1 /*
2 * Copyright © 2018 Google, Inc.
3 * Copyright © 2015 Intel Corporation
4 * SPDX-License-Identifier: MIT
5 */
6
7 #include "tu_knl.h"
8
9 #include <errno.h>
10 #include <fcntl.h>
11 #include <sys/ioctl.h>
12 #include <sys/mman.h>
13 #include <xf86drm.h>
14
15 #include "vk_util.h"
16
17 #include "drm-uapi/msm_drm.h"
18 #include "util/u_debug.h"
19 #include "util/hash_table.h"
20
21 #include "tu_cmd_buffer.h"
22 #include "tu_cs.h"
23 #include "tu_device.h"
24 #include "tu_dynamic_rendering.h"
25 #include "tu_knl_drm.h"
26 #include "redump.h"
27
28 struct tu_queue_submit
29 {
30 struct vk_queue_submit *vk_submit;
31 struct tu_u_trace_submission_data *u_trace_submission_data;
32
33 struct tu_cmd_buffer **cmd_buffers;
34 struct drm_msm_gem_submit_cmd *cmds;
35 struct drm_msm_gem_submit_syncobj *in_syncobjs;
36 struct drm_msm_gem_submit_syncobj *out_syncobjs;
37
38 uint32_t nr_cmd_buffers;
39 uint32_t nr_in_syncobjs;
40 uint32_t nr_out_syncobjs;
41 uint32_t entry_count;
42 uint32_t perf_pass_index;
43
44 bool autotune_fence;
45 };
46
47 struct tu_u_trace_syncobj
48 {
49 uint32_t msm_queue_id;
50 uint32_t fence;
51 };
52
53 static int
tu_drm_get_param(int fd,uint32_t param,uint64_t * value)54 tu_drm_get_param(int fd, uint32_t param, uint64_t *value)
55 {
56 /* Technically this requires a pipe, but the kernel only supports one pipe
57 * anyway at the time of writing and most of these are clearly pipe
58 * independent. */
59 struct drm_msm_param req = {
60 .pipe = MSM_PIPE_3D0,
61 .param = param,
62 };
63
64 int ret = drmCommandWriteRead(fd, DRM_MSM_GET_PARAM, &req, sizeof(req));
65 if (ret)
66 return ret;
67
68 *value = req.value;
69
70 return 0;
71 }
72
73 static int
tu_drm_get_gpu_id(const struct tu_physical_device * dev,uint32_t * id)74 tu_drm_get_gpu_id(const struct tu_physical_device *dev, uint32_t *id)
75 {
76 uint64_t value;
77 int ret = tu_drm_get_param(dev->local_fd, MSM_PARAM_GPU_ID, &value);
78 if (ret)
79 return ret;
80
81 *id = value;
82 return 0;
83 }
84
85 static int
tu_drm_get_gmem_size(const struct tu_physical_device * dev,uint32_t * size)86 tu_drm_get_gmem_size(const struct tu_physical_device *dev, uint32_t *size)
87 {
88 uint64_t value;
89 int ret = tu_drm_get_param(dev->local_fd, MSM_PARAM_GMEM_SIZE, &value);
90 if (ret)
91 return ret;
92
93 *size = value;
94 return 0;
95 }
96
97 static int
tu_drm_get_gmem_base(const struct tu_physical_device * dev,uint64_t * base)98 tu_drm_get_gmem_base(const struct tu_physical_device *dev, uint64_t *base)
99 {
100 return tu_drm_get_param(dev->local_fd, MSM_PARAM_GMEM_BASE, base);
101 }
102
103 static int
tu_drm_get_va_prop(const struct tu_physical_device * dev,uint64_t * va_start,uint64_t * va_size)104 tu_drm_get_va_prop(const struct tu_physical_device *dev,
105 uint64_t *va_start, uint64_t *va_size)
106 {
107 uint64_t value;
108 int ret = tu_drm_get_param(dev->local_fd, MSM_PARAM_VA_START, &value);
109 if (ret)
110 return ret;
111
112 *va_start = value;
113
114 ret = tu_drm_get_param(dev->local_fd, MSM_PARAM_VA_SIZE, &value);
115 if (ret)
116 return ret;
117
118 *va_size = value;
119
120 return 0;
121 }
122
123 static uint32_t
tu_drm_get_priorities(const struct tu_physical_device * dev)124 tu_drm_get_priorities(const struct tu_physical_device *dev)
125 {
126 uint64_t val = 1;
127 tu_drm_get_param(dev->local_fd, MSM_PARAM_PRIORITIES, &val);
128 assert(val >= 1);
129
130 return val;
131 }
132
133 static bool
tu_drm_is_memory_type_supported(int fd,uint32_t flags)134 tu_drm_is_memory_type_supported(int fd, uint32_t flags)
135 {
136 struct drm_msm_gem_new req_alloc = { .size = 0x1000, .flags = flags };
137
138 int ret =
139 drmCommandWriteRead(fd, DRM_MSM_GEM_NEW, &req_alloc, sizeof(req_alloc));
140 if (ret) {
141 return false;
142 }
143
144 struct drm_gem_close req_close = {
145 .handle = req_alloc.handle,
146 };
147 drmIoctl(fd, DRM_IOCTL_GEM_CLOSE, &req_close);
148
149 return true;
150 }
151
152 static VkResult
msm_device_init(struct tu_device * dev)153 msm_device_init(struct tu_device *dev)
154 {
155 int fd = open(dev->physical_device->fd_path, O_RDWR | O_CLOEXEC);
156 if (fd < 0) {
157 return vk_startup_errorf(
158 dev->physical_device->instance, VK_ERROR_INITIALIZATION_FAILED,
159 "failed to open device %s", dev->physical_device->fd_path);
160 }
161
162 int ret = tu_drm_get_param(fd, MSM_PARAM_FAULTS, &dev->fault_count);
163 if (ret != 0) {
164 close(fd);
165 return vk_startup_errorf(dev->physical_device->instance,
166 VK_ERROR_INITIALIZATION_FAILED,
167 "Failed to get initial fault count: %d", ret);
168 }
169
170 dev->fd = fd;
171
172 return VK_SUCCESS;
173 }
174
175 static void
msm_device_finish(struct tu_device * dev)176 msm_device_finish(struct tu_device *dev)
177 {
178 close(dev->fd);
179 }
180
181 static int
msm_device_get_gpu_timestamp(struct tu_device * dev,uint64_t * ts)182 msm_device_get_gpu_timestamp(struct tu_device *dev, uint64_t *ts)
183 {
184 return tu_drm_get_param(dev->fd, MSM_PARAM_TIMESTAMP, ts);
185 }
186
187 static int
msm_device_get_suspend_count(struct tu_device * dev,uint64_t * suspend_count)188 msm_device_get_suspend_count(struct tu_device *dev, uint64_t *suspend_count)
189 {
190 int ret = tu_drm_get_param(dev->fd, MSM_PARAM_SUSPENDS, suspend_count);
191 return ret;
192 }
193
194 static VkResult
msm_device_check_status(struct tu_device * device)195 msm_device_check_status(struct tu_device *device)
196 {
197 uint64_t last_fault_count = device->fault_count;
198 int ret = tu_drm_get_param(device->fd, MSM_PARAM_FAULTS, &device->fault_count);
199 if (ret != 0)
200 return vk_device_set_lost(&device->vk, "error getting GPU fault count: %d", ret);
201
202 if (last_fault_count != device->fault_count)
203 return vk_device_set_lost(&device->vk, "GPU faulted or hung");
204
205 return VK_SUCCESS;
206 }
207
208 static int
msm_submitqueue_new(struct tu_device * dev,int priority,uint32_t * queue_id)209 msm_submitqueue_new(struct tu_device *dev,
210 int priority,
211 uint32_t *queue_id)
212 {
213 assert(priority >= 0 &&
214 priority < dev->physical_device->submitqueue_priority_count);
215 struct drm_msm_submitqueue req = {
216 .flags = 0,
217 .prio = priority,
218 };
219
220 int ret = drmCommandWriteRead(dev->fd,
221 DRM_MSM_SUBMITQUEUE_NEW, &req, sizeof(req));
222 if (ret)
223 return ret;
224
225 *queue_id = req.id;
226 return 0;
227 }
228
229 static void
msm_submitqueue_close(struct tu_device * dev,uint32_t queue_id)230 msm_submitqueue_close(struct tu_device *dev, uint32_t queue_id)
231 {
232 drmCommandWrite(dev->fd, DRM_MSM_SUBMITQUEUE_CLOSE,
233 &queue_id, sizeof(uint32_t));
234 }
235
236 static void
tu_gem_close(const struct tu_device * dev,uint32_t gem_handle)237 tu_gem_close(const struct tu_device *dev, uint32_t gem_handle)
238 {
239 struct drm_gem_close req = {
240 .handle = gem_handle,
241 };
242
243 drmIoctl(dev->fd, DRM_IOCTL_GEM_CLOSE, &req);
244 }
245
246 /** Helper for DRM_MSM_GEM_INFO, returns 0 on error. */
247 static uint64_t
tu_gem_info(const struct tu_device * dev,uint32_t gem_handle,uint32_t info)248 tu_gem_info(const struct tu_device *dev, uint32_t gem_handle, uint32_t info)
249 {
250 struct drm_msm_gem_info req = {
251 .handle = gem_handle,
252 .info = info,
253 };
254
255 int ret = drmCommandWriteRead(dev->fd,
256 DRM_MSM_GEM_INFO, &req, sizeof(req));
257 if (ret < 0)
258 return 0;
259
260 return req.value;
261 }
262
263 static VkResult
tu_wait_fence(struct tu_device * dev,uint32_t queue_id,int fence,uint64_t timeout_ns)264 tu_wait_fence(struct tu_device *dev,
265 uint32_t queue_id,
266 int fence,
267 uint64_t timeout_ns)
268 {
269 /* fence was created when no work was yet submitted */
270 if (fence < 0)
271 return VK_SUCCESS;
272
273 struct drm_msm_wait_fence req = {
274 .fence = fence,
275 .queueid = queue_id,
276 };
277 int ret;
278
279 get_abs_timeout(&req.timeout, timeout_ns);
280
281 ret = drmCommandWrite(dev->fd, DRM_MSM_WAIT_FENCE, &req, sizeof(req));
282 if (ret) {
283 if (ret == -ETIMEDOUT) {
284 return VK_TIMEOUT;
285 } else {
286 mesa_loge("tu_wait_fence failed! %d (%s)", ret, strerror(errno));
287 return VK_ERROR_UNKNOWN;
288 }
289 }
290
291 return VK_SUCCESS;
292 }
293
294 static VkResult
tu_free_zombie_vma_locked(struct tu_device * dev,bool wait)295 tu_free_zombie_vma_locked(struct tu_device *dev, bool wait)
296 {
297 if (!u_vector_length(&dev->zombie_vmas))
298 return VK_SUCCESS;
299
300 if (wait) {
301 struct tu_zombie_vma *vma = (struct tu_zombie_vma *)
302 u_vector_head(&dev->zombie_vmas);
303 /* Wait for 3s (arbitrary timeout) */
304 VkResult ret = tu_wait_fence(dev, dev->queues[0]->msm_queue_id,
305 vma->fence, 3000000000);
306
307 if (ret != VK_SUCCESS)
308 return ret;
309 }
310
311 int last_signaled_fence = -1;
312 while (u_vector_length(&dev->zombie_vmas) > 0) {
313 struct tu_zombie_vma *vma = (struct tu_zombie_vma *)
314 u_vector_tail(&dev->zombie_vmas);
315 if (vma->fence > last_signaled_fence) {
316 VkResult ret =
317 tu_wait_fence(dev, dev->queues[0]->msm_queue_id, vma->fence, 0);
318 if (ret != VK_SUCCESS)
319 return ret;
320
321 last_signaled_fence = vma->fence;
322 }
323
324 /* Ensure that internal kernel's vma is freed. */
325 struct drm_msm_gem_info req = {
326 .handle = vma->gem_handle,
327 .info = MSM_INFO_SET_IOVA,
328 .value = 0,
329 };
330
331 int ret =
332 drmCommandWriteRead(dev->fd, DRM_MSM_GEM_INFO, &req, sizeof(req));
333 if (ret < 0) {
334 mesa_loge("MSM_INFO_SET_IOVA(0) failed! %d (%s)", ret,
335 strerror(errno));
336 return VK_ERROR_UNKNOWN;
337 }
338
339 tu_gem_close(dev, vma->gem_handle);
340
341 util_vma_heap_free(&dev->vma, vma->iova, vma->size);
342 u_vector_remove(&dev->zombie_vmas);
343 }
344
345 return VK_SUCCESS;
346 }
347
348 static VkResult
msm_allocate_userspace_iova(struct tu_device * dev,uint32_t gem_handle,uint64_t size,uint64_t client_iova,enum tu_bo_alloc_flags flags,uint64_t * iova)349 msm_allocate_userspace_iova(struct tu_device *dev,
350 uint32_t gem_handle,
351 uint64_t size,
352 uint64_t client_iova,
353 enum tu_bo_alloc_flags flags,
354 uint64_t *iova)
355 {
356 VkResult result;
357
358 mtx_lock(&dev->vma_mutex);
359
360 *iova = 0;
361
362 tu_free_zombie_vma_locked(dev, false);
363
364 result = tu_allocate_userspace_iova(dev, size, client_iova, flags, iova);
365 if (result == VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS) {
366 /* Address may be already freed by us, but not considered as
367 * freed by the kernel. We have to wait until all work that
368 * may hold the address is done. Since addresses are meant to
369 * be replayed only by debug tooling, it should be ok to wait.
370 */
371 tu_free_zombie_vma_locked(dev, true);
372 result = tu_allocate_userspace_iova(dev, size, client_iova, flags, iova);
373 }
374
375 mtx_unlock(&dev->vma_mutex);
376
377 if (result != VK_SUCCESS)
378 return result;
379
380 struct drm_msm_gem_info req = {
381 .handle = gem_handle,
382 .info = MSM_INFO_SET_IOVA,
383 .value = *iova,
384 };
385
386 int ret =
387 drmCommandWriteRead(dev->fd, DRM_MSM_GEM_INFO, &req, sizeof(req));
388 if (ret < 0) {
389 mesa_loge("MSM_INFO_SET_IOVA failed! %d (%s)", ret, strerror(errno));
390 return VK_ERROR_OUT_OF_HOST_MEMORY;
391 }
392
393 return VK_SUCCESS;
394 }
395
396 static VkResult
tu_allocate_kernel_iova(struct tu_device * dev,uint32_t gem_handle,uint64_t * iova)397 tu_allocate_kernel_iova(struct tu_device *dev,
398 uint32_t gem_handle,
399 uint64_t *iova)
400 {
401 *iova = tu_gem_info(dev, gem_handle, MSM_INFO_GET_IOVA);
402 if (!*iova)
403 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
404
405 return VK_SUCCESS;
406 }
407
408 static VkResult
tu_bo_init(struct tu_device * dev,struct tu_bo * bo,uint32_t gem_handle,uint64_t size,uint64_t client_iova,enum tu_bo_alloc_flags flags,const char * name)409 tu_bo_init(struct tu_device *dev,
410 struct tu_bo *bo,
411 uint32_t gem_handle,
412 uint64_t size,
413 uint64_t client_iova,
414 enum tu_bo_alloc_flags flags,
415 const char *name)
416 {
417 VkResult result = VK_SUCCESS;
418 uint64_t iova = 0;
419
420 assert(!client_iova || dev->physical_device->has_set_iova);
421
422 if (dev->physical_device->has_set_iova) {
423 result = msm_allocate_userspace_iova(dev, gem_handle, size, client_iova,
424 flags, &iova);
425 } else {
426 result = tu_allocate_kernel_iova(dev, gem_handle, &iova);
427 }
428
429 if (result != VK_SUCCESS) {
430 tu_gem_close(dev, gem_handle);
431 return result;
432 }
433
434 name = tu_debug_bos_add(dev, size, name);
435
436 mtx_lock(&dev->bo_mutex);
437 uint32_t idx = dev->bo_count++;
438
439 /* grow the bo list if needed */
440 if (idx >= dev->bo_list_size) {
441 uint32_t new_len = idx + 64;
442 struct drm_msm_gem_submit_bo *new_ptr = (struct drm_msm_gem_submit_bo *)
443 vk_realloc(&dev->vk.alloc, dev->bo_list, new_len * sizeof(*dev->bo_list),
444 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
445 if (!new_ptr) {
446 dev->bo_count--;
447 mtx_unlock(&dev->bo_mutex);
448 tu_gem_close(dev, gem_handle);
449 return VK_ERROR_OUT_OF_HOST_MEMORY;
450 }
451
452 dev->bo_list = new_ptr;
453 dev->bo_list_size = new_len;
454 }
455
456 bool dump = flags & TU_BO_ALLOC_ALLOW_DUMP;
457 dev->bo_list[idx] = (struct drm_msm_gem_submit_bo) {
458 .flags = MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE |
459 COND(dump, MSM_SUBMIT_BO_DUMP),
460 .handle = gem_handle,
461 .presumed = iova,
462 };
463
464 *bo = (struct tu_bo) {
465 .gem_handle = gem_handle,
466 .size = size,
467 .iova = iova,
468 .name = name,
469 .refcnt = 1,
470 .bo_list_idx = idx,
471 };
472
473 mtx_unlock(&dev->bo_mutex);
474
475 return VK_SUCCESS;
476 }
477
478 /**
479 * Sets the name in the kernel so that the contents of /debug/dri/0/gem are more
480 * useful.
481 *
482 * We skip this on release builds (when we're also not doing BO debugging) to
483 * reduce overhead.
484 */
485 static void
tu_bo_set_kernel_name(struct tu_device * dev,struct tu_bo * bo,const char * name)486 tu_bo_set_kernel_name(struct tu_device *dev, struct tu_bo *bo, const char *name)
487 {
488 bool kernel_bo_names = dev->bo_sizes != NULL;
489 #ifdef DEBUG
490 kernel_bo_names = true;
491 #endif
492 if (!kernel_bo_names)
493 return;
494
495 struct drm_msm_gem_info req = {
496 .handle = bo->gem_handle,
497 .info = MSM_INFO_SET_NAME,
498 .value = (uintptr_t)(void *)name,
499 .len = strlen(name),
500 };
501
502 int ret = drmCommandWrite(dev->fd, DRM_MSM_GEM_INFO, &req, sizeof(req));
503 if (ret) {
504 mesa_logw_once("Failed to set BO name with DRM_MSM_GEM_INFO: %d",
505 ret);
506 }
507 }
508
509 static VkResult
msm_bo_init(struct tu_device * dev,struct tu_bo ** out_bo,uint64_t size,uint64_t client_iova,VkMemoryPropertyFlags mem_property,enum tu_bo_alloc_flags flags,const char * name)510 msm_bo_init(struct tu_device *dev,
511 struct tu_bo **out_bo,
512 uint64_t size,
513 uint64_t client_iova,
514 VkMemoryPropertyFlags mem_property,
515 enum tu_bo_alloc_flags flags,
516 const char *name)
517 {
518 struct drm_msm_gem_new req = {
519 .size = size,
520 .flags = 0
521 };
522
523 if (mem_property & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) {
524 if (mem_property & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) {
525 req.flags |= MSM_BO_CACHED_COHERENT;
526 } else {
527 req.flags |= MSM_BO_CACHED;
528 }
529 } else {
530 req.flags |= MSM_BO_WC;
531 }
532
533 if (flags & TU_BO_ALLOC_GPU_READ_ONLY)
534 req.flags |= MSM_BO_GPU_READONLY;
535
536 int ret = drmCommandWriteRead(dev->fd,
537 DRM_MSM_GEM_NEW, &req, sizeof(req));
538 if (ret)
539 return vk_error(dev, VK_ERROR_OUT_OF_DEVICE_MEMORY);
540
541 struct tu_bo* bo = tu_device_lookup_bo(dev, req.handle);
542 assert(bo && bo->gem_handle == 0);
543
544 VkResult result =
545 tu_bo_init(dev, bo, req.handle, size, client_iova, flags, name);
546
547 if (result != VK_SUCCESS)
548 memset(bo, 0, sizeof(*bo));
549 else
550 *out_bo = bo;
551
552 /* We don't use bo->name here because for the !TU_DEBUG=bo case bo->name is NULL. */
553 tu_bo_set_kernel_name(dev, bo, name);
554
555 if (result == VK_SUCCESS &&
556 (mem_property & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) &&
557 !(mem_property & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) {
558 tu_bo_map(dev, bo);
559
560 /* Cached non-coherent memory may already have dirty cache lines,
561 * we should clean the cache lines before GPU got the chance to
562 * write into this memory.
563 *
564 * MSM already does this automatically for uncached (MSM_BO_WC) memory.
565 */
566 tu_sync_cache_bo(dev, bo, 0, VK_WHOLE_SIZE, TU_MEM_SYNC_CACHE_TO_GPU);
567 }
568
569 return result;
570 }
571
572 static VkResult
msm_bo_init_dmabuf(struct tu_device * dev,struct tu_bo ** out_bo,uint64_t size,int prime_fd)573 msm_bo_init_dmabuf(struct tu_device *dev,
574 struct tu_bo **out_bo,
575 uint64_t size,
576 int prime_fd)
577 {
578 /* lseek() to get the real size */
579 off_t real_size = lseek(prime_fd, 0, SEEK_END);
580 lseek(prime_fd, 0, SEEK_SET);
581 if (real_size < 0 || (uint64_t) real_size < size)
582 return vk_error(dev, VK_ERROR_INVALID_EXTERNAL_HANDLE);
583
584 /* iova allocation needs to consider the object's *real* size: */
585 size = real_size;
586
587 /* Importing the same dmabuf several times would yield the same
588 * gem_handle. Thus there could be a race when destroying
589 * BO and importing the same dmabuf from different threads.
590 * We must not permit the creation of dmabuf BO and its release
591 * to happen in parallel.
592 */
593 u_rwlock_wrlock(&dev->dma_bo_lock);
594
595 uint32_t gem_handle;
596 int ret = drmPrimeFDToHandle(dev->fd, prime_fd,
597 &gem_handle);
598 if (ret) {
599 u_rwlock_wrunlock(&dev->dma_bo_lock);
600 return vk_error(dev, VK_ERROR_INVALID_EXTERNAL_HANDLE);
601 }
602
603 struct tu_bo* bo = tu_device_lookup_bo(dev, gem_handle);
604
605 if (bo->refcnt != 0) {
606 p_atomic_inc(&bo->refcnt);
607 u_rwlock_wrunlock(&dev->dma_bo_lock);
608
609 *out_bo = bo;
610 return VK_SUCCESS;
611 }
612
613 VkResult result =
614 tu_bo_init(dev, bo, gem_handle, size, 0, TU_BO_ALLOC_NO_FLAGS, "dmabuf");
615
616 if (result != VK_SUCCESS)
617 memset(bo, 0, sizeof(*bo));
618 else
619 *out_bo = bo;
620
621 u_rwlock_wrunlock(&dev->dma_bo_lock);
622
623 return result;
624 }
625
626 static VkResult
msm_bo_map(struct tu_device * dev,struct tu_bo * bo)627 msm_bo_map(struct tu_device *dev, struct tu_bo *bo)
628 {
629 if (bo->map)
630 return VK_SUCCESS;
631
632 uint64_t offset = tu_gem_info(dev, bo->gem_handle, MSM_INFO_GET_OFFSET);
633 if (!offset)
634 return vk_error(dev, VK_ERROR_OUT_OF_DEVICE_MEMORY);
635
636 /* TODO: Should we use the wrapper os_mmap() like Freedreno does? */
637 void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED,
638 dev->fd, offset);
639 if (map == MAP_FAILED)
640 return vk_error(dev, VK_ERROR_MEMORY_MAP_FAILED);
641
642 bo->map = map;
643 return VK_SUCCESS;
644 }
645
646 static void
msm_bo_allow_dump(struct tu_device * dev,struct tu_bo * bo)647 msm_bo_allow_dump(struct tu_device *dev, struct tu_bo *bo)
648 {
649 mtx_lock(&dev->bo_mutex);
650 dev->bo_list[bo->bo_list_idx].flags |= MSM_SUBMIT_BO_DUMP;
651 mtx_unlock(&dev->bo_mutex);
652 }
653
654
655 static void
msm_bo_set_metadata(struct tu_device * dev,struct tu_bo * bo,void * metadata,uint32_t metadata_size)656 msm_bo_set_metadata(struct tu_device *dev, struct tu_bo *bo,
657 void *metadata, uint32_t metadata_size)
658 {
659 struct drm_msm_gem_info req = {
660 .handle = bo->gem_handle,
661 .info = MSM_INFO_SET_METADATA,
662 .value = (uintptr_t)(void *)metadata,
663 .len = metadata_size,
664 };
665
666 int ret = drmCommandWrite(dev->fd, DRM_MSM_GEM_INFO, &req, sizeof(req));
667 if (ret) {
668 mesa_logw_once("Failed to set BO metadata with DRM_MSM_GEM_INFO: %d",
669 ret);
670 }
671 }
672
673 static int
msm_bo_get_metadata(struct tu_device * dev,struct tu_bo * bo,void * metadata,uint32_t metadata_size)674 msm_bo_get_metadata(struct tu_device *dev, struct tu_bo *bo,
675 void *metadata, uint32_t metadata_size)
676 {
677 struct drm_msm_gem_info req = {
678 .handle = bo->gem_handle,
679 .info = MSM_INFO_GET_METADATA,
680 .value = (uintptr_t)(void *)metadata,
681 .len = metadata_size,
682 };
683
684 int ret = drmCommandWrite(dev->fd, DRM_MSM_GEM_INFO, &req, sizeof(req));
685 if (ret) {
686 mesa_logw_once("Failed to get BO metadata with DRM_MSM_GEM_INFO: %d",
687 ret);
688 }
689
690 return ret;
691 }
692
693 static VkResult
tu_queue_submit_create_locked(struct tu_queue * queue,struct vk_queue_submit * vk_submit,const uint32_t nr_in_syncobjs,const uint32_t nr_out_syncobjs,uint32_t perf_pass_index,struct tu_queue_submit * new_submit)694 tu_queue_submit_create_locked(struct tu_queue *queue,
695 struct vk_queue_submit *vk_submit,
696 const uint32_t nr_in_syncobjs,
697 const uint32_t nr_out_syncobjs,
698 uint32_t perf_pass_index,
699 struct tu_queue_submit *new_submit)
700 {
701 VkResult result;
702
703 bool u_trace_enabled = u_trace_should_process(&queue->device->trace_context);
704 bool has_trace_points = false;
705
706 struct vk_command_buffer **vk_cmd_buffers = vk_submit->command_buffers;
707
708 memset(new_submit, 0, sizeof(struct tu_queue_submit));
709
710 new_submit->cmd_buffers = (struct tu_cmd_buffer **) vk_cmd_buffers;
711 new_submit->nr_cmd_buffers = vk_submit->command_buffer_count;
712 tu_insert_dynamic_cmdbufs(queue->device, &new_submit->cmd_buffers,
713 &new_submit->nr_cmd_buffers);
714
715 uint32_t entry_count = 0;
716 for (uint32_t j = 0; j < new_submit->nr_cmd_buffers; ++j) {
717 struct tu_cmd_buffer *cmdbuf = new_submit->cmd_buffers[j];
718
719 if (perf_pass_index != ~0)
720 entry_count++;
721
722 entry_count += cmdbuf->cs.entry_count;
723
724 if (u_trace_enabled && u_trace_has_points(&cmdbuf->trace)) {
725 if (!(cmdbuf->usage_flags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT))
726 entry_count++;
727
728 has_trace_points = true;
729 }
730 }
731
732 new_submit->autotune_fence =
733 tu_autotune_submit_requires_fence(new_submit->cmd_buffers, new_submit->nr_cmd_buffers);
734 if (new_submit->autotune_fence)
735 entry_count++;
736
737 new_submit->cmds = (struct drm_msm_gem_submit_cmd *) vk_zalloc(
738 &queue->device->vk.alloc, entry_count * sizeof(*new_submit->cmds), 8,
739 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
740
741 if (new_submit->cmds == NULL) {
742 result = vk_error(queue, VK_ERROR_OUT_OF_HOST_MEMORY);
743 goto fail_cmds;
744 }
745
746 if (has_trace_points) {
747 result =
748 tu_u_trace_submission_data_create(
749 queue->device, new_submit->cmd_buffers,
750 new_submit->nr_cmd_buffers,
751 &new_submit->u_trace_submission_data);
752
753 if (result != VK_SUCCESS) {
754 goto fail_u_trace_submission_data;
755 }
756 }
757
758 /* Allocate without wait timeline semaphores */
759 new_submit->in_syncobjs = (struct drm_msm_gem_submit_syncobj *) vk_zalloc(
760 &queue->device->vk.alloc,
761 nr_in_syncobjs * sizeof(*new_submit->in_syncobjs), 8,
762 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
763
764 if (new_submit->in_syncobjs == NULL) {
765 result = vk_error(queue, VK_ERROR_OUT_OF_HOST_MEMORY);
766 goto fail_in_syncobjs;
767 }
768
769 /* Allocate with signal timeline semaphores considered */
770 new_submit->out_syncobjs = (struct drm_msm_gem_submit_syncobj *) vk_zalloc(
771 &queue->device->vk.alloc,
772 nr_out_syncobjs * sizeof(*new_submit->out_syncobjs), 8,
773 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
774
775 if (new_submit->out_syncobjs == NULL) {
776 result = vk_error(queue, VK_ERROR_OUT_OF_HOST_MEMORY);
777 goto fail_out_syncobjs;
778 }
779
780 new_submit->entry_count = entry_count;
781 new_submit->nr_in_syncobjs = nr_in_syncobjs;
782 new_submit->nr_out_syncobjs = nr_out_syncobjs;
783 new_submit->perf_pass_index = perf_pass_index;
784 new_submit->vk_submit = vk_submit;
785
786 return VK_SUCCESS;
787
788 fail_out_syncobjs:
789 vk_free(&queue->device->vk.alloc, new_submit->in_syncobjs);
790 fail_in_syncobjs:
791 if (new_submit->u_trace_submission_data)
792 tu_u_trace_submission_data_finish(queue->device,
793 new_submit->u_trace_submission_data);
794 fail_u_trace_submission_data:
795 vk_free(&queue->device->vk.alloc, new_submit->cmds);
796 fail_cmds:
797 return result;
798 }
799
800 static void
tu_queue_submit_finish(struct tu_queue * queue,struct tu_queue_submit * submit)801 tu_queue_submit_finish(struct tu_queue *queue, struct tu_queue_submit *submit)
802 {
803 vk_free(&queue->device->vk.alloc, submit->cmds);
804 vk_free(&queue->device->vk.alloc, submit->in_syncobjs);
805 vk_free(&queue->device->vk.alloc, submit->out_syncobjs);
806 if (submit->cmd_buffers != (void *) submit->vk_submit->command_buffers)
807 vk_free(&queue->device->vk.alloc, submit->cmd_buffers);
808 }
809
810 static void
tu_fill_msm_gem_submit(struct tu_device * dev,struct drm_msm_gem_submit_cmd * cmd,struct tu_cs_entry * cs_entry)811 tu_fill_msm_gem_submit(struct tu_device *dev,
812 struct drm_msm_gem_submit_cmd *cmd,
813 struct tu_cs_entry *cs_entry)
814 {
815 cmd->type = MSM_SUBMIT_CMD_BUF;
816 cmd->submit_idx = cs_entry->bo->bo_list_idx;
817 cmd->submit_offset = cs_entry->offset;
818 cmd->size = cs_entry->size;
819 cmd->pad = 0;
820 cmd->nr_relocs = 0;
821 cmd->relocs = 0;
822 }
823
824 static void
tu_queue_build_msm_gem_submit_cmds(struct tu_queue * queue,struct tu_queue_submit * submit,struct tu_cs * autotune_cs)825 tu_queue_build_msm_gem_submit_cmds(struct tu_queue *queue,
826 struct tu_queue_submit *submit,
827 struct tu_cs *autotune_cs)
828 {
829 struct tu_device *dev = queue->device;
830 struct drm_msm_gem_submit_cmd *cmds = submit->cmds;
831
832 uint32_t entry_idx = 0;
833 for (uint32_t j = 0; j < submit->nr_cmd_buffers; ++j) {
834 struct tu_device *dev = queue->device;
835 struct tu_cmd_buffer *cmdbuf = submit->cmd_buffers[j];
836 struct tu_cs *cs = &cmdbuf->cs;
837
838 if (submit->perf_pass_index != ~0) {
839 struct tu_cs_entry *perf_cs_entry =
840 &dev->perfcntrs_pass_cs_entries[submit->perf_pass_index];
841
842 tu_fill_msm_gem_submit(dev, &cmds[entry_idx], perf_cs_entry);
843 entry_idx++;
844 }
845
846 for (unsigned i = 0; i < cs->entry_count; ++i, ++entry_idx) {
847 tu_fill_msm_gem_submit(dev, &cmds[entry_idx], &cs->entries[i]);
848 }
849
850 if (submit->u_trace_submission_data) {
851 struct tu_cs *ts_cs =
852 submit->u_trace_submission_data->cmd_trace_data[j].timestamp_copy_cs;
853 if (ts_cs) {
854 tu_fill_msm_gem_submit(dev, &cmds[entry_idx], &ts_cs->entries[0]);
855 entry_idx++;
856 }
857 }
858 }
859
860 if (autotune_cs) {
861 assert(autotune_cs->entry_count == 1);
862 tu_fill_msm_gem_submit(dev, &cmds[entry_idx], &autotune_cs->entries[0]);
863 entry_idx++;
864 }
865 }
866
867 static VkResult
tu_queue_submit_locked(struct tu_queue * queue,struct tu_queue_submit * submit)868 tu_queue_submit_locked(struct tu_queue *queue, struct tu_queue_submit *submit)
869 {
870 uint32_t submit_idx = queue->device->submit_count++;
871
872 struct tu_cs *autotune_cs = NULL;
873 if (submit->autotune_fence) {
874 autotune_cs = tu_autotune_on_submit(queue->device,
875 &queue->device->autotune,
876 submit->cmd_buffers,
877 submit->nr_cmd_buffers);
878 }
879
880 uint32_t flags = MSM_PIPE_3D0;
881
882 if (submit->vk_submit->wait_count)
883 flags |= MSM_SUBMIT_SYNCOBJ_IN;
884
885 if (submit->vk_submit->signal_count)
886 flags |= MSM_SUBMIT_SYNCOBJ_OUT;
887
888 mtx_lock(&queue->device->bo_mutex);
889
890 if (queue->device->implicit_sync_bo_count == 0)
891 flags |= MSM_SUBMIT_NO_IMPLICIT;
892
893 /* drm_msm_gem_submit_cmd requires index of bo which could change at any
894 * time when bo_mutex is not locked. So we build submit cmds here the real
895 * place to submit.
896 */
897 tu_queue_build_msm_gem_submit_cmds(queue, submit, autotune_cs);
898
899 struct drm_msm_gem_submit req = {
900 .flags = flags,
901 .nr_bos = submit->entry_count ? queue->device->bo_count : 0,
902 .nr_cmds = submit->entry_count,
903 .bos = (uint64_t)(uintptr_t) queue->device->bo_list,
904 .cmds = (uint64_t)(uintptr_t)submit->cmds,
905 .queueid = queue->msm_queue_id,
906 .in_syncobjs = (uint64_t)(uintptr_t)submit->in_syncobjs,
907 .out_syncobjs = (uint64_t)(uintptr_t)submit->out_syncobjs,
908 .nr_in_syncobjs = submit->nr_in_syncobjs,
909 .nr_out_syncobjs = submit->nr_out_syncobjs,
910 .syncobj_stride = sizeof(struct drm_msm_gem_submit_syncobj),
911 };
912
913 if (FD_RD_DUMP(ENABLE) && fd_rd_output_begin(&queue->device->rd_output, submit_idx)) {
914 struct tu_device *device = queue->device;
915 struct fd_rd_output *rd_output = &device->rd_output;
916
917 if (FD_RD_DUMP(FULL)) {
918 VkResult result = tu_wait_fence(device, queue->msm_queue_id, queue->fence, ~0);
919 if (result != VK_SUCCESS) {
920 mesa_loge("FD_RD_DUMP_FULL: wait on previous submission for device %u and queue %d failed: %u",
921 device->device_idx, queue->msm_queue_id, 0);
922 }
923 }
924
925 fd_rd_output_write_section(rd_output, RD_CHIP_ID, &device->physical_device->dev_id.chip_id, 8);
926 fd_rd_output_write_section(rd_output, RD_CMD, "tu-dump", 8);
927
928 for (unsigned i = 0; i < device->bo_count; i++) {
929 struct drm_msm_gem_submit_bo bo = device->bo_list[i];
930 struct tu_bo *tu_bo = tu_device_lookup_bo(device, bo.handle);
931 uint64_t iova = bo.presumed;
932
933 uint32_t buf[3] = { iova, tu_bo->size, iova >> 32 };
934 fd_rd_output_write_section(rd_output, RD_GPUADDR, buf, 12);
935 if (bo.flags & MSM_SUBMIT_BO_DUMP || FD_RD_DUMP(FULL)) {
936 msm_bo_map(device, tu_bo); /* note: this would need locking to be safe */
937 fd_rd_output_write_section(rd_output, RD_BUFFER_CONTENTS, tu_bo->map, tu_bo->size);
938 }
939 }
940
941 for (unsigned i = 0; i < req.nr_cmds; i++) {
942 struct drm_msm_gem_submit_cmd *cmd = &submit->cmds[i];
943 uint64_t iova = device->bo_list[cmd->submit_idx].presumed + cmd->submit_offset;
944 uint32_t size = cmd->size >> 2;
945 uint32_t buf[3] = { iova, size, iova >> 32 };
946 fd_rd_output_write_section(rd_output, RD_CMDSTREAM_ADDR, buf, 12);
947 }
948
949 fd_rd_output_end(rd_output);
950 }
951
952 int ret = drmCommandWriteRead(queue->device->fd,
953 DRM_MSM_GEM_SUBMIT,
954 &req, sizeof(req));
955
956 mtx_unlock(&queue->device->bo_mutex);
957
958 tu_debug_bos_print_stats(queue->device);
959
960 if (ret)
961 return vk_device_set_lost(&queue->device->vk, "submit failed: %m");
962
963 p_atomic_set(&queue->fence, req.fence);
964
965 uint64_t gpu_offset = 0;
966 #if HAVE_PERFETTO
967 struct tu_perfetto_clocks clocks =
968 tu_perfetto_submit(queue->device, queue->device->submit_count, NULL);
969 gpu_offset = clocks.gpu_ts_offset;
970 #endif
971
972 if (submit->u_trace_submission_data) {
973 struct tu_u_trace_submission_data *submission_data =
974 submit->u_trace_submission_data;
975 submission_data->submission_id = queue->device->submit_count;
976 submission_data->gpu_ts_offset = gpu_offset;
977 /* We have to allocate it here since it is different between drm/kgsl */
978 submission_data->syncobj = (struct tu_u_trace_syncobj *)
979 vk_alloc(&queue->device->vk.alloc, sizeof(struct tu_u_trace_syncobj),
980 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
981 submission_data->syncobj->fence = req.fence;
982 submission_data->syncobj->msm_queue_id = queue->msm_queue_id;
983
984 submit->u_trace_submission_data = NULL;
985
986 for (uint32_t i = 0; i < submission_data->cmd_buffer_count; i++) {
987 bool free_data = i == submission_data->last_buffer_with_tracepoints;
988 if (submission_data->cmd_trace_data[i].trace)
989 u_trace_flush(submission_data->cmd_trace_data[i].trace,
990 submission_data, free_data);
991
992 if (!submission_data->cmd_trace_data[i].timestamp_copy_cs) {
993 /* u_trace is owned by cmd_buffer */
994 submission_data->cmd_trace_data[i].trace = NULL;
995 }
996 }
997 }
998
999 for (uint32_t i = 0; i < submit->vk_submit->wait_count; i++) {
1000 if (!vk_sync_is_tu_timeline_sync(submit->vk_submit->waits[i].sync))
1001 continue;
1002
1003 struct tu_timeline_sync *sync =
1004 container_of(submit->vk_submit->waits[i].sync, struct tu_timeline_sync, base);
1005
1006 assert(sync->state != TU_TIMELINE_SYNC_STATE_RESET);
1007
1008 /* Set SIGNALED to the state of the wait timeline sync since this means the syncobj
1009 * is done and ready again so this can be garbage-collectioned later.
1010 */
1011 sync->state = TU_TIMELINE_SYNC_STATE_SIGNALED;
1012 }
1013
1014 for (uint32_t i = 0; i < submit->vk_submit->signal_count; i++) {
1015 if (!vk_sync_is_tu_timeline_sync(submit->vk_submit->signals[i].sync))
1016 continue;
1017
1018 struct tu_timeline_sync *sync =
1019 container_of(submit->vk_submit->signals[i].sync, struct tu_timeline_sync, base);
1020
1021 assert(sync->state == TU_TIMELINE_SYNC_STATE_RESET);
1022 /* Set SUBMITTED to the state of the signal timeline sync so we could wait for
1023 * this timeline sync until completed if necessary.
1024 */
1025 sync->state = TU_TIMELINE_SYNC_STATE_SUBMITTED;
1026 }
1027
1028 pthread_cond_broadcast(&queue->device->timeline_cond);
1029
1030 return VK_SUCCESS;
1031 }
1032
1033 static VkResult
msm_device_wait_u_trace(struct tu_device * dev,struct tu_u_trace_syncobj * syncobj)1034 msm_device_wait_u_trace(struct tu_device *dev, struct tu_u_trace_syncobj *syncobj)
1035 {
1036 return tu_wait_fence(dev, syncobj->msm_queue_id, syncobj->fence, 1000000000);
1037 }
1038
1039 static VkResult
msm_queue_submit(struct tu_queue * queue,struct vk_queue_submit * submit)1040 msm_queue_submit(struct tu_queue *queue, struct vk_queue_submit *submit)
1041 {
1042 MESA_TRACE_FUNC();
1043 uint32_t perf_pass_index = queue->device->perfcntrs_pass_cs ?
1044 submit->perf_pass_index : ~0;
1045 struct tu_queue_submit submit_req;
1046
1047 if (TU_DEBUG(LOG_SKIP_GMEM_OPS)) {
1048 tu_dbg_log_gmem_load_store_skips(queue->device);
1049 }
1050
1051 pthread_mutex_lock(&queue->device->submit_mutex);
1052
1053 VkResult ret = tu_queue_submit_create_locked(queue, submit,
1054 submit->wait_count, submit->signal_count,
1055 perf_pass_index, &submit_req);
1056
1057 if (ret != VK_SUCCESS) {
1058 pthread_mutex_unlock(&queue->device->submit_mutex);
1059 return ret;
1060 }
1061
1062 /* note: assuming there won't be any very large semaphore counts */
1063 struct drm_msm_gem_submit_syncobj *in_syncobjs = submit_req.in_syncobjs;
1064 struct drm_msm_gem_submit_syncobj *out_syncobjs = submit_req.out_syncobjs;
1065
1066 uint32_t nr_in_syncobjs = 0, nr_out_syncobjs = 0;
1067
1068 for (uint32_t i = 0; i < submit->wait_count; i++) {
1069 struct vk_sync *sync = submit->waits[i].sync;
1070
1071 in_syncobjs[nr_in_syncobjs++] = (struct drm_msm_gem_submit_syncobj) {
1072 .handle = tu_syncobj_from_vk_sync(sync),
1073 .flags = 0,
1074 .point = submit->waits[i].wait_value,
1075 };
1076 }
1077
1078 for (uint32_t i = 0; i < submit->signal_count; i++) {
1079 struct vk_sync *sync = submit->signals[i].sync;
1080
1081 out_syncobjs[nr_out_syncobjs++] = (struct drm_msm_gem_submit_syncobj) {
1082 .handle = tu_syncobj_from_vk_sync(sync),
1083 .flags = 0,
1084 .point = submit->signals[i].signal_value,
1085 };
1086 }
1087
1088 ret = tu_queue_submit_locked(queue, &submit_req);
1089
1090 pthread_mutex_unlock(&queue->device->submit_mutex);
1091 tu_queue_submit_finish(queue, &submit_req);
1092
1093 if (ret != VK_SUCCESS)
1094 return ret;
1095
1096 u_trace_context_process(&queue->device->trace_context, true);
1097
1098 return VK_SUCCESS;
1099 }
1100
1101 static const struct tu_knl msm_knl_funcs = {
1102 .name = "msm",
1103
1104 .device_init = msm_device_init,
1105 .device_finish = msm_device_finish,
1106 .device_get_gpu_timestamp = msm_device_get_gpu_timestamp,
1107 .device_get_suspend_count = msm_device_get_suspend_count,
1108 .device_check_status = msm_device_check_status,
1109 .submitqueue_new = msm_submitqueue_new,
1110 .submitqueue_close = msm_submitqueue_close,
1111 .bo_init = msm_bo_init,
1112 .bo_init_dmabuf = msm_bo_init_dmabuf,
1113 .bo_export_dmabuf = tu_drm_export_dmabuf,
1114 .bo_map = msm_bo_map,
1115 .bo_allow_dump = msm_bo_allow_dump,
1116 .bo_finish = tu_drm_bo_finish,
1117 .bo_set_metadata = msm_bo_set_metadata,
1118 .bo_get_metadata = msm_bo_get_metadata,
1119 .device_wait_u_trace = msm_device_wait_u_trace,
1120 .queue_submit = msm_queue_submit,
1121 };
1122
1123 VkResult
tu_knl_drm_msm_load(struct tu_instance * instance,int fd,struct _drmVersion * version,struct tu_physical_device ** out)1124 tu_knl_drm_msm_load(struct tu_instance *instance,
1125 int fd, struct _drmVersion *version,
1126 struct tu_physical_device **out)
1127 {
1128 VkResult result = VK_SUCCESS;
1129
1130 /* Version 1.6 added SYNCOBJ support. */
1131 const int min_version_major = 1;
1132 const int min_version_minor = 6;
1133
1134 if (version->version_major != min_version_major ||
1135 version->version_minor < min_version_minor) {
1136 result = vk_startup_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
1137 "kernel driver for device %s has version %d.%d, "
1138 "but Vulkan requires version >= %d.%d",
1139 version->name,
1140 version->version_major, version->version_minor,
1141 min_version_major, min_version_minor);
1142 return result;
1143 }
1144
1145 struct tu_physical_device *device = (struct tu_physical_device *)
1146 vk_zalloc(&instance->vk.alloc, sizeof(*device), 8,
1147 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
1148 if (!device) {
1149 result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1150 goto fail;
1151 }
1152
1153 device->msm_major_version = version->version_major;
1154 device->msm_minor_version = version->version_minor;
1155
1156 device->instance = instance;
1157 device->local_fd = fd;
1158
1159 if (tu_drm_get_gpu_id(device, &device->dev_id.gpu_id)) {
1160 result = vk_startup_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
1161 "could not get GPU ID");
1162 goto fail;
1163 }
1164
1165 if (tu_drm_get_param(fd, MSM_PARAM_CHIP_ID, &device->dev_id.chip_id)) {
1166 result = vk_startup_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
1167 "could not get CHIP ID");
1168 goto fail;
1169 }
1170
1171 if (tu_drm_get_gmem_size(device, &device->gmem_size)) {
1172 result = vk_startup_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
1173 "could not get GMEM size");
1174 goto fail;
1175 }
1176 device->gmem_size = debug_get_num_option("TU_GMEM", device->gmem_size);
1177
1178 if (tu_drm_get_gmem_base(device, &device->gmem_base)) {
1179 result = vk_startup_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
1180 "could not get GMEM size");
1181 goto fail;
1182 }
1183
1184 device->has_set_iova = !tu_drm_get_va_prop(device, &device->va_start,
1185 &device->va_size);
1186
1187 /* Even if kernel is new enough, the GPU itself may not support it. */
1188 device->has_cached_coherent_memory =
1189 (device->msm_minor_version >= 8) &&
1190 tu_drm_is_memory_type_supported(fd, MSM_BO_CACHED_COHERENT);
1191
1192 device->submitqueue_priority_count = tu_drm_get_priorities(device);
1193
1194 device->syncobj_type = vk_drm_syncobj_get_type(fd);
1195 /* we don't support DRM_CAP_SYNCOBJ_TIMELINE, but drm-shim does */
1196 if (!(device->syncobj_type.features & VK_SYNC_FEATURE_TIMELINE))
1197 device->timeline_type = vk_sync_timeline_get_type(&tu_timeline_sync_type);
1198
1199 device->sync_types[0] = &device->syncobj_type;
1200 device->sync_types[1] = &device->timeline_type.sync;
1201 device->sync_types[2] = NULL;
1202
1203 device->heap.size = tu_get_system_heap_size(device);
1204 device->heap.used = 0u;
1205 device->heap.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT;
1206
1207 instance->knl = &msm_knl_funcs;
1208
1209 *out = device;
1210
1211 return VK_SUCCESS;
1212
1213 fail:
1214 vk_free(&instance->vk.alloc, device);
1215 return result;
1216 }
1217