1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 * SPDX-License-Identifier: MIT
5 *
6 * based in part on anv driver which is:
7 * Copyright © 2015 Intel Corporation
8 */
9
10 #include "tu_cmd_buffer.h"
11
12 #include "vk_render_pass.h"
13 #include "vk_util.h"
14 #include "vk_common_entrypoints.h"
15
16 #include "tu_clear_blit.h"
17 #include "tu_cs.h"
18 #include "tu_image.h"
19 #include "tu_tracepoints.h"
20
21 #include "common/freedreno_gpu_event.h"
22
23 static void
tu_clone_trace_range(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct u_trace_iterator begin,struct u_trace_iterator end)24 tu_clone_trace_range(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
25 struct u_trace_iterator begin, struct u_trace_iterator end)
26 {
27 if (u_trace_iterator_equal(begin, end))
28 return;
29
30 tu_cs_emit_wfi(cs);
31 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
32 u_trace_clone_append(begin, end, &cmd->trace, cs,
33 tu_copy_timestamp_buffer);
34 }
35
36 static void
tu_clone_trace(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct u_trace * trace)37 tu_clone_trace(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
38 struct u_trace *trace)
39 {
40 tu_clone_trace_range(cmd, cs, u_trace_begin_iterator(trace),
41 u_trace_end_iterator(trace));
42 }
43
44 template <chip CHIP>
45 static void
tu_emit_raw_event_write(struct tu_cmd_buffer * cmd,struct tu_cs * cs,enum vgt_event_type event,bool needs_seqno)46 tu_emit_raw_event_write(struct tu_cmd_buffer *cmd,
47 struct tu_cs *cs,
48 enum vgt_event_type event,
49 bool needs_seqno)
50 {
51 if (CHIP == A6XX) {
52 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, needs_seqno ? 4 : 1);
53 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
54 } else {
55 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, needs_seqno ? 4 : 1);
56 tu_cs_emit(cs,
57 CP_EVENT_WRITE7_0(.event = event,
58 .write_src = EV_WRITE_USER_32B,
59 .write_dst = EV_DST_RAM,
60 .write_enabled = needs_seqno).value);
61 }
62
63 if (needs_seqno) {
64 tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
65 tu_cs_emit(cs, 0);
66 }
67 }
68
69 template <chip CHIP>
70 void
tu_emit_event_write(struct tu_cmd_buffer * cmd,struct tu_cs * cs,enum fd_gpu_event event)71 tu_emit_event_write(struct tu_cmd_buffer *cmd,
72 struct tu_cs *cs,
73 enum fd_gpu_event event)
74 {
75 struct fd_gpu_event_info event_info = fd_gpu_events<CHIP>[event];
76 tu_emit_raw_event_write<CHIP>(cmd, cs, event_info.raw_event,
77 event_info.needs_seqno);
78 }
79 TU_GENX(tu_emit_event_write);
80
81 /* Emits the tessfactor address to the top-level CS if it hasn't been already.
82 * Updating this register requires a WFI if outstanding drawing is using it, but
83 * tu6_init_hardware() will have WFIed before we started and no other draws
84 * could be using the tessfactor address yet since we only emit one per cmdbuf.
85 */
86 template <chip CHIP>
87 static void
tu6_lazy_emit_tessfactor_addr(struct tu_cmd_buffer * cmd)88 tu6_lazy_emit_tessfactor_addr(struct tu_cmd_buffer *cmd)
89 {
90 if (cmd->state.tessfactor_addr_set)
91 return;
92
93 tu_cs_emit_regs(&cmd->cs, PC_TESSFACTOR_ADDR(CHIP, .qword = cmd->device->tess_bo->iova));
94 /* Updating PC_TESSFACTOR_ADDR could race with the next draw which uses it. */
95 cmd->state.cache.flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
96 cmd->state.tessfactor_addr_set = true;
97 }
98
99 static void
tu6_lazy_emit_vsc(struct tu_cmd_buffer * cmd,struct tu_cs * cs)100 tu6_lazy_emit_vsc(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
101 {
102 struct tu_device *dev = cmd->device;
103 uint32_t num_vsc_pipes = dev->physical_device->info->num_vsc_pipes;
104
105 /* VSC buffers:
106 * use vsc pitches from the largest values used so far with this device
107 * if there hasn't been overflow, there will already be a scratch bo
108 * allocated for these sizes
109 *
110 * if overflow is detected, the stream size is increased by 2x
111 */
112 mtx_lock(&dev->mutex);
113
114 struct tu6_global *global = dev->global_bo_map;
115
116 uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
117 uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
118
119 if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
120 dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
121
122 if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
123 dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
124
125 cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
126 cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
127
128 mtx_unlock(&dev->mutex);
129
130 struct tu_bo *vsc_bo;
131 uint32_t size0 = cmd->vsc_prim_strm_pitch * num_vsc_pipes +
132 cmd->vsc_draw_strm_pitch * num_vsc_pipes;
133
134 tu_get_scratch_bo(dev, size0 + num_vsc_pipes * 4, &vsc_bo);
135
136 tu_cs_emit_regs(cs,
137 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
138 tu_cs_emit_regs(cs,
139 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
140 tu_cs_emit_regs(
141 cs, A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
142 .bo_offset = cmd->vsc_prim_strm_pitch *
143 num_vsc_pipes));
144
145 cmd->vsc_initialized = true;
146 }
147
148 template <chip CHIP>
149 static void
tu6_emit_flushes(struct tu_cmd_buffer * cmd_buffer,struct tu_cs * cs,struct tu_cache_state * cache)150 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
151 struct tu_cs *cs,
152 struct tu_cache_state *cache)
153 {
154 BITMASK_ENUM(tu_cmd_flush_bits) flushes = cache->flush_bits;
155 cache->flush_bits = 0;
156
157 if (TU_DEBUG(FLUSHALL))
158 flushes |= TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_ALL_INVALIDATE;
159
160 if (TU_DEBUG(SYNCDRAW))
161 flushes |= TU_CMD_FLAG_WAIT_MEM_WRITES |
162 TU_CMD_FLAG_WAIT_FOR_IDLE |
163 TU_CMD_FLAG_WAIT_FOR_ME;
164
165 /* Experiments show that invalidating CCU while it still has data in it
166 * doesn't work, so make sure to always flush before invalidating in case
167 * any data remains that hasn't yet been made available through a barrier.
168 * However it does seem to work for UCHE.
169 */
170 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
171 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
172 tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_FLUSH_COLOR);
173 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
174 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
175 tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_FLUSH_DEPTH);
176 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
177 tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_COLOR);
178 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
179 tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_DEPTH);
180 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
181 tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_FLUSH);
182 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
183 tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_INVALIDATE);
184 if (flushes & TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE) {
185 tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP,
186 .cs_bindless = CHIP == A6XX ? 0x1f : 0xff,
187 .gfx_bindless = CHIP == A6XX ? 0x1f : 0xff,
188 ));
189 }
190 if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES)
191 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
192 if (flushes & TU_CMD_FLAG_WAIT_FOR_IDLE)
193 tu_cs_emit_wfi(cs);
194 if (flushes & TU_CMD_FLAG_WAIT_FOR_ME)
195 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
196 }
197
198 /* "Normal" cache flushes outside the renderpass, that don't require any special handling */
199 template <chip CHIP>
200 void
tu_emit_cache_flush(struct tu_cmd_buffer * cmd_buffer)201 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer)
202 {
203 tu6_emit_flushes<CHIP>(cmd_buffer, &cmd_buffer->cs, &cmd_buffer->state.cache);
204 }
205 TU_GENX(tu_emit_cache_flush);
206
207 /* Renderpass cache flushes inside the draw_cs */
208 template <chip CHIP>
209 void
tu_emit_cache_flush_renderpass(struct tu_cmd_buffer * cmd_buffer)210 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer)
211 {
212 if (!cmd_buffer->state.renderpass_cache.flush_bits &&
213 likely(!tu_env.debug))
214 return;
215 tu6_emit_flushes<CHIP>(cmd_buffer, &cmd_buffer->draw_cs,
216 &cmd_buffer->state.renderpass_cache);
217 }
218 TU_GENX(tu_emit_cache_flush_renderpass);
219
220 template <chip CHIP>
221 static void
emit_rb_ccu_cntl(struct tu_cs * cs,struct tu_device * dev,bool gmem)222 emit_rb_ccu_cntl(struct tu_cs *cs, struct tu_device *dev, bool gmem)
223 {
224 /* The CCUs are a cache that allocates memory from GMEM while facilitating
225 * framebuffer caching for sysmem rendering. The CCU is split into two parts,
226 * one for color and one for depth. The size and offset of these in GMEM can
227 * be configured separately.
228 *
229 * The most common configuration for the CCU is to occupy as much as possible
230 * of GMEM (CACHE_SIZE_FULL) during sysmem rendering as GMEM is unused. On
231 * the other hand, when rendering to GMEM, the CCUs can be left enabled at
232 * any configuration as they don't interfere with GMEM rendering and only
233 * overwrite GMEM when sysmem operations are performed.
234 *
235 * The vast majority of GMEM rendering doesn't need any sysmem operations
236 * but there are some cases where it is required. For example, when the
237 * framebuffer isn't aligned to the tile size or with certain MSAA resolves.
238 *
239 * To correctly handle these cases, we need to be able to switch between
240 * sysmem and GMEM rendering. We do this by allocating a carveout at the
241 * end of GMEM for the color CCU (as none of these operations are depth)
242 * which the color CCU offset is set to and the GMEM size available to the
243 * GMEM layout calculations is adjusted accordingly.
244 */
245 uint32_t color_offset = gmem ? dev->physical_device->ccu_offset_gmem
246 : dev->physical_device->ccu_offset_bypass;
247
248 uint32_t color_offset_hi = color_offset >> 21;
249 color_offset &= 0x1fffff;
250
251 uint32_t depth_offset = gmem ? 0
252 : dev->physical_device->ccu_depth_offset_bypass;
253
254 uint32_t depth_offset_hi = depth_offset >> 21;
255 depth_offset &= 0x1fffff;
256
257 enum a6xx_ccu_cache_size cache_size = !gmem ? CCU_CACHE_SIZE_FULL :
258 (a6xx_ccu_cache_size)(dev->physical_device->info->a6xx.gmem_ccu_color_cache_fraction);
259 bool concurrent_resolve = dev->physical_device->info->a6xx.concurrent_resolve;
260
261 if (CHIP == A7XX) {
262 tu_cs_emit_regs(cs, A7XX_RB_CCU_CNTL(
263 .gmem_fast_clear_disable =
264 !dev->physical_device->info->a6xx.has_gmem_fast_clear,
265 .concurrent_resolve = concurrent_resolve,
266 ));
267 tu_cs_emit_regs(cs, A7XX_RB_CCU_CNTL2(
268 .depth_offset_hi = depth_offset_hi,
269 .color_offset_hi = color_offset_hi,
270 .depth_cache_size = CCU_CACHE_SIZE_FULL,
271 .depth_offset = depth_offset,
272 .color_cache_size = cache_size,
273 .color_offset = color_offset
274 ));
275
276 if (dev->physical_device->info->a7xx.has_gmem_vpc_attr_buf) {
277 tu_cs_emit_regs(cs,
278 A7XX_VPC_ATTR_BUF_SIZE_GMEM(
279 .size_gmem =
280 gmem ? dev->physical_device->vpc_attr_buf_size_gmem
281 : dev->physical_device->vpc_attr_buf_size_bypass),
282 A7XX_VPC_ATTR_BUF_BASE_GMEM(
283 .base_gmem =
284 gmem ? dev->physical_device->vpc_attr_buf_offset_gmem
285 : dev->physical_device->vpc_attr_buf_offset_bypass), );
286 tu_cs_emit_regs(cs,
287 A7XX_PC_ATTR_BUF_SIZE_GMEM(
288 .size_gmem =
289 gmem ? dev->physical_device->vpc_attr_buf_size_gmem
290 : dev->physical_device->vpc_attr_buf_size_bypass), );
291 }
292 } else {
293 tu_cs_emit_regs(cs, A6XX_RB_CCU_CNTL(
294 .gmem_fast_clear_disable =
295 !dev->physical_device->info->a6xx.has_gmem_fast_clear,
296 .concurrent_resolve = concurrent_resolve,
297 .depth_offset_hi = 0,
298 .color_offset_hi = color_offset_hi,
299 .depth_cache_size = CCU_CACHE_SIZE_FULL,
300 .depth_offset = 0,
301 .color_cache_size = cache_size,
302 .color_offset = color_offset
303 ));
304 }
305 }
306
307 /* Cache flushes for things that use the color/depth read/write path (i.e.
308 * blits and draws). This deals with changing CCU state as well as the usual
309 * cache flushing.
310 */
311 template <chip CHIP>
312 void
tu_emit_cache_flush_ccu(struct tu_cmd_buffer * cmd_buffer,struct tu_cs * cs,enum tu_cmd_ccu_state ccu_state)313 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
314 struct tu_cs *cs,
315 enum tu_cmd_ccu_state ccu_state)
316 {
317 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
318 /* It's unsafe to flush inside condition because we clear flush_bits */
319 assert(!cs->cond_stack_depth);
320
321 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
322 * the CCU may also contain data that we haven't flushed out yet, so we
323 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
324 * emit a WFI as it isn't pipelined.
325 */
326 if (ccu_state != cmd_buffer->state.ccu_state) {
327 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
328 cmd_buffer->state.cache.flush_bits |=
329 TU_CMD_FLAG_CCU_FLUSH_COLOR |
330 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
331 cmd_buffer->state.cache.pending_flush_bits &= ~(
332 TU_CMD_FLAG_CCU_FLUSH_COLOR |
333 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
334 }
335 cmd_buffer->state.cache.flush_bits |=
336 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
337 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
338 TU_CMD_FLAG_WAIT_FOR_IDLE;
339 cmd_buffer->state.cache.pending_flush_bits &= ~(
340 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
341 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
342 TU_CMD_FLAG_WAIT_FOR_IDLE);
343 }
344
345 tu6_emit_flushes<CHIP>(cmd_buffer, cs, &cmd_buffer->state.cache);
346
347 if (ccu_state != cmd_buffer->state.ccu_state) {
348 emit_rb_ccu_cntl<CHIP>(cs, cmd_buffer->device,
349 ccu_state == TU_CMD_CCU_GMEM);
350 cmd_buffer->state.ccu_state = ccu_state;
351 }
352 }
353 TU_GENX(tu_emit_cache_flush_ccu);
354
355 template <chip CHIP>
356 static void
tu6_emit_zs(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs)357 tu6_emit_zs(struct tu_cmd_buffer *cmd,
358 const struct tu_subpass *subpass,
359 struct tu_cs *cs)
360 {
361 const uint32_t a = subpass->depth_stencil_attachment.attachment;
362 if (a == VK_ATTACHMENT_UNUSED) {
363 tu_cs_emit_regs(cs,
364 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
365 A6XX_RB_DEPTH_BUFFER_PITCH(0),
366 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
367 A6XX_RB_DEPTH_BUFFER_BASE(0),
368 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
369
370 tu_cs_emit_regs(cs,
371 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
372
373 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
374
375 return;
376 }
377
378 const struct tu_image_view *iview = cmd->state.attachments[a];
379 const struct tu_render_pass_attachment *attachment =
380 &cmd->state.pass->attachments[a];
381 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
382
383 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
384 tu_cs_emit(cs, RB_DEPTH_BUFFER_INFO(CHIP,
385 .depth_format = fmt,
386 .tilemode = TILE6_3,
387 .losslesscompen = iview->view.ubwc_enabled,
388 ).value);
389 if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT)
390 tu_cs_image_depth_ref(cs, iview, 0);
391 else
392 tu_cs_image_ref(cs, &iview->view, 0);
393 tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0));
394
395 tu_cs_emit_regs(cs,
396 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
397
398 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE, 3);
399 tu_cs_image_flag_ref(cs, &iview->view, 0);
400
401 if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
402 attachment->format == VK_FORMAT_S8_UINT) {
403
404 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
405 tu_cs_emit(cs, RB_STENCIL_INFO(CHIP,
406 .separate_stencil = true,
407 .tilemode = TILE6_3,
408 ).value);
409 if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
410 tu_cs_image_stencil_ref(cs, iview, 0);
411 tu_cs_emit(cs, tu_attachment_gmem_offset_stencil(cmd, attachment, 0));
412 } else {
413 tu_cs_image_ref(cs, &iview->view, 0);
414 tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0));
415 }
416 } else {
417 tu_cs_emit_regs(cs,
418 A6XX_RB_STENCIL_INFO(0));
419 }
420 }
421
422 static void
tu6_emit_mrt(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs)423 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
424 const struct tu_subpass *subpass,
425 struct tu_cs *cs)
426 {
427 const struct tu_framebuffer *fb = cmd->state.framebuffer;
428
429 enum a6xx_format mrt0_format = FMT6_NONE;
430
431 for (uint32_t i = 0; i < subpass->color_count; ++i) {
432 uint32_t a = subpass->color_attachments[i].attachment;
433 if (a == VK_ATTACHMENT_UNUSED) {
434 /* From the VkPipelineRenderingCreateInfo definition:
435 *
436 * Valid formats indicate that an attachment can be used - but it
437 * is still valid to set the attachment to NULL when beginning
438 * rendering.
439 *
440 * This means that with dynamic rendering, pipelines may write to
441 * some attachments that are UNUSED here. Setting the format to 0
442 * here should prevent them from writing to anything. This also seems
443 * to also be required for alpha-to-coverage which can use the alpha
444 * value for an otherwise-unused attachment.
445 */
446 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
447 for (unsigned i = 0; i < 6; i++)
448 tu_cs_emit(cs, 0);
449
450 tu_cs_emit_regs(cs,
451 A6XX_SP_FS_MRT_REG(i, .dword = 0));
452 continue;
453 }
454
455 const struct tu_image_view *iview = cmd->state.attachments[a];
456
457 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
458 tu_cs_emit(cs, iview->view.RB_MRT_BUF_INFO);
459 tu_cs_image_ref(cs, &iview->view, 0);
460 tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, &cmd->state.pass->attachments[a], 0));
461
462 tu_cs_emit_regs(cs,
463 A6XX_SP_FS_MRT_REG(i, .dword = iview->view.SP_FS_MRT_REG));
464
465 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR(i), 3);
466 tu_cs_image_flag_ref(cs, &iview->view, 0);
467
468 if (i == 0)
469 mrt0_format = (enum a6xx_format) (iview->view.SP_FS_MRT_REG & 0xff);
470 }
471
472 tu_cs_emit_regs(cs, A6XX_GRAS_LRZ_MRT_BUF_INFO_0(.color_format = mrt0_format));
473
474 tu_cs_emit_regs(cs,
475 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
476 tu_cs_emit_regs(cs,
477 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
478
479 unsigned layers = MAX2(fb->layers, util_logbase2(subpass->multiview_mask) + 1);
480 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(layers - 1));
481 }
482
483 struct tu_bin_size_params {
484 enum a6xx_render_mode render_mode;
485 bool force_lrz_write_dis;
486 enum a6xx_buffers_location buffers_location;
487 unsigned lrz_feedback_zmode_mask;
488 };
489
490 template <chip CHIP>
491 static void
tu6_emit_bin_size(struct tu_cs * cs,uint32_t bin_w,uint32_t bin_h,struct tu_bin_size_params && p)492 tu6_emit_bin_size(struct tu_cs *cs,
493 uint32_t bin_w,
494 uint32_t bin_h,
495 struct tu_bin_size_params &&p)
496 {
497 if (CHIP == A6XX) {
498 tu_cs_emit_regs(
499 cs, A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
500 .binh = bin_h,
501 .render_mode = p.render_mode,
502 .force_lrz_write_dis = p.force_lrz_write_dis,
503 .buffers_location = p.buffers_location,
504 .lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, ));
505 } else {
506 tu_cs_emit_regs(cs,
507 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
508 .binh = bin_h,
509 .render_mode = p.render_mode,
510 .force_lrz_write_dis = p.force_lrz_write_dis,
511 .lrz_feedback_zmode_mask =
512 p.lrz_feedback_zmode_mask, ));
513 }
514
515 tu_cs_emit_regs(cs, RB_BIN_CONTROL(CHIP,
516 .binw = bin_w,
517 .binh = bin_h,
518 .render_mode = p.render_mode,
519 .force_lrz_write_dis = p.force_lrz_write_dis,
520 .buffers_location = p.buffers_location,
521 .lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, ));
522
523 /* no flag for RB_BIN_CONTROL2... */
524 tu_cs_emit_regs(cs,
525 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
526 .binh = bin_h));
527 }
528
529 template <chip CHIP>
530 static void
531 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
532 const struct tu_subpass *subpass,
533 struct tu_cs *cs,
534 bool binning);
535
536 template <>
537 void
tu6_emit_render_cntl(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs,bool binning)538 tu6_emit_render_cntl<A6XX>(struct tu_cmd_buffer *cmd,
539 const struct tu_subpass *subpass,
540 struct tu_cs *cs,
541 bool binning)
542 {
543 /* doesn't RB_RENDER_CNTL set differently for binning pass: */
544 bool no_track = !cmd->device->physical_device->info->a6xx.has_cp_reg_write;
545 uint32_t cntl = 0;
546 cntl |= A6XX_RB_RENDER_CNTL_CCUSINGLECACHELINESIZE(2);
547 if (binning) {
548 if (no_track)
549 return;
550 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
551 } else {
552 uint32_t mrts_ubwc_enable = 0;
553 for (uint32_t i = 0; i < subpass->color_count; ++i) {
554 uint32_t a = subpass->color_attachments[i].attachment;
555 if (a == VK_ATTACHMENT_UNUSED)
556 continue;
557
558 const struct tu_image_view *iview = cmd->state.attachments[a];
559 if (iview->view.ubwc_enabled)
560 mrts_ubwc_enable |= 1 << i;
561 }
562
563 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
564
565 const uint32_t a = subpass->depth_stencil_attachment.attachment;
566 if (a != VK_ATTACHMENT_UNUSED) {
567 const struct tu_image_view *iview = cmd->state.attachments[a];
568 if (iview->view.ubwc_enabled)
569 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
570 }
571
572 if (no_track) {
573 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CNTL, 1);
574 tu_cs_emit(cs, cntl);
575 return;
576 }
577
578 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
579 * in order to set it correctly for the different subpasses. However,
580 * that means the packets we're emitting also happen during binning. So
581 * we need to guard the write on !BINNING at CP execution time.
582 */
583 tu_cs_reserve(cs, 3 + 4);
584 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
585 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
586 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
587 tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4));
588 }
589
590 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
591 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
592 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
593 tu_cs_emit(cs, cntl);
594 }
595
596 template <>
597 void
tu6_emit_render_cntl(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs,bool binning)598 tu6_emit_render_cntl<A7XX>(struct tu_cmd_buffer *cmd,
599 const struct tu_subpass *subpass,
600 struct tu_cs *cs,
601 bool binning)
602 {
603 tu_cs_emit_regs(
604 cs, A7XX_RB_RENDER_CNTL(.binning = binning, .raster_mode = TYPE_TILED,
605 .raster_direction = LR_TB));
606 tu_cs_emit_regs(cs, A7XX_GRAS_SU_RENDER_CNTL(.binning = binning));
607 }
608
609 static void
tu6_emit_blit_scissor(struct tu_cmd_buffer * cmd,struct tu_cs * cs,bool align)610 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
611 {
612 struct tu_physical_device *phys_dev = cmd->device->physical_device;
613 const VkRect2D *render_area = &cmd->state.render_area;
614
615 /* Avoid assertion fails with an empty render area at (0, 0) where the
616 * subtraction below wraps around. Empty render areas should be forced to
617 * the sysmem path by use_sysmem_rendering(). It's not even clear whether
618 * an empty scissor here works, and the blob seems to force sysmem too as
619 * it sets something wrong (non-empty) for the scissor.
620 */
621 if (render_area->extent.width == 0 ||
622 render_area->extent.height == 0)
623 return;
624
625 uint32_t x1 = render_area->offset.x;
626 uint32_t y1 = render_area->offset.y;
627 uint32_t x2 = x1 + render_area->extent.width - 1;
628 uint32_t y2 = y1 + render_area->extent.height - 1;
629
630 if (align) {
631 x1 = x1 & ~(phys_dev->info->gmem_align_w - 1);
632 y1 = y1 & ~(phys_dev->info->gmem_align_h - 1);
633 x2 = ALIGN_POT(x2 + 1, phys_dev->info->gmem_align_w) - 1;
634 y2 = ALIGN_POT(y2 + 1, phys_dev->info->gmem_align_h) - 1;
635 }
636
637 tu_cs_emit_regs(cs,
638 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
639 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
640 }
641
642 void
tu6_emit_window_scissor(struct tu_cs * cs,uint32_t x1,uint32_t y1,uint32_t x2,uint32_t y2)643 tu6_emit_window_scissor(struct tu_cs *cs,
644 uint32_t x1,
645 uint32_t y1,
646 uint32_t x2,
647 uint32_t y2)
648 {
649 tu_cs_emit_regs(cs,
650 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
651 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
652
653 tu_cs_emit_regs(cs,
654 A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
655 A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
656 }
657
658 template <chip CHIP>
659 void
tu6_emit_window_offset(struct tu_cs * cs,uint32_t x1,uint32_t y1)660 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
661 {
662 tu_cs_emit_regs(cs,
663 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
664
665 tu_cs_emit_regs(cs,
666 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
667
668 tu_cs_emit_regs(cs,
669 SP_WINDOW_OFFSET(CHIP, .x = x1, .y = y1));
670
671 tu_cs_emit_regs(cs,
672 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
673 }
674
675 void
tu6_apply_depth_bounds_workaround(struct tu_device * device,uint32_t * rb_depth_cntl)676 tu6_apply_depth_bounds_workaround(struct tu_device *device,
677 uint32_t *rb_depth_cntl)
678 {
679 if (!device->physical_device->info->a6xx.depth_bounds_require_depth_test_quirk)
680 return;
681
682 /* On some GPUs it is necessary to enable z test for depth bounds test when
683 * UBWC is enabled. Otherwise, the GPU would hang. FUNC_ALWAYS is required to
684 * pass z test. Relevant tests:
685 * dEQP-VK.pipeline.extended_dynamic_state.two_draws_dynamic.depth_bounds_test_disable
686 * dEQP-VK.dynamic_state.ds_state.depth_bounds_1
687 */
688 *rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE |
689 A6XX_RB_DEPTH_CNTL_ZFUNC(FUNC_ALWAYS);
690 }
691
692 static void
tu_cs_emit_draw_state(struct tu_cs * cs,uint32_t id,struct tu_draw_state state)693 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
694 {
695 uint32_t enable_mask;
696 switch (id) {
697 case TU_DRAW_STATE_VS:
698 case TU_DRAW_STATE_FS:
699 case TU_DRAW_STATE_VPC:
700 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
701 * when resources would actually be used in the binning shader.
702 * Presumably the overhead of prefetching the resources isn't
703 * worth it.
704 */
705 case TU_DRAW_STATE_DESC_SETS_LOAD:
706 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
707 CP_SET_DRAW_STATE__0_SYSMEM;
708 break;
709 case TU_DRAW_STATE_VS_BINNING:
710 case TU_DRAW_STATE_GS_BINNING:
711 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
712 break;
713 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
714 case TU_DRAW_STATE_PRIM_MODE_GMEM:
715 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
716 break;
717 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
718 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
719 break;
720 case TU_DRAW_STATE_PRIM_MODE_SYSMEM:
721 /* By also applying the state during binning we ensure that there
722 * is no rotation applied, by previous A6XX_GRAS_SC_CNTL::rotation.
723 */
724 enable_mask =
725 CP_SET_DRAW_STATE__0_SYSMEM | CP_SET_DRAW_STATE__0_BINNING;
726 break;
727 default:
728 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
729 CP_SET_DRAW_STATE__0_SYSMEM |
730 CP_SET_DRAW_STATE__0_BINNING;
731 break;
732 }
733
734 STATIC_ASSERT(TU_DRAW_STATE_COUNT <= 32);
735
736 /* We need to reload the descriptors every time the descriptor sets
737 * change. However, the commands we send only depend on the pipeline
738 * because the whole point is to cache descriptors which are used by the
739 * pipeline. There's a problem here, in that the firmware has an
740 * "optimization" which skips executing groups that are set to the same
741 * value as the last draw. This means that if the descriptor sets change
742 * but not the pipeline, we'd try to re-execute the same buffer which
743 * the firmware would ignore and we wouldn't pre-load the new
744 * descriptors. Set the DIRTY bit to avoid this optimization.
745 *
746 * We set the dirty bit for shader draw states because they contain
747 * CP_LOAD_STATE packets that are invalidated by the PROGRAM_CONFIG draw
748 * state, so if PROGRAM_CONFIG changes but one of the shaders stays the
749 * same then we still need to re-emit everything. The GLES blob which
750 * implements separate shader draw states does the same thing.
751 *
752 * We also need to set this bit for draw states which may be patched by the
753 * GPU, because their underlying memory may change between setting the draw
754 * state.
755 */
756 if (id == TU_DRAW_STATE_DESC_SETS_LOAD ||
757 id == TU_DRAW_STATE_VS ||
758 id == TU_DRAW_STATE_VS_BINNING ||
759 id == TU_DRAW_STATE_HS ||
760 id == TU_DRAW_STATE_DS ||
761 id == TU_DRAW_STATE_GS ||
762 id == TU_DRAW_STATE_GS_BINNING ||
763 id == TU_DRAW_STATE_FS ||
764 state.writeable)
765 enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
766
767 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
768 enable_mask |
769 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
770 COND(!state.size || !state.iova, CP_SET_DRAW_STATE__0_DISABLE));
771 tu_cs_emit_qw(cs, state.iova);
772 }
773
774 void
tu6_emit_msaa(struct tu_cs * cs,VkSampleCountFlagBits vk_samples,bool msaa_disable)775 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples,
776 bool msaa_disable)
777 {
778 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
779 msaa_disable |= (samples == MSAA_ONE);
780 tu_cs_emit_regs(cs,
781 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
782 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
783 .msaa_disable = msaa_disable));
784
785 tu_cs_emit_regs(cs,
786 A6XX_GRAS_RAS_MSAA_CNTL(samples),
787 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
788 .msaa_disable = msaa_disable));
789
790 tu_cs_emit_regs(cs,
791 A6XX_RB_RAS_MSAA_CNTL(samples),
792 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
793 .msaa_disable = msaa_disable));
794 }
795
796 static void
tu6_update_msaa(struct tu_cmd_buffer * cmd)797 tu6_update_msaa(struct tu_cmd_buffer *cmd)
798 {
799 VkSampleCountFlagBits samples =
800 cmd->vk.dynamic_graphics_state.ms.rasterization_samples;;
801
802 /* The samples may not be set by the pipeline or dynamically if raster
803 * discard is enabled. We can set any valid value, but don't set the
804 * default invalid value of 0.
805 */
806 if (samples == 0)
807 samples = VK_SAMPLE_COUNT_1_BIT;
808 tu6_emit_msaa(&cmd->draw_cs, samples, cmd->state.msaa_disable);
809 }
810
811 static void
tu6_update_msaa_disable(struct tu_cmd_buffer * cmd)812 tu6_update_msaa_disable(struct tu_cmd_buffer *cmd)
813 {
814 VkPrimitiveTopology topology =
815 (VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology;
816 bool is_line =
817 topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST ||
818 topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY ||
819 topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP ||
820 topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY ||
821 (topology == VK_PRIMITIVE_TOPOLOGY_PATCH_LIST &&
822 cmd->state.shaders[MESA_SHADER_TESS_EVAL] &&
823 cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant &&
824 cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant->key.tessellation == IR3_TESS_ISOLINES);
825 bool msaa_disable = is_line &&
826 cmd->vk.dynamic_graphics_state.rs.line.mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT;
827
828 if (cmd->state.msaa_disable != msaa_disable) {
829 cmd->state.msaa_disable = msaa_disable;
830 tu6_update_msaa(cmd);
831 }
832 }
833
834 static bool
use_hw_binning(struct tu_cmd_buffer * cmd)835 use_hw_binning(struct tu_cmd_buffer *cmd)
836 {
837 const struct tu_framebuffer *fb = cmd->state.framebuffer;
838 const struct tu_tiling_config *tiling = &fb->tiling[cmd->state.gmem_layout];
839
840 /* XFB commands are emitted for BINNING || SYSMEM, which makes it
841 * incompatible with non-hw binning GMEM rendering. this is required because
842 * some of the XFB commands need to only be executed once.
843 * use_sysmem_rendering() should have made sure we only ended up here if no
844 * XFB was used.
845 */
846 if (cmd->state.rp.xfb_used) {
847 assert(tiling->binning_possible);
848 return true;
849 }
850
851 /* VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT emulates GL_PRIMITIVES_GENERATED,
852 * which wasn't designed to care about tilers and expects the result not to
853 * be multiplied by tile count.
854 * See https://gitlab.khronos.org/vulkan/vulkan/-/issues/3131
855 */
856 if (cmd->state.rp.has_prim_generated_query_in_rp ||
857 cmd->state.prim_generated_query_running_before_rp) {
858 assert(tiling->binning_possible);
859 return true;
860 }
861
862 return tiling->binning;
863 }
864
865 static bool
use_sysmem_rendering(struct tu_cmd_buffer * cmd,struct tu_renderpass_result ** autotune_result)866 use_sysmem_rendering(struct tu_cmd_buffer *cmd,
867 struct tu_renderpass_result **autotune_result)
868 {
869 if (TU_DEBUG(SYSMEM))
870 return true;
871
872 /* A7XX TODO: Add gmem support */
873 if (cmd->device->physical_device->info->chip >= 7)
874 return true;
875
876 /* can't fit attachments into gmem */
877 if (!cmd->state.tiling->possible)
878 return true;
879
880 if (cmd->state.framebuffer->layers > 1)
881 return true;
882
883 /* Use sysmem for empty render areas */
884 if (cmd->state.render_area.extent.width == 0 ||
885 cmd->state.render_area.extent.height == 0)
886 return true;
887
888 if (cmd->state.rp.has_tess)
889 return true;
890
891 if (cmd->state.rp.disable_gmem)
892 return true;
893
894 /* XFB is incompatible with non-hw binning GMEM rendering, see use_hw_binning */
895 if (cmd->state.rp.xfb_used && !cmd->state.tiling->binning_possible)
896 return true;
897
898 /* QUERY_TYPE_PRIMITIVES_GENERATED is incompatible with non-hw binning
899 * GMEM rendering, see use_hw_binning.
900 */
901 if ((cmd->state.rp.has_prim_generated_query_in_rp ||
902 cmd->state.prim_generated_query_running_before_rp) &&
903 !cmd->state.tiling->binning_possible)
904 return true;
905
906 if (TU_DEBUG(GMEM))
907 return false;
908
909 bool use_sysmem = tu_autotune_use_bypass(&cmd->device->autotune,
910 cmd, autotune_result);
911 if (*autotune_result) {
912 list_addtail(&(*autotune_result)->node, &cmd->renderpass_autotune_results);
913 }
914
915 return use_sysmem;
916 }
917
918 /* Optimization: there is no reason to load gmem if there is no
919 * geometry to process. COND_REG_EXEC predicate is set here,
920 * but the actual skip happens in tu_load_gmem_attachment() and tile_store_cs,
921 * for each blit separately.
922 */
923 static void
tu6_emit_cond_for_load_stores(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t pipe,uint32_t slot,bool skip_wfm)924 tu6_emit_cond_for_load_stores(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
925 uint32_t pipe, uint32_t slot, bool skip_wfm)
926 {
927 if (cmd->state.tiling->binning_possible &&
928 cmd->state.pass->has_cond_load_store) {
929 tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
930 tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(REG_A6XX_VSC_STATE_REG(pipe)) |
931 A6XX_CP_REG_TEST_0_BIT(slot) |
932 COND(skip_wfm, A6XX_CP_REG_TEST_0_SKIP_WAIT_FOR_ME));
933 } else {
934 /* COND_REG_EXECs are not emitted in non-binning case */
935 }
936 }
937
938 template <chip CHIP>
939 static void
tu6_emit_tile_select(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t tx,uint32_t ty,uint32_t pipe,uint32_t slot,const struct tu_image_view * fdm)940 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
941 struct tu_cs *cs,
942 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot,
943 const struct tu_image_view *fdm)
944 {
945 const struct tu_tiling_config *tiling = cmd->state.tiling;
946
947 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
948 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
949
950 const uint32_t x1 = tiling->tile0.width * tx;
951 const uint32_t y1 = tiling->tile0.height * ty;
952 const uint32_t x2 = MIN2(x1 + tiling->tile0.width, MAX_VIEWPORT_SIZE);
953 const uint32_t y2 = MIN2(y1 + tiling->tile0.height, MAX_VIEWPORT_SIZE);
954 tu6_emit_window_scissor(cs, x1, y1, x2 - 1, y2 - 1);
955 tu6_emit_window_offset<CHIP>(cs, x1, y1);
956
957 bool hw_binning = use_hw_binning(cmd);
958
959 if (hw_binning) {
960 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
961
962 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
963 tu_cs_emit(cs, 0x0);
964
965 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
966 tu_cs_emit(cs, tiling->pipe_sizes[pipe] |
967 CP_SET_BIN_DATA5_0_VSC_N(slot));
968 tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
969 tu_cs_emit(cs, pipe * 4);
970 tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
971 }
972
973 tu6_emit_cond_for_load_stores(cmd, cs, pipe, slot, hw_binning);
974
975 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
976 tu_cs_emit(cs, !hw_binning);
977
978 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
979 tu_cs_emit(cs, 0x0);
980
981 if (fdm || (TU_DEBUG(FDM) && cmd->state.pass->has_fdm)) {
982 unsigned views =
983 cmd->state.pass->num_views ? cmd->state.pass->num_views : 1;
984 const struct tu_framebuffer *fb = cmd->state.framebuffer;
985 struct tu_frag_area raw_areas[views];
986 if (fdm) {
987 tu_fragment_density_map_sample(fdm,
988 (x1 + MIN2(x2, fb->width)) / 2,
989 (y1 + MIN2(y2, fb->height)) / 2,
990 fb->width, fb->height, views,
991 raw_areas);
992 } else {
993 for (unsigned i = 0; i < views; i++)
994 raw_areas[i].width = raw_areas[i].height = 1.0f;
995 }
996
997 VkExtent2D frag_areas[views];
998 for (unsigned i = 0; i < views; i++) {
999 float floor_x, floor_y;
1000 float area = raw_areas[i].width * raw_areas[i].height;
1001 float frac_x = modff(raw_areas[i].width, &floor_x);
1002 float frac_y = modff(raw_areas[i].height, &floor_y);
1003 /* The spec allows rounding up one of the axes as long as the total
1004 * area is less than or equal to the original area. Take advantage of
1005 * this to try rounding up the number with the largest fraction.
1006 */
1007 if ((frac_x > frac_y ? (floor_x + 1.f) * floor_y :
1008 floor_x * (floor_y + 1.f)) <= area) {
1009 if (frac_x > frac_y)
1010 floor_x += 1.f;
1011 else
1012 floor_y += 1.f;
1013 }
1014 frag_areas[i].width = floor_x;
1015 frag_areas[i].height = floor_y;
1016
1017 /* Make sure that the width/height divides the tile width/height so
1018 * we don't have to do extra awkward clamping of the edges of each
1019 * bin when resolving. Note that because the tile width is rounded to
1020 * a multiple of 32 any power of two 32 or less will work.
1021 *
1022 * TODO: Try to take advantage of the total area allowance here, too.
1023 */
1024 while (tiling->tile0.width % frag_areas[i].width != 0)
1025 frag_areas[i].width--;
1026 while (tiling->tile0.height % frag_areas[i].height != 0)
1027 frag_areas[i].height--;
1028 }
1029
1030 /* If at any point we were forced to use the same scaling for all
1031 * viewports, we need to make sure that any users *not* using shared
1032 * scaling, including loads/stores, also consistently share the scaling.
1033 */
1034 if (cmd->state.rp.shared_viewport) {
1035 VkExtent2D frag_area = { UINT32_MAX, UINT32_MAX };
1036 for (unsigned i = 0; i < views; i++) {
1037 frag_area.width = MIN2(frag_area.width, frag_areas[i].width);
1038 frag_area.height = MIN2(frag_area.height, frag_areas[i].height);
1039 }
1040
1041 for (unsigned i = 0; i < views; i++)
1042 frag_areas[i] = frag_area;
1043 }
1044
1045 VkRect2D bin = { { x1, y1 }, { x2 - x1, y2 - y1 } };
1046 util_dynarray_foreach (&cmd->fdm_bin_patchpoints,
1047 struct tu_fdm_bin_patchpoint, patch) {
1048 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size);
1049 tu_cs_emit_qw(cs, patch->iova);
1050 patch->apply(cmd, cs, patch->data, bin, views, frag_areas);
1051 }
1052
1053 /* Make the CP wait until the CP_MEM_WRITE's to the command buffers
1054 * land.
1055 */
1056 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1057 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1058 }
1059 }
1060
1061 template <chip CHIP>
1062 static void
tu6_emit_sysmem_resolve(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t layer_mask,uint32_t a,uint32_t gmem_a)1063 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
1064 struct tu_cs *cs,
1065 uint32_t layer_mask,
1066 uint32_t a,
1067 uint32_t gmem_a)
1068 {
1069 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1070 const struct tu_image_view *dst = cmd->state.attachments[a];
1071 const struct tu_image_view *src = cmd->state.attachments[gmem_a];
1072
1073 tu_resolve_sysmem<CHIP>(cmd, cs, src, dst, layer_mask, fb->layers, &cmd->state.render_area);
1074 }
1075
1076 template <chip CHIP>
1077 static void
tu6_emit_sysmem_resolves(struct tu_cmd_buffer * cmd,struct tu_cs * cs,const struct tu_subpass * subpass)1078 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
1079 struct tu_cs *cs,
1080 const struct tu_subpass *subpass)
1081 {
1082 if (subpass->resolve_attachments) {
1083 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
1084 * Commands":
1085 *
1086 * End-of-subpass multisample resolves are treated as color
1087 * attachment writes for the purposes of synchronization.
1088 * This applies to resolve operations for both color and
1089 * depth/stencil attachments. That is, they are considered to
1090 * execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
1091 * pipeline stage and their writes are synchronized with
1092 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
1093 * rendering within a subpass and any resolve operations at the end
1094 * of the subpass occurs automatically, without need for explicit
1095 * dependencies or pipeline barriers. However, if the resolve
1096 * attachment is also used in a different subpass, an explicit
1097 * dependency is needed.
1098 *
1099 * We use the CP_BLIT path for sysmem resolves, which is really a
1100 * transfer command, so we have to manually flush similar to the gmem
1101 * resolve case. However, a flush afterwards isn't needed because of the
1102 * last sentence and the fact that we're in sysmem mode.
1103 */
1104 tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_FLUSH_COLOR);
1105 if (subpass->resolve_depth_stencil)
1106 tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_FLUSH_DEPTH);
1107
1108 tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1109
1110 /* Wait for the flushes to land before using the 2D engine */
1111 tu_cs_emit_wfi(cs);
1112
1113 for (unsigned i = 0; i < subpass->resolve_count; i++) {
1114 uint32_t a = subpass->resolve_attachments[i].attachment;
1115 if (a == VK_ATTACHMENT_UNUSED)
1116 continue;
1117
1118 uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
1119
1120 tu6_emit_sysmem_resolve<CHIP>(cmd, cs, subpass->multiview_mask, a, gmem_a);
1121 }
1122 }
1123 }
1124
1125 template <chip CHIP>
1126 static void
tu6_emit_tile_store(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1127 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1128 {
1129 const struct tu_render_pass *pass = cmd->state.pass;
1130 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
1131 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1132
1133 if (pass->has_fdm)
1134 tu_cs_set_writeable(cs, true);
1135
1136 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1137 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
1138
1139 tu6_emit_blit_scissor(cmd, cs, true);
1140
1141 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
1142 if (pass->attachments[a].gmem) {
1143 const bool cond_exec_allowed = cmd->state.tiling->binning_possible &&
1144 cmd->state.pass->has_cond_load_store;
1145 tu_store_gmem_attachment<CHIP>(cmd, cs, a, a,
1146 fb->layers, subpass->multiview_mask,
1147 cond_exec_allowed);
1148 }
1149 }
1150
1151 if (subpass->resolve_attachments) {
1152 for (unsigned i = 0; i < subpass->resolve_count; i++) {
1153 uint32_t a = subpass->resolve_attachments[i].attachment;
1154 if (a != VK_ATTACHMENT_UNUSED) {
1155 uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
1156 tu_store_gmem_attachment<CHIP>(cmd, cs, a, gmem_a, fb->layers,
1157 subpass->multiview_mask, false);
1158 }
1159 }
1160 }
1161
1162 if (pass->has_fdm)
1163 tu_cs_set_writeable(cs, false);
1164 }
1165
1166 void
tu_disable_draw_states(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1167 tu_disable_draw_states(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1168 {
1169 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1170 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1171 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1172 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1173 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1174 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1175
1176 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
1177 }
1178
1179 template <chip CHIP>
1180 static void
tu6_init_hw(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1181 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1182 {
1183 struct tu_device *dev = cmd->device;
1184 const struct tu_physical_device *phys_dev = dev->physical_device;
1185
1186 if (CHIP == A6XX) {
1187 tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1188 } else {
1189 tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
1190 tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR));
1191
1192 tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_COLOR);
1193 tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_DEPTH);
1194 tu_emit_raw_event_write<CHIP>(cmd, cs, UNK_40, false);
1195 tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1196 tu_cs_emit_wfi(cs);
1197 }
1198
1199 tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP,
1200 .vs_state = true,
1201 .hs_state = true,
1202 .ds_state = true,
1203 .gs_state = true,
1204 .fs_state = true,
1205 .cs_state = true,
1206 .cs_ibo = true,
1207 .gfx_ibo = true,
1208 .cs_shared_const = true,
1209 .gfx_shared_const = true,
1210 .cs_bindless = CHIP == A6XX ? 0x1f : 0xff,
1211 .gfx_bindless = CHIP == A6XX ? 0x1f : 0xff,));
1212
1213 tu_cs_emit_wfi(cs);
1214
1215 if (dev->dbg_cmdbuf_stomp_cs) {
1216 tu_cs_emit_call(cs, dev->dbg_cmdbuf_stomp_cs);
1217 }
1218
1219 cmd->state.cache.pending_flush_bits &=
1220 ~(TU_CMD_FLAG_WAIT_FOR_IDLE | TU_CMD_FLAG_CACHE_INVALIDATE);
1221
1222 emit_rb_ccu_cntl<CHIP>(cs, cmd->device, false);
1223 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
1224
1225 for (size_t i = 0; i < ARRAY_SIZE(phys_dev->info->a6xx.magic_raw); i++) {
1226 auto magic_reg = phys_dev->info->a6xx.magic_raw[i];
1227 if (!magic_reg.reg)
1228 break;
1229
1230 tu_cs_emit_write_reg(cs, magic_reg.reg, magic_reg.value);
1231 }
1232
1233 tu_cs_emit_write_reg(cs, REG_A6XX_RB_DBG_ECO_CNTL,
1234 phys_dev->info->a6xx.magic.RB_DBG_ECO_CNTL);
1235 tu_cs_emit_write_reg(cs, REG_A6XX_SP_FLOAT_CNTL, 0);
1236 tu_cs_emit_write_reg(cs, REG_A6XX_SP_DBG_ECO_CNTL,
1237 phys_dev->info->a6xx.magic.SP_DBG_ECO_CNTL);
1238 tu_cs_emit_write_reg(cs, REG_A6XX_SP_PERFCTR_ENABLE, 0x3f);
1239 if (CHIP == A6XX)
1240 tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_UNKNOWN_B605, 0x44);
1241 tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_DBG_ECO_CNTL,
1242 phys_dev->info->a6xx.magic.TPL1_DBG_ECO_CNTL);
1243 if (CHIP == A6XX) {
1244 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
1245 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
1246 }
1247
1248 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_DBG_ECO_CNTL,
1249 phys_dev->info->a6xx.magic.VPC_DBG_ECO_CNTL);
1250 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_DBG_ECO_CNTL,
1251 phys_dev->info->a6xx.magic.GRAS_DBG_ECO_CNTL);
1252 if (CHIP == A6XX) {
1253 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_DBG_ECO_CNTL,
1254 phys_dev->info->a6xx.magic.HLSQ_DBG_ECO_CNTL);
1255 }
1256 tu_cs_emit_write_reg(cs, REG_A6XX_SP_CHICKEN_BITS,
1257 phys_dev->info->a6xx.magic.SP_CHICKEN_BITS);
1258 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0); // 2 on a740 ???
1259 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
1260 if (CHIP == A6XX)
1261 tu_cs_emit_regs(cs, A6XX_HLSQ_SHARED_CONSTS(.enable = false));
1262 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12,
1263 phys_dev->info->a6xx.magic.UCHE_UNKNOWN_0E12);
1264 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF,
1265 phys_dev->info->a6xx.magic.UCHE_CLIENT_PF);
1266 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01,
1267 phys_dev->info->a6xx.magic.RB_UNKNOWN_8E01);
1268 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
1269 tu_cs_emit_regs(cs, A6XX_SP_MODE_CONTROL(.constant_demotion_enable = true,
1270 .isammode = ISAMMODE_GL,
1271 .shared_consts_enable = false));
1272
1273 /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
1274 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
1275 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
1276 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL,
1277 phys_dev->info->a6xx.magic.PC_MODE_CNTL);
1278
1279 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
1280
1281 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
1282
1283 if (CHIP == A6XX) {
1284 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
1285 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
1286 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
1287 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
1288 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
1289 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
1290 }
1291
1292 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
1293
1294 tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
1295 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
1296
1297 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
1298
1299 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
1300
1301 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_SU_CONSERVATIVE_RAS_CNTL, 0);
1302 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
1303 if (CHIP == A6XX) {
1304 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
1305 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
1306 }
1307 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
1308 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
1309 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_MODE_CNTL,
1310 0x000000a0 |
1311 A6XX_SP_TP_MODE_CNTL_ISAMMODE(ISAMMODE_GL));
1312 tu_cs_emit_regs(cs, HLSQ_CONTROL_5_REG(CHIP, .dword = 0xfc));
1313
1314 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
1315
1316 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, phys_dev->info->a6xx.magic.PC_MODE_CNTL);
1317
1318 tu_cs_emit_regs(cs, A6XX_RB_ALPHA_CONTROL()); /* always disable alpha test */
1319 tu_cs_emit_regs(cs, A6XX_RB_DITHER_CNTL()); /* always disable dithering */
1320
1321 tu_disable_draw_states(cmd, cs);
1322
1323 tu_cs_emit_regs(cs,
1324 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = dev->global_bo,
1325 .bo_offset = gb_offset(bcolor_builtin)));
1326 tu_cs_emit_regs(cs,
1327 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = dev->global_bo,
1328 .bo_offset = gb_offset(bcolor_builtin)));
1329
1330 if (CHIP == A7XX) {
1331 tu_cs_emit_regs(cs, A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0(0),
1332 A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1(0x3fe05ff4),
1333 A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2(0x3fa0ebee),
1334 A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3(0x3f5193ed),
1335 A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4(0x3f0243f0), );
1336 }
1337
1338 if (phys_dev->info->a7xx.cmdbuf_start_a725_quirk) {
1339 tu_cs_reserve(cs, 3 + 4);
1340 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
1341 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
1342 CP_COND_REG_EXEC_0_BR | CP_COND_REG_EXEC_0_LPAC);
1343 tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4));
1344 tu_cs_emit_ib(cs, dev->cmdbuf_start_a725_quirk_entry);
1345 }
1346
1347 tu_cs_sanity_check(cs);
1348 }
1349
1350 static void
update_vsc_pipe(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t num_vsc_pipes)1351 update_vsc_pipe(struct tu_cmd_buffer *cmd,
1352 struct tu_cs *cs,
1353 uint32_t num_vsc_pipes)
1354 {
1355 const struct tu_tiling_config *tiling = cmd->state.tiling;
1356
1357 tu_cs_emit_regs(cs,
1358 A6XX_VSC_BIN_SIZE(.width = tiling->tile0.width,
1359 .height = tiling->tile0.height));
1360
1361 tu_cs_emit_regs(cs,
1362 A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width,
1363 .ny = tiling->tile_count.height));
1364
1365 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), num_vsc_pipes);
1366 tu_cs_emit_array(cs, tiling->pipe_config, num_vsc_pipes);
1367
1368 tu_cs_emit_regs(cs,
1369 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
1370 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
1371
1372 tu_cs_emit_regs(cs,
1373 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
1374 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
1375 }
1376
1377 static void
emit_vsc_overflow_test(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1378 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1379 {
1380 const struct tu_tiling_config *tiling = cmd->state.tiling;
1381 const uint32_t used_pipe_count =
1382 tiling->pipe_count.width * tiling->pipe_count.height;
1383
1384 for (int i = 0; i < used_pipe_count; i++) {
1385 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1386 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1387 CP_COND_WRITE5_0_WRITE_MEMORY);
1388 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
1389 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1390 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
1391 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1392 tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
1393 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
1394
1395 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1396 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1397 CP_COND_WRITE5_0_WRITE_MEMORY);
1398 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
1399 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1400 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
1401 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1402 tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
1403 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
1404 }
1405
1406 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1407 }
1408
1409 template <chip CHIP>
1410 static void
tu6_emit_binning_pass(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1411 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1412 {
1413 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1414 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1415
1416 /* If this command buffer may be executed multiple times, then
1417 * viewports/scissor states may have been changed by previous executions
1418 * and we need to reset them before executing the binning IB.
1419 */
1420 if (!(cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT) &&
1421 cmd->fdm_bin_patchpoints.size != 0) {
1422 unsigned num_views = MAX2(cmd->state.pass->num_views, 1);
1423 VkExtent2D unscaled_frag_areas[num_views];
1424 for (unsigned i = 0; i < num_views; i++)
1425 unscaled_frag_areas[i] = (VkExtent2D) { 1, 1 };
1426 VkRect2D bin = { { 0, 0 }, { fb->width, fb->height } };
1427 util_dynarray_foreach (&cmd->fdm_bin_patchpoints,
1428 struct tu_fdm_bin_patchpoint, patch) {
1429 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size);
1430 tu_cs_emit_qw(cs, patch->iova);
1431 patch->apply(cmd, cs, patch->data, bin, num_views, unscaled_frag_areas);
1432 }
1433
1434 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1435 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1436 }
1437
1438 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1439
1440 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1441 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
1442
1443 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1444 tu_cs_emit(cs, 0x1);
1445
1446 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1447 tu_cs_emit(cs, 0x1);
1448
1449 tu_cs_emit_wfi(cs);
1450
1451 tu_cs_emit_regs(cs,
1452 A6XX_VFD_MODE_CNTL(.render_mode = BINNING_PASS));
1453
1454 update_vsc_pipe(cmd, cs, phys_dev->info->num_vsc_pipes);
1455
1456 tu_cs_emit_regs(cs,
1457 A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1458
1459 tu_cs_emit_regs(cs,
1460 A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1461
1462 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1463 tu_cs_emit(cs, UNK_2C);
1464
1465 tu_cs_emit_regs(cs,
1466 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1467
1468 tu_cs_emit_regs(cs,
1469 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1470
1471 trace_start_binning_ib(&cmd->trace, cs);
1472
1473 /* emit IB to binning drawcmds: */
1474 tu_cs_emit_call(cs, &cmd->draw_cs);
1475
1476 trace_end_binning_ib(&cmd->trace, cs);
1477
1478 /* switching from binning pass to GMEM pass will cause a switch from
1479 * PROGRAM_BINNING to PROGRAM, which invalidates const state (XS_CONST states)
1480 * so make sure these states are re-emitted
1481 * (eventually these states shouldn't exist at all with shader prologue)
1482 * only VS and GS are invalidated, as FS isn't emitted in binning pass,
1483 * and we don't use HW binning when tesselation is used
1484 */
1485 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1486 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1487 CP_SET_DRAW_STATE__0_DISABLE |
1488 CP_SET_DRAW_STATE__0_GROUP_ID(TU_DRAW_STATE_CONST));
1489 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1490 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1491
1492 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1493 tu_cs_emit(cs, UNK_2D);
1494
1495 /* This flush is probably required because the VSC, which produces the
1496 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1497 * visibility stream (without caching) to do draw skipping. The
1498 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1499 * submitted are finished before reading the VSC regs (in
1500 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1501 * part of draws).
1502 */
1503 tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_FLUSH);
1504
1505 tu_cs_emit_wfi(cs);
1506
1507 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1508
1509 emit_vsc_overflow_test(cmd, cs);
1510
1511 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1512 tu_cs_emit(cs, 0x0);
1513
1514 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1515 tu_cs_emit(cs, 0x0);
1516 }
1517
1518 static struct tu_draw_state
tu_emit_input_attachments(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,bool gmem)1519 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1520 const struct tu_subpass *subpass,
1521 bool gmem)
1522 {
1523 const struct tu_tiling_config *tiling = cmd->state.tiling;
1524
1525 /* note: we can probably emit input attachments just once for the whole
1526 * renderpass, this would avoid emitting both sysmem/gmem versions
1527 *
1528 * emit two texture descriptors for each input, as a workaround for
1529 * d24s8/d32s8, which can be sampled as both float (depth) and integer (stencil)
1530 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1531 * in the pair
1532 * TODO: a smarter workaround
1533 */
1534
1535 if (!subpass->input_count)
1536 return (struct tu_draw_state) {};
1537
1538 struct tu_cs_memory texture;
1539 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1540 A6XX_TEX_CONST_DWORDS, &texture);
1541 if (result != VK_SUCCESS) {
1542 vk_command_buffer_set_error(&cmd->vk, result);
1543 return (struct tu_draw_state) {};
1544 }
1545
1546 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1547 uint32_t a = subpass->input_attachments[i / 2].attachment;
1548 if (a == VK_ATTACHMENT_UNUSED)
1549 continue;
1550
1551 const struct tu_image_view *iview = cmd->state.attachments[a];
1552 const struct tu_render_pass_attachment *att =
1553 &cmd->state.pass->attachments[a];
1554 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1555 uint32_t gmem_offset = tu_attachment_gmem_offset(cmd, att, 0);
1556 uint32_t cpp = att->cpp;
1557
1558 memcpy(dst, iview->view.descriptor, A6XX_TEX_CONST_DWORDS * 4);
1559
1560 /* Cube descriptors require a different sampling instruction in shader,
1561 * however we don't know whether image is a cube or not until the start
1562 * of a renderpass. We have to patch the descriptor to make it compatible
1563 * with how it is sampled in shader.
1564 */
1565 enum a6xx_tex_type tex_type =
1566 (enum a6xx_tex_type)((dst[2] & A6XX_TEX_CONST_2_TYPE__MASK) >>
1567 A6XX_TEX_CONST_2_TYPE__SHIFT);
1568 if (tex_type == A6XX_TEX_CUBE) {
1569 dst[2] &= ~A6XX_TEX_CONST_2_TYPE__MASK;
1570 dst[2] |= A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D);
1571
1572 uint32_t depth = (dst[5] & A6XX_TEX_CONST_5_DEPTH__MASK) >>
1573 A6XX_TEX_CONST_5_DEPTH__SHIFT;
1574 dst[5] &= ~A6XX_TEX_CONST_5_DEPTH__MASK;
1575 dst[5] |= A6XX_TEX_CONST_5_DEPTH(depth * 6);
1576 }
1577
1578 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1579 /* note this works because spec says fb and input attachments
1580 * must use identity swizzle
1581 *
1582 * Also we clear swap to WZYX. This is because the view might have
1583 * picked XYZW to work better with border colors.
1584 */
1585 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1586 A6XX_TEX_CONST_0_SWAP__MASK |
1587 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1588 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1589 if (!cmd->device->physical_device->info->a6xx.has_z24uint_s8uint) {
1590 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_8_8_8_UINT) |
1591 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_W) |
1592 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1593 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1594 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1595 } else {
1596 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_Z24_UINT_S8_UINT) |
1597 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1598 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1599 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1600 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1601 }
1602 }
1603
1604 if (i % 2 == 1 && att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
1605 dst[0] &= ~A6XX_TEX_CONST_0_FMT__MASK;
1606 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_UINT);
1607 dst[2] &= ~(A6XX_TEX_CONST_2_PITCHALIGN__MASK | A6XX_TEX_CONST_2_PITCH__MASK);
1608 dst[2] |= A6XX_TEX_CONST_2_PITCH(iview->stencil_pitch);
1609 dst[3] = 0;
1610 dst[4] = iview->stencil_base_addr;
1611 dst[5] = (dst[5] & 0xffff) | iview->stencil_base_addr >> 32;
1612
1613 cpp = att->samples;
1614 gmem_offset = att->gmem_offset_stencil[cmd->state.gmem_layout];
1615 }
1616
1617 if (!gmem || !subpass->input_attachments[i / 2].patch_input_gmem)
1618 continue;
1619
1620 /* patched for gmem */
1621 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1622 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1623 dst[2] =
1624 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1625 A6XX_TEX_CONST_2_PITCH(tiling->tile0.width * cpp);
1626 /* Note: it seems the HW implicitly calculates the array pitch with the
1627 * GMEM tiling, so we don't need to specify the pitch ourselves.
1628 */
1629 dst[3] = 0;
1630 dst[4] = cmd->device->physical_device->gmem_base + gmem_offset;
1631 dst[5] &= A6XX_TEX_CONST_5_DEPTH__MASK;
1632 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1633 dst[i] = 0;
1634 }
1635
1636 struct tu_cs cs;
1637 struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
1638
1639 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1640 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1641 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1642 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1643 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1644 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1645 tu_cs_emit_qw(&cs, texture.iova);
1646
1647 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_CONST(.qword = texture.iova));
1648
1649 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1650
1651 assert(cs.cur == cs.end); /* validate draw state size */
1652
1653 return ds;
1654 }
1655
1656 static void
tu_set_input_attachments(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass)1657 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1658 {
1659 struct tu_cs *cs = &cmd->draw_cs;
1660
1661 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1662 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
1663 tu_emit_input_attachments(cmd, subpass, true));
1664 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
1665 tu_emit_input_attachments(cmd, subpass, false));
1666 }
1667
1668 static void
tu_emit_renderpass_begin(struct tu_cmd_buffer * cmd)1669 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd)
1670 {
1671 /* We need to re-emit any draw states that are patched in order for them to
1672 * be correctly added to the per-renderpass patchpoint list, even if they
1673 * are the same as before.
1674 */
1675 if (cmd->state.pass->has_fdm)
1676 cmd->state.dirty |= TU_CMD_DIRTY_FDM;
1677
1678 /* We need to re-emit MSAA at the beginning of every renderpass because it
1679 * isn't part of a draw state that gets automatically re-emitted.
1680 */
1681 BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
1682 MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES);
1683 /* PC_PRIMITIVE_CNTL_0 isn't a part of a draw state and may be changed
1684 * by blits.
1685 */
1686 BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
1687 MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE);
1688 }
1689
1690 template <chip CHIP>
1691 static void
tu6_sysmem_render_begin(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)1692 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1693 struct tu_renderpass_result *autotune_result)
1694 {
1695 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1696
1697 tu_lrz_sysmem_begin(cmd, cs);
1698
1699 assert(fb->width > 0 && fb->height > 0);
1700 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1701 tu6_emit_window_offset<CHIP>(cs, 0, 0);
1702
1703 tu6_emit_bin_size<CHIP>(cs, 0, 0, {
1704 .render_mode = RENDERING_PASS,
1705 .force_lrz_write_dis = true,
1706 .buffers_location = BUFFERS_IN_SYSMEM,
1707 .lrz_feedback_zmode_mask = 0x0,
1708 });
1709
1710 if (CHIP == A7XX) {
1711 tu_cs_emit_regs(cs,
1712 A7XX_RB_UNKNOWN_8812(0x3ff)); // all buffers in sysmem
1713 tu_cs_emit_regs(cs,
1714 A7XX_RB_UNKNOWN_8E06(cmd->device->physical_device->info->a6xx.magic.RB_UNKNOWN_8E06));
1715
1716 /* These three have something to do with lrz/depth */
1717 tu_cs_emit_regs(cs, A7XX_GRAS_UNKNOWN_8007(0x0));
1718 tu_cs_emit_regs(cs, A7XX_GRAS_UNKNOWN_8113(0x4));
1719
1720 tu_cs_emit_regs(cs, A6XX_GRAS_UNKNOWN_8110(0x2));
1721 tu_cs_emit_regs(cs, A7XX_RB_UNKNOWN_8E09(0x4));
1722 }
1723
1724 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1725 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1726
1727 /* A7XX TODO: blob doesn't use CP_SKIP_IB2_ENABLE_* */
1728 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1729 tu_cs_emit(cs, 0x0);
1730
1731 tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_SYSMEM);
1732
1733 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1734 tu_cs_emit(cs, 0x1);
1735
1736 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1737 tu_cs_emit(cs, 0x0);
1738
1739 tu_autotune_begin_renderpass(cmd, cs, autotune_result);
1740
1741 tu_cs_sanity_check(cs);
1742 }
1743
1744 template <chip CHIP>
1745 static void
tu6_sysmem_render_end(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)1746 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1747 struct tu_renderpass_result *autotune_result)
1748 {
1749 tu_autotune_end_renderpass(cmd, cs, autotune_result);
1750
1751 /* Do any resolves of the last subpass. These are handled in the
1752 * tile_store_cs in the gmem path.
1753 */
1754 tu6_emit_sysmem_resolves<CHIP>(cmd, cs, cmd->state.subpass);
1755
1756 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1757
1758 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1759 tu_cs_emit(cs, 0x0);
1760
1761 tu_lrz_sysmem_end(cmd, cs);
1762
1763 tu_cs_sanity_check(cs);
1764 }
1765
1766 template <chip CHIP>
1767 static void
tu6_tile_render_begin(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)1768 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1769 struct tu_renderpass_result *autotune_result)
1770 {
1771 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1772 const struct tu_tiling_config *tiling = cmd->state.tiling;
1773 tu_lrz_tiling_begin(cmd, cs);
1774
1775 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1776 tu_cs_emit(cs, 0x0);
1777
1778 tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_GMEM);
1779
1780 if (use_hw_binning(cmd)) {
1781 if (!cmd->vsc_initialized) {
1782 tu6_lazy_emit_vsc(cmd, cs);
1783 }
1784
1785 tu6_emit_bin_size<CHIP>(cs, tiling->tile0.width, tiling->tile0.height,
1786 {
1787 .render_mode = BINNING_PASS,
1788 .buffers_location = BUFFERS_IN_GMEM,
1789 .lrz_feedback_zmode_mask = 0x6,
1790 });
1791
1792 tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, cs, true);
1793
1794 tu6_emit_binning_pass<CHIP>(cmd, cs);
1795
1796 tu6_emit_bin_size<CHIP>(cs, tiling->tile0.width, tiling->tile0.height,
1797 {
1798 .render_mode = RENDERING_PASS,
1799 .force_lrz_write_dis = true,
1800 .buffers_location = BUFFERS_IN_GMEM,
1801 .lrz_feedback_zmode_mask = 0x6,
1802 });
1803
1804 tu_cs_emit_regs(cs,
1805 A6XX_VFD_MODE_CNTL(RENDERING_PASS));
1806
1807 tu_cs_emit_regs(cs,
1808 A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1809
1810 tu_cs_emit_regs(cs,
1811 A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1812
1813 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1814 tu_cs_emit(cs, 0x1);
1815 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_LOCAL, 1);
1816 tu_cs_emit(cs, 0x1);
1817 } else {
1818 tu6_emit_bin_size<CHIP>(cs, tiling->tile0.width, tiling->tile0.height,
1819 {
1820 .render_mode = RENDERING_PASS,
1821 .buffers_location = BUFFERS_IN_GMEM,
1822 .lrz_feedback_zmode_mask = 0x6,
1823 });
1824
1825 if (tiling->binning_possible) {
1826 /* Mark all tiles as visible for tu6_emit_cond_for_load_stores(), since
1827 * the actual binner didn't run.
1828 */
1829 int pipe_count = tiling->pipe_count.width * tiling->pipe_count.height;
1830 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_STATE_REG(0), pipe_count);
1831 for (int i = 0; i < pipe_count; i++)
1832 tu_cs_emit(cs, ~0);
1833 }
1834 }
1835
1836 tu_autotune_begin_renderpass(cmd, cs, autotune_result);
1837
1838 tu_cs_sanity_check(cs);
1839 }
1840
1841 template <chip CHIP>
1842 static void
tu6_render_tile(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t tx,uint32_t ty,uint32_t pipe,uint32_t slot,const struct tu_image_view * fdm)1843 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1844 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot,
1845 const struct tu_image_view *fdm)
1846 {
1847 tu6_emit_tile_select<CHIP>(cmd, &cmd->cs, tx, ty, pipe, slot, fdm);
1848
1849 trace_start_draw_ib_gmem(&cmd->trace, &cmd->cs);
1850
1851 /* Primitives that passed all tests are still counted in in each
1852 * tile even with HW binning beforehand. Do not permit it.
1853 */
1854 if (cmd->state.prim_generated_query_running_before_rp)
1855 tu_emit_event_write<CHIP>(cmd, cs, FD_STOP_PRIMITIVE_CTRS);
1856
1857 tu_cs_emit_call(cs, &cmd->draw_cs);
1858
1859 if (cmd->state.prim_generated_query_running_before_rp)
1860 tu_emit_event_write<CHIP>(cmd, cs, FD_START_PRIMITIVE_CTRS);
1861
1862 if (use_hw_binning(cmd)) {
1863 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1864 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1865 }
1866
1867 /* Predicate is changed in draw_cs so we have to re-emit it */
1868 if (cmd->state.rp.draw_cs_writes_to_cond_pred)
1869 tu6_emit_cond_for_load_stores(cmd, cs, pipe, slot, false);
1870
1871 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1872 tu_cs_emit(cs, 0x0);
1873
1874 tu_cs_emit_call(cs, &cmd->tile_store_cs);
1875
1876 tu_clone_trace_range(cmd, cs, cmd->trace_renderpass_start,
1877 cmd->trace_renderpass_end);
1878
1879 tu_cs_sanity_check(cs);
1880
1881 trace_end_draw_ib_gmem(&cmd->trace, &cmd->cs);
1882 }
1883
1884 template <chip CHIP>
1885 static void
tu6_tile_render_end(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)1886 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1887 struct tu_renderpass_result *autotune_result)
1888 {
1889 tu_autotune_end_renderpass(cmd, cs, autotune_result);
1890
1891 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1892
1893 tu_lrz_tiling_end(cmd, cs);
1894
1895 tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_FLUSH_BLIT_CACHE);
1896
1897 tu_cs_sanity_check(cs);
1898 }
1899
1900 template <chip CHIP>
1901 static void
tu_cmd_render_tiles(struct tu_cmd_buffer * cmd,struct tu_renderpass_result * autotune_result)1902 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd,
1903 struct tu_renderpass_result *autotune_result)
1904 {
1905 const struct tu_tiling_config *tiling = cmd->state.tiling;
1906 const struct tu_image_view *fdm = NULL;
1907
1908 if (cmd->state.pass->fragment_density_map.attachment != VK_ATTACHMENT_UNUSED) {
1909 fdm = cmd->state.attachments[cmd->state.pass->fragment_density_map.attachment];
1910 }
1911
1912 /* Create gmem stores now (at EndRenderPass time)) because they needed to
1913 * know whether to allow their conditional execution, which was tied to a
1914 * state that was known only at the end of the renderpass. They will be
1915 * called from tu6_render_tile().
1916 */
1917 tu_cs_begin(&cmd->tile_store_cs);
1918 tu6_emit_tile_store<CHIP>(cmd, &cmd->tile_store_cs);
1919 tu_cs_end(&cmd->tile_store_cs);
1920
1921 cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
1922
1923 tu6_tile_render_begin<CHIP>(cmd, &cmd->cs, autotune_result);
1924
1925 /* Note: we reverse the order of walking the pipes and tiles on every
1926 * other row, to improve texture cache locality compared to raster order.
1927 */
1928 for (uint32_t py = 0; py < tiling->pipe_count.height; py++) {
1929 uint32_t pipe_row = py * tiling->pipe_count.width;
1930 for (uint32_t pipe_row_i = 0; pipe_row_i < tiling->pipe_count.width; pipe_row_i++) {
1931 uint32_t px;
1932 if (py & 1)
1933 px = tiling->pipe_count.width - 1 - pipe_row_i;
1934 else
1935 px = pipe_row_i;
1936 uint32_t pipe = pipe_row + px;
1937 uint32_t tx1 = px * tiling->pipe0.width;
1938 uint32_t ty1 = py * tiling->pipe0.height;
1939 uint32_t tx2 = MIN2(tx1 + tiling->pipe0.width, tiling->tile_count.width);
1940 uint32_t ty2 = MIN2(ty1 + tiling->pipe0.height, tiling->tile_count.height);
1941 uint32_t tile_row_stride = tx2 - tx1;
1942 uint32_t slot_row = 0;
1943 for (uint32_t ty = ty1; ty < ty2; ty++) {
1944 for (uint32_t tile_row_i = 0; tile_row_i < tile_row_stride; tile_row_i++) {
1945 uint32_t tx;
1946 if (ty & 1)
1947 tx = tile_row_stride - 1 - tile_row_i;
1948 else
1949 tx = tile_row_i;
1950 uint32_t slot = slot_row + tx;
1951 tu6_render_tile<CHIP>(cmd, &cmd->cs, tx1 + tx, ty, pipe, slot, fdm);
1952 }
1953 slot_row += tile_row_stride;
1954 }
1955 }
1956 }
1957
1958 tu6_tile_render_end<CHIP>(cmd, &cmd->cs, autotune_result);
1959
1960 trace_end_render_pass(&cmd->trace, &cmd->cs);
1961
1962 /* We have trashed the dynamically-emitted viewport, scissor, and FS params
1963 * via the patchpoints, so we need to re-emit them if they are reused for a
1964 * later render pass.
1965 */
1966 if (cmd->state.pass->has_fdm)
1967 cmd->state.dirty |= TU_CMD_DIRTY_FDM;
1968
1969 /* tu6_render_tile has cloned these tracepoints for each tile */
1970 if (!u_trace_iterator_equal(cmd->trace_renderpass_start, cmd->trace_renderpass_end))
1971 u_trace_disable_event_range(cmd->trace_renderpass_start,
1972 cmd->trace_renderpass_end);
1973
1974 /* Reset the gmem store CS entry lists so that the next render pass
1975 * does its own stores.
1976 */
1977 tu_cs_discard_entries(&cmd->tile_store_cs);
1978 }
1979
1980 template <chip CHIP>
1981 static void
tu_cmd_render_sysmem(struct tu_cmd_buffer * cmd,struct tu_renderpass_result * autotune_result)1982 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd,
1983 struct tu_renderpass_result *autotune_result)
1984 {
1985 cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
1986
1987 tu6_sysmem_render_begin<CHIP>(cmd, &cmd->cs, autotune_result);
1988
1989 trace_start_draw_ib_sysmem(&cmd->trace, &cmd->cs);
1990
1991 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1992
1993 trace_end_draw_ib_sysmem(&cmd->trace, &cmd->cs);
1994
1995 tu6_sysmem_render_end<CHIP>(cmd, &cmd->cs, autotune_result);
1996
1997 trace_end_render_pass(&cmd->trace, &cmd->cs);
1998 }
1999
2000 template <chip CHIP>
2001 void
tu_cmd_render(struct tu_cmd_buffer * cmd_buffer)2002 tu_cmd_render(struct tu_cmd_buffer *cmd_buffer)
2003 {
2004 if (cmd_buffer->state.rp.has_tess)
2005 tu6_lazy_emit_tessfactor_addr<CHIP>(cmd_buffer);
2006
2007 struct tu_renderpass_result *autotune_result = NULL;
2008 if (use_sysmem_rendering(cmd_buffer, &autotune_result))
2009 tu_cmd_render_sysmem<CHIP>(cmd_buffer, autotune_result);
2010 else
2011 tu_cmd_render_tiles<CHIP>(cmd_buffer, autotune_result);
2012
2013 /* Outside of renderpasses we assume all draw states are disabled. We do
2014 * this outside the draw CS for the normal case where 3d gmem stores aren't
2015 * used.
2016 */
2017 tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs);
2018
2019 }
2020
tu_reset_render_pass(struct tu_cmd_buffer * cmd_buffer)2021 static void tu_reset_render_pass(struct tu_cmd_buffer *cmd_buffer)
2022 {
2023 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
2024 rendered */
2025 tu_cs_discard_entries(&cmd_buffer->draw_cs);
2026 tu_cs_begin(&cmd_buffer->draw_cs);
2027 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
2028 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
2029
2030 cmd_buffer->state.pass = NULL;
2031 cmd_buffer->state.subpass = NULL;
2032 cmd_buffer->state.framebuffer = NULL;
2033 cmd_buffer->state.attachments = NULL;
2034 cmd_buffer->state.clear_values = NULL;
2035 cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* invalid value to prevent looking up gmem offsets */
2036 memset(&cmd_buffer->state.rp, 0, sizeof(cmd_buffer->state.rp));
2037
2038 /* LRZ is not valid next time we use it */
2039 cmd_buffer->state.lrz.valid = false;
2040 cmd_buffer->state.dirty |= TU_CMD_DIRTY_LRZ;
2041
2042 /* Patchpoints have been executed */
2043 util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints);
2044 ralloc_free(cmd_buffer->patchpoints_ctx);
2045 cmd_buffer->patchpoints_ctx = NULL;
2046 }
2047
2048 static VkResult
tu_create_cmd_buffer(struct vk_command_pool * pool,struct vk_command_buffer ** cmd_buffer_out)2049 tu_create_cmd_buffer(struct vk_command_pool *pool,
2050 struct vk_command_buffer **cmd_buffer_out)
2051 {
2052 struct tu_device *device =
2053 container_of(pool->base.device, struct tu_device, vk);
2054 struct tu_cmd_buffer *cmd_buffer;
2055
2056 cmd_buffer = (struct tu_cmd_buffer *) vk_zalloc2(
2057 &device->vk.alloc, NULL, sizeof(*cmd_buffer), 8,
2058 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2059
2060 if (cmd_buffer == NULL)
2061 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
2062
2063 VkResult result =
2064 vk_command_buffer_init(pool, &cmd_buffer->vk, &tu_cmd_buffer_ops,
2065 VK_COMMAND_BUFFER_LEVEL_PRIMARY);
2066 if (result != VK_SUCCESS) {
2067 vk_free2(&device->vk.alloc, NULL, cmd_buffer);
2068 return result;
2069 }
2070
2071 cmd_buffer->device = device;
2072
2073 u_trace_init(&cmd_buffer->trace, &device->trace_context);
2074 list_inithead(&cmd_buffer->renderpass_autotune_results);
2075
2076 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096, "cmd cs");
2077 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096, "draw cs");
2078 tu_cs_init(&cmd_buffer->tile_store_cs, device, TU_CS_MODE_GROW, 2048, "tile store cs");
2079 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "draw epilogue cs");
2080 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048, "draw sub cs");
2081 tu_cs_init(&cmd_buffer->pre_chain.draw_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw cs");
2082 tu_cs_init(&cmd_buffer->pre_chain.draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw epiligoue cs");
2083
2084 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
2085 cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET;
2086
2087 *cmd_buffer_out = &cmd_buffer->vk;
2088
2089 return VK_SUCCESS;
2090 }
2091
2092 static void
tu_cmd_buffer_destroy(struct vk_command_buffer * vk_cmd_buffer)2093 tu_cmd_buffer_destroy(struct vk_command_buffer *vk_cmd_buffer)
2094 {
2095 struct tu_cmd_buffer *cmd_buffer =
2096 container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk);
2097
2098 tu_cs_finish(&cmd_buffer->cs);
2099 tu_cs_finish(&cmd_buffer->draw_cs);
2100 tu_cs_finish(&cmd_buffer->tile_store_cs);
2101 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
2102 tu_cs_finish(&cmd_buffer->sub_cs);
2103 tu_cs_finish(&cmd_buffer->pre_chain.draw_cs);
2104 tu_cs_finish(&cmd_buffer->pre_chain.draw_epilogue_cs);
2105
2106 u_trace_fini(&cmd_buffer->trace);
2107
2108 tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
2109
2110 for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
2111 if (cmd_buffer->descriptors[i].push_set.layout)
2112 vk_descriptor_set_layout_unref(&cmd_buffer->device->vk,
2113 &cmd_buffer->descriptors[i].push_set.layout->vk);
2114 vk_free(&cmd_buffer->device->vk.alloc,
2115 cmd_buffer->descriptors[i].push_set.mapped_ptr);
2116 }
2117
2118 ralloc_free(cmd_buffer->patchpoints_ctx);
2119 util_dynarray_fini(&cmd_buffer->fdm_bin_patchpoints);
2120
2121 vk_command_buffer_finish(&cmd_buffer->vk);
2122 vk_free2(&cmd_buffer->device->vk.alloc, &cmd_buffer->vk.pool->alloc,
2123 cmd_buffer);
2124 }
2125
2126 static void
tu_reset_cmd_buffer(struct vk_command_buffer * vk_cmd_buffer,UNUSED VkCommandBufferResetFlags flags)2127 tu_reset_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer,
2128 UNUSED VkCommandBufferResetFlags flags)
2129 {
2130 struct tu_cmd_buffer *cmd_buffer =
2131 container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk);
2132
2133 vk_command_buffer_reset(&cmd_buffer->vk);
2134
2135 tu_cs_reset(&cmd_buffer->cs);
2136 tu_cs_reset(&cmd_buffer->draw_cs);
2137 tu_cs_reset(&cmd_buffer->tile_store_cs);
2138 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
2139 tu_cs_reset(&cmd_buffer->sub_cs);
2140 tu_cs_reset(&cmd_buffer->pre_chain.draw_cs);
2141 tu_cs_reset(&cmd_buffer->pre_chain.draw_epilogue_cs);
2142
2143 tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
2144
2145 for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
2146 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
2147 if (cmd_buffer->descriptors[i].push_set.layout) {
2148 vk_descriptor_set_layout_unref(&cmd_buffer->device->vk,
2149 &cmd_buffer->descriptors[i].push_set.layout->vk);
2150 }
2151 memset(&cmd_buffer->descriptors[i].push_set, 0, sizeof(cmd_buffer->descriptors[i].push_set));
2152 cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET;
2153 cmd_buffer->descriptors[i].max_sets_bound = 0;
2154 cmd_buffer->descriptors[i].max_dynamic_offset_size = 0;
2155 }
2156
2157 u_trace_fini(&cmd_buffer->trace);
2158 u_trace_init(&cmd_buffer->trace, &cmd_buffer->device->trace_context);
2159
2160 cmd_buffer->state.max_vbs_bound = 0;
2161
2162 cmd_buffer->vsc_initialized = false;
2163
2164 ralloc_free(cmd_buffer->patchpoints_ctx);
2165 cmd_buffer->patchpoints_ctx = NULL;
2166 util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints);
2167 }
2168
2169 const struct vk_command_buffer_ops tu_cmd_buffer_ops = {
2170 .create = tu_create_cmd_buffer,
2171 .reset = tu_reset_cmd_buffer,
2172 .destroy = tu_cmd_buffer_destroy,
2173 };
2174
2175 /* Initialize the cache, assuming all necessary flushes have happened but *not*
2176 * invalidations.
2177 */
2178 static void
tu_cache_init(struct tu_cache_state * cache)2179 tu_cache_init(struct tu_cache_state *cache)
2180 {
2181 cache->flush_bits = 0;
2182 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
2183 }
2184
2185 /* Unlike the public entrypoint, this doesn't handle cache tracking, and
2186 * tracking the CCU state. It's used for the driver to insert its own command
2187 * buffer in the middle of a submit.
2188 */
2189 VkResult
tu_cmd_buffer_begin(struct tu_cmd_buffer * cmd_buffer,const VkCommandBufferBeginInfo * pBeginInfo)2190 tu_cmd_buffer_begin(struct tu_cmd_buffer *cmd_buffer,
2191 const VkCommandBufferBeginInfo *pBeginInfo)
2192 {
2193 vk_command_buffer_begin(&cmd_buffer->vk, pBeginInfo);
2194
2195 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
2196 cmd_buffer->vk.dynamic_graphics_state = vk_default_dynamic_graphics_state;
2197 cmd_buffer->vk.dynamic_graphics_state.vi = &cmd_buffer->state.vi;
2198 cmd_buffer->vk.dynamic_graphics_state.ms.sample_locations = &cmd_buffer->state.sl;
2199 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
2200 cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* dirty value */
2201
2202 tu_cache_init(&cmd_buffer->state.cache);
2203 tu_cache_init(&cmd_buffer->state.renderpass_cache);
2204 cmd_buffer->usage_flags = pBeginInfo->flags;
2205
2206 tu_cs_begin(&cmd_buffer->cs);
2207 tu_cs_begin(&cmd_buffer->draw_cs);
2208 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
2209
2210 return VK_SUCCESS;
2211 }
2212
2213 VKAPI_ATTR VkResult VKAPI_CALL
tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,const VkCommandBufferBeginInfo * pBeginInfo)2214 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
2215 const VkCommandBufferBeginInfo *pBeginInfo)
2216 {
2217 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
2218 VkResult result = tu_cmd_buffer_begin(cmd_buffer, pBeginInfo);
2219 if (result != VK_SUCCESS)
2220 return result;
2221
2222 /* setup initial configuration into command buffer */
2223 if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
2224 trace_start_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs, cmd_buffer);
2225
2226 switch (cmd_buffer->queue_family_index) {
2227 case TU_QUEUE_GENERAL:
2228 TU_CALLX(cmd_buffer->device, tu6_init_hw)(cmd_buffer, &cmd_buffer->cs);
2229 break;
2230 default:
2231 break;
2232 }
2233 } else if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
2234 const bool pass_continue =
2235 pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
2236
2237 trace_start_cmd_buffer(&cmd_buffer->trace,
2238 pass_continue ? &cmd_buffer->draw_cs : &cmd_buffer->cs, cmd_buffer);
2239
2240 assert(pBeginInfo->pInheritanceInfo);
2241
2242 cmd_buffer->inherited_pipeline_statistics =
2243 pBeginInfo->pInheritanceInfo->pipelineStatistics;
2244
2245 vk_foreach_struct_const(ext, pBeginInfo->pInheritanceInfo) {
2246 switch (ext->sType) {
2247 case VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT: {
2248 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *cond_rend =
2249 (VkCommandBufferInheritanceConditionalRenderingInfoEXT *) ext;
2250 cmd_buffer->state.predication_active = cond_rend->conditionalRenderingEnable;
2251 break;
2252 }
2253 default:
2254 break;
2255 }
2256 }
2257
2258 if (pass_continue) {
2259 const VkCommandBufferInheritanceRenderingInfo *rendering_info =
2260 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext,
2261 COMMAND_BUFFER_INHERITANCE_RENDERING_INFO);
2262
2263 if (TU_DEBUG(DYNAMIC)) {
2264 rendering_info =
2265 vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level,
2266 pBeginInfo);
2267 }
2268
2269 if (rendering_info) {
2270 tu_setup_dynamic_inheritance(cmd_buffer, rendering_info);
2271 cmd_buffer->state.pass = &cmd_buffer->dynamic_pass;
2272 cmd_buffer->state.subpass = &cmd_buffer->dynamic_subpass;
2273 } else {
2274 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
2275 cmd_buffer->state.subpass =
2276 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
2277 }
2278 tu_fill_render_pass_state(&cmd_buffer->state.vk_rp,
2279 cmd_buffer->state.pass,
2280 cmd_buffer->state.subpass);
2281 vk_cmd_set_cb_attachment_count(&cmd_buffer->vk,
2282 cmd_buffer->state.subpass->color_count);
2283 cmd_buffer->state.dirty |= TU_CMD_DIRTY_SUBPASS;
2284
2285 cmd_buffer->patchpoints_ctx = ralloc_parent(NULL);
2286
2287 /* We can't set the gmem layout here, because the state.pass only has
2288 * to be compatible (same formats/sample counts) with the primary's
2289 * renderpass, rather than exactly equal.
2290 */
2291
2292 tu_lrz_begin_secondary_cmdbuf(cmd_buffer);
2293 } else {
2294 /* When executing in the middle of another command buffer, the CCU
2295 * state is unknown.
2296 */
2297 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
2298 }
2299 }
2300
2301 return VK_SUCCESS;
2302 }
2303
2304 static struct tu_cs
tu_cmd_dynamic_state(struct tu_cmd_buffer * cmd,uint32_t id,uint32_t size)2305 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2306 {
2307 struct tu_cs cs;
2308
2309 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2310 cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
2311
2312 /* note: this also avoids emitting draw states before renderpass clears,
2313 * which may use the 3D clear path (for MSAA cases)
2314 */
2315 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)
2316 return cs;
2317
2318 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2319 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2320
2321 return cs;
2322 }
2323
2324 static void
tu_cmd_end_dynamic_state(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t id)2325 tu_cmd_end_dynamic_state(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
2326 uint32_t id)
2327 {
2328 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2329 cmd->state.dynamic_state[id] = tu_cs_end_draw_state(&cmd->sub_cs, cs);
2330
2331 /* note: this also avoids emitting draw states before renderpass clears,
2332 * which may use the 3D clear path (for MSAA cases)
2333 */
2334 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)
2335 return;
2336
2337 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2338 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2339 }
2340
2341 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes,const VkDeviceSize * pStrides)2342 tu_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer,
2343 uint32_t firstBinding,
2344 uint32_t bindingCount,
2345 const VkBuffer *pBuffers,
2346 const VkDeviceSize *pOffsets,
2347 const VkDeviceSize *pSizes,
2348 const VkDeviceSize *pStrides)
2349 {
2350 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2351 struct tu_cs cs;
2352
2353 cmd->state.max_vbs_bound = MAX2(
2354 cmd->state.max_vbs_bound, firstBinding + bindingCount);
2355
2356 if (pStrides) {
2357 vk_cmd_set_vertex_binding_strides(&cmd->vk, firstBinding, bindingCount,
2358 pStrides);
2359 }
2360
2361 cmd->state.vertex_buffers.iova =
2362 tu_cs_draw_state(&cmd->sub_cs, &cs, 4 * cmd->state.max_vbs_bound).iova;
2363
2364 for (uint32_t i = 0; i < bindingCount; i++) {
2365 if (pBuffers[i] == VK_NULL_HANDLE) {
2366 cmd->state.vb[firstBinding + i].base = 0;
2367 cmd->state.vb[firstBinding + i].size = 0;
2368 } else {
2369 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
2370 cmd->state.vb[firstBinding + i].base = buf->iova + pOffsets[i];
2371 cmd->state.vb[firstBinding + i].size =
2372 vk_buffer_range(&buf->vk, pOffsets[i], pSizes ? pSizes[i] : VK_WHOLE_SIZE);
2373 }
2374 }
2375
2376 for (uint32_t i = 0; i < cmd->state.max_vbs_bound; i++) {
2377 tu_cs_emit_regs(&cs,
2378 A6XX_VFD_FETCH_BASE(i, .qword = cmd->state.vb[i].base),
2379 A6XX_VFD_FETCH_SIZE(i, cmd->state.vb[i].size));
2380 }
2381
2382 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2383 }
2384
2385 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindIndexBuffer2KHR(VkCommandBuffer commandBuffer,VkBuffer buffer,VkDeviceSize offset,VkDeviceSize size,VkIndexType indexType)2386 tu_CmdBindIndexBuffer2KHR(VkCommandBuffer commandBuffer,
2387 VkBuffer buffer,
2388 VkDeviceSize offset,
2389 VkDeviceSize size,
2390 VkIndexType indexType)
2391 {
2392 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2393 TU_FROM_HANDLE(tu_buffer, buf, buffer);
2394
2395 size = vk_buffer_range(&buf->vk, offset, size);
2396
2397 uint32_t index_size, index_shift;
2398 uint32_t restart_index = vk_index_to_restart(indexType);
2399
2400 switch (indexType) {
2401 case VK_INDEX_TYPE_UINT16:
2402 index_size = INDEX4_SIZE_16_BIT;
2403 index_shift = 1;
2404 break;
2405 case VK_INDEX_TYPE_UINT32:
2406 index_size = INDEX4_SIZE_32_BIT;
2407 index_shift = 2;
2408 break;
2409 case VK_INDEX_TYPE_UINT8_EXT:
2410 index_size = INDEX4_SIZE_8_BIT;
2411 index_shift = 0;
2412 break;
2413 default:
2414 unreachable("invalid VkIndexType");
2415 }
2416
2417 /* initialize/update the restart index */
2418 if (cmd->state.index_size != index_size)
2419 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
2420
2421 cmd->state.index_va = buf->iova + offset;
2422 cmd->state.max_index_count = size >> index_shift;
2423 cmd->state.index_size = index_size;
2424 }
2425
2426 template <chip CHIP>
2427 static void
tu6_emit_descriptor_sets(struct tu_cmd_buffer * cmd,VkPipelineBindPoint bind_point)2428 tu6_emit_descriptor_sets(struct tu_cmd_buffer *cmd,
2429 VkPipelineBindPoint bind_point)
2430 {
2431 struct tu_descriptor_state *descriptors_state =
2432 tu_get_descriptors_state(cmd, bind_point);
2433 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg;
2434 struct tu_cs *cs, state_cs;
2435
2436 if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
2437 sp_bindless_base_reg = __SP_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg;
2438 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
2439
2440 if (CHIP == A6XX) {
2441 cmd->state.desc_sets =
2442 tu_cs_draw_state(&cmd->sub_cs, &state_cs,
2443 4 + 4 * descriptors_state->max_sets_bound +
2444 (descriptors_state->max_dynamic_offset_size ? 6 : 0));
2445 } else {
2446 cmd->state.desc_sets =
2447 tu_cs_draw_state(&cmd->sub_cs, &state_cs,
2448 3 + 2 * descriptors_state->max_sets_bound +
2449 (descriptors_state->max_dynamic_offset_size ? 3 : 0));
2450 }
2451 cs = &state_cs;
2452 } else {
2453 assert(bind_point == VK_PIPELINE_BIND_POINT_COMPUTE);
2454
2455 sp_bindless_base_reg = __SP_CS_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg;
2456 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
2457
2458 cs = &cmd->cs;
2459 }
2460
2461 tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 2 * descriptors_state->max_sets_bound);
2462 tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound);
2463 if (CHIP == A6XX) {
2464 tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 2 * descriptors_state->max_sets_bound);
2465 tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound);
2466 }
2467
2468 /* Dynamic descriptors get the reserved descriptor set. */
2469 if (descriptors_state->max_dynamic_offset_size) {
2470 int reserved_set_idx = cmd->device->physical_device->reserved_set_idx;
2471 assert(reserved_set_idx >= 0); /* reserved set must be bound */
2472
2473 tu_cs_emit_pkt4(cs, sp_bindless_base_reg + reserved_set_idx * 2, 2);
2474 tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]);
2475 if (CHIP == A6XX) {
2476 tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg + reserved_set_idx * 2, 2);
2477 tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]);
2478 }
2479 }
2480
2481 tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP,
2482 .cs_bindless = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE ? CHIP == A6XX ? 0x1f : 0xff : 0,
2483 .gfx_bindless = bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS ? CHIP == A6XX ? 0x1f : 0xff : 0,
2484 ));
2485
2486 if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
2487 assert(cs->cur == cs->end); /* validate draw state size */
2488 /* note: this also avoids emitting draw states before renderpass clears,
2489 * which may use the 3D clear path (for MSAA cases)
2490 */
2491 if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
2492 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2493 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
2494 }
2495 }
2496 }
2497
2498 /* We lazily emit the draw state for desciptor sets at draw time, so that we can
2499 * batch together multiple tu_CmdBindDescriptorSets() calls. ANGLE and zink
2500 * will often emit multiple bind calls in a draw.
2501 */
2502 static void
tu_dirty_desc_sets(struct tu_cmd_buffer * cmd,VkPipelineBindPoint pipelineBindPoint)2503 tu_dirty_desc_sets(struct tu_cmd_buffer *cmd,
2504 VkPipelineBindPoint pipelineBindPoint)
2505 {
2506 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2507 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS;
2508 } else {
2509 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2510 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS;
2511 }
2512 }
2513
2514 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipelineLayout _layout,uint32_t firstSet,uint32_t descriptorSetCount,const VkDescriptorSet * pDescriptorSets,uint32_t dynamicOffsetCount,const uint32_t * pDynamicOffsets)2515 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
2516 VkPipelineBindPoint pipelineBindPoint,
2517 VkPipelineLayout _layout,
2518 uint32_t firstSet,
2519 uint32_t descriptorSetCount,
2520 const VkDescriptorSet *pDescriptorSets,
2521 uint32_t dynamicOffsetCount,
2522 const uint32_t *pDynamicOffsets)
2523 {
2524 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2525 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
2526 unsigned dyn_idx = 0;
2527
2528 struct tu_descriptor_state *descriptors_state =
2529 tu_get_descriptors_state(cmd, pipelineBindPoint);
2530
2531 descriptors_state->max_sets_bound =
2532 MAX2(descriptors_state->max_sets_bound, firstSet + descriptorSetCount);
2533
2534 unsigned dynamic_offset_offset = 0;
2535 for (unsigned i = 0; i < firstSet; i++) {
2536 dynamic_offset_offset += layout->set[i].layout->dynamic_offset_size;
2537 }
2538
2539 for (unsigned i = 0; i < descriptorSetCount; ++i) {
2540 unsigned idx = i + firstSet;
2541 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
2542
2543 descriptors_state->sets[idx] = set;
2544 descriptors_state->set_iova[idx] = set ?
2545 (set->va | BINDLESS_DESCRIPTOR_64B) : 0;
2546
2547 if (!set)
2548 continue;
2549
2550 if (set->layout->has_inline_uniforms)
2551 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2552
2553 if (!set->layout->dynamic_offset_size)
2554 continue;
2555
2556 uint32_t *src = set->dynamic_descriptors;
2557 uint32_t *dst = descriptors_state->dynamic_descriptors +
2558 dynamic_offset_offset / 4;
2559 for (unsigned j = 0; j < set->layout->binding_count; j++) {
2560 struct tu_descriptor_set_binding_layout *binding =
2561 &set->layout->binding[j];
2562 if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
2563 binding->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
2564 for (unsigned k = 0; k < binding->array_size; k++, dyn_idx++) {
2565 assert(dyn_idx < dynamicOffsetCount);
2566 uint32_t offset = pDynamicOffsets[dyn_idx];
2567 memcpy(dst, src, binding->size);
2568
2569 if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) {
2570 /* Note: we can assume here that the addition won't roll
2571 * over and change the SIZE field.
2572 */
2573 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
2574 va += offset;
2575 dst[0] = va;
2576 dst[1] = va >> 32;
2577 } else {
2578 uint32_t *dst_desc = dst;
2579 for (unsigned i = 0;
2580 i < binding->size / (4 * A6XX_TEX_CONST_DWORDS);
2581 i++, dst_desc += A6XX_TEX_CONST_DWORDS) {
2582 /* Note: A6XX_TEX_CONST_5_DEPTH is always 0 */
2583 uint64_t va = dst_desc[4] | ((uint64_t)dst_desc[5] << 32);
2584 uint32_t desc_offset =
2585 (dst_desc[2] &
2586 A6XX_TEX_CONST_2_STARTOFFSETTEXELS__MASK) >>
2587 A6XX_TEX_CONST_2_STARTOFFSETTEXELS__SHIFT;
2588
2589 /* Without the ability to cast 16-bit as 32-bit, there is
2590 * only one descriptor whose texels are 32 bits (4
2591 * bytes). With casting, there are two descriptors, the
2592 * first being 16-bit and the second being 32-bit.
2593 */
2594 unsigned offset_shift =
2595 binding->size == 4 * A6XX_TEX_CONST_DWORDS || i == 1 ? 2 : 1;
2596
2597 va += desc_offset << offset_shift;
2598 va += offset;
2599 unsigned new_offset = (va & 0x3f) >> offset_shift;
2600 va &= ~0x3full;
2601 dst_desc[4] = va;
2602 dst_desc[5] = va >> 32;
2603 dst_desc[2] =
2604 (dst_desc[2] & ~A6XX_TEX_CONST_2_STARTOFFSETTEXELS__MASK) |
2605 A6XX_TEX_CONST_2_STARTOFFSETTEXELS(new_offset);
2606 }
2607 }
2608
2609 dst += binding->size / 4;
2610 src += binding->size / 4;
2611 }
2612 }
2613 }
2614
2615 dynamic_offset_offset += layout->set[idx].layout->dynamic_offset_size;
2616 }
2617 assert(dyn_idx == dynamicOffsetCount);
2618
2619 if (dynamic_offset_offset) {
2620 descriptors_state->max_dynamic_offset_size =
2621 MAX2(descriptors_state->max_dynamic_offset_size, dynamic_offset_offset);
2622
2623 /* allocate and fill out dynamic descriptor set */
2624 struct tu_cs_memory dynamic_desc_set;
2625 int reserved_set_idx = cmd->device->physical_device->reserved_set_idx;
2626 VkResult result =
2627 tu_cs_alloc(&cmd->sub_cs,
2628 descriptors_state->max_dynamic_offset_size /
2629 (4 * A6XX_TEX_CONST_DWORDS),
2630 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
2631 if (result != VK_SUCCESS) {
2632 vk_command_buffer_set_error(&cmd->vk, result);
2633 return;
2634 }
2635
2636 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
2637 descriptors_state->max_dynamic_offset_size);
2638 assert(reserved_set_idx >= 0); /* reserved set must be bound */
2639 descriptors_state->set_iova[reserved_set_idx] = dynamic_desc_set.iova | BINDLESS_DESCRIPTOR_64B;
2640 }
2641
2642 tu_dirty_desc_sets(cmd, pipelineBindPoint);
2643 }
2644
2645 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorBuffersEXT(VkCommandBuffer commandBuffer,uint32_t bufferCount,const VkDescriptorBufferBindingInfoEXT * pBindingInfos)2646 tu_CmdBindDescriptorBuffersEXT(
2647 VkCommandBuffer commandBuffer,
2648 uint32_t bufferCount,
2649 const VkDescriptorBufferBindingInfoEXT *pBindingInfos)
2650 {
2651 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2652
2653 for (unsigned i = 0; i < bufferCount; i++)
2654 cmd->state.descriptor_buffer_iova[i] = pBindingInfos[i].address;
2655 }
2656
2657 VKAPI_ATTR void VKAPI_CALL
tu_CmdSetDescriptorBufferOffsetsEXT(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipelineLayout _layout,uint32_t firstSet,uint32_t setCount,const uint32_t * pBufferIndices,const VkDeviceSize * pOffsets)2658 tu_CmdSetDescriptorBufferOffsetsEXT(
2659 VkCommandBuffer commandBuffer,
2660 VkPipelineBindPoint pipelineBindPoint,
2661 VkPipelineLayout _layout,
2662 uint32_t firstSet,
2663 uint32_t setCount,
2664 const uint32_t *pBufferIndices,
2665 const VkDeviceSize *pOffsets)
2666 {
2667 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2668 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
2669
2670 struct tu_descriptor_state *descriptors_state =
2671 tu_get_descriptors_state(cmd, pipelineBindPoint);
2672
2673 descriptors_state->max_sets_bound =
2674 MAX2(descriptors_state->max_sets_bound, firstSet + setCount);
2675
2676 for (unsigned i = 0; i < setCount; ++i) {
2677 unsigned idx = i + firstSet;
2678 struct tu_descriptor_set_layout *set_layout = layout->set[idx].layout;
2679
2680 descriptors_state->set_iova[idx] =
2681 (cmd->state.descriptor_buffer_iova[pBufferIndices[i]] + pOffsets[i]) |
2682 BINDLESS_DESCRIPTOR_64B;
2683
2684 if (set_layout->has_inline_uniforms)
2685 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2686 }
2687
2688 tu_dirty_desc_sets(cmd, pipelineBindPoint);
2689 }
2690
2691 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorBufferEmbeddedSamplersEXT(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipelineLayout _layout,uint32_t set)2692 tu_CmdBindDescriptorBufferEmbeddedSamplersEXT(
2693 VkCommandBuffer commandBuffer,
2694 VkPipelineBindPoint pipelineBindPoint,
2695 VkPipelineLayout _layout,
2696 uint32_t set)
2697 {
2698 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2699 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
2700
2701 struct tu_descriptor_set_layout *set_layout = layout->set[set].layout;
2702
2703 struct tu_descriptor_state *descriptors_state =
2704 tu_get_descriptors_state(cmd, pipelineBindPoint);
2705
2706 descriptors_state->max_sets_bound =
2707 MAX2(descriptors_state->max_sets_bound, set + 1);
2708
2709 descriptors_state->set_iova[set] = set_layout->embedded_samplers->iova |
2710 BINDLESS_DESCRIPTOR_64B;
2711
2712 tu_dirty_desc_sets(cmd, pipelineBindPoint);
2713 }
2714
2715 static enum VkResult
tu_push_descriptor_set_update_layout(struct tu_device * device,struct tu_descriptor_set * set,struct tu_descriptor_set_layout * layout)2716 tu_push_descriptor_set_update_layout(struct tu_device *device,
2717 struct tu_descriptor_set *set,
2718 struct tu_descriptor_set_layout *layout)
2719 {
2720 if (set->layout == layout)
2721 return VK_SUCCESS;
2722
2723 if (set->layout)
2724 vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
2725 vk_descriptor_set_layout_ref(&layout->vk);
2726 set->layout = layout;
2727
2728 if (set->host_size < layout->size) {
2729 void *new_buf =
2730 vk_realloc(&device->vk.alloc, set->mapped_ptr, layout->size, 8,
2731 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2732 if (!new_buf)
2733 return VK_ERROR_OUT_OF_HOST_MEMORY;
2734 set->mapped_ptr = (uint32_t *) new_buf;
2735 set->host_size = layout->size;
2736 }
2737 return VK_SUCCESS;
2738 }
2739
2740 VKAPI_ATTR void VKAPI_CALL
tu_CmdPushDescriptorSetKHR(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipelineLayout _layout,uint32_t _set,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites)2741 tu_CmdPushDescriptorSetKHR(VkCommandBuffer commandBuffer,
2742 VkPipelineBindPoint pipelineBindPoint,
2743 VkPipelineLayout _layout,
2744 uint32_t _set,
2745 uint32_t descriptorWriteCount,
2746 const VkWriteDescriptorSet *pDescriptorWrites)
2747 {
2748 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2749 TU_FROM_HANDLE(tu_pipeline_layout, pipe_layout, _layout);
2750 struct tu_descriptor_set_layout *layout = pipe_layout->set[_set].layout;
2751 struct tu_descriptor_set *set =
2752 &tu_get_descriptors_state(cmd, pipelineBindPoint)->push_set;
2753
2754 struct tu_cs_memory set_mem;
2755 VkResult result = tu_cs_alloc(&cmd->sub_cs,
2756 DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
2757 A6XX_TEX_CONST_DWORDS, &set_mem);
2758 if (result != VK_SUCCESS) {
2759 vk_command_buffer_set_error(&cmd->vk, result);
2760 return;
2761 }
2762
2763 result = tu_push_descriptor_set_update_layout(cmd->device, set, layout);
2764 if (result != VK_SUCCESS) {
2765 vk_command_buffer_set_error(&cmd->vk, result);
2766 return;
2767 }
2768
2769 tu_update_descriptor_sets(cmd->device, tu_descriptor_set_to_handle(set),
2770 descriptorWriteCount, pDescriptorWrites, 0, NULL);
2771
2772 memcpy(set_mem.map, set->mapped_ptr, layout->size);
2773 set->va = set_mem.iova;
2774
2775 const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) };
2776 tu_CmdBindDescriptorSets(commandBuffer, pipelineBindPoint, _layout, _set,
2777 1, desc_set, 0, NULL);
2778 }
2779
2780 VKAPI_ATTR void VKAPI_CALL
tu_CmdPushDescriptorSetWithTemplateKHR(VkCommandBuffer commandBuffer,VkDescriptorUpdateTemplate descriptorUpdateTemplate,VkPipelineLayout _layout,uint32_t _set,const void * pData)2781 tu_CmdPushDescriptorSetWithTemplateKHR(VkCommandBuffer commandBuffer,
2782 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
2783 VkPipelineLayout _layout,
2784 uint32_t _set,
2785 const void* pData)
2786 {
2787 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2788 TU_FROM_HANDLE(tu_pipeline_layout, pipe_layout, _layout);
2789 TU_FROM_HANDLE(tu_descriptor_update_template, templ, descriptorUpdateTemplate);
2790 struct tu_descriptor_set_layout *layout = pipe_layout->set[_set].layout;
2791 struct tu_descriptor_set *set =
2792 &tu_get_descriptors_state(cmd, templ->bind_point)->push_set;
2793
2794 struct tu_cs_memory set_mem;
2795 VkResult result = tu_cs_alloc(&cmd->sub_cs,
2796 DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
2797 A6XX_TEX_CONST_DWORDS, &set_mem);
2798 if (result != VK_SUCCESS) {
2799 vk_command_buffer_set_error(&cmd->vk, result);
2800 return;
2801 }
2802
2803 result = tu_push_descriptor_set_update_layout(cmd->device, set, layout);
2804 if (result != VK_SUCCESS) {
2805 vk_command_buffer_set_error(&cmd->vk, result);
2806 return;
2807 }
2808
2809 tu_update_descriptor_set_with_template(cmd->device, set, descriptorUpdateTemplate, pData);
2810
2811 memcpy(set_mem.map, set->mapped_ptr, layout->size);
2812 set->va = set_mem.iova;
2813
2814 const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) };
2815 tu_CmdBindDescriptorSets(commandBuffer, templ->bind_point, _layout, _set,
2816 1, desc_set, 0, NULL);
2817 }
2818
2819 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes)2820 tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
2821 uint32_t firstBinding,
2822 uint32_t bindingCount,
2823 const VkBuffer *pBuffers,
2824 const VkDeviceSize *pOffsets,
2825 const VkDeviceSize *pSizes)
2826 {
2827 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2828 struct tu_cs *cs = &cmd->draw_cs;
2829
2830 /* using COND_REG_EXEC for xfb commands matches the blob behavior
2831 * presumably there isn't any benefit using a draw state when the
2832 * condition is (SYSMEM | BINNING)
2833 */
2834 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
2835 CP_COND_REG_EXEC_0_SYSMEM |
2836 CP_COND_REG_EXEC_0_BINNING);
2837
2838 for (uint32_t i = 0; i < bindingCount; i++) {
2839 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
2840 uint64_t iova = buf->iova + pOffsets[i];
2841 uint32_t size = buf->bo->size - (iova - buf->bo->iova);
2842 uint32_t idx = i + firstBinding;
2843
2844 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
2845 size = pSizes[i];
2846
2847 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
2848 uint32_t offset = iova & 0x1f;
2849 iova &= ~(uint64_t) 0x1f;
2850
2851 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
2852 tu_cs_emit_qw(cs, iova);
2853 tu_cs_emit(cs, size + offset);
2854
2855 cmd->state.streamout_offset[idx] = offset;
2856 }
2857
2858 tu_cond_exec_end(cs);
2859 }
2860
2861 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)2862 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
2863 uint32_t firstCounterBuffer,
2864 uint32_t counterBufferCount,
2865 const VkBuffer *pCounterBuffers,
2866 const VkDeviceSize *pCounterBufferOffsets)
2867 {
2868 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2869 struct tu_cs *cs = &cmd->draw_cs;
2870
2871 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
2872 CP_COND_REG_EXEC_0_SYSMEM |
2873 CP_COND_REG_EXEC_0_BINNING);
2874
2875 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
2876
2877 /* TODO: only update offset for active buffers */
2878 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
2879 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
2880
2881 for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
2882 uint32_t idx = firstCounterBuffer + i;
2883 uint32_t offset = cmd->state.streamout_offset[idx];
2884 uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
2885
2886 if (!pCounterBuffers[i])
2887 continue;
2888
2889 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
2890
2891 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2892 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
2893 CP_MEM_TO_REG_0_UNK31 |
2894 CP_MEM_TO_REG_0_CNT(1));
2895 tu_cs_emit_qw(cs, buf->iova + counter_buffer_offset);
2896
2897 if (offset) {
2898 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
2899 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
2900 CP_REG_RMW_0_SRC1_ADD);
2901 tu_cs_emit(cs, 0xffffffff);
2902 tu_cs_emit(cs, offset);
2903 }
2904 }
2905
2906 tu_cond_exec_end(cs);
2907 }
2908
2909 template <chip CHIP>
2910 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)2911 tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
2912 uint32_t firstCounterBuffer,
2913 uint32_t counterBufferCount,
2914 const VkBuffer *pCounterBuffers,
2915 const VkDeviceSize *pCounterBufferOffsets)
2916 {
2917 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2918 struct tu_cs *cs = &cmd->draw_cs;
2919
2920 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
2921 CP_COND_REG_EXEC_0_SYSMEM |
2922 CP_COND_REG_EXEC_0_BINNING);
2923
2924 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
2925
2926 /* TODO: only flush buffers that need to be flushed */
2927 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
2928 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
2929 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
2930 tu_cs_emit_qw(cs, global_iova_arr(cmd, flush_base, i));
2931 tu_emit_event_write<CHIP>(cmd, cs, (enum fd_gpu_event) (FD_FLUSH_SO_0 + i));
2932 }
2933
2934 for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
2935 uint32_t idx = firstCounterBuffer + i;
2936 uint32_t offset = cmd->state.streamout_offset[idx];
2937 uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
2938
2939 if (!pCounterBuffers[i])
2940 continue;
2941
2942 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
2943
2944 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
2945 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2946 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2947 COND(CHIP == A6XX, CP_MEM_TO_REG_0_SHIFT_BY_2) |
2948 0x40000 | /* ??? */
2949 CP_MEM_TO_REG_0_UNK31 |
2950 CP_MEM_TO_REG_0_CNT(1));
2951 tu_cs_emit_qw(cs, global_iova_arr(cmd, flush_base, idx));
2952
2953 if (offset) {
2954 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
2955 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2956 CP_REG_RMW_0_SRC1_ADD);
2957 tu_cs_emit(cs, 0xffffffff);
2958 tu_cs_emit(cs, -offset);
2959 }
2960
2961 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
2962 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2963 CP_REG_TO_MEM_0_CNT(1));
2964 tu_cs_emit_qw(cs, buf->iova + counter_buffer_offset);
2965 }
2966
2967 tu_cond_exec_end(cs);
2968
2969 cmd->state.rp.xfb_used = true;
2970 }
2971 TU_GENX(tu_CmdEndTransformFeedbackEXT);
2972
2973 VKAPI_ATTR void VKAPI_CALL
tu_CmdPushConstants(VkCommandBuffer commandBuffer,VkPipelineLayout layout,VkShaderStageFlags stageFlags,uint32_t offset,uint32_t size,const void * pValues)2974 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
2975 VkPipelineLayout layout,
2976 VkShaderStageFlags stageFlags,
2977 uint32_t offset,
2978 uint32_t size,
2979 const void *pValues)
2980 {
2981 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2982 memcpy((char *) cmd->push_constants + offset, pValues, size);
2983 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2984 }
2985
2986 /* Flush everything which has been made available but we haven't actually
2987 * flushed yet.
2988 */
2989 static void
tu_flush_all_pending(struct tu_cache_state * cache)2990 tu_flush_all_pending(struct tu_cache_state *cache)
2991 {
2992 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2993 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
2994 }
2995
2996 template <chip CHIP>
2997 VKAPI_ATTR VkResult VKAPI_CALL
tu_EndCommandBuffer(VkCommandBuffer commandBuffer)2998 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
2999 {
3000 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3001
3002 /* We currently flush CCU at the end of the command buffer, like
3003 * what the blob does. There's implicit synchronization around every
3004 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
3005 * know yet if this command buffer will be the last in the submit so we
3006 * have to defensively flush everything else.
3007 *
3008 * TODO: We could definitely do better than this, since these flushes
3009 * aren't required by Vulkan, but we'd need kernel support to do that.
3010 * Ideally, we'd like the kernel to flush everything afterwards, so that we
3011 * wouldn't have to do any flushes here, and when submitting multiple
3012 * command buffers there wouldn't be any unnecessary flushes in between.
3013 */
3014 if (cmd_buffer->state.pass) {
3015 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
3016 tu_emit_cache_flush_renderpass<CHIP>(cmd_buffer);
3017
3018 trace_end_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->draw_cs);
3019 } else {
3020 tu_flush_all_pending(&cmd_buffer->state.cache);
3021 cmd_buffer->state.cache.flush_bits |=
3022 TU_CMD_FLAG_CCU_FLUSH_COLOR |
3023 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
3024 tu_emit_cache_flush<CHIP>(cmd_buffer);
3025
3026 trace_end_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs);
3027 }
3028
3029 tu_cs_end(&cmd_buffer->cs);
3030 tu_cs_end(&cmd_buffer->draw_cs);
3031 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3032
3033 return vk_command_buffer_end(&cmd_buffer->vk);
3034 }
3035 TU_GENX(tu_EndCommandBuffer);
3036
3037 static void
tu_bind_vs(struct tu_cmd_buffer * cmd,struct tu_shader * vs)3038 tu_bind_vs(struct tu_cmd_buffer *cmd, struct tu_shader *vs)
3039 {
3040 cmd->state.shaders[MESA_SHADER_VERTEX] = vs;
3041 }
3042
3043 static void
tu_bind_tcs(struct tu_cmd_buffer * cmd,struct tu_shader * tcs)3044 tu_bind_tcs(struct tu_cmd_buffer *cmd, struct tu_shader *tcs)
3045 {
3046 cmd->state.shaders[MESA_SHADER_TESS_CTRL] = tcs;
3047 }
3048
3049 static void
tu_bind_tes(struct tu_cmd_buffer * cmd,struct tu_shader * tes)3050 tu_bind_tes(struct tu_cmd_buffer *cmd, struct tu_shader *tes)
3051 {
3052 if (cmd->state.shaders[MESA_SHADER_TESS_EVAL] != tes) {
3053 cmd->state.shaders[MESA_SHADER_TESS_EVAL] = tes;
3054 cmd->state.dirty |= TU_CMD_DIRTY_TES;
3055
3056 if (!cmd->state.tess_params.valid ||
3057 cmd->state.tess_params.output_upper_left !=
3058 tes->tes.tess_output_upper_left ||
3059 cmd->state.tess_params.output_lower_left !=
3060 tes->tes.tess_output_lower_left ||
3061 cmd->state.tess_params.spacing != tes->tes.tess_spacing) {
3062 cmd->state.tess_params.output_upper_left =
3063 tes->tes.tess_output_upper_left;
3064 cmd->state.tess_params.output_lower_left =
3065 tes->tes.tess_output_lower_left;
3066 cmd->state.tess_params.spacing = tes->tes.tess_spacing;
3067 cmd->state.tess_params.valid = true;
3068 cmd->state.dirty |= TU_CMD_DIRTY_TESS_PARAMS;
3069 }
3070 }
3071 }
3072
3073 static void
tu_bind_gs(struct tu_cmd_buffer * cmd,struct tu_shader * gs)3074 tu_bind_gs(struct tu_cmd_buffer *cmd, struct tu_shader *gs)
3075 {
3076 cmd->state.shaders[MESA_SHADER_GEOMETRY] = gs;
3077 }
3078
3079 static void
tu_bind_fs(struct tu_cmd_buffer * cmd,struct tu_shader * fs)3080 tu_bind_fs(struct tu_cmd_buffer *cmd, struct tu_shader *fs)
3081 {
3082 if (cmd->state.shaders[MESA_SHADER_FRAGMENT] != fs) {
3083 cmd->state.shaders[MESA_SHADER_FRAGMENT] = fs;
3084 cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
3085 }
3086 }
3087
3088 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindPipeline(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipeline _pipeline)3089 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
3090 VkPipelineBindPoint pipelineBindPoint,
3091 VkPipeline _pipeline)
3092 {
3093 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3094 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
3095
3096 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
3097 cmd->state.shaders[MESA_SHADER_COMPUTE] =
3098 pipeline->shaders[MESA_SHADER_COMPUTE];
3099 tu_cs_emit_state_ib(&cmd->cs,
3100 pipeline->shaders[MESA_SHADER_COMPUTE]->state);
3101 cmd->state.compute_load_state = pipeline->load_state;
3102 return;
3103 }
3104
3105 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
3106
3107 struct tu_graphics_pipeline *gfx_pipeline = tu_pipeline_to_graphics(pipeline);
3108 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS | TU_CMD_DIRTY_SHADER_CONSTS |
3109 TU_CMD_DIRTY_VS_PARAMS | TU_CMD_DIRTY_PROGRAM;
3110
3111 tu_bind_vs(cmd, pipeline->shaders[MESA_SHADER_VERTEX]);
3112 tu_bind_tcs(cmd, pipeline->shaders[MESA_SHADER_TESS_CTRL]);
3113 tu_bind_tes(cmd, pipeline->shaders[MESA_SHADER_TESS_EVAL]);
3114 tu_bind_gs(cmd, pipeline->shaders[MESA_SHADER_GEOMETRY]);
3115 tu_bind_fs(cmd, pipeline->shaders[MESA_SHADER_FRAGMENT]);
3116
3117 vk_cmd_set_dynamic_graphics_state(&cmd->vk,
3118 &gfx_pipeline->dynamic_state);
3119 cmd->state.program = pipeline->program;
3120
3121 cmd->state.load_state = pipeline->load_state;
3122 cmd->state.prim_order_sysmem = pipeline->prim_order.state_sysmem;
3123 cmd->state.prim_order_gmem = pipeline->prim_order.state_gmem;
3124
3125 if (gfx_pipeline->feedback_loop_may_involve_textures &&
3126 !cmd->state.rp.disable_gmem) {
3127 /* VK_EXT_attachment_feedback_loop_layout allows feedback loop to involve
3128 * not only input attachments but also sampled images or image resources.
3129 * But we cannot just patch gmem for image in the descriptors.
3130 *
3131 * At the moment, in context of DXVK, it is expected that only a few
3132 * drawcalls in a frame would use feedback loop and they would be wrapped
3133 * in their own renderpasses, so it should be ok to force sysmem.
3134 *
3135 * However, there are two further possible optimizations if need would
3136 * arise for other translation layer:
3137 * - Tiling could be enabled if we ensure that there is no barrier in
3138 * the renderpass;
3139 * - Check that both pipeline and attachments agree that feedback loop
3140 * is needed.
3141 */
3142 perf_debug(
3143 cmd->device,
3144 "Disabling gmem due to VK_EXT_attachment_feedback_loop_layout");
3145 cmd->state.rp.disable_gmem = true;
3146 }
3147
3148 if (pipeline->prim_order.sysmem_single_prim_mode &&
3149 !cmd->state.rp.sysmem_single_prim_mode) {
3150 if (gfx_pipeline->feedback_loop_color ||
3151 gfx_pipeline->feedback_loop_ds) {
3152 perf_debug(cmd->device, "single_prim_mode due to feedback loop");
3153 } else {
3154 perf_debug(cmd->device, "single_prim_mode due to rast order access");
3155 }
3156 cmd->state.rp.sysmem_single_prim_mode = true;
3157 }
3158
3159 if (pipeline->lrz_blend.valid) {
3160 if (cmd->state.blend_reads_dest != pipeline->lrz_blend.reads_dest) {
3161 cmd->state.blend_reads_dest = pipeline->lrz_blend.reads_dest;
3162 cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
3163 }
3164 }
3165 cmd->state.pipeline_blend_lrz = pipeline->lrz_blend.valid;
3166
3167 if (pipeline->bandwidth.valid)
3168 cmd->state.bandwidth = pipeline->bandwidth;
3169 cmd->state.pipeline_bandwidth = pipeline->bandwidth.valid;
3170
3171 struct tu_cs *cs = &cmd->draw_cs;
3172
3173 /* note: this also avoids emitting draw states before renderpass clears,
3174 * which may use the 3D clear path (for MSAA cases)
3175 */
3176 if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
3177 uint32_t mask = pipeline->set_state_mask;
3178
3179 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (11 + util_bitcount(mask)));
3180 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, pipeline->program.config_state);
3181 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, pipeline->program.vs_state);
3182 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, pipeline->program.vs_binning_state);
3183 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, pipeline->program.hs_state);
3184 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->program.ds_state);
3185 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, pipeline->program.gs_state);
3186 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, pipeline->program.gs_binning_state);
3187 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, pipeline->program.fs_state);
3188 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, pipeline->program.vpc_state);
3189 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_SYSMEM, pipeline->prim_order.state_sysmem);
3190 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, pipeline->prim_order.state_gmem);
3191
3192 u_foreach_bit(i, mask)
3193 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
3194 }
3195
3196 cmd->state.pipeline_draw_states = pipeline->set_state_mask;
3197 u_foreach_bit(i, pipeline->set_state_mask)
3198 cmd->state.dynamic_state[i] = pipeline->dynamic_state[i];
3199
3200 if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
3201 cmd->state.rp.has_tess = true;
3202 }
3203
3204 if (pipeline->program.per_view_viewport != cmd->state.per_view_viewport) {
3205 cmd->state.per_view_viewport = pipeline->program.per_view_viewport;
3206 cmd->state.dirty |= TU_CMD_DIRTY_PER_VIEW_VIEWPORT;
3207 }
3208
3209 if (gfx_pipeline->feedback_loop_ds != cmd->state.pipeline_feedback_loop_ds) {
3210 cmd->state.pipeline_feedback_loop_ds = gfx_pipeline->feedback_loop_ds;
3211 cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
3212 }
3213 }
3214
3215 static void
tu_flush_for_access(struct tu_cache_state * cache,enum tu_cmd_access_mask src_mask,enum tu_cmd_access_mask dst_mask)3216 tu_flush_for_access(struct tu_cache_state *cache,
3217 enum tu_cmd_access_mask src_mask,
3218 enum tu_cmd_access_mask dst_mask)
3219 {
3220 BITMASK_ENUM(tu_cmd_flush_bits) flush_bits = 0;
3221
3222 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
3223 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
3224 }
3225
3226 if (src_mask & TU_ACCESS_CP_WRITE) {
3227 /* Flush the CP write queue.
3228 */
3229 cache->pending_flush_bits |=
3230 TU_CMD_FLAG_WAIT_MEM_WRITES |
3231 TU_CMD_FLAG_ALL_INVALIDATE;
3232 }
3233
3234 #define SRC_FLUSH(domain, flush, invalidate) \
3235 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
3236 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
3237 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
3238 }
3239
3240 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
3241 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
3242 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
3243
3244 #undef SRC_FLUSH
3245
3246 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
3247 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
3248 flush_bits |= TU_CMD_FLAG_##flush; \
3249 cache->pending_flush_bits |= \
3250 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
3251 }
3252
3253 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
3254 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
3255
3256 #undef SRC_INCOHERENT_FLUSH
3257
3258 /* Treat host & sysmem write accesses the same, since the kernel implicitly
3259 * drains the queue before signalling completion to the host.
3260 */
3261 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
3262 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
3263 }
3264
3265 #define DST_FLUSH(domain, flush, invalidate) \
3266 if (dst_mask & (TU_ACCESS_##domain##_READ | \
3267 TU_ACCESS_##domain##_WRITE)) { \
3268 flush_bits |= cache->pending_flush_bits & \
3269 (TU_CMD_FLAG_##invalidate | \
3270 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
3271 }
3272
3273 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
3274 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
3275 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
3276
3277 #undef DST_FLUSH
3278
3279 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
3280 if (dst_mask & (TU_ACCESS_##domain##_INCOHERENT_READ | \
3281 TU_ACCESS_##domain##_INCOHERENT_WRITE)) { \
3282 flush_bits |= TU_CMD_FLAG_##invalidate | \
3283 (cache->pending_flush_bits & \
3284 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
3285 }
3286
3287 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
3288 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
3289
3290 if (dst_mask & TU_ACCESS_BINDLESS_DESCRIPTOR_READ) {
3291 flush_bits |= TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE;
3292 }
3293
3294 #undef DST_INCOHERENT_FLUSH
3295
3296 cache->flush_bits |= flush_bits;
3297 cache->pending_flush_bits &= ~flush_bits;
3298 }
3299
3300 /* When translating Vulkan access flags to which cache is accessed
3301 * (CCU/UCHE/sysmem), we should take into account both the access flags and
3302 * the stage so that accesses with MEMORY_READ_BIT/MEMORY_WRITE_BIT + a
3303 * specific stage return something sensible. The specification for
3304 * VK_KHR_synchronization2 says that we should do this:
3305 *
3306 * Additionally, scoping the pipeline stages into the barrier structs
3307 * allows the use of the MEMORY_READ and MEMORY_WRITE flags without
3308 * sacrificing precision. The per-stage access flags should be used to
3309 * disambiguate specific accesses in a given stage or set of stages - for
3310 * instance, between uniform reads and sampling operations.
3311 *
3312 * Note that while in all known cases the stage is actually enough, we should
3313 * still narrow things down based on the access flags to handle "old-style"
3314 * barriers that may specify a wider range of stages but more precise access
3315 * flags. These helpers allow us to do both.
3316 */
3317
3318 static bool
filter_read_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3319 filter_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3320 VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3321 {
3322 return (flags & (tu_flags | VK_ACCESS_2_MEMORY_READ_BIT)) &&
3323 (stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
3324 }
3325
3326 static bool
filter_write_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3327 filter_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3328 VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3329 {
3330 return (flags & (tu_flags | VK_ACCESS_2_MEMORY_WRITE_BIT)) &&
3331 (stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
3332 }
3333
3334 static bool
gfx_read_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3335 gfx_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3336 VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3337 {
3338 return filter_read_access(flags, stages, tu_flags,
3339 tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
3340 }
3341
3342 static bool
gfx_write_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3343 gfx_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3344 VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3345 {
3346 return filter_write_access(flags, stages, tu_flags,
3347 tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
3348 }
3349 static enum tu_cmd_access_mask
vk2tu_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,bool image_only,bool gmem)3350 vk2tu_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages, bool image_only, bool gmem)
3351 {
3352 BITMASK_ENUM(tu_cmd_access_mask) mask = 0;
3353
3354 if (gfx_read_access(flags, stages,
3355 VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT |
3356 VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT |
3357 VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT |
3358 VK_ACCESS_2_HOST_READ_BIT,
3359 VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT |
3360 VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT |
3361 VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
3362 VK_PIPELINE_STAGE_2_HOST_BIT))
3363 mask |= TU_ACCESS_SYSMEM_READ;
3364
3365 if (gfx_write_access(flags, stages,
3366 VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
3367 VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT))
3368 mask |= TU_ACCESS_CP_WRITE;
3369
3370 if (gfx_write_access(flags, stages,
3371 VK_ACCESS_2_HOST_WRITE_BIT,
3372 VK_PIPELINE_STAGE_2_HOST_BIT))
3373 mask |= TU_ACCESS_SYSMEM_WRITE;
3374
3375 #define SHADER_STAGES \
3376 (VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | \
3377 VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | \
3378 VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | \
3379 VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | \
3380 VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT | \
3381 VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | \
3382 VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT)
3383
3384
3385 if (gfx_read_access(flags, stages,
3386 VK_ACCESS_2_INDEX_READ_BIT |
3387 VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT |
3388 VK_ACCESS_2_UNIFORM_READ_BIT |
3389 VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT |
3390 VK_ACCESS_2_SHADER_READ_BIT,
3391 VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT |
3392 VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT |
3393 VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT |
3394 SHADER_STAGES))
3395 mask |= TU_ACCESS_UCHE_READ;
3396
3397 if (gfx_read_access(flags, stages,
3398 VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT,
3399 SHADER_STAGES)) {
3400 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_BINDLESS_DESCRIPTOR_READ;
3401 }
3402
3403 if (gfx_write_access(flags, stages,
3404 VK_ACCESS_2_SHADER_WRITE_BIT |
3405 VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT,
3406 VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
3407 SHADER_STAGES))
3408 mask |= TU_ACCESS_UCHE_WRITE;
3409
3410 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
3411 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
3412 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
3413 * can ignore CCU and pretend that color attachments and transfers use
3414 * sysmem directly.
3415 */
3416
3417 if (gfx_read_access(flags, stages,
3418 VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT |
3419 VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT,
3420 VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
3421 if (gmem)
3422 mask |= TU_ACCESS_SYSMEM_READ;
3423 else
3424 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
3425 }
3426
3427 if (gfx_read_access(flags, stages,
3428 VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
3429 VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
3430 VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
3431 if (gmem)
3432 mask |= TU_ACCESS_SYSMEM_READ;
3433 else
3434 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
3435 }
3436
3437 if (gfx_write_access(flags, stages,
3438 VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT,
3439 VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
3440 if (gmem) {
3441 mask |= TU_ACCESS_SYSMEM_WRITE;
3442 } else {
3443 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3444 }
3445 }
3446
3447 if (gfx_write_access(flags, stages,
3448 VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
3449 VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
3450 VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
3451 if (gmem) {
3452 mask |= TU_ACCESS_SYSMEM_WRITE;
3453 } else {
3454 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
3455 }
3456 }
3457
3458 if (filter_write_access(flags, stages,
3459 VK_ACCESS_2_TRANSFER_WRITE_BIT,
3460 VK_PIPELINE_STAGE_2_COPY_BIT |
3461 VK_PIPELINE_STAGE_2_BLIT_BIT |
3462 VK_PIPELINE_STAGE_2_CLEAR_BIT |
3463 VK_PIPELINE_STAGE_2_RESOLVE_BIT |
3464 VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
3465 if (gmem) {
3466 mask |= TU_ACCESS_SYSMEM_WRITE;
3467 } else if (image_only) {
3468 /* Because we always split up blits/copies of images involving
3469 * multiple layers, we always access each layer in the same way, with
3470 * the same base address, same format, etc. This means we can avoid
3471 * flushing between multiple writes to the same image. This elides
3472 * flushes between e.g. multiple blits to the same image.
3473 */
3474 mask |= TU_ACCESS_CCU_COLOR_WRITE;
3475 } else {
3476 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3477 }
3478 }
3479
3480 if (filter_read_access(flags, stages,
3481 VK_ACCESS_2_TRANSFER_READ_BIT,
3482 VK_PIPELINE_STAGE_2_COPY_BIT |
3483 VK_PIPELINE_STAGE_2_BLIT_BIT |
3484 VK_PIPELINE_STAGE_2_RESOLVE_BIT |
3485 VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
3486 mask |= TU_ACCESS_UCHE_READ;
3487 }
3488
3489 return mask;
3490 }
3491
3492 /* These helpers deal with legacy BOTTOM_OF_PIPE/TOP_OF_PIPE stages.
3493 */
3494
3495 static VkPipelineStageFlags2
sanitize_src_stage(VkPipelineStageFlags2 stage_mask)3496 sanitize_src_stage(VkPipelineStageFlags2 stage_mask)
3497 {
3498 /* From the Vulkan spec:
3499 *
3500 * VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is ... equivalent to
3501 * VK_PIPELINE_STAGE_2_NONE in the first scope.
3502 *
3503 * VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is equivalent to
3504 * VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
3505 * when specified in the first synchronization scope, ...
3506 */
3507 if (stage_mask & VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT)
3508 return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
3509
3510 return stage_mask & ~VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT;
3511 }
3512
3513 static VkPipelineStageFlags2
sanitize_dst_stage(VkPipelineStageFlags2 stage_mask)3514 sanitize_dst_stage(VkPipelineStageFlags2 stage_mask)
3515 {
3516 /* From the Vulkan spec:
3517 *
3518 * VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is equivalent to
3519 * VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
3520 * when specified in the second synchronization scope, ...
3521 *
3522 * VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is ... equivalent to
3523 * VK_PIPELINE_STAGE_2_NONE in the second scope.
3524 *
3525 */
3526 if (stage_mask & VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT)
3527 return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
3528
3529 return stage_mask & ~VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT;
3530 }
3531
3532 static enum tu_stage
vk2tu_single_stage(VkPipelineStageFlags2 vk_stage,bool dst)3533 vk2tu_single_stage(VkPipelineStageFlags2 vk_stage, bool dst)
3534 {
3535 /* If the destination stage is executed on the CP, then the CP also has to
3536 * wait for any WFI's to finish. This is already done for draw calls,
3537 * including before indirect param reads, for the most part, so we just
3538 * need to WFI and can use TU_STAGE_GPU.
3539 *
3540 * However, some indirect draw opcodes, depending on firmware, don't have
3541 * implicit CP_WAIT_FOR_ME so we have to handle it manually.
3542 *
3543 * Transform feedback counters are read via CP_MEM_TO_REG, which implicitly
3544 * does CP_WAIT_FOR_ME, so we don't include them here.
3545 *
3546 * Currently we read the draw predicate using CP_MEM_TO_MEM, which
3547 * also implicitly does CP_WAIT_FOR_ME. However CP_DRAW_PRED_SET does *not*
3548 * implicitly do CP_WAIT_FOR_ME, it seems to only wait for counters to
3549 * complete since it's written for DX11 where you can only predicate on the
3550 * result of a query object. So if we implement 64-bit comparisons in the
3551 * future, or if CP_DRAW_PRED_SET grows the capability to do 32-bit
3552 * comparisons, then this will have to be dealt with.
3553 */
3554 if (vk_stage == VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT ||
3555 vk_stage == VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT ||
3556 vk_stage == VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT)
3557 return TU_STAGE_CP;
3558
3559 if (vk_stage == VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT ||
3560 vk_stage == VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)
3561 return dst ? TU_STAGE_CP : TU_STAGE_GPU;
3562
3563 if (vk_stage == VK_PIPELINE_STAGE_2_HOST_BIT)
3564 return dst ? TU_STAGE_BOTTOM : TU_STAGE_CP;
3565
3566 return TU_STAGE_GPU;
3567 }
3568
3569 static enum tu_stage
vk2tu_src_stage(VkPipelineStageFlags2 vk_stages)3570 vk2tu_src_stage(VkPipelineStageFlags2 vk_stages)
3571 {
3572 enum tu_stage stage = TU_STAGE_CP;
3573 u_foreach_bit64 (bit, vk_stages) {
3574 enum tu_stage new_stage = vk2tu_single_stage(1ull << bit, false);
3575 stage = MAX2(stage, new_stage);
3576 }
3577
3578 return stage;
3579 }
3580
3581 static enum tu_stage
vk2tu_dst_stage(VkPipelineStageFlags2 vk_stages)3582 vk2tu_dst_stage(VkPipelineStageFlags2 vk_stages)
3583 {
3584 enum tu_stage stage = TU_STAGE_BOTTOM;
3585 u_foreach_bit64 (bit, vk_stages) {
3586 enum tu_stage new_stage = vk2tu_single_stage(1ull << bit, true);
3587 stage = MIN2(stage, new_stage);
3588 }
3589
3590 return stage;
3591 }
3592
3593 static void
tu_flush_for_stage(struct tu_cache_state * cache,enum tu_stage src_stage,enum tu_stage dst_stage)3594 tu_flush_for_stage(struct tu_cache_state *cache,
3595 enum tu_stage src_stage, enum tu_stage dst_stage)
3596 {
3597 /* Even if the source is the host or CP, the destination access could
3598 * generate invalidates that we have to wait to complete.
3599 */
3600 if (src_stage == TU_STAGE_CP &&
3601 (cache->flush_bits & TU_CMD_FLAG_ALL_INVALIDATE))
3602 src_stage = TU_STAGE_GPU;
3603
3604 if (src_stage >= dst_stage) {
3605 cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
3606 if (dst_stage == TU_STAGE_CP)
3607 cache->pending_flush_bits |= TU_CMD_FLAG_WAIT_FOR_ME;
3608 }
3609 }
3610
3611 void
tu_render_pass_state_merge(struct tu_render_pass_state * dst,const struct tu_render_pass_state * src)3612 tu_render_pass_state_merge(struct tu_render_pass_state *dst,
3613 const struct tu_render_pass_state *src)
3614 {
3615 dst->xfb_used |= src->xfb_used;
3616 dst->has_tess |= src->has_tess;
3617 dst->has_prim_generated_query_in_rp |= src->has_prim_generated_query_in_rp;
3618 dst->disable_gmem |= src->disable_gmem;
3619 dst->sysmem_single_prim_mode |= src->sysmem_single_prim_mode;
3620 dst->draw_cs_writes_to_cond_pred |= src->draw_cs_writes_to_cond_pred;
3621 dst->shared_viewport |= src->shared_viewport;
3622
3623 dst->drawcall_count += src->drawcall_count;
3624 dst->drawcall_bandwidth_per_sample_sum +=
3625 src->drawcall_bandwidth_per_sample_sum;
3626 }
3627
3628 void
tu_restore_suspended_pass(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * suspended)3629 tu_restore_suspended_pass(struct tu_cmd_buffer *cmd,
3630 struct tu_cmd_buffer *suspended)
3631 {
3632 cmd->state.pass = suspended->state.suspended_pass.pass;
3633 cmd->state.subpass = suspended->state.suspended_pass.subpass;
3634 cmd->state.framebuffer = suspended->state.suspended_pass.framebuffer;
3635 cmd->state.attachments = suspended->state.suspended_pass.attachments;
3636 cmd->state.render_area = suspended->state.suspended_pass.render_area;
3637 cmd->state.gmem_layout = suspended->state.suspended_pass.gmem_layout;
3638 cmd->state.tiling = &cmd->state.framebuffer->tiling[cmd->state.gmem_layout];
3639 cmd->state.lrz = suspended->state.suspended_pass.lrz;
3640 }
3641
3642 /* Take the saved pre-chain in "secondary" and copy its commands to "cmd",
3643 * appending it after any saved-up commands in "cmd".
3644 */
3645 void
tu_append_pre_chain(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * secondary)3646 tu_append_pre_chain(struct tu_cmd_buffer *cmd,
3647 struct tu_cmd_buffer *secondary)
3648 {
3649 tu_cs_add_entries(&cmd->draw_cs, &secondary->pre_chain.draw_cs);
3650 tu_cs_add_entries(&cmd->draw_epilogue_cs,
3651 &secondary->pre_chain.draw_epilogue_cs);
3652
3653 tu_render_pass_state_merge(&cmd->state.rp,
3654 &secondary->pre_chain.state);
3655 tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->pre_chain.trace_renderpass_start,
3656 secondary->pre_chain.trace_renderpass_end);
3657 util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
3658 &secondary->pre_chain.fdm_bin_patchpoints);
3659 }
3660
3661 /* Take the saved post-chain in "secondary" and copy it to "cmd".
3662 */
3663 void
tu_append_post_chain(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * secondary)3664 tu_append_post_chain(struct tu_cmd_buffer *cmd,
3665 struct tu_cmd_buffer *secondary)
3666 {
3667 tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
3668 tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs);
3669
3670 tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->trace_renderpass_start,
3671 secondary->trace_renderpass_end);
3672 cmd->state.rp = secondary->state.rp;
3673 util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
3674 &secondary->fdm_bin_patchpoints);
3675 }
3676
3677 /* Assuming "secondary" is just a sequence of suspended and resuming passes,
3678 * copy its state to "cmd". This also works instead of tu_append_post_chain(),
3679 * but it's a bit slower because we don't assume that the chain begins in
3680 * "secondary" and therefore have to care about the command buffer's
3681 * renderpass state.
3682 */
3683 void
tu_append_pre_post_chain(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * secondary)3684 tu_append_pre_post_chain(struct tu_cmd_buffer *cmd,
3685 struct tu_cmd_buffer *secondary)
3686 {
3687 tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
3688 tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs);
3689
3690 tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->trace_renderpass_start,
3691 secondary->trace_renderpass_end);
3692 tu_render_pass_state_merge(&cmd->state.rp,
3693 &secondary->state.rp);
3694 util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
3695 &secondary->fdm_bin_patchpoints);
3696 }
3697
3698 /* Take the current render pass state and save it to "pre_chain" to be
3699 * combined later.
3700 */
3701 static void
tu_save_pre_chain(struct tu_cmd_buffer * cmd)3702 tu_save_pre_chain(struct tu_cmd_buffer *cmd)
3703 {
3704 tu_cs_add_entries(&cmd->pre_chain.draw_cs,
3705 &cmd->draw_cs);
3706 tu_cs_add_entries(&cmd->pre_chain.draw_epilogue_cs,
3707 &cmd->draw_epilogue_cs);
3708 cmd->pre_chain.trace_renderpass_start =
3709 cmd->trace_renderpass_start;
3710 cmd->pre_chain.trace_renderpass_end =
3711 cmd->trace_renderpass_end;
3712 cmd->pre_chain.state = cmd->state.rp;
3713 util_dynarray_append_dynarray(&cmd->pre_chain.fdm_bin_patchpoints,
3714 &cmd->fdm_bin_patchpoints);
3715 cmd->pre_chain.patchpoints_ctx = cmd->patchpoints_ctx;
3716 cmd->patchpoints_ctx = NULL;
3717 }
3718
3719 VKAPI_ATTR void VKAPI_CALL
tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,uint32_t commandBufferCount,const VkCommandBuffer * pCmdBuffers)3720 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
3721 uint32_t commandBufferCount,
3722 const VkCommandBuffer *pCmdBuffers)
3723 {
3724 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3725 VkResult result;
3726
3727 assert(commandBufferCount > 0);
3728
3729 /* Emit any pending flushes. */
3730 if (cmd->state.pass) {
3731 tu_flush_all_pending(&cmd->state.renderpass_cache);
3732 TU_CALLX(cmd->device, tu_emit_cache_flush_renderpass)(cmd);
3733 } else {
3734 tu_flush_all_pending(&cmd->state.cache);
3735 TU_CALLX(cmd->device, tu_emit_cache_flush)(cmd);
3736 }
3737
3738 for (uint32_t i = 0; i < commandBufferCount; i++) {
3739 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
3740
3741 if (secondary->usage_flags &
3742 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
3743 assert(tu_cs_is_empty(&secondary->cs));
3744
3745 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
3746 if (result != VK_SUCCESS) {
3747 vk_command_buffer_set_error(&cmd->vk, result);
3748 break;
3749 }
3750
3751 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
3752 &secondary->draw_epilogue_cs);
3753 if (result != VK_SUCCESS) {
3754 vk_command_buffer_set_error(&cmd->vk, result);
3755 break;
3756 }
3757
3758 /* If LRZ was made invalid in secondary - we should disable
3759 * LRZ retroactively for the whole renderpass.
3760 */
3761 if (!secondary->state.lrz.valid)
3762 cmd->state.lrz.valid = false;
3763
3764 tu_clone_trace(cmd, &cmd->draw_cs, &secondary->trace);
3765 tu_render_pass_state_merge(&cmd->state.rp, &secondary->state.rp);
3766 util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
3767 &secondary->fdm_bin_patchpoints);
3768 } else {
3769 switch (secondary->state.suspend_resume) {
3770 case SR_NONE:
3771 assert(tu_cs_is_empty(&secondary->draw_cs));
3772 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
3773 tu_cs_add_entries(&cmd->cs, &secondary->cs);
3774 tu_clone_trace(cmd, &cmd->cs, &secondary->trace);
3775 break;
3776
3777 case SR_IN_PRE_CHAIN:
3778 /* cmd may be empty, which means that the chain begins before cmd
3779 * in which case we have to update its state.
3780 */
3781 if (cmd->state.suspend_resume == SR_NONE) {
3782 cmd->state.suspend_resume = SR_IN_PRE_CHAIN;
3783 cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
3784 }
3785
3786 /* The secondary is just a continuous suspend/resume chain so we
3787 * just have to append it to the the command buffer.
3788 */
3789 assert(tu_cs_is_empty(&secondary->cs));
3790 tu_append_pre_post_chain(cmd, secondary);
3791 break;
3792
3793 case SR_AFTER_PRE_CHAIN:
3794 case SR_IN_CHAIN:
3795 case SR_IN_CHAIN_AFTER_PRE_CHAIN:
3796 if (secondary->state.suspend_resume == SR_AFTER_PRE_CHAIN ||
3797 secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN) {
3798 /* In thse cases there is a `pre_chain` in the secondary which
3799 * ends that we need to append to the primary.
3800 */
3801
3802 if (cmd->state.suspend_resume == SR_NONE)
3803 cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
3804
3805 tu_append_pre_chain(cmd, secondary);
3806
3807 /* We're about to render, so we need to end the command stream
3808 * in case there were any extra commands generated by copying
3809 * the trace.
3810 */
3811 tu_cs_end(&cmd->draw_cs);
3812 tu_cs_end(&cmd->draw_epilogue_cs);
3813
3814 switch (cmd->state.suspend_resume) {
3815 case SR_NONE:
3816 case SR_IN_PRE_CHAIN:
3817 /* The renderpass chain ends in the secondary but isn't
3818 * started in the primary, so we have to move the state to
3819 * `pre_chain`.
3820 */
3821 cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
3822 tu_save_pre_chain(cmd);
3823 cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN;
3824 break;
3825 case SR_IN_CHAIN:
3826 case SR_IN_CHAIN_AFTER_PRE_CHAIN:
3827 /* The renderpass ends in the secondary and starts somewhere
3828 * earlier in this primary. Since the last render pass in
3829 * the chain is in the secondary, we are technically outside
3830 * of a render pass. Fix that here by reusing the dynamic
3831 * render pass that was setup for the last suspended render
3832 * pass before the secondary.
3833 */
3834 tu_restore_suspended_pass(cmd, cmd);
3835
3836 TU_CALLX(cmd->device, tu_cmd_render)(cmd);
3837 if (cmd->state.suspend_resume == SR_IN_CHAIN)
3838 cmd->state.suspend_resume = SR_NONE;
3839 else
3840 cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN;
3841 break;
3842 case SR_AFTER_PRE_CHAIN:
3843 unreachable("resuming render pass is not preceded by suspending one");
3844 }
3845
3846 tu_reset_render_pass(cmd);
3847 }
3848
3849 tu_cs_add_entries(&cmd->cs, &secondary->cs);
3850
3851 if (secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN ||
3852 secondary->state.suspend_resume == SR_IN_CHAIN) {
3853 /* The secondary ends in a "post-chain" (the opposite of a
3854 * pre-chain) that we need to copy into the current command
3855 * buffer.
3856 */
3857 cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
3858 tu_append_post_chain(cmd, secondary);
3859 cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
3860 cmd->state.suspended_pass = secondary->state.suspended_pass;
3861
3862 switch (cmd->state.suspend_resume) {
3863 case SR_NONE:
3864 cmd->state.suspend_resume = SR_IN_CHAIN;
3865 break;
3866 case SR_AFTER_PRE_CHAIN:
3867 cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN;
3868 break;
3869 default:
3870 unreachable("suspending render pass is followed by a not resuming one");
3871 }
3872 }
3873 }
3874 }
3875
3876 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
3877 }
3878 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
3879
3880 if (!cmd->state.lrz.gpu_dir_tracking && cmd->state.pass) {
3881 /* After a secondary command buffer is executed, LRZ is not valid
3882 * until it is cleared again.
3883 */
3884 cmd->state.lrz.valid = false;
3885 }
3886
3887 /* After executing secondary command buffers, there may have been arbitrary
3888 * flushes executed, so when we encounter a pipeline barrier with a
3889 * srcMask, we have to assume that we need to invalidate. Therefore we need
3890 * to re-initialize the cache with all pending invalidate bits set.
3891 */
3892 if (cmd->state.pass) {
3893 tu_cache_init(&cmd->state.renderpass_cache);
3894 } else {
3895 tu_cache_init(&cmd->state.cache);
3896 }
3897 }
3898
3899 static void
tu_subpass_barrier(struct tu_cmd_buffer * cmd_buffer,const struct tu_subpass_barrier * barrier,bool external)3900 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
3901 const struct tu_subpass_barrier *barrier,
3902 bool external)
3903 {
3904 /* Note: we don't know until the end of the subpass whether we'll use
3905 * sysmem, so assume sysmem here to be safe.
3906 */
3907 struct tu_cache_state *cache =
3908 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
3909 VkPipelineStageFlags2 src_stage_vk =
3910 sanitize_src_stage(barrier->src_stage_mask);
3911 VkPipelineStageFlags2 dst_stage_vk =
3912 sanitize_dst_stage(barrier->dst_stage_mask);
3913 BITMASK_ENUM(tu_cmd_access_mask) src_flags =
3914 vk2tu_access(barrier->src_access_mask, src_stage_vk, false, false);
3915 BITMASK_ENUM(tu_cmd_access_mask) dst_flags =
3916 vk2tu_access(barrier->dst_access_mask, dst_stage_vk, false, false);
3917
3918 if (barrier->incoherent_ccu_color)
3919 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3920 if (barrier->incoherent_ccu_depth)
3921 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
3922
3923 tu_flush_for_access(cache, src_flags, dst_flags);
3924
3925 enum tu_stage src_stage = vk2tu_src_stage(src_stage_vk);
3926 enum tu_stage dst_stage = vk2tu_dst_stage(dst_stage_vk);
3927 tu_flush_for_stage(cache, src_stage, dst_stage);
3928 }
3929
3930 template <chip CHIP>
3931 static void
tu_emit_subpass_begin_gmem(struct tu_cmd_buffer * cmd)3932 tu_emit_subpass_begin_gmem(struct tu_cmd_buffer *cmd)
3933 {
3934 struct tu_cs *cs = &cmd->draw_cs;
3935 uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
3936
3937 /* If we might choose to bin, then put the loads under a check for geometry
3938 * having been binned to this tile. If we don't choose to bin in the end,
3939 * then we will have manually set those registers to say geometry is present.
3940 *
3941 * However, if the draw CS has a write to the condition for some other reason
3942 * (perf queries), then we can't do this optimization since the
3943 * start-of-the-CS geometry condition will have been overwritten.
3944 */
3945 bool cond_load_allowed = cmd->state.tiling->binning &&
3946 cmd->state.pass->has_cond_load_store &&
3947 !cmd->state.rp.draw_cs_writes_to_cond_pred;
3948
3949 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
3950
3951 /* Emit gmem loads that are first used in this subpass. */
3952 bool emitted_scissor = false;
3953 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
3954 struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
3955 if ((att->load || att->load_stencil) && att->first_subpass_idx == subpass_idx) {
3956 if (!emitted_scissor) {
3957 tu6_emit_blit_scissor(cmd, cs, true);
3958 emitted_scissor = true;
3959 }
3960 tu_load_gmem_attachment<CHIP>(cmd, cs, i, cond_load_allowed, false);
3961 }
3962 }
3963
3964 /* Emit gmem clears that are first used in this subpass. */
3965 emitted_scissor = false;
3966 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
3967 struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
3968 if (att->clear_mask && att->first_subpass_idx == subpass_idx) {
3969 if (!emitted_scissor) {
3970 tu6_emit_blit_scissor(cmd, cs, false);
3971 emitted_scissor = true;
3972 }
3973 tu_clear_gmem_attachment<CHIP>(cmd, cs, i);
3974 }
3975 }
3976
3977 tu_cond_exec_end(cs); /* CP_COND_EXEC_0_RENDER_MODE_GMEM */
3978 }
3979
3980 /* Emits sysmem clears that are first used in this subpass. */
3981 template <chip CHIP>
3982 static void
tu_emit_subpass_begin_sysmem(struct tu_cmd_buffer * cmd)3983 tu_emit_subpass_begin_sysmem(struct tu_cmd_buffer *cmd)
3984 {
3985 struct tu_cs *cs = &cmd->draw_cs;
3986 uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
3987
3988 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
3989 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
3990 struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
3991 if (att->clear_mask && att->first_subpass_idx == subpass_idx)
3992 tu_clear_sysmem_attachment<CHIP>(cmd, cs, i);
3993 }
3994 tu_cond_exec_end(cs); /* sysmem */
3995 }
3996
3997 /* emit loads, clears, and mrt/zs/msaa/ubwc state for the subpass that is
3998 * starting (either at vkCmdBeginRenderPass2() or vkCmdNextSubpass2())
3999 *
4000 * Clears and loads have to happen at this point, because with
4001 * VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT the loads may depend on the output of
4002 * a previous aliased attachment's store.
4003 */
4004 template <chip CHIP>
4005 static void
tu_emit_subpass_begin(struct tu_cmd_buffer * cmd)4006 tu_emit_subpass_begin(struct tu_cmd_buffer *cmd)
4007 {
4008 tu_fill_render_pass_state(&cmd->state.vk_rp, cmd->state.pass, cmd->state.subpass);
4009
4010 tu_emit_subpass_begin_gmem<CHIP>(cmd);
4011 tu_emit_subpass_begin_sysmem<CHIP>(cmd);
4012
4013 tu6_emit_zs<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
4014 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
4015 tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs, false);
4016
4017 tu_set_input_attachments(cmd, cmd->state.subpass);
4018
4019 vk_cmd_set_cb_attachment_count(&cmd->vk, cmd->state.subpass->color_count);
4020
4021 cmd->state.dirty |= TU_CMD_DIRTY_SUBPASS;
4022 }
4023
4024 template <chip CHIP>
4025 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,const VkRenderPassBeginInfo * pRenderPassBegin,const VkSubpassBeginInfo * pSubpassBeginInfo)4026 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
4027 const VkRenderPassBeginInfo *pRenderPassBegin,
4028 const VkSubpassBeginInfo *pSubpassBeginInfo)
4029 {
4030 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
4031
4032 if (TU_DEBUG(DYNAMIC)) {
4033 vk_common_CmdBeginRenderPass2(commandBuffer, pRenderPassBegin,
4034 pSubpassBeginInfo);
4035 return;
4036 }
4037
4038 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
4039 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
4040
4041 const struct VkRenderPassAttachmentBeginInfo *pAttachmentInfo =
4042 vk_find_struct_const(pRenderPassBegin->pNext,
4043 RENDER_PASS_ATTACHMENT_BEGIN_INFO);
4044
4045 cmd->state.pass = pass;
4046 cmd->state.subpass = pass->subpasses;
4047 cmd->state.framebuffer = fb;
4048 cmd->state.render_area = pRenderPassBegin->renderArea;
4049
4050 VK_MULTIALLOC(ma);
4051 vk_multialloc_add(&ma, &cmd->state.attachments,
4052 const struct tu_image_view *, pass->attachment_count);
4053 vk_multialloc_add(&ma, &cmd->state.clear_values, VkClearValue,
4054 pRenderPassBegin->clearValueCount);
4055 if (!vk_multialloc_alloc(&ma, &cmd->vk.pool->alloc,
4056 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)) {
4057 vk_command_buffer_set_error(&cmd->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
4058 return;
4059 }
4060
4061 if (cmd->device->dbg_renderpass_stomp_cs) {
4062 tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs);
4063 }
4064
4065 for (unsigned i = 0; i < pass->attachment_count; i++) {
4066 cmd->state.attachments[i] = pAttachmentInfo ?
4067 tu_image_view_from_handle(pAttachmentInfo->pAttachments[i]) :
4068 cmd->state.framebuffer->attachments[i].attachment;
4069 }
4070 for (unsigned i = 0; i < pRenderPassBegin->clearValueCount; i++)
4071 cmd->state.clear_values[i] = pRenderPassBegin->pClearValues[i];
4072
4073 tu_choose_gmem_layout(cmd);
4074
4075 trace_start_render_pass(&cmd->trace, &cmd->cs, cmd->state.framebuffer,
4076 cmd->state.tiling);
4077
4078 /* Note: because this is external, any flushes will happen before draw_cs
4079 * gets called. However deferred flushes could have to happen later as part
4080 * of the subpass.
4081 */
4082 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
4083 cmd->state.renderpass_cache.pending_flush_bits =
4084 cmd->state.cache.pending_flush_bits;
4085 cmd->state.renderpass_cache.flush_bits = 0;
4086
4087 if (pass->subpasses[0].feedback_invalidate)
4088 cmd->state.renderpass_cache.flush_bits |= TU_CMD_FLAG_CACHE_INVALIDATE;
4089
4090 tu_lrz_begin_renderpass(cmd);
4091
4092 cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4093
4094 tu_emit_renderpass_begin(cmd);
4095 tu_emit_subpass_begin<CHIP>(cmd);
4096
4097 if (pass->has_fdm)
4098 cmd->patchpoints_ctx = ralloc_parent(NULL);
4099 }
4100 TU_GENX(tu_CmdBeginRenderPass2);
4101
4102 template <chip CHIP>
4103 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginRendering(VkCommandBuffer commandBuffer,const VkRenderingInfo * pRenderingInfo)4104 tu_CmdBeginRendering(VkCommandBuffer commandBuffer,
4105 const VkRenderingInfo *pRenderingInfo)
4106 {
4107 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
4108
4109 tu_setup_dynamic_render_pass(cmd, pRenderingInfo);
4110 tu_setup_dynamic_framebuffer(cmd, pRenderingInfo);
4111
4112 cmd->state.pass = &cmd->dynamic_pass;
4113 cmd->state.subpass = &cmd->dynamic_subpass;
4114 cmd->state.framebuffer = &cmd->dynamic_framebuffer;
4115 cmd->state.render_area = pRenderingInfo->renderArea;
4116
4117 cmd->state.attachments = cmd->dynamic_attachments;
4118 cmd->state.clear_values = cmd->dynamic_clear_values;
4119
4120 for (unsigned i = 0; i < pRenderingInfo->colorAttachmentCount; i++) {
4121 uint32_t a = cmd->dynamic_subpass.color_attachments[i].attachment;
4122 if (!pRenderingInfo->pColorAttachments[i].imageView)
4123 continue;
4124
4125 cmd->state.clear_values[a] =
4126 pRenderingInfo->pColorAttachments[i].clearValue;
4127
4128 TU_FROM_HANDLE(tu_image_view, view,
4129 pRenderingInfo->pColorAttachments[i].imageView);
4130 cmd->state.attachments[a] = view;
4131
4132 a = cmd->dynamic_subpass.resolve_attachments[i].attachment;
4133 if (a != VK_ATTACHMENT_UNUSED) {
4134 TU_FROM_HANDLE(tu_image_view, resolve_view,
4135 pRenderingInfo->pColorAttachments[i].resolveImageView);
4136 cmd->state.attachments[a] = resolve_view;
4137 }
4138 }
4139
4140 uint32_t a = cmd->dynamic_subpass.depth_stencil_attachment.attachment;
4141 if (pRenderingInfo->pDepthAttachment || pRenderingInfo->pStencilAttachment) {
4142 const struct VkRenderingAttachmentInfo *common_info =
4143 (pRenderingInfo->pDepthAttachment &&
4144 pRenderingInfo->pDepthAttachment->imageView != VK_NULL_HANDLE) ?
4145 pRenderingInfo->pDepthAttachment :
4146 pRenderingInfo->pStencilAttachment;
4147 if (common_info && common_info->imageView != VK_NULL_HANDLE) {
4148 TU_FROM_HANDLE(tu_image_view, view, common_info->imageView);
4149 cmd->state.attachments[a] = view;
4150 if (pRenderingInfo->pDepthAttachment) {
4151 cmd->state.clear_values[a].depthStencil.depth =
4152 pRenderingInfo->pDepthAttachment->clearValue.depthStencil.depth;
4153 }
4154
4155 if (pRenderingInfo->pStencilAttachment) {
4156 cmd->state.clear_values[a].depthStencil.stencil =
4157 pRenderingInfo->pStencilAttachment->clearValue.depthStencil.stencil;
4158 }
4159
4160 if (cmd->dynamic_subpass.resolve_count >
4161 cmd->dynamic_subpass.color_count) {
4162 TU_FROM_HANDLE(tu_image_view, resolve_view,
4163 common_info->resolveImageView);
4164 a = cmd->dynamic_subpass.resolve_attachments[cmd->dynamic_subpass.color_count].attachment;
4165 cmd->state.attachments[a] = resolve_view;
4166 }
4167 }
4168 }
4169
4170 a = cmd->dynamic_pass.fragment_density_map.attachment;
4171 if (a != VK_ATTACHMENT_UNUSED) {
4172 const VkRenderingFragmentDensityMapAttachmentInfoEXT *fdm_info =
4173 vk_find_struct_const(pRenderingInfo->pNext,
4174 RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_INFO_EXT);
4175 TU_FROM_HANDLE(tu_image_view, view, fdm_info->imageView);
4176 cmd->state.attachments[a] = view;
4177 }
4178
4179 if (cmd->dynamic_pass.has_fdm)
4180 cmd->patchpoints_ctx = ralloc_context(NULL);
4181
4182 tu_choose_gmem_layout(cmd);
4183
4184 cmd->state.renderpass_cache.pending_flush_bits =
4185 cmd->state.cache.pending_flush_bits;
4186 cmd->state.renderpass_cache.flush_bits = 0;
4187
4188 bool resuming = pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT;
4189 bool suspending = pRenderingInfo->flags & VK_RENDERING_SUSPENDING_BIT;
4190 cmd->state.suspending = suspending;
4191 cmd->state.resuming = resuming;
4192
4193 if (!resuming && cmd->device->dbg_renderpass_stomp_cs) {
4194 tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs);
4195 }
4196
4197 /* We can't track LRZ across command buffer boundaries, so we have to
4198 * disable LRZ when resuming/suspending unless we can track on the GPU.
4199 */
4200 if ((resuming || suspending) &&
4201 !cmd->device->physical_device->info->a6xx.has_lrz_dir_tracking) {
4202 cmd->state.lrz.valid = false;
4203 } else {
4204 if (resuming)
4205 tu_lrz_begin_resumed_renderpass(cmd);
4206 else
4207 tu_lrz_begin_renderpass(cmd);
4208 }
4209
4210
4211 if (suspending) {
4212 cmd->state.suspended_pass.pass = cmd->state.pass;
4213 cmd->state.suspended_pass.subpass = cmd->state.subpass;
4214 cmd->state.suspended_pass.framebuffer = cmd->state.framebuffer;
4215 cmd->state.suspended_pass.render_area = cmd->state.render_area;
4216 cmd->state.suspended_pass.attachments = cmd->state.attachments;
4217 cmd->state.suspended_pass.gmem_layout = cmd->state.gmem_layout;
4218 }
4219
4220 if (!resuming)
4221 trace_start_render_pass(&cmd->trace, &cmd->cs, cmd->state.framebuffer,
4222 cmd->state.tiling);
4223
4224 if (!resuming || cmd->state.suspend_resume == SR_NONE) {
4225 cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4226 }
4227
4228 if (!resuming) {
4229 tu_emit_renderpass_begin(cmd);
4230 tu_emit_subpass_begin<CHIP>(cmd);
4231 }
4232
4233 if (suspending && !resuming) {
4234 /* entering a chain */
4235 switch (cmd->state.suspend_resume) {
4236 case SR_NONE:
4237 cmd->state.suspend_resume = SR_IN_CHAIN;
4238 break;
4239 case SR_AFTER_PRE_CHAIN:
4240 cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN;
4241 break;
4242 case SR_IN_PRE_CHAIN:
4243 case SR_IN_CHAIN:
4244 case SR_IN_CHAIN_AFTER_PRE_CHAIN:
4245 unreachable("suspending render pass not followed by resuming pass");
4246 break;
4247 }
4248 }
4249
4250 if (resuming && cmd->state.suspend_resume == SR_NONE)
4251 cmd->state.suspend_resume = SR_IN_PRE_CHAIN;
4252 }
4253 TU_GENX(tu_CmdBeginRendering);
4254
4255 template <chip CHIP>
4256 VKAPI_ATTR void VKAPI_CALL
tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,const VkSubpassBeginInfo * pSubpassBeginInfo,const VkSubpassEndInfo * pSubpassEndInfo)4257 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
4258 const VkSubpassBeginInfo *pSubpassBeginInfo,
4259 const VkSubpassEndInfo *pSubpassEndInfo)
4260 {
4261 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
4262
4263 if (TU_DEBUG(DYNAMIC)) {
4264 vk_common_CmdNextSubpass2(commandBuffer, pSubpassBeginInfo,
4265 pSubpassEndInfo);
4266 return;
4267 }
4268
4269 const struct tu_render_pass *pass = cmd->state.pass;
4270 const struct tu_framebuffer *fb = cmd->state.framebuffer;
4271 struct tu_cs *cs = &cmd->draw_cs;
4272 const struct tu_subpass *last_subpass = cmd->state.subpass;
4273
4274 const struct tu_subpass *subpass = cmd->state.subpass++;
4275
4276 /* Track LRZ valid state
4277 *
4278 * TODO: Improve this tracking for keeping the state of the past depth/stencil images,
4279 * so if they become active again, we reuse its old state.
4280 */
4281 if (last_subpass->depth_stencil_attachment.attachment != subpass->depth_stencil_attachment.attachment) {
4282 cmd->state.lrz.valid = false;
4283 cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
4284 }
4285
4286 if (cmd->state.tiling->possible) {
4287 if (cmd->state.pass->has_fdm)
4288 tu_cs_set_writeable(cs, true);
4289
4290 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
4291
4292 if (subpass->resolve_attachments) {
4293 tu6_emit_blit_scissor(cmd, cs, true);
4294
4295 for (unsigned i = 0; i < subpass->resolve_count; i++) {
4296 uint32_t a = subpass->resolve_attachments[i].attachment;
4297 if (a == VK_ATTACHMENT_UNUSED)
4298 continue;
4299
4300 uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
4301
4302 tu_store_gmem_attachment<CHIP>(cmd, cs, a, gmem_a, fb->layers,
4303 subpass->multiview_mask, false);
4304
4305 if (!pass->attachments[a].gmem)
4306 continue;
4307
4308 /* check if the resolved attachment is needed by later subpasses,
4309 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
4310 */
4311 perf_debug(cmd->device, "TODO: missing GMEM->GMEM resolve path\n");
4312 tu_load_gmem_attachment<CHIP>(cmd, cs, a, false, true);
4313 }
4314 }
4315
4316 tu_cond_exec_end(cs);
4317
4318 if (cmd->state.pass->has_fdm)
4319 tu_cs_set_writeable(cs, false);
4320
4321 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
4322 }
4323
4324 tu6_emit_sysmem_resolves<CHIP>(cmd, cs, subpass);
4325
4326 if (cmd->state.tiling->possible)
4327 tu_cond_exec_end(cs);
4328
4329 /* Handle dependencies for the next subpass */
4330 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
4331
4332 if (cmd->state.subpass->feedback_invalidate)
4333 cmd->state.renderpass_cache.flush_bits |= TU_CMD_FLAG_CACHE_INVALIDATE;
4334
4335 tu_emit_subpass_begin<CHIP>(cmd);
4336 }
4337 TU_GENX(tu_CmdNextSubpass2);
4338
4339 static uint32_t
tu6_user_consts_size(const struct tu_const_state * const_state,bool ldgk,gl_shader_stage type)4340 tu6_user_consts_size(const struct tu_const_state *const_state,
4341 bool ldgk,
4342 gl_shader_stage type)
4343 {
4344 uint32_t dwords = 0;
4345
4346 if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) {
4347 unsigned num_units = const_state->push_consts.dwords;
4348 dwords += 4 + num_units;
4349 assert(num_units > 0);
4350 }
4351
4352 if (ldgk) {
4353 dwords += 6 + (2 * const_state->num_inline_ubos + 4);
4354 } else {
4355 dwords += 8 * const_state->num_inline_ubos;
4356 }
4357
4358 return dwords;
4359 }
4360
4361 static void
tu6_emit_per_stage_push_consts(struct tu_cs * cs,const struct tu_const_state * const_state,gl_shader_stage type,uint32_t * push_constants)4362 tu6_emit_per_stage_push_consts(struct tu_cs *cs,
4363 const struct tu_const_state *const_state,
4364 gl_shader_stage type,
4365 uint32_t *push_constants)
4366 {
4367 if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) {
4368 unsigned num_units = const_state->push_consts.dwords;
4369 unsigned offset = const_state->push_consts.lo;
4370 assert(num_units > 0);
4371
4372 /* DST_OFF and NUM_UNIT requires vec4 units */
4373 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units);
4374 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset / 4) |
4375 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
4376 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
4377 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
4378 CP_LOAD_STATE6_0_NUM_UNIT(num_units / 4));
4379 tu_cs_emit(cs, 0);
4380 tu_cs_emit(cs, 0);
4381 for (unsigned i = 0; i < num_units; i++)
4382 tu_cs_emit(cs, push_constants[i + offset]);
4383 }
4384 }
4385
4386 static void
tu6_emit_inline_ubo(struct tu_cs * cs,const struct tu_const_state * const_state,unsigned constlen,gl_shader_stage type,struct tu_descriptor_state * descriptors)4387 tu6_emit_inline_ubo(struct tu_cs *cs,
4388 const struct tu_const_state *const_state,
4389 unsigned constlen,
4390 gl_shader_stage type,
4391 struct tu_descriptor_state *descriptors)
4392 {
4393 assert(const_state->num_inline_ubos == 0 || !cs->device->physical_device->info->a7xx.load_shader_consts_via_preamble);
4394
4395 /* Emit loads of inline uniforms. These load directly from the uniform's
4396 * storage space inside the descriptor set.
4397 */
4398 for (unsigned i = 0; i < const_state->num_inline_ubos; i++) {
4399 const struct tu_inline_ubo *ubo = &const_state->ubos[i];
4400
4401 if (constlen <= ubo->const_offset_vec4)
4402 continue;
4403
4404 uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f;
4405
4406 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), ubo->push_address ? 7 : 3);
4407 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(ubo->const_offset_vec4) |
4408 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
4409 CP_LOAD_STATE6_0_STATE_SRC(ubo->push_address ? SS6_DIRECT : SS6_INDIRECT) |
4410 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
4411 CP_LOAD_STATE6_0_NUM_UNIT(MIN2(ubo->size_vec4, constlen - ubo->const_offset_vec4)));
4412 if (ubo->push_address) {
4413 tu_cs_emit(cs, 0);
4414 tu_cs_emit(cs, 0);
4415 tu_cs_emit_qw(cs, va + ubo->offset);
4416 tu_cs_emit(cs, 0);
4417 tu_cs_emit(cs, 0);
4418 } else {
4419 tu_cs_emit_qw(cs, va + ubo->offset);
4420 }
4421 }
4422 }
4423
4424 static void
tu7_emit_inline_ubo(struct tu_cs * cs,const struct tu_const_state * const_state,const struct ir3_const_state * ir_const_state,unsigned constlen,gl_shader_stage type,struct tu_descriptor_state * descriptors)4425 tu7_emit_inline_ubo(struct tu_cs *cs,
4426 const struct tu_const_state *const_state,
4427 const struct ir3_const_state *ir_const_state,
4428 unsigned constlen,
4429 gl_shader_stage type,
4430 struct tu_descriptor_state *descriptors)
4431 {
4432 uint64_t addresses[7] = {0};
4433 unsigned offset = const_state->inline_uniforms_ubo.idx;
4434
4435 if (offset == -1)
4436 return;
4437
4438 for (unsigned i = 0; i < const_state->num_inline_ubos; i++) {
4439 const struct tu_inline_ubo *ubo = &const_state->ubos[i];
4440
4441 uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f;
4442 addresses[i] = va + ubo->offset;
4443 }
4444
4445 /* A7XX TODO: Emit data via sub_cs instead of NOP */
4446 uint64_t iova = tu_cs_emit_data_nop(cs, (uint32_t *)addresses, const_state->num_inline_ubos * 2, 4);
4447
4448 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5);
4449 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
4450 CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) |
4451 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
4452 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
4453 CP_LOAD_STATE6_0_NUM_UNIT(1));
4454 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
4455 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
4456 int size_vec4s = DIV_ROUND_UP(const_state->num_inline_ubos * 2, 4);
4457 tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32));
4458 }
4459
4460 static void
tu_emit_inline_ubo(struct tu_cs * cs,const struct tu_const_state * const_state,const struct ir3_const_state * ir_const_state,unsigned constlen,gl_shader_stage type,struct tu_descriptor_state * descriptors)4461 tu_emit_inline_ubo(struct tu_cs *cs,
4462 const struct tu_const_state *const_state,
4463 const struct ir3_const_state *ir_const_state,
4464 unsigned constlen,
4465 gl_shader_stage type,
4466 struct tu_descriptor_state *descriptors)
4467 {
4468 if (!const_state->num_inline_ubos)
4469 return;
4470
4471 if (cs->device->physical_device->info->a7xx.load_inline_uniforms_via_preamble_ldgk) {
4472 tu7_emit_inline_ubo(cs, const_state, ir_const_state, constlen, type, descriptors);
4473 } else {
4474 tu6_emit_inline_ubo(cs, const_state, constlen, type, descriptors);
4475 }
4476 }
4477
4478 static void
tu6_emit_shared_consts(struct tu_cs * cs,const struct tu_push_constant_range * shared_consts,uint32_t * push_constants,bool compute)4479 tu6_emit_shared_consts(struct tu_cs *cs,
4480 const struct tu_push_constant_range *shared_consts,
4481 uint32_t *push_constants,
4482 bool compute)
4483 {
4484 if (shared_consts->dwords > 0) {
4485 /* Offset and num_units for shared consts are in units of dwords. */
4486 unsigned num_units = shared_consts->dwords;
4487 unsigned offset = shared_consts->lo;
4488
4489 enum a6xx_state_type st = compute ? ST6_UBO : ST6_CONSTANTS;
4490 uint32_t cp_load_state = compute ? CP_LOAD_STATE6_FRAG : CP_LOAD_STATE6;
4491
4492 tu_cs_emit_pkt7(cs, cp_load_state, 3 + num_units);
4493 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
4494 CP_LOAD_STATE6_0_STATE_TYPE(st) |
4495 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
4496 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_IBO) |
4497 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
4498 tu_cs_emit(cs, 0);
4499 tu_cs_emit(cs, 0);
4500
4501 for (unsigned i = 0; i < num_units; i++)
4502 tu_cs_emit(cs, push_constants[i + offset]);
4503 }
4504 }
4505
4506 static void
tu7_emit_shared_preamble_consts(struct tu_cs * cs,const struct tu_push_constant_range * shared_consts,uint32_t * push_constants)4507 tu7_emit_shared_preamble_consts(
4508 struct tu_cs *cs,
4509 const struct tu_push_constant_range *shared_consts,
4510 uint32_t *push_constants)
4511 {
4512 tu_cs_emit_pkt4(cs, REG_A7XX_HLSQ_SHARED_CONSTS_IMM(shared_consts->lo),
4513 shared_consts->dwords);
4514 tu_cs_emit_array(cs, push_constants + shared_consts->lo,
4515 shared_consts->dwords);
4516 }
4517
4518 static uint32_t
tu6_const_size(struct tu_cmd_buffer * cmd,const struct tu_push_constant_range * shared_consts,bool compute)4519 tu6_const_size(struct tu_cmd_buffer *cmd,
4520 const struct tu_push_constant_range *shared_consts,
4521 bool compute)
4522 {
4523 uint32_t dwords = 0;
4524
4525 if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) {
4526 dwords += shared_consts->dwords + 4;
4527 } else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) {
4528 dwords += shared_consts->dwords + 1;
4529 }
4530
4531 bool ldgk = cmd->device->physical_device->info->a7xx.load_inline_uniforms_via_preamble_ldgk;
4532 if (compute) {
4533 dwords +=
4534 tu6_user_consts_size(&cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state, ldgk, MESA_SHADER_COMPUTE);
4535 } else {
4536 for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++)
4537 dwords += tu6_user_consts_size(&cmd->state.shaders[type]->const_state, ldgk, (gl_shader_stage) type);
4538 }
4539
4540 return dwords;
4541 }
4542
4543 static struct tu_draw_state
tu_emit_consts(struct tu_cmd_buffer * cmd,bool compute)4544 tu_emit_consts(struct tu_cmd_buffer *cmd, bool compute)
4545 {
4546 uint32_t dwords = 0;
4547 const struct tu_push_constant_range *shared_consts =
4548 compute ? &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state.push_consts :
4549 &cmd->state.program.shared_consts;
4550
4551 dwords = tu6_const_size(cmd, shared_consts, compute);
4552
4553 if (dwords == 0)
4554 return (struct tu_draw_state) {};
4555
4556 struct tu_cs cs;
4557 tu_cs_begin_sub_stream(&cmd->sub_cs, dwords, &cs);
4558
4559 if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) {
4560 tu6_emit_shared_consts(&cs, shared_consts, cmd->push_constants, compute);
4561 } else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) {
4562 tu7_emit_shared_preamble_consts(&cs, shared_consts, cmd->push_constants);
4563 }
4564
4565 if (compute) {
4566 tu6_emit_per_stage_push_consts(
4567 &cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state,
4568 MESA_SHADER_COMPUTE, cmd->push_constants);
4569 tu_emit_inline_ubo(
4570 &cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state,
4571 cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->const_state,
4572 cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->constlen,
4573 MESA_SHADER_COMPUTE,
4574 tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_COMPUTE));
4575 } else {
4576 struct tu_descriptor_state *descriptors =
4577 tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
4578 for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++) {
4579 const struct tu_program_descriptor_linkage *link =
4580 &cmd->state.program.link[type];
4581 tu6_emit_per_stage_push_consts(&cs, &link->tu_const_state,
4582 (gl_shader_stage) type,
4583 cmd->push_constants);
4584 tu_emit_inline_ubo(&cs, &link->tu_const_state,
4585 &link->const_state, link->constlen,
4586 (gl_shader_stage) type, descriptors);
4587 }
4588 }
4589
4590 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
4591 }
4592
4593 /* Various frontends (ANGLE, zink at least) will enable stencil testing with
4594 * what works out to be no-op writes. Simplify what they give us into flags
4595 * that LRZ can use.
4596 */
4597 static void
tu6_update_simplified_stencil_state(struct tu_cmd_buffer * cmd)4598 tu6_update_simplified_stencil_state(struct tu_cmd_buffer *cmd)
4599 {
4600 const struct vk_depth_stencil_state *ds =
4601 &cmd->vk.dynamic_graphics_state.ds;
4602 bool stencil_test_enable = ds->stencil.test_enable;
4603
4604 if (!stencil_test_enable) {
4605 cmd->state.stencil_front_write = false;
4606 cmd->state.stencil_back_write = false;
4607 return;
4608 }
4609
4610 bool stencil_front_writemask = ds->stencil.front.write_mask;
4611 bool stencil_back_writemask = ds->stencil.back.write_mask;
4612
4613 VkStencilOp front_fail_op = (VkStencilOp)ds->stencil.front.op.fail;
4614 VkStencilOp front_pass_op = (VkStencilOp)ds->stencil.front.op.pass;
4615 VkStencilOp front_depth_fail_op = (VkStencilOp)ds->stencil.front.op.depth_fail;
4616 VkStencilOp back_fail_op = (VkStencilOp)ds->stencil.back.op.fail;
4617 VkStencilOp back_pass_op = (VkStencilOp)ds->stencil.back.op.pass;
4618 VkStencilOp back_depth_fail_op = (VkStencilOp)ds->stencil.back.op.depth_fail;
4619
4620 bool stencil_front_op_writes =
4621 front_pass_op != VK_STENCIL_OP_KEEP ||
4622 front_fail_op != VK_STENCIL_OP_KEEP ||
4623 front_depth_fail_op != VK_STENCIL_OP_KEEP;
4624
4625 bool stencil_back_op_writes =
4626 back_pass_op != VK_STENCIL_OP_KEEP ||
4627 back_fail_op != VK_STENCIL_OP_KEEP ||
4628 back_depth_fail_op != VK_STENCIL_OP_KEEP;
4629
4630 cmd->state.stencil_front_write =
4631 stencil_front_op_writes && stencil_front_writemask;
4632 cmd->state.stencil_back_write =
4633 stencil_back_op_writes && stencil_back_writemask;
4634 }
4635
4636 static bool
tu6_writes_depth(struct tu_cmd_buffer * cmd,bool depth_test_enable)4637 tu6_writes_depth(struct tu_cmd_buffer *cmd, bool depth_test_enable)
4638 {
4639 bool depth_write_enable =
4640 cmd->vk.dynamic_graphics_state.ds.depth.write_enable;
4641
4642 VkCompareOp depth_compare_op = (VkCompareOp)
4643 cmd->vk.dynamic_graphics_state.ds.depth.compare_op;
4644
4645 bool depth_compare_op_writes = depth_compare_op != VK_COMPARE_OP_NEVER;
4646
4647 return depth_test_enable && depth_write_enable && depth_compare_op_writes;
4648 }
4649
4650 static bool
tu6_writes_stencil(struct tu_cmd_buffer * cmd)4651 tu6_writes_stencil(struct tu_cmd_buffer *cmd)
4652 {
4653 return cmd->state.stencil_front_write || cmd->state.stencil_back_write;
4654 }
4655
4656 static void
tu6_build_depth_plane_z_mode(struct tu_cmd_buffer * cmd,struct tu_cs * cs)4657 tu6_build_depth_plane_z_mode(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
4658 {
4659 enum a6xx_ztest_mode zmode = A6XX_EARLY_Z;
4660 bool depth_test_enable = cmd->vk.dynamic_graphics_state.ds.depth.test_enable;
4661 bool depth_write = tu6_writes_depth(cmd, depth_test_enable);
4662 bool stencil_write = tu6_writes_stencil(cmd);
4663 const struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
4664 const struct tu_render_pass *pass = cmd->state.pass;
4665 const struct tu_subpass *subpass = cmd->state.subpass;
4666
4667 if ((fs->variant->has_kill ||
4668 cmd->state.pipeline_feedback_loop_ds) &&
4669 (depth_write || stencil_write)) {
4670 zmode = (cmd->state.lrz.valid && cmd->state.lrz.enabled)
4671 ? A6XX_EARLY_LRZ_LATE_Z
4672 : A6XX_LATE_Z;
4673 }
4674
4675 bool force_late_z =
4676 (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED &&
4677 pass->attachments[subpass->depth_stencil_attachment.attachment].format
4678 == VK_FORMAT_S8_UINT) ||
4679 fs->fs.lrz.force_late_z ||
4680 /* alpha-to-coverage can behave like a discard. */
4681 cmd->vk.dynamic_graphics_state.ms.alpha_to_coverage_enable;
4682 if ((force_late_z && !fs->variant->fs.early_fragment_tests) ||
4683 !depth_test_enable)
4684 zmode = A6XX_LATE_Z;
4685
4686 /* User defined early tests take precedence above all else */
4687 if (fs->variant->fs.early_fragment_tests)
4688 zmode = A6XX_EARLY_Z;
4689
4690 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
4691 tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode));
4692
4693 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
4694 tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode));
4695 }
4696
4697 static uint32_t
fs_params_offset(struct tu_cmd_buffer * cmd)4698 fs_params_offset(struct tu_cmd_buffer *cmd)
4699 {
4700 const struct tu_program_descriptor_linkage *link =
4701 &cmd->state.program.link[MESA_SHADER_FRAGMENT];
4702 const struct ir3_const_state *const_state = &link->const_state;
4703
4704 if (const_state->num_driver_params <= IR3_DP_FS_DYNAMIC)
4705 return 0;
4706
4707 if (const_state->offsets.driver_param + IR3_DP_FS_DYNAMIC / 4 >= link->constlen)
4708 return 0;
4709
4710 return const_state->offsets.driver_param + IR3_DP_FS_DYNAMIC / 4;
4711 }
4712
4713 static uint32_t
fs_params_size(struct tu_cmd_buffer * cmd)4714 fs_params_size(struct tu_cmd_buffer *cmd)
4715 {
4716 const struct tu_program_descriptor_linkage *link =
4717 &cmd->state.program.link[MESA_SHADER_FRAGMENT];
4718 const struct ir3_const_state *const_state = &link->const_state;
4719
4720 return DIV_ROUND_UP(const_state->num_driver_params - IR3_DP_FS_DYNAMIC, 4);
4721 }
4722
4723 struct apply_fs_params_state {
4724 unsigned num_consts;
4725 };
4726
4727 static void
fdm_apply_fs_params(struct tu_cmd_buffer * cmd,struct tu_cs * cs,void * data,VkRect2D bin,unsigned views,VkExtent2D * frag_areas)4728 fdm_apply_fs_params(struct tu_cmd_buffer *cmd,
4729 struct tu_cs *cs,
4730 void *data,
4731 VkRect2D bin,
4732 unsigned views,
4733 VkExtent2D *frag_areas)
4734 {
4735 const struct apply_fs_params_state *state =
4736 (const struct apply_fs_params_state *)data;
4737 unsigned num_consts = state->num_consts;
4738
4739 for (unsigned i = 0; i < num_consts; i++) {
4740 assert(i < views);
4741 VkExtent2D area = frag_areas[i];
4742 VkOffset2D offset = tu_fdm_per_bin_offset(area, bin);
4743
4744 tu_cs_emit(cs, area.width);
4745 tu_cs_emit(cs, area.height);
4746 tu_cs_emit(cs, fui(offset.x));
4747 tu_cs_emit(cs, fui(offset.y));
4748 }
4749 }
4750
4751 static void
tu6_emit_fs_params(struct tu_cmd_buffer * cmd)4752 tu6_emit_fs_params(struct tu_cmd_buffer *cmd)
4753 {
4754 uint32_t offset = fs_params_offset(cmd);
4755
4756 if (offset == 0) {
4757 cmd->state.fs_params = (struct tu_draw_state) {};
4758 return;
4759 }
4760
4761 struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
4762
4763 unsigned num_units = fs_params_size(cmd);
4764
4765 if (fs->fs.has_fdm)
4766 tu_cs_set_writeable(&cmd->sub_cs, true);
4767
4768 struct tu_cs cs;
4769 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 4 + 4 * num_units, &cs);
4770 if (result != VK_SUCCESS) {
4771 tu_cs_set_writeable(&cmd->sub_cs, false);
4772 vk_command_buffer_set_error(&cmd->vk, result);
4773 return;
4774 }
4775
4776 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3 + 4 * num_units);
4777 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
4778 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
4779 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
4780 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_SHADER) |
4781 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
4782 tu_cs_emit(&cs, 0);
4783 tu_cs_emit(&cs, 0);
4784
4785 STATIC_ASSERT(IR3_DP_FS_FRAG_INVOCATION_COUNT == IR3_DP_FS_DYNAMIC);
4786 tu_cs_emit(&cs, fs->fs.per_samp ?
4787 cmd->vk.dynamic_graphics_state.ms.rasterization_samples : 1);
4788 tu_cs_emit(&cs, 0);
4789 tu_cs_emit(&cs, 0);
4790 tu_cs_emit(&cs, 0);
4791
4792 STATIC_ASSERT(IR3_DP_FS_FRAG_SIZE == IR3_DP_FS_DYNAMIC + 4);
4793 STATIC_ASSERT(IR3_DP_FS_FRAG_OFFSET == IR3_DP_FS_DYNAMIC + 6);
4794 if (num_units > 1) {
4795 if (fs->fs.has_fdm) {
4796 struct apply_fs_params_state state = {
4797 .num_consts = num_units - 1,
4798 };
4799 tu_create_fdm_bin_patchpoint(cmd, &cs, 4 * (num_units - 1),
4800 fdm_apply_fs_params, state);
4801 } else {
4802 for (unsigned i = 1; i < num_units; i++) {
4803 tu_cs_emit(&cs, 1);
4804 tu_cs_emit(&cs, 1);
4805 tu_cs_emit(&cs, fui(0.0f));
4806 tu_cs_emit(&cs, fui(0.0f));
4807 }
4808 }
4809 }
4810
4811 cmd->state.fs_params = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
4812
4813 if (fs->fs.has_fdm)
4814 tu_cs_set_writeable(&cmd->sub_cs, false);
4815 }
4816
4817 template <chip CHIP>
4818 static VkResult
tu6_draw_common(struct tu_cmd_buffer * cmd,struct tu_cs * cs,bool indexed,uint32_t draw_count)4819 tu6_draw_common(struct tu_cmd_buffer *cmd,
4820 struct tu_cs *cs,
4821 bool indexed,
4822 /* note: draw_count is 0 for indirect */
4823 uint32_t draw_count)
4824 {
4825 const struct tu_program_state *program = &cmd->state.program;
4826 struct tu_render_pass_state *rp = &cmd->state.rp;
4827
4828 /* Emit state first, because it's needed for bandwidth calculations */
4829 uint32_t dynamic_draw_state_dirty = 0;
4830 if (!BITSET_IS_EMPTY(cmd->vk.dynamic_graphics_state.dirty) ||
4831 (cmd->state.dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS)) {
4832 dynamic_draw_state_dirty = tu_emit_draw_state<CHIP>(cmd);
4833 }
4834
4835 /* Fill draw stats for autotuner */
4836 rp->drawcall_count++;
4837
4838 rp->drawcall_bandwidth_per_sample_sum +=
4839 cmd->state.bandwidth.color_bandwidth_per_sample;
4840
4841 /* add depth memory bandwidth cost */
4842 const uint32_t depth_bandwidth = cmd->state.bandwidth.depth_cpp_per_sample;
4843 if (cmd->vk.dynamic_graphics_state.ds.depth.write_enable)
4844 rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth;
4845 if (cmd->vk.dynamic_graphics_state.ds.depth.test_enable)
4846 rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth;
4847
4848 /* add stencil memory bandwidth cost */
4849 const uint32_t stencil_bandwidth =
4850 cmd->state.bandwidth.stencil_cpp_per_sample;
4851 if (cmd->vk.dynamic_graphics_state.ds.stencil.test_enable)
4852 rp->drawcall_bandwidth_per_sample_sum += stencil_bandwidth * 2;
4853
4854 tu_emit_cache_flush_renderpass<CHIP>(cmd);
4855
4856 if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4857 MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE) ||
4858 BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4859 MESA_VK_DYNAMIC_RS_PROVOKING_VERTEX)) {
4860 bool primitive_restart_enabled =
4861 cmd->vk.dynamic_graphics_state.ia.primitive_restart_enable;
4862
4863 bool primitive_restart = primitive_restart_enabled && indexed;
4864 bool provoking_vtx_last =
4865 cmd->vk.dynamic_graphics_state.rs.provoking_vertex ==
4866 VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT;
4867
4868 uint32_t primitive_cntl_0 =
4869 A6XX_PC_PRIMITIVE_CNTL_0(.primitive_restart = primitive_restart,
4870 .provoking_vtx_last = provoking_vtx_last).value;
4871 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(.dword = primitive_cntl_0));
4872 if (CHIP == A7XX) {
4873 tu_cs_emit_regs(cs, A7XX_VPC_PRIMITIVE_CNTL_0(.dword = primitive_cntl_0));
4874 }
4875 }
4876
4877 struct tu_tess_params *tess_params = &cmd->state.tess_params;
4878 if ((cmd->state.dirty & TU_CMD_DIRTY_TESS_PARAMS) ||
4879 BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4880 MESA_VK_DYNAMIC_TS_DOMAIN_ORIGIN)) {
4881 bool tess_upper_left_domain_origin =
4882 (VkTessellationDomainOrigin)cmd->vk.dynamic_graphics_state.ts.domain_origin ==
4883 VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
4884 tu_cs_emit_regs(cs, A6XX_PC_TESS_CNTL(
4885 .spacing = tess_params->spacing,
4886 .output = tess_upper_left_domain_origin ?
4887 tess_params->output_upper_left :
4888 tess_params->output_lower_left));
4889 }
4890
4891 /* Early exit if there is nothing to emit, saves CPU cycles */
4892 uint32_t dirty = cmd->state.dirty;
4893 if (!dynamic_draw_state_dirty && !(dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS))
4894 return VK_SUCCESS;
4895
4896 bool dirty_lrz =
4897 (dirty & TU_CMD_DIRTY_LRZ) ||
4898 BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4899 MESA_VK_DYNAMIC_DS_DEPTH_TEST_ENABLE) ||
4900 BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4901 MESA_VK_DYNAMIC_DS_DEPTH_WRITE_ENABLE) ||
4902 BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4903 MESA_VK_DYNAMIC_DS_DEPTH_BOUNDS_TEST_ENABLE) ||
4904 BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4905 MESA_VK_DYNAMIC_DS_DEPTH_COMPARE_OP) ||
4906 BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4907 MESA_VK_DYNAMIC_DS_STENCIL_TEST_ENABLE) ||
4908 BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4909 MESA_VK_DYNAMIC_DS_STENCIL_OP) ||
4910 BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4911 MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) ||
4912 BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4913 MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE);
4914
4915 if (dirty_lrz) {
4916 struct tu_cs cs;
4917 uint32_t size = cmd->device->physical_device->info->a6xx.lrz_track_quirk ? 10 : 8;
4918
4919 cmd->state.lrz_and_depth_plane_state =
4920 tu_cs_draw_state(&cmd->sub_cs, &cs, size);
4921 tu6_update_simplified_stencil_state(cmd);
4922 tu6_emit_lrz(cmd, &cs);
4923 tu6_build_depth_plane_z_mode(cmd, &cs);
4924 }
4925
4926 if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4927 MESA_VK_DYNAMIC_VI_BINDINGS_VALID)) {
4928 cmd->state.vertex_buffers.size =
4929 util_last_bit(cmd->vk.dynamic_graphics_state.vi_bindings_valid) * 4;
4930 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
4931 }
4932
4933 if (dirty & TU_CMD_DIRTY_SHADER_CONSTS)
4934 cmd->state.shader_const = tu_emit_consts(cmd, false);
4935
4936 if (dirty & TU_CMD_DIRTY_DESC_SETS)
4937 tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
4938
4939 if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4940 MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
4941 BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4942 MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) ||
4943 BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4944 MESA_VK_DYNAMIC_RS_LINE_MODE) ||
4945 (cmd->state.dirty & TU_CMD_DIRTY_TES)) {
4946 tu6_update_msaa_disable(cmd);
4947 }
4948
4949 if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4950 MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES)) {
4951 tu6_update_msaa(cmd);
4952 }
4953
4954 bool dirty_fs_params = false;
4955 if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
4956 MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
4957 (cmd->state.dirty & (TU_CMD_DIRTY_PROGRAM | TU_CMD_DIRTY_FDM))) {
4958 tu6_emit_fs_params(cmd);
4959 dirty_fs_params = true;
4960 }
4961
4962 /* for the first draw in a renderpass, re-emit all the draw states
4963 *
4964 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
4965 * used, then draw states must be re-emitted. note however this only happens
4966 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
4967 *
4968 * the two input attachment states are excluded because secondary command
4969 * buffer doesn't have a state ib to restore it, and not re-emitting them
4970 * is OK since CmdClearAttachments won't disable/overwrite them
4971 */
4972 if (dirty & TU_CMD_DIRTY_DRAW_STATE) {
4973 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
4974
4975 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, program->config_state);
4976 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, program->vs_state);
4977 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, program->vs_binning_state);
4978 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, program->hs_state);
4979 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, program->ds_state);
4980 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, program->gs_state);
4981 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, program->gs_binning_state);
4982 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, program->fs_state);
4983 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, program->vpc_state);
4984 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_SYSMEM, cmd->state.prim_order_sysmem);
4985 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, cmd->state.prim_order_gmem);
4986 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
4987 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
4988 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state);
4989 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
4990 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
4991 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params);
4992 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
4993
4994 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
4995 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
4996 cmd->state.dynamic_state[i]);
4997 }
4998 } else {
4999 /* emit draw states that were just updated */
5000 uint32_t draw_state_count =
5001 util_bitcount(dynamic_draw_state_dirty) +
5002 ((dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 1 : 0) +
5003 ((dirty & TU_CMD_DIRTY_DESC_SETS) ? 1 : 0) +
5004 ((dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
5005 ((dirty & TU_CMD_DIRTY_VS_PARAMS) ? 1 : 0) +
5006 (dirty_fs_params ? 1 : 0) +
5007 (dirty_lrz ? 1 : 0);
5008
5009 if (draw_state_count > 0)
5010 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
5011
5012 if (dirty & TU_CMD_DIRTY_SHADER_CONSTS)
5013 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
5014 if (dirty & TU_CMD_DIRTY_DESC_SETS) {
5015 /* tu6_emit_descriptor_sets emitted the cmd->state.desc_sets draw state. */
5016 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state);
5017 }
5018 if (dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
5019 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
5020 u_foreach_bit (i, dynamic_draw_state_dirty) {
5021 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
5022 cmd->state.dynamic_state[i]);
5023 }
5024 if (dirty & TU_CMD_DIRTY_VS_PARAMS)
5025 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
5026 if (dirty_fs_params)
5027 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params);
5028 if (dirty_lrz) {
5029 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
5030 }
5031 }
5032
5033 tu_cs_sanity_check(cs);
5034
5035 /* There are too many graphics dirty bits to list here, so just list the
5036 * bits to preserve instead. The only things not emitted here are
5037 * compute-related state.
5038 */
5039 cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS;
5040 BITSET_ZERO(cmd->vk.dynamic_graphics_state.dirty);
5041 return VK_SUCCESS;
5042 }
5043
5044 static uint32_t
tu_draw_initiator(struct tu_cmd_buffer * cmd,enum pc_di_src_sel src_sel)5045 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
5046 {
5047 enum pc_di_primtype primtype =
5048 tu6_primtype((VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology);
5049
5050 if (primtype == DI_PT_PATCHES0)
5051 primtype = (enum pc_di_primtype) (primtype +
5052 cmd->vk.dynamic_graphics_state.ts.patch_control_points);
5053
5054 uint32_t initiator =
5055 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
5056 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
5057 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE((enum a4xx_index_size) cmd->state.index_size) |
5058 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
5059
5060 if (cmd->state.shaders[MESA_SHADER_GEOMETRY]->variant)
5061 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
5062
5063 const struct tu_shader *tes = cmd->state.shaders[MESA_SHADER_TESS_EVAL];
5064 if (tes->variant) {
5065 switch (tes->variant->key.tessellation) {
5066 case IR3_TESS_TRIANGLES:
5067 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
5068 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
5069 break;
5070 case IR3_TESS_ISOLINES:
5071 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
5072 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
5073 break;
5074 case IR3_TESS_QUADS:
5075 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
5076 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
5077 break;
5078 }
5079 }
5080 return initiator;
5081 }
5082
5083
5084 static uint32_t
vs_params_offset(struct tu_cmd_buffer * cmd)5085 vs_params_offset(struct tu_cmd_buffer *cmd)
5086 {
5087 const struct tu_program_descriptor_linkage *link =
5088 &cmd->state.program.link[MESA_SHADER_VERTEX];
5089 const struct ir3_const_state *const_state = &link->const_state;
5090
5091 if (const_state->offsets.driver_param >= link->constlen)
5092 return 0;
5093
5094 /* this layout is required by CP_DRAW_INDIRECT_MULTI */
5095 STATIC_ASSERT(IR3_DP_DRAWID == 0);
5096 STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
5097 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
5098
5099 /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
5100 assert(const_state->offsets.driver_param != 0);
5101
5102 return const_state->offsets.driver_param;
5103 }
5104
5105 static void
tu6_emit_empty_vs_params(struct tu_cmd_buffer * cmd)5106 tu6_emit_empty_vs_params(struct tu_cmd_buffer *cmd)
5107 {
5108 if (cmd->state.vs_params.iova) {
5109 cmd->state.vs_params = (struct tu_draw_state) {};
5110 cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
5111 }
5112 }
5113
5114 static void
tu6_emit_vs_params(struct tu_cmd_buffer * cmd,uint32_t draw_id,uint32_t vertex_offset,uint32_t first_instance)5115 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
5116 uint32_t draw_id,
5117 uint32_t vertex_offset,
5118 uint32_t first_instance)
5119 {
5120 uint32_t offset = vs_params_offset(cmd);
5121
5122 /* Beside re-emitting params when they are changed, we should re-emit
5123 * them after constants are invalidated via HLSQ_INVALIDATE_CMD or after we
5124 * emit an empty vs params.
5125 */
5126 if (!(cmd->state.dirty & (TU_CMD_DIRTY_DRAW_STATE | TU_CMD_DIRTY_VS_PARAMS |
5127 TU_CMD_DIRTY_PROGRAM)) &&
5128 cmd->state.vs_params.iova &&
5129 (offset == 0 || draw_id == cmd->state.last_vs_params.draw_id) &&
5130 vertex_offset == cmd->state.last_vs_params.vertex_offset &&
5131 first_instance == cmd->state.last_vs_params.first_instance) {
5132 return;
5133 }
5134
5135 uint64_t consts_iova = 0;
5136 if (offset) {
5137 struct tu_cs_memory consts;
5138 VkResult result = tu_cs_alloc(&cmd->sub_cs, 1, 4, &consts);
5139 if (result != VK_SUCCESS) {
5140 vk_command_buffer_set_error(&cmd->vk, result);
5141 return;
5142 }
5143 consts.map[0] = draw_id;
5144 consts.map[1] = vertex_offset;
5145 consts.map[2] = first_instance;
5146 consts.map[3] = 0;
5147
5148 consts_iova = consts.iova;
5149 }
5150
5151 struct tu_cs cs;
5152 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 4 : 0), &cs);
5153 if (result != VK_SUCCESS) {
5154 vk_command_buffer_set_error(&cmd->vk, result);
5155 return;
5156 }
5157
5158 tu_cs_emit_regs(&cs,
5159 A6XX_VFD_INDEX_OFFSET(vertex_offset),
5160 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
5161
5162 /* It is implemented as INDIRECT load even on a750+ because with UBO
5163 * lowering it would be tricky to get const offset for to use in multidraw,
5164 * also we would need to ensure the offset is not 0.
5165 * TODO/A7XX: Rework vs params to use UBO lowering.
5166 */
5167 if (offset) {
5168 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3);
5169 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
5170 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5171 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
5172 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
5173 CP_LOAD_STATE6_0_NUM_UNIT(1));
5174 tu_cs_emit_qw(&cs, consts_iova);
5175 }
5176
5177 cmd->state.last_vs_params.vertex_offset = vertex_offset;
5178 cmd->state.last_vs_params.first_instance = first_instance;
5179 cmd->state.last_vs_params.draw_id = draw_id;
5180
5181 struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
5182 cmd->state.vs_params = (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
5183
5184 cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
5185 }
5186
5187 template <chip CHIP>
5188 VKAPI_ATTR void VKAPI_CALL
tu_CmdDraw(VkCommandBuffer commandBuffer,uint32_t vertexCount,uint32_t instanceCount,uint32_t firstVertex,uint32_t firstInstance)5189 tu_CmdDraw(VkCommandBuffer commandBuffer,
5190 uint32_t vertexCount,
5191 uint32_t instanceCount,
5192 uint32_t firstVertex,
5193 uint32_t firstInstance)
5194 {
5195 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5196 struct tu_cs *cs = &cmd->draw_cs;
5197
5198 tu6_emit_vs_params(cmd, 0, firstVertex, firstInstance);
5199
5200 tu6_draw_common<CHIP>(cmd, cs, false, vertexCount);
5201
5202 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
5203 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5204 tu_cs_emit(cs, instanceCount);
5205 tu_cs_emit(cs, vertexCount);
5206 }
5207 TU_GENX(tu_CmdDraw);
5208
5209 template <chip CHIP>
5210 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawMultiEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawInfoEXT * pVertexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride)5211 tu_CmdDrawMultiEXT(VkCommandBuffer commandBuffer,
5212 uint32_t drawCount,
5213 const VkMultiDrawInfoEXT *pVertexInfo,
5214 uint32_t instanceCount,
5215 uint32_t firstInstance,
5216 uint32_t stride)
5217 {
5218 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5219 struct tu_cs *cs = &cmd->draw_cs;
5220
5221 if (!drawCount)
5222 return;
5223
5224 bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant;
5225
5226 uint32_t max_vertex_count = 0;
5227 if (has_tess) {
5228 uint32_t i = 0;
5229 vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
5230 max_vertex_count = MAX2(max_vertex_count, draw->vertexCount);
5231 }
5232 }
5233
5234 uint32_t i = 0;
5235 vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
5236 tu6_emit_vs_params(cmd, i, draw->firstVertex, firstInstance);
5237
5238 if (i == 0)
5239 tu6_draw_common<CHIP>(cmd, cs, false, max_vertex_count);
5240
5241 if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) {
5242 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
5243 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
5244 cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS;
5245 }
5246
5247 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
5248 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5249 tu_cs_emit(cs, instanceCount);
5250 tu_cs_emit(cs, draw->vertexCount);
5251 }
5252 }
5253 TU_GENX(tu_CmdDrawMultiEXT);
5254
5255 template <chip CHIP>
5256 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,uint32_t indexCount,uint32_t instanceCount,uint32_t firstIndex,int32_t vertexOffset,uint32_t firstInstance)5257 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
5258 uint32_t indexCount,
5259 uint32_t instanceCount,
5260 uint32_t firstIndex,
5261 int32_t vertexOffset,
5262 uint32_t firstInstance)
5263 {
5264 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5265 struct tu_cs *cs = &cmd->draw_cs;
5266
5267 tu6_emit_vs_params(cmd, 0, vertexOffset, firstInstance);
5268
5269 tu6_draw_common<CHIP>(cmd, cs, true, indexCount);
5270
5271 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
5272 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
5273 tu_cs_emit(cs, instanceCount);
5274 tu_cs_emit(cs, indexCount);
5275 tu_cs_emit(cs, firstIndex);
5276 tu_cs_emit_qw(cs, cmd->state.index_va);
5277 tu_cs_emit(cs, cmd->state.max_index_count);
5278 }
5279 TU_GENX(tu_CmdDrawIndexed);
5280
5281 template <chip CHIP>
5282 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawIndexedInfoEXT * pIndexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride,const int32_t * pVertexOffset)5283 tu_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer,
5284 uint32_t drawCount,
5285 const VkMultiDrawIndexedInfoEXT *pIndexInfo,
5286 uint32_t instanceCount,
5287 uint32_t firstInstance,
5288 uint32_t stride,
5289 const int32_t *pVertexOffset)
5290 {
5291 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5292 struct tu_cs *cs = &cmd->draw_cs;
5293
5294 if (!drawCount)
5295 return;
5296
5297 bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant;
5298
5299 uint32_t max_index_count = 0;
5300 if (has_tess) {
5301 uint32_t i = 0;
5302 vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
5303 max_index_count = MAX2(max_index_count, draw->indexCount);
5304 }
5305 }
5306
5307 uint32_t i = 0;
5308 vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
5309 int32_t vertexOffset = pVertexOffset ? *pVertexOffset : draw->vertexOffset;
5310 tu6_emit_vs_params(cmd, i, vertexOffset, firstInstance);
5311
5312 if (i == 0)
5313 tu6_draw_common<CHIP>(cmd, cs, true, max_index_count);
5314
5315 if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) {
5316 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
5317 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
5318 cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS;
5319 }
5320
5321 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
5322 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
5323 tu_cs_emit(cs, instanceCount);
5324 tu_cs_emit(cs, draw->indexCount);
5325 tu_cs_emit(cs, draw->firstIndex);
5326 tu_cs_emit_qw(cs, cmd->state.index_va);
5327 tu_cs_emit(cs, cmd->state.max_index_count);
5328 }
5329 }
5330 TU_GENX(tu_CmdDrawMultiIndexedEXT);
5331
5332 /* Various firmware bugs/inconsistencies mean that some indirect draw opcodes
5333 * do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if
5334 * pending for these opcodes. This may result in a few extra WAIT_FOR_ME's
5335 * with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's
5336 * before draw opcodes that don't need it.
5337 */
5338 static void
draw_wfm(struct tu_cmd_buffer * cmd)5339 draw_wfm(struct tu_cmd_buffer *cmd)
5340 {
5341 cmd->state.renderpass_cache.flush_bits |=
5342 cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME;
5343 cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME;
5344 }
5345
5346 template <chip CHIP>
5347 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)5348 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
5349 VkBuffer _buffer,
5350 VkDeviceSize offset,
5351 uint32_t drawCount,
5352 uint32_t stride)
5353 {
5354 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5355 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
5356 struct tu_cs *cs = &cmd->draw_cs;
5357
5358 tu6_emit_empty_vs_params(cmd);
5359
5360 if (cmd->device->physical_device->info->a6xx.indirect_draw_wfm_quirk)
5361 draw_wfm(cmd);
5362
5363 tu6_draw_common<CHIP>(cmd, cs, false, 0);
5364
5365 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
5366 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5367 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
5368 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
5369 tu_cs_emit(cs, drawCount);
5370 tu_cs_emit_qw(cs, buf->iova + offset);
5371 tu_cs_emit(cs, stride);
5372 }
5373 TU_GENX(tu_CmdDrawIndirect);
5374
5375 template <chip CHIP>
5376 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)5377 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
5378 VkBuffer _buffer,
5379 VkDeviceSize offset,
5380 uint32_t drawCount,
5381 uint32_t stride)
5382 {
5383 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5384 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
5385 struct tu_cs *cs = &cmd->draw_cs;
5386
5387 tu6_emit_empty_vs_params(cmd);
5388
5389 if (cmd->device->physical_device->info->a6xx.indirect_draw_wfm_quirk)
5390 draw_wfm(cmd);
5391
5392 tu6_draw_common<CHIP>(cmd, cs, true, 0);
5393
5394 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
5395 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
5396 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
5397 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
5398 tu_cs_emit(cs, drawCount);
5399 tu_cs_emit_qw(cs, cmd->state.index_va);
5400 tu_cs_emit(cs, cmd->state.max_index_count);
5401 tu_cs_emit_qw(cs, buf->iova + offset);
5402 tu_cs_emit(cs, stride);
5403 }
5404 TU_GENX(tu_CmdDrawIndexedIndirect);
5405
5406 template <chip CHIP>
5407 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer countBuffer,VkDeviceSize countBufferOffset,uint32_t drawCount,uint32_t stride)5408 tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,
5409 VkBuffer _buffer,
5410 VkDeviceSize offset,
5411 VkBuffer countBuffer,
5412 VkDeviceSize countBufferOffset,
5413 uint32_t drawCount,
5414 uint32_t stride)
5415 {
5416 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5417 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
5418 TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
5419 struct tu_cs *cs = &cmd->draw_cs;
5420
5421 tu6_emit_empty_vs_params(cmd);
5422
5423 /* It turns out that the firmware we have for a650 only partially fixed the
5424 * problem with CP_DRAW_INDIRECT_MULTI not waiting for WFI's to complete
5425 * before reading indirect parameters. It waits for WFI's before reading
5426 * the draw parameters, but after reading the indirect count :(.
5427 */
5428 draw_wfm(cmd);
5429
5430 tu6_draw_common<CHIP>(cmd, cs, false, 0);
5431
5432 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 8);
5433 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5434 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT) |
5435 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
5436 tu_cs_emit(cs, drawCount);
5437 tu_cs_emit_qw(cs, buf->iova + offset);
5438 tu_cs_emit_qw(cs, count_buf->iova + countBufferOffset);
5439 tu_cs_emit(cs, stride);
5440 }
5441 TU_GENX(tu_CmdDrawIndirectCount);
5442
5443 template <chip CHIP>
5444 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer countBuffer,VkDeviceSize countBufferOffset,uint32_t drawCount,uint32_t stride)5445 tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,
5446 VkBuffer _buffer,
5447 VkDeviceSize offset,
5448 VkBuffer countBuffer,
5449 VkDeviceSize countBufferOffset,
5450 uint32_t drawCount,
5451 uint32_t stride)
5452 {
5453 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5454 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
5455 TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
5456 struct tu_cs *cs = &cmd->draw_cs;
5457
5458 tu6_emit_empty_vs_params(cmd);
5459
5460 draw_wfm(cmd);
5461
5462 tu6_draw_common<CHIP>(cmd, cs, true, 0);
5463
5464 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 11);
5465 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
5466 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT_INDEXED) |
5467 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
5468 tu_cs_emit(cs, drawCount);
5469 tu_cs_emit_qw(cs, cmd->state.index_va);
5470 tu_cs_emit(cs, cmd->state.max_index_count);
5471 tu_cs_emit_qw(cs, buf->iova + offset);
5472 tu_cs_emit_qw(cs, count_buf->iova + countBufferOffset);
5473 tu_cs_emit(cs, stride);
5474 }
5475 TU_GENX(tu_CmdDrawIndexedIndirectCount);
5476
5477 template <chip CHIP>
5478 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,uint32_t instanceCount,uint32_t firstInstance,VkBuffer _counterBuffer,VkDeviceSize counterBufferOffset,uint32_t counterOffset,uint32_t vertexStride)5479 tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
5480 uint32_t instanceCount,
5481 uint32_t firstInstance,
5482 VkBuffer _counterBuffer,
5483 VkDeviceSize counterBufferOffset,
5484 uint32_t counterOffset,
5485 uint32_t vertexStride)
5486 {
5487 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5488 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
5489 struct tu_cs *cs = &cmd->draw_cs;
5490
5491 /* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO.
5492 * Plus, for the common case where the counter buffer is written by
5493 * vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to
5494 * complete which means we need a WAIT_FOR_ME anyway.
5495 */
5496 draw_wfm(cmd);
5497
5498 tu6_emit_vs_params(cmd, 0, 0, firstInstance);
5499
5500 tu6_draw_common<CHIP>(cmd, cs, false, 0);
5501
5502 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
5503 if (CHIP == A6XX) {
5504 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
5505 } else {
5506 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
5507 /* On a7xx the counter value and offset are shifted right by 2, so
5508 * the vertexStride should also be in units of dwords.
5509 */
5510 vertexStride = vertexStride >> 2;
5511 }
5512 tu_cs_emit(cs, instanceCount);
5513 tu_cs_emit_qw(cs, buf->iova + counterBufferOffset);
5514 tu_cs_emit(cs, counterOffset);
5515 tu_cs_emit(cs, vertexStride);
5516 }
5517 TU_GENX(tu_CmdDrawIndirectByteCountEXT);
5518
5519 struct tu_dispatch_info
5520 {
5521 /**
5522 * Determine the layout of the grid (in block units) to be used.
5523 */
5524 uint32_t blocks[3];
5525
5526 /**
5527 * A starting offset for the grid. If unaligned is set, the offset
5528 * must still be aligned.
5529 */
5530 uint32_t offsets[3];
5531 /**
5532 * Whether it's an unaligned compute dispatch.
5533 */
5534 bool unaligned;
5535
5536 /**
5537 * Indirect compute parameters resource.
5538 */
5539 struct tu_buffer *indirect;
5540 uint64_t indirect_offset;
5541 };
5542
5543 template <chip CHIP>
5544 static void
tu_emit_compute_driver_params(struct tu_cmd_buffer * cmd,struct tu_cs * cs,const struct tu_dispatch_info * info)5545 tu_emit_compute_driver_params(struct tu_cmd_buffer *cmd,
5546 struct tu_cs *cs,
5547 const struct tu_dispatch_info *info)
5548 {
5549 gl_shader_stage type = MESA_SHADER_COMPUTE;
5550 const struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE];
5551 const struct ir3_shader_variant *variant = shader->variant;
5552 const struct ir3_const_state *const_state = variant->const_state;
5553 unsigned subgroup_size = variant->info.subgroup_size;
5554 unsigned subgroup_shift = util_logbase2(subgroup_size);
5555
5556 if (cmd->device->physical_device->info->a7xx.load_shader_consts_via_preamble) {
5557 uint32_t num_consts = const_state->driver_params_ubo.size;
5558 if (num_consts == 0)
5559 return;
5560
5561 bool direct_indirect_load =
5562 !(info->indirect_offset & 0xf) &&
5563 !(info->indirect && num_consts > IR3_DP_BASE_GROUP_X);
5564
5565 uint64_t iova = 0;
5566
5567 if (!info->indirect) {
5568 uint32_t driver_params[12] = {
5569 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
5570 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
5571 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
5572 [IR3_DP_WORK_DIM] = 0,
5573 [IR3_DP_BASE_GROUP_X] = info->offsets[0],
5574 [IR3_DP_BASE_GROUP_Y] = info->offsets[1],
5575 [IR3_DP_BASE_GROUP_Z] = info->offsets[2],
5576 [IR3_DP_CS_SUBGROUP_SIZE] = subgroup_size,
5577 [IR3_DP_LOCAL_GROUP_SIZE_X] = 0,
5578 [IR3_DP_LOCAL_GROUP_SIZE_Y] = 0,
5579 [IR3_DP_LOCAL_GROUP_SIZE_Z] = 0,
5580 [IR3_DP_SUBGROUP_ID_SHIFT] = subgroup_shift,
5581 };
5582
5583 assert(num_consts <= ARRAY_SIZE(driver_params));
5584
5585 struct tu_cs_memory consts;
5586 uint32_t consts_vec4 = DIV_ROUND_UP(num_consts, 4);
5587 VkResult result = tu_cs_alloc(&cmd->sub_cs, consts_vec4, 4, &consts);
5588 if (result != VK_SUCCESS) {
5589 vk_command_buffer_set_error(&cmd->vk, result);
5590 return;
5591 }
5592 memcpy(consts.map, driver_params, num_consts * sizeof(uint32_t));
5593 iova = consts.iova;
5594 } else if (direct_indirect_load) {
5595 iova = info->indirect->iova + info->indirect_offset;
5596 } else {
5597 /* Vulkan guarantees only 4 byte alignment for indirect_offset.
5598 * However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment.
5599 */
5600
5601 uint64_t indirect_iova = info->indirect->iova + info->indirect_offset;
5602
5603 for (uint32_t i = 0; i < 3; i++) {
5604 tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
5605 tu_cs_emit(cs, 0);
5606 tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i));
5607 tu_cs_emit_qw(cs, indirect_iova + i * sizeof(uint32_t));
5608 }
5609
5610 /* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for
5611 * indirect dispatch.
5612 */
5613 if (info->indirect && num_consts > IR3_DP_BASE_GROUP_X) {
5614 uint32_t indirect_driver_params[8] = {
5615 0, 0, 0, subgroup_size,
5616 0, 0, 0, subgroup_shift,
5617 };
5618 bool emit_local = num_consts > IR3_DP_LOCAL_GROUP_SIZE_X;
5619 uint32_t emit_size = emit_local ? 8 : 4;
5620
5621 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + emit_size);
5622 tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, 0) + 4 * sizeof(uint32_t));
5623 for (uint32_t i = 0; i < emit_size; i++) {
5624 tu_cs_emit(cs, indirect_driver_params[i]);
5625 }
5626 }
5627
5628 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
5629 tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
5630
5631 iova = global_iova(cmd, cs_indirect_xyz[0]);
5632 }
5633
5634 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5);
5635 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(const_state->driver_params_ubo.idx) |
5636 CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) |
5637 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
5638 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
5639 CP_LOAD_STATE6_0_NUM_UNIT(1));
5640 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
5641 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
5642 int size_vec4s = DIV_ROUND_UP(num_consts, 4);
5643 tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32));
5644
5645 } else {
5646 uint32_t offset = const_state->offsets.driver_param;
5647 if (variant->constlen <= offset)
5648 return;
5649
5650 uint32_t num_consts = MIN2(const_state->num_driver_params,
5651 (variant->constlen - offset) * 4);
5652
5653 if (!info->indirect) {
5654 uint32_t driver_params[12] = {
5655 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
5656 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
5657 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
5658 [IR3_DP_WORK_DIM] = 0,
5659 [IR3_DP_BASE_GROUP_X] = info->offsets[0],
5660 [IR3_DP_BASE_GROUP_Y] = info->offsets[1],
5661 [IR3_DP_BASE_GROUP_Z] = info->offsets[2],
5662 [IR3_DP_CS_SUBGROUP_SIZE] = subgroup_size,
5663 [IR3_DP_LOCAL_GROUP_SIZE_X] = 0,
5664 [IR3_DP_LOCAL_GROUP_SIZE_Y] = 0,
5665 [IR3_DP_LOCAL_GROUP_SIZE_Z] = 0,
5666 [IR3_DP_SUBGROUP_ID_SHIFT] = subgroup_shift,
5667 };
5668
5669 assert(num_consts <= ARRAY_SIZE(driver_params));
5670
5671 /* push constants */
5672 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
5673 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
5674 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5675 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
5676 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
5677 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
5678 tu_cs_emit(cs, 0);
5679 tu_cs_emit(cs, 0);
5680 uint32_t i;
5681 for (i = 0; i < num_consts; i++)
5682 tu_cs_emit(cs, driver_params[i]);
5683 } else if (!(info->indirect_offset & 0xf)) {
5684 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
5685 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
5686 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5687 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
5688 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
5689 CP_LOAD_STATE6_0_NUM_UNIT(1));
5690 tu_cs_emit_qw(cs, info->indirect->iova + info->indirect_offset);
5691 } else {
5692 /* Vulkan guarantees only 4 byte alignment for indirect_offset.
5693 * However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment.
5694 */
5695
5696 uint64_t indirect_iova = info->indirect->iova + info->indirect_offset;
5697
5698 for (uint32_t i = 0; i < 3; i++) {
5699 tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
5700 tu_cs_emit(cs, 0);
5701 tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i));
5702 tu_cs_emit_qw(cs, indirect_iova + i * 4);
5703 }
5704
5705 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
5706 tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
5707
5708 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
5709 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
5710 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5711 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
5712 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
5713 CP_LOAD_STATE6_0_NUM_UNIT(1));
5714 tu_cs_emit_qw(cs, global_iova(cmd, cs_indirect_xyz[0]));
5715 }
5716
5717 /* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for
5718 * indirect dispatch.
5719 */
5720 if (info->indirect && num_consts > IR3_DP_BASE_GROUP_X) {
5721 bool emit_local = num_consts > IR3_DP_LOCAL_GROUP_SIZE_X;
5722 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 7 + (emit_local ? 4 : 0));
5723 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset + (IR3_DP_BASE_GROUP_X / 4)) |
5724 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5725 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
5726 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
5727 CP_LOAD_STATE6_0_NUM_UNIT((num_consts - IR3_DP_BASE_GROUP_X) / 4));
5728 tu_cs_emit_qw(cs, 0);
5729 tu_cs_emit(cs, 0); /* BASE_GROUP_X */
5730 tu_cs_emit(cs, 0); /* BASE_GROUP_Y */
5731 tu_cs_emit(cs, 0); /* BASE_GROUP_Z */
5732 tu_cs_emit(cs, subgroup_size);
5733 if (emit_local) {
5734 assert(num_consts == align(IR3_DP_SUBGROUP_ID_SHIFT, 4));
5735 tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_X */
5736 tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Y */
5737 tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Z */
5738 tu_cs_emit(cs, subgroup_shift);
5739 }
5740 }
5741 }
5742 }
5743
5744 template <chip CHIP>
5745 static void
tu_dispatch(struct tu_cmd_buffer * cmd,const struct tu_dispatch_info * info)5746 tu_dispatch(struct tu_cmd_buffer *cmd,
5747 const struct tu_dispatch_info *info)
5748 {
5749 if (!info->indirect &&
5750 (info->blocks[0] == 0 || info->blocks[1] == 0 || info->blocks[2] == 0))
5751 return;
5752
5753 struct tu_cs *cs = &cmd->cs;
5754 struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE];
5755
5756 bool emit_instrlen_workaround =
5757 shader->variant->instrlen >
5758 cmd->device->physical_device->info->a6xx.instr_cache_size;
5759
5760 /* We don't use draw states for dispatches, so the bound pipeline
5761 * could be overwritten by reg stomping in a renderpass or blit.
5762 */
5763 if (cmd->device->dbg_renderpass_stomp_cs) {
5764 tu_cs_emit_state_ib(&cmd->cs, shader->state);
5765 }
5766
5767 /* There appears to be a HW bug where in some rare circumstances it appears
5768 * to accidentally use the FS instrlen instead of the CS instrlen, which
5769 * affects all known gens. Based on various experiments it appears that the
5770 * issue is that when prefetching a branch destination and there is a cache
5771 * miss, when fetching from memory the HW bounds-checks the fetch against
5772 * SP_CS_INSTRLEN, except when one of the two register contexts is active
5773 * it accidentally fetches SP_FS_INSTRLEN from the other (inactive)
5774 * context. To workaround it we set the FS instrlen here and do a dummy
5775 * event to roll the context (because it fetches SP_FS_INSTRLEN from the
5776 * "wrong" context). Because the bug seems to involve cache misses, we
5777 * don't emit this if the entire CS program fits in cache, which will
5778 * hopefully be the majority of cases.
5779 *
5780 * See https://gitlab.freedesktop.org/mesa/mesa/-/issues/5892
5781 */
5782 if (emit_instrlen_workaround) {
5783 tu_cs_emit_regs(cs, A6XX_SP_FS_INSTRLEN(shader->variant->instrlen));
5784 tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL);
5785 }
5786
5787 /* TODO: We could probably flush less if we add a compute_flush_bits
5788 * bitfield.
5789 */
5790 tu_emit_cache_flush<CHIP>(cmd);
5791
5792 /* note: no reason to have this in a separate IB */
5793 tu_cs_emit_state_ib(cs, tu_emit_consts(cmd, true));
5794
5795 tu_emit_compute_driver_params<CHIP>(cmd, cs, info);
5796
5797 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS) {
5798 tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_COMPUTE);
5799 tu_cs_emit_state_ib(cs, cmd->state.compute_load_state);
5800 }
5801
5802 cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS;
5803
5804 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
5805 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
5806
5807 const uint16_t *local_size = shader->variant->local_size;
5808 const uint32_t *num_groups = info->blocks;
5809 tu_cs_emit_regs(cs,
5810 HLSQ_CS_NDRANGE_0(CHIP, .kerneldim = 3,
5811 .localsizex = local_size[0] - 1,
5812 .localsizey = local_size[1] - 1,
5813 .localsizez = local_size[2] - 1),
5814 HLSQ_CS_NDRANGE_1(CHIP, .globalsize_x = local_size[0] * num_groups[0]),
5815 HLSQ_CS_NDRANGE_2(CHIP, .globaloff_x = 0),
5816 HLSQ_CS_NDRANGE_3(CHIP, .globalsize_y = local_size[1] * num_groups[1]),
5817 HLSQ_CS_NDRANGE_4(CHIP, .globaloff_y = 0),
5818 HLSQ_CS_NDRANGE_5(CHIP, .globalsize_z = local_size[2] * num_groups[2]),
5819 HLSQ_CS_NDRANGE_6(CHIP, .globaloff_z = 0));
5820
5821 tu_cs_emit_regs(cs,
5822 HLSQ_CS_KERNEL_GROUP_X(CHIP, 1),
5823 HLSQ_CS_KERNEL_GROUP_Y(CHIP, 1),
5824 HLSQ_CS_KERNEL_GROUP_Z(CHIP, 1));
5825
5826 trace_start_compute(&cmd->trace, cs, info->indirect != NULL, local_size[0],
5827 local_size[1], local_size[2], info->blocks[0],
5828 info->blocks[1], info->blocks[2]);
5829
5830 if (info->indirect) {
5831 uint64_t iova = info->indirect->iova + info->indirect_offset;
5832
5833 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
5834 tu_cs_emit(cs, 0x00000000);
5835 tu_cs_emit_qw(cs, iova);
5836 tu_cs_emit(cs,
5837 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
5838 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
5839 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
5840 } else {
5841 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
5842 tu_cs_emit(cs, 0x00000000);
5843 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
5844 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
5845 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
5846 }
5847
5848 trace_end_compute(&cmd->trace, cs);
5849
5850 /* For the workaround above, because it's using the "wrong" context for
5851 * SP_FS_INSTRLEN we should emit another dummy event write to avoid a
5852 * potential race between writing the register and the CP_EXEC_CS we just
5853 * did. We don't need to reset the register because it will be re-emitted
5854 * anyway when the next renderpass starts.
5855 */
5856 if (emit_instrlen_workaround) {
5857 tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL);
5858 }
5859
5860 tu_cs_emit_wfi(cs);
5861 }
5862
5863 template <chip CHIP>
5864 VKAPI_ATTR void VKAPI_CALL
tu_CmdDispatchBase(VkCommandBuffer commandBuffer,uint32_t base_x,uint32_t base_y,uint32_t base_z,uint32_t x,uint32_t y,uint32_t z)5865 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
5866 uint32_t base_x,
5867 uint32_t base_y,
5868 uint32_t base_z,
5869 uint32_t x,
5870 uint32_t y,
5871 uint32_t z)
5872 {
5873 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
5874 struct tu_dispatch_info info = {};
5875
5876 info.blocks[0] = x;
5877 info.blocks[1] = y;
5878 info.blocks[2] = z;
5879
5880 info.offsets[0] = base_x;
5881 info.offsets[1] = base_y;
5882 info.offsets[2] = base_z;
5883 tu_dispatch<CHIP>(cmd_buffer, &info);
5884 }
5885 TU_GENX(tu_CmdDispatchBase);
5886
5887 template <chip CHIP>
5888 VKAPI_ATTR void VKAPI_CALL
tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset)5889 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
5890 VkBuffer _buffer,
5891 VkDeviceSize offset)
5892 {
5893 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
5894 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
5895 struct tu_dispatch_info info = {};
5896
5897 info.indirect = buffer;
5898 info.indirect_offset = offset;
5899
5900 tu_dispatch<CHIP>(cmd_buffer, &info);
5901 }
5902 TU_GENX(tu_CmdDispatchIndirect);
5903
5904 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,const VkSubpassEndInfo * pSubpassEndInfo)5905 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
5906 const VkSubpassEndInfo *pSubpassEndInfo)
5907 {
5908 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
5909
5910 if (TU_DEBUG(DYNAMIC)) {
5911 vk_common_CmdEndRenderPass2(commandBuffer, pSubpassEndInfo);
5912 return;
5913 }
5914
5915 tu_cs_end(&cmd_buffer->draw_cs);
5916 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
5917 TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer);
5918
5919 cmd_buffer->state.cache.pending_flush_bits |=
5920 cmd_buffer->state.renderpass_cache.pending_flush_bits;
5921 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
5922
5923 vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer->state.attachments);
5924
5925 tu_reset_render_pass(cmd_buffer);
5926 }
5927
5928 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndRendering(VkCommandBuffer commandBuffer)5929 tu_CmdEndRendering(VkCommandBuffer commandBuffer)
5930 {
5931 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
5932
5933 if (cmd_buffer->state.suspending)
5934 cmd_buffer->state.suspended_pass.lrz = cmd_buffer->state.lrz;
5935
5936 if (!cmd_buffer->state.suspending) {
5937 tu_cs_end(&cmd_buffer->draw_cs);
5938 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
5939
5940 if (cmd_buffer->state.suspend_resume == SR_IN_PRE_CHAIN) {
5941 cmd_buffer->trace_renderpass_end = u_trace_end_iterator(&cmd_buffer->trace);
5942 tu_save_pre_chain(cmd_buffer);
5943
5944 /* Even we don't call tu_cmd_render here, renderpass is finished
5945 * and draw states should be disabled.
5946 */
5947 tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs);
5948 } else {
5949 TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer);
5950 }
5951
5952 tu_reset_render_pass(cmd_buffer);
5953 }
5954
5955 if (cmd_buffer->state.resuming && !cmd_buffer->state.suspending) {
5956 /* exiting suspend/resume chain */
5957 switch (cmd_buffer->state.suspend_resume) {
5958 case SR_IN_CHAIN:
5959 cmd_buffer->state.suspend_resume = SR_NONE;
5960 break;
5961 case SR_IN_PRE_CHAIN:
5962 case SR_IN_CHAIN_AFTER_PRE_CHAIN:
5963 cmd_buffer->state.suspend_resume = SR_AFTER_PRE_CHAIN;
5964 break;
5965 default:
5966 unreachable("suspending render pass not followed by resuming pass");
5967 }
5968 }
5969 }
5970
5971 static void
tu_barrier(struct tu_cmd_buffer * cmd,const VkDependencyInfo * dep_info)5972 tu_barrier(struct tu_cmd_buffer *cmd,
5973 const VkDependencyInfo *dep_info)
5974 {
5975 VkPipelineStageFlags2 srcStage = 0;
5976 VkPipelineStageFlags2 dstStage = 0;
5977 BITMASK_ENUM(tu_cmd_access_mask) src_flags = 0;
5978 BITMASK_ENUM(tu_cmd_access_mask) dst_flags = 0;
5979
5980 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
5981 * so we have to use the sysmem flushes.
5982 */
5983 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
5984 !cmd->state.pass;
5985
5986
5987 for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
5988 VkPipelineStageFlags2 sanitized_src_stage =
5989 sanitize_src_stage(dep_info->pMemoryBarriers[i].srcStageMask);
5990 VkPipelineStageFlags2 sanitized_dst_stage =
5991 sanitize_dst_stage(dep_info->pMemoryBarriers[i].dstStageMask);
5992 src_flags |= vk2tu_access(dep_info->pMemoryBarriers[i].srcAccessMask,
5993 sanitized_src_stage, false, gmem);
5994 dst_flags |= vk2tu_access(dep_info->pMemoryBarriers[i].dstAccessMask,
5995 sanitized_dst_stage, false, gmem);
5996 srcStage |= sanitized_src_stage;
5997 dstStage |= sanitized_dst_stage;
5998 }
5999
6000 for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
6001 VkPipelineStageFlags2 sanitized_src_stage =
6002 sanitize_src_stage(dep_info->pBufferMemoryBarriers[i].srcStageMask);
6003 VkPipelineStageFlags2 sanitized_dst_stage =
6004 sanitize_dst_stage(dep_info->pBufferMemoryBarriers[i].dstStageMask);
6005 src_flags |= vk2tu_access(dep_info->pBufferMemoryBarriers[i].srcAccessMask,
6006 sanitized_src_stage, false, gmem);
6007 dst_flags |= vk2tu_access(dep_info->pBufferMemoryBarriers[i].dstAccessMask,
6008 sanitized_dst_stage, false, gmem);
6009 srcStage |= sanitized_src_stage;
6010 dstStage |= sanitized_dst_stage;
6011 }
6012
6013 for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
6014 VkImageLayout old_layout = dep_info->pImageMemoryBarriers[i].oldLayout;
6015 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
6016 /* The underlying memory for this image may have been used earlier
6017 * within the same queue submission for a different image, which
6018 * means that there may be old, stale cache entries which are in the
6019 * "wrong" location, which could cause problems later after writing
6020 * to the image. We don't want these entries being flushed later and
6021 * overwriting the actual image, so we need to flush the CCU.
6022 */
6023 TU_FROM_HANDLE(tu_image, image, dep_info->pImageMemoryBarriers[i].image);
6024
6025 if (vk_format_is_depth_or_stencil(image->vk.format)) {
6026 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
6027 } else {
6028 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
6029 }
6030 }
6031 VkPipelineStageFlags2 sanitized_src_stage =
6032 sanitize_src_stage(dep_info->pImageMemoryBarriers[i].srcStageMask);
6033 VkPipelineStageFlags2 sanitized_dst_stage =
6034 sanitize_dst_stage(dep_info->pImageMemoryBarriers[i].dstStageMask);
6035 src_flags |= vk2tu_access(dep_info->pImageMemoryBarriers[i].srcAccessMask,
6036 sanitized_src_stage, true, gmem);
6037 dst_flags |= vk2tu_access(dep_info->pImageMemoryBarriers[i].dstAccessMask,
6038 sanitized_dst_stage, true, gmem);
6039 srcStage |= sanitized_src_stage;
6040 dstStage |= sanitized_dst_stage;
6041 }
6042
6043 if (cmd->state.pass) {
6044 const VkPipelineStageFlags framebuffer_space_stages =
6045 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
6046 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
6047 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT |
6048 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
6049
6050 /* We cannot have non-by-region "fb-space to fb-space" barriers.
6051 *
6052 * From the Vulkan 1.2.185 spec, section 7.6.1 "Subpass Self-dependency":
6053 *
6054 * If the source and destination stage masks both include
6055 * framebuffer-space stages, then dependencyFlags must include
6056 * VK_DEPENDENCY_BY_REGION_BIT.
6057 * [...]
6058 * Each of the synchronization scopes and access scopes of a
6059 * vkCmdPipelineBarrier2 or vkCmdPipelineBarrier command inside
6060 * a render pass instance must be a subset of the scopes of one of
6061 * the self-dependencies for the current subpass.
6062 *
6063 * If the self-dependency has VK_DEPENDENCY_BY_REGION_BIT or
6064 * VK_DEPENDENCY_VIEW_LOCAL_BIT set, then so must the pipeline barrier.
6065 *
6066 * By-region barriers are ok for gmem. All other barriers would involve
6067 * vtx stages which are NOT ok for gmem rendering.
6068 * See dep_invalid_for_gmem().
6069 */
6070 if ((srcStage & ~framebuffer_space_stages) ||
6071 (dstStage & ~framebuffer_space_stages)) {
6072 cmd->state.rp.disable_gmem = true;
6073 }
6074 }
6075
6076 struct tu_cache_state *cache =
6077 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
6078 tu_flush_for_access(cache, src_flags, dst_flags);
6079
6080 enum tu_stage src_stage = vk2tu_src_stage(srcStage);
6081 enum tu_stage dst_stage = vk2tu_dst_stage(dstStage);
6082 tu_flush_for_stage(cache, src_stage, dst_stage);
6083 }
6084
6085 VKAPI_ATTR void VKAPI_CALL
tu_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,const VkDependencyInfo * pDependencyInfo)6086 tu_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,
6087 const VkDependencyInfo *pDependencyInfo)
6088 {
6089 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
6090
6091 tu_barrier(cmd_buffer, pDependencyInfo);
6092 }
6093
6094 template <chip CHIP>
6095 static void
write_event(struct tu_cmd_buffer * cmd,struct tu_event * event,VkPipelineStageFlags2 stageMask,unsigned value)6096 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
6097 VkPipelineStageFlags2 stageMask, unsigned value)
6098 {
6099 struct tu_cs *cs = &cmd->cs;
6100
6101 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
6102 assert(!cmd->state.pass);
6103
6104 tu_emit_cache_flush<CHIP>(cmd);
6105
6106 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
6107 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
6108 */
6109 VkPipelineStageFlags2 top_of_pipe_flags =
6110 VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
6111 VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
6112
6113 if (!(stageMask & ~top_of_pipe_flags)) {
6114 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
6115 tu_cs_emit_qw(cs, event->bo->iova); /* ADDR_LO/HI */
6116 tu_cs_emit(cs, value);
6117 } else {
6118 /* Use a RB_DONE_TS event to wait for everything to complete. */
6119 if (CHIP == A6XX) {
6120 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
6121 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
6122 } else {
6123 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
6124 tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS,
6125 .write_src = EV_WRITE_USER_32B,
6126 .write_dst = EV_DST_RAM,
6127 .write_enabled = true).value);
6128 }
6129
6130 tu_cs_emit_qw(cs, event->bo->iova);
6131 tu_cs_emit(cs, value);
6132 }
6133 }
6134
6135 template <chip CHIP>
6136 VKAPI_ATTR void VKAPI_CALL
tu_CmdSetEvent2(VkCommandBuffer commandBuffer,VkEvent _event,const VkDependencyInfo * pDependencyInfo)6137 tu_CmdSetEvent2(VkCommandBuffer commandBuffer,
6138 VkEvent _event,
6139 const VkDependencyInfo *pDependencyInfo)
6140 {
6141 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6142 TU_FROM_HANDLE(tu_event, event, _event);
6143 VkPipelineStageFlags2 src_stage_mask = 0;
6144
6145 for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++)
6146 src_stage_mask |= pDependencyInfo->pMemoryBarriers[i].srcStageMask;
6147 for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++)
6148 src_stage_mask |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask;
6149 for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++)
6150 src_stage_mask |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask;
6151
6152 write_event<CHIP>(cmd, event, src_stage_mask, 1);
6153 }
6154 TU_GENX(tu_CmdSetEvent2);
6155
6156 template <chip CHIP>
6157 VKAPI_ATTR void VKAPI_CALL
tu_CmdResetEvent2(VkCommandBuffer commandBuffer,VkEvent _event,VkPipelineStageFlags2 stageMask)6158 tu_CmdResetEvent2(VkCommandBuffer commandBuffer,
6159 VkEvent _event,
6160 VkPipelineStageFlags2 stageMask)
6161 {
6162 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6163 TU_FROM_HANDLE(tu_event, event, _event);
6164
6165 write_event<CHIP>(cmd, event, stageMask, 0);
6166 }
6167 TU_GENX(tu_CmdResetEvent2);
6168
6169 VKAPI_ATTR void VKAPI_CALL
tu_CmdWaitEvents2(VkCommandBuffer commandBuffer,uint32_t eventCount,const VkEvent * pEvents,const VkDependencyInfo * pDependencyInfos)6170 tu_CmdWaitEvents2(VkCommandBuffer commandBuffer,
6171 uint32_t eventCount,
6172 const VkEvent *pEvents,
6173 const VkDependencyInfo* pDependencyInfos)
6174 {
6175 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6176 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
6177
6178 for (uint32_t i = 0; i < eventCount; i++) {
6179 TU_FROM_HANDLE(tu_event, event, pEvents[i]);
6180
6181 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
6182 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
6183 CP_WAIT_REG_MEM_0_POLL(POLL_MEMORY));
6184 tu_cs_emit_qw(cs, event->bo->iova); /* POLL_ADDR_LO/HI */
6185 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
6186 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
6187 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
6188 }
6189
6190 tu_barrier(cmd, pDependencyInfos);
6191 }
6192
6193 template <chip CHIP>
6194 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,const VkConditionalRenderingBeginInfoEXT * pConditionalRenderingBegin)6195 tu_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,
6196 const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin)
6197 {
6198 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6199
6200 cmd->state.predication_active = true;
6201
6202 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
6203
6204 tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
6205 tu_cs_emit(cs, 1);
6206
6207 /* Wait for any writes to the predicate to land */
6208 if (cmd->state.pass)
6209 tu_emit_cache_flush_renderpass<CHIP>(cmd);
6210 else
6211 tu_emit_cache_flush<CHIP>(cmd);
6212
6213 TU_FROM_HANDLE(tu_buffer, buf, pConditionalRenderingBegin->buffer);
6214 uint64_t iova = buf->iova + pConditionalRenderingBegin->offset;
6215
6216 /* qcom doesn't support 32-bit reference values, only 64-bit, but Vulkan
6217 * mandates 32-bit comparisons. Our workaround is to copy the the reference
6218 * value to the low 32-bits of a location where the high 32 bits are known
6219 * to be 0 and then compare that.
6220 */
6221 tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
6222 tu_cs_emit(cs, 0);
6223 tu_cs_emit_qw(cs, global_iova(cmd, predicate));
6224 tu_cs_emit_qw(cs, iova);
6225
6226 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
6227 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
6228
6229 bool inv = pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
6230 tu_cs_emit_pkt7(cs, CP_DRAW_PRED_SET, 3);
6231 tu_cs_emit(cs, CP_DRAW_PRED_SET_0_SRC(PRED_SRC_MEM) |
6232 CP_DRAW_PRED_SET_0_TEST(inv ? EQ_0_PASS : NE_0_PASS));
6233 tu_cs_emit_qw(cs, global_iova(cmd, predicate));
6234 }
6235 TU_GENX(tu_CmdBeginConditionalRenderingEXT);
6236
6237 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)6238 tu_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)
6239 {
6240 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6241
6242 cmd->state.predication_active = false;
6243
6244 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
6245
6246 tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
6247 tu_cs_emit(cs, 0);
6248 }
6249
6250 template <chip CHIP>
6251 void
tu_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,VkPipelineStageFlagBits2 pipelineStage,VkBuffer dstBuffer,VkDeviceSize dstOffset,uint32_t marker)6252 tu_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,
6253 VkPipelineStageFlagBits2 pipelineStage,
6254 VkBuffer dstBuffer,
6255 VkDeviceSize dstOffset,
6256 uint32_t marker)
6257 {
6258 /* Almost the same as write_event, but also allowed in renderpass */
6259 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6260 TU_FROM_HANDLE(tu_buffer, buffer, dstBuffer);
6261
6262 uint64_t va = buffer->iova + dstOffset;
6263
6264 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
6265 struct tu_cache_state *cache =
6266 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
6267
6268 /* From the Vulkan 1.2.203 spec:
6269 *
6270 * The access scope for buffer marker writes falls under
6271 * the VK_ACCESS_TRANSFER_WRITE_BIT, and the pipeline stages for
6272 * identifying the synchronization scope must include both pipelineStage
6273 * and VK_PIPELINE_STAGE_TRANSFER_BIT.
6274 *
6275 * Transfer operations use CCU however here we write via CP.
6276 * Flush CCU in order to make the results of previous transfer
6277 * operation visible to CP.
6278 */
6279 tu_flush_for_access(cache, TU_ACCESS_NONE, TU_ACCESS_SYSMEM_WRITE);
6280
6281 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
6282 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
6283 */
6284 VkPipelineStageFlags2 top_of_pipe_flags =
6285 VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
6286 VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
6287
6288 bool is_top_of_pipe = !(pipelineStage & ~top_of_pipe_flags);
6289
6290 /* We have to WFI only if we flushed CCU here and are using CP_MEM_WRITE.
6291 * Otherwise:
6292 * - We do CP_EVENT_WRITE(RB_DONE_TS) which should wait for flushes;
6293 * - There was a barrier to synchronize other writes with WriteBufferMarkerAMD
6294 * and they had to include our pipelineStage which forces the WFI.
6295 */
6296 if (cache->flush_bits && is_top_of_pipe) {
6297 cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
6298 }
6299
6300 if (cmd->state.pass) {
6301 tu_emit_cache_flush_renderpass<CHIP>(cmd);
6302 } else {
6303 tu_emit_cache_flush<CHIP>(cmd);
6304 }
6305
6306 if (is_top_of_pipe) {
6307 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
6308 tu_cs_emit_qw(cs, va); /* ADDR_LO/HI */
6309 tu_cs_emit(cs, marker);
6310 } else {
6311 /* Use a RB_DONE_TS event to wait for everything to complete. */
6312 if (CHIP == A6XX) {
6313 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
6314 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
6315 } else {
6316 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
6317 tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS,
6318 .write_src = EV_WRITE_USER_32B,
6319 .write_dst = EV_DST_RAM,
6320 .write_enabled = true).value);
6321 }
6322 tu_cs_emit_qw(cs, va);
6323 tu_cs_emit(cs, marker);
6324 }
6325
6326 /* Make sure the result of this write is visible to others. */
6327 tu_flush_for_access(cache, TU_ACCESS_CP_WRITE, TU_ACCESS_NONE);
6328 }
6329 TU_GENX(tu_CmdWriteBufferMarker2AMD);
6330