binning &&
3946                             cmd->state.pass->has_cond_load_store &&
3947                             !cmd->state.rp.draw_cs_writes_to_cond_pred;
3948 
3949    tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
3950 
3951    /* Emit gmem loads that are first used in this subpass. */
3952    bool emitted_scissor = false;
3953    for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
3954       struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
3955       if ((att->load || att->load_stencil) && att->first_subpass_idx == subpass_idx) {
3956          if (!emitted_scissor) {
3957             tu6_emit_blit_scissor(cmd, cs, true);
3958             emitted_scissor = true;
3959          }
3960          tu_load_gmem_attachment<CHIP>(cmd, cs, i, cond_load_allowed, false);
3961       }
3962    }
3963 
3964    /* Emit gmem clears that are first used in this subpass. */
3965    emitted_scissor = false;
3966    for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
3967       struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
3968       if (att->clear_mask && att->first_subpass_idx == subpass_idx) {
3969          if (!emitted_scissor) {
3970             tu6_emit_blit_scissor(cmd, cs, false);
3971             emitted_scissor = true;
3972          }
3973          tu_clear_gmem_attachment<CHIP>(cmd, cs, i);
3974       }
3975    }
3976 
3977    tu_cond_exec_end(cs); /* CP_COND_EXEC_0_RENDER_MODE_GMEM */
3978 }
3979 
3980 /* Emits sysmem clears that are first used in this subpass. */
3981 template <chip CHIP>
3982 static void
tu_emit_subpass_begin_sysmem(struct tu_cmd_buffer * cmd)3983 tu_emit_subpass_begin_sysmem(struct tu_cmd_buffer *cmd)
3984 {
3985    struct tu_cs *cs = &cmd->draw_cs;
3986    uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
3987 
3988    tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
3989    for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
3990       struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
3991       if (att->clear_mask && att->first_subpass_idx == subpass_idx)
3992          tu_clear_sysmem_attachment<CHIP>(cmd, cs, i);
3993    }
3994    tu_cond_exec_end(cs); /* sysmem */
3995 }
3996 
3997 /* emit loads, clears, and mrt/zs/msaa/ubwc state for the subpass that is
3998  * starting (either at vkCmdBeginRenderPass2() or vkCmdNextSubpass2())
3999  *
4000  * Clears and loads have to happen at this point, because with
4001  * VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT the loads may depend on the output of
4002  * a previous aliased attachment's store.
4003  */
4004 template <chip CHIP>
4005 static void
tu_emit_subpass_begin(struct tu_cmd_buffer * cmd)4006 tu_emit_subpass_begin(struct tu_cmd_buffer *cmd)
4007 {
4008    tu_fill_render_pass_state(&cmd->state.vk_rp, cmd->state.pass, cmd->state.subpass);
4009 
4010    tu_emit_subpass_begin_gmem<CHIP>(cmd);
4011    tu_emit_subpass_begin_sysmem<CHIP>(cmd);
4012 
4013    tu6_emit_zs<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
4014    tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
4015    tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs, false);
4016 
4017    tu_set_input_attachments(cmd, cmd->state.subpass);
4018 
4019    vk_cmd_set_cb_attachment_count(&cmd->vk, cmd->state.subpass->color_count);
4020 
4021    cmd->state.dirty |= TU_CMD_DIRTY_SUBPASS;
4022 }
4023 
4024 template <chip CHIP>
4025 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,const VkRenderPassBeginInfo * pRenderPassBegin,const VkSubpassBeginInfo * pSubpassBeginInfo)4026 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
4027                        const VkRenderPassBeginInfo *pRenderPassBegin,
4028                        const VkSubpassBeginInfo *pSubpassBeginInfo)
4029 {
4030    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
4031 
4032    if (TU_DEBUG(DYNAMIC)) {
4033       vk_common_CmdBeginRenderPass2(commandBuffer, pRenderPassBegin,
4034                                     pSubpassBeginInfo);
4035       return;
4036    }
4037 
4038    TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
4039    TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
4040 
4041    const struct VkRenderPassAttachmentBeginInfo *pAttachmentInfo =
4042       vk_find_struct_const(pRenderPassBegin->pNext,
4043                            RENDER_PASS_ATTACHMENT_BEGIN_INFO);
4044 
4045    cmd->state.pass = pass;
4046    cmd->state.subpass = pass->subpasses;
4047    cmd->state.framebuffer = fb;
4048    cmd->state.render_area = pRenderPassBegin->renderArea;
4049 
4050    VK_MULTIALLOC(ma);
4051    vk_multialloc_add(&ma, &cmd->state.attachments,
4052                      const struct tu_image_view *, pass->attachment_count);
4053    vk_multialloc_add(&ma, &cmd->state.clear_values, VkClearValue,
4054                      pRenderPassBegin->clearValueCount);
4055    if (!vk_multialloc_alloc(&ma, &cmd->vk.pool->alloc,
4056                             VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)) {
4057       vk_command_buffer_set_error(&cmd->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
4058       return;
4059    }
4060 
4061    if (cmd->device->dbg_renderpass_stomp_cs) {
4062       tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs);
4063    }
4064 
4065    for (unsigned i = 0; i < pass->attachment_count; i++) {
4066       cmd->state.attachments[i] = pAttachmentInfo ?
4067          tu_image_view_from_handle(pAttachmentInfo->pAttachments[i]) :
4068          cmd->state.framebuffer->attachments[i].attachment;
4069    }
4070    for (unsigned i = 0; i < pRenderPassBegin->clearValueCount; i++)
4071          cmd->state.clear_values[i] = pRenderPassBegin->pClearValues[i];
4072 
4073    tu_choose_gmem_layout(cmd);
4074 
4075    trace_start_render_pass(&cmd->trace, &cmd->cs, cmd->state.framebuffer,
4076                            cmd->state.tiling);
4077 
4078    /* Note: because this is external, any flushes will happen before draw_cs
4079     * gets called. However deferred flushes could have to happen later as part
4080     * of the subpass.
4081     */
4082    tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
4083    cmd->state.renderpass_cache.pending_flush_bits =
4084       cmd->state.cache.pending_flush_bits;
4085    cmd->state.renderpass_cache.flush_bits = 0;
4086 
4087    if (pass->subpasses[0].feedback_invalidate)
4088       cmd->state.renderpass_cache.flush_bits |= TU_CMD_FLAG_CACHE_INVALIDATE;
4089 
4090    tu_lrz_begin_renderpass(cmd);
4091 
4092    cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4093 
4094    tu_emit_renderpass_begin(cmd);
4095    tu_emit_subpass_begin<CHIP>(cmd);
4096 
4097    if (pass->has_fdm)
4098       cmd->patchpoints_ctx = ralloc_parent(NULL);
4099 }
4100 TU_GENX(tu_CmdBeginRenderPass2);
4101 
4102 template <chip CHIP>
4103 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginRendering(VkCommandBuffer commandBuffer,const VkRenderingInfo * pRenderingInfo)4104 tu_CmdBeginRendering(VkCommandBuffer commandBuffer,
4105                      const VkRenderingInfo *pRenderingInfo)
4106 {
4107    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
4108 
4109    tu_setup_dynamic_render_pass(cmd, pRenderingInfo);
4110    tu_setup_dynamic_framebuffer(cmd, pRenderingInfo);
4111 
4112    cmd->state.pass = &cmd->dynamic_pass;
4113    cmd->state.subpass = &cmd->dynamic_subpass;
4114    cmd->state.framebuffer = &cmd->dynamic_framebuffer;
4115    cmd->state.render_area = pRenderingInfo->renderArea;
4116 
4117    cmd->state.attachments = cmd->dynamic_attachments;
4118    cmd->state.clear_values = cmd->dynamic_clear_values;
4119 
4120    for (unsigned i = 0; i < pRenderingInfo->colorAttachmentCount; i++) {
4121       uint32_t a = cmd->dynamic_subpass.color_attachments[i].attachment;
4122       if (!pRenderingInfo->pColorAttachments[i].imageView)
4123          continue;
4124 
4125       cmd->state.clear_values[a] =
4126          pRenderingInfo->pColorAttachments[i].clearValue;
4127 
4128       TU_FROM_HANDLE(tu_image_view, view,
4129                      pRenderingInfo->pColorAttachments[i].imageView);
4130       cmd->state.attachments[a] = view;
4131 
4132       a = cmd->dynamic_subpass.resolve_attachments[i].attachment;
4133       if (a != VK_ATTACHMENT_UNUSED) {
4134          TU_FROM_HANDLE(tu_image_view, resolve_view,
4135                         pRenderingInfo->pColorAttachments[i].resolveImageView);
4136          cmd->state.attachments[a] = resolve_view;
4137       }
4138    }
4139 
4140    uint32_t a = cmd->dynamic_subpass.depth_stencil_attachment.attachment;
4141    if (pRenderingInfo->pDepthAttachment || pRenderingInfo->pStencilAttachment) {
4142       const struct VkRenderingAttachmentInfo *common_info =
4143          (pRenderingInfo->pDepthAttachment &&
4144           pRenderingInfo->pDepthAttachment->imageView != VK_NULL_HANDLE) ?
4145          pRenderingInfo->pDepthAttachment :
4146          pRenderingInfo->pStencilAttachment;
4147       if (common_info && common_info->imageView != VK_NULL_HANDLE) {
4148          TU_FROM_HANDLE(tu_image_view, view, common_info->imageView);
4149          cmd->state.attachments[a] = view;
4150          if (pRenderingInfo->pDepthAttachment) {
4151             cmd->state.clear_values[a].depthStencil.depth =
4152                pRenderingInfo->pDepthAttachment->clearValue.depthStencil.depth;
4153          }
4154 
4155          if (pRenderingInfo->pStencilAttachment) {
4156             cmd->state.clear_values[a].depthStencil.stencil =
4157                pRenderingInfo->pStencilAttachment->clearValue.depthStencil.stencil;
4158          }
4159 
4160          if (cmd->dynamic_subpass.resolve_count >
4161              cmd->dynamic_subpass.color_count) {
4162             TU_FROM_HANDLE(tu_image_view, resolve_view,
4163                            common_info->resolveImageView);
4164             a = cmd->dynamic_subpass.resolve_attachments[cmd->dynamic_subpass.color_count].attachment;
4165             cmd->state.attachments[a] = resolve_view;
4166          }
4167       }
4168    }
4169 
4170    a = cmd->dynamic_pass.fragment_density_map.attachment;
4171    if (a != VK_ATTACHMENT_UNUSED) {
4172       const VkRenderingFragmentDensityMapAttachmentInfoEXT *fdm_info =
4173          vk_find_struct_const(pRenderingInfo->pNext,
4174                               RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_INFO_EXT);
4175       TU_FROM_HANDLE(tu_image_view, view, fdm_info->imageView);
4176       cmd->state.attachments[a] = view;
4177    }
4178 
4179    if (cmd->dynamic_pass.has_fdm)
4180       cmd->patchpoints_ctx = ralloc_context(NULL);
4181 
4182    tu_choose_gmem_layout(cmd);
4183 
4184    cmd->state.renderpass_cache.pending_flush_bits =
4185       cmd->state.cache.pending_flush_bits;
4186    cmd->state.renderpass_cache.flush_bits = 0;
4187 
4188    bool resuming = pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT;
4189    bool suspending = pRenderingInfo->flags & VK_RENDERING_SUSPENDING_BIT;
4190    cmd->state.suspending = suspending;
4191    cmd->state.resuming = resuming;
4192 
4193    if (!resuming && cmd->device->dbg_renderpass_stomp_cs) {
4194       tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs);
4195    }
4196 
4197    /* We can't track LRZ across command buffer boundaries, so we have to
4198     * disable LRZ when resuming/suspending unless we can track on the GPU.
4199     */
4200    if ((resuming || suspending) &&
4201        !cmd->device->physical_device->info->a6xx.has_lrz_dir_tracking) {
4202       cmd->state.lrz.valid = false;
4203    } else {
4204       if (resuming)
4205          tu_lrz_begin_resumed_renderpass(cmd);
4206       else
4207          tu_lrz_begin_renderpass(cmd);
4208    }
4209 
4210 
4211    if (suspending) {
4212       cmd->state.suspended_pass.pass = cmd->state.pass;
4213       cmd->state.suspended_pass.subpass = cmd->state.subpass;
4214       cmd->state.suspended_pass.framebuffer = cmd->state.framebuffer;
4215       cmd->state.suspended_pass.render_area = cmd->state.render_area;
4216       cmd->state.suspended_pass.attachments = cmd->state.attachments;
4217       cmd->state.suspended_pass.gmem_layout = cmd->state.gmem_layout;
4218    }
4219 
4220    if (!resuming)
4221       trace_start_render_pass(&cmd->trace, &cmd->cs, cmd->state.framebuffer,
4222                               cmd->state.tiling);
4223 
4224    if (!resuming || cmd->state.suspend_resume == SR_NONE) {
4225       cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4226    }
4227 
4228    if (!resuming) {
4229       tu_emit_renderpass_begin(cmd);
4230       tu_emit_subpass_begin<CHIP>(cmd);
4231    }
4232 
4233    if (suspending && !resuming) {
4234       /* entering a chain */
4235       switch (cmd->state.suspend_resume) {
4236       case SR_NONE:
4237          cmd->state.suspend_resume = SR_IN_CHAIN;
4238          break;
4239       case SR_AFTER_PRE_CHAIN:
4240          cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN;
4241          break;
4242       case SR_IN_PRE_CHAIN:
4243       case SR_IN_CHAIN:
4244       case SR_IN_CHAIN_AFTER_PRE_CHAIN:
4245          unreachable("suspending render pass not followed by resuming pass");
4246          break;
4247       }
4248    }
4249 
4250    if (resuming && cmd->state.suspend_resume == SR_NONE)
4251       cmd->state.suspend_resume = SR_IN_PRE_CHAIN;
4252 }
4253 TU_GENX(tu_CmdBeginRendering);
4254 
4255 template <chip CHIP>
4256 VKAPI_ATTR void VKAPI_CALL
tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,const VkSubpassBeginInfo * pSubpassBeginInfo,const VkSubpassEndInfo * pSubpassEndInfo)4257 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
4258                    const VkSubpassBeginInfo *pSubpassBeginInfo,
4259                    const VkSubpassEndInfo *pSubpassEndInfo)
4260 {
4261    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
4262 
4263    if (TU_DEBUG(DYNAMIC)) {
4264       vk_common_CmdNextSubpass2(commandBuffer, pSubpassBeginInfo,
4265                                 pSubpassEndInfo);
4266       return;
4267    }
4268 
4269    const struct tu_render_pass *pass = cmd->state.pass;
4270    const struct tu_framebuffer *fb = cmd->state.framebuffer;
4271    struct tu_cs *cs = &cmd->draw_cs;
4272    const struct tu_subpass *last_subpass = cmd->state.subpass;
4273 
4274    const struct tu_subpass *subpass = cmd->state.subpass++;
4275 
4276    /* Track LRZ valid state
4277     *
4278     * TODO: Improve this tracking for keeping the state of the past depth/stencil images,
4279     * so if they become active again, we reuse its old state.
4280     */
4281    if (last_subpass->depth_stencil_attachment.attachment != subpass->depth_stencil_attachment.attachment) {
4282       cmd->state.lrz.valid = false;
4283       cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
4284    }
4285 
4286    if (cmd->state.tiling->possible) {
4287       if (cmd->state.pass->has_fdm)
4288          tu_cs_set_writeable(cs, true);
4289 
4290       tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
4291 
4292       if (subpass->resolve_attachments) {
4293          tu6_emit_blit_scissor(cmd, cs, true);
4294 
4295          for (unsigned i = 0; i < subpass->resolve_count; i++) {
4296             uint32_t a = subpass->resolve_attachments[i].attachment;
4297             if (a == VK_ATTACHMENT_UNUSED)
4298                continue;
4299 
4300             uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
4301 
4302             tu_store_gmem_attachment<CHIP>(cmd, cs, a, gmem_a, fb->layers,
4303                                     subpass->multiview_mask, false);
4304 
4305             if (!pass->attachments[a].gmem)
4306                continue;
4307 
4308             /* check if the resolved attachment is needed by later subpasses,
4309             * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
4310             */
4311             perf_debug(cmd->device, "TODO: missing GMEM->GMEM resolve path\n");
4312             tu_load_gmem_attachment<CHIP>(cmd, cs, a, false, true);
4313          }
4314       }
4315 
4316       tu_cond_exec_end(cs);
4317 
4318       if (cmd->state.pass->has_fdm)
4319          tu_cs_set_writeable(cs, false);
4320 
4321       tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
4322    }
4323 
4324    tu6_emit_sysmem_resolves<CHIP>(cmd, cs, subpass);
4325 
4326    if (cmd->state.tiling->possible)
4327       tu_cond_exec_end(cs);
4328 
4329    /* Handle dependencies for the next subpass */
4330    tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
4331 
4332    if (cmd->state.subpass->feedback_invalidate)
4333       cmd->state.renderpass_cache.flush_bits |= TU_CMD_FLAG_CACHE_INVALIDATE;
4334 
4335    tu_emit_subpass_begin<CHIP>(cmd);
4336 }
4337 TU_GENX(tu_CmdNextSubpass2);
4338 
4339 static uint32_t
tu6_user_consts_size(const struct tu_const_state * const_state,bool ldgk,gl_shader_stage type)4340 tu6_user_consts_size(const struct tu_const_state *const_state,
4341                      bool ldgk,
4342                      gl_shader_stage type)
4343 {
4344    uint32_t dwords = 0;
4345 
4346    if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) {
4347       unsigned num_units = const_state->push_consts.dwords;
4348       dwords += 4 + num_units;
4349       assert(num_units > 0);
4350    }
4351 
4352    if (ldgk) {
4353       dwords += 6 + (2 * const_state->num_inline_ubos + 4);
4354    } else {
4355       dwords += 8 * const_state->num_inline_ubos;
4356    }
4357 
4358    return dwords;
4359 }
4360 
4361 static void
tu6_emit_per_stage_push_consts(struct tu_cs * cs,const struct tu_const_state * const_state,gl_shader_stage type,uint32_t * push_constants)4362 tu6_emit_per_stage_push_consts(struct tu_cs *cs,
4363                                const struct tu_const_state *const_state,
4364                                gl_shader_stage type,
4365                                uint32_t *push_constants)
4366 {
4367    if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) {
4368       unsigned num_units = const_state->push_consts.dwords;
4369       unsigned offset = const_state->push_consts.lo;
4370       assert(num_units > 0);
4371 
4372       /* DST_OFF and NUM_UNIT requires vec4 units */
4373       tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units);
4374       tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset / 4) |
4375             CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
4376             CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
4377             CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
4378             CP_LOAD_STATE6_0_NUM_UNIT(num_units / 4));
4379       tu_cs_emit(cs, 0);
4380       tu_cs_emit(cs, 0);
4381       for (unsigned i = 0; i < num_units; i++)
4382          tu_cs_emit(cs, push_constants[i + offset]);
4383    }
4384 }
4385 
4386 static void
tu6_emit_inline_ubo(struct tu_cs * cs,const struct tu_const_state * const_state,unsigned constlen,gl_shader_stage type,struct tu_descriptor_state * descriptors)4387 tu6_emit_inline_ubo(struct tu_cs *cs,
4388                     const struct tu_const_state *const_state,
4389                     unsigned constlen,
4390                     gl_shader_stage type,
4391                     struct tu_descriptor_state *descriptors)
4392 {
4393    assert(const_state->num_inline_ubos == 0 || !cs->device->physical_device->info->a7xx.load_shader_consts_via_preamble);
4394 
4395    /* Emit loads of inline uniforms. These load directly from the uniform's
4396     * storage space inside the descriptor set.
4397     */
4398    for (unsigned i = 0; i < const_state->num_inline_ubos; i++) {
4399       const struct tu_inline_ubo *ubo = &const_state->ubos[i];
4400 
4401       if (constlen <= ubo->const_offset_vec4)
4402          continue;
4403 
4404       uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f;
4405 
4406       tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), ubo->push_address ? 7 : 3);
4407       tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(ubo->const_offset_vec4) |
4408             CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
4409             CP_LOAD_STATE6_0_STATE_SRC(ubo->push_address ? SS6_DIRECT : SS6_INDIRECT) |
4410             CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
4411             CP_LOAD_STATE6_0_NUM_UNIT(MIN2(ubo->size_vec4, constlen - ubo->const_offset_vec4)));
4412       if (ubo->push_address) {
4413          tu_cs_emit(cs, 0);
4414          tu_cs_emit(cs, 0);
4415          tu_cs_emit_qw(cs, va + ubo->offset);
4416          tu_cs_emit(cs, 0);
4417          tu_cs_emit(cs, 0);
4418       } else {
4419          tu_cs_emit_qw(cs, va + ubo->offset);
4420       }
4421    }
4422 }
4423 
4424 static void
tu7_emit_inline_ubo(struct tu_cs * cs,const struct tu_const_state * const_state,const struct ir3_const_state * ir_const_state,unsigned constlen,gl_shader_stage type,struct tu_descriptor_state * descriptors)4425 tu7_emit_inline_ubo(struct tu_cs *cs,
4426                     const struct tu_const_state *const_state,
4427                     const struct ir3_const_state *ir_const_state,
4428                     unsigned constlen,
4429                     gl_shader_stage type,
4430                     struct tu_descriptor_state *descriptors)
4431 {
4432    uint64_t addresses[7] = {0};
4433    unsigned offset = const_state->inline_uniforms_ubo.idx;
4434 
4435    if (offset == -1)
4436       return;
4437 
4438    for (unsigned i = 0; i < const_state->num_inline_ubos; i++) {
4439       const struct tu_inline_ubo *ubo = &const_state->ubos[i];
4440 
4441       uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f;
4442       addresses[i] = va + ubo->offset;
4443    }
4444 
4445    /* A7XX TODO: Emit data via sub_cs instead of NOP */
4446    uint64_t iova = tu_cs_emit_data_nop(cs, (uint32_t *)addresses, const_state->num_inline_ubos * 2, 4);
4447 
4448    tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5);
4449    tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
4450             CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) |
4451             CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
4452             CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
4453             CP_LOAD_STATE6_0_NUM_UNIT(1));
4454    tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
4455    tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
4456    int size_vec4s = DIV_ROUND_UP(const_state->num_inline_ubos * 2, 4);
4457    tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32));
4458 }
4459 
4460 static void
tu_emit_inline_ubo(struct tu_cs * cs,const struct tu_const_state * const_state,const struct ir3_const_state * ir_const_state,unsigned constlen,gl_shader_stage type,struct tu_descriptor_state * descriptors)4461 tu_emit_inline_ubo(struct tu_cs *cs,
4462                    const struct tu_const_state *const_state,
4463                    const struct ir3_const_state *ir_const_state,
4464                    unsigned constlen,
4465                    gl_shader_stage type,
4466                    struct tu_descriptor_state *descriptors)
4467 {
4468    if (!const_state->num_inline_ubos)
4469       return;
4470 
4471    if (cs->device->physical_device->info->a7xx.load_inline_uniforms_via_preamble_ldgk) {
4472       tu7_emit_inline_ubo(cs, const_state, ir_const_state, constlen, type, descriptors);
4473    } else {
4474       tu6_emit_inline_ubo(cs, const_state, constlen, type, descriptors);
4475    }
4476 }
4477 
4478 static void
tu6_emit_shared_consts(struct tu_cs * cs,const struct tu_push_constant_range * shared_consts,uint32_t * push_constants,bool compute)4479 tu6_emit_shared_consts(struct tu_cs *cs,
4480                        const struct tu_push_constant_range *shared_consts,
4481                        uint32_t *push_constants,
4482                        bool compute)
4483 {
4484    if (shared_consts->dwords > 0) {
4485       /* Offset and num_units for shared consts are in units of dwords. */
4486       unsigned num_units = shared_consts->dwords;
4487       unsigned offset = shared_consts->lo;
4488 
4489       enum a6xx_state_type st = compute ? ST6_UBO : ST6_CONSTANTS;
4490       uint32_t cp_load_state = compute ? CP_LOAD_STATE6_FRAG : CP_LOAD_STATE6;
4491 
4492       tu_cs_emit_pkt7(cs, cp_load_state, 3 + num_units);
4493       tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
4494             CP_LOAD_STATE6_0_STATE_TYPE(st) |
4495             CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
4496             CP_LOAD_STATE6_0_STATE_BLOCK(SB6_IBO) |
4497             CP_LOAD_STATE6_0_NUM_UNIT(num_units));
4498       tu_cs_emit(cs, 0);
4499       tu_cs_emit(cs, 0);
4500 
4501       for (unsigned i = 0; i < num_units; i++)
4502          tu_cs_emit(cs, push_constants[i + offset]);
4503    }
4504 }
4505 
4506 static void
tu7_emit_shared_preamble_consts(struct tu_cs * cs,const struct tu_push_constant_range * shared_consts,uint32_t * push_constants)4507 tu7_emit_shared_preamble_consts(
4508    struct tu_cs *cs,
4509    const struct tu_push_constant_range *shared_consts,
4510    uint32_t *push_constants)
4511 {
4512    tu_cs_emit_pkt4(cs, REG_A7XX_HLSQ_SHARED_CONSTS_IMM(shared_consts->lo),
4513                    shared_consts->dwords);
4514    tu_cs_emit_array(cs, push_constants + shared_consts->lo,
4515                     shared_consts->dwords);
4516 }
4517 
4518 static uint32_t
tu6_const_size(struct tu_cmd_buffer * cmd,const struct tu_push_constant_range * shared_consts,bool compute)4519 tu6_const_size(struct tu_cmd_buffer *cmd,
4520                const struct tu_push_constant_range *shared_consts,
4521                bool compute)
4522 {
4523    uint32_t dwords = 0;
4524 
4525    if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) {
4526       dwords += shared_consts->dwords + 4;
4527    } else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) {
4528       dwords += shared_consts->dwords + 1;
4529    }
4530 
4531    bool ldgk = cmd->device->physical_device->info->a7xx.load_inline_uniforms_via_preamble_ldgk;
4532    if (compute) {
4533       dwords +=
4534          tu6_user_consts_size(&cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state, ldgk, MESA_SHADER_COMPUTE);
4535    } else {
4536       for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++)
4537          dwords += tu6_user_consts_size(&cmd->state.shaders[type]->const_state, ldgk, (gl_shader_stage) type);
4538    }
4539 
4540    return dwords;
4541 }
4542 
4543 static struct tu_draw_state
tu_emit_consts(struct tu_cmd_buffer * cmd,bool compute)4544 tu_emit_consts(struct tu_cmd_buffer *cmd, bool compute)
4545 {
4546    uint32_t dwords = 0;
4547    const struct tu_push_constant_range *shared_consts =
4548       compute ? &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state.push_consts :
4549       &cmd->state.program.shared_consts;
4550 
4551    dwords = tu6_const_size(cmd, shared_consts, compute);
4552 
4553    if (dwords == 0)
4554       return (struct tu_draw_state) {};
4555 
4556    struct tu_cs cs;
4557    tu_cs_begin_sub_stream(&cmd->sub_cs, dwords, &cs);
4558 
4559    if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) {
4560       tu6_emit_shared_consts(&cs, shared_consts, cmd->push_constants, compute);
4561    } else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) {
4562       tu7_emit_shared_preamble_consts(&cs, shared_consts, cmd->push_constants);
4563    }
4564 
4565    if (compute) {
4566       tu6_emit_per_stage_push_consts(
4567          &cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state,
4568          MESA_SHADER_COMPUTE, cmd->push_constants);
4569       tu_emit_inline_ubo(
4570          &cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state,
4571          cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->const_state,
4572          cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->constlen,
4573          MESA_SHADER_COMPUTE,
4574          tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_COMPUTE));
4575    } else {
4576       struct tu_descriptor_state *descriptors =
4577          tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
4578       for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++) {
4579          const struct tu_program_descriptor_linkage *link =
4580             &cmd->state.program.link[type];
4581          tu6_emit_per_stage_push_consts(&cs, &link->tu_const_state,
4582                                         (gl_shader_stage) type,
4583                                         cmd->push_constants);
4584          tu_emit_inline_ubo(&cs, &link->tu_const_state,
4585                             &link->const_state, link->constlen,
4586                             (gl_shader_stage) type, descriptors);
4587       }
4588    }
4589 
4590    return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
4591 }
4592 
4593 /* Various frontends (ANGLE, zink at least) will enable stencil testing with
4594  * what works out to be no-op writes.  Simplify what they give us into flags
4595  * that LRZ can use.
4596  */
4597 static void
tu6_update_simplified_stencil_state(struct tu_cmd_buffer * cmd)4598 tu6_update_simplified_stencil_state(struct tu_cmd_buffer *cmd)
4599 {
4600    const struct vk_depth_stencil_state *ds =
4601       &cmd->vk.dynamic_graphics_state.ds;
4602    bool stencil_test_enable = ds->stencil.test_enable;
4603 
4604    if (!stencil_test_enable) {
4605       cmd->state.stencil_front_write = false;
4606       cmd->state.stencil_back_write = false;
4607       return;
4608    }
4609 
4610    bool stencil_front_writemask = ds->stencil.front.write_mask;
4611    bool stencil_back_writemask = ds->stencil.back.write_mask;
4612 
4613    VkStencilOp front_fail_op = (VkStencilOp)ds->stencil.front.op.fail;
4614    VkStencilOp front_pass_op = (VkStencilOp)ds->stencil.front.op.pass;
4615    VkStencilOp front_depth_fail_op = (VkStencilOp)ds->stencil.front.op.depth_fail;
4616    VkStencilOp back_fail_op = (VkStencilOp)ds->stencil.back.op.fail;
4617    VkStencilOp back_pass_op = (VkStencilOp)ds->stencil.back.op.pass;
4618    VkStencilOp back_depth_fail_op = (VkStencilOp)ds->stencil.back.op.depth_fail;
4619 
4620    bool stencil_front_op_writes =
4621       front_pass_op != VK_STENCIL_OP_KEEP ||
4622       front_fail_op != VK_STENCIL_OP_KEEP ||
4623       front_depth_fail_op != VK_STENCIL_OP_KEEP;
4624 
4625    bool stencil_back_op_writes =
4626       back_pass_op != VK_STENCIL_OP_KEEP ||
4627       back_fail_op != VK_STENCIL_OP_KEEP ||
4628       back_depth_fail_op != VK_STENCIL_OP_KEEP;
4629 
4630    cmd->state.stencil_front_write =
4631       stencil_front_op_writes && stencil_front_writemask;
4632    cmd->state.stencil_back_write =
4633       stencil_back_op_writes && stencil_back_writemask;
4634 }
4635 
4636 static bool
tu6_writes_depth(struct tu_cmd_buffer * cmd,bool depth_test_enable)4637 tu6_writes_depth(struct tu_cmd_buffer *cmd, bool depth_test_enable)
4638 {
4639    bool depth_write_enable =
4640       cmd->vk.dynamic_graphics_state.ds.depth.write_enable;
4641 
4642    VkCompareOp depth_compare_op = (VkCompareOp)
4643       cmd->vk.dynamic_graphics_state.ds.depth.compare_op;
4644 
4645    bool depth_compare_op_writes = depth_compare_op != VK_COMPARE_OP_NEVER;
4646 
4647    return depth_test_enable && depth_write_enable && depth_compare_op_writes;
4648 }
4649 
4650 static bool
tu6_writes_stencil(struct tu_cmd_buffer * cmd)4651 tu6_writes_stencil(struct tu_cmd_buffer *cmd)
4652 {
4653    return cmd->state.stencil_front_write || cmd->state.stencil_back_write;
4654 }
4655 
4656 static void
tu6_build_depth_plane_z_mode(struct tu_cmd_buffer * cmd,struct tu_cs * cs)4657 tu6_build_depth_plane_z_mode(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
4658 {
4659    enum a6xx_ztest_mode zmode = A6XX_EARLY_Z;
4660    bool depth_test_enable = cmd->vk.dynamic_graphics_state.ds.depth.test_enable;
4661    bool depth_write = tu6_writes_depth(cmd, depth_test_enable);
4662    bool stencil_write = tu6_writes_stencil(cmd);
4663    const struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
4664    const struct tu_render_pass *pass = cmd->state.pass;
4665    const struct tu_subpass *subpass = cmd->state.subpass;
4666 
4667    if ((fs->variant->has_kill ||
4668         cmd->state.pipeline_feedback_loop_ds) &&
4669        (depth_write || stencil_write)) {
4670       zmode = (cmd->state.lrz.valid && cmd->state.lrz.enabled)
4671                  ? A6XX_EARLY_LRZ_LATE_Z
4672                  : A6XX_LATE_Z;
4673    }
4674 
4675    bool force_late_z =
4676       (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED &&
4677        pass->attachments[subpass->depth_stencil_attachment.attachment].format
4678        == VK_FORMAT_S8_UINT) ||
4679       fs->fs.lrz.force_late_z ||
4680       /* alpha-to-coverage can behave like a discard. */
4681       cmd->vk.dynamic_graphics_state.ms.alpha_to_coverage_enable;
4682    if ((force_late_z && !fs->variant->fs.early_fragment_tests) ||
4683        !depth_test_enable)
4684       zmode = A6XX_LATE_Z;
4685 
4686    /* User defined early tests take precedence above all else */
4687    if (fs->variant->fs.early_fragment_tests)
4688       zmode = A6XX_EARLY_Z;
4689 
4690    tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
4691    tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode));
4692 
4693    tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
4694    tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode));
4695 }
4696 
4697 static uint32_t
fs_params_offset(struct tu_cmd_buffer * cmd)4698 fs_params_offset(struct tu_cmd_buffer *cmd)
4699 {
4700    const struct tu_program_descriptor_linkage *link =
4701       &cmd->state.program.link[MESA_SHADER_FRAGMENT];
4702    const struct ir3_const_state *const_state = &link->const_state;
4703 
4704    if (const_state->num_driver_params <= IR3_DP_FS_DYNAMIC)
4705       return 0;
4706 
4707    if (const_state->offsets.driver_param + IR3_DP_FS_DYNAMIC / 4 >= link->constlen)
4708       return 0;
4709 
4710    return const_state->offsets.driver_param + IR3_DP_FS_DYNAMIC / 4;
4711 }
4712 
4713 static uint32_t
fs_params_size(struct tu_cmd_buffer * cmd)4714 fs_params_size(struct tu_cmd_buffer *cmd)
4715 {
4716    const struct tu_program_descriptor_linkage *link =
4717       &cmd->state.program.link[MESA_SHADER_FRAGMENT];
4718    const struct ir3_const_state *const_state = &link->const_state;
4719 
4720    return DIV_ROUND_UP(const_state->num_driver_params - IR3_DP_FS_DYNAMIC, 4);
4721 }
4722 
4723 struct apply_fs_params_state {
4724    unsigned num_consts;
4725 };
4726 
4727 static void
fdm_apply_fs_params(struct tu_cmd_buffer * cmd,struct tu_cs * cs,void * data,VkRect2D bin,unsigned views,VkExtent2D * frag_areas)4728 fdm_apply_fs_params(struct tu_cmd_buffer *cmd,
4729                     struct tu_cs *cs,
4730                     void *data,
4731                     VkRect2D bin,
4732                     unsigned views,
4733                     VkExtent2D *frag_areas)
4734 {
4735    const struct apply_fs_params_state *state =
4736       (const struct apply_fs_params_state *)data;
4737    unsigned num_consts = state->num_consts;
4738 
4739    for (unsigned i = 0; i < num_consts; i++) {
4740       assert(i < views);
4741       VkExtent2D area = frag_areas[i];
4742       VkOffset2D offset = tu_fdm_per_bin_offset(area, bin);
4743 
4744       tu_cs_emit(cs, area.width);
4745       tu_cs_emit(cs, area.height);
4746       tu_cs_emit(cs, fui(offset.x));
4747       tu_cs_emit(cs, fui(offset.y));
4748    }
4749 }
4750 
4751 static void
tu6_emit_fs_params(struct tu_cmd_buffer * cmd)4752 tu6_emit_fs_params(struct tu_cmd_buffer *cmd)
4753 {
4754    uint32_t offset = fs_params_offset(cmd);
4755 
4756    if (offset == 0) {
4757       cmd->state.fs_params = (struct tu_draw_state) {};
4758       return;
4759    }
4760 
4761    struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
4762 
4763    unsigned num_units = fs_params_size(cmd);
4764 
4765    if (fs->fs.has_fdm)
4766       tu_cs_set_writeable(&cmd->sub_cs, true);
4767 
4768    struct tu_cs cs;
4769    VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 4 + 4 * num_units, &cs);
4770    if (result != VK_SUCCESS) {
4771       tu_cs_set_writeable(&cmd->sub_cs, false);
4772       vk_command_buffer_set_error(&cmd->vk, result);
4773       return;
4774    }
4775 
4776    tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3 + 4 * num_units);
4777    tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
4778          CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
4779          CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
4780          CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_SHADER) |
4781          CP_LOAD_STATE6_0_NUM_UNIT(num_units));
4782    tu_cs_emit(&cs, 0);
4783    tu_cs_emit(&cs, 0);
4784 
4785    STATIC_ASSERT(IR3_DP_FS_FRAG_INVOCATION_COUNT == IR3_DP_FS_DYNAMIC);
4786    tu_cs_emit(&cs, fs->fs.per_samp ?
4787               cmd->vk.dynamic_graphics_state.ms.rasterization_samples : 1);
4788    tu_cs_emit(&cs, 0);
4789    tu_cs_emit(&cs, 0);
4790    tu_cs_emit(&cs, 0);
4791 
4792    STATIC_ASSERT(IR3_DP_FS_FRAG_SIZE == IR3_DP_FS_DYNAMIC + 4);
4793    STATIC_ASSERT(IR3_DP_FS_FRAG_OFFSET == IR3_DP_FS_DYNAMIC + 6);
4794    if (num_units > 1) {
4795       if (fs->fs.has_fdm) {
4796          struct apply_fs_params_state state = {
4797             .num_consts = num_units - 1,
4798          };
4799          tu_create_fdm_bin_patchpoint(cmd, &cs, 4 * (num_units - 1),
4800                                       fdm_apply_fs_params, state);
4801       } else {
4802          for (unsigned i = 1; i < num_units; i++) {
4803             tu_cs_emit(&cs, 1);
4804             tu_cs_emit(&cs, 1);
4805             tu_cs_emit(&cs, fui(0.0f));
4806             tu_cs_emit(&cs, fui(0.0f));
4807          }
4808       }
4809    }
4810 
4811    cmd->state.fs_params = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
4812 
4813    if (fs->fs.has_fdm)
4814       tu_cs_set_writeable(&cmd->sub_cs, false);
4815 }
4816 
4817 template <chip CHIP>
4818 static VkResult
tu6_draw_common(struct tu_cmd_buffer * cmd,struct tu_cs * cs,bool indexed,uint32_t draw_count)4819 tu6_draw_common(struct tu_cmd_buffer *cmd,
4820                 struct tu_cs *cs,
4821                 bool indexed,
4822                 /* note: draw_count is 0 for indirect */
4823                 uint32_t draw_count)
4824 {
4825    const struct tu_program_state *program = &cmd->state.program;
4826    struct tu_render_pass_state *rp = &cmd->state.rp;
4827 
4828    /* Emit state first, because it's needed for bandwidth calculations */
4829    uint32_t dynamic_draw_state_dirty = 0;
4830    if (!BITSET_IS_EMPTY(cmd->vk.dynamic_graphics_state.dirty) ||
4831        (cmd->state.dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS)) {
4832       dynamic_draw_state_dirty = tu_emit_draw_state<CHIP>(cmd);
4833    }
4834 
4835    /* Fill draw stats for autotuner */
4836    rp->drawcall_count++;
4837 
4838    rp->drawcall_bandwidth_per_sample_sum +=
4839       cmd->state.bandwidth.color_bandwidth_per_sample;
4840 
4841    /* add depth memory bandwidth cost */
4842    const uint32_t depth_bandwidth = cmd->state.bandwidth.depth_cpp_per_sample;
4843    if (cmd->vk.dynamic_graphics_state.ds.depth.write_enable)
4844       rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth;
4845    if (cmd->vk.dynamic_graphics_state.ds.depth.test_enable)
4846       rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth;
4847 
4848    /* add stencil memory bandwidth cost */
4849    const uint32_t stencil_bandwidth =
4850       cmd->state.bandwidth.stencil_cpp_per_sample;
4851    if (cmd->vk.dynamic_graphics_state.ds.stencil.test_enable)
4852       rp->drawcall_bandwidth_per_sample_sum += stencil_bandwidth * 2;
4853 
4854    tu_emit_cache_flush_renderpass<CHIP>(cmd);
4855 
4856   if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4857                   MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE) ||
4858       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4859                   MESA_VK_DYNAMIC_RS_PROVOKING_VERTEX)) {
4860       bool primitive_restart_enabled =
4861          cmd->vk.dynamic_graphics_state.ia.primitive_restart_enable;
4862 
4863       bool primitive_restart = primitive_restart_enabled && indexed;
4864       bool provoking_vtx_last =
4865          cmd->vk.dynamic_graphics_state.rs.provoking_vertex ==
4866          VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT;
4867 
4868       uint32_t primitive_cntl_0 =
4869          A6XX_PC_PRIMITIVE_CNTL_0(.primitive_restart = primitive_restart,
4870                                   .provoking_vtx_last = provoking_vtx_last).value;
4871       tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(.dword = primitive_cntl_0));
4872       if (CHIP == A7XX) {
4873          tu_cs_emit_regs(cs, A7XX_VPC_PRIMITIVE_CNTL_0(.dword = primitive_cntl_0));
4874       }
4875    }
4876 
4877    struct tu_tess_params *tess_params = &cmd->state.tess_params;
4878    if ((cmd->state.dirty & TU_CMD_DIRTY_TESS_PARAMS) ||
4879        BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4880                    MESA_VK_DYNAMIC_TS_DOMAIN_ORIGIN)) {
4881       bool tess_upper_left_domain_origin =
4882          (VkTessellationDomainOrigin)cmd->vk.dynamic_graphics_state.ts.domain_origin ==
4883          VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
4884       tu_cs_emit_regs(cs, A6XX_PC_TESS_CNTL(
4885             .spacing = tess_params->spacing,
4886             .output = tess_upper_left_domain_origin ?
4887                tess_params->output_upper_left :
4888                tess_params->output_lower_left));
4889    }
4890 
4891    /* Early exit if there is nothing to emit, saves CPU cycles */
4892    uint32_t dirty = cmd->state.dirty;
4893    if (!dynamic_draw_state_dirty && !(dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS))
4894       return VK_SUCCESS;
4895 
4896    bool dirty_lrz =
4897       (dirty & TU_CMD_DIRTY_LRZ) ||
4898       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4899                   MESA_VK_DYNAMIC_DS_DEPTH_TEST_ENABLE) ||
4900       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4901                   MESA_VK_DYNAMIC_DS_DEPTH_WRITE_ENABLE) ||
4902       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4903                   MESA_VK_DYNAMIC_DS_DEPTH_BOUNDS_TEST_ENABLE) ||
4904       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4905                   MESA_VK_DYNAMIC_DS_DEPTH_COMPARE_OP) ||
4906       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4907                   MESA_VK_DYNAMIC_DS_STENCIL_TEST_ENABLE) ||
4908       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4909                   MESA_VK_DYNAMIC_DS_STENCIL_OP) ||
4910       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4911                   MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) ||
4912       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4913                   MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE);
4914 
4915    if (dirty_lrz) {
4916       struct tu_cs cs;
4917       uint32_t size = cmd->device->physical_device->info->a6xx.lrz_track_quirk ? 10 : 8;
4918 
4919       cmd->state.lrz_and_depth_plane_state =
4920          tu_cs_draw_state(&cmd->sub_cs, &cs, size);
4921       tu6_update_simplified_stencil_state(cmd);
4922       tu6_emit_lrz(cmd, &cs);
4923       tu6_build_depth_plane_z_mode(cmd, &cs);
4924    }
4925 
4926    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4927                    MESA_VK_DYNAMIC_VI_BINDINGS_VALID)) {
4928       cmd->state.vertex_buffers.size =
4929          util_last_bit(cmd->vk.dynamic_graphics_state.vi_bindings_valid) * 4;
4930       cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
4931    }
4932 
4933    if (dirty & TU_CMD_DIRTY_SHADER_CONSTS)
4934       cmd->state.shader_const = tu_emit_consts(cmd, false);
4935 
4936    if (dirty & TU_CMD_DIRTY_DESC_SETS)
4937       tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
4938 
4939    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4940                    MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
4941        BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4942                    MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) ||
4943        BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4944                    MESA_VK_DYNAMIC_RS_LINE_MODE) ||
4945        (cmd->state.dirty & TU_CMD_DIRTY_TES)) {
4946       tu6_update_msaa_disable(cmd);
4947    }
4948 
4949    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4950                    MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES)) {
4951       tu6_update_msaa(cmd);
4952    }
4953 
4954    bool dirty_fs_params = false;
4955    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4956                    MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
4957        (cmd->state.dirty & (TU_CMD_DIRTY_PROGRAM | TU_CMD_DIRTY_FDM))) {
4958       tu6_emit_fs_params(cmd);
4959       dirty_fs_params = true;
4960    }
4961 
4962    /* for the first draw in a renderpass, re-emit all the draw states
4963     *
4964     * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
4965     * used, then draw states must be re-emitted. note however this only happens
4966     * in the sysmem path, so this can be skipped this for the gmem path (TODO)
4967     *
4968     * the two input attachment states are excluded because secondary command
4969     * buffer doesn't have a state ib to restore it, and not re-emitting them
4970     * is OK since CmdClearAttachments won't disable/overwrite them
4971     */
4972    if (dirty & TU_CMD_DIRTY_DRAW_STATE) {
4973       tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
4974 
4975       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, program->config_state);
4976       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, program->vs_state);
4977       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, program->vs_binning_state);
4978       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, program->hs_state);
4979       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, program->ds_state);
4980       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, program->gs_state);
4981       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, program->gs_binning_state);
4982       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, program->fs_state);
4983       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, program->vpc_state);
4984       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_SYSMEM, cmd->state.prim_order_sysmem);
4985       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, cmd->state.prim_order_gmem);
4986       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
4987       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
4988       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state);
4989       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
4990       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
4991       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params);
4992       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
4993 
4994       for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
4995          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
4996                                cmd->state.dynamic_state[i]);
4997       }
4998    } else {
4999       /* emit draw states that were just updated */
5000       uint32_t draw_state_count =
5001          util_bitcount(dynamic_draw_state_dirty) +
5002          ((dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 1 : 0) +
5003          ((dirty & TU_CMD_DIRTY_DESC_SETS) ? 1 : 0) +
5004          ((dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
5005          ((dirty & TU_CMD_DIRTY_VS_PARAMS) ? 1 : 0) +
5006          (dirty_fs_params ? 1 : 0) +
5007          (dirty_lrz ? 1 : 0);
5008 
5009       if (draw_state_count > 0)
5010          tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
5011 
5012       if (dirty & TU_CMD_DIRTY_SHADER_CONSTS)
5013          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
5014       if (dirty & TU_CMD_DIRTY_DESC_SETS) {
5015          /* tu6_emit_descriptor_sets emitted the cmd->state.desc_sets draw state. */
5016          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state);
5017       }
5018       if (dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
5019          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
5020       u_foreach_bit (i, dynamic_draw_state_dirty) {
5021          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
5022                                cmd->state.dynamic_state[i]);
5023       }
5024       if (dirty & TU_CMD_DIRTY_VS_PARAMS)
5025          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
5026       if (dirty_fs_params)
5027          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params);
5028       if (dirty_lrz) {
5029          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
5030       }
5031    }
5032 
5033    tu_cs_sanity_check(cs);
5034 
5035    /* There are too many graphics dirty bits to list here, so just list the
5036     * bits to preserve instead. The only things not emitted here are
5037     * compute-related state.
5038     */
5039    cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS;
5040    BITSET_ZERO(cmd->vk.dynamic_graphics_state.dirty);
5041    return VK_SUCCESS;
5042 }
5043 
5044 static uint32_t
tu_draw_initiator(struct tu_cmd_buffer * cmd,enum pc_di_src_sel src_sel)5045 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
5046 {
5047    enum pc_di_primtype primtype =
5048       tu6_primtype((VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology);
5049 
5050    if (primtype == DI_PT_PATCHES0)
5051       primtype = (enum pc_di_primtype) (primtype +
5052                                         cmd->vk.dynamic_graphics_state.ts.patch_control_points);
5053 
5054    uint32_t initiator =
5055       CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
5056       CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
5057       CP_DRAW_INDX_OFFSET_0_INDEX_SIZE((enum a4xx_index_size) cmd->state.index_size) |
5058       CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
5059 
5060    if (cmd->state.shaders[MESA_SHADER_GEOMETRY]->variant)
5061       initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
5062 
5063    const struct tu_shader *tes = cmd->state.shaders[MESA_SHADER_TESS_EVAL];
5064    if (tes->variant) {
5065       switch (tes->variant->key.tessellation) {
5066       case IR3_TESS_TRIANGLES:
5067          initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
5068                       CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
5069          break;
5070       case IR3_TESS_ISOLINES:
5071          initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
5072                       CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
5073          break;
5074       case IR3_TESS_QUADS:
5075          initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
5076                       CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
5077          break;
5078       }
5079    }
5080    return initiator;
5081 }
5082 
5083 
5084 static uint32_t
vs_params_offset(struct tu_cmd_buffer * cmd)5085 vs_params_offset(struct tu_cmd_buffer *cmd)
5086 {
5087    const struct tu_program_descriptor_linkage *link =
5088       &cmd->state.program.link[MESA_SHADER_VERTEX];
5089    const struct ir3_const_state *const_state = &link->const_state;
5090 
5091    if (const_state->offsets.driver_param >= link->constlen)
5092       return 0;
5093 
5094    /* this layout is required by CP_DRAW_INDIRECT_MULTI */
5095    STATIC_ASSERT(IR3_DP_DRAWID == 0);
5096    STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
5097    STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
5098 
5099    /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
5100    assert(const_state->offsets.driver_param != 0);
5101 
5102    return const_state->offsets.driver_param;
5103 }
5104 
5105 static void
tu6_emit_empty_vs_params(struct tu_cmd_buffer * cmd)5106 tu6_emit_empty_vs_params(struct tu_cmd_buffer *cmd)
5107 {
5108    if (cmd->state.vs_params.iova) {
5109       cmd->state.vs_params = (struct tu_draw_state) {};
5110       cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
5111    }
5112 }
5113 
5114 static void
tu6_emit_vs_params(struct tu_cmd_buffer * cmd,uint32_t draw_id,uint32_t vertex_offset,uint32_t first_instance)5115 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
5116                    uint32_t draw_id,
5117                    uint32_t vertex_offset,
5118                    uint32_t first_instance)
5119 {
5120    uint32_t offset = vs_params_offset(cmd);
5121 
5122    /* Beside re-emitting params when they are changed, we should re-emit
5123     * them after constants are invalidated via HLSQ_INVALIDATE_CMD or after we
5124     * emit an empty vs params.
5125     */
5126    if (!(cmd->state.dirty & (TU_CMD_DIRTY_DRAW_STATE | TU_CMD_DIRTY_VS_PARAMS |
5127                              TU_CMD_DIRTY_PROGRAM)) &&
5128        cmd->state.vs_params.iova &&
5129        (offset == 0 || draw_id == cmd->state.last_vs_params.draw_id) &&
5130        vertex_offset == cmd->state.last_vs_params.vertex_offset &&
5131        first_instance == cmd->state.last_vs_params.first_instance) {
5132       return;
5133    }
5134 
5135    uint64_t consts_iova = 0;
5136    if (offset) {
5137       struct tu_cs_memory consts;
5138       VkResult result = tu_cs_alloc(&cmd->sub_cs, 1, 4, &consts);
5139       if (result != VK_SUCCESS) {
5140          vk_command_buffer_set_error(&cmd->vk, result);
5141          return;
5142       }
5143       consts.map[0] = draw_id;
5144       consts.map[1] = vertex_offset;
5145       consts.map[2] = first_instance;
5146       consts.map[3] = 0;
5147 
5148       consts_iova = consts.iova;
5149    }
5150 
5151    struct tu_cs cs;
5152    VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 4 : 0), &cs);
5153    if (result != VK_SUCCESS) {
5154       vk_command_buffer_set_error(&cmd->vk, result);
5155       return;
5156    }
5157 
5158    tu_cs_emit_regs(&cs,
5159                    A6XX_VFD_INDEX_OFFSET(vertex_offset),
5160                    A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
5161 
5162    /* It is implemented as INDIRECT load even on a750+ because with UBO
5163     * lowering it would be tricky to get const offset for to use in multidraw,
5164     * also we would need to ensure the offset is not 0.
5165     * TODO/A7XX: Rework vs params to use UBO lowering.
5166     */
5167    if (offset) {
5168       tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3);
5169       tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
5170             CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5171             CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
5172             CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
5173             CP_LOAD_STATE6_0_NUM_UNIT(1));
5174       tu_cs_emit_qw(&cs, consts_iova);
5175    }
5176 
5177    cmd->state.last_vs_params.vertex_offset = vertex_offset;
5178    cmd->state.last_vs_params.first_instance = first_instance;
5179    cmd->state.last_vs_params.draw_id = draw_id;
5180 
5181    struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
5182    cmd->state.vs_params = (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
5183 
5184    cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
5185 }
5186 
5187 template <chip CHIP>
5188 VKAPI_ATTR void VKAPI_CALL
tu_CmdDraw(VkCommandBuffer commandBuffer,uint32_t vertexCount,uint32_t instanceCount,uint32_t firstVertex,uint32_t firstInstance)5189 tu_CmdDraw(VkCommandBuffer commandBuffer,
5190            uint32_t vertexCount,
5191            uint32_t instanceCount,
5192            uint32_t firstVertex,
5193            uint32_t firstInstance)
5194 {
5195    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5196    struct tu_cs *cs = &cmd->draw_cs;
5197 
5198    tu6_emit_vs_params(cmd, 0, firstVertex, firstInstance);
5199 
5200    tu6_draw_common<CHIP>(cmd, cs, false, vertexCount);
5201 
5202    tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
5203    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5204    tu_cs_emit(cs, instanceCount);
5205    tu_cs_emit(cs, vertexCount);
5206 }
5207 TU_GENX(tu_CmdDraw);
5208 
5209 template <chip CHIP>
5210 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawMultiEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawInfoEXT * pVertexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride)5211 tu_CmdDrawMultiEXT(VkCommandBuffer commandBuffer,
5212                    uint32_t drawCount,
5213                    const VkMultiDrawInfoEXT *pVertexInfo,
5214                    uint32_t instanceCount,
5215                    uint32_t firstInstance,
5216                    uint32_t stride)
5217 {
5218    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5219    struct tu_cs *cs = &cmd->draw_cs;
5220 
5221    if (!drawCount)
5222       return;
5223 
5224    bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant;
5225 
5226    uint32_t max_vertex_count = 0;
5227    if (has_tess) {
5228       uint32_t i = 0;
5229       vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
5230          max_vertex_count = MAX2(max_vertex_count, draw->vertexCount);
5231       }
5232    }
5233 
5234    uint32_t i = 0;
5235    vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
5236       tu6_emit_vs_params(cmd, i, draw->firstVertex, firstInstance);
5237 
5238       if (i == 0)
5239          tu6_draw_common<CHIP>(cmd, cs, false, max_vertex_count);
5240 
5241       if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) {
5242          tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
5243          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
5244          cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS;
5245       }
5246 
5247       tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
5248       tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5249       tu_cs_emit(cs, instanceCount);
5250       tu_cs_emit(cs, draw->vertexCount);
5251    }
5252 }
5253 TU_GENX(tu_CmdDrawMultiEXT);
5254 
5255 template <chip CHIP>
5256 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,uint32_t indexCount,uint32_t instanceCount,uint32_t firstIndex,int32_t vertexOffset,uint32_t firstInstance)5257 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
5258                   uint32_t indexCount,
5259                   uint32_t instanceCount,
5260                   uint32_t firstIndex,
5261                   int32_t vertexOffset,
5262                   uint32_t firstInstance)
5263 {
5264    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5265    struct tu_cs *cs = &cmd->draw_cs;
5266 
5267    tu6_emit_vs_params(cmd, 0, vertexOffset, firstInstance);
5268 
5269    tu6_draw_common<CHIP>(cmd, cs, true, indexCount);
5270 
5271    tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
5272    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
5273    tu_cs_emit(cs, instanceCount);
5274    tu_cs_emit(cs, indexCount);
5275    tu_cs_emit(cs, firstIndex);
5276    tu_cs_emit_qw(cs, cmd->state.index_va);
5277    tu_cs_emit(cs, cmd->state.max_index_count);
5278 }
5279 TU_GENX(tu_CmdDrawIndexed);
5280 
5281 template <chip CHIP>
5282 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawIndexedInfoEXT * pIndexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride,const int32_t * pVertexOffset)5283 tu_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer,
5284                           uint32_t drawCount,
5285                           const VkMultiDrawIndexedInfoEXT *pIndexInfo,
5286                           uint32_t instanceCount,
5287                           uint32_t firstInstance,
5288                           uint32_t stride,
5289                           const int32_t *pVertexOffset)
5290 {
5291    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5292    struct tu_cs *cs = &cmd->draw_cs;
5293 
5294    if (!drawCount)
5295       return;
5296 
5297    bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant;
5298 
5299    uint32_t max_index_count = 0;
5300    if (has_tess) {
5301       uint32_t i = 0;
5302       vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
5303          max_index_count = MAX2(max_index_count, draw->indexCount);
5304       }
5305    }
5306 
5307    uint32_t i = 0;
5308    vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
5309       int32_t vertexOffset = pVertexOffset ? *pVertexOffset : draw->vertexOffset;
5310       tu6_emit_vs_params(cmd, i, vertexOffset, firstInstance);
5311 
5312       if (i == 0)
5313          tu6_draw_common<CHIP>(cmd, cs, true, max_index_count);
5314 
5315       if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) {
5316          tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
5317          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
5318          cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS;
5319       }
5320 
5321       tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
5322       tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
5323       tu_cs_emit(cs, instanceCount);
5324       tu_cs_emit(cs, draw->indexCount);
5325       tu_cs_emit(cs, draw->firstIndex);
5326       tu_cs_emit_qw(cs, cmd->state.index_va);
5327       tu_cs_emit(cs, cmd->state.max_index_count);
5328    }
5329 }
5330 TU_GENX(tu_CmdDrawMultiIndexedEXT);
5331 
5332 /* Various firmware bugs/inconsistencies mean that some indirect draw opcodes
5333  * do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if
5334  * pending for these opcodes. This may result in a few extra WAIT_FOR_ME's
5335  * with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's
5336  * before draw opcodes that don't need it.
5337  */
5338 static void
draw_wfm(struct tu_cmd_buffer * cmd)5339 draw_wfm(struct tu_cmd_buffer *cmd)
5340 {
5341    cmd->state.renderpass_cache.flush_bits |=
5342       cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME;
5343    cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME;
5344 }
5345 
5346 template <chip CHIP>
5347 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)5348 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
5349                    VkBuffer _buffer,
5350                    VkDeviceSize offset,
5351                    uint32_t drawCount,
5352                    uint32_t stride)
5353 {
5354    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5355    TU_FROM_HANDLE(tu_buffer, buf, _buffer);
5356    struct tu_cs *cs = &cmd->draw_cs;
5357 
5358    tu6_emit_empty_vs_params(cmd);
5359 
5360    if (cmd->device->physical_device->info->a6xx.indirect_draw_wfm_quirk)
5361       draw_wfm(cmd);
5362 
5363    tu6_draw_common<CHIP>(cmd, cs, false, 0);
5364 
5365    tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
5366    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5367    tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
5368                   A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
5369    tu_cs_emit(cs, drawCount);
5370    tu_cs_emit_qw(cs, buf->iova + offset);
5371    tu_cs_emit(cs, stride);
5372 }
5373 TU_GENX(tu_CmdDrawIndirect);
5374 
5375 template <chip CHIP>
5376 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)5377 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
5378                           VkBuffer _buffer,
5379                           VkDeviceSize offset,
5380                           uint32_t drawCount,
5381                           uint32_t stride)
5382 {
5383    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5384    TU_FROM_HANDLE(tu_buffer, buf, _buffer);
5385    struct tu_cs *cs = &cmd->draw_cs;
5386 
5387    tu6_emit_empty_vs_params(cmd);
5388 
5389    if (cmd->device->physical_device->info->a6xx.indirect_draw_wfm_quirk)
5390       draw_wfm(cmd);
5391 
5392    tu6_draw_common<CHIP>(cmd, cs, true, 0);
5393 
5394    tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
5395    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
5396    tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
5397                   A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
5398    tu_cs_emit(cs, drawCount);
5399    tu_cs_emit_qw(cs, cmd->state.index_va);
5400    tu_cs_emit(cs, cmd->state.max_index_count);
5401    tu_cs_emit_qw(cs, buf->iova + offset);
5402    tu_cs_emit(cs, stride);
5403 }
5404 TU_GENX(tu_CmdDrawIndexedIndirect);
5405 
5406 template <chip CHIP>
5407 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer countBuffer,VkDeviceSize countBufferOffset,uint32_t drawCount,uint32_t stride)5408 tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,
5409                         VkBuffer _buffer,
5410                         VkDeviceSize offset,
5411                         VkBuffer countBuffer,
5412                         VkDeviceSize countBufferOffset,
5413                         uint32_t drawCount,
5414                         uint32_t stride)
5415 {
5416    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5417    TU_FROM_HANDLE(tu_buffer, buf, _buffer);
5418    TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
5419    struct tu_cs *cs = &cmd->draw_cs;
5420 
5421    tu6_emit_empty_vs_params(cmd);
5422 
5423    /* It turns out that the firmware we have for a650 only partially fixed the
5424     * problem with CP_DRAW_INDIRECT_MULTI not waiting for WFI's to complete
5425     * before reading indirect parameters. It waits for WFI's before reading
5426     * the draw parameters, but after reading the indirect count :(.
5427     */
5428    draw_wfm(cmd);
5429 
5430    tu6_draw_common<CHIP>(cmd, cs, false, 0);
5431 
5432    tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 8);
5433    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5434    tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT) |
5435                   A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
5436    tu_cs_emit(cs, drawCount);
5437    tu_cs_emit_qw(cs, buf->iova + offset);
5438    tu_cs_emit_qw(cs, count_buf->iova + countBufferOffset);
5439    tu_cs_emit(cs, stride);
5440 }
5441 TU_GENX(tu_CmdDrawIndirectCount);
5442 
5443 template <chip CHIP>
5444 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer countBuffer,VkDeviceSize countBufferOffset,uint32_t drawCount,uint32_t stride)5445 tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,
5446                                VkBuffer _buffer,
5447                                VkDeviceSize offset,
5448                                VkBuffer countBuffer,
5449                                VkDeviceSize countBufferOffset,
5450                                uint32_t drawCount,
5451                                uint32_t stride)
5452 {
5453    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5454    TU_FROM_HANDLE(tu_buffer, buf, _buffer);
5455    TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
5456    struct tu_cs *cs = &cmd->draw_cs;
5457 
5458    tu6_emit_empty_vs_params(cmd);
5459 
5460    draw_wfm(cmd);
5461 
5462    tu6_draw_common<CHIP>(cmd, cs, true, 0);
5463 
5464    tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 11);
5465    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
5466    tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT_INDEXED) |
5467                   A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
5468    tu_cs_emit(cs, drawCount);
5469    tu_cs_emit_qw(cs, cmd->state.index_va);
5470    tu_cs_emit(cs, cmd->state.max_index_count);
5471    tu_cs_emit_qw(cs, buf->iova + offset);
5472    tu_cs_emit_qw(cs, count_buf->iova + countBufferOffset);
5473    tu_cs_emit(cs, stride);
5474 }
5475 TU_GENX(tu_CmdDrawIndexedIndirectCount);
5476 
5477 template <chip CHIP>
5478 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,uint32_t instanceCount,uint32_t firstInstance,VkBuffer _counterBuffer,VkDeviceSize counterBufferOffset,uint32_t counterOffset,uint32_t vertexStride)5479 tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
5480                                uint32_t instanceCount,
5481                                uint32_t firstInstance,
5482                                VkBuffer _counterBuffer,
5483                                VkDeviceSize counterBufferOffset,
5484                                uint32_t counterOffset,
5485                                uint32_t vertexStride)
5486 {
5487    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5488    TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
5489    struct tu_cs *cs = &cmd->draw_cs;
5490 
5491    /* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO.
5492     * Plus, for the common case where the counter buffer is written by
5493     * vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to
5494     * complete which means we need a WAIT_FOR_ME anyway.
5495     */
5496    draw_wfm(cmd);
5497 
5498    tu6_emit_vs_params(cmd, 0, 0, firstInstance);
5499 
5500    tu6_draw_common<CHIP>(cmd, cs, false, 0);
5501 
5502    tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
5503    if (CHIP == A6XX) {
5504       tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
5505    } else {
5506       tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5507       /* On a7xx the counter value and offset are shifted right by 2, so
5508        * the vertexStride should also be in units of dwords.
5509        */
5510       vertexStride = vertexStride >> 2;
5511    }
5512    tu_cs_emit(cs, instanceCount);
5513    tu_cs_emit_qw(cs, buf->iova + counterBufferOffset);
5514    tu_cs_emit(cs, counterOffset);
5515    tu_cs_emit(cs, vertexStride);
5516 }
5517 TU_GENX(tu_CmdDrawIndirectByteCountEXT);
5518 
5519 struct tu_dispatch_info
5520 {
5521    /**
5522     * Determine the layout of the grid (in block units) to be used.
5523     */
5524    uint32_t blocks[3];
5525 
5526    /**
5527     * A starting offset for the grid. If unaligned is set, the offset
5528     * must still be aligned.
5529     */
5530    uint32_t offsets[3];
5531    /**
5532     * Whether it's an unaligned compute dispatch.
5533     */
5534    bool unaligned;
5535 
5536    /**
5537     * Indirect compute parameters resource.
5538     */
5539    struct tu_buffer *indirect;
5540    uint64_t indirect_offset;
5541 };
5542 
5543 template <chip CHIP>
5544 static void
tu_emit_compute_driver_params(struct tu_cmd_buffer * cmd,struct tu_cs * cs,const struct tu_dispatch_info * info)5545 tu_emit_compute_driver_params(struct tu_cmd_buffer *cmd,
5546                               struct tu_cs *cs,
5547                               const struct tu_dispatch_info *info)
5548 {
5549    gl_shader_stage type = MESA_SHADER_COMPUTE;
5550    const struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE];
5551    const struct ir3_shader_variant *variant = shader->variant;
5552    const struct ir3_const_state *const_state = variant->const_state;
5553    unsigned subgroup_size = variant->info.subgroup_size;
5554    unsigned subgroup_shift = util_logbase2(subgroup_size);
5555 
5556    if (cmd->device->physical_device->info->a7xx.load_shader_consts_via_preamble) {
5557       uint32_t num_consts = const_state->driver_params_ubo.size;
5558       if (num_consts == 0)
5559          return;
5560 
5561       bool direct_indirect_load =
5562          !(info->indirect_offset & 0xf) &&
5563          !(info->indirect && num_consts > IR3_DP_BASE_GROUP_X);
5564 
5565       uint64_t iova = 0;
5566 
5567       if (!info->indirect) {
5568          uint32_t driver_params[12] = {
5569             [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
5570             [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
5571             [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
5572             [IR3_DP_WORK_DIM] = 0,
5573             [IR3_DP_BASE_GROUP_X] = info->offsets[0],
5574             [IR3_DP_BASE_GROUP_Y] = info->offsets[1],
5575             [IR3_DP_BASE_GROUP_Z] = info->offsets[2],
5576             [IR3_DP_CS_SUBGROUP_SIZE] = subgroup_size,
5577             [IR3_DP_LOCAL_GROUP_SIZE_X] = 0,
5578             [IR3_DP_LOCAL_GROUP_SIZE_Y] = 0,
5579             [IR3_DP_LOCAL_GROUP_SIZE_Z] = 0,
5580             [IR3_DP_SUBGROUP_ID_SHIFT] = subgroup_shift,
5581          };
5582 
5583          assert(num_consts <= ARRAY_SIZE(driver_params));
5584 
5585          struct tu_cs_memory consts;
5586          uint32_t consts_vec4 = DIV_ROUND_UP(num_consts, 4);
5587          VkResult result = tu_cs_alloc(&cmd->sub_cs, consts_vec4, 4, &consts);
5588          if (result != VK_SUCCESS) {
5589             vk_command_buffer_set_error(&cmd->vk, result);
5590             return;
5591          }
5592          memcpy(consts.map, driver_params, num_consts * sizeof(uint32_t));
5593          iova = consts.iova;
5594       } else if (direct_indirect_load) {
5595          iova = info->indirect->iova + info->indirect_offset;
5596       } else {
5597          /* Vulkan guarantees only 4 byte alignment for indirect_offset.
5598           * However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment.
5599           */
5600 
5601          uint64_t indirect_iova = info->indirect->iova + info->indirect_offset;
5602 
5603          for (uint32_t i = 0; i < 3; i++) {
5604             tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
5605             tu_cs_emit(cs, 0);
5606             tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i));
5607             tu_cs_emit_qw(cs, indirect_iova + i * sizeof(uint32_t));
5608          }
5609 
5610          /* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for
5611           * indirect dispatch.
5612           */
5613          if (info->indirect && num_consts > IR3_DP_BASE_GROUP_X) {
5614             uint32_t indirect_driver_params[8] = {
5615                0, 0, 0, subgroup_size,
5616                0, 0, 0, subgroup_shift,
5617             };
5618             bool emit_local = num_consts > IR3_DP_LOCAL_GROUP_SIZE_X;
5619             uint32_t emit_size = emit_local ? 8 : 4;
5620 
5621             tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + emit_size);
5622             tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, 0) + 4 * sizeof(uint32_t));
5623             for (uint32_t i = 0; i < emit_size; i++) {
5624                tu_cs_emit(cs, indirect_driver_params[i]);
5625             }
5626          }
5627 
5628          tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
5629          tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
5630 
5631          iova = global_iova(cmd, cs_indirect_xyz[0]);
5632       }
5633 
5634       tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5);
5635       tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(const_state->driver_params_ubo.idx) |
5636                CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) |
5637                CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
5638                CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
5639                CP_LOAD_STATE6_0_NUM_UNIT(1));
5640       tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
5641       tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
5642       int size_vec4s = DIV_ROUND_UP(num_consts, 4);
5643       tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32));
5644 
5645    } else {
5646       uint32_t offset = const_state->offsets.driver_param;
5647       if (variant->constlen <= offset)
5648          return;
5649 
5650       uint32_t num_consts = MIN2(const_state->num_driver_params,
5651                                  (variant->constlen - offset) * 4);
5652 
5653       if (!info->indirect) {
5654          uint32_t driver_params[12] = {
5655             [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
5656             [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
5657             [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
5658             [IR3_DP_WORK_DIM] = 0,
5659             [IR3_DP_BASE_GROUP_X] = info->offsets[0],
5660             [IR3_DP_BASE_GROUP_Y] = info->offsets[1],
5661             [IR3_DP_BASE_GROUP_Z] = info->offsets[2],
5662             [IR3_DP_CS_SUBGROUP_SIZE] = subgroup_size,
5663             [IR3_DP_LOCAL_GROUP_SIZE_X] = 0,
5664             [IR3_DP_LOCAL_GROUP_SIZE_Y] = 0,
5665             [IR3_DP_LOCAL_GROUP_SIZE_Z] = 0,
5666             [IR3_DP_SUBGROUP_ID_SHIFT] = subgroup_shift,
5667          };
5668 
5669          assert(num_consts <= ARRAY_SIZE(driver_params));
5670 
5671          /* push constants */
5672          tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
5673          tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
5674                   CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5675                   CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
5676                   CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
5677                   CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
5678          tu_cs_emit(cs, 0);
5679          tu_cs_emit(cs, 0);
5680          uint32_t i;
5681          for (i = 0; i < num_consts; i++)
5682             tu_cs_emit(cs, driver_params[i]);
5683       } else if (!(info->indirect_offset & 0xf)) {
5684          tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
5685          tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
5686                      CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5687                      CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
5688                      CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
5689                      CP_LOAD_STATE6_0_NUM_UNIT(1));
5690          tu_cs_emit_qw(cs, info->indirect->iova + info->indirect_offset);
5691       } else {
5692          /* Vulkan guarantees only 4 byte alignment for indirect_offset.
5693           * However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment.
5694           */
5695 
5696          uint64_t indirect_iova = info->indirect->iova + info->indirect_offset;
5697 
5698          for (uint32_t i = 0; i < 3; i++) {
5699             tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
5700             tu_cs_emit(cs, 0);
5701             tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i));
5702             tu_cs_emit_qw(cs, indirect_iova + i * 4);
5703          }
5704 
5705          tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
5706          tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
5707 
5708          tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
5709          tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
5710                      CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5711                      CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
5712                      CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
5713                      CP_LOAD_STATE6_0_NUM_UNIT(1));
5714          tu_cs_emit_qw(cs, global_iova(cmd, cs_indirect_xyz[0]));
5715       }
5716 
5717       /* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for
5718        * indirect dispatch.
5719        */
5720       if (info->indirect && num_consts > IR3_DP_BASE_GROUP_X) {
5721          bool emit_local = num_consts > IR3_DP_LOCAL_GROUP_SIZE_X;
5722          tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 7 + (emit_local ? 4 : 0));
5723          tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset + (IR3_DP_BASE_GROUP_X / 4)) |
5724                   CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5725                   CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
5726                   CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
5727                   CP_LOAD_STATE6_0_NUM_UNIT((num_consts - IR3_DP_BASE_GROUP_X) / 4));
5728          tu_cs_emit_qw(cs, 0);
5729          tu_cs_emit(cs, 0); /* BASE_GROUP_X */
5730          tu_cs_emit(cs, 0); /* BASE_GROUP_Y */
5731          tu_cs_emit(cs, 0); /* BASE_GROUP_Z */
5732          tu_cs_emit(cs, subgroup_size);
5733          if (emit_local) {
5734             assert(num_consts == align(IR3_DP_SUBGROUP_ID_SHIFT, 4));
5735             tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_X */
5736             tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Y */
5737             tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Z */
5738             tu_cs_emit(cs, subgroup_shift);
5739          }
5740       }
5741    }
5742 }
5743 
5744 template <chip CHIP>
5745 static void
tu_dispatch(struct tu_cmd_buffer * cmd,const struct tu_dispatch_info * info)5746 tu_dispatch(struct tu_cmd_buffer *cmd,
5747             const struct tu_dispatch_info *info)
5748 {
5749    if (!info->indirect &&
5750        (info->blocks[0] == 0 || info->blocks[1] == 0 || info->blocks[2] == 0))
5751       return;
5752 
5753    struct tu_cs *cs = &cmd->cs;
5754    struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE];
5755 
5756    bool emit_instrlen_workaround =
5757       shader->variant->instrlen >
5758       cmd->device->physical_device->info->a6xx.instr_cache_size;
5759 
5760    /* We don't use draw states for dispatches, so the bound pipeline
5761     * could be overwritten by reg stomping in a renderpass or blit.
5762     */
5763    if (cmd->device->dbg_renderpass_stomp_cs) {
5764       tu_cs_emit_state_ib(&cmd->cs, shader->state);
5765    }
5766 
5767    /* There appears to be a HW bug where in some rare circumstances it appears
5768     * to accidentally use the FS instrlen instead of the CS instrlen, which
5769     * affects all known gens. Based on various experiments it appears that the
5770     * issue is that when prefetching a branch destination and there is a cache
5771     * miss, when fetching from memory the HW bounds-checks the fetch against
5772     * SP_CS_INSTRLEN, except when one of the two register contexts is active
5773     * it accidentally fetches SP_FS_INSTRLEN from the other (inactive)
5774     * context. To workaround it we set the FS instrlen here and do a dummy
5775     * event to roll the context (because it fetches SP_FS_INSTRLEN from the
5776     * "wrong" context). Because the bug seems to involve cache misses, we
5777     * don't emit this if the entire CS program fits in cache, which will
5778     * hopefully be the majority of cases.
5779     *
5780     * See https://gitlab.freedesktop.org/mesa/mesa/-/issues/5892
5781     */
5782    if (emit_instrlen_workaround) {
5783       tu_cs_emit_regs(cs, A6XX_SP_FS_INSTRLEN(shader->variant->instrlen));
5784       tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL);
5785    }
5786 
5787    /* TODO: We could probably flush less if we add a compute_flush_bits
5788     * bitfield.
5789     */
5790    tu_emit_cache_flush<CHIP>(cmd);
5791 
5792    /* note: no reason to have this in a separate IB */
5793    tu_cs_emit_state_ib(cs, tu_emit_consts(cmd, true));
5794 
5795    tu_emit_compute_driver_params<CHIP>(cmd, cs, info);
5796 
5797    if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS) {
5798       tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_COMPUTE);
5799       tu_cs_emit_state_ib(cs, cmd->state.compute_load_state);
5800    }
5801 
5802    cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS;
5803 
5804    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
5805    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
5806 
5807    const uint16_t *local_size = shader->variant->local_size;
5808    const uint32_t *num_groups = info->blocks;
5809    tu_cs_emit_regs(cs,
5810                    HLSQ_CS_NDRANGE_0(CHIP, .kerneldim = 3,
5811                                            .localsizex = local_size[0] - 1,
5812                                            .localsizey = local_size[1] - 1,
5813                                            .localsizez = local_size[2] - 1),
5814                    HLSQ_CS_NDRANGE_1(CHIP, .globalsize_x = local_size[0] * num_groups[0]),
5815                    HLSQ_CS_NDRANGE_2(CHIP, .globaloff_x = 0),
5816                    HLSQ_CS_NDRANGE_3(CHIP, .globalsize_y = local_size[1] * num_groups[1]),
5817                    HLSQ_CS_NDRANGE_4(CHIP, .globaloff_y = 0),
5818                    HLSQ_CS_NDRANGE_5(CHIP, .globalsize_z = local_size[2] * num_groups[2]),
5819                    HLSQ_CS_NDRANGE_6(CHIP, .globaloff_z = 0));
5820 
5821    tu_cs_emit_regs(cs,
5822                    HLSQ_CS_KERNEL_GROUP_X(CHIP, 1),
5823                    HLSQ_CS_KERNEL_GROUP_Y(CHIP, 1),
5824                    HLSQ_CS_KERNEL_GROUP_Z(CHIP, 1));
5825 
5826    trace_start_compute(&cmd->trace, cs, info->indirect != NULL, local_size[0],
5827                        local_size[1], local_size[2], info->blocks[0],
5828                        info->blocks[1], info->blocks[2]);
5829 
5830    if (info->indirect) {
5831       uint64_t iova = info->indirect->iova + info->indirect_offset;
5832 
5833       tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
5834       tu_cs_emit(cs, 0x00000000);
5835       tu_cs_emit_qw(cs, iova);
5836       tu_cs_emit(cs,
5837                  A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
5838                  A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
5839                  A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
5840    } else {
5841       tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
5842       tu_cs_emit(cs, 0x00000000);
5843       tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
5844       tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
5845       tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
5846    }
5847 
5848    trace_end_compute(&cmd->trace, cs);
5849 
5850    /* For the workaround above, because it's using the "wrong" context for
5851     * SP_FS_INSTRLEN we should emit another dummy event write to avoid a
5852     * potential race between writing the register and the CP_EXEC_CS we just
5853     * did. We don't need to reset the register because it will be re-emitted
5854     * anyway when the next renderpass starts.
5855     */
5856    if (emit_instrlen_workaround) {
5857       tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL);
5858    }
5859 
5860    tu_cs_emit_wfi(cs);
5861 }
5862 
5863 template <chip CHIP>
5864 VKAPI_ATTR void VKAPI_CALL
tu_CmdDispatchBase(VkCommandBuffer commandBuffer,uint32_t base_x,uint32_t base_y,uint32_t base_z,uint32_t x,uint32_t y,uint32_t z)5865 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
5866                    uint32_t base_x,
5867                    uint32_t base_y,
5868                    uint32_t base_z,
5869                    uint32_t x,
5870                    uint32_t y,
5871                    uint32_t z)
5872 {
5873    TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
5874    struct tu_dispatch_info info = {};
5875 
5876    info.blocks[0] = x;
5877    info.blocks[1] = y;
5878    info.blocks[2] = z;
5879 
5880    info.offsets[0] = base_x;
5881    info.offsets[1] = base_y;
5882    info.offsets[2] = base_z;
5883    tu_dispatch<CHIP>(cmd_buffer, &info);
5884 }
5885 TU_GENX(tu_CmdDispatchBase);
5886 
5887 template <chip CHIP>
5888 VKAPI_ATTR void VKAPI_CALL
tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset)5889 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
5890                        VkBuffer _buffer,
5891                        VkDeviceSize offset)
5892 {
5893    TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
5894    TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
5895    struct tu_dispatch_info info = {};
5896 
5897    info.indirect = buffer;
5898    info.indirect_offset = offset;
5899 
5900    tu_dispatch<CHIP>(cmd_buffer, &info);
5901 }
5902 TU_GENX(tu_CmdDispatchIndirect);
5903 
5904 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,const VkSubpassEndInfo * pSubpassEndInfo)5905 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
5906                      const VkSubpassEndInfo *pSubpassEndInfo)
5907 {
5908    TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
5909 
5910    if (TU_DEBUG(DYNAMIC)) {
5911       vk_common_CmdEndRenderPass2(commandBuffer, pSubpassEndInfo);
5912       return;
5913    }
5914 
5915    tu_cs_end(&cmd_buffer->draw_cs);
5916    tu_cs_end(&cmd_buffer->draw_epilogue_cs);
5917    TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer);
5918 
5919    cmd_buffer->state.cache.pending_flush_bits |=
5920       cmd_buffer->state.renderpass_cache.pending_flush_bits;
5921    tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
5922 
5923    vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer->state.attachments);
5924 
5925    tu_reset_render_pass(cmd_buffer);
5926 }
5927 
5928 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndRendering(VkCommandBuffer commandBuffer)5929 tu_CmdEndRendering(VkCommandBuffer commandBuffer)
5930 {
5931    TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
5932 
5933    if (cmd_buffer->state.suspending)
5934       cmd_buffer->state.suspended_pass.lrz = cmd_buffer->state.lrz;
5935 
5936    if (!cmd_buffer->state.suspending) {
5937       tu_cs_end(&cmd_buffer->draw_cs);
5938       tu_cs_end(&cmd_buffer->draw_epilogue_cs);
5939 
5940       if (cmd_buffer->state.suspend_resume == SR_IN_PRE_CHAIN) {
5941          cmd_buffer->trace_renderpass_end = u_trace_end_iterator(&cmd_buffer->trace);
5942          tu_save_pre_chain(cmd_buffer);
5943 
5944          /* Even we don't call tu_cmd_render here, renderpass is finished
5945           * and draw states should be disabled.
5946           */
5947          tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs);
5948       } else {
5949          TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer);
5950       }
5951 
5952       tu_reset_render_pass(cmd_buffer);
5953    }
5954 
5955    if (cmd_buffer->state.resuming && !cmd_buffer->state.suspending) {
5956       /* exiting suspend/resume chain */
5957       switch (cmd_buffer->state.suspend_resume) {
5958       case SR_IN_CHAIN:
5959          cmd_buffer->state.suspend_resume = SR_NONE;
5960          break;
5961       case SR_IN_PRE_CHAIN:
5962       case SR_IN_CHAIN_AFTER_PRE_CHAIN:
5963          cmd_buffer->state.suspend_resume = SR_AFTER_PRE_CHAIN;
5964          break;
5965       default:
5966          unreachable("suspending render pass not followed by resuming pass");
5967       }
5968    }
5969 }
5970 
5971 static void
tu_barrier(struct tu_cmd_buffer * cmd,const VkDependencyInfo * dep_info)5972 tu_barrier(struct tu_cmd_buffer *cmd,
5973            const VkDependencyInfo *dep_info)
5974 {
5975    VkPipelineStageFlags2 srcStage = 0;
5976    VkPipelineStageFlags2 dstStage = 0;
5977    BITMASK_ENUM(tu_cmd_access_mask) src_flags = 0;
5978    BITMASK_ENUM(tu_cmd_access_mask) dst_flags = 0;
5979 
5980    /* Inside a renderpass, we don't know yet whether we'll be using sysmem
5981     * so we have to use the sysmem flushes.
5982     */
5983    bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
5984       !cmd->state.pass;
5985 
5986 
5987    for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
5988       VkPipelineStageFlags2 sanitized_src_stage =
5989          sanitize_src_stage(dep_info->pMemoryBarriers[i].srcStageMask);
5990       VkPipelineStageFlags2 sanitized_dst_stage =
5991          sanitize_dst_stage(dep_info->pMemoryBarriers[i].dstStageMask);
5992       src_flags |= vk2tu_access(dep_info->pMemoryBarriers[i].srcAccessMask,
5993                                 sanitized_src_stage, false, gmem);
5994       dst_flags |= vk2tu_access(dep_info->pMemoryBarriers[i].dstAccessMask,
5995                                 sanitized_dst_stage, false, gmem);
5996       srcStage |= sanitized_src_stage;
5997       dstStage |= sanitized_dst_stage;
5998    }
5999 
6000    for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
6001       VkPipelineStageFlags2 sanitized_src_stage =
6002          sanitize_src_stage(dep_info->pBufferMemoryBarriers[i].srcStageMask);
6003       VkPipelineStageFlags2 sanitized_dst_stage =
6004          sanitize_dst_stage(dep_info->pBufferMemoryBarriers[i].dstStageMask);
6005       src_flags |= vk2tu_access(dep_info->pBufferMemoryBarriers[i].srcAccessMask,
6006                                 sanitized_src_stage, false, gmem);
6007       dst_flags |= vk2tu_access(dep_info->pBufferMemoryBarriers[i].dstAccessMask,
6008                                 sanitized_dst_stage, false, gmem);
6009       srcStage |= sanitized_src_stage;
6010       dstStage |= sanitized_dst_stage;
6011    }
6012 
6013    for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
6014       VkImageLayout old_layout = dep_info->pImageMemoryBarriers[i].oldLayout;
6015       if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
6016          /* The underlying memory for this image may have been used earlier
6017           * within the same queue submission for a different image, which
6018           * means that there may be old, stale cache entries which are in the
6019           * "wrong" location, which could cause problems later after writing
6020           * to the image. We don't want these entries being flushed later and
6021           * overwriting the actual image, so we need to flush the CCU.
6022           */
6023          TU_FROM_HANDLE(tu_image, image, dep_info->pImageMemoryBarriers[i].image);
6024 
6025          if (vk_format_is_depth_or_stencil(image->vk.format)) {
6026             src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
6027          } else {
6028             src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
6029          }
6030       }
6031       VkPipelineStageFlags2 sanitized_src_stage =
6032          sanitize_src_stage(dep_info->pImageMemoryBarriers[i].srcStageMask);
6033       VkPipelineStageFlags2 sanitized_dst_stage =
6034          sanitize_dst_stage(dep_info->pImageMemoryBarriers[i].dstStageMask);
6035       src_flags |= vk2tu_access(dep_info->pImageMemoryBarriers[i].srcAccessMask,
6036                                 sanitized_src_stage, true, gmem);
6037       dst_flags |= vk2tu_access(dep_info->pImageMemoryBarriers[i].dstAccessMask,
6038                                 sanitized_dst_stage, true, gmem);
6039       srcStage |= sanitized_src_stage;
6040       dstStage |= sanitized_dst_stage;
6041    }
6042 
6043    if (cmd->state.pass) {
6044       const VkPipelineStageFlags framebuffer_space_stages =
6045          VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
6046          VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
6047          VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT |
6048          VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
6049 
6050       /* We cannot have non-by-region "fb-space to fb-space" barriers.
6051        *
6052        * From the Vulkan 1.2.185 spec, section 7.6.1 "Subpass Self-dependency":
6053        *
6054        *    If the source and destination stage masks both include
6055        *    framebuffer-space stages, then dependencyFlags must include
6056        *    VK_DEPENDENCY_BY_REGION_BIT.
6057        *    [...]
6058        *    Each of the synchronization scopes and access scopes of a
6059        *    vkCmdPipelineBarrier2 or vkCmdPipelineBarrier command inside
6060        *    a render pass instance must be a subset of the scopes of one of
6061        *    the self-dependencies for the current subpass.
6062        *
6063        *    If the self-dependency has VK_DEPENDENCY_BY_REGION_BIT or
6064        *    VK_DEPENDENCY_VIEW_LOCAL_BIT set, then so must the pipeline barrier.
6065        *
6066        * By-region barriers are ok for gmem. All other barriers would involve
6067        * vtx stages which are NOT ok for gmem rendering.
6068        * See dep_invalid_for_gmem().
6069        */
6070       if ((srcStage & ~framebuffer_space_stages) ||
6071           (dstStage & ~framebuffer_space_stages)) {
6072          cmd->state.rp.disable_gmem = true;
6073       }
6074    }
6075 
6076    struct tu_cache_state *cache =
6077       cmd->state.pass  ? &cmd->state.renderpass_cache : &cmd->state.cache;
6078    tu_flush_for_access(cache, src_flags, dst_flags);
6079 
6080    enum tu_stage src_stage = vk2tu_src_stage(srcStage);
6081    enum tu_stage dst_stage = vk2tu_dst_stage(dstStage);
6082    tu_flush_for_stage(cache, src_stage, dst_stage);
6083 }
6084 
6085 VKAPI_ATTR void VKAPI_CALL
tu_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,const VkDependencyInfo * pDependencyInfo)6086 tu_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,
6087                        const VkDependencyInfo *pDependencyInfo)
6088 {
6089    TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
6090 
6091    tu_barrier(cmd_buffer, pDependencyInfo);
6092 }
6093 
6094 template <chip CHIP>
6095 static void
write_event(struct tu_cmd_buffer * cmd,struct tu_event * event,VkPipelineStageFlags2 stageMask,unsigned value)6096 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
6097             VkPipelineStageFlags2 stageMask, unsigned value)
6098 {
6099    struct tu_cs *cs = &cmd->cs;
6100 
6101    /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
6102    assert(!cmd->state.pass);
6103 
6104    tu_emit_cache_flush<CHIP>(cmd);
6105 
6106    /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
6107     * read by the CP, so the draw indirect stage counts as top-of-pipe too.
6108     */
6109    VkPipelineStageFlags2 top_of_pipe_flags =
6110       VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
6111       VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
6112 
6113    if (!(stageMask & ~top_of_pipe_flags)) {
6114       tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
6115       tu_cs_emit_qw(cs, event->bo->iova); /* ADDR_LO/HI */
6116       tu_cs_emit(cs, value);
6117    } else {
6118       /* Use a RB_DONE_TS event to wait for everything to complete. */
6119       if (CHIP == A6XX) {
6120          tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
6121          tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
6122       } else {
6123          tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
6124          tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS,
6125                                           .write_src = EV_WRITE_USER_32B,
6126                                           .write_dst = EV_DST_RAM,
6127                                           .write_enabled = true).value);
6128       }
6129 
6130       tu_cs_emit_qw(cs, event->bo->iova);
6131       tu_cs_emit(cs, value);
6132    }
6133 }
6134 
6135 template <chip CHIP>
6136 VKAPI_ATTR void VKAPI_CALL
tu_CmdSetEvent2(VkCommandBuffer commandBuffer,VkEvent _event,const VkDependencyInfo * pDependencyInfo)6137 tu_CmdSetEvent2(VkCommandBuffer commandBuffer,
6138                 VkEvent _event,
6139                 const VkDependencyInfo *pDependencyInfo)
6140 {
6141    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6142    TU_FROM_HANDLE(tu_event, event, _event);
6143    VkPipelineStageFlags2 src_stage_mask = 0;
6144 
6145    for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++)
6146       src_stage_mask |= pDependencyInfo->pMemoryBarriers[i].srcStageMask;
6147    for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++)
6148       src_stage_mask |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask;
6149    for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++)
6150       src_stage_mask |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask;
6151 
6152    write_event<CHIP>(cmd, event, src_stage_mask, 1);
6153 }
6154 TU_GENX(tu_CmdSetEvent2);
6155 
6156 template <chip CHIP>
6157 VKAPI_ATTR void VKAPI_CALL
tu_CmdResetEvent2(VkCommandBuffer commandBuffer,VkEvent _event,VkPipelineStageFlags2 stageMask)6158 tu_CmdResetEvent2(VkCommandBuffer commandBuffer,
6159                   VkEvent _event,
6160                   VkPipelineStageFlags2 stageMask)
6161 {
6162    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6163    TU_FROM_HANDLE(tu_event, event, _event);
6164 
6165    write_event<CHIP>(cmd, event, stageMask, 0);
6166 }
6167 TU_GENX(tu_CmdResetEvent2);
6168 
6169 VKAPI_ATTR void VKAPI_CALL
tu_CmdWaitEvents2(VkCommandBuffer commandBuffer,uint32_t eventCount,const VkEvent * pEvents,const VkDependencyInfo * pDependencyInfos)6170 tu_CmdWaitEvents2(VkCommandBuffer commandBuffer,
6171                   uint32_t eventCount,
6172                   const VkEvent *pEvents,
6173                   const VkDependencyInfo* pDependencyInfos)
6174 {
6175    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6176    struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
6177 
6178    for (uint32_t i = 0; i < eventCount; i++) {
6179       TU_FROM_HANDLE(tu_event, event, pEvents[i]);
6180 
6181       tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
6182       tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
6183                      CP_WAIT_REG_MEM_0_POLL(POLL_MEMORY));
6184       tu_cs_emit_qw(cs, event->bo->iova); /* POLL_ADDR_LO/HI */
6185       tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
6186       tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
6187       tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
6188    }
6189 
6190    tu_barrier(cmd, pDependencyInfos);
6191 }
6192 
6193 template <chip CHIP>
6194 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,const VkConditionalRenderingBeginInfoEXT * pConditionalRenderingBegin)6195 tu_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,
6196                                    const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin)
6197 {
6198    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6199 
6200    cmd->state.predication_active = true;
6201 
6202    struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
6203 
6204    tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
6205    tu_cs_emit(cs, 1);
6206 
6207    /* Wait for any writes to the predicate to land */
6208    if (cmd->state.pass)
6209       tu_emit_cache_flush_renderpass<CHIP>(cmd);
6210    else
6211       tu_emit_cache_flush<CHIP>(cmd);
6212 
6213    TU_FROM_HANDLE(tu_buffer, buf, pConditionalRenderingBegin->buffer);
6214    uint64_t iova = buf->iova + pConditionalRenderingBegin->offset;
6215 
6216    /* qcom doesn't support 32-bit reference values, only 64-bit, but Vulkan
6217     * mandates 32-bit comparisons. Our workaround is to copy the the reference
6218     * value to the low 32-bits of a location where the high 32 bits are known
6219     * to be 0 and then compare that.
6220     */
6221    tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
6222    tu_cs_emit(cs, 0);
6223    tu_cs_emit_qw(cs, global_iova(cmd, predicate));
6224    tu_cs_emit_qw(cs, iova);
6225 
6226    tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
6227    tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
6228 
6229    bool inv = pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
6230    tu_cs_emit_pkt7(cs, CP_DRAW_PRED_SET, 3);
6231    tu_cs_emit(cs, CP_DRAW_PRED_SET_0_SRC(PRED_SRC_MEM) |
6232                   CP_DRAW_PRED_SET_0_TEST(inv ? EQ_0_PASS : NE_0_PASS));
6233    tu_cs_emit_qw(cs, global_iova(cmd, predicate));
6234 }
6235 TU_GENX(tu_CmdBeginConditionalRenderingEXT);
6236 
6237 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)6238 tu_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)
6239 {
6240    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6241 
6242    cmd->state.predication_active = false;
6243 
6244    struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
6245 
6246    tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
6247    tu_cs_emit(cs, 0);
6248 }
6249 
6250 template <chip CHIP>
6251 void
tu_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,VkPipelineStageFlagBits2 pipelineStage,VkBuffer dstBuffer,VkDeviceSize dstOffset,uint32_t marker)6252 tu_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,
6253                             VkPipelineStageFlagBits2 pipelineStage,
6254                             VkBuffer dstBuffer,
6255                             VkDeviceSize dstOffset,
6256                             uint32_t marker)
6257 {
6258    /* Almost the same as write_event, but also allowed in renderpass */
6259    TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6260    TU_FROM_HANDLE(tu_buffer, buffer, dstBuffer);
6261 
6262    uint64_t va = buffer->iova + dstOffset;
6263 
6264    struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
6265    struct tu_cache_state *cache =
6266       cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
6267 
6268    /* From the Vulkan 1.2.203 spec:
6269     *
6270     *    The access scope for buffer marker writes falls under
6271     *    the VK_ACCESS_TRANSFER_WRITE_BIT, and the pipeline stages for
6272     *    identifying the synchronization scope must include both pipelineStage
6273     *    and VK_PIPELINE_STAGE_TRANSFER_BIT.
6274     *
6275     * Transfer operations use CCU however here we write via CP.
6276     * Flush CCU in order to make the results of previous transfer
6277     * operation visible to CP.
6278     */
6279    tu_flush_for_access(cache, TU_ACCESS_NONE, TU_ACCESS_SYSMEM_WRITE);
6280 
6281    /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
6282     * read by the CP, so the draw indirect stage counts as top-of-pipe too.
6283     */
6284    VkPipelineStageFlags2 top_of_pipe_flags =
6285       VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
6286       VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
6287 
6288    bool is_top_of_pipe = !(pipelineStage & ~top_of_pipe_flags);
6289 
6290    /* We have to WFI only if we flushed CCU here and are using CP_MEM_WRITE.
6291     * Otherwise:
6292     * - We do CP_EVENT_WRITE(RB_DONE_TS) which should wait for flushes;
6293     * - There was a barrier to synchronize other writes with WriteBufferMarkerAMD
6294     *   and they had to include our pipelineStage which forces the WFI.
6295     */
6296    if (cache->flush_bits && is_top_of_pipe) {
6297       cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
6298    }
6299 
6300    if (cmd->state.pass) {
6301       tu_emit_cache_flush_renderpass<CHIP>(cmd);
6302    } else {
6303       tu_emit_cache_flush<CHIP>(cmd);
6304    }
6305 
6306    if (is_top_of_pipe) {
6307       tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
6308       tu_cs_emit_qw(cs, va); /* ADDR_LO/HI */
6309       tu_cs_emit(cs, marker);
6310    } else {
6311       /* Use a RB_DONE_TS event to wait for everything to complete. */
6312       if (CHIP == A6XX) {
6313          tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
6314          tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
6315       } else {
6316          tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
6317          tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS,
6318                                           .write_src = EV_WRITE_USER_32B,
6319                                           .write_dst = EV_DST_RAM,
6320                                           .write_enabled = true).value);
6321       }
6322       tu_cs_emit_qw(cs, va);
6323       tu_cs_emit(cs, marker);
6324    }
6325 
6326    /* Make sure the result of this write is visible to others. */
6327    tu_flush_for_access(cache, TU_ACCESS_CP_WRITE, TU_ACCESS_NONE);
6328 }
6329 TU_GENX(tu_CmdWriteBufferMarker2AMD);
6330