• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  * SPDX-License-Identifier: MIT
5  */
6 
7 /**
8  * @file
9  *
10  * We use the bindless descriptor model, which maps fairly closely to how
11  * Vulkan descriptor sets work. The two exceptions are input attachments and
12  * dynamic descriptors, which have to be patched when recording command
13  * buffers. We reserve an extra descriptor set for these. This descriptor set
14  * contains all the input attachments in the pipeline, in order, and then all
15  * the dynamic descriptors. The dynamic descriptors are stored in the CPU-side
16  * datastructure for each tu_descriptor_set, and then combined into one big
17  * descriptor set at CmdBindDescriptors time/draw time.
18  */
19 
20 #include "tu_descriptor_set.h"
21 
22 #include <fcntl.h>
23 
24 #include "util/mesa-sha1.h"
25 #include "vk_descriptors.h"
26 #include "vk_util.h"
27 
28 #include "tu_device.h"
29 #include "tu_image.h"
30 #include "tu_formats.h"
31 
32 static inline uint8_t *
pool_base(struct tu_descriptor_pool * pool)33 pool_base(struct tu_descriptor_pool *pool)
34 {
35    return pool->host_bo ?: (uint8_t *) pool->bo->map;
36 }
37 
38 static uint32_t
descriptor_size(struct tu_device * dev,const VkDescriptorSetLayoutBinding * binding,VkDescriptorType type)39 descriptor_size(struct tu_device *dev,
40                 const VkDescriptorSetLayoutBinding *binding,
41                 VkDescriptorType type)
42 {
43    switch (type) {
44    case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
45       if (TU_DEBUG(DYNAMIC))
46          return A6XX_TEX_CONST_DWORDS * 4;
47 
48       /* Input attachment doesn't use descriptor sets at all */
49       return 0;
50    case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
51       /* We make offsets and sizes all 16 dwords, to match how the hardware
52        * interprets indices passed to sample/load/store instructions in
53        * multiples of 16 dwords.  This means that "normal" descriptors are all
54        * of size 16, with padding for smaller descriptors like uniform storage
55        * descriptors which are less than 16 dwords. However combined images
56        * and samplers are actually two descriptors, so they have size 2.
57        */
58       return A6XX_TEX_CONST_DWORDS * 4 * 2;
59    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
60    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
61       /* When we support 16-bit storage, we need an extra descriptor setup as
62        * a 32-bit array for isam to work.
63        */
64       if (dev->physical_device->info->a6xx.storage_16bit) {
65          return A6XX_TEX_CONST_DWORDS * 4 * 2;
66       } else {
67          return A6XX_TEX_CONST_DWORDS * 4;
68       }
69    case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
70       return binding->descriptorCount;
71    default:
72       return A6XX_TEX_CONST_DWORDS * 4;
73    }
74 }
75 
76 static bool
is_dynamic(VkDescriptorType type)77 is_dynamic(VkDescriptorType type)
78 {
79    return type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC ||
80           type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
81 }
82 
83 static uint32_t
mutable_descriptor_size(struct tu_device * dev,const VkMutableDescriptorTypeListEXT * list)84 mutable_descriptor_size(struct tu_device *dev,
85                         const VkMutableDescriptorTypeListEXT *list)
86 {
87    uint32_t max_size = 0;
88 
89    for (uint32_t i = 0; i < list->descriptorTypeCount; i++) {
90       uint32_t size = descriptor_size(dev, NULL, list->pDescriptorTypes[i]);
91       max_size = MAX2(max_size, size);
92    }
93 
94    return max_size;
95 }
96 
97 static void
tu_descriptor_set_layout_destroy(struct vk_device * vk_dev,struct vk_descriptor_set_layout * vk_layout)98 tu_descriptor_set_layout_destroy(struct vk_device *vk_dev,
99                                  struct vk_descriptor_set_layout *vk_layout)
100 {
101    struct tu_device *dev = container_of(vk_dev, struct tu_device, vk);
102    struct tu_descriptor_set_layout *layout =
103       container_of(vk_layout, struct tu_descriptor_set_layout, vk);
104 
105    if (layout->embedded_samplers)
106       tu_bo_finish(dev, layout->embedded_samplers);
107    vk_descriptor_set_layout_destroy(vk_dev, vk_layout);
108 }
109 
110 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorSetLayout(VkDevice _device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorSetLayout * pSetLayout)111 tu_CreateDescriptorSetLayout(
112    VkDevice _device,
113    const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
114    const VkAllocationCallbacks *pAllocator,
115    VkDescriptorSetLayout *pSetLayout)
116 {
117    TU_FROM_HANDLE(tu_device, device, _device);
118    struct tu_descriptor_set_layout *set_layout;
119 
120    assert(pCreateInfo->sType ==
121           VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
122    const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags =
123       vk_find_struct_const(
124          pCreateInfo->pNext,
125          DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO);
126    const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
127       vk_find_struct_const(
128          pCreateInfo->pNext,
129          MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
130 
131    uint32_t num_bindings = 0;
132    uint32_t immutable_sampler_count = 0;
133    uint32_t ycbcr_sampler_count = 0;
134    for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
135       num_bindings = MAX2(num_bindings, pCreateInfo->pBindings[j].binding + 1);
136       if ((pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
137            pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
138            pCreateInfo->pBindings[j].pImmutableSamplers) {
139          immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
140 
141          bool has_ycbcr_sampler = false;
142          for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
143             if (tu_sampler_from_handle(pCreateInfo->pBindings[j].pImmutableSamplers[i])->ycbcr_sampler)
144                has_ycbcr_sampler = true;
145          }
146 
147          if (has_ycbcr_sampler)
148             ycbcr_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
149       }
150    }
151 
152    uint32_t samplers_offset =
153       offsetof_arr(struct tu_descriptor_set_layout, binding, num_bindings);
154 
155    /* note: only need to store TEX_SAMP_DWORDS for immutable samples,
156     * but using struct tu_sampler makes things simpler */
157    uint32_t size = samplers_offset +
158       immutable_sampler_count * sizeof(struct tu_sampler) +
159       ycbcr_sampler_count * sizeof(struct tu_sampler_ycbcr_conversion);
160 
161    set_layout =
162       (struct tu_descriptor_set_layout *) vk_descriptor_set_layout_zalloc(
163          &device->vk, size);
164    if (!set_layout)
165       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
166 
167    set_layout->flags = pCreateInfo->flags;
168    set_layout->vk.destroy = tu_descriptor_set_layout_destroy;
169 
170    /* We just allocate all the immutable samplers at the end of the struct */
171    struct tu_sampler *samplers =
172       (struct tu_sampler *) &set_layout->binding[num_bindings];
173    struct tu_sampler_ycbcr_conversion *ycbcr_samplers =
174       (struct tu_sampler_ycbcr_conversion *) &samplers[immutable_sampler_count];
175 
176    VkDescriptorSetLayoutBinding *bindings = NULL;
177    VkResult result = vk_create_sorted_bindings(
178       pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
179    if (result != VK_SUCCESS) {
180       vk_object_free(&device->vk, pAllocator, set_layout);
181       return vk_error(device, result);
182    }
183 
184    set_layout->binding_count = num_bindings;
185    set_layout->shader_stages = 0;
186    set_layout->has_immutable_samplers = false;
187    set_layout->has_inline_uniforms = false;
188    set_layout->size = 0;
189 
190    uint32_t dynamic_offset_size = 0;
191 
192    for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
193       const VkDescriptorSetLayoutBinding *binding = bindings + j;
194       uint32_t b = binding->binding;
195 
196       set_layout->binding[b].type = binding->descriptorType;
197       set_layout->binding[b].array_size =
198          binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK ?
199          1 : binding->descriptorCount;
200       set_layout->binding[b].offset = set_layout->size;
201       set_layout->binding[b].dynamic_offset_offset = dynamic_offset_size;
202       set_layout->binding[b].shader_stages = binding->stageFlags;
203 
204       if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_EXT) {
205          /* For mutable descriptor types we must allocate a size that fits the
206           * largest descriptor type that the binding can mutate to.
207           */
208          set_layout->binding[b].size =
209             mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[j]);
210       } else {
211          set_layout->binding[b].size =
212             descriptor_size(device, binding, binding->descriptorType);
213       }
214 
215       if (binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK)
216          set_layout->has_inline_uniforms = true;
217 
218       if (variable_flags && binding->binding < variable_flags->bindingCount &&
219           (variable_flags->pBindingFlags[binding->binding] &
220            VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) {
221          assert(!binding->pImmutableSamplers); /* Terribly ill defined  how
222                                                   many samplers are valid */
223          assert(binding->binding == num_bindings - 1);
224 
225          set_layout->has_variable_descriptors = true;
226       }
227 
228       if ((binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
229            binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
230           binding->pImmutableSamplers) {
231          set_layout->binding[b].immutable_samplers_offset = samplers_offset;
232          set_layout->has_immutable_samplers = true;
233 
234          for (uint32_t i = 0; i < binding->descriptorCount; i++)
235             samplers[i] = *tu_sampler_from_handle(binding->pImmutableSamplers[i]);
236 
237          samplers += binding->descriptorCount;
238          samplers_offset += sizeof(struct tu_sampler) * binding->descriptorCount;
239 
240          bool has_ycbcr_sampler = false;
241          for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
242             if (tu_sampler_from_handle(binding->pImmutableSamplers[i])->ycbcr_sampler)
243                has_ycbcr_sampler = true;
244          }
245 
246          if (has_ycbcr_sampler) {
247             set_layout->binding[b].ycbcr_samplers_offset =
248                (const char*)ycbcr_samplers - (const char*)set_layout;
249             for (uint32_t i = 0; i < binding->descriptorCount; i++) {
250                struct tu_sampler *sampler = tu_sampler_from_handle(binding->pImmutableSamplers[i]);
251                if (sampler->ycbcr_sampler)
252                   ycbcr_samplers[i] = *sampler->ycbcr_sampler;
253                else
254                   ycbcr_samplers[i].ycbcr_model = VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY;
255             }
256             ycbcr_samplers += binding->descriptorCount;
257          } else {
258             set_layout->binding[b].ycbcr_samplers_offset = 0;
259          }
260       }
261 
262       uint32_t size =
263          ALIGN_POT(set_layout->binding[b].array_size * set_layout->binding[b].size, 4 * A6XX_TEX_CONST_DWORDS);
264       if (is_dynamic(binding->descriptorType)) {
265          dynamic_offset_size += size;
266       } else {
267          set_layout->size += size;
268       }
269 
270       set_layout->shader_stages |= binding->stageFlags;
271    }
272 
273    free(bindings);
274 
275    set_layout->dynamic_offset_size = dynamic_offset_size;
276 
277    if (pCreateInfo->flags &
278        VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT) {
279       result = tu_bo_init_new(device, &set_layout->embedded_samplers,
280                               set_layout->size, TU_BO_ALLOC_ALLOW_DUMP,
281                               "embedded samplers");
282       if (result != VK_SUCCESS) {
283          vk_object_free(&device->vk, pAllocator, set_layout);
284          return vk_error(device, result);
285       }
286 
287       result = tu_bo_map(device, set_layout->embedded_samplers);
288       if (result != VK_SUCCESS) {
289          tu_bo_finish(device, set_layout->embedded_samplers);
290          vk_object_free(&device->vk, pAllocator, set_layout);
291          return vk_error(device, result);
292       }
293 
294       char *map = (char *) set_layout->embedded_samplers->map;
295       for (unsigned i = 0; i < set_layout->binding_count; i++) {
296          if (!set_layout->binding[i].immutable_samplers_offset)
297             continue;
298 
299          unsigned offset = set_layout->binding[i].offset;
300          const struct tu_sampler *sampler =
301             (const struct tu_sampler *)((const char *)set_layout +
302                                set_layout->binding[i].immutable_samplers_offset);
303          assert(set_layout->binding[i].array_size == 1);
304          memcpy(map + offset, sampler->descriptor,
305                 sizeof(sampler->descriptor));
306       }
307    }
308 
309    *pSetLayout = tu_descriptor_set_layout_to_handle(set_layout);
310 
311    return VK_SUCCESS;
312 }
313 
314 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutSupport(VkDevice _device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,VkDescriptorSetLayoutSupport * pSupport)315 tu_GetDescriptorSetLayoutSupport(
316    VkDevice _device,
317    const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
318    VkDescriptorSetLayoutSupport *pSupport)
319 {
320    TU_FROM_HANDLE(tu_device, device, _device);
321 
322    VkDescriptorSetLayoutBinding *bindings = NULL;
323    VkResult result = vk_create_sorted_bindings(
324       pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
325    if (result != VK_SUCCESS) {
326       pSupport->supported = false;
327       return;
328    }
329 
330    const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags =
331       vk_find_struct_const(
332          pCreateInfo->pNext,
333          DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO);
334    VkDescriptorSetVariableDescriptorCountLayoutSupport *variable_count =
335       vk_find_struct(
336          pSupport->pNext,
337          DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT);
338    const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
339       vk_find_struct_const(
340          pCreateInfo->pNext,
341          MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
342 
343    if (variable_count) {
344       variable_count->maxVariableDescriptorCount = 0;
345    }
346 
347    bool supported = true;
348    uint64_t size = 0;
349    for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) {
350       const VkDescriptorSetLayoutBinding *binding = bindings + i;
351 
352       uint64_t descriptor_sz;
353 
354       if (is_dynamic(binding->descriptorType)) {
355          descriptor_sz = 0;
356       } else if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_EXT) {
357          const VkMutableDescriptorTypeListEXT *list =
358             &mutable_info->pMutableDescriptorTypeLists[i];
359 
360          for (uint32_t j = 0; j < list->descriptorTypeCount; j++) {
361             /* Don't support the input attachement and combined image sampler type
362              * for mutable descriptors */
363             if (list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT ||
364                 list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
365                 list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
366                supported = false;
367                goto out;
368             }
369          }
370 
371          descriptor_sz =
372             mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]);
373       } else {
374          descriptor_sz = descriptor_size(device, binding, binding->descriptorType);
375       }
376       uint64_t descriptor_alignment = 4 * A6XX_TEX_CONST_DWORDS;
377 
378       if (size && !ALIGN_POT(size, descriptor_alignment)) {
379          supported = false;
380       }
381       size = ALIGN_POT(size, descriptor_alignment);
382 
383       uint64_t max_count = MAX_SET_SIZE;
384       unsigned descriptor_count = binding->descriptorCount;
385       if (binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
386          max_count = MAX_SET_SIZE - size;
387          descriptor_count = descriptor_sz;
388          descriptor_sz = 1;
389       } else if (descriptor_sz) {
390          max_count = (MAX_SET_SIZE - size) / descriptor_sz;
391       }
392 
393       if (max_count < descriptor_count) {
394          supported = false;
395       }
396 
397       if (variable_flags && binding->binding < variable_flags->bindingCount &&
398           variable_count &&
399           (variable_flags->pBindingFlags[binding->binding] &
400            VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) {
401          variable_count->maxVariableDescriptorCount =
402             MIN2(UINT32_MAX, max_count);
403       }
404       size += descriptor_count * descriptor_sz;
405    }
406 
407 out:
408    free(bindings);
409 
410    pSupport->supported = supported;
411 }
412 
413 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutSizeEXT(VkDevice _device,VkDescriptorSetLayout _layout,VkDeviceSize * pLayoutSizeInBytes)414 tu_GetDescriptorSetLayoutSizeEXT(
415    VkDevice _device,
416    VkDescriptorSetLayout _layout,
417    VkDeviceSize *pLayoutSizeInBytes)
418 {
419    TU_FROM_HANDLE(tu_descriptor_set_layout, layout, _layout);
420 
421    *pLayoutSizeInBytes = layout->size;
422 }
423 
424 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutBindingOffsetEXT(VkDevice _device,VkDescriptorSetLayout _layout,uint32_t binding,VkDeviceSize * pOffset)425 tu_GetDescriptorSetLayoutBindingOffsetEXT(
426    VkDevice _device,
427    VkDescriptorSetLayout _layout,
428    uint32_t binding,
429    VkDeviceSize *pOffset)
430 {
431    TU_FROM_HANDLE(tu_descriptor_set_layout, layout, _layout);
432 
433    assert(binding < layout->binding_count);
434    *pOffset = layout->binding[binding].offset;
435 }
436 
437 /* Note: we must hash any values used in tu_lower_io(). */
438 
439 #define SHA1_UPDATE_VALUE(ctx, x) _mesa_sha1_update(ctx, &(x), sizeof(x));
440 
441 static void
sha1_update_ycbcr_sampler(struct mesa_sha1 * ctx,const struct tu_sampler_ycbcr_conversion * sampler)442 sha1_update_ycbcr_sampler(struct mesa_sha1 *ctx,
443                           const struct tu_sampler_ycbcr_conversion *sampler)
444 {
445    SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_model);
446    SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_range);
447    SHA1_UPDATE_VALUE(ctx, sampler->format);
448 }
449 
450 static void
sha1_update_descriptor_set_binding_layout(struct mesa_sha1 * ctx,const struct tu_descriptor_set_binding_layout * layout,const struct tu_descriptor_set_layout * set_layout)451 sha1_update_descriptor_set_binding_layout(struct mesa_sha1 *ctx,
452    const struct tu_descriptor_set_binding_layout *layout,
453    const struct tu_descriptor_set_layout *set_layout)
454 {
455    SHA1_UPDATE_VALUE(ctx, layout->type);
456    SHA1_UPDATE_VALUE(ctx, layout->offset);
457    SHA1_UPDATE_VALUE(ctx, layout->size);
458    SHA1_UPDATE_VALUE(ctx, layout->array_size);
459    SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_offset);
460    SHA1_UPDATE_VALUE(ctx, layout->immutable_samplers_offset);
461 
462    const struct tu_sampler_ycbcr_conversion *ycbcr_samplers =
463       tu_immutable_ycbcr_samplers(set_layout, layout);
464 
465    if (ycbcr_samplers) {
466       for (unsigned i = 0; i < layout->array_size; i++)
467          sha1_update_ycbcr_sampler(ctx, ycbcr_samplers + i);
468    }
469 }
470 
471 
472 static void
sha1_update_descriptor_set_layout(struct mesa_sha1 * ctx,const struct tu_descriptor_set_layout * layout)473 sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
474                                   const struct tu_descriptor_set_layout *layout)
475 {
476    SHA1_UPDATE_VALUE(ctx, layout->has_variable_descriptors);
477 
478    for (uint16_t i = 0; i < layout->binding_count; i++)
479       sha1_update_descriptor_set_binding_layout(ctx, &layout->binding[i],
480                                                 layout);
481 }
482 
483 /*
484  * Pipeline layouts.  These have nothing to do with the pipeline.  They are
485  * just multiple descriptor set layouts pasted together.
486  */
487 
488 void
tu_pipeline_layout_init(struct tu_pipeline_layout * layout)489 tu_pipeline_layout_init(struct tu_pipeline_layout *layout)
490 {
491    struct mesa_sha1 ctx;
492    _mesa_sha1_init(&ctx);
493    for (unsigned s = 0; s < layout->num_sets; s++) {
494       if (layout->set[s].layout)
495          sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
496    }
497    _mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
498    _mesa_sha1_update(&ctx, &layout->push_constant_size,
499                      sizeof(layout->push_constant_size));
500    _mesa_sha1_final(&ctx, layout->sha1);
501 }
502 
503 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreatePipelineLayout(VkDevice _device,const VkPipelineLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipelineLayout * pPipelineLayout)504 tu_CreatePipelineLayout(VkDevice _device,
505                         const VkPipelineLayoutCreateInfo *pCreateInfo,
506                         const VkAllocationCallbacks *pAllocator,
507                         VkPipelineLayout *pPipelineLayout)
508 {
509    TU_FROM_HANDLE(tu_device, device, _device);
510    struct tu_pipeline_layout *layout;
511 
512    assert(pCreateInfo->sType ==
513           VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
514 
515    layout = (struct tu_pipeline_layout *) vk_object_alloc(
516       &device->vk, pAllocator, sizeof(*layout),
517       VK_OBJECT_TYPE_PIPELINE_LAYOUT);
518    if (layout == NULL)
519       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
520 
521    layout->num_sets = pCreateInfo->setLayoutCount;
522    for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
523       TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout,
524                      pCreateInfo->pSetLayouts[set]);
525 
526       assert(set < device->physical_device->usable_sets);
527       layout->set[set].layout = set_layout;
528       if (set_layout)
529          vk_descriptor_set_layout_ref(&set_layout->vk);
530    }
531 
532    layout->push_constant_size = 0;
533 
534    for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) {
535       const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i;
536       layout->push_constant_size =
537          MAX2(layout->push_constant_size, range->offset + range->size);
538    }
539 
540    layout->push_constant_size = align(layout->push_constant_size, 16);
541 
542    tu_pipeline_layout_init(layout);
543 
544    *pPipelineLayout = tu_pipeline_layout_to_handle(layout);
545 
546    return VK_SUCCESS;
547 }
548 
549 VKAPI_ATTR void VKAPI_CALL
tu_DestroyPipelineLayout(VkDevice _device,VkPipelineLayout _pipelineLayout,const VkAllocationCallbacks * pAllocator)550 tu_DestroyPipelineLayout(VkDevice _device,
551                          VkPipelineLayout _pipelineLayout,
552                          const VkAllocationCallbacks *pAllocator)
553 {
554    TU_FROM_HANDLE(tu_device, device, _device);
555    TU_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, _pipelineLayout);
556 
557    if (!pipeline_layout)
558       return;
559 
560    for (uint32_t i = 0; i < pipeline_layout->num_sets; i++) {
561       if (pipeline_layout->set[i].layout)
562          vk_descriptor_set_layout_unref(&device->vk, &pipeline_layout->set[i].layout->vk);
563    }
564 
565    vk_object_free(&device->vk, pAllocator, pipeline_layout);
566 }
567 
568 #define EMPTY 1
569 
570 static VkResult
tu_descriptor_set_create(struct tu_device * device,struct tu_descriptor_pool * pool,struct tu_descriptor_set_layout * layout,uint32_t variable_count,struct tu_descriptor_set ** out_set)571 tu_descriptor_set_create(struct tu_device *device,
572             struct tu_descriptor_pool *pool,
573             struct tu_descriptor_set_layout *layout,
574             uint32_t variable_count,
575             struct tu_descriptor_set **out_set)
576 {
577    struct tu_descriptor_set *set;
578    unsigned dynamic_offset = sizeof(struct tu_descriptor_set);
579    unsigned mem_size = dynamic_offset + layout->dynamic_offset_size;
580 
581    if (pool->host_memory_base) {
582       if (pool->host_memory_end - pool->host_memory_ptr < mem_size)
583          return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
584 
585       set = (struct tu_descriptor_set*)pool->host_memory_ptr;
586       pool->host_memory_ptr += mem_size;
587    } else {
588       set = (struct tu_descriptor_set *) vk_alloc2(
589          &device->vk.alloc, NULL, mem_size, 8,
590          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
591 
592       if (!set)
593          return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
594    }
595 
596    memset(set, 0, mem_size);
597    vk_object_base_init(&device->vk, &set->base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
598 
599    if (layout->dynamic_offset_size) {
600       set->dynamic_descriptors = (uint32_t *)((uint8_t*)set + dynamic_offset);
601    }
602 
603    set->layout = layout;
604    set->pool = pool;
605    uint32_t layout_size = layout->size;
606    if (layout->has_variable_descriptors) {
607       struct tu_descriptor_set_binding_layout *binding =
608          &layout->binding[layout->binding_count - 1];
609       if (binding->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
610          layout_size = binding->offset +
611             ALIGN(variable_count, 4 * A6XX_TEX_CONST_DWORDS);
612       } else {
613          uint32_t stride = binding->size;
614          layout_size = binding->offset + variable_count * stride;
615       }
616    }
617 
618    if (layout_size) {
619       set->size = layout_size;
620 
621       if (!pool->host_memory_base && pool->entry_count == pool->max_entry_count) {
622          vk_object_free(&device->vk, NULL, set);
623          return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
624       }
625 
626       /* try to allocate linearly first, so that we don't spend
627        * time looking for gaps if the app only allocates &
628        * resets via the pool. */
629       if (pool->current_offset + layout_size <= pool->size) {
630          set->mapped_ptr = (uint32_t*)(pool_base(pool) + pool->current_offset);
631          set->va = pool->host_bo ? 0 : pool->bo->iova + pool->current_offset;
632 
633          if (!pool->host_memory_base) {
634             pool->entries[pool->entry_count].offset = pool->current_offset;
635             pool->entries[pool->entry_count].size = layout_size;
636             pool->entries[pool->entry_count].set = set;
637             pool->entry_count++;
638          }
639          pool->current_offset += layout_size;
640       } else if (!pool->host_memory_base) {
641          uint64_t offset = 0;
642          int index;
643 
644          for (index = 0; index < pool->entry_count; ++index) {
645             if (pool->entries[index].offset - offset >= layout_size)
646                break;
647             offset = pool->entries[index].offset + pool->entries[index].size;
648          }
649 
650          if (pool->size - offset < layout_size) {
651             vk_object_free(&device->vk, NULL, set);
652             return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
653          }
654 
655          set->mapped_ptr = (uint32_t*)(pool_base(pool) + offset);
656          set->va = pool->host_bo ? 0 : pool->bo->iova + offset;
657 
658          memmove(&pool->entries[index + 1], &pool->entries[index],
659             sizeof(pool->entries[0]) * (pool->entry_count - index));
660          pool->entries[index].offset = offset;
661          pool->entries[index].size = layout_size;
662          pool->entries[index].set = set;
663          pool->entry_count++;
664       } else
665          return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
666    }
667 
668    if (layout->has_immutable_samplers) {
669       for (unsigned i = 0; i < layout->binding_count; ++i) {
670          if (!layout->binding[i].immutable_samplers_offset)
671             continue;
672 
673          unsigned offset = layout->binding[i].offset / 4;
674          if (layout->binding[i].type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
675             offset += A6XX_TEX_CONST_DWORDS;
676 
677          const struct tu_sampler *samplers =
678             (const struct tu_sampler *)((const char *)layout +
679                                layout->binding[i].immutable_samplers_offset);
680          for (unsigned j = 0; j < layout->binding[i].array_size; ++j) {
681             memcpy(set->mapped_ptr + offset, samplers[j].descriptor,
682                    sizeof(samplers[j].descriptor));
683             offset += layout->binding[i].size / 4;
684          }
685       }
686    }
687 
688    vk_descriptor_set_layout_ref(&layout->vk);
689    list_addtail(&set->pool_link, &pool->desc_sets);
690 
691    *out_set = set;
692    return VK_SUCCESS;
693 }
694 
695 static void
tu_descriptor_set_destroy(struct tu_device * device,struct tu_descriptor_pool * pool,struct tu_descriptor_set * set,bool free_bo)696 tu_descriptor_set_destroy(struct tu_device *device,
697              struct tu_descriptor_pool *pool,
698              struct tu_descriptor_set *set,
699              bool free_bo)
700 {
701    assert(!pool->host_memory_base);
702 
703    if (free_bo && set->size && !pool->host_memory_base) {
704       uint32_t offset = (uint8_t*)set->mapped_ptr - pool_base(pool);
705 
706       for (int i = 0; i < pool->entry_count; ++i) {
707          if (pool->entries[i].offset == offset) {
708             memmove(&pool->entries[i], &pool->entries[i+1],
709                sizeof(pool->entries[i]) * (pool->entry_count - i - 1));
710             --pool->entry_count;
711             break;
712          }
713       }
714    }
715 
716    vk_object_free(&device->vk, NULL, set);
717 }
718 
719 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorPool(VkDevice _device,const VkDescriptorPoolCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorPool * pDescriptorPool)720 tu_CreateDescriptorPool(VkDevice _device,
721                         const VkDescriptorPoolCreateInfo *pCreateInfo,
722                         const VkAllocationCallbacks *pAllocator,
723                         VkDescriptorPool *pDescriptorPool)
724 {
725    TU_FROM_HANDLE(tu_device, device, _device);
726    struct tu_descriptor_pool *pool;
727    uint64_t size = sizeof(struct tu_descriptor_pool);
728    uint64_t bo_size = 0, dynamic_size = 0;
729    VkResult ret;
730 
731    const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
732       vk_find_struct_const( pCreateInfo->pNext,
733          MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
734 
735    const VkDescriptorPoolInlineUniformBlockCreateInfo *inline_info =
736       vk_find_struct_const(pCreateInfo->pNext,
737                            DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO);
738 
739    if (inline_info) {
740       /* We have to factor in the padding for each binding. The sizes are 4
741        * aligned but we have to align to 4 * A6XX_TEX_CONST_DWORDS bytes, and in
742        * the worst case each inline binding has a size of 4 bytes and we have
743        * to pad each one out.
744        */
745       bo_size += (4 * A6XX_TEX_CONST_DWORDS - 4) *
746          inline_info->maxInlineUniformBlockBindings;
747    }
748 
749    for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) {
750       const VkDescriptorPoolSize *pool_size = &pCreateInfo->pPoolSizes[i];
751 
752       switch (pool_size->type) {
753       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
754       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
755          dynamic_size += descriptor_size(device, NULL, pool_size->type) *
756             pool_size->descriptorCount;
757          break;
758       case VK_DESCRIPTOR_TYPE_MUTABLE_EXT:
759          if (mutable_info && i < mutable_info->mutableDescriptorTypeListCount &&
760              mutable_info->pMutableDescriptorTypeLists[i].descriptorTypeCount > 0) {
761             bo_size +=
762                mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]) *
763                   pool_size->descriptorCount;
764          } else {
765             /* Allocate the maximum size possible. */
766             bo_size += 2 * A6XX_TEX_CONST_DWORDS * 4 *
767                   pool_size->descriptorCount;
768          }
769          break;
770       case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
771          bo_size += pool_size->descriptorCount;
772          break;
773       default:
774          bo_size += descriptor_size(device, NULL, pool_size->type) *
775                               pool_size->descriptorCount;
776          break;
777       }
778    }
779 
780    if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
781       uint64_t host_size = pCreateInfo->maxSets * sizeof(struct tu_descriptor_set);
782       host_size += dynamic_size;
783       size += host_size;
784    } else {
785       size += sizeof(struct tu_descriptor_pool_entry) * pCreateInfo->maxSets;
786    }
787 
788    pool = (struct tu_descriptor_pool *) vk_object_zalloc(
789       &device->vk, pAllocator, size, VK_OBJECT_TYPE_DESCRIPTOR_POOL);
790    if (!pool)
791       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
792 
793    if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
794       pool->host_memory_base = (uint8_t*)pool + sizeof(struct tu_descriptor_pool);
795       pool->host_memory_ptr = pool->host_memory_base;
796       pool->host_memory_end = (uint8_t*)pool + size;
797    }
798 
799    if (bo_size) {
800       if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT)) {
801          ret = tu_bo_init_new(device, &pool->bo, bo_size, TU_BO_ALLOC_ALLOW_DUMP, "descriptor pool");
802          if (ret)
803             goto fail_alloc;
804 
805          ret = tu_bo_map(device, pool->bo);
806          if (ret)
807             goto fail_map;
808       } else {
809          pool->host_bo =
810             (uint8_t *) vk_alloc2(&device->vk.alloc, pAllocator, bo_size, 8,
811                                   VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
812          if (!pool->host_bo) {
813             ret = VK_ERROR_OUT_OF_HOST_MEMORY;
814             goto fail_alloc;
815          }
816       }
817    }
818    pool->size = bo_size;
819    pool->max_entry_count = pCreateInfo->maxSets;
820 
821    list_inithead(&pool->desc_sets);
822 
823    *pDescriptorPool = tu_descriptor_pool_to_handle(pool);
824    return VK_SUCCESS;
825 
826 fail_map:
827    tu_bo_finish(device, pool->bo);
828 fail_alloc:
829    vk_object_free(&device->vk, pAllocator, pool);
830    return ret;
831 }
832 
833 VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorPool(VkDevice _device,VkDescriptorPool _pool,const VkAllocationCallbacks * pAllocator)834 tu_DestroyDescriptorPool(VkDevice _device,
835                          VkDescriptorPool _pool,
836                          const VkAllocationCallbacks *pAllocator)
837 {
838    TU_FROM_HANDLE(tu_device, device, _device);
839    TU_FROM_HANDLE(tu_descriptor_pool, pool, _pool);
840 
841    if (!pool)
842       return;
843 
844    list_for_each_entry_safe(struct tu_descriptor_set, set,
845                             &pool->desc_sets, pool_link) {
846       vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
847    }
848 
849    if (!pool->host_memory_base) {
850       for(int i = 0; i < pool->entry_count; ++i) {
851          tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
852       }
853    }
854 
855    if (pool->size) {
856       if (pool->host_bo)
857          vk_free2(&device->vk.alloc, pAllocator, pool->host_bo);
858       else
859          tu_bo_finish(device, pool->bo);
860    }
861 
862    vk_object_free(&device->vk, pAllocator, pool);
863 }
864 
865 VKAPI_ATTR VkResult VKAPI_CALL
tu_ResetDescriptorPool(VkDevice _device,VkDescriptorPool descriptorPool,VkDescriptorPoolResetFlags flags)866 tu_ResetDescriptorPool(VkDevice _device,
867                        VkDescriptorPool descriptorPool,
868                        VkDescriptorPoolResetFlags flags)
869 {
870    TU_FROM_HANDLE(tu_device, device, _device);
871    TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
872 
873    list_for_each_entry_safe(struct tu_descriptor_set, set,
874                             &pool->desc_sets, pool_link) {
875       vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
876    }
877    list_inithead(&pool->desc_sets);
878 
879    if (!pool->host_memory_base) {
880       for(int i = 0; i < pool->entry_count; ++i) {
881          tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
882       }
883       pool->entry_count = 0;
884    }
885 
886    pool->current_offset = 0;
887    pool->host_memory_ptr = pool->host_memory_base;
888 
889    return VK_SUCCESS;
890 }
891 
892 VKAPI_ATTR VkResult VKAPI_CALL
tu_AllocateDescriptorSets(VkDevice _device,const VkDescriptorSetAllocateInfo * pAllocateInfo,VkDescriptorSet * pDescriptorSets)893 tu_AllocateDescriptorSets(VkDevice _device,
894                           const VkDescriptorSetAllocateInfo *pAllocateInfo,
895                           VkDescriptorSet *pDescriptorSets)
896 {
897    TU_FROM_HANDLE(tu_device, device, _device);
898    TU_FROM_HANDLE(tu_descriptor_pool, pool, pAllocateInfo->descriptorPool);
899 
900    VkResult result = VK_SUCCESS;
901    uint32_t i;
902    struct tu_descriptor_set *set = NULL;
903 
904    const VkDescriptorSetVariableDescriptorCountAllocateInfo *variable_counts =
905       vk_find_struct_const(pAllocateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO);
906    if (variable_counts && !variable_counts->descriptorSetCount)
907       variable_counts = NULL;
908 
909    /* allocate a set of buffers for each shader to contain descriptors */
910    for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
911       TU_FROM_HANDLE(tu_descriptor_set_layout, layout,
912              pAllocateInfo->pSetLayouts[i]);
913 
914       assert(!(layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
915 
916       result = tu_descriptor_set_create(
917          device, pool, layout,
918          variable_counts ? variable_counts->pDescriptorCounts[i] : 0, &set);
919       if (result != VK_SUCCESS)
920          break;
921 
922       pDescriptorSets[i] = tu_descriptor_set_to_handle(set);
923    }
924 
925    if (result != VK_SUCCESS) {
926       tu_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
927                i, pDescriptorSets);
928       for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
929          pDescriptorSets[i] = VK_NULL_HANDLE;
930       }
931    }
932    return result;
933 }
934 
935 VKAPI_ATTR VkResult VKAPI_CALL
tu_FreeDescriptorSets(VkDevice _device,VkDescriptorPool descriptorPool,uint32_t count,const VkDescriptorSet * pDescriptorSets)936 tu_FreeDescriptorSets(VkDevice _device,
937                       VkDescriptorPool descriptorPool,
938                       uint32_t count,
939                       const VkDescriptorSet *pDescriptorSets)
940 {
941    TU_FROM_HANDLE(tu_device, device, _device);
942    TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
943 
944    for (uint32_t i = 0; i < count; i++) {
945       TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
946 
947       if (set) {
948          vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
949          list_del(&set->pool_link);
950       }
951 
952       if (set && !pool->host_memory_base)
953          tu_descriptor_set_destroy(device, pool, set, true);
954    }
955    return VK_SUCCESS;
956 }
957 
958 static void
write_texel_buffer_descriptor_addr(uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)959 write_texel_buffer_descriptor_addr(uint32_t *dst,
960                                    const VkDescriptorAddressInfoEXT *buffer_info)
961 {
962    if (!buffer_info || buffer_info->address == 0) {
963       memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
964    } else {
965       uint8_t swiz[4] = { PIPE_SWIZZLE_X, PIPE_SWIZZLE_Y, PIPE_SWIZZLE_Z,
966                           PIPE_SWIZZLE_W };
967       fdl6_buffer_view_init(dst,
968                             tu_vk_format_to_pipe_format(buffer_info->format),
969                             swiz, buffer_info->address, buffer_info->range);
970    }
971 }
972 
973 static void
write_texel_buffer_descriptor(uint32_t * dst,const VkBufferView buffer_view)974 write_texel_buffer_descriptor(uint32_t *dst, const VkBufferView buffer_view)
975 {
976    if (buffer_view == VK_NULL_HANDLE) {
977       memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
978    } else {
979       TU_FROM_HANDLE(tu_buffer_view, view, buffer_view);
980 
981       memcpy(dst, view->descriptor, sizeof(view->descriptor));
982    }
983 }
984 
985 static VkDescriptorAddressInfoEXT
buffer_info_to_address(const VkDescriptorBufferInfo * buffer_info)986 buffer_info_to_address(const VkDescriptorBufferInfo *buffer_info)
987 {
988    TU_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer);
989 
990    uint32_t range = buffer ? vk_buffer_range(&buffer->vk, buffer_info->offset, buffer_info->range) : 0;
991    uint64_t va = buffer ? buffer->iova + buffer_info->offset : 0;
992 
993    return (VkDescriptorAddressInfoEXT) {
994       .address = va,
995       .range = range,
996    };
997 }
998 
999 static void
write_buffer_descriptor_addr(const struct tu_device * device,uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)1000 write_buffer_descriptor_addr(const struct tu_device *device,
1001                              uint32_t *dst,
1002                              const VkDescriptorAddressInfoEXT *buffer_info)
1003 {
1004    bool storage_16bit = device->physical_device->info->a6xx.storage_16bit;
1005    /* newer a6xx allows using 16-bit descriptor for both 16-bit and 32-bit
1006     * access, but we need to keep a 32-bit descriptor for readonly access via
1007     * isam.
1008     */
1009    unsigned descriptors = storage_16bit ? 2 : 1;
1010 
1011    if (!buffer_info || buffer_info->address == 0) {
1012       memset(dst, 0, descriptors * A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
1013       return;
1014    }
1015 
1016    uint64_t va = buffer_info->address;
1017    uint64_t base_va = va & ~0x3full;
1018    unsigned offset = va & 0x3f;
1019    uint32_t range = buffer_info->range;
1020 
1021    for (unsigned i = 0; i < descriptors; i++) {
1022       if (storage_16bit && i == 0) {
1023          dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_16_UINT);
1024          dst[1] = DIV_ROUND_UP(range, 2);
1025          dst[2] =
1026             A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
1027             A6XX_TEX_CONST_2_STARTOFFSETTEXELS(offset / 2) |
1028             A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1029       } else {
1030          dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_32_UINT);
1031          dst[1] = DIV_ROUND_UP(range, 4);
1032          dst[2] =
1033             A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
1034             A6XX_TEX_CONST_2_STARTOFFSETTEXELS(offset / 4) |
1035             A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1036       }
1037       dst[3] = 0;
1038       dst[4] = A6XX_TEX_CONST_4_BASE_LO(base_va);
1039       dst[5] = A6XX_TEX_CONST_5_BASE_HI(base_va >> 32);
1040       for (int j = 6; j < A6XX_TEX_CONST_DWORDS; j++)
1041          dst[j] = 0;
1042       dst += A6XX_TEX_CONST_DWORDS;
1043    }
1044 }
1045 
1046 static void
write_buffer_descriptor(const struct tu_device * device,uint32_t * dst,const VkDescriptorBufferInfo * buffer_info)1047 write_buffer_descriptor(const struct tu_device *device,
1048                         uint32_t *dst,
1049                         const VkDescriptorBufferInfo *buffer_info)
1050 {
1051    VkDescriptorAddressInfoEXT addr = buffer_info_to_address(buffer_info);
1052    write_buffer_descriptor_addr(device, dst, &addr);
1053 }
1054 
1055 static void
write_ubo_descriptor_addr(uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)1056 write_ubo_descriptor_addr(uint32_t *dst,
1057                           const VkDescriptorAddressInfoEXT *buffer_info)
1058 {
1059    if (!buffer_info) {
1060       dst[0] = dst[1] = 0;
1061       return;
1062    }
1063 
1064    uint64_t va = buffer_info->address;
1065    /* The HW range is in vec4 units */
1066    uint32_t range = va ? DIV_ROUND_UP(buffer_info->range, 16) : 0;
1067    dst[0] = A6XX_UBO_0_BASE_LO(va);
1068    dst[1] = A6XX_UBO_1_BASE_HI(va >> 32) | A6XX_UBO_1_SIZE(range);
1069 }
1070 
1071 static void
write_ubo_descriptor(uint32_t * dst,const VkDescriptorBufferInfo * buffer_info)1072 write_ubo_descriptor(uint32_t *dst, const VkDescriptorBufferInfo *buffer_info)
1073 {
1074    VkDescriptorAddressInfoEXT addr = buffer_info_to_address(buffer_info);
1075    write_ubo_descriptor_addr(dst, &addr);
1076 }
1077 
1078 static void
write_image_descriptor(uint32_t * dst,VkDescriptorType descriptor_type,const VkDescriptorImageInfo * image_info)1079 write_image_descriptor(uint32_t *dst,
1080                        VkDescriptorType descriptor_type,
1081                        const VkDescriptorImageInfo *image_info)
1082 {
1083    if (!image_info || image_info->imageView == VK_NULL_HANDLE) {
1084       memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
1085       return;
1086    }
1087 
1088    TU_FROM_HANDLE(tu_image_view, iview, image_info->imageView);
1089 
1090    if (descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) {
1091       memcpy(dst, iview->view.storage_descriptor, sizeof(iview->view.storage_descriptor));
1092    } else {
1093       memcpy(dst, iview->view.descriptor, sizeof(iview->view.descriptor));
1094    }
1095 }
1096 
1097 static void
write_combined_image_sampler_descriptor(uint32_t * dst,VkDescriptorType descriptor_type,const VkDescriptorImageInfo * image_info,bool has_sampler)1098 write_combined_image_sampler_descriptor(uint32_t *dst,
1099                                         VkDescriptorType descriptor_type,
1100                                         const VkDescriptorImageInfo *image_info,
1101                                         bool has_sampler)
1102 {
1103    write_image_descriptor(dst, descriptor_type, image_info);
1104    /* copy over sampler state */
1105    if (has_sampler) {
1106       TU_FROM_HANDLE(tu_sampler, sampler, image_info->sampler);
1107 
1108       memcpy(dst + A6XX_TEX_CONST_DWORDS, sampler->descriptor, sizeof(sampler->descriptor));
1109    }
1110 }
1111 
1112 static void
write_sampler_descriptor(uint32_t * dst,VkSampler _sampler)1113 write_sampler_descriptor(uint32_t *dst, VkSampler _sampler)
1114 {
1115    TU_FROM_HANDLE(tu_sampler, sampler, _sampler);
1116 
1117    memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
1118 }
1119 
1120 /* note: this is used with immutable samplers in push descriptors */
1121 static void
write_sampler_push(uint32_t * dst,const struct tu_sampler * sampler)1122 write_sampler_push(uint32_t *dst, const struct tu_sampler *sampler)
1123 {
1124    memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
1125 }
1126 
1127 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorEXT(VkDevice _device,const VkDescriptorGetInfoEXT * pDescriptorInfo,size_t dataSize,void * pDescriptor)1128 tu_GetDescriptorEXT(
1129    VkDevice _device,
1130    const VkDescriptorGetInfoEXT *pDescriptorInfo,
1131    size_t dataSize,
1132    void *pDescriptor)
1133 {
1134    TU_FROM_HANDLE(tu_device, device, _device);
1135    uint32_t *dest = (uint32_t *) pDescriptor;
1136 
1137    switch (pDescriptorInfo->type) {
1138    case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1139       write_ubo_descriptor_addr(dest, pDescriptorInfo->data.pUniformBuffer);
1140       break;
1141    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1142       write_buffer_descriptor_addr(device, dest, pDescriptorInfo->data.pStorageBuffer);
1143       break;
1144    case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1145       write_texel_buffer_descriptor_addr(dest, pDescriptorInfo->data.pUniformTexelBuffer);
1146       break;
1147    case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1148       write_texel_buffer_descriptor_addr(dest, pDescriptorInfo->data.pStorageTexelBuffer);
1149       break;
1150    case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1151       write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
1152                              pDescriptorInfo->data.pSampledImage);
1153       break;
1154    case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1155       write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
1156                              pDescriptorInfo->data.pStorageImage);
1157       break;
1158    case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1159       write_combined_image_sampler_descriptor(dest,
1160                                               VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1161                                               pDescriptorInfo->data.pCombinedImageSampler,
1162                                               true);
1163       break;
1164    case VK_DESCRIPTOR_TYPE_SAMPLER:
1165       write_sampler_descriptor(dest, *pDescriptorInfo->data.pSampler);
1166       break;
1167    case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1168       /* nothing in descriptor set - framebuffer state is used instead */
1169       if (TU_DEBUG(DYNAMIC)) {
1170          write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
1171                                 pDescriptorInfo->data.pInputAttachmentImage);
1172       }
1173       break;
1174    default:
1175       unreachable("unimplemented descriptor type");
1176       break;
1177    }
1178 }
1179 
1180 void
tu_update_descriptor_sets(const struct tu_device * device,VkDescriptorSet dstSetOverride,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)1181 tu_update_descriptor_sets(const struct tu_device *device,
1182                           VkDescriptorSet dstSetOverride,
1183                           uint32_t descriptorWriteCount,
1184                           const VkWriteDescriptorSet *pDescriptorWrites,
1185                           uint32_t descriptorCopyCount,
1186                           const VkCopyDescriptorSet *pDescriptorCopies)
1187 {
1188    uint32_t i, j;
1189    for (i = 0; i < descriptorWriteCount; i++) {
1190       const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i];
1191       TU_FROM_HANDLE(tu_descriptor_set, set, dstSetOverride ?: writeset->dstSet);
1192       const struct tu_descriptor_set_binding_layout *binding_layout =
1193          set->layout->binding + writeset->dstBinding;
1194       uint32_t *ptr = set->mapped_ptr;
1195       if (writeset->descriptorType == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1196           writeset->descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1197          ptr = set->dynamic_descriptors;
1198          ptr += binding_layout->dynamic_offset_offset / 4;
1199       } else {
1200          ptr = set->mapped_ptr;
1201          ptr += binding_layout->offset / 4;
1202       }
1203 
1204       /* for immutable samplers with push descriptors: */
1205       const bool copy_immutable_samplers =
1206          dstSetOverride && binding_layout->immutable_samplers_offset;
1207       const struct tu_sampler *samplers =
1208          tu_immutable_samplers(set->layout, binding_layout);
1209 
1210       if (writeset->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1211          /* We need to respect this note:
1212           *
1213           *    The same behavior applies to bindings with a descriptor type of
1214           *    VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK where descriptorCount
1215           *    specifies the number of bytes to update while dstArrayElement
1216           *    specifies the starting byte offset, thus in this case if the
1217           *    dstBinding has a smaller byte size than the sum of
1218           *    dstArrayElement and descriptorCount, then the remainder will be
1219           *    used to update the subsequent binding - dstBinding+1 starting
1220           *    at offset zero. This falls out as a special case of the above
1221           *    rule.
1222           *
1223           * This means we can't just do a straight memcpy, because due to
1224           * alignment padding there are gaps between sequential bindings. We
1225           * have to loop over each binding updated.
1226           */
1227          const VkWriteDescriptorSetInlineUniformBlock *inline_write =
1228             vk_find_struct_const(writeset->pNext,
1229                                  WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK);
1230          uint32_t remaining = inline_write->dataSize;
1231          const uint8_t *src = (const uint8_t *) inline_write->pData;
1232          uint32_t dst_offset = writeset->dstArrayElement;
1233          do {
1234             uint8_t *dst = (uint8_t *)(ptr) + dst_offset;
1235             uint32_t binding_size = binding_layout->size - dst_offset;
1236             uint32_t to_write = MIN2(remaining, binding_size);
1237             memcpy(dst, src, to_write);
1238 
1239             binding_layout++;
1240             ptr = set->mapped_ptr + binding_layout->offset / 4;
1241             dst_offset = 0;
1242             src += to_write;
1243             remaining -= to_write;
1244          } while (remaining > 0);
1245 
1246          continue;
1247       }
1248 
1249       ptr += binding_layout->size / 4 * writeset->dstArrayElement;
1250       for (j = 0; j < writeset->descriptorCount; ++j) {
1251          switch(writeset->descriptorType) {
1252          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1253          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1254             write_ubo_descriptor(ptr, writeset->pBufferInfo + j);
1255             break;
1256          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1257          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1258             write_buffer_descriptor(device, ptr, writeset->pBufferInfo + j);
1259             break;
1260          case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1261          case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1262             write_texel_buffer_descriptor(ptr, writeset->pTexelBufferView[j]);
1263             break;
1264          case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1265          case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1266             write_image_descriptor(ptr, writeset->descriptorType, writeset->pImageInfo + j);
1267             break;
1268          case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1269             write_combined_image_sampler_descriptor(ptr,
1270                                                     writeset->descriptorType,
1271                                                     writeset->pImageInfo + j,
1272                                                     !binding_layout->immutable_samplers_offset);
1273 
1274             if (copy_immutable_samplers)
1275                write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[writeset->dstArrayElement + j]);
1276             break;
1277          case VK_DESCRIPTOR_TYPE_SAMPLER:
1278             if (!binding_layout->immutable_samplers_offset)
1279                write_sampler_descriptor(ptr, writeset->pImageInfo[j].sampler);
1280             else if (copy_immutable_samplers)
1281                write_sampler_push(ptr, &samplers[writeset->dstArrayElement + j]);
1282             break;
1283          case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1284             /* nothing in descriptor set - framebuffer state is used instead */
1285             if (TU_DEBUG(DYNAMIC))
1286                write_image_descriptor(ptr, writeset->descriptorType, writeset->pImageInfo + j);
1287             break;
1288          default:
1289             unreachable("unimplemented descriptor type");
1290             break;
1291          }
1292          ptr += binding_layout->size / 4;
1293       }
1294    }
1295 
1296    for (i = 0; i < descriptorCopyCount; i++) {
1297       const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i];
1298       TU_FROM_HANDLE(tu_descriptor_set, src_set,
1299                        copyset->srcSet);
1300       TU_FROM_HANDLE(tu_descriptor_set, dst_set,
1301                        copyset->dstSet);
1302       const struct tu_descriptor_set_binding_layout *src_binding_layout =
1303          src_set->layout->binding + copyset->srcBinding;
1304       const struct tu_descriptor_set_binding_layout *dst_binding_layout =
1305          dst_set->layout->binding + copyset->dstBinding;
1306       uint32_t *src_ptr = src_set->mapped_ptr;
1307       uint32_t *dst_ptr = dst_set->mapped_ptr;
1308       if (src_binding_layout->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1309           src_binding_layout->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1310          src_ptr = src_set->dynamic_descriptors;
1311          dst_ptr = dst_set->dynamic_descriptors;
1312          src_ptr += src_binding_layout->dynamic_offset_offset / 4;
1313          dst_ptr += dst_binding_layout->dynamic_offset_offset / 4;
1314       } else {
1315          src_ptr = src_set->mapped_ptr;
1316          dst_ptr = dst_set->mapped_ptr;
1317          src_ptr += src_binding_layout->offset / 4;
1318          dst_ptr += dst_binding_layout->offset / 4;
1319       }
1320 
1321       if (src_binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1322          uint32_t remaining = copyset->descriptorCount;
1323          uint32_t src_start = copyset->srcArrayElement;
1324          uint32_t dst_start = copyset->dstArrayElement;
1325          uint8_t *src = (uint8_t *)(src_ptr) + src_start;
1326          uint8_t *dst = (uint8_t *)(dst_ptr) + dst_start;
1327          uint32_t src_remaining =
1328             src_binding_layout->size - src_start;
1329          uint32_t dst_remaining =
1330             dst_binding_layout->size - dst_start;
1331          do {
1332             uint32_t to_write = MIN3(remaining, src_remaining, dst_remaining);
1333             memcpy(dst, src, to_write);
1334 
1335             src += to_write;
1336             dst += to_write;
1337             src_remaining -= to_write;
1338             dst_remaining -= to_write;
1339             remaining -= to_write;
1340 
1341             if (src_remaining == 0) {
1342                src_binding_layout++;
1343                src_ptr = src_set->mapped_ptr + src_binding_layout->offset / 4;
1344                src = (uint8_t *)(src_ptr + A6XX_TEX_CONST_DWORDS);
1345                src_remaining = src_binding_layout->size - 4 * A6XX_TEX_CONST_DWORDS;
1346             }
1347 
1348             if (dst_remaining == 0) {
1349                dst_binding_layout++;
1350                dst_ptr = dst_set->mapped_ptr + dst_binding_layout->offset / 4;
1351                dst = (uint8_t *)(dst_ptr + A6XX_TEX_CONST_DWORDS);
1352                dst_remaining = dst_binding_layout->size - 4 * A6XX_TEX_CONST_DWORDS;
1353             }
1354          } while (remaining > 0);
1355 
1356          continue;
1357       }
1358 
1359       src_ptr += src_binding_layout->size * copyset->srcArrayElement / 4;
1360       dst_ptr += dst_binding_layout->size * copyset->dstArrayElement / 4;
1361 
1362       /* In case of copies between mutable descriptor types
1363        * and non-mutable descriptor types.
1364        */
1365       uint32_t copy_size = MIN2(src_binding_layout->size, dst_binding_layout->size);
1366 
1367       for (j = 0; j < copyset->descriptorCount; ++j) {
1368          memcpy(dst_ptr, src_ptr, copy_size);
1369 
1370          src_ptr += src_binding_layout->size / 4;
1371          dst_ptr += dst_binding_layout->size / 4;
1372       }
1373    }
1374 }
1375 
1376 VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSets(VkDevice _device,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)1377 tu_UpdateDescriptorSets(VkDevice _device,
1378                         uint32_t descriptorWriteCount,
1379                         const VkWriteDescriptorSet *pDescriptorWrites,
1380                         uint32_t descriptorCopyCount,
1381                         const VkCopyDescriptorSet *pDescriptorCopies)
1382 {
1383    TU_FROM_HANDLE(tu_device, device, _device);
1384    tu_update_descriptor_sets(device, VK_NULL_HANDLE,
1385                              descriptorWriteCount, pDescriptorWrites,
1386                              descriptorCopyCount, pDescriptorCopies);
1387 }
1388 
1389 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorUpdateTemplate(VkDevice _device,const VkDescriptorUpdateTemplateCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorUpdateTemplate * pDescriptorUpdateTemplate)1390 tu_CreateDescriptorUpdateTemplate(
1391    VkDevice _device,
1392    const VkDescriptorUpdateTemplateCreateInfo *pCreateInfo,
1393    const VkAllocationCallbacks *pAllocator,
1394    VkDescriptorUpdateTemplate *pDescriptorUpdateTemplate)
1395 {
1396    TU_FROM_HANDLE(tu_device, device, _device);
1397    struct tu_descriptor_set_layout *set_layout = NULL;
1398    const uint32_t entry_count = pCreateInfo->descriptorUpdateEntryCount;
1399    uint32_t dst_entry_count = 0;
1400 
1401    if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) {
1402       TU_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, pCreateInfo->pipelineLayout);
1403 
1404       /* descriptorSetLayout should be ignored for push descriptors
1405        * and instead it refers to pipelineLayout and set.
1406        */
1407       assert(pCreateInfo->set < device->physical_device->usable_sets);
1408       set_layout = pipeline_layout->set[pCreateInfo->set].layout;
1409    } else {
1410       TU_FROM_HANDLE(tu_descriptor_set_layout, _set_layout,
1411                      pCreateInfo->descriptorSetLayout);
1412       set_layout = _set_layout;
1413    }
1414 
1415    for (uint32_t i = 0; i < entry_count; i++) {
1416       const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i];
1417       if (entry->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1418          dst_entry_count++;
1419          continue;
1420       }
1421 
1422       /* Calculate how many bindings this update steps over, so we can split
1423        * up the template entry. This lets the actual update be a simple
1424        * memcpy.
1425        */
1426       uint32_t remaining = entry->descriptorCount;
1427       const struct tu_descriptor_set_binding_layout *binding_layout =
1428          set_layout->binding + entry->dstBinding;
1429       uint32_t dst_start = entry->dstArrayElement;
1430       do {
1431          uint32_t size = binding_layout->size;
1432          uint32_t count = MIN2(remaining, size - dst_start);
1433          remaining -= count;
1434          binding_layout++;
1435          dst_entry_count++;
1436          dst_start = 0;
1437       } while (remaining > 0);
1438    }
1439 
1440    const size_t size =
1441       sizeof(struct tu_descriptor_update_template) +
1442       sizeof(struct tu_descriptor_update_template_entry) * dst_entry_count;
1443    struct tu_descriptor_update_template *templ;
1444 
1445    templ = (struct tu_descriptor_update_template *) vk_object_alloc(
1446       &device->vk, pAllocator, size,
1447       VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE);
1448    if (!templ)
1449       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1450 
1451    templ->entry_count = dst_entry_count;
1452 
1453    if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) {
1454       templ->bind_point = pCreateInfo->pipelineBindPoint;
1455    }
1456 
1457    uint32_t j = 0;
1458    for (uint32_t i = 0; i < entry_count; i++) {
1459       const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i];
1460 
1461       const struct tu_descriptor_set_binding_layout *binding_layout =
1462          set_layout->binding + entry->dstBinding;
1463       uint32_t dst_offset, dst_stride;
1464       const struct tu_sampler *immutable_samplers = NULL;
1465 
1466       /* dst_offset is an offset into dynamic_descriptors when the descriptor
1467        * is dynamic, and an offset into mapped_ptr otherwise.
1468        */
1469       switch (entry->descriptorType) {
1470       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1471       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1472          dst_offset = binding_layout->dynamic_offset_offset / 4;
1473          break;
1474       case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK: {
1475          uint32_t remaining = entry->descriptorCount;
1476          uint32_t dst_start = entry->dstArrayElement;
1477          uint32_t src_offset = entry->offset;
1478          /* See comment in update_descriptor_sets() */
1479          do {
1480             dst_offset =
1481                binding_layout->offset + dst_start;
1482             uint32_t size = binding_layout->size;
1483             uint32_t count = MIN2(remaining, size - dst_start);
1484             templ->entry[j++] = (struct tu_descriptor_update_template_entry) {
1485                .descriptor_type = entry->descriptorType,
1486                .descriptor_count = count,
1487                .dst_offset = dst_offset,
1488                .src_offset = src_offset,
1489             };
1490             remaining -= count;
1491             src_offset += count;
1492             binding_layout++;
1493             dst_start = 0;
1494          } while (remaining > 0);
1495 
1496          continue;
1497       }
1498       case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1499       case VK_DESCRIPTOR_TYPE_SAMPLER:
1500          if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR &&
1501              binding_layout->immutable_samplers_offset) {
1502             immutable_samplers =
1503                tu_immutable_samplers(set_layout, binding_layout) + entry->dstArrayElement;
1504          }
1505          FALLTHROUGH;
1506       default:
1507          dst_offset = binding_layout->offset / 4;
1508       }
1509 
1510       dst_offset += (binding_layout->size * entry->dstArrayElement) / 4;
1511       dst_stride = binding_layout->size / 4;
1512 
1513       templ->entry[j++] = (struct tu_descriptor_update_template_entry) {
1514          .descriptor_type = entry->descriptorType,
1515          .descriptor_count = entry->descriptorCount,
1516          .dst_offset = dst_offset,
1517          .dst_stride = dst_stride,
1518          .has_sampler = !binding_layout->immutable_samplers_offset,
1519          .src_offset = entry->offset,
1520          .src_stride = entry->stride,
1521          .immutable_samplers = immutable_samplers,
1522       };
1523    }
1524 
1525    assert(j == dst_entry_count);
1526 
1527    *pDescriptorUpdateTemplate =
1528       tu_descriptor_update_template_to_handle(templ);
1529 
1530    return VK_SUCCESS;
1531 }
1532 
1533 VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorUpdateTemplate(VkDevice _device,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const VkAllocationCallbacks * pAllocator)1534 tu_DestroyDescriptorUpdateTemplate(
1535    VkDevice _device,
1536    VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1537    const VkAllocationCallbacks *pAllocator)
1538 {
1539    TU_FROM_HANDLE(tu_device, device, _device);
1540    TU_FROM_HANDLE(tu_descriptor_update_template, templ,
1541                   descriptorUpdateTemplate);
1542 
1543    if (!templ)
1544       return;
1545 
1546    vk_object_free(&device->vk, pAllocator, templ);
1547 }
1548 
1549 void
tu_update_descriptor_set_with_template(const struct tu_device * device,struct tu_descriptor_set * set,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const void * pData)1550 tu_update_descriptor_set_with_template(
1551    const struct tu_device *device,
1552    struct tu_descriptor_set *set,
1553    VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1554    const void *pData)
1555 {
1556    TU_FROM_HANDLE(tu_descriptor_update_template, templ,
1557                   descriptorUpdateTemplate);
1558 
1559    for (uint32_t i = 0; i < templ->entry_count; i++) {
1560       uint32_t *ptr = set->mapped_ptr;
1561       const void *src = ((const char *) pData) + templ->entry[i].src_offset;
1562       const struct tu_sampler *samplers = templ->entry[i].immutable_samplers;
1563 
1564       if (templ->entry[i].descriptor_type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1565          memcpy(((uint8_t *) ptr) + templ->entry[i].dst_offset, src,
1566                 templ->entry[i].descriptor_count);
1567          continue;
1568       }
1569 
1570       ptr += templ->entry[i].dst_offset;
1571       unsigned dst_offset = templ->entry[i].dst_offset;
1572       for (unsigned j = 0; j < templ->entry[i].descriptor_count; ++j) {
1573          switch(templ->entry[i].descriptor_type) {
1574          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: {
1575             assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
1576             write_ubo_descriptor(set->dynamic_descriptors + dst_offset,
1577                                  (const VkDescriptorBufferInfo *) src);
1578             break;
1579          }
1580          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1581             write_ubo_descriptor(ptr, (const VkDescriptorBufferInfo *) src);
1582             break;
1583          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1584             assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
1585             write_buffer_descriptor(device,
1586                                     set->dynamic_descriptors + dst_offset,
1587                                     (const VkDescriptorBufferInfo *) src);
1588             break;
1589          }
1590          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1591             write_buffer_descriptor(device, ptr,
1592                                     (const VkDescriptorBufferInfo *) src);
1593             break;
1594          case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1595          case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1596             write_texel_buffer_descriptor(ptr, *(VkBufferView *) src);
1597             break;
1598          case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1599          case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1600             write_image_descriptor(ptr, templ->entry[i].descriptor_type,
1601                                    (const VkDescriptorImageInfo *) src);
1602             break;
1603          }
1604          case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1605             write_combined_image_sampler_descriptor(ptr,
1606                                                     templ->entry[i].descriptor_type,
1607                                                     (const VkDescriptorImageInfo *) src,
1608                                                     templ->entry[i].has_sampler);
1609             if (samplers)
1610                write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[j]);
1611             break;
1612          case VK_DESCRIPTOR_TYPE_SAMPLER:
1613             if (templ->entry[i].has_sampler)
1614                write_sampler_descriptor(ptr, ((const VkDescriptorImageInfo *)src)->sampler);
1615             else if (samplers)
1616                write_sampler_push(ptr, &samplers[j]);
1617             break;
1618          case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1619             /* nothing in descriptor set - framebuffer state is used instead */
1620             if (TU_DEBUG(DYNAMIC))
1621                write_image_descriptor(ptr, templ->entry[i].descriptor_type,
1622                                       (const VkDescriptorImageInfo *) src);
1623             break;
1624          default:
1625             unreachable("unimplemented descriptor type");
1626             break;
1627          }
1628          src = (char *) src + templ->entry[i].src_stride;
1629          ptr += templ->entry[i].dst_stride;
1630          dst_offset += templ->entry[i].dst_stride;
1631       }
1632    }
1633 }
1634 
1635 VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSetWithTemplate(VkDevice _device,VkDescriptorSet descriptorSet,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const void * pData)1636 tu_UpdateDescriptorSetWithTemplate(
1637    VkDevice _device,
1638    VkDescriptorSet descriptorSet,
1639    VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1640    const void *pData)
1641 {
1642    TU_FROM_HANDLE(tu_device, device, _device);
1643    TU_FROM_HANDLE(tu_descriptor_set, set, descriptorSet);
1644 
1645    tu_update_descriptor_set_with_template(device, set, descriptorUpdateTemplate, pData);
1646 }
1647 
1648 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateSamplerYcbcrConversion(VkDevice _device,const VkSamplerYcbcrConversionCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkSamplerYcbcrConversion * pYcbcrConversion)1649 tu_CreateSamplerYcbcrConversion(
1650    VkDevice _device,
1651    const VkSamplerYcbcrConversionCreateInfo *pCreateInfo,
1652    const VkAllocationCallbacks *pAllocator,
1653    VkSamplerYcbcrConversion *pYcbcrConversion)
1654 {
1655    TU_FROM_HANDLE(tu_device, device, _device);
1656    struct tu_sampler_ycbcr_conversion *conversion;
1657 
1658    conversion = (struct tu_sampler_ycbcr_conversion *) vk_object_alloc(
1659       &device->vk, pAllocator, sizeof(*conversion),
1660       VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION);
1661    if (!conversion)
1662       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1663 
1664    conversion->format = pCreateInfo->format;
1665    conversion->ycbcr_model = pCreateInfo->ycbcrModel;
1666    conversion->ycbcr_range = pCreateInfo->ycbcrRange;
1667    conversion->components = pCreateInfo->components;
1668    conversion->chroma_offsets[0] = pCreateInfo->xChromaOffset;
1669    conversion->chroma_offsets[1] = pCreateInfo->yChromaOffset;
1670    conversion->chroma_filter = pCreateInfo->chromaFilter;
1671 
1672    *pYcbcrConversion = tu_sampler_ycbcr_conversion_to_handle(conversion);
1673    return VK_SUCCESS;
1674 }
1675 
1676 VKAPI_ATTR void VKAPI_CALL
tu_DestroySamplerYcbcrConversion(VkDevice _device,VkSamplerYcbcrConversion ycbcrConversion,const VkAllocationCallbacks * pAllocator)1677 tu_DestroySamplerYcbcrConversion(VkDevice _device,
1678                                  VkSamplerYcbcrConversion ycbcrConversion,
1679                                  const VkAllocationCallbacks *pAllocator)
1680 {
1681    TU_FROM_HANDLE(tu_device, device, _device);
1682    TU_FROM_HANDLE(tu_sampler_ycbcr_conversion, ycbcr_conversion, ycbcrConversion);
1683 
1684    if (!ycbcr_conversion)
1685       return;
1686 
1687    vk_object_free(&device->vk, pAllocator, ycbcr_conversion);
1688 }
1689