• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 Rob Clark <robclark@freedesktop.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Rob Clark <robclark@freedesktop.org>
25  */
26 
27 #include "pipe/p_state.h"
28 #include "util/format/u_format.h"
29 #include "util/hash_table.h"
30 #include "util/macros.h"
31 #include "util/u_debug.h"
32 #include "util/u_dump.h"
33 #include "util/u_inlines.h"
34 #include "util/u_memory.h"
35 #include "util/u_string.h"
36 #include "util/u_trace_gallium.h"
37 #include "u_tracepoints.h"
38 
39 #include "freedreno_context.h"
40 #include "freedreno_fence.h"
41 #include "freedreno_gmem.h"
42 #include "freedreno_query_hw.h"
43 #include "freedreno_resource.h"
44 #include "freedreno_tracepoints.h"
45 #include "freedreno_util.h"
46 
47 /*
48  * GMEM is the small (ie. 256KiB for a200, 512KiB for a220, etc) tile buffer
49  * inside the GPU.  All rendering happens to GMEM.  Larger render targets
50  * are split into tiles that are small enough for the color (and depth and/or
51  * stencil, if enabled) buffers to fit within GMEM.  Before rendering a tile,
52  * if there was not a clear invalidating the previous tile contents, we need
53  * to restore the previous tiles contents (system mem -> GMEM), and after all
54  * the draw calls, before moving to the next tile, we need to save the tile
55  * contents (GMEM -> system mem).
56  *
57  * The code in this file handles dealing with GMEM and tiling.
58  *
59  * The structure of the ringbuffer ends up being:
60  *
61  *     +--<---<-- IB ---<---+---<---+---<---<---<--+
62  *     |                    |       |              |
63  *     v                    ^       ^              ^
64  *   ------------------------------------------------------
65  *     | clear/draw cmds | Tile0 | Tile1 | .... | TileN |
66  *   ------------------------------------------------------
67  *                       ^
68  *                       |
69  *                       address submitted in issueibcmds
70  *
71  * Where the per-tile section handles scissor setup, mem2gmem restore (if
72  * needed), IB to draw cmds earlier in the ringbuffer, and then gmem2mem
73  * resolve.
74  */
75 
76 #ifndef BIN_DEBUG
77 #define BIN_DEBUG 0
78 #endif
79 
80 /*
81  * GMEM Cache:
82  *
83  * Caches GMEM state based on a given framebuffer state.  The key is
84  * meant to be the minimal set of data that results in a unique gmem
85  * configuration, avoiding multiple keys arriving at the same gmem
86  * state.  For example, the render target format is not part of the
87  * key, only the size per pixel.  And the max_scissor bounds is not
88  * part of they key, only the minx/miny (after clamping to tile
89  * alignment) and width/height.  This ensures that slightly different
90  * max_scissor which would result in the same gmem state, do not
91  * become different keys that map to the same state.
92  */
93 
94 struct gmem_key {
95    uint16_t minx, miny;
96    uint16_t width, height;
97    uint8_t gmem_page_align; /* alignment in multiples of 0x1000 to reduce key size */
98    uint8_t nr_cbufs;
99    uint8_t cbuf_cpp[MAX_RENDER_TARGETS];
100    uint8_t zsbuf_cpp[2];
101 };
102 
103 static uint32_t
gmem_key_hash(const void * _key)104 gmem_key_hash(const void *_key)
105 {
106    const struct gmem_key *key = _key;
107    return _mesa_hash_data(key, sizeof(*key));
108 }
109 
110 static bool
gmem_key_equals(const void * _a,const void * _b)111 gmem_key_equals(const void *_a, const void *_b)
112 {
113    const struct gmem_key *a = _a;
114    const struct gmem_key *b = _b;
115    return memcmp(a, b, sizeof(*a)) == 0;
116 }
117 
118 static void
dump_gmem_key(const struct gmem_key * key)119 dump_gmem_key(const struct gmem_key *key)
120 {
121    printf("{ .minx=%u, .miny=%u, .width=%u, .height=%u", key->minx, key->miny,
122           key->width, key->height);
123    printf(", .gmem_page_align=%u, .nr_cbufs=%u", key->gmem_page_align,
124           key->nr_cbufs);
125    printf(", .cbuf_cpp = {");
126    for (unsigned i = 0; i < ARRAY_SIZE(key->cbuf_cpp); i++)
127       printf("%u,", key->cbuf_cpp[i]);
128    printf("}, .zsbuf_cpp = {");
129    for (unsigned i = 0; i < ARRAY_SIZE(key->zsbuf_cpp); i++)
130       printf("%u,", key->zsbuf_cpp[i]);
131    printf("}},\n");
132 }
133 
134 static void
dump_gmem_state(const struct fd_gmem_stateobj * gmem)135 dump_gmem_state(const struct fd_gmem_stateobj *gmem)
136 {
137    unsigned total = 0;
138    printf("GMEM LAYOUT: bin=%ux%u, nbins=%ux%u\n", gmem->bin_w, gmem->bin_h,
139           gmem->nbins_x, gmem->nbins_y);
140    for (int i = 0; i < ARRAY_SIZE(gmem->cbuf_base); i++) {
141       if (!gmem->cbuf_cpp[i])
142          continue;
143 
144       unsigned size = gmem->cbuf_cpp[i] * gmem->bin_w * gmem->bin_h;
145       printf("  cbuf[%d]: base=0x%06x, size=0x%x, cpp=%u\n", i,
146              gmem->cbuf_base[i], size, gmem->cbuf_cpp[i]);
147 
148       total = gmem->cbuf_base[i] + size;
149    }
150 
151    for (int i = 0; i < ARRAY_SIZE(gmem->zsbuf_base); i++) {
152       if (!gmem->zsbuf_cpp[i])
153          continue;
154 
155       unsigned size = gmem->zsbuf_cpp[i] * gmem->bin_w * gmem->bin_h;
156       printf("  zsbuf[%d]: base=0x%06x, size=0x%x, cpp=%u\n", i,
157              gmem->zsbuf_base[i], size, gmem->zsbuf_cpp[i]);
158 
159       total = gmem->zsbuf_base[i] + size;
160    }
161 
162    printf("total: 0x%06x (of 0x%06x)\n", total, gmem->screen->gmemsize_bytes);
163 }
164 
165 static unsigned
div_align(unsigned num,unsigned denom,unsigned al)166 div_align(unsigned num, unsigned denom, unsigned al)
167 {
168    return util_align_npot(DIV_ROUND_UP(num, denom), al);
169 }
170 
171 static bool
layout_gmem(struct gmem_key * key,uint32_t nbins_x,uint32_t nbins_y,struct fd_gmem_stateobj * gmem)172 layout_gmem(struct gmem_key *key, uint32_t nbins_x, uint32_t nbins_y,
173             struct fd_gmem_stateobj *gmem)
174 {
175    struct fd_screen *screen = gmem->screen;
176    uint32_t gmem_align = key->gmem_page_align * 0x1000;
177    uint32_t total = 0, i;
178 
179    if ((nbins_x == 0) || (nbins_y == 0))
180       return false;
181 
182    uint32_t bin_w, bin_h;
183    bin_w = div_align(key->width, nbins_x, screen->info->tile_align_w);
184    bin_h = div_align(key->height, nbins_y, screen->info->tile_align_h);
185 
186    if (bin_w > screen->info->tile_max_w)
187       return false;
188 
189    if (bin_h > screen->info->tile_max_h)
190       return false;
191 
192    gmem->bin_w = bin_w;
193    gmem->bin_h = bin_h;
194 
195    /* due to aligning bin_w/h, we could end up with one too
196     * many bins in either dimension, so recalculate:
197     */
198    gmem->nbins_x = DIV_ROUND_UP(key->width, bin_w);
199    gmem->nbins_y = DIV_ROUND_UP(key->height, bin_h);
200 
201    for (i = 0; i < MAX_RENDER_TARGETS; i++) {
202       if (key->cbuf_cpp[i]) {
203          gmem->cbuf_base[i] = util_align_npot(total, gmem_align);
204          total = gmem->cbuf_base[i] + key->cbuf_cpp[i] * bin_w * bin_h;
205       }
206    }
207 
208    if (key->zsbuf_cpp[0]) {
209       gmem->zsbuf_base[0] = util_align_npot(total, gmem_align);
210       total = gmem->zsbuf_base[0] + key->zsbuf_cpp[0] * bin_w * bin_h;
211    }
212 
213    if (key->zsbuf_cpp[1]) {
214       gmem->zsbuf_base[1] = util_align_npot(total, gmem_align);
215       total = gmem->zsbuf_base[1] + key->zsbuf_cpp[1] * bin_w * bin_h;
216    }
217 
218    return total <= screen->gmemsize_bytes;
219 }
220 
221 static void
calc_nbins(struct gmem_key * key,struct fd_gmem_stateobj * gmem)222 calc_nbins(struct gmem_key *key, struct fd_gmem_stateobj *gmem)
223 {
224    struct fd_screen *screen = gmem->screen;
225    uint32_t nbins_x = 1, nbins_y = 1;
226    uint32_t max_width = screen->info->tile_max_w;
227    uint32_t max_height = screen->info->tile_max_h;
228 
229    if (FD_DBG(MSGS)) {
230       debug_printf("binning input: cbuf cpp:");
231       for (unsigned i = 0; i < key->nr_cbufs; i++)
232          debug_printf(" %d", key->cbuf_cpp[i]);
233       debug_printf(", zsbuf cpp: %d; %dx%d\n", key->zsbuf_cpp[0], key->width,
234                    key->height);
235    }
236 
237    /* first, find a bin size that satisfies the maximum width/
238     * height restrictions:
239     */
240    while (div_align(key->width, nbins_x, screen->info->tile_align_w) >
241           max_width) {
242       nbins_x++;
243    }
244 
245    while (div_align(key->height, nbins_y, screen->info->tile_align_h) >
246           max_height) {
247       nbins_y++;
248    }
249 
250    /* then find a bin width/height that satisfies the memory
251     * constraints:
252     */
253    while (!layout_gmem(key, nbins_x, nbins_y, gmem)) {
254       if (nbins_y > nbins_x) {
255          nbins_x++;
256       } else {
257          nbins_y++;
258       }
259    }
260 
261    /* Lets see if we can tweak the layout a bit and come up with
262     * something better:
263     */
264    if ((((nbins_x - 1) * (nbins_y + 1)) < (nbins_x * nbins_y)) &&
265        layout_gmem(key, nbins_x - 1, nbins_y + 1, gmem)) {
266       nbins_x--;
267       nbins_y++;
268    } else if ((((nbins_x + 1) * (nbins_y - 1)) < (nbins_x * nbins_y)) &&
269               layout_gmem(key, nbins_x + 1, nbins_y - 1, gmem)) {
270       nbins_x++;
271       nbins_y--;
272    }
273 
274    layout_gmem(key, nbins_x, nbins_y, gmem);
275 }
276 
277 static struct fd_gmem_stateobj *
gmem_stateobj_init(struct fd_screen * screen,struct gmem_key * key)278 gmem_stateobj_init(struct fd_screen *screen, struct gmem_key *key)
279 {
280    struct fd_gmem_stateobj *gmem =
281       rzalloc(screen->gmem_cache.ht, struct fd_gmem_stateobj);
282    pipe_reference_init(&gmem->reference, 1);
283    gmem->screen = screen;
284    gmem->key = key;
285    list_inithead(&gmem->node);
286 
287    const unsigned npipes = screen->info->num_vsc_pipes;
288    uint32_t i, j, t, xoff, yoff;
289    uint32_t tpp_x, tpp_y;
290    int tile_n[npipes];
291 
292    calc_nbins(key, gmem);
293 
294    DBG("using %d bins of size %dx%d", gmem->nbins_x * gmem->nbins_y,
295        gmem->bin_w, gmem->bin_h);
296 
297    memcpy(gmem->cbuf_cpp, key->cbuf_cpp, sizeof(key->cbuf_cpp));
298    memcpy(gmem->zsbuf_cpp, key->zsbuf_cpp, sizeof(key->zsbuf_cpp));
299    gmem->minx = key->minx;
300    gmem->miny = key->miny;
301    gmem->width = key->width;
302    gmem->height = key->height;
303 
304    gmem->tile = rzalloc_array(gmem, struct fd_tile, gmem->nbins_x * gmem->nbins_y);
305 
306    if (BIN_DEBUG) {
307       dump_gmem_state(gmem);
308       dump_gmem_key(key);
309    }
310 
311    /*
312     * Assign tiles and pipes:
313     *
314     * At some point it might be worth playing with different
315     * strategies and seeing if that makes much impact on
316     * performance.
317     */
318 
319    /* figure out number of tiles per pipe: */
320    if (is_a20x(screen)) {
321       /* for a20x we want to minimize the number of "pipes"
322        * binning data has 3 bits for x/y (8x8) but the edges are used to
323        * cull off-screen vertices with hw binning, so we have 6x6 pipes
324        */
325       tpp_x = 6;
326       tpp_y = 6;
327    } else {
328       tpp_x = tpp_y = 1;
329       while (DIV_ROUND_UP(gmem->nbins_y, tpp_y) > npipes)
330          tpp_y += 2;
331       while ((DIV_ROUND_UP(gmem->nbins_y, tpp_y) *
332               DIV_ROUND_UP(gmem->nbins_x, tpp_x)) > npipes)
333          tpp_x += 1;
334    }
335 
336 #ifdef DEBUG
337    tpp_x = debug_get_num_option("TPP_X", tpp_x);
338    tpp_y = debug_get_num_option("TPP_Y", tpp_x);
339 #endif
340 
341    gmem->maxpw = tpp_x;
342    gmem->maxph = tpp_y;
343 
344    /* configure pipes: */
345    xoff = yoff = 0;
346    for (i = 0; i < npipes; i++) {
347       struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
348 
349       if (xoff >= gmem->nbins_x) {
350          xoff = 0;
351          yoff += tpp_y;
352       }
353 
354       if (yoff >= gmem->nbins_y) {
355          break;
356       }
357 
358       pipe->x = xoff;
359       pipe->y = yoff;
360       pipe->w = MIN2(tpp_x, gmem->nbins_x - xoff);
361       pipe->h = MIN2(tpp_y, gmem->nbins_y - yoff);
362 
363       xoff += tpp_x;
364    }
365 
366    /* number of pipes to use for a20x */
367    gmem->num_vsc_pipes = MAX2(1, i);
368 
369    for (; i < npipes; i++) {
370       struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
371       pipe->x = pipe->y = pipe->w = pipe->h = 0;
372    }
373 
374    if (BIN_DEBUG) {
375       printf("%dx%d ... tpp=%dx%d\n", gmem->nbins_x, gmem->nbins_y, tpp_x,
376              tpp_y);
377       for (i = 0; i < ARRAY_SIZE(gmem->vsc_pipe); i++) {
378          struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
379          printf("pipe[%d]: %ux%u @ %u,%u\n", i, pipe->w, pipe->h, pipe->x,
380                 pipe->y);
381       }
382    }
383 
384    /* configure tiles: */
385    t = 0;
386    yoff = key->miny;
387    memset(tile_n, 0, sizeof(tile_n));
388    for (i = 0; i < gmem->nbins_y; i++) {
389       int bw, bh;
390 
391       xoff = key->minx;
392 
393       /* clip bin height: */
394       bh = MIN2(gmem->bin_h, key->miny + key->height - yoff);
395       assert(bh > 0);
396 
397       for (j = 0; j < gmem->nbins_x; j++) {
398          struct fd_tile *tile = &gmem->tile[t];
399          uint32_t p;
400 
401          /* pipe number: */
402          p = ((i / tpp_y) * DIV_ROUND_UP(gmem->nbins_x, tpp_x)) + (j / tpp_x);
403          assert(p < gmem->num_vsc_pipes);
404 
405          /* clip bin width: */
406          bw = MIN2(gmem->bin_w, key->minx + key->width - xoff);
407          assert(bw > 0);
408 
409          tile->n = !is_a20x(screen) ? tile_n[p]++
410                                     : ((i % tpp_y + 1) << 3 | (j % tpp_x + 1));
411          tile->p = p;
412          tile->bin_w = bw;
413          tile->bin_h = bh;
414          tile->xoff = xoff;
415          tile->yoff = yoff;
416 
417          if (BIN_DEBUG) {
418             printf("tile[%d]: p=%u, bin=%ux%u+%u+%u\n", t, p, bw, bh, xoff,
419                    yoff);
420          }
421 
422          t++;
423 
424          xoff += bw;
425       }
426 
427       yoff += bh;
428    }
429 
430    /* Swap the order of alternating rows to form an 'S' pattern, to improve
431     * cache access patterns (ie. adjacent bins are likely to access adjacent
432     * portions of textures)
433     */
434    if (!FD_DBG(NOSBIN)) {
435       for (i = 0; i < gmem->nbins_y; i+=2) {
436          unsigned col0 = gmem->nbins_x * i;
437          for (j = 0; j < gmem->nbins_x/2; j++) {
438             SWAP(gmem->tile[col0 + j], gmem->tile[col0 + gmem->nbins_x - j - 1]);
439          }
440       }
441    }
442 
443    if (BIN_DEBUG) {
444       t = 0;
445       for (i = 0; i < gmem->nbins_y; i++) {
446          for (j = 0; j < gmem->nbins_x; j++) {
447             struct fd_tile *tile = &gmem->tile[t++];
448             printf("|p:%u n:%u|", tile->p, tile->n);
449          }
450          printf("\n");
451       }
452    }
453 
454    return gmem;
455 }
456 
457 void
__fd_gmem_destroy(struct fd_gmem_stateobj * gmem)458 __fd_gmem_destroy(struct fd_gmem_stateobj *gmem)
459 {
460    struct fd_gmem_cache *cache = &gmem->screen->gmem_cache;
461 
462    fd_screen_assert_locked(gmem->screen);
463 
464    _mesa_hash_table_remove_key(cache->ht, gmem->key);
465    list_del(&gmem->node);
466 
467    ralloc_free(gmem->key);
468    ralloc_free(gmem);
469 }
470 
471 static struct gmem_key *
gmem_key_init(struct fd_batch * batch,bool assume_zs,bool no_scis_opt)472 gmem_key_init(struct fd_batch *batch, bool assume_zs, bool no_scis_opt)
473 {
474    struct fd_screen *screen = batch->ctx->screen;
475    struct pipe_framebuffer_state *pfb = &batch->framebuffer;
476    bool has_zs = pfb->zsbuf &&
477       !!(batch->gmem_reason & (FD_GMEM_DEPTH_ENABLED | FD_GMEM_STENCIL_ENABLED |
478                                FD_GMEM_CLEARS_DEPTH_STENCIL));
479    struct gmem_key *key = rzalloc(screen->gmem_cache.ht, struct gmem_key);
480 
481    if (has_zs || assume_zs) {
482       struct fd_resource *rsc = fd_resource(pfb->zsbuf->texture);
483       key->zsbuf_cpp[0] = rsc->layout.cpp * pfb->samples;
484       if (rsc->stencil)
485          key->zsbuf_cpp[1] = rsc->stencil->layout.cpp * pfb->samples;
486 
487       /* If we clear z or s but not both, and we are using z24s8 (ie.
488        * !separate_stencil) then we need to restore the other, even if
489        * batch_draw_tracking_for_dirty_bits() never saw a draw with
490        * depth or stencil enabled.
491        *
492        * This only applies to the fast-clear path, clears done with
493        * u_blitter will show up as a normal draw with depth and/or
494        * stencil enabled.
495        */
496       unsigned zsclear = batch->cleared & (FD_BUFFER_DEPTH | FD_BUFFER_STENCIL);
497       if (zsclear) {
498          const struct util_format_description *desc =
499                util_format_description(pfb->zsbuf->format);
500          if (util_format_has_depth(desc) && !(zsclear & FD_BUFFER_DEPTH))
501             batch->restore |= FD_BUFFER_DEPTH;
502          if (util_format_has_stencil(desc) && !(zsclear & FD_BUFFER_STENCIL))
503             batch->restore |= FD_BUFFER_STENCIL;
504       }
505    } else {
506       /* we might have a zsbuf, but it isn't used */
507       batch->restore &= ~(FD_BUFFER_DEPTH | FD_BUFFER_STENCIL);
508       batch->resolve &= ~(FD_BUFFER_DEPTH | FD_BUFFER_STENCIL);
509    }
510 
511    key->nr_cbufs = pfb->nr_cbufs;
512    for (unsigned i = 0; i < pfb->nr_cbufs; i++) {
513       if (pfb->cbufs[i])
514          key->cbuf_cpp[i] = util_format_get_blocksize(pfb->cbufs[i]->format);
515       else
516          key->cbuf_cpp[i] = 4;
517       /* if MSAA, color buffers are super-sampled in GMEM: */
518       key->cbuf_cpp[i] *= pfb->samples;
519    }
520 
521    /* NOTE: on a6xx, the max-scissor-rect is handled in fd6_gmem, and
522     * we just rely on CP_COND_EXEC to skip bins with no geometry.
523     */
524    if (no_scis_opt || is_a6xx(screen)) {
525       key->minx = 0;
526       key->miny = 0;
527       key->width = pfb->width;
528       key->height = pfb->height;
529    } else {
530       struct pipe_scissor_state *scissor = &batch->max_scissor;
531 
532       if (FD_DBG(NOSCIS)) {
533          scissor->minx = 0;
534          scissor->miny = 0;
535          scissor->maxx = pfb->width - 1;
536          scissor->maxy = pfb->height - 1;
537       }
538 
539       /* round down to multiple of alignment: */
540       key->minx = scissor->minx & ~(screen->info->gmem_align_w - 1);
541       key->miny = scissor->miny & ~(screen->info->gmem_align_h - 1);
542       key->width = scissor->maxx + 1 - key->minx;
543       key->height = scissor->maxy + 1 - key->miny;
544    }
545 
546    if (is_a20x(screen) && batch->cleared) {
547       /* under normal circumstances the requirement would be 4K
548        * but the fast clear path requires an alignment of 32K
549        */
550       key->gmem_page_align = 8;
551    } else if (is_a6xx(screen)) {
552       key->gmem_page_align = screen->info->num_ccu;
553    } else {
554       // TODO re-check this across gens.. maybe it should only
555       // be a single page in some cases:
556       key->gmem_page_align = 4;
557    }
558 
559    return key;
560 }
561 
562 static struct fd_gmem_stateobj *
lookup_gmem_state(struct fd_batch * batch,bool assume_zs,bool no_scis_opt)563 lookup_gmem_state(struct fd_batch *batch, bool assume_zs, bool no_scis_opt)
564 {
565    struct fd_screen *screen = batch->ctx->screen;
566    struct fd_gmem_cache *cache = &screen->gmem_cache;
567    struct fd_gmem_stateobj *gmem = NULL;
568 
569    /* Lock before allocating gmem_key, since that a screen-wide
570     * ralloc pool and ralloc itself is not thread-safe.
571     */
572    fd_screen_lock(screen);
573 
574    struct gmem_key *key = gmem_key_init(batch, assume_zs, no_scis_opt);
575    uint32_t hash = gmem_key_hash(key);
576 
577    struct hash_entry *entry =
578       _mesa_hash_table_search_pre_hashed(cache->ht, hash, key);
579    if (entry) {
580       ralloc_free(key);
581       goto found;
582    }
583 
584    /* limit the # of cached gmem states, discarding the least
585     * recently used state if needed:
586     */
587    if (cache->ht->entries >= 20) {
588       struct fd_gmem_stateobj *last =
589          list_last_entry(&cache->lru, struct fd_gmem_stateobj, node);
590       fd_gmem_reference(&last, NULL);
591    }
592 
593    entry = _mesa_hash_table_insert_pre_hashed(cache->ht, hash, key,
594                                               gmem_stateobj_init(screen, key));
595 
596 found:
597    fd_gmem_reference(&gmem, entry->data);
598    /* Move to the head of the LRU: */
599    list_delinit(&gmem->node);
600    list_add(&gmem->node, &cache->lru);
601 
602    fd_screen_unlock(screen);
603 
604    return gmem;
605 }
606 
607 /*
608  * GMEM render pass
609  */
610 
611 static void
render_tiles(struct fd_batch * batch,struct fd_gmem_stateobj * gmem)612 render_tiles(struct fd_batch *batch, struct fd_gmem_stateobj *gmem) assert_dt
613 {
614    struct fd_context *ctx = batch->ctx;
615    int i;
616 
617    simple_mtx_lock(&ctx->gmem_lock);
618 
619    ctx->emit_tile_init(batch);
620 
621    if (batch->restore)
622       ctx->stats.batch_restore++;
623 
624    for (i = 0; i < (gmem->nbins_x * gmem->nbins_y); i++) {
625       struct fd_tile *tile = &gmem->tile[i];
626 
627       trace_start_tile(&batch->trace, batch->gmem, tile->bin_h, tile->yoff, tile->bin_w,
628                        tile->xoff);
629 
630       ctx->emit_tile_prep(batch, tile);
631 
632       if (batch->restore) {
633          ctx->emit_tile_mem2gmem(batch, tile);
634       }
635 
636       ctx->emit_tile_renderprep(batch, tile);
637 
638       if (ctx->query_prepare_tile)
639          ctx->query_prepare_tile(batch, i, batch->gmem);
640 
641       /* emit IB to drawcmds: */
642       trace_start_draw_ib(&batch->trace, batch->gmem);
643       if (ctx->emit_tile) {
644          ctx->emit_tile(batch, tile);
645       } else {
646          ctx->screen->emit_ib(batch->gmem, batch->draw);
647       }
648       trace_end_draw_ib(&batch->trace, batch->gmem);
649       fd_reset_wfi(batch);
650 
651       /* emit gmem2mem to transfer tile back to system memory: */
652       ctx->emit_tile_gmem2mem(batch, tile);
653    }
654 
655    if (ctx->emit_tile_fini)
656       ctx->emit_tile_fini(batch);
657 
658    simple_mtx_unlock(&ctx->gmem_lock);
659 }
660 
661 static void
render_sysmem(struct fd_batch * batch)662 render_sysmem(struct fd_batch *batch) assert_dt
663 {
664    struct fd_context *ctx = batch->ctx;
665 
666    ctx->emit_sysmem_prep(batch);
667 
668    if (ctx->query_prepare_tile)
669       ctx->query_prepare_tile(batch, 0, batch->gmem);
670 
671    if (!batch->nondraw) {
672       trace_start_draw_ib(&batch->trace, batch->gmem);
673    }
674    /* emit IB to drawcmds: */
675    if (ctx->emit_sysmem) {
676       ctx->emit_sysmem(batch);
677    } else {
678       ctx->screen->emit_ib(batch->gmem, batch->draw);
679    }
680 
681    if (!batch->nondraw) {
682       trace_end_draw_ib(&batch->trace, batch->gmem);
683    }
684 
685    fd_reset_wfi(batch);
686 
687    if (ctx->emit_sysmem_fini)
688       ctx->emit_sysmem_fini(batch);
689 }
690 
691 static void
flush_ring(struct fd_batch * batch)692 flush_ring(struct fd_batch *batch)
693 {
694    bool use_fence_fd = false;
695    if (batch->fence)
696       use_fence_fd = batch->fence->use_fence_fd;
697 
698    struct fd_fence *fence;
699 
700    if (FD_DBG(NOHW)) {
701       /* construct a dummy fence: */
702       fence = fd_fence_new(batch->ctx->pipe, use_fence_fd);
703    } else {
704       fence = fd_submit_flush(batch->submit, batch->in_fence_fd, use_fence_fd);
705    }
706 
707    if (batch->fence) {
708       fd_pipe_fence_set_submit_fence(batch->fence, fence);
709    } else {
710       fd_fence_del(fence);
711    }
712 }
713 
714 void
fd_gmem_render_tiles(struct fd_batch * batch)715 fd_gmem_render_tiles(struct fd_batch *batch)
716 {
717    struct fd_context *ctx = batch->ctx;
718    struct pipe_framebuffer_state *pfb = &batch->framebuffer;
719    bool sysmem = false;
720 
721    ctx->submit_count++;
722 
723    /* Sometimes we need to flush a batch just to get a fence, with no
724     * clears or draws.. in this case promote to nondraw:
725     */
726    if (!(batch->cleared || batch->num_draws))
727       sysmem = true;
728 
729    if (!batch->nondraw) {
730 #if HAVE_PERFETTO
731       /* For non-draw batches, we don't really have a good place to
732        * match up the api event submit-id to the on-gpu rendering,
733        * so skip this for non-draw batches.
734        */
735       fd_perfetto_submit(ctx);
736 #endif
737       trace_flush_batch(&batch->trace, batch->gmem, batch, batch->cleared,
738                         batch->gmem_reason, batch->num_draws);
739       trace_framebuffer_state(&batch->trace, batch->gmem, pfb);
740    }
741 
742    if (ctx->emit_sysmem_prep && !batch->nondraw) {
743       if (fd_autotune_use_bypass(&ctx->autotune, batch) && !FD_DBG(GMEM)) {
744          sysmem = true;
745       }
746 
747       /* For ARB_framebuffer_no_attachments: */
748       if ((pfb->nr_cbufs == 0) && !pfb->zsbuf) {
749          sysmem = true;
750       }
751    }
752 
753    if (FD_DBG(SYSMEM))
754       sysmem = true;
755 
756    /* Layered rendering always needs bypass. */
757    for (unsigned i = 0; i < pfb->nr_cbufs; i++) {
758       struct pipe_surface *psurf = pfb->cbufs[i];
759       if (!psurf)
760          continue;
761       if (psurf->u.tex.first_layer < psurf->u.tex.last_layer)
762          sysmem = true;
763    }
764    if (pfb->zsbuf && pfb->zsbuf->u.tex.first_layer < pfb->zsbuf->u.tex.last_layer)
765       sysmem = true;
766 
767    /* Tessellation doesn't seem to support tiled rendering so fall back to
768     * bypass.
769     */
770    if (batch->tessellation) {
771       assert(ctx->emit_sysmem_prep);
772       sysmem = true;
773    }
774 
775    fd_reset_wfi(batch);
776 
777    ctx->stats.batch_total++;
778 
779    if (batch->nondraw) {
780       DBG("%p: rendering non-draw", batch);
781       if (!fd_ringbuffer_empty(batch->draw))
782          render_sysmem(batch);
783       ctx->stats.batch_nondraw++;
784    } else if (sysmem) {
785       trace_render_sysmem(&batch->trace, batch->gmem);
786       trace_start_render_pass(&batch->trace, batch->gmem,
787          ctx->submit_count, pipe_surface_format(pfb->cbufs[0]),
788          pipe_surface_format(pfb->zsbuf), pfb->width, pfb->height,
789          pfb->nr_cbufs, pfb->samples, 0, 0, 0);
790       if (ctx->query_prepare)
791          ctx->query_prepare(batch, 1);
792       render_sysmem(batch);
793       trace_end_render_pass(&batch->trace, batch->gmem);
794       ctx->stats.batch_sysmem++;
795    } else {
796       struct fd_gmem_stateobj *gmem = lookup_gmem_state(batch, false, false);
797       batch->gmem_state = gmem;
798       trace_render_gmem(&batch->trace, batch->gmem, gmem->nbins_x, gmem->nbins_y,
799                         gmem->bin_w, gmem->bin_h);
800       trace_start_render_pass(&batch->trace, batch->gmem,
801          ctx->submit_count, pipe_surface_format(pfb->cbufs[0]),
802          pipe_surface_format(pfb->zsbuf), pfb->width, pfb->height,
803          pfb->nr_cbufs, pfb->samples, gmem->nbins_x * gmem->nbins_y,
804          gmem->bin_w, gmem->bin_h);
805       if (ctx->query_prepare)
806          ctx->query_prepare(batch, gmem->nbins_x * gmem->nbins_y);
807       render_tiles(batch, gmem);
808       trace_end_render_pass(&batch->trace, batch->gmem);
809       batch->gmem_state = NULL;
810 
811       fd_screen_lock(ctx->screen);
812       fd_gmem_reference(&gmem, NULL);
813       fd_screen_unlock(ctx->screen);
814 
815       ctx->stats.batch_gmem++;
816    }
817 
818    flush_ring(batch);
819 
820    u_trace_flush(&batch->trace, NULL, false);
821 }
822 
823 /* Determine a worst-case estimate (ie. assuming we don't eliminate an
824  * unused depth/stencil) number of bins per vsc pipe.
825  */
826 unsigned
fd_gmem_estimate_bins_per_pipe(struct fd_batch * batch)827 fd_gmem_estimate_bins_per_pipe(struct fd_batch *batch)
828 {
829    struct pipe_framebuffer_state *pfb = &batch->framebuffer;
830    struct fd_screen *screen = batch->ctx->screen;
831    struct fd_gmem_stateobj *gmem = lookup_gmem_state(batch, !!pfb->zsbuf, true);
832    unsigned nbins = gmem->maxpw * gmem->maxph;
833 
834    fd_screen_lock(screen);
835    fd_gmem_reference(&gmem, NULL);
836    fd_screen_unlock(screen);
837 
838    return nbins;
839 }
840 
841 /* When deciding whether a tile needs mem2gmem, we need to take into
842  * account the scissor rect(s) that were cleared.  To simplify we only
843  * consider the last scissor rect for each buffer, since the common
844  * case would be a single clear.
845  */
846 bool
fd_gmem_needs_restore(struct fd_batch * batch,const struct fd_tile * tile,uint32_t buffers)847 fd_gmem_needs_restore(struct fd_batch *batch, const struct fd_tile *tile,
848                       uint32_t buffers)
849 {
850    if (!(batch->restore & buffers))
851       return false;
852 
853    return true;
854 }
855 
856 void
fd_gmem_screen_init(struct pipe_screen * pscreen)857 fd_gmem_screen_init(struct pipe_screen *pscreen)
858 {
859    struct fd_gmem_cache *cache = &fd_screen(pscreen)->gmem_cache;
860 
861    cache->ht = _mesa_hash_table_create(NULL, gmem_key_hash, gmem_key_equals);
862    list_inithead(&cache->lru);
863 }
864 
865 void
fd_gmem_screen_fini(struct pipe_screen * pscreen)866 fd_gmem_screen_fini(struct pipe_screen *pscreen)
867 {
868    struct fd_gmem_cache *cache = &fd_screen(pscreen)->gmem_cache;
869 
870    _mesa_hash_table_destroy(cache->ht, NULL);
871 }
872