1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 * SPDX-License-Identifier: MIT
5 */
6
7 /**
8 * @file
9 *
10 * We use the bindless descriptor model, which maps fairly closely to how
11 * Vulkan descriptor sets work. The two exceptions are input attachments and
12 * dynamic descriptors, which have to be patched when recording command
13 * buffers. We reserve an extra descriptor set for these. This descriptor set
14 * contains all the input attachments in the pipeline, in order, and then all
15 * the dynamic descriptors. The dynamic descriptors are stored in the CPU-side
16 * datastructure for each tu_descriptor_set, and then combined into one big
17 * descriptor set at CmdBindDescriptors time/draw time.
18 */
19
20 #include "tu_descriptor_set.h"
21
22 #include <fcntl.h>
23
24 #include "util/mesa-sha1.h"
25 #include "vk_descriptors.h"
26 #include "vk_util.h"
27
28 #include "tu_device.h"
29 #include "tu_image.h"
30 #include "tu_formats.h"
31
32 static inline uint8_t *
pool_base(struct tu_descriptor_pool * pool)33 pool_base(struct tu_descriptor_pool *pool)
34 {
35 return pool->host_bo ?: (uint8_t *) pool->bo->map;
36 }
37
38 static uint32_t
descriptor_size(struct tu_device * dev,const VkDescriptorSetLayoutBinding * binding,VkDescriptorType type)39 descriptor_size(struct tu_device *dev,
40 const VkDescriptorSetLayoutBinding *binding,
41 VkDescriptorType type)
42 {
43 switch (type) {
44 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
45 if (TU_DEBUG(DYNAMIC))
46 return A6XX_TEX_CONST_DWORDS * 4;
47
48 /* Input attachment doesn't use descriptor sets at all */
49 return 0;
50 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
51 /* We make offsets and sizes all 16 dwords, to match how the hardware
52 * interprets indices passed to sample/load/store instructions in
53 * multiples of 16 dwords. This means that "normal" descriptors are all
54 * of size 16, with padding for smaller descriptors like uniform storage
55 * descriptors which are less than 16 dwords. However combined images
56 * and samplers are actually two descriptors, so they have size 2.
57 */
58 return A6XX_TEX_CONST_DWORDS * 4 * 2;
59 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
60 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
61 /* When we support 16-bit storage, we need an extra descriptor setup as
62 * a 32-bit array for isam to work.
63 */
64 if (dev->physical_device->info->a6xx.storage_16bit) {
65 return A6XX_TEX_CONST_DWORDS * 4 * 2;
66 } else {
67 return A6XX_TEX_CONST_DWORDS * 4;
68 }
69 case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
70 return binding->descriptorCount;
71 default:
72 return A6XX_TEX_CONST_DWORDS * 4;
73 }
74 }
75
76 static bool
is_dynamic(VkDescriptorType type)77 is_dynamic(VkDescriptorType type)
78 {
79 return type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC ||
80 type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
81 }
82
83 static uint32_t
mutable_descriptor_size(struct tu_device * dev,const VkMutableDescriptorTypeListEXT * list)84 mutable_descriptor_size(struct tu_device *dev,
85 const VkMutableDescriptorTypeListEXT *list)
86 {
87 uint32_t max_size = 0;
88
89 for (uint32_t i = 0; i < list->descriptorTypeCount; i++) {
90 uint32_t size = descriptor_size(dev, NULL, list->pDescriptorTypes[i]);
91 max_size = MAX2(max_size, size);
92 }
93
94 return max_size;
95 }
96
97 static void
tu_descriptor_set_layout_destroy(struct vk_device * vk_dev,struct vk_descriptor_set_layout * vk_layout)98 tu_descriptor_set_layout_destroy(struct vk_device *vk_dev,
99 struct vk_descriptor_set_layout *vk_layout)
100 {
101 struct tu_device *dev = container_of(vk_dev, struct tu_device, vk);
102 struct tu_descriptor_set_layout *layout =
103 container_of(vk_layout, struct tu_descriptor_set_layout, vk);
104
105 if (layout->embedded_samplers)
106 tu_bo_finish(dev, layout->embedded_samplers);
107 vk_descriptor_set_layout_destroy(vk_dev, vk_layout);
108 }
109
110 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorSetLayout(VkDevice _device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorSetLayout * pSetLayout)111 tu_CreateDescriptorSetLayout(
112 VkDevice _device,
113 const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
114 const VkAllocationCallbacks *pAllocator,
115 VkDescriptorSetLayout *pSetLayout)
116 {
117 TU_FROM_HANDLE(tu_device, device, _device);
118 struct tu_descriptor_set_layout *set_layout;
119
120 assert(pCreateInfo->sType ==
121 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
122 const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags =
123 vk_find_struct_const(
124 pCreateInfo->pNext,
125 DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO);
126 const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
127 vk_find_struct_const(
128 pCreateInfo->pNext,
129 MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
130
131 uint32_t num_bindings = 0;
132 uint32_t immutable_sampler_count = 0;
133 uint32_t ycbcr_sampler_count = 0;
134 for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
135 num_bindings = MAX2(num_bindings, pCreateInfo->pBindings[j].binding + 1);
136 if ((pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
137 pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
138 pCreateInfo->pBindings[j].pImmutableSamplers) {
139 immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
140
141 bool has_ycbcr_sampler = false;
142 for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
143 if (tu_sampler_from_handle(pCreateInfo->pBindings[j].pImmutableSamplers[i])->ycbcr_sampler)
144 has_ycbcr_sampler = true;
145 }
146
147 if (has_ycbcr_sampler)
148 ycbcr_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
149 }
150 }
151
152 uint32_t samplers_offset =
153 offsetof_arr(struct tu_descriptor_set_layout, binding, num_bindings);
154
155 /* note: only need to store TEX_SAMP_DWORDS for immutable samples,
156 * but using struct tu_sampler makes things simpler */
157 uint32_t size = samplers_offset +
158 immutable_sampler_count * sizeof(struct tu_sampler) +
159 ycbcr_sampler_count * sizeof(struct tu_sampler_ycbcr_conversion);
160
161 set_layout =
162 (struct tu_descriptor_set_layout *) vk_descriptor_set_layout_zalloc(
163 &device->vk, size);
164 if (!set_layout)
165 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
166
167 set_layout->flags = pCreateInfo->flags;
168 set_layout->vk.destroy = tu_descriptor_set_layout_destroy;
169
170 /* We just allocate all the immutable samplers at the end of the struct */
171 struct tu_sampler *samplers =
172 (struct tu_sampler *) &set_layout->binding[num_bindings];
173 struct tu_sampler_ycbcr_conversion *ycbcr_samplers =
174 (struct tu_sampler_ycbcr_conversion *) &samplers[immutable_sampler_count];
175
176 VkDescriptorSetLayoutBinding *bindings = NULL;
177 VkResult result = vk_create_sorted_bindings(
178 pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
179 if (result != VK_SUCCESS) {
180 vk_object_free(&device->vk, pAllocator, set_layout);
181 return vk_error(device, result);
182 }
183
184 set_layout->binding_count = num_bindings;
185 set_layout->shader_stages = 0;
186 set_layout->has_immutable_samplers = false;
187 set_layout->has_inline_uniforms = false;
188 set_layout->size = 0;
189
190 uint32_t dynamic_offset_size = 0;
191
192 for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
193 const VkDescriptorSetLayoutBinding *binding = bindings + j;
194 uint32_t b = binding->binding;
195
196 set_layout->binding[b].type = binding->descriptorType;
197 set_layout->binding[b].array_size =
198 binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK ?
199 1 : binding->descriptorCount;
200 set_layout->binding[b].offset = set_layout->size;
201 set_layout->binding[b].dynamic_offset_offset = dynamic_offset_size;
202 set_layout->binding[b].shader_stages = binding->stageFlags;
203
204 if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_EXT) {
205 /* For mutable descriptor types we must allocate a size that fits the
206 * largest descriptor type that the binding can mutate to.
207 */
208 set_layout->binding[b].size =
209 mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[j]);
210 } else {
211 set_layout->binding[b].size =
212 descriptor_size(device, binding, binding->descriptorType);
213 }
214
215 if (binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK)
216 set_layout->has_inline_uniforms = true;
217
218 if (variable_flags && binding->binding < variable_flags->bindingCount &&
219 (variable_flags->pBindingFlags[binding->binding] &
220 VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) {
221 assert(!binding->pImmutableSamplers); /* Terribly ill defined how
222 many samplers are valid */
223 assert(binding->binding == num_bindings - 1);
224
225 set_layout->has_variable_descriptors = true;
226 }
227
228 if ((binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
229 binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
230 binding->pImmutableSamplers) {
231 set_layout->binding[b].immutable_samplers_offset = samplers_offset;
232 set_layout->has_immutable_samplers = true;
233
234 for (uint32_t i = 0; i < binding->descriptorCount; i++)
235 samplers[i] = *tu_sampler_from_handle(binding->pImmutableSamplers[i]);
236
237 samplers += binding->descriptorCount;
238 samplers_offset += sizeof(struct tu_sampler) * binding->descriptorCount;
239
240 bool has_ycbcr_sampler = false;
241 for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
242 if (tu_sampler_from_handle(binding->pImmutableSamplers[i])->ycbcr_sampler)
243 has_ycbcr_sampler = true;
244 }
245
246 if (has_ycbcr_sampler) {
247 set_layout->binding[b].ycbcr_samplers_offset =
248 (const char*)ycbcr_samplers - (const char*)set_layout;
249 for (uint32_t i = 0; i < binding->descriptorCount; i++) {
250 struct tu_sampler *sampler = tu_sampler_from_handle(binding->pImmutableSamplers[i]);
251 if (sampler->ycbcr_sampler)
252 ycbcr_samplers[i] = *sampler->ycbcr_sampler;
253 else
254 ycbcr_samplers[i].ycbcr_model = VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY;
255 }
256 ycbcr_samplers += binding->descriptorCount;
257 } else {
258 set_layout->binding[b].ycbcr_samplers_offset = 0;
259 }
260 }
261
262 uint32_t size =
263 ALIGN_POT(set_layout->binding[b].array_size * set_layout->binding[b].size, 4 * A6XX_TEX_CONST_DWORDS);
264 if (is_dynamic(binding->descriptorType)) {
265 dynamic_offset_size += size;
266 } else {
267 set_layout->size += size;
268 }
269
270 set_layout->shader_stages |= binding->stageFlags;
271 }
272
273 free(bindings);
274
275 set_layout->dynamic_offset_size = dynamic_offset_size;
276
277 if (pCreateInfo->flags &
278 VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT) {
279 result = tu_bo_init_new(device, &set_layout->embedded_samplers,
280 set_layout->size, TU_BO_ALLOC_ALLOW_DUMP,
281 "embedded samplers");
282 if (result != VK_SUCCESS) {
283 vk_object_free(&device->vk, pAllocator, set_layout);
284 return vk_error(device, result);
285 }
286
287 result = tu_bo_map(device, set_layout->embedded_samplers);
288 if (result != VK_SUCCESS) {
289 tu_bo_finish(device, set_layout->embedded_samplers);
290 vk_object_free(&device->vk, pAllocator, set_layout);
291 return vk_error(device, result);
292 }
293
294 char *map = (char *) set_layout->embedded_samplers->map;
295 for (unsigned i = 0; i < set_layout->binding_count; i++) {
296 if (!set_layout->binding[i].immutable_samplers_offset)
297 continue;
298
299 unsigned offset = set_layout->binding[i].offset;
300 const struct tu_sampler *sampler =
301 (const struct tu_sampler *)((const char *)set_layout +
302 set_layout->binding[i].immutable_samplers_offset);
303 assert(set_layout->binding[i].array_size == 1);
304 memcpy(map + offset, sampler->descriptor,
305 sizeof(sampler->descriptor));
306 }
307 }
308
309 *pSetLayout = tu_descriptor_set_layout_to_handle(set_layout);
310
311 return VK_SUCCESS;
312 }
313
314 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutSupport(VkDevice _device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,VkDescriptorSetLayoutSupport * pSupport)315 tu_GetDescriptorSetLayoutSupport(
316 VkDevice _device,
317 const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
318 VkDescriptorSetLayoutSupport *pSupport)
319 {
320 TU_FROM_HANDLE(tu_device, device, _device);
321
322 VkDescriptorSetLayoutBinding *bindings = NULL;
323 VkResult result = vk_create_sorted_bindings(
324 pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
325 if (result != VK_SUCCESS) {
326 pSupport->supported = false;
327 return;
328 }
329
330 const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags =
331 vk_find_struct_const(
332 pCreateInfo->pNext,
333 DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO);
334 VkDescriptorSetVariableDescriptorCountLayoutSupport *variable_count =
335 vk_find_struct(
336 pSupport->pNext,
337 DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT);
338 const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
339 vk_find_struct_const(
340 pCreateInfo->pNext,
341 MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
342
343 if (variable_count) {
344 variable_count->maxVariableDescriptorCount = 0;
345 }
346
347 bool supported = true;
348 uint64_t size = 0;
349 for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) {
350 const VkDescriptorSetLayoutBinding *binding = bindings + i;
351
352 uint64_t descriptor_sz;
353
354 if (is_dynamic(binding->descriptorType)) {
355 descriptor_sz = 0;
356 } else if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_EXT) {
357 const VkMutableDescriptorTypeListEXT *list =
358 &mutable_info->pMutableDescriptorTypeLists[i];
359
360 for (uint32_t j = 0; j < list->descriptorTypeCount; j++) {
361 /* Don't support the input attachement and combined image sampler type
362 * for mutable descriptors */
363 if (list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT ||
364 list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
365 list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
366 supported = false;
367 goto out;
368 }
369 }
370
371 descriptor_sz =
372 mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]);
373 } else {
374 descriptor_sz = descriptor_size(device, binding, binding->descriptorType);
375 }
376 uint64_t descriptor_alignment = 4 * A6XX_TEX_CONST_DWORDS;
377
378 if (size && !ALIGN_POT(size, descriptor_alignment)) {
379 supported = false;
380 }
381 size = ALIGN_POT(size, descriptor_alignment);
382
383 uint64_t max_count = MAX_SET_SIZE;
384 unsigned descriptor_count = binding->descriptorCount;
385 if (binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
386 max_count = MAX_SET_SIZE - size;
387 descriptor_count = descriptor_sz;
388 descriptor_sz = 1;
389 } else if (descriptor_sz) {
390 max_count = (MAX_SET_SIZE - size) / descriptor_sz;
391 }
392
393 if (max_count < descriptor_count) {
394 supported = false;
395 }
396
397 if (variable_flags && binding->binding < variable_flags->bindingCount &&
398 variable_count &&
399 (variable_flags->pBindingFlags[binding->binding] &
400 VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) {
401 variable_count->maxVariableDescriptorCount =
402 MIN2(UINT32_MAX, max_count);
403 }
404 size += descriptor_count * descriptor_sz;
405 }
406
407 out:
408 free(bindings);
409
410 pSupport->supported = supported;
411 }
412
413 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutSizeEXT(VkDevice _device,VkDescriptorSetLayout _layout,VkDeviceSize * pLayoutSizeInBytes)414 tu_GetDescriptorSetLayoutSizeEXT(
415 VkDevice _device,
416 VkDescriptorSetLayout _layout,
417 VkDeviceSize *pLayoutSizeInBytes)
418 {
419 TU_FROM_HANDLE(tu_descriptor_set_layout, layout, _layout);
420
421 *pLayoutSizeInBytes = layout->size;
422 }
423
424 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutBindingOffsetEXT(VkDevice _device,VkDescriptorSetLayout _layout,uint32_t binding,VkDeviceSize * pOffset)425 tu_GetDescriptorSetLayoutBindingOffsetEXT(
426 VkDevice _device,
427 VkDescriptorSetLayout _layout,
428 uint32_t binding,
429 VkDeviceSize *pOffset)
430 {
431 TU_FROM_HANDLE(tu_descriptor_set_layout, layout, _layout);
432
433 assert(binding < layout->binding_count);
434 *pOffset = layout->binding[binding].offset;
435 }
436
437 /* Note: we must hash any values used in tu_lower_io(). */
438
439 #define SHA1_UPDATE_VALUE(ctx, x) _mesa_sha1_update(ctx, &(x), sizeof(x));
440
441 static void
sha1_update_ycbcr_sampler(struct mesa_sha1 * ctx,const struct tu_sampler_ycbcr_conversion * sampler)442 sha1_update_ycbcr_sampler(struct mesa_sha1 *ctx,
443 const struct tu_sampler_ycbcr_conversion *sampler)
444 {
445 SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_model);
446 SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_range);
447 SHA1_UPDATE_VALUE(ctx, sampler->format);
448 }
449
450 static void
sha1_update_descriptor_set_binding_layout(struct mesa_sha1 * ctx,const struct tu_descriptor_set_binding_layout * layout,const struct tu_descriptor_set_layout * set_layout)451 sha1_update_descriptor_set_binding_layout(struct mesa_sha1 *ctx,
452 const struct tu_descriptor_set_binding_layout *layout,
453 const struct tu_descriptor_set_layout *set_layout)
454 {
455 SHA1_UPDATE_VALUE(ctx, layout->type);
456 SHA1_UPDATE_VALUE(ctx, layout->offset);
457 SHA1_UPDATE_VALUE(ctx, layout->size);
458 SHA1_UPDATE_VALUE(ctx, layout->array_size);
459 SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_offset);
460 SHA1_UPDATE_VALUE(ctx, layout->immutable_samplers_offset);
461
462 const struct tu_sampler_ycbcr_conversion *ycbcr_samplers =
463 tu_immutable_ycbcr_samplers(set_layout, layout);
464
465 if (ycbcr_samplers) {
466 for (unsigned i = 0; i < layout->array_size; i++)
467 sha1_update_ycbcr_sampler(ctx, ycbcr_samplers + i);
468 }
469 }
470
471
472 static void
sha1_update_descriptor_set_layout(struct mesa_sha1 * ctx,const struct tu_descriptor_set_layout * layout)473 sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
474 const struct tu_descriptor_set_layout *layout)
475 {
476 SHA1_UPDATE_VALUE(ctx, layout->has_variable_descriptors);
477
478 for (uint16_t i = 0; i < layout->binding_count; i++)
479 sha1_update_descriptor_set_binding_layout(ctx, &layout->binding[i],
480 layout);
481 }
482
483 /*
484 * Pipeline layouts. These have nothing to do with the pipeline. They are
485 * just multiple descriptor set layouts pasted together.
486 */
487
488 void
tu_pipeline_layout_init(struct tu_pipeline_layout * layout)489 tu_pipeline_layout_init(struct tu_pipeline_layout *layout)
490 {
491 struct mesa_sha1 ctx;
492 _mesa_sha1_init(&ctx);
493 for (unsigned s = 0; s < layout->num_sets; s++) {
494 if (layout->set[s].layout)
495 sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
496 }
497 _mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
498 _mesa_sha1_update(&ctx, &layout->push_constant_size,
499 sizeof(layout->push_constant_size));
500 _mesa_sha1_final(&ctx, layout->sha1);
501 }
502
503 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreatePipelineLayout(VkDevice _device,const VkPipelineLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipelineLayout * pPipelineLayout)504 tu_CreatePipelineLayout(VkDevice _device,
505 const VkPipelineLayoutCreateInfo *pCreateInfo,
506 const VkAllocationCallbacks *pAllocator,
507 VkPipelineLayout *pPipelineLayout)
508 {
509 TU_FROM_HANDLE(tu_device, device, _device);
510 struct tu_pipeline_layout *layout;
511
512 assert(pCreateInfo->sType ==
513 VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
514
515 layout = (struct tu_pipeline_layout *) vk_object_alloc(
516 &device->vk, pAllocator, sizeof(*layout),
517 VK_OBJECT_TYPE_PIPELINE_LAYOUT);
518 if (layout == NULL)
519 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
520
521 layout->num_sets = pCreateInfo->setLayoutCount;
522 for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
523 TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout,
524 pCreateInfo->pSetLayouts[set]);
525
526 assert(set < device->physical_device->usable_sets);
527 layout->set[set].layout = set_layout;
528 if (set_layout)
529 vk_descriptor_set_layout_ref(&set_layout->vk);
530 }
531
532 layout->push_constant_size = 0;
533
534 for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) {
535 const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i;
536 layout->push_constant_size =
537 MAX2(layout->push_constant_size, range->offset + range->size);
538 }
539
540 layout->push_constant_size = align(layout->push_constant_size, 16);
541
542 tu_pipeline_layout_init(layout);
543
544 *pPipelineLayout = tu_pipeline_layout_to_handle(layout);
545
546 return VK_SUCCESS;
547 }
548
549 VKAPI_ATTR void VKAPI_CALL
tu_DestroyPipelineLayout(VkDevice _device,VkPipelineLayout _pipelineLayout,const VkAllocationCallbacks * pAllocator)550 tu_DestroyPipelineLayout(VkDevice _device,
551 VkPipelineLayout _pipelineLayout,
552 const VkAllocationCallbacks *pAllocator)
553 {
554 TU_FROM_HANDLE(tu_device, device, _device);
555 TU_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, _pipelineLayout);
556
557 if (!pipeline_layout)
558 return;
559
560 for (uint32_t i = 0; i < pipeline_layout->num_sets; i++) {
561 if (pipeline_layout->set[i].layout)
562 vk_descriptor_set_layout_unref(&device->vk, &pipeline_layout->set[i].layout->vk);
563 }
564
565 vk_object_free(&device->vk, pAllocator, pipeline_layout);
566 }
567
568 #define EMPTY 1
569
570 static VkResult
tu_descriptor_set_create(struct tu_device * device,struct tu_descriptor_pool * pool,struct tu_descriptor_set_layout * layout,uint32_t variable_count,struct tu_descriptor_set ** out_set)571 tu_descriptor_set_create(struct tu_device *device,
572 struct tu_descriptor_pool *pool,
573 struct tu_descriptor_set_layout *layout,
574 uint32_t variable_count,
575 struct tu_descriptor_set **out_set)
576 {
577 struct tu_descriptor_set *set;
578 unsigned dynamic_offset = sizeof(struct tu_descriptor_set);
579 unsigned mem_size = dynamic_offset + layout->dynamic_offset_size;
580
581 if (pool->host_memory_base) {
582 if (pool->host_memory_end - pool->host_memory_ptr < mem_size)
583 return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
584
585 set = (struct tu_descriptor_set*)pool->host_memory_ptr;
586 pool->host_memory_ptr += mem_size;
587 } else {
588 set = (struct tu_descriptor_set *) vk_alloc2(
589 &device->vk.alloc, NULL, mem_size, 8,
590 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
591
592 if (!set)
593 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
594 }
595
596 memset(set, 0, mem_size);
597 vk_object_base_init(&device->vk, &set->base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
598
599 if (layout->dynamic_offset_size) {
600 set->dynamic_descriptors = (uint32_t *)((uint8_t*)set + dynamic_offset);
601 }
602
603 set->layout = layout;
604 set->pool = pool;
605 uint32_t layout_size = layout->size;
606 if (layout->has_variable_descriptors) {
607 struct tu_descriptor_set_binding_layout *binding =
608 &layout->binding[layout->binding_count - 1];
609 if (binding->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
610 layout_size = binding->offset +
611 ALIGN(variable_count, 4 * A6XX_TEX_CONST_DWORDS);
612 } else {
613 uint32_t stride = binding->size;
614 layout_size = binding->offset + variable_count * stride;
615 }
616 }
617
618 if (layout_size) {
619 set->size = layout_size;
620
621 if (!pool->host_memory_base && pool->entry_count == pool->max_entry_count) {
622 vk_object_free(&device->vk, NULL, set);
623 return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
624 }
625
626 /* try to allocate linearly first, so that we don't spend
627 * time looking for gaps if the app only allocates &
628 * resets via the pool. */
629 if (pool->current_offset + layout_size <= pool->size) {
630 set->mapped_ptr = (uint32_t*)(pool_base(pool) + pool->current_offset);
631 set->va = pool->host_bo ? 0 : pool->bo->iova + pool->current_offset;
632
633 if (!pool->host_memory_base) {
634 pool->entries[pool->entry_count].offset = pool->current_offset;
635 pool->entries[pool->entry_count].size = layout_size;
636 pool->entries[pool->entry_count].set = set;
637 pool->entry_count++;
638 }
639 pool->current_offset += layout_size;
640 } else if (!pool->host_memory_base) {
641 uint64_t offset = 0;
642 int index;
643
644 for (index = 0; index < pool->entry_count; ++index) {
645 if (pool->entries[index].offset - offset >= layout_size)
646 break;
647 offset = pool->entries[index].offset + pool->entries[index].size;
648 }
649
650 if (pool->size - offset < layout_size) {
651 vk_object_free(&device->vk, NULL, set);
652 return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
653 }
654
655 set->mapped_ptr = (uint32_t*)(pool_base(pool) + offset);
656 set->va = pool->host_bo ? 0 : pool->bo->iova + offset;
657
658 memmove(&pool->entries[index + 1], &pool->entries[index],
659 sizeof(pool->entries[0]) * (pool->entry_count - index));
660 pool->entries[index].offset = offset;
661 pool->entries[index].size = layout_size;
662 pool->entries[index].set = set;
663 pool->entry_count++;
664 } else
665 return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
666 }
667
668 if (layout->has_immutable_samplers) {
669 for (unsigned i = 0; i < layout->binding_count; ++i) {
670 if (!layout->binding[i].immutable_samplers_offset)
671 continue;
672
673 unsigned offset = layout->binding[i].offset / 4;
674 if (layout->binding[i].type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
675 offset += A6XX_TEX_CONST_DWORDS;
676
677 const struct tu_sampler *samplers =
678 (const struct tu_sampler *)((const char *)layout +
679 layout->binding[i].immutable_samplers_offset);
680 for (unsigned j = 0; j < layout->binding[i].array_size; ++j) {
681 memcpy(set->mapped_ptr + offset, samplers[j].descriptor,
682 sizeof(samplers[j].descriptor));
683 offset += layout->binding[i].size / 4;
684 }
685 }
686 }
687
688 vk_descriptor_set_layout_ref(&layout->vk);
689 list_addtail(&set->pool_link, &pool->desc_sets);
690
691 *out_set = set;
692 return VK_SUCCESS;
693 }
694
695 static void
tu_descriptor_set_destroy(struct tu_device * device,struct tu_descriptor_pool * pool,struct tu_descriptor_set * set,bool free_bo)696 tu_descriptor_set_destroy(struct tu_device *device,
697 struct tu_descriptor_pool *pool,
698 struct tu_descriptor_set *set,
699 bool free_bo)
700 {
701 assert(!pool->host_memory_base);
702
703 if (free_bo && set->size && !pool->host_memory_base) {
704 uint32_t offset = (uint8_t*)set->mapped_ptr - pool_base(pool);
705
706 for (int i = 0; i < pool->entry_count; ++i) {
707 if (pool->entries[i].offset == offset) {
708 memmove(&pool->entries[i], &pool->entries[i+1],
709 sizeof(pool->entries[i]) * (pool->entry_count - i - 1));
710 --pool->entry_count;
711 break;
712 }
713 }
714 }
715
716 vk_object_free(&device->vk, NULL, set);
717 }
718
719 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorPool(VkDevice _device,const VkDescriptorPoolCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorPool * pDescriptorPool)720 tu_CreateDescriptorPool(VkDevice _device,
721 const VkDescriptorPoolCreateInfo *pCreateInfo,
722 const VkAllocationCallbacks *pAllocator,
723 VkDescriptorPool *pDescriptorPool)
724 {
725 TU_FROM_HANDLE(tu_device, device, _device);
726 struct tu_descriptor_pool *pool;
727 uint64_t size = sizeof(struct tu_descriptor_pool);
728 uint64_t bo_size = 0, dynamic_size = 0;
729 VkResult ret;
730
731 const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
732 vk_find_struct_const( pCreateInfo->pNext,
733 MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
734
735 const VkDescriptorPoolInlineUniformBlockCreateInfo *inline_info =
736 vk_find_struct_const(pCreateInfo->pNext,
737 DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO);
738
739 if (inline_info) {
740 /* We have to factor in the padding for each binding. The sizes are 4
741 * aligned but we have to align to 4 * A6XX_TEX_CONST_DWORDS bytes, and in
742 * the worst case each inline binding has a size of 4 bytes and we have
743 * to pad each one out.
744 */
745 bo_size += (4 * A6XX_TEX_CONST_DWORDS - 4) *
746 inline_info->maxInlineUniformBlockBindings;
747 }
748
749 for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) {
750 const VkDescriptorPoolSize *pool_size = &pCreateInfo->pPoolSizes[i];
751
752 switch (pool_size->type) {
753 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
754 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
755 dynamic_size += descriptor_size(device, NULL, pool_size->type) *
756 pool_size->descriptorCount;
757 break;
758 case VK_DESCRIPTOR_TYPE_MUTABLE_EXT:
759 if (mutable_info && i < mutable_info->mutableDescriptorTypeListCount &&
760 mutable_info->pMutableDescriptorTypeLists[i].descriptorTypeCount > 0) {
761 bo_size +=
762 mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]) *
763 pool_size->descriptorCount;
764 } else {
765 /* Allocate the maximum size possible. */
766 bo_size += 2 * A6XX_TEX_CONST_DWORDS * 4 *
767 pool_size->descriptorCount;
768 }
769 break;
770 case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
771 bo_size += pool_size->descriptorCount;
772 break;
773 default:
774 bo_size += descriptor_size(device, NULL, pool_size->type) *
775 pool_size->descriptorCount;
776 break;
777 }
778 }
779
780 if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
781 uint64_t host_size = pCreateInfo->maxSets * sizeof(struct tu_descriptor_set);
782 host_size += dynamic_size;
783 size += host_size;
784 } else {
785 size += sizeof(struct tu_descriptor_pool_entry) * pCreateInfo->maxSets;
786 }
787
788 pool = (struct tu_descriptor_pool *) vk_object_zalloc(
789 &device->vk, pAllocator, size, VK_OBJECT_TYPE_DESCRIPTOR_POOL);
790 if (!pool)
791 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
792
793 if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
794 pool->host_memory_base = (uint8_t*)pool + sizeof(struct tu_descriptor_pool);
795 pool->host_memory_ptr = pool->host_memory_base;
796 pool->host_memory_end = (uint8_t*)pool + size;
797 }
798
799 if (bo_size) {
800 if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT)) {
801 ret = tu_bo_init_new(device, &pool->bo, bo_size, TU_BO_ALLOC_ALLOW_DUMP, "descriptor pool");
802 if (ret)
803 goto fail_alloc;
804
805 ret = tu_bo_map(device, pool->bo);
806 if (ret)
807 goto fail_map;
808 } else {
809 pool->host_bo =
810 (uint8_t *) vk_alloc2(&device->vk.alloc, pAllocator, bo_size, 8,
811 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
812 if (!pool->host_bo) {
813 ret = VK_ERROR_OUT_OF_HOST_MEMORY;
814 goto fail_alloc;
815 }
816 }
817 }
818 pool->size = bo_size;
819 pool->max_entry_count = pCreateInfo->maxSets;
820
821 list_inithead(&pool->desc_sets);
822
823 *pDescriptorPool = tu_descriptor_pool_to_handle(pool);
824 return VK_SUCCESS;
825
826 fail_map:
827 tu_bo_finish(device, pool->bo);
828 fail_alloc:
829 vk_object_free(&device->vk, pAllocator, pool);
830 return ret;
831 }
832
833 VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorPool(VkDevice _device,VkDescriptorPool _pool,const VkAllocationCallbacks * pAllocator)834 tu_DestroyDescriptorPool(VkDevice _device,
835 VkDescriptorPool _pool,
836 const VkAllocationCallbacks *pAllocator)
837 {
838 TU_FROM_HANDLE(tu_device, device, _device);
839 TU_FROM_HANDLE(tu_descriptor_pool, pool, _pool);
840
841 if (!pool)
842 return;
843
844 list_for_each_entry_safe(struct tu_descriptor_set, set,
845 &pool->desc_sets, pool_link) {
846 vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
847 }
848
849 if (!pool->host_memory_base) {
850 for(int i = 0; i < pool->entry_count; ++i) {
851 tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
852 }
853 }
854
855 if (pool->size) {
856 if (pool->host_bo)
857 vk_free2(&device->vk.alloc, pAllocator, pool->host_bo);
858 else
859 tu_bo_finish(device, pool->bo);
860 }
861
862 vk_object_free(&device->vk, pAllocator, pool);
863 }
864
865 VKAPI_ATTR VkResult VKAPI_CALL
tu_ResetDescriptorPool(VkDevice _device,VkDescriptorPool descriptorPool,VkDescriptorPoolResetFlags flags)866 tu_ResetDescriptorPool(VkDevice _device,
867 VkDescriptorPool descriptorPool,
868 VkDescriptorPoolResetFlags flags)
869 {
870 TU_FROM_HANDLE(tu_device, device, _device);
871 TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
872
873 list_for_each_entry_safe(struct tu_descriptor_set, set,
874 &pool->desc_sets, pool_link) {
875 vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
876 }
877 list_inithead(&pool->desc_sets);
878
879 if (!pool->host_memory_base) {
880 for(int i = 0; i < pool->entry_count; ++i) {
881 tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
882 }
883 pool->entry_count = 0;
884 }
885
886 pool->current_offset = 0;
887 pool->host_memory_ptr = pool->host_memory_base;
888
889 return VK_SUCCESS;
890 }
891
892 VKAPI_ATTR VkResult VKAPI_CALL
tu_AllocateDescriptorSets(VkDevice _device,const VkDescriptorSetAllocateInfo * pAllocateInfo,VkDescriptorSet * pDescriptorSets)893 tu_AllocateDescriptorSets(VkDevice _device,
894 const VkDescriptorSetAllocateInfo *pAllocateInfo,
895 VkDescriptorSet *pDescriptorSets)
896 {
897 TU_FROM_HANDLE(tu_device, device, _device);
898 TU_FROM_HANDLE(tu_descriptor_pool, pool, pAllocateInfo->descriptorPool);
899
900 VkResult result = VK_SUCCESS;
901 uint32_t i;
902 struct tu_descriptor_set *set = NULL;
903
904 const VkDescriptorSetVariableDescriptorCountAllocateInfo *variable_counts =
905 vk_find_struct_const(pAllocateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO);
906 if (variable_counts && !variable_counts->descriptorSetCount)
907 variable_counts = NULL;
908
909 /* allocate a set of buffers for each shader to contain descriptors */
910 for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
911 TU_FROM_HANDLE(tu_descriptor_set_layout, layout,
912 pAllocateInfo->pSetLayouts[i]);
913
914 assert(!(layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
915
916 result = tu_descriptor_set_create(
917 device, pool, layout,
918 variable_counts ? variable_counts->pDescriptorCounts[i] : 0, &set);
919 if (result != VK_SUCCESS)
920 break;
921
922 pDescriptorSets[i] = tu_descriptor_set_to_handle(set);
923 }
924
925 if (result != VK_SUCCESS) {
926 tu_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
927 i, pDescriptorSets);
928 for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
929 pDescriptorSets[i] = VK_NULL_HANDLE;
930 }
931 }
932 return result;
933 }
934
935 VKAPI_ATTR VkResult VKAPI_CALL
tu_FreeDescriptorSets(VkDevice _device,VkDescriptorPool descriptorPool,uint32_t count,const VkDescriptorSet * pDescriptorSets)936 tu_FreeDescriptorSets(VkDevice _device,
937 VkDescriptorPool descriptorPool,
938 uint32_t count,
939 const VkDescriptorSet *pDescriptorSets)
940 {
941 TU_FROM_HANDLE(tu_device, device, _device);
942 TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
943
944 for (uint32_t i = 0; i < count; i++) {
945 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
946
947 if (set) {
948 vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
949 list_del(&set->pool_link);
950 }
951
952 if (set && !pool->host_memory_base)
953 tu_descriptor_set_destroy(device, pool, set, true);
954 }
955 return VK_SUCCESS;
956 }
957
958 static void
write_texel_buffer_descriptor_addr(uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)959 write_texel_buffer_descriptor_addr(uint32_t *dst,
960 const VkDescriptorAddressInfoEXT *buffer_info)
961 {
962 if (!buffer_info || buffer_info->address == 0) {
963 memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
964 } else {
965 uint8_t swiz[4] = { PIPE_SWIZZLE_X, PIPE_SWIZZLE_Y, PIPE_SWIZZLE_Z,
966 PIPE_SWIZZLE_W };
967 fdl6_buffer_view_init(dst,
968 tu_vk_format_to_pipe_format(buffer_info->format),
969 swiz, buffer_info->address, buffer_info->range);
970 }
971 }
972
973 static void
write_texel_buffer_descriptor(uint32_t * dst,const VkBufferView buffer_view)974 write_texel_buffer_descriptor(uint32_t *dst, const VkBufferView buffer_view)
975 {
976 if (buffer_view == VK_NULL_HANDLE) {
977 memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
978 } else {
979 TU_FROM_HANDLE(tu_buffer_view, view, buffer_view);
980
981 memcpy(dst, view->descriptor, sizeof(view->descriptor));
982 }
983 }
984
985 static VkDescriptorAddressInfoEXT
buffer_info_to_address(const VkDescriptorBufferInfo * buffer_info)986 buffer_info_to_address(const VkDescriptorBufferInfo *buffer_info)
987 {
988 TU_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer);
989
990 uint32_t range = buffer ? vk_buffer_range(&buffer->vk, buffer_info->offset, buffer_info->range) : 0;
991 uint64_t va = buffer ? buffer->iova + buffer_info->offset : 0;
992
993 return (VkDescriptorAddressInfoEXT) {
994 .address = va,
995 .range = range,
996 };
997 }
998
999 static void
write_buffer_descriptor_addr(const struct tu_device * device,uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)1000 write_buffer_descriptor_addr(const struct tu_device *device,
1001 uint32_t *dst,
1002 const VkDescriptorAddressInfoEXT *buffer_info)
1003 {
1004 bool storage_16bit = device->physical_device->info->a6xx.storage_16bit;
1005 /* newer a6xx allows using 16-bit descriptor for both 16-bit and 32-bit
1006 * access, but we need to keep a 32-bit descriptor for readonly access via
1007 * isam.
1008 */
1009 unsigned descriptors = storage_16bit ? 2 : 1;
1010
1011 if (!buffer_info || buffer_info->address == 0) {
1012 memset(dst, 0, descriptors * A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
1013 return;
1014 }
1015
1016 uint64_t va = buffer_info->address;
1017 uint64_t base_va = va & ~0x3full;
1018 unsigned offset = va & 0x3f;
1019 uint32_t range = buffer_info->range;
1020
1021 for (unsigned i = 0; i < descriptors; i++) {
1022 if (storage_16bit && i == 0) {
1023 dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_16_UINT);
1024 dst[1] = DIV_ROUND_UP(range, 2);
1025 dst[2] =
1026 A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
1027 A6XX_TEX_CONST_2_STARTOFFSETTEXELS(offset / 2) |
1028 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1029 } else {
1030 dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_32_UINT);
1031 dst[1] = DIV_ROUND_UP(range, 4);
1032 dst[2] =
1033 A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
1034 A6XX_TEX_CONST_2_STARTOFFSETTEXELS(offset / 4) |
1035 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1036 }
1037 dst[3] = 0;
1038 dst[4] = A6XX_TEX_CONST_4_BASE_LO(base_va);
1039 dst[5] = A6XX_TEX_CONST_5_BASE_HI(base_va >> 32);
1040 for (int j = 6; j < A6XX_TEX_CONST_DWORDS; j++)
1041 dst[j] = 0;
1042 dst += A6XX_TEX_CONST_DWORDS;
1043 }
1044 }
1045
1046 static void
write_buffer_descriptor(const struct tu_device * device,uint32_t * dst,const VkDescriptorBufferInfo * buffer_info)1047 write_buffer_descriptor(const struct tu_device *device,
1048 uint32_t *dst,
1049 const VkDescriptorBufferInfo *buffer_info)
1050 {
1051 VkDescriptorAddressInfoEXT addr = buffer_info_to_address(buffer_info);
1052 write_buffer_descriptor_addr(device, dst, &addr);
1053 }
1054
1055 static void
write_ubo_descriptor_addr(uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)1056 write_ubo_descriptor_addr(uint32_t *dst,
1057 const VkDescriptorAddressInfoEXT *buffer_info)
1058 {
1059 if (!buffer_info) {
1060 dst[0] = dst[1] = 0;
1061 return;
1062 }
1063
1064 uint64_t va = buffer_info->address;
1065 /* The HW range is in vec4 units */
1066 uint32_t range = va ? DIV_ROUND_UP(buffer_info->range, 16) : 0;
1067 dst[0] = A6XX_UBO_0_BASE_LO(va);
1068 dst[1] = A6XX_UBO_1_BASE_HI(va >> 32) | A6XX_UBO_1_SIZE(range);
1069 }
1070
1071 static void
write_ubo_descriptor(uint32_t * dst,const VkDescriptorBufferInfo * buffer_info)1072 write_ubo_descriptor(uint32_t *dst, const VkDescriptorBufferInfo *buffer_info)
1073 {
1074 VkDescriptorAddressInfoEXT addr = buffer_info_to_address(buffer_info);
1075 write_ubo_descriptor_addr(dst, &addr);
1076 }
1077
1078 static void
write_image_descriptor(uint32_t * dst,VkDescriptorType descriptor_type,const VkDescriptorImageInfo * image_info)1079 write_image_descriptor(uint32_t *dst,
1080 VkDescriptorType descriptor_type,
1081 const VkDescriptorImageInfo *image_info)
1082 {
1083 if (!image_info || image_info->imageView == VK_NULL_HANDLE) {
1084 memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
1085 return;
1086 }
1087
1088 TU_FROM_HANDLE(tu_image_view, iview, image_info->imageView);
1089
1090 if (descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) {
1091 memcpy(dst, iview->view.storage_descriptor, sizeof(iview->view.storage_descriptor));
1092 } else {
1093 memcpy(dst, iview->view.descriptor, sizeof(iview->view.descriptor));
1094 }
1095 }
1096
1097 static void
write_combined_image_sampler_descriptor(uint32_t * dst,VkDescriptorType descriptor_type,const VkDescriptorImageInfo * image_info,bool has_sampler)1098 write_combined_image_sampler_descriptor(uint32_t *dst,
1099 VkDescriptorType descriptor_type,
1100 const VkDescriptorImageInfo *image_info,
1101 bool has_sampler)
1102 {
1103 write_image_descriptor(dst, descriptor_type, image_info);
1104 /* copy over sampler state */
1105 if (has_sampler) {
1106 TU_FROM_HANDLE(tu_sampler, sampler, image_info->sampler);
1107
1108 memcpy(dst + A6XX_TEX_CONST_DWORDS, sampler->descriptor, sizeof(sampler->descriptor));
1109 }
1110 }
1111
1112 static void
write_sampler_descriptor(uint32_t * dst,VkSampler _sampler)1113 write_sampler_descriptor(uint32_t *dst, VkSampler _sampler)
1114 {
1115 TU_FROM_HANDLE(tu_sampler, sampler, _sampler);
1116
1117 memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
1118 }
1119
1120 /* note: this is used with immutable samplers in push descriptors */
1121 static void
write_sampler_push(uint32_t * dst,const struct tu_sampler * sampler)1122 write_sampler_push(uint32_t *dst, const struct tu_sampler *sampler)
1123 {
1124 memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
1125 }
1126
1127 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorEXT(VkDevice _device,const VkDescriptorGetInfoEXT * pDescriptorInfo,size_t dataSize,void * pDescriptor)1128 tu_GetDescriptorEXT(
1129 VkDevice _device,
1130 const VkDescriptorGetInfoEXT *pDescriptorInfo,
1131 size_t dataSize,
1132 void *pDescriptor)
1133 {
1134 TU_FROM_HANDLE(tu_device, device, _device);
1135 uint32_t *dest = (uint32_t *) pDescriptor;
1136
1137 switch (pDescriptorInfo->type) {
1138 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1139 write_ubo_descriptor_addr(dest, pDescriptorInfo->data.pUniformBuffer);
1140 break;
1141 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1142 write_buffer_descriptor_addr(device, dest, pDescriptorInfo->data.pStorageBuffer);
1143 break;
1144 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1145 write_texel_buffer_descriptor_addr(dest, pDescriptorInfo->data.pUniformTexelBuffer);
1146 break;
1147 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1148 write_texel_buffer_descriptor_addr(dest, pDescriptorInfo->data.pStorageTexelBuffer);
1149 break;
1150 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1151 write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
1152 pDescriptorInfo->data.pSampledImage);
1153 break;
1154 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1155 write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
1156 pDescriptorInfo->data.pStorageImage);
1157 break;
1158 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1159 write_combined_image_sampler_descriptor(dest,
1160 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1161 pDescriptorInfo->data.pCombinedImageSampler,
1162 true);
1163 break;
1164 case VK_DESCRIPTOR_TYPE_SAMPLER:
1165 write_sampler_descriptor(dest, *pDescriptorInfo->data.pSampler);
1166 break;
1167 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1168 /* nothing in descriptor set - framebuffer state is used instead */
1169 if (TU_DEBUG(DYNAMIC)) {
1170 write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
1171 pDescriptorInfo->data.pInputAttachmentImage);
1172 }
1173 break;
1174 default:
1175 unreachable("unimplemented descriptor type");
1176 break;
1177 }
1178 }
1179
1180 void
tu_update_descriptor_sets(const struct tu_device * device,VkDescriptorSet dstSetOverride,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)1181 tu_update_descriptor_sets(const struct tu_device *device,
1182 VkDescriptorSet dstSetOverride,
1183 uint32_t descriptorWriteCount,
1184 const VkWriteDescriptorSet *pDescriptorWrites,
1185 uint32_t descriptorCopyCount,
1186 const VkCopyDescriptorSet *pDescriptorCopies)
1187 {
1188 uint32_t i, j;
1189 for (i = 0; i < descriptorWriteCount; i++) {
1190 const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i];
1191 TU_FROM_HANDLE(tu_descriptor_set, set, dstSetOverride ?: writeset->dstSet);
1192 const struct tu_descriptor_set_binding_layout *binding_layout =
1193 set->layout->binding + writeset->dstBinding;
1194 uint32_t *ptr = set->mapped_ptr;
1195 if (writeset->descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1196 writeset->descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1197 ptr = set->dynamic_descriptors;
1198 ptr += binding_layout->dynamic_offset_offset / 4;
1199 } else {
1200 ptr = set->mapped_ptr;
1201 ptr += binding_layout->offset / 4;
1202 }
1203
1204 /* for immutable samplers with push descriptors: */
1205 const bool copy_immutable_samplers =
1206 dstSetOverride && binding_layout->immutable_samplers_offset;
1207 const struct tu_sampler *samplers =
1208 tu_immutable_samplers(set->layout, binding_layout);
1209
1210 if (writeset->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1211 /* We need to respect this note:
1212 *
1213 * The same behavior applies to bindings with a descriptor type of
1214 * VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK where descriptorCount
1215 * specifies the number of bytes to update while dstArrayElement
1216 * specifies the starting byte offset, thus in this case if the
1217 * dstBinding has a smaller byte size than the sum of
1218 * dstArrayElement and descriptorCount, then the remainder will be
1219 * used to update the subsequent binding - dstBinding+1 starting
1220 * at offset zero. This falls out as a special case of the above
1221 * rule.
1222 *
1223 * This means we can't just do a straight memcpy, because due to
1224 * alignment padding there are gaps between sequential bindings. We
1225 * have to loop over each binding updated.
1226 */
1227 const VkWriteDescriptorSetInlineUniformBlock *inline_write =
1228 vk_find_struct_const(writeset->pNext,
1229 WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK);
1230 uint32_t remaining = inline_write->dataSize;
1231 const uint8_t *src = (const uint8_t *) inline_write->pData;
1232 uint32_t dst_offset = writeset->dstArrayElement;
1233 do {
1234 uint8_t *dst = (uint8_t *)(ptr) + dst_offset;
1235 uint32_t binding_size = binding_layout->size - dst_offset;
1236 uint32_t to_write = MIN2(remaining, binding_size);
1237 memcpy(dst, src, to_write);
1238
1239 binding_layout++;
1240 ptr = set->mapped_ptr + binding_layout->offset / 4;
1241 dst_offset = 0;
1242 src += to_write;
1243 remaining -= to_write;
1244 } while (remaining > 0);
1245
1246 continue;
1247 }
1248
1249 ptr += binding_layout->size / 4 * writeset->dstArrayElement;
1250 for (j = 0; j < writeset->descriptorCount; ++j) {
1251 switch(writeset->descriptorType) {
1252 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1253 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1254 write_ubo_descriptor(ptr, writeset->pBufferInfo + j);
1255 break;
1256 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1257 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1258 write_buffer_descriptor(device, ptr, writeset->pBufferInfo + j);
1259 break;
1260 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1261 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1262 write_texel_buffer_descriptor(ptr, writeset->pTexelBufferView[j]);
1263 break;
1264 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1265 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1266 write_image_descriptor(ptr, writeset->descriptorType, writeset->pImageInfo + j);
1267 break;
1268 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1269 write_combined_image_sampler_descriptor(ptr,
1270 writeset->descriptorType,
1271 writeset->pImageInfo + j,
1272 !binding_layout->immutable_samplers_offset);
1273
1274 if (copy_immutable_samplers)
1275 write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[writeset->dstArrayElement + j]);
1276 break;
1277 case VK_DESCRIPTOR_TYPE_SAMPLER:
1278 if (!binding_layout->immutable_samplers_offset)
1279 write_sampler_descriptor(ptr, writeset->pImageInfo[j].sampler);
1280 else if (copy_immutable_samplers)
1281 write_sampler_push(ptr, &samplers[writeset->dstArrayElement + j]);
1282 break;
1283 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1284 /* nothing in descriptor set - framebuffer state is used instead */
1285 if (TU_DEBUG(DYNAMIC))
1286 write_image_descriptor(ptr, writeset->descriptorType, writeset->pImageInfo + j);
1287 break;
1288 default:
1289 unreachable("unimplemented descriptor type");
1290 break;
1291 }
1292 ptr += binding_layout->size / 4;
1293 }
1294 }
1295
1296 for (i = 0; i < descriptorCopyCount; i++) {
1297 const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i];
1298 TU_FROM_HANDLE(tu_descriptor_set, src_set,
1299 copyset->srcSet);
1300 TU_FROM_HANDLE(tu_descriptor_set, dst_set,
1301 copyset->dstSet);
1302 const struct tu_descriptor_set_binding_layout *src_binding_layout =
1303 src_set->layout->binding + copyset->srcBinding;
1304 const struct tu_descriptor_set_binding_layout *dst_binding_layout =
1305 dst_set->layout->binding + copyset->dstBinding;
1306 uint32_t *src_ptr = src_set->mapped_ptr;
1307 uint32_t *dst_ptr = dst_set->mapped_ptr;
1308 if (src_binding_layout->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1309 src_binding_layout->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1310 src_ptr = src_set->dynamic_descriptors;
1311 dst_ptr = dst_set->dynamic_descriptors;
1312 src_ptr += src_binding_layout->dynamic_offset_offset / 4;
1313 dst_ptr += dst_binding_layout->dynamic_offset_offset / 4;
1314 } else {
1315 src_ptr = src_set->mapped_ptr;
1316 dst_ptr = dst_set->mapped_ptr;
1317 src_ptr += src_binding_layout->offset / 4;
1318 dst_ptr += dst_binding_layout->offset / 4;
1319 }
1320
1321 if (src_binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1322 uint32_t remaining = copyset->descriptorCount;
1323 uint32_t src_start = copyset->srcArrayElement;
1324 uint32_t dst_start = copyset->dstArrayElement;
1325 uint8_t *src = (uint8_t *)(src_ptr) + src_start;
1326 uint8_t *dst = (uint8_t *)(dst_ptr) + dst_start;
1327 uint32_t src_remaining =
1328 src_binding_layout->size - src_start;
1329 uint32_t dst_remaining =
1330 dst_binding_layout->size - dst_start;
1331 do {
1332 uint32_t to_write = MIN3(remaining, src_remaining, dst_remaining);
1333 memcpy(dst, src, to_write);
1334
1335 src += to_write;
1336 dst += to_write;
1337 src_remaining -= to_write;
1338 dst_remaining -= to_write;
1339 remaining -= to_write;
1340
1341 if (src_remaining == 0) {
1342 src_binding_layout++;
1343 src_ptr = src_set->mapped_ptr + src_binding_layout->offset / 4;
1344 src = (uint8_t *)(src_ptr + A6XX_TEX_CONST_DWORDS);
1345 src_remaining = src_binding_layout->size - 4 * A6XX_TEX_CONST_DWORDS;
1346 }
1347
1348 if (dst_remaining == 0) {
1349 dst_binding_layout++;
1350 dst_ptr = dst_set->mapped_ptr + dst_binding_layout->offset / 4;
1351 dst = (uint8_t *)(dst_ptr + A6XX_TEX_CONST_DWORDS);
1352 dst_remaining = dst_binding_layout->size - 4 * A6XX_TEX_CONST_DWORDS;
1353 }
1354 } while (remaining > 0);
1355
1356 continue;
1357 }
1358
1359 src_ptr += src_binding_layout->size * copyset->srcArrayElement / 4;
1360 dst_ptr += dst_binding_layout->size * copyset->dstArrayElement / 4;
1361
1362 /* In case of copies between mutable descriptor types
1363 * and non-mutable descriptor types.
1364 */
1365 uint32_t copy_size = MIN2(src_binding_layout->size, dst_binding_layout->size);
1366
1367 for (j = 0; j < copyset->descriptorCount; ++j) {
1368 memcpy(dst_ptr, src_ptr, copy_size);
1369
1370 src_ptr += src_binding_layout->size / 4;
1371 dst_ptr += dst_binding_layout->size / 4;
1372 }
1373 }
1374 }
1375
1376 VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSets(VkDevice _device,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)1377 tu_UpdateDescriptorSets(VkDevice _device,
1378 uint32_t descriptorWriteCount,
1379 const VkWriteDescriptorSet *pDescriptorWrites,
1380 uint32_t descriptorCopyCount,
1381 const VkCopyDescriptorSet *pDescriptorCopies)
1382 {
1383 TU_FROM_HANDLE(tu_device, device, _device);
1384 tu_update_descriptor_sets(device, VK_NULL_HANDLE,
1385 descriptorWriteCount, pDescriptorWrites,
1386 descriptorCopyCount, pDescriptorCopies);
1387 }
1388
1389 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorUpdateTemplate(VkDevice _device,const VkDescriptorUpdateTemplateCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorUpdateTemplate * pDescriptorUpdateTemplate)1390 tu_CreateDescriptorUpdateTemplate(
1391 VkDevice _device,
1392 const VkDescriptorUpdateTemplateCreateInfo *pCreateInfo,
1393 const VkAllocationCallbacks *pAllocator,
1394 VkDescriptorUpdateTemplate *pDescriptorUpdateTemplate)
1395 {
1396 TU_FROM_HANDLE(tu_device, device, _device);
1397 struct tu_descriptor_set_layout *set_layout = NULL;
1398 const uint32_t entry_count = pCreateInfo->descriptorUpdateEntryCount;
1399 uint32_t dst_entry_count = 0;
1400
1401 if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) {
1402 TU_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, pCreateInfo->pipelineLayout);
1403
1404 /* descriptorSetLayout should be ignored for push descriptors
1405 * and instead it refers to pipelineLayout and set.
1406 */
1407 assert(pCreateInfo->set < device->physical_device->usable_sets);
1408 set_layout = pipeline_layout->set[pCreateInfo->set].layout;
1409 } else {
1410 TU_FROM_HANDLE(tu_descriptor_set_layout, _set_layout,
1411 pCreateInfo->descriptorSetLayout);
1412 set_layout = _set_layout;
1413 }
1414
1415 for (uint32_t i = 0; i < entry_count; i++) {
1416 const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i];
1417 if (entry->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1418 dst_entry_count++;
1419 continue;
1420 }
1421
1422 /* Calculate how many bindings this update steps over, so we can split
1423 * up the template entry. This lets the actual update be a simple
1424 * memcpy.
1425 */
1426 uint32_t remaining = entry->descriptorCount;
1427 const struct tu_descriptor_set_binding_layout *binding_layout =
1428 set_layout->binding + entry->dstBinding;
1429 uint32_t dst_start = entry->dstArrayElement;
1430 do {
1431 uint32_t size = binding_layout->size;
1432 uint32_t count = MIN2(remaining, size - dst_start);
1433 remaining -= count;
1434 binding_layout++;
1435 dst_entry_count++;
1436 dst_start = 0;
1437 } while (remaining > 0);
1438 }
1439
1440 const size_t size =
1441 sizeof(struct tu_descriptor_update_template) +
1442 sizeof(struct tu_descriptor_update_template_entry) * dst_entry_count;
1443 struct tu_descriptor_update_template *templ;
1444
1445 templ = (struct tu_descriptor_update_template *) vk_object_alloc(
1446 &device->vk, pAllocator, size,
1447 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE);
1448 if (!templ)
1449 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1450
1451 templ->entry_count = dst_entry_count;
1452
1453 if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) {
1454 templ->bind_point = pCreateInfo->pipelineBindPoint;
1455 }
1456
1457 uint32_t j = 0;
1458 for (uint32_t i = 0; i < entry_count; i++) {
1459 const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i];
1460
1461 const struct tu_descriptor_set_binding_layout *binding_layout =
1462 set_layout->binding + entry->dstBinding;
1463 uint32_t dst_offset, dst_stride;
1464 const struct tu_sampler *immutable_samplers = NULL;
1465
1466 /* dst_offset is an offset into dynamic_descriptors when the descriptor
1467 * is dynamic, and an offset into mapped_ptr otherwise.
1468 */
1469 switch (entry->descriptorType) {
1470 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1471 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1472 dst_offset = binding_layout->dynamic_offset_offset / 4;
1473 break;
1474 case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK: {
1475 uint32_t remaining = entry->descriptorCount;
1476 uint32_t dst_start = entry->dstArrayElement;
1477 uint32_t src_offset = entry->offset;
1478 /* See comment in update_descriptor_sets() */
1479 do {
1480 dst_offset =
1481 binding_layout->offset + dst_start;
1482 uint32_t size = binding_layout->size;
1483 uint32_t count = MIN2(remaining, size - dst_start);
1484 templ->entry[j++] = (struct tu_descriptor_update_template_entry) {
1485 .descriptor_type = entry->descriptorType,
1486 .descriptor_count = count,
1487 .dst_offset = dst_offset,
1488 .src_offset = src_offset,
1489 };
1490 remaining -= count;
1491 src_offset += count;
1492 binding_layout++;
1493 dst_start = 0;
1494 } while (remaining > 0);
1495
1496 continue;
1497 }
1498 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1499 case VK_DESCRIPTOR_TYPE_SAMPLER:
1500 if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR &&
1501 binding_layout->immutable_samplers_offset) {
1502 immutable_samplers =
1503 tu_immutable_samplers(set_layout, binding_layout) + entry->dstArrayElement;
1504 }
1505 FALLTHROUGH;
1506 default:
1507 dst_offset = binding_layout->offset / 4;
1508 }
1509
1510 dst_offset += (binding_layout->size * entry->dstArrayElement) / 4;
1511 dst_stride = binding_layout->size / 4;
1512
1513 templ->entry[j++] = (struct tu_descriptor_update_template_entry) {
1514 .descriptor_type = entry->descriptorType,
1515 .descriptor_count = entry->descriptorCount,
1516 .dst_offset = dst_offset,
1517 .dst_stride = dst_stride,
1518 .has_sampler = !binding_layout->immutable_samplers_offset,
1519 .src_offset = entry->offset,
1520 .src_stride = entry->stride,
1521 .immutable_samplers = immutable_samplers,
1522 };
1523 }
1524
1525 assert(j == dst_entry_count);
1526
1527 *pDescriptorUpdateTemplate =
1528 tu_descriptor_update_template_to_handle(templ);
1529
1530 return VK_SUCCESS;
1531 }
1532
1533 VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorUpdateTemplate(VkDevice _device,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const VkAllocationCallbacks * pAllocator)1534 tu_DestroyDescriptorUpdateTemplate(
1535 VkDevice _device,
1536 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1537 const VkAllocationCallbacks *pAllocator)
1538 {
1539 TU_FROM_HANDLE(tu_device, device, _device);
1540 TU_FROM_HANDLE(tu_descriptor_update_template, templ,
1541 descriptorUpdateTemplate);
1542
1543 if (!templ)
1544 return;
1545
1546 vk_object_free(&device->vk, pAllocator, templ);
1547 }
1548
1549 void
tu_update_descriptor_set_with_template(const struct tu_device * device,struct tu_descriptor_set * set,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const void * pData)1550 tu_update_descriptor_set_with_template(
1551 const struct tu_device *device,
1552 struct tu_descriptor_set *set,
1553 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1554 const void *pData)
1555 {
1556 TU_FROM_HANDLE(tu_descriptor_update_template, templ,
1557 descriptorUpdateTemplate);
1558
1559 for (uint32_t i = 0; i < templ->entry_count; i++) {
1560 uint32_t *ptr = set->mapped_ptr;
1561 const void *src = ((const char *) pData) + templ->entry[i].src_offset;
1562 const struct tu_sampler *samplers = templ->entry[i].immutable_samplers;
1563
1564 if (templ->entry[i].descriptor_type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1565 memcpy(((uint8_t *) ptr) + templ->entry[i].dst_offset, src,
1566 templ->entry[i].descriptor_count);
1567 continue;
1568 }
1569
1570 ptr += templ->entry[i].dst_offset;
1571 unsigned dst_offset = templ->entry[i].dst_offset;
1572 for (unsigned j = 0; j < templ->entry[i].descriptor_count; ++j) {
1573 switch(templ->entry[i].descriptor_type) {
1574 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: {
1575 assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
1576 write_ubo_descriptor(set->dynamic_descriptors + dst_offset,
1577 (const VkDescriptorBufferInfo *) src);
1578 break;
1579 }
1580 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1581 write_ubo_descriptor(ptr, (const VkDescriptorBufferInfo *) src);
1582 break;
1583 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1584 assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
1585 write_buffer_descriptor(device,
1586 set->dynamic_descriptors + dst_offset,
1587 (const VkDescriptorBufferInfo *) src);
1588 break;
1589 }
1590 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1591 write_buffer_descriptor(device, ptr,
1592 (const VkDescriptorBufferInfo *) src);
1593 break;
1594 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1595 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1596 write_texel_buffer_descriptor(ptr, *(VkBufferView *) src);
1597 break;
1598 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1599 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1600 write_image_descriptor(ptr, templ->entry[i].descriptor_type,
1601 (const VkDescriptorImageInfo *) src);
1602 break;
1603 }
1604 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1605 write_combined_image_sampler_descriptor(ptr,
1606 templ->entry[i].descriptor_type,
1607 (const VkDescriptorImageInfo *) src,
1608 templ->entry[i].has_sampler);
1609 if (samplers)
1610 write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[j]);
1611 break;
1612 case VK_DESCRIPTOR_TYPE_SAMPLER:
1613 if (templ->entry[i].has_sampler)
1614 write_sampler_descriptor(ptr, ((const VkDescriptorImageInfo *)src)->sampler);
1615 else if (samplers)
1616 write_sampler_push(ptr, &samplers[j]);
1617 break;
1618 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1619 /* nothing in descriptor set - framebuffer state is used instead */
1620 if (TU_DEBUG(DYNAMIC))
1621 write_image_descriptor(ptr, templ->entry[i].descriptor_type,
1622 (const VkDescriptorImageInfo *) src);
1623 break;
1624 default:
1625 unreachable("unimplemented descriptor type");
1626 break;
1627 }
1628 src = (char *) src + templ->entry[i].src_stride;
1629 ptr += templ->entry[i].dst_stride;
1630 dst_offset += templ->entry[i].dst_stride;
1631 }
1632 }
1633 }
1634
1635 VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSetWithTemplate(VkDevice _device,VkDescriptorSet descriptorSet,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const void * pData)1636 tu_UpdateDescriptorSetWithTemplate(
1637 VkDevice _device,
1638 VkDescriptorSet descriptorSet,
1639 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1640 const void *pData)
1641 {
1642 TU_FROM_HANDLE(tu_device, device, _device);
1643 TU_FROM_HANDLE(tu_descriptor_set, set, descriptorSet);
1644
1645 tu_update_descriptor_set_with_template(device, set, descriptorUpdateTemplate, pData);
1646 }
1647
1648 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateSamplerYcbcrConversion(VkDevice _device,const VkSamplerYcbcrConversionCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkSamplerYcbcrConversion * pYcbcrConversion)1649 tu_CreateSamplerYcbcrConversion(
1650 VkDevice _device,
1651 const VkSamplerYcbcrConversionCreateInfo *pCreateInfo,
1652 const VkAllocationCallbacks *pAllocator,
1653 VkSamplerYcbcrConversion *pYcbcrConversion)
1654 {
1655 TU_FROM_HANDLE(tu_device, device, _device);
1656 struct tu_sampler_ycbcr_conversion *conversion;
1657
1658 conversion = (struct tu_sampler_ycbcr_conversion *) vk_object_alloc(
1659 &device->vk, pAllocator, sizeof(*conversion),
1660 VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION);
1661 if (!conversion)
1662 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1663
1664 conversion->format = pCreateInfo->format;
1665 conversion->ycbcr_model = pCreateInfo->ycbcrModel;
1666 conversion->ycbcr_range = pCreateInfo->ycbcrRange;
1667 conversion->components = pCreateInfo->components;
1668 conversion->chroma_offsets[0] = pCreateInfo->xChromaOffset;
1669 conversion->chroma_offsets[1] = pCreateInfo->yChromaOffset;
1670 conversion->chroma_filter = pCreateInfo->chromaFilter;
1671
1672 *pYcbcrConversion = tu_sampler_ycbcr_conversion_to_handle(conversion);
1673 return VK_SUCCESS;
1674 }
1675
1676 VKAPI_ATTR void VKAPI_CALL
tu_DestroySamplerYcbcrConversion(VkDevice _device,VkSamplerYcbcrConversion ycbcrConversion,const VkAllocationCallbacks * pAllocator)1677 tu_DestroySamplerYcbcrConversion(VkDevice _device,
1678 VkSamplerYcbcrConversion ycbcrConversion,
1679 const VkAllocationCallbacks *pAllocator)
1680 {
1681 TU_FROM_HANDLE(tu_device, device, _device);
1682 TU_FROM_HANDLE(tu_sampler_ycbcr_conversion, ycbcr_conversion, ycbcrConversion);
1683
1684 if (!ycbcr_conversion)
1685 return;
1686
1687 vk_object_free(&device->vk, pAllocator, ycbcr_conversion);
1688 }
1689