1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #ifdef HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #else
81 #define VG(x)
82 #endif
83
84 #include "pipe/p_defines.h"
85 #include "pipe/p_state.h"
86 #include "pipe/p_context.h"
87 #include "pipe/p_screen.h"
88 #include "util/u_dual_blend.h"
89 #include "util/u_inlines.h"
90 #include "util/format/u_format.h"
91 #include "util/u_framebuffer.h"
92 #include "util/u_transfer.h"
93 #include "util/u_upload_mgr.h"
94 #include "util/u_viewport.h"
95 #include "util/u_memory.h"
96 #include "util/u_trace_gallium.h"
97 #include "nir.h"
98 #include "intel/common/intel_aux_map.h"
99 #include "intel/common/intel_l3_config.h"
100 #include "intel/common/intel_sample_positions.h"
101 #include "intel/ds/intel_tracepoints.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107 #include "iris_utrace.h"
108
109 #include "iris_genx_macros.h"
110
111 #if GFX_VER >= 9
112 #include "intel/compiler/brw_compiler.h"
113 #include "intel/common/intel_genX_state_brw.h"
114 #else
115 #include "intel/compiler/elk/elk_compiler.h"
116 #include "intel/common/intel_genX_state_elk.h"
117 #endif
118
119 #include "intel/common/intel_guardband.h"
120 #include "intel/common/intel_pixel_hash.h"
121 #include "intel/common/intel_tiled_render.h"
122
123 /**
124 * Statically assert that PIPE_* enums match the hardware packets.
125 * (As long as they match, we don't need to translate them.)
126 */
pipe_asserts()127 UNUSED static void pipe_asserts()
128 {
129 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
130
131 /* pipe_logicop happens to match the hardware. */
132 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
133 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
134 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
135 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
136 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
137 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
138 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
139 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
140 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
141 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
142 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
143 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
144 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
145 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
146 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
147 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
148
149 /* pipe_blend_func happens to match the hardware. */
150 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
151 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
152 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
153 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
160 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
161 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
162 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
163 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
164 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
165 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
166 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
167 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
168 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
169
170 /* pipe_blend_func happens to match the hardware. */
171 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
172 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
173 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
174 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
175 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
176
177 /* pipe_stencil_op happens to match the hardware. */
178 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
179 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
180 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
181 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
182 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
183 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
184 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
185 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
186
187 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
188 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
189 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
190 #undef PIPE_ASSERT
191 }
192
193 static unsigned
translate_prim_type(enum mesa_prim prim,uint8_t verts_per_patch)194 translate_prim_type(enum mesa_prim prim, uint8_t verts_per_patch)
195 {
196 static const unsigned map[] = {
197 [MESA_PRIM_POINTS] = _3DPRIM_POINTLIST,
198 [MESA_PRIM_LINES] = _3DPRIM_LINELIST,
199 [MESA_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
200 [MESA_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
201 [MESA_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
202 [MESA_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
203 [MESA_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
204 [MESA_PRIM_QUADS] = _3DPRIM_QUADLIST,
205 [MESA_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
206 [MESA_PRIM_POLYGON] = _3DPRIM_POLYGON,
207 [MESA_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
208 [MESA_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
209 [MESA_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
210 [MESA_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
211 [MESA_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
212 };
213
214 return map[prim] + (prim == MESA_PRIM_PATCHES ? verts_per_patch : 0);
215 }
216
217 static unsigned
translate_compare_func(enum pipe_compare_func pipe_func)218 translate_compare_func(enum pipe_compare_func pipe_func)
219 {
220 static const unsigned map[] = {
221 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
222 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
223 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
224 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
225 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
226 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
227 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
228 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
229 };
230 return map[pipe_func];
231 }
232
233 static unsigned
translate_shadow_func(enum pipe_compare_func pipe_func)234 translate_shadow_func(enum pipe_compare_func pipe_func)
235 {
236 /* Gallium specifies the result of shadow comparisons as:
237 *
238 * 1 if ref <op> texel,
239 * 0 otherwise.
240 *
241 * The hardware does:
242 *
243 * 0 if texel <op> ref,
244 * 1 otherwise.
245 *
246 * So we need to flip the operator and also negate.
247 */
248 static const unsigned map[] = {
249 [PIPE_FUNC_NEVER] = PREFILTEROP_ALWAYS,
250 [PIPE_FUNC_LESS] = PREFILTEROP_LEQUAL,
251 [PIPE_FUNC_EQUAL] = PREFILTEROP_NOTEQUAL,
252 [PIPE_FUNC_LEQUAL] = PREFILTEROP_LESS,
253 [PIPE_FUNC_GREATER] = PREFILTEROP_GEQUAL,
254 [PIPE_FUNC_NOTEQUAL] = PREFILTEROP_EQUAL,
255 [PIPE_FUNC_GEQUAL] = PREFILTEROP_GREATER,
256 [PIPE_FUNC_ALWAYS] = PREFILTEROP_NEVER,
257 };
258 return map[pipe_func];
259 }
260
261 static unsigned
translate_cull_mode(unsigned pipe_face)262 translate_cull_mode(unsigned pipe_face)
263 {
264 static const unsigned map[4] = {
265 [PIPE_FACE_NONE] = CULLMODE_NONE,
266 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
267 [PIPE_FACE_BACK] = CULLMODE_BACK,
268 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
269 };
270 return map[pipe_face];
271 }
272
273 static unsigned
translate_fill_mode(unsigned pipe_polymode)274 translate_fill_mode(unsigned pipe_polymode)
275 {
276 static const unsigned map[4] = {
277 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
278 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
279 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
280 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
281 };
282 return map[pipe_polymode];
283 }
284
285 static unsigned
translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)286 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
287 {
288 static const unsigned map[] = {
289 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
290 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
291 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
292 };
293 return map[pipe_mip];
294 }
295
296 static uint32_t
translate_wrap(unsigned pipe_wrap)297 translate_wrap(unsigned pipe_wrap)
298 {
299 static const unsigned map[] = {
300 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
301 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
302 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
303 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
304 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
305 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
306
307 /* These are unsupported. */
308 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
309 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
310 };
311 return map[pipe_wrap];
312 }
313
314
315 static inline uint32_t
iris_encode_slm_size(unsigned gen,uint32_t bytes)316 iris_encode_slm_size(unsigned gen, uint32_t bytes)
317 {
318 #if GFX_VER >= 9
319 return encode_slm_size(gen, bytes);
320 #else
321 return elk_encode_slm_size(gen, bytes);
322 #endif
323 }
324
325 /**
326 * Allocate space for some indirect state.
327 *
328 * Return a pointer to the map (to fill it out) and a state ref (for
329 * referring to the state in GPU commands).
330 */
331 static void *
upload_state(struct u_upload_mgr * uploader,struct iris_state_ref * ref,unsigned size,unsigned alignment)332 upload_state(struct u_upload_mgr *uploader,
333 struct iris_state_ref *ref,
334 unsigned size,
335 unsigned alignment)
336 {
337 void *p = NULL;
338 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
339 return p;
340 }
341
342 /**
343 * Stream out temporary/short-lived state.
344 *
345 * This allocates space, pins the BO, and includes the BO address in the
346 * returned offset (which works because all state lives in 32-bit memory
347 * zones).
348 */
349 static uint32_t *
stream_state(struct iris_batch * batch,struct u_upload_mgr * uploader,struct pipe_resource ** out_res,unsigned size,unsigned alignment,uint32_t * out_offset)350 stream_state(struct iris_batch *batch,
351 struct u_upload_mgr *uploader,
352 struct pipe_resource **out_res,
353 unsigned size,
354 unsigned alignment,
355 uint32_t *out_offset)
356 {
357 void *ptr = NULL;
358
359 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
360
361 struct iris_bo *bo = iris_resource_bo(*out_res);
362 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
363
364 iris_record_state_size(batch->state_sizes,
365 bo->address + *out_offset, size);
366
367 *out_offset += iris_bo_offset_from_base_address(bo);
368
369 return ptr;
370 }
371
372 /**
373 * stream_state() + memcpy.
374 */
375 static uint32_t
emit_state(struct iris_batch * batch,struct u_upload_mgr * uploader,struct pipe_resource ** out_res,const void * data,unsigned size,unsigned alignment)376 emit_state(struct iris_batch *batch,
377 struct u_upload_mgr *uploader,
378 struct pipe_resource **out_res,
379 const void *data,
380 unsigned size,
381 unsigned alignment)
382 {
383 unsigned offset = 0;
384 uint32_t *map =
385 stream_state(batch, uploader, out_res, size, alignment, &offset);
386
387 if (map)
388 memcpy(map, data, size);
389
390 return offset;
391 }
392
393 /**
394 * Did field 'x' change between 'old_cso' and 'new_cso'?
395 *
396 * (If so, we may want to set some dirty flags.)
397 */
398 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
399 #define cso_changed_memcmp(x) \
400 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
401 #define cso_changed_memcmp_elts(x, n) \
402 (!old_cso || memcmp(old_cso->x, new_cso->x, n * sizeof(old_cso->x[0])) != 0)
403
404 static void
flush_before_state_base_change(struct iris_batch * batch)405 flush_before_state_base_change(struct iris_batch *batch)
406 {
407 /* Wa_14014427904 - We need additional invalidate/flush when
408 * emitting NP state commands with ATS-M in compute mode.
409 */
410 bool atsm_compute = intel_device_info_is_atsm(batch->screen->devinfo) &&
411 batch->name == IRIS_BATCH_COMPUTE;
412 uint32_t np_state_wa_bits =
413 PIPE_CONTROL_CS_STALL |
414 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
415 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
416 PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
417 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
418 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
419 PIPE_CONTROL_FLUSH_HDC;
420
421 /* Flush before emitting STATE_BASE_ADDRESS.
422 *
423 * This isn't documented anywhere in the PRM. However, it seems to be
424 * necessary prior to changing the surface state base address. We've
425 * seen issues in Vulkan where we get GPU hangs when using multi-level
426 * command buffers which clear depth, reset state base address, and then
427 * go render stuff.
428 *
429 * Normally, in GL, we would trust the kernel to do sufficient stalls
430 * and flushes prior to executing our batch. However, it doesn't seem
431 * as if the kernel's flushing is always sufficient and we don't want to
432 * rely on it.
433 *
434 * We make this an end-of-pipe sync instead of a normal flush because we
435 * do not know the current status of the GPU. On Haswell at least,
436 * having a fast-clear operation in flight at the same time as a normal
437 * rendering operation can cause hangs. Since the kernel's flushing is
438 * insufficient, we need to ensure that any rendering operations from
439 * other processes are definitely complete before we try to do our own
440 * rendering. It's a bit of a big hammer but it appears to work.
441 */
442 iris_emit_end_of_pipe_sync(batch,
443 "change STATE_BASE_ADDRESS (flushes)",
444 atsm_compute ? np_state_wa_bits : 0 |
445 PIPE_CONTROL_RENDER_TARGET_FLUSH |
446 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
447 PIPE_CONTROL_DATA_CACHE_FLUSH);
448 }
449
450 static void
flush_after_state_base_change(struct iris_batch * batch)451 flush_after_state_base_change(struct iris_batch *batch)
452 {
453 const struct intel_device_info *devinfo = batch->screen->devinfo;
454 /* After re-setting the surface state base address, we have to do some
455 * cache flusing so that the sampler engine will pick up the new
456 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
457 * Shared Function > 3D Sampler > State > State Caching (page 96):
458 *
459 * Coherency with system memory in the state cache, like the texture
460 * cache is handled partially by software. It is expected that the
461 * command stream or shader will issue Cache Flush operation or
462 * Cache_Flush sampler message to ensure that the L1 cache remains
463 * coherent with system memory.
464 *
465 * [...]
466 *
467 * Whenever the value of the Dynamic_State_Base_Addr,
468 * Surface_State_Base_Addr are altered, the L1 state cache must be
469 * invalidated to ensure the new surface or sampler state is fetched
470 * from system memory.
471 *
472 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
473 * which, according the PIPE_CONTROL instruction documentation in the
474 * Broadwell PRM:
475 *
476 * Setting this bit is independent of any other bit in this packet.
477 * This bit controls the invalidation of the L1 and L2 state caches
478 * at the top of the pipe i.e. at the parsing time.
479 *
480 * Unfortunately, experimentation seems to indicate that state cache
481 * invalidation through a PIPE_CONTROL does nothing whatsoever in
482 * regards to surface state and binding tables. In stead, it seems that
483 * invalidating the texture cache is what is actually needed.
484 *
485 * XXX: As far as we have been able to determine through
486 * experimentation, shows that flush the texture cache appears to be
487 * sufficient. The theory here is that all of the sampling/rendering
488 * units cache the binding table in the texture cache. However, we have
489 * yet to be able to actually confirm this.
490 *
491 * Wa_16013000631:
492 *
493 * "DG2 128/256/512-A/B: S/W must program STATE_BASE_ADDRESS command twice
494 * or program pipe control with Instruction cache invalidate post
495 * STATE_BASE_ADDRESS command"
496 */
497 iris_emit_end_of_pipe_sync(batch,
498 "change STATE_BASE_ADDRESS (invalidates)",
499 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
500 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
501 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
502 (intel_needs_workaround(devinfo, 16013000631) ?
503 PIPE_CONTROL_INSTRUCTION_INVALIDATE : 0));
504 }
505
506 static void
iris_load_register_reg32(struct iris_batch * batch,uint32_t dst,uint32_t src)507 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
508 uint32_t src)
509 {
510 struct mi_builder b;
511 mi_builder_init(&b, batch->screen->devinfo, batch);
512 mi_store(&b, mi_reg32(dst), mi_reg32(src));
513 }
514
515 static void
iris_load_register_reg64(struct iris_batch * batch,uint32_t dst,uint32_t src)516 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
517 uint32_t src)
518 {
519 struct mi_builder b;
520 mi_builder_init(&b, batch->screen->devinfo, batch);
521 mi_store(&b, mi_reg64(dst), mi_reg64(src));
522 }
523
524 static void
iris_load_register_imm32(struct iris_batch * batch,uint32_t reg,uint32_t val)525 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
526 uint32_t val)
527 {
528 struct mi_builder b;
529 mi_builder_init(&b, batch->screen->devinfo, batch);
530 mi_store(&b, mi_reg32(reg), mi_imm(val));
531 }
532
533 static void
iris_load_register_imm64(struct iris_batch * batch,uint32_t reg,uint64_t val)534 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
535 uint64_t val)
536 {
537 struct mi_builder b;
538 mi_builder_init(&b, batch->screen->devinfo, batch);
539 mi_store(&b, mi_reg64(reg), mi_imm(val));
540 }
541
542 /**
543 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
544 */
545 static void
iris_load_register_mem32(struct iris_batch * batch,uint32_t reg,struct iris_bo * bo,uint32_t offset)546 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
547 struct iris_bo *bo, uint32_t offset)
548 {
549 iris_batch_sync_region_start(batch);
550 struct mi_builder b;
551 mi_builder_init(&b, batch->screen->devinfo, batch);
552 struct mi_value src = mi_mem32(ro_bo(bo, offset));
553 mi_store(&b, mi_reg32(reg), src);
554 iris_batch_sync_region_end(batch);
555 }
556
557 /**
558 * Load a 64-bit value from a buffer into a MMIO register via
559 * two MI_LOAD_REGISTER_MEM commands.
560 */
561 static void
iris_load_register_mem64(struct iris_batch * batch,uint32_t reg,struct iris_bo * bo,uint32_t offset)562 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
563 struct iris_bo *bo, uint32_t offset)
564 {
565 iris_batch_sync_region_start(batch);
566 struct mi_builder b;
567 mi_builder_init(&b, batch->screen->devinfo, batch);
568 struct mi_value src = mi_mem64(ro_bo(bo, offset));
569 mi_store(&b, mi_reg64(reg), src);
570 iris_batch_sync_region_end(batch);
571 }
572
573 static void
iris_store_register_mem32(struct iris_batch * batch,uint32_t reg,struct iris_bo * bo,uint32_t offset,bool predicated)574 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
575 struct iris_bo *bo, uint32_t offset,
576 bool predicated)
577 {
578 iris_batch_sync_region_start(batch);
579 struct mi_builder b;
580 mi_builder_init(&b, batch->screen->devinfo, batch);
581 struct mi_value dst = mi_mem32(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
582 struct mi_value src = mi_reg32(reg);
583 if (predicated)
584 mi_store_if(&b, dst, src);
585 else
586 mi_store(&b, dst, src);
587 iris_batch_sync_region_end(batch);
588 }
589
590 static void
iris_store_register_mem64(struct iris_batch * batch,uint32_t reg,struct iris_bo * bo,uint32_t offset,bool predicated)591 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
592 struct iris_bo *bo, uint32_t offset,
593 bool predicated)
594 {
595 iris_batch_sync_region_start(batch);
596 struct mi_builder b;
597 mi_builder_init(&b, batch->screen->devinfo, batch);
598 struct mi_value dst = mi_mem64(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
599 struct mi_value src = mi_reg64(reg);
600 if (predicated)
601 mi_store_if(&b, dst, src);
602 else
603 mi_store(&b, dst, src);
604 iris_batch_sync_region_end(batch);
605 }
606
607 static void
iris_store_data_imm32(struct iris_batch * batch,struct iris_bo * bo,uint32_t offset,uint32_t imm)608 iris_store_data_imm32(struct iris_batch *batch,
609 struct iris_bo *bo, uint32_t offset,
610 uint32_t imm)
611 {
612 iris_batch_sync_region_start(batch);
613 struct mi_builder b;
614 mi_builder_init(&b, batch->screen->devinfo, batch);
615 struct mi_value dst = mi_mem32(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
616 struct mi_value src = mi_imm(imm);
617 mi_store(&b, dst, src);
618 iris_batch_sync_region_end(batch);
619 }
620
621 static void
iris_store_data_imm64(struct iris_batch * batch,struct iris_bo * bo,uint32_t offset,uint64_t imm)622 iris_store_data_imm64(struct iris_batch *batch,
623 struct iris_bo *bo, uint32_t offset,
624 uint64_t imm)
625 {
626 iris_batch_sync_region_start(batch);
627 struct mi_builder b;
628 mi_builder_init(&b, batch->screen->devinfo, batch);
629 struct mi_value dst = mi_mem64(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
630 struct mi_value src = mi_imm(imm);
631 mi_store(&b, dst, src);
632 iris_batch_sync_region_end(batch);
633 }
634
635 static void
iris_copy_mem_mem(struct iris_batch * batch,struct iris_bo * dst_bo,uint32_t dst_offset,struct iris_bo * src_bo,uint32_t src_offset,unsigned bytes)636 iris_copy_mem_mem(struct iris_batch *batch,
637 struct iris_bo *dst_bo, uint32_t dst_offset,
638 struct iris_bo *src_bo, uint32_t src_offset,
639 unsigned bytes)
640 {
641 /* MI_COPY_MEM_MEM operates on DWords. */
642 assert(bytes % 4 == 0);
643 assert(dst_offset % 4 == 0);
644 assert(src_offset % 4 == 0);
645 iris_batch_sync_region_start(batch);
646
647 for (unsigned i = 0; i < bytes; i += 4) {
648 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
649 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i,
650 IRIS_DOMAIN_OTHER_WRITE);
651 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
652 }
653 }
654
655 iris_batch_sync_region_end(batch);
656 }
657
658 static void
iris_rewrite_compute_walker_pc(struct iris_batch * batch,uint32_t * walker,struct iris_bo * bo,uint32_t offset)659 iris_rewrite_compute_walker_pc(struct iris_batch *batch,
660 uint32_t *walker,
661 struct iris_bo *bo,
662 uint32_t offset)
663 {
664 #if GFX_VERx10 >= 125
665 struct iris_screen *screen = batch->screen;
666 struct iris_address addr = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
667
668 uint32_t dwords[GENX(COMPUTE_WALKER_length)];
669
670 _iris_pack_command(batch, GENX(COMPUTE_WALKER), dwords, cw) {
671 cw.PostSync.Operation = WriteTimestamp;
672 cw.PostSync.DestinationAddress = addr;
673 cw.PostSync.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
674 }
675
676 for (uint32_t i = 0; i < GENX(COMPUTE_WALKER_length); i++)
677 walker[i] |= dwords[i];
678 #else
679 unreachable("Unsupported");
680 #endif
681 }
682
683 static void
emit_pipeline_select(struct iris_batch * batch,uint32_t pipeline)684 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
685 {
686 /* Bspec 55860: Xe2+ no longer requires PIPELINE_SELECT */
687 #if GFX_VER < 20
688
689 #if GFX_VER >= 8 && GFX_VER < 10
690 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
691 *
692 * Software must clear the COLOR_CALC_STATE Valid field in
693 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
694 * with Pipeline Select set to GPGPU.
695 *
696 * The internal hardware docs recommend the same workaround for Gfx9
697 * hardware too.
698 */
699 if (pipeline == GPGPU)
700 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
701 #endif
702
703 #if GFX_VER >= 12
704 /* From Tigerlake PRM, Volume 2a, PIPELINE_SELECT:
705 *
706 * "Software must ensure Render Cache, Depth Cache and HDC Pipeline flush
707 * are flushed through a stalling PIPE_CONTROL command prior to
708 * programming of PIPELINE_SELECT command transitioning Pipeline Select
709 * from 3D to GPGPU/Media.
710 * Software must ensure HDC Pipeline flush and Generic Media State Clear
711 * is issued through a stalling PIPE_CONTROL command prior to programming
712 * of PIPELINE_SELECT command transitioning Pipeline Select from
713 * GPGPU/Media to 3D."
714 *
715 * Note: Issuing PIPE_CONTROL_MEDIA_STATE_CLEAR causes GPU hangs, probably
716 * because PIPE was not in MEDIA mode?!
717 */
718 enum pipe_control_flags flags = PIPE_CONTROL_CS_STALL |
719 PIPE_CONTROL_FLUSH_HDC;
720
721 if (pipeline == GPGPU && batch->name == IRIS_BATCH_RENDER) {
722 flags |= PIPE_CONTROL_RENDER_TARGET_FLUSH |
723 PIPE_CONTROL_DEPTH_CACHE_FLUSH;
724 } else {
725 flags |= PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH;
726 }
727 /* Wa_16013063087 - State Cache Invalidate must be issued prior to
728 * PIPELINE_SELECT when switching from 3D to Compute.
729 *
730 * SW must do this by programming of PIPECONTROL with “CS Stall” followed
731 * by a PIPECONTROL with State Cache Invalidate bit set.
732 */
733 if (pipeline == GPGPU &&
734 intel_needs_workaround(batch->screen->devinfo, 16013063087))
735 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
736
737 iris_emit_pipe_control_flush(batch, "PIPELINE_SELECT flush", flags);
738 #else
739 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
740 * PIPELINE_SELECT [DevBWR+]":
741 *
742 * "Project: DEVSNB+
743 *
744 * Software must ensure all the write caches are flushed through a
745 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
746 * command to invalidate read only caches prior to programming
747 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
748 */
749 iris_emit_pipe_control_flush(batch,
750 "workaround: PIPELINE_SELECT flushes (1/2)",
751 PIPE_CONTROL_RENDER_TARGET_FLUSH |
752 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
753 PIPE_CONTROL_DATA_CACHE_FLUSH |
754 PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
755 PIPE_CONTROL_CS_STALL);
756
757 iris_emit_pipe_control_flush(batch,
758 "workaround: PIPELINE_SELECT flushes (2/2)",
759 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
760 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
761 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
762 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
763 #endif
764
765 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
766 #if GFX_VER >= 9
767 sel.MaskBits = GFX_VER == 12 ? 0x13 : 0x3;
768 #if GFX_VER == 12
769 sel.MediaSamplerDOPClockGateEnable = true;
770 #endif /* if GFX_VER == 12 */
771 #endif /* if GFX_VER >= 9 */
772 sel.PipelineSelection = pipeline;
773 }
774 #endif /* if GFX_VER < 20 */
775 }
776
777 UNUSED static void
init_glk_barrier_mode(struct iris_batch * batch,uint32_t value)778 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
779 {
780 #if GFX_VER == 9
781 /* Project: DevGLK
782 *
783 * "This chicken bit works around a hardware issue with barrier
784 * logic encountered when switching between GPGPU and 3D pipelines.
785 * To workaround the issue, this mode bit should be set after a
786 * pipeline is selected."
787 */
788 iris_emit_reg(batch, GENX(SLICE_COMMON_ECO_CHICKEN1), reg) {
789 reg.GLKBarrierMode = value;
790 reg.GLKBarrierModeMask = 1;
791 }
792 #endif
793 }
794
795 static void
init_state_base_address(struct iris_batch * batch)796 init_state_base_address(struct iris_batch *batch)
797 {
798 struct isl_device *isl_dev = &batch->screen->isl_dev;
799 uint32_t mocs = isl_mocs(isl_dev, 0, false);
800 flush_before_state_base_change(batch);
801
802 /* We program most base addresses once at context initialization time.
803 * Each base address points at a 4GB memory zone, and never needs to
804 * change. See iris_bufmgr.h for a description of the memory zones.
805 *
806 * The one exception is Surface State Base Address, which needs to be
807 * updated occasionally. See iris_binder.c for the details there.
808 */
809 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
810 sba.GeneralStateMOCS = mocs;
811 sba.StatelessDataPortAccessMOCS = mocs;
812 sba.DynamicStateMOCS = mocs;
813 sba.IndirectObjectMOCS = mocs;
814 sba.InstructionMOCS = mocs;
815 sba.SurfaceStateMOCS = mocs;
816 #if GFX_VER >= 9
817 sba.BindlessSurfaceStateMOCS = mocs;
818 #endif
819
820 sba.GeneralStateBaseAddressModifyEnable = true;
821 sba.DynamicStateBaseAddressModifyEnable = true;
822 sba.IndirectObjectBaseAddressModifyEnable = true;
823 sba.InstructionBaseAddressModifyEnable = true;
824 sba.GeneralStateBufferSizeModifyEnable = true;
825 sba.DynamicStateBufferSizeModifyEnable = true;
826 sba.SurfaceStateBaseAddressModifyEnable = true;
827 #if GFX_VER >= 11
828 sba.BindlessSamplerStateMOCS = mocs;
829 #endif
830 sba.IndirectObjectBufferSizeModifyEnable = true;
831 sba.InstructionBuffersizeModifyEnable = true;
832
833 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
834 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
835 sba.SurfaceStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_BINDER_START);
836
837 sba.GeneralStateBufferSize = 0xfffff;
838 sba.IndirectObjectBufferSize = 0xfffff;
839 sba.InstructionBufferSize = 0xfffff;
840 sba.DynamicStateBufferSize = 0xfffff;
841 #if GFX_VERx10 >= 125
842 sba.L1CacheControl = L1CC_WB;
843 #endif
844 }
845
846 flush_after_state_base_change(batch);
847 }
848
849 static void
iris_emit_l3_config(struct iris_batch * batch,const struct intel_l3_config * cfg)850 iris_emit_l3_config(struct iris_batch *batch,
851 const struct intel_l3_config *cfg)
852 {
853 #if GFX_VER < 20
854 assert(cfg || GFX_VER >= 12);
855
856 #if GFX_VER >= 12
857 #define L3_ALLOCATION_REG GENX(L3ALLOC)
858 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
859 #else
860 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
861 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
862 #endif
863
864 iris_emit_reg(batch, L3_ALLOCATION_REG, reg) {
865 #if GFX_VER < 11
866 reg.SLMEnable = cfg->n[INTEL_L3P_SLM] > 0;
867 #endif
868 #if GFX_VER == 11
869 /* Wa_1406697149: Bit 9 "Error Detection Behavior Control" must be set
870 * in L3CNTLREG register. The default setting of the bit is not the
871 * desirable behavior.
872 */
873 reg.ErrorDetectionBehaviorControl = true;
874 reg.UseFullWays = true;
875 #endif
876 if (GFX_VER < 12 || (cfg && cfg->n[INTEL_L3P_ALL] <= 126)) {
877 reg.URBAllocation = cfg->n[INTEL_L3P_URB];
878 reg.ROAllocation = cfg->n[INTEL_L3P_RO];
879 reg.DCAllocation = cfg->n[INTEL_L3P_DC];
880 reg.AllAllocation = cfg->n[INTEL_L3P_ALL];
881 } else {
882 assert(!cfg || !(cfg->n[INTEL_L3P_SLM] || cfg->n[INTEL_L3P_URB] ||
883 cfg->n[INTEL_L3P_DC] || cfg->n[INTEL_L3P_RO] ||
884 cfg->n[INTEL_L3P_IS] || cfg->n[INTEL_L3P_C] ||
885 cfg->n[INTEL_L3P_T] || cfg->n[INTEL_L3P_TC]));
886 #if GFX_VER >= 12
887 reg.L3FullWayAllocationEnable = true;
888 #endif
889 }
890 }
891 #endif /* GFX_VER < 20 */
892 }
893
894 void
genX(emit_urb_config)895 genX(emit_urb_config)(struct iris_batch *batch,
896 bool has_tess_eval,
897 bool has_geometry)
898 {
899 struct iris_screen *screen = batch->screen;
900 struct iris_context *ice = batch->ice;
901
902 intel_get_urb_config(screen->devinfo,
903 screen->l3_config_3d,
904 has_tess_eval,
905 has_geometry,
906 &ice->shaders.urb.cfg,
907 &ice->state.urb_deref_block_size,
908 &ice->shaders.urb.constrained);
909
910 genX(urb_workaround)(batch, &ice->shaders.urb.cfg);
911
912 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
913 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
914 urb._3DCommandSubOpcode += i;
915 urb.VSURBStartingAddress = ice->shaders.urb.cfg.start[i];
916 urb.VSURBEntryAllocationSize = ice->shaders.urb.cfg.size[i] - 1;
917 urb.VSNumberofURBEntries = ice->shaders.urb.cfg.entries[i];
918 }
919 }
920 }
921
922 #if GFX_VER == 9
923 static void
iris_enable_obj_preemption(struct iris_batch * batch,bool enable)924 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
925 {
926 /* A fixed function pipe flush is required before modifying this field */
927 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
928 : "disable preemption",
929 PIPE_CONTROL_RENDER_TARGET_FLUSH);
930
931 /* enable object level preemption */
932 iris_emit_reg(batch, GENX(CS_CHICKEN1), reg) {
933 reg.ReplayMode = enable;
934 reg.ReplayModeMask = true;
935 }
936 }
937 #endif
938
939 static void
upload_pixel_hashing_tables(struct iris_batch * batch)940 upload_pixel_hashing_tables(struct iris_batch *batch)
941 {
942 UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
943 UNUSED struct iris_context *ice = batch->ice;
944 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
945
946 #if GFX_VER == 11
947 /* Gfx11 hardware has two pixel pipes at most. */
948 for (unsigned i = 2; i < ARRAY_SIZE(devinfo->ppipe_subslices); i++)
949 assert(devinfo->ppipe_subslices[i] == 0);
950
951 if (devinfo->ppipe_subslices[0] == devinfo->ppipe_subslices[1])
952 return;
953
954 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
955 uint32_t hash_address;
956 struct pipe_resource *tmp = NULL;
957 uint32_t *map =
958 stream_state(batch, ice->state.dynamic_uploader, &tmp,
959 size, 64, &hash_address);
960 pipe_resource_reference(&tmp, NULL);
961
962 const bool flip = devinfo->ppipe_subslices[0] < devinfo->ppipe_subslices[1];
963 struct GENX(SLICE_HASH_TABLE) table;
964 intel_compute_pixel_hash_table_3way(16, 16, 3, 3, flip, table.Entry[0]);
965
966 GENX(SLICE_HASH_TABLE_pack)(NULL, map, &table);
967
968 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
969 ptr.SliceHashStatePointerValid = true;
970 ptr.SliceHashTableStatePointer = hash_address;
971 }
972
973 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
974 mode.SliceHashingTableEnable = true;
975 }
976
977 #elif GFX_VERx10 == 120
978 /* For each n calculate ppipes_of[n], equal to the number of pixel pipes
979 * present with n active dual subslices.
980 */
981 unsigned ppipes_of[3] = {};
982
983 for (unsigned n = 0; n < ARRAY_SIZE(ppipes_of); n++) {
984 for (unsigned p = 0; p < 3; p++)
985 ppipes_of[n] += (devinfo->ppipe_subslices[p] == n);
986 }
987
988 /* Gfx12 has three pixel pipes. */
989 for (unsigned p = 3; p < ARRAY_SIZE(devinfo->ppipe_subslices); p++)
990 assert(devinfo->ppipe_subslices[p] == 0);
991
992 if (ppipes_of[2] == 3 || ppipes_of[0] == 2) {
993 /* All three pixel pipes have the maximum number of active dual
994 * subslices, or there is only one active pixel pipe: Nothing to do.
995 */
996 return;
997 }
998
999 iris_emit_cmd(batch, GENX(3DSTATE_SUBSLICE_HASH_TABLE), p) {
1000 p.SliceHashControl[0] = TABLE_0;
1001
1002 if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
1003 intel_compute_pixel_hash_table_3way(8, 16, 2, 2, 0, p.TwoWayTableEntry[0]);
1004 else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
1005 intel_compute_pixel_hash_table_3way(8, 16, 3, 3, 0, p.TwoWayTableEntry[0]);
1006
1007 if (ppipes_of[2] == 2 && ppipes_of[1] == 1)
1008 intel_compute_pixel_hash_table_3way(8, 16, 5, 4, 0, p.ThreeWayTableEntry[0]);
1009 else if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
1010 intel_compute_pixel_hash_table_3way(8, 16, 2, 2, 0, p.ThreeWayTableEntry[0]);
1011 else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
1012 intel_compute_pixel_hash_table_3way(8, 16, 3, 3, 0, p.ThreeWayTableEntry[0]);
1013 else
1014 unreachable("Illegal fusing.");
1015 }
1016
1017 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), p) {
1018 p.SubsliceHashingTableEnable = true;
1019 p.SubsliceHashingTableEnableMask = true;
1020 }
1021
1022 #elif GFX_VERx10 == 125
1023 struct pipe_screen *pscreen = &batch->screen->base;
1024 const unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
1025 const struct pipe_resource tmpl = {
1026 .target = PIPE_BUFFER,
1027 .format = PIPE_FORMAT_R8_UNORM,
1028 .bind = PIPE_BIND_CUSTOM,
1029 .usage = PIPE_USAGE_IMMUTABLE,
1030 .flags = IRIS_RESOURCE_FLAG_DYNAMIC_MEMZONE,
1031 .width0 = size,
1032 .height0 = 1,
1033 .depth0 = 1,
1034 .array_size = 1
1035 };
1036
1037 pipe_resource_reference(&ice->state.pixel_hashing_tables, NULL);
1038 ice->state.pixel_hashing_tables = pscreen->resource_create(pscreen, &tmpl);
1039
1040 struct iris_resource *res = (struct iris_resource *)ice->state.pixel_hashing_tables;
1041 struct pipe_transfer *transfer = NULL;
1042 uint32_t *map = pipe_buffer_map_range(&ice->ctx, ice->state.pixel_hashing_tables,
1043 0, size, PIPE_MAP_WRITE,
1044 &transfer);
1045
1046 /* Calculate the set of present pixel pipes, and another set of
1047 * present pixel pipes with 2 dual subslices enabled, the latter
1048 * will appear on the hashing table with twice the frequency of
1049 * pixel pipes with a single dual subslice present.
1050 */
1051 uint32_t ppipe_mask1 = 0, ppipe_mask2 = 0;
1052 for (unsigned p = 0; p < ARRAY_SIZE(devinfo->ppipe_subslices); p++) {
1053 if (devinfo->ppipe_subslices[p])
1054 ppipe_mask1 |= (1u << p);
1055 if (devinfo->ppipe_subslices[p] > 1)
1056 ppipe_mask2 |= (1u << p);
1057 }
1058 assert(ppipe_mask1);
1059
1060 struct GENX(SLICE_HASH_TABLE) table;
1061
1062 /* Note that the hardware expects an array with 7 tables, each
1063 * table is intended to specify the pixel pipe hashing behavior for
1064 * every possible slice count between 2 and 8, however that doesn't
1065 * actually work, among other reasons due to hardware bugs that
1066 * will cause the GPU to erroneously access the table at the wrong
1067 * index in some cases, so in practice all 7 tables need to be
1068 * initialized to the same value.
1069 */
1070 for (unsigned i = 0; i < 7; i++)
1071 intel_compute_pixel_hash_table_nway(16, 16, ppipe_mask1, ppipe_mask2,
1072 table.Entry[i][0]);
1073
1074 GENX(SLICE_HASH_TABLE_pack)(NULL, map, &table);
1075
1076 pipe_buffer_unmap(&ice->ctx, transfer);
1077
1078 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_NONE);
1079 iris_record_state_size(batch->state_sizes, res->bo->address + res->offset, size);
1080
1081 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
1082 ptr.SliceHashStatePointerValid = true;
1083 ptr.SliceHashTableStatePointer = iris_bo_offset_from_base_address(res->bo) +
1084 res->offset;
1085 }
1086
1087 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
1088 mode.SliceHashingTableEnable = true;
1089 mode.SliceHashingTableEnableMask = true;
1090 mode.CrossSliceHashingMode = (util_bitcount(ppipe_mask1) > 1 ?
1091 hashing32x32 : NormalMode);
1092 mode.CrossSliceHashingModeMask = -1;
1093 }
1094 #endif
1095 }
1096
1097 static void
iris_alloc_push_constants(struct iris_batch * batch)1098 iris_alloc_push_constants(struct iris_batch *batch)
1099 {
1100 const struct intel_device_info *devinfo = batch->screen->devinfo;
1101
1102 /* For now, we set a static partitioning of the push constant area,
1103 * assuming that all stages could be in use.
1104 *
1105 * TODO: Try lazily allocating the HS/DS/GS sections as needed, and
1106 * see if that improves performance by offering more space to
1107 * the VS/FS when those aren't in use. Also, try dynamically
1108 * enabling/disabling it like i965 does. This would be more
1109 * stalls and may not actually help; we don't know yet.
1110 */
1111
1112 /* Divide as equally as possible with any remainder given to FRAGMENT. */
1113 const unsigned push_constant_kb = devinfo->max_constant_urb_size_kb;
1114 const unsigned stage_size = push_constant_kb / 5;
1115 const unsigned frag_size = push_constant_kb - 4 * stage_size;
1116
1117 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
1118 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1119 alloc._3DCommandSubOpcode = 18 + i;
1120 alloc.ConstantBufferOffset = stage_size * i;
1121 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? frag_size : stage_size;
1122 }
1123 }
1124
1125 #if GFX_VERx10 == 125
1126 /* DG2: Wa_22011440098
1127 * MTL: Wa_18022330953
1128 *
1129 * In 3D mode, after programming push constant alloc command immediately
1130 * program push constant command(ZERO length) without any commit between
1131 * them.
1132 */
1133 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), c) {
1134 /* Update empty push constants for all stages (bitmask = 11111b) */
1135 c.ShaderUpdateEnable = 0x1f;
1136 c.MOCS = iris_mocs(NULL, &batch->screen->isl_dev, 0);
1137 }
1138 #endif
1139 }
1140
1141 #if GFX_VER >= 12
1142 static void
1143 init_aux_map_state(struct iris_batch *batch);
1144 #endif
1145
1146 /* This updates a register. Caller should stall the pipeline as needed. */
1147 static void
iris_disable_rhwo_optimization(struct iris_batch * batch,bool disable)1148 iris_disable_rhwo_optimization(struct iris_batch *batch, bool disable)
1149 {
1150 assert(batch->screen->devinfo->verx10 == 120);
1151 #if GFX_VERx10 == 120
1152 iris_emit_reg(batch, GENX(COMMON_SLICE_CHICKEN1), c1) {
1153 c1.RCCRHWOOptimizationDisable = disable;
1154 c1.RCCRHWOOptimizationDisableMask = true;
1155 };
1156 #endif
1157 }
1158
1159 /**
1160 * Upload initial GPU state for any kind of context.
1161 *
1162 * These need to happen for both render and compute.
1163 */
1164 static void
iris_init_common_context(struct iris_batch * batch)1165 iris_init_common_context(struct iris_batch *batch)
1166 {
1167 #if GFX_VER == 11
1168 iris_emit_reg(batch, GENX(SAMPLER_MODE), reg) {
1169 reg.HeaderlessMessageforPreemptableContexts = 1;
1170 reg.HeaderlessMessageforPreemptableContextsMask = 1;
1171 }
1172
1173 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
1174 iris_emit_reg(batch, GENX(HALF_SLICE_CHICKEN7), reg) {
1175 reg.EnabledTexelOffsetPrecisionFix = 1;
1176 reg.EnabledTexelOffsetPrecisionFixMask = 1;
1177 }
1178 #endif
1179
1180 /* Select 256B-aligned binding table mode on Icelake through Tigerlake,
1181 * which gives us larger binding table pointers, at the cost of higher
1182 * alignment requirements (bits 18:8 are valid instead of 15:5). When
1183 * using this mode, we have to shift binding table pointers by 3 bits,
1184 * as they're still stored in the same bit-location in the field.
1185 */
1186 #if GFX_VER >= 11 && GFX_VERx10 < 125
1187 iris_emit_reg(batch, GENX(GT_MODE), reg) {
1188 reg.BindingTableAlignment = BTP_18_8;
1189 reg.BindingTableAlignmentMask = true;
1190 }
1191 #endif
1192
1193 #if GFX_VERx10 == 125
1194 /* Even though L3 partial write merging is supposed to be enabled
1195 * by default on Gfx12.5 according to the hardware spec, i915
1196 * appears to accidentally clear the enables during context
1197 * initialization, so make sure to enable them here since partial
1198 * write merging has a large impact on rendering performance.
1199 */
1200 iris_emit_reg(batch, GENX(L3SQCREG5), reg) {
1201 reg.L3CachePartialWriteMergeTimerInitialValue = 0x7f;
1202 reg.CompressiblePartialWriteMergeEnable = true;
1203 reg.CoherentPartialWriteMergeEnable = true;
1204 reg.CrossTilePartialWriteMergeEnable = true;
1205 }
1206 #endif
1207 }
1208
1209 static void
toggle_protected(struct iris_batch * batch)1210 toggle_protected(struct iris_batch *batch)
1211 {
1212 struct iris_context *ice;
1213
1214 if (batch->name == IRIS_BATCH_RENDER)
1215 ice =container_of(batch, struct iris_context, batches[IRIS_BATCH_RENDER]);
1216 else if (batch->name == IRIS_BATCH_COMPUTE)
1217 ice = container_of(batch, struct iris_context, batches[IRIS_BATCH_COMPUTE]);
1218 else
1219 unreachable("unhandled batch");
1220
1221 if (!ice->protected)
1222 return;
1223
1224 #if GFX_VER >= 12
1225 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
1226 pc.CommandStreamerStallEnable = true;
1227 pc.RenderTargetCacheFlushEnable = true;
1228 pc.ProtectedMemoryDisable = true;
1229 }
1230 iris_emit_cmd(batch, GENX(MI_SET_APPID), appid) {
1231 /* Default value for single session. */
1232 appid.ProtectedMemoryApplicationID = 0xf;
1233 appid.ProtectedMemoryApplicationIDType = DISPLAY_APP;
1234 }
1235 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
1236 pc.CommandStreamerStallEnable = true;
1237 pc.RenderTargetCacheFlushEnable = true;
1238 pc.ProtectedMemoryEnable = true;
1239 }
1240 #else
1241 unreachable("Not supported");
1242 #endif
1243 }
1244
1245 /**
1246 * Upload the initial GPU state for a render context.
1247 *
1248 * This sets some invariant state that needs to be programmed a particular
1249 * way, but we never actually change.
1250 */
1251 static void
iris_init_render_context(struct iris_batch * batch)1252 iris_init_render_context(struct iris_batch *batch)
1253 {
1254 UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
1255
1256 iris_batch_sync_region_start(batch);
1257
1258 emit_pipeline_select(batch, _3D);
1259
1260 toggle_protected(batch);
1261
1262 iris_emit_l3_config(batch, batch->screen->l3_config_3d);
1263
1264 init_state_base_address(batch);
1265
1266 iris_init_common_context(batch);
1267
1268 #if GFX_VER >= 9
1269 iris_emit_reg(batch, GENX(CS_DEBUG_MODE2), reg) {
1270 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
1271 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
1272 }
1273 #else
1274 iris_emit_reg(batch, GENX(INSTPM), reg) {
1275 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
1276 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
1277 }
1278 #endif
1279
1280 #if GFX_VER == 9
1281 iris_emit_reg(batch, GENX(CACHE_MODE_1), reg) {
1282 reg.FloatBlendOptimizationEnable = true;
1283 reg.FloatBlendOptimizationEnableMask = true;
1284 reg.MSCRAWHazardAvoidanceBit = true;
1285 reg.MSCRAWHazardAvoidanceBitMask = true;
1286 reg.PartialResolveDisableInVC = true;
1287 reg.PartialResolveDisableInVCMask = true;
1288 }
1289
1290 if (devinfo->platform == INTEL_PLATFORM_GLK)
1291 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
1292 #endif
1293
1294 #if GFX_VER == 11
1295 iris_emit_reg(batch, GENX(TCCNTLREG), reg) {
1296 reg.L3DataPartialWriteMergingEnable = true;
1297 reg.ColorZPartialWriteMergingEnable = true;
1298 reg.URBPartialWriteMergingEnable = true;
1299 reg.TCDisable = true;
1300 }
1301
1302 /* Hardware specification recommends disabling repacking for the
1303 * compatibility with decompression mechanism in display controller.
1304 */
1305 if (devinfo->disable_ccs_repack) {
1306 iris_emit_reg(batch, GENX(CACHE_MODE_0), reg) {
1307 reg.DisableRepackingforCompression = true;
1308 reg.DisableRepackingforCompressionMask = true;
1309 }
1310 }
1311 #endif
1312
1313 #if GFX_VER == 12
1314 iris_emit_reg(batch, GENX(FF_MODE2), reg) {
1315 /* On Alchemist, the FF_MODE2 docs for the GS timer say:
1316 *
1317 * "The timer value must be set to 224."
1318 *
1319 * and Wa_16011163337 indicates this is the case for all Gfx12 parts,
1320 * and that this is necessary to avoid hanging the HS/DS units. It
1321 * also clarifies that 224 is literally 0xE0 in the bits, not 7*32=224.
1322 *
1323 * The HS timer docs also have the same quote for Alchemist. I am
1324 * unaware of a reason it needs to be set to 224 on Tigerlake, but
1325 * we do so for consistency if nothing else.
1326 *
1327 * For the TDS timer value, the docs say:
1328 *
1329 * "For best performance, a value of 4 should be programmed."
1330 *
1331 * i915 also sets it this way on Tigerlake due to workarounds.
1332 *
1333 * The default VS timer appears to be 0, so we leave it at that.
1334 */
1335 reg.GSTimerValue = 224;
1336 reg.HSTimerValue = 224;
1337 reg.TDSTimerValue = 4;
1338 reg.VSTimerValue = 0;
1339 }
1340 #endif
1341
1342 #if INTEL_NEEDS_WA_1508744258
1343 /* The suggested workaround is:
1344 *
1345 * Disable RHWO by setting 0x7010[14] by default except during resolve
1346 * pass.
1347 *
1348 * We implement global disabling of the optimization here and we toggle it
1349 * in iris_resolve_color.
1350 *
1351 * iris_init_compute_context is unmodified because we don't expect to
1352 * access the RCC in the compute context. iris_mcs_partial_resolve is
1353 * unmodified because that pass doesn't use a HW bit to perform the
1354 * resolve (related HSDs specifically call out the RenderTargetResolveType
1355 * field in the 3DSTATE_PS instruction).
1356 */
1357 iris_disable_rhwo_optimization(batch, true);
1358 #endif
1359
1360 #if GFX_VERx10 == 120
1361 /* Wa_1806527549 says to disable the following HiZ optimization when the
1362 * depth buffer is D16_UNORM. We've found the WA to help with more depth
1363 * buffer configurations however, so we always disable it just to be safe.
1364 */
1365 iris_emit_reg(batch, GENX(HIZ_CHICKEN), reg) {
1366 reg.HZDepthTestLEGEOptimizationDisable = true;
1367 reg.HZDepthTestLEGEOptimizationDisableMask = true;
1368 }
1369 #endif
1370
1371 #if GFX_VERx10 == 125
1372 iris_emit_reg(batch, GENX(CHICKEN_RASTER_2), reg) {
1373 reg.TBIMRBatchSizeOverride = true;
1374 reg.TBIMROpenBatchEnable = true;
1375 reg.TBIMRFastClip = true;
1376 reg.TBIMRBatchSizeOverrideMask = true;
1377 reg.TBIMROpenBatchEnableMask = true;
1378 reg.TBIMRFastClipMask = true;
1379 };
1380 #endif
1381
1382 upload_pixel_hashing_tables(batch);
1383
1384 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
1385 * changing it dynamically. We set it to the maximum size here, and
1386 * instead include the render target dimensions in the viewport, so
1387 * viewport extents clipping takes care of pruning stray geometry.
1388 */
1389 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
1390 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
1391 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
1392 }
1393
1394 /* Set the initial MSAA sample positions. */
1395 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
1396 INTEL_SAMPLE_POS_1X(pat._1xSample);
1397 INTEL_SAMPLE_POS_2X(pat._2xSample);
1398 INTEL_SAMPLE_POS_4X(pat._4xSample);
1399 INTEL_SAMPLE_POS_8X(pat._8xSample);
1400 #if GFX_VER >= 9
1401 INTEL_SAMPLE_POS_16X(pat._16xSample);
1402 #endif
1403 }
1404
1405 /* Use the legacy AA line coverage computation. */
1406 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
1407
1408 /* Disable chromakeying (it's for media) */
1409 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
1410
1411 /* We want regular rendering, not special HiZ operations. */
1412 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
1413
1414 /* No polygon stippling offsets are necessary. */
1415 /* TODO: may need to set an offset for origin-UL framebuffers */
1416 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
1417
1418 #if GFX_VERx10 >= 125
1419 iris_emit_cmd(batch, GENX(3DSTATE_MESH_CONTROL), foo);
1420 iris_emit_cmd(batch, GENX(3DSTATE_TASK_CONTROL), foo);
1421 #endif
1422
1423 iris_alloc_push_constants(batch);
1424
1425
1426 #if GFX_VER >= 12
1427 init_aux_map_state(batch);
1428 #endif
1429
1430 iris_batch_sync_region_end(batch);
1431 }
1432
1433 static void
iris_init_compute_context(struct iris_batch * batch)1434 iris_init_compute_context(struct iris_batch *batch)
1435 {
1436 UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
1437
1438 iris_batch_sync_region_start(batch);
1439
1440 /* Wa_1607854226:
1441 *
1442 * Start with pipeline in 3D mode to set the STATE_BASE_ADDRESS.
1443 */
1444 #if GFX_VERx10 == 120
1445 emit_pipeline_select(batch, _3D);
1446 #else
1447 emit_pipeline_select(batch, GPGPU);
1448 #endif
1449
1450 toggle_protected(batch);
1451
1452 iris_emit_l3_config(batch, batch->screen->l3_config_cs);
1453
1454 init_state_base_address(batch);
1455
1456 iris_init_common_context(batch);
1457
1458 #if GFX_VERx10 == 120
1459 emit_pipeline_select(batch, GPGPU);
1460 #endif
1461
1462 #if GFX_VER == 9
1463 if (devinfo->platform == INTEL_PLATFORM_GLK)
1464 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
1465 #endif
1466
1467 #if GFX_VER >= 12
1468 init_aux_map_state(batch);
1469 #endif
1470
1471 #if GFX_VERx10 >= 125
1472 iris_emit_cmd(batch, GENX(CFE_STATE), cfe) {
1473 cfe.MaximumNumberofThreads =
1474 devinfo->max_cs_threads * devinfo->subslice_total;
1475 }
1476 #endif
1477
1478 iris_batch_sync_region_end(batch);
1479 }
1480
1481 static void
iris_init_copy_context(struct iris_batch * batch)1482 iris_init_copy_context(struct iris_batch *batch)
1483 {
1484 iris_batch_sync_region_start(batch);
1485
1486 #if GFX_VER >= 12
1487 init_aux_map_state(batch);
1488 #endif
1489
1490 iris_batch_sync_region_end(batch);
1491 }
1492
1493 struct iris_vertex_buffer_state {
1494 /** The VERTEX_BUFFER_STATE hardware structure. */
1495 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
1496
1497 /** The resource to source vertex data from. */
1498 struct pipe_resource *resource;
1499
1500 int offset;
1501 };
1502
1503 struct iris_depth_buffer_state {
1504 /* Depth/HiZ/Stencil related hardware packets. */
1505 #if GFX_VER < 20
1506 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
1507 GENX(3DSTATE_STENCIL_BUFFER_length) +
1508 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
1509 GENX(3DSTATE_CLEAR_PARAMS_length)];
1510 #else
1511 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
1512 GENX(3DSTATE_STENCIL_BUFFER_length) +
1513 GENX(3DSTATE_HIER_DEPTH_BUFFER_length)];
1514 #endif
1515 };
1516
1517 #if INTEL_NEEDS_WA_1808121037
1518 enum iris_depth_reg_mode {
1519 IRIS_DEPTH_REG_MODE_HW_DEFAULT = 0,
1520 IRIS_DEPTH_REG_MODE_D16_1X_MSAA,
1521 IRIS_DEPTH_REG_MODE_UNKNOWN,
1522 };
1523 #endif
1524
1525 /**
1526 * Generation-specific context state (ice->state.genx->...).
1527 *
1528 * Most state can go in iris_context directly, but these encode hardware
1529 * packets which vary by generation.
1530 */
1531 struct iris_genx_state {
1532 struct iris_vertex_buffer_state vertex_buffers[33];
1533 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
1534
1535 struct iris_depth_buffer_state depth_buffer;
1536
1537 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
1538
1539 #if GFX_VER == 8
1540 bool pma_fix_enabled;
1541 #endif
1542
1543 /* Is object level preemption enabled? */
1544 bool object_preemption;
1545
1546 #if INTEL_NEEDS_WA_1808121037
1547 enum iris_depth_reg_mode depth_reg_mode;
1548 #endif
1549
1550 struct {
1551 #if GFX_VER == 8
1552 struct isl_image_param image_param[PIPE_MAX_SHADER_IMAGES];
1553 #endif
1554 } shaders[MESA_SHADER_STAGES];
1555 };
1556
1557 /**
1558 * The pipe->set_blend_color() driver hook.
1559 *
1560 * This corresponds to our COLOR_CALC_STATE.
1561 */
1562 static void
iris_set_blend_color(struct pipe_context * ctx,const struct pipe_blend_color * state)1563 iris_set_blend_color(struct pipe_context *ctx,
1564 const struct pipe_blend_color *state)
1565 {
1566 struct iris_context *ice = (struct iris_context *) ctx;
1567
1568 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
1569 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
1570 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1571 }
1572
1573 /**
1574 * Gallium CSO for blend state (see pipe_blend_state).
1575 */
1576 struct iris_blend_state {
1577 /** Partial 3DSTATE_PS_BLEND */
1578 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
1579
1580 /** Partial BLEND_STATE */
1581 uint32_t blend_state[GENX(BLEND_STATE_length) +
1582 IRIS_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
1583
1584 bool alpha_to_coverage; /* for shader key */
1585
1586 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
1587 uint8_t blend_enables;
1588
1589 /** Bitfield of whether color writes are enabled for RT[i] */
1590 uint8_t color_write_enables;
1591
1592 /** Does RT[0] use dual color blending? */
1593 bool dual_color_blending;
1594
1595 int ps_dst_blend_factor[IRIS_MAX_DRAW_BUFFERS];
1596 int ps_dst_alpha_blend_factor[IRIS_MAX_DRAW_BUFFERS];
1597 };
1598
1599 static enum pipe_blendfactor
fix_blendfactor(enum pipe_blendfactor f,bool alpha_to_one)1600 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
1601 {
1602 if (alpha_to_one) {
1603 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
1604 return PIPE_BLENDFACTOR_ONE;
1605
1606 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
1607 return PIPE_BLENDFACTOR_ZERO;
1608 }
1609
1610 return f;
1611 }
1612
1613 /**
1614 * The pipe->create_blend_state() driver hook.
1615 *
1616 * Translates a pipe_blend_state into iris_blend_state.
1617 */
1618 static void *
iris_create_blend_state(struct pipe_context * ctx,const struct pipe_blend_state * state)1619 iris_create_blend_state(struct pipe_context *ctx,
1620 const struct pipe_blend_state *state)
1621 {
1622 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
1623 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
1624
1625 cso->blend_enables = 0;
1626 cso->color_write_enables = 0;
1627 STATIC_ASSERT(IRIS_MAX_DRAW_BUFFERS <= 8);
1628
1629 cso->alpha_to_coverage = state->alpha_to_coverage;
1630
1631 bool indep_alpha_blend = false;
1632
1633 for (int i = 0; i < IRIS_MAX_DRAW_BUFFERS; i++) {
1634 const struct pipe_rt_blend_state *rt =
1635 &state->rt[state->independent_blend_enable ? i : 0];
1636
1637 enum pipe_blendfactor src_rgb =
1638 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
1639 enum pipe_blendfactor src_alpha =
1640 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
1641 enum pipe_blendfactor dst_rgb =
1642 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
1643 enum pipe_blendfactor dst_alpha =
1644 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
1645
1646 /* Stored separately in cso for dynamic emission. */
1647 cso->ps_dst_blend_factor[i] = (int) dst_rgb;
1648 cso->ps_dst_alpha_blend_factor[i] = (int) dst_alpha;
1649
1650 if (rt->rgb_func != rt->alpha_func ||
1651 src_rgb != src_alpha || dst_rgb != dst_alpha)
1652 indep_alpha_blend = true;
1653
1654 if (rt->blend_enable)
1655 cso->blend_enables |= 1u << i;
1656
1657 if (rt->colormask)
1658 cso->color_write_enables |= 1u << i;
1659
1660 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
1661 be.LogicOpEnable = state->logicop_enable;
1662 be.LogicOpFunction = state->logicop_func;
1663
1664 be.PreBlendSourceOnlyClampEnable = false;
1665 be.ColorClampRange = COLORCLAMP_RTFORMAT;
1666 be.PreBlendColorClampEnable = true;
1667 be.PostBlendColorClampEnable = true;
1668
1669 be.ColorBufferBlendEnable = rt->blend_enable;
1670
1671 be.ColorBlendFunction = rt->rgb_func;
1672 be.AlphaBlendFunction = rt->alpha_func;
1673
1674 /* The casts prevent warnings about implicit enum type conversions. */
1675 be.SourceBlendFactor = (int) src_rgb;
1676 be.SourceAlphaBlendFactor = (int) src_alpha;
1677
1678 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
1679 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1680 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1681 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1682 }
1683 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1684 }
1685
1686 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1687 /* pb.HasWriteableRT is filled in at draw time.
1688 * pb.AlphaTestEnable is filled in at draw time.
1689 *
1690 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1691 * setting it when dual color blending without an appropriate shader.
1692 */
1693
1694 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1695 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1696
1697 /* The casts prevent warnings about implicit enum type conversions. */
1698 pb.SourceBlendFactor =
1699 (int) fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1700 pb.SourceAlphaBlendFactor =
1701 (int) fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1702 }
1703
1704 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1705 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1706 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1707 bs.AlphaToOneEnable = state->alpha_to_one;
1708 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage_dither;
1709 bs.ColorDitherEnable = state->dither;
1710 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1711 }
1712
1713 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1714
1715 return cso;
1716 }
1717
1718 /**
1719 * The pipe->bind_blend_state() driver hook.
1720 *
1721 * Bind a blending CSO and flag related dirty bits.
1722 */
1723 static void
iris_bind_blend_state(struct pipe_context * ctx,void * state)1724 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1725 {
1726 struct iris_context *ice = (struct iris_context *) ctx;
1727 struct iris_blend_state *cso = state;
1728
1729 ice->state.cso_blend = cso;
1730
1731 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1732 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1733 ice->state.stage_dirty |= ice->state.stage_dirty_for_nos[IRIS_NOS_BLEND];
1734
1735 if (GFX_VER == 8)
1736 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1737 }
1738
1739 /**
1740 * Return true if the FS writes to any color outputs which are not disabled
1741 * via color masking.
1742 */
1743 static bool
has_writeable_rt(const struct iris_blend_state * cso_blend,const struct shader_info * fs_info)1744 has_writeable_rt(const struct iris_blend_state *cso_blend,
1745 const struct shader_info *fs_info)
1746 {
1747 if (!fs_info)
1748 return false;
1749
1750 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1751
1752 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1753 rt_outputs = (1 << IRIS_MAX_DRAW_BUFFERS) - 1;
1754
1755 return cso_blend->color_write_enables & rt_outputs;
1756 }
1757
1758 /**
1759 * Gallium CSO for depth, stencil, and alpha testing state.
1760 */
1761 struct iris_depth_stencil_alpha_state {
1762 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1763 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1764
1765 #if GFX_VER >= 12
1766 uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)];
1767 #endif
1768
1769 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1770 unsigned alpha_enabled:1;
1771 unsigned alpha_func:3; /**< PIPE_FUNC_x */
1772 float alpha_ref_value; /**< reference value */
1773
1774 /** Outbound to resolve and cache set tracking. */
1775 bool depth_writes_enabled;
1776 bool stencil_writes_enabled;
1777
1778 /** Outbound to Gfx8-9 PMA stall equations */
1779 bool depth_test_enabled;
1780
1781 /** Tracking state of DS writes for Wa_18019816803. */
1782 bool ds_write_state;
1783 };
1784
1785 /**
1786 * The pipe->create_depth_stencil_alpha_state() driver hook.
1787 *
1788 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1789 * testing state since we need pieces of it in a variety of places.
1790 */
1791 static void *
iris_create_zsa_state(struct pipe_context * ctx,const struct pipe_depth_stencil_alpha_state * state)1792 iris_create_zsa_state(struct pipe_context *ctx,
1793 const struct pipe_depth_stencil_alpha_state *state)
1794 {
1795 struct iris_depth_stencil_alpha_state *cso =
1796 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1797
1798 bool two_sided_stencil = state->stencil[1].enabled;
1799
1800 bool depth_write_enabled = false;
1801 bool stencil_write_enabled = false;
1802
1803 /* Depth writes enabled? */
1804 if (state->depth_writemask &&
1805 ((!state->depth_enabled) ||
1806 ((state->depth_func != PIPE_FUNC_NEVER) &&
1807 (state->depth_func != PIPE_FUNC_EQUAL))))
1808 depth_write_enabled = true;
1809
1810 bool stencil_all_keep =
1811 state->stencil[0].fail_op == PIPE_STENCIL_OP_KEEP &&
1812 state->stencil[0].zfail_op == PIPE_STENCIL_OP_KEEP &&
1813 state->stencil[0].zpass_op == PIPE_STENCIL_OP_KEEP &&
1814 (!two_sided_stencil ||
1815 (state->stencil[1].fail_op == PIPE_STENCIL_OP_KEEP &&
1816 state->stencil[1].zfail_op == PIPE_STENCIL_OP_KEEP &&
1817 state->stencil[1].zpass_op == PIPE_STENCIL_OP_KEEP));
1818
1819 bool stencil_mask_zero =
1820 state->stencil[0].writemask == 0 ||
1821 (!two_sided_stencil || state->stencil[1].writemask == 0);
1822
1823 bool stencil_func_never =
1824 state->stencil[0].func == PIPE_FUNC_NEVER &&
1825 state->stencil[0].fail_op == PIPE_STENCIL_OP_KEEP &&
1826 (!two_sided_stencil ||
1827 (state->stencil[1].func == PIPE_FUNC_NEVER &&
1828 state->stencil[1].fail_op == PIPE_STENCIL_OP_KEEP));
1829
1830 /* Stencil writes enabled? */
1831 if (state->stencil[0].writemask != 0 ||
1832 ((two_sided_stencil && state->stencil[1].writemask != 0) &&
1833 (!stencil_all_keep &&
1834 !stencil_mask_zero &&
1835 !stencil_func_never)))
1836 stencil_write_enabled = true;
1837
1838 cso->ds_write_state = depth_write_enabled || stencil_write_enabled;
1839
1840 cso->alpha_enabled = state->alpha_enabled;
1841 cso->alpha_func = state->alpha_func;
1842 cso->alpha_ref_value = state->alpha_ref_value;
1843 cso->depth_writes_enabled = state->depth_writemask;
1844 cso->depth_test_enabled = state->depth_enabled;
1845 cso->stencil_writes_enabled =
1846 state->stencil[0].writemask != 0 ||
1847 (two_sided_stencil && state->stencil[1].writemask != 0);
1848
1849 /* gallium frontends need to optimize away EQUAL writes for us. */
1850 assert(!(state->depth_func == PIPE_FUNC_EQUAL && state->depth_writemask));
1851
1852 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1853 wmds.StencilFailOp = state->stencil[0].fail_op;
1854 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1855 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1856 wmds.StencilTestFunction =
1857 translate_compare_func(state->stencil[0].func);
1858 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1859 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1860 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1861 wmds.BackfaceStencilTestFunction =
1862 translate_compare_func(state->stencil[1].func);
1863 wmds.DepthTestFunction = translate_compare_func(state->depth_func);
1864 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1865 wmds.StencilTestEnable = state->stencil[0].enabled;
1866 wmds.StencilBufferWriteEnable =
1867 state->stencil[0].writemask != 0 ||
1868 (two_sided_stencil && state->stencil[1].writemask != 0);
1869 wmds.DepthTestEnable = state->depth_enabled;
1870 wmds.DepthBufferWriteEnable = state->depth_writemask;
1871 wmds.StencilTestMask = state->stencil[0].valuemask;
1872 wmds.StencilWriteMask = state->stencil[0].writemask;
1873 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1874 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1875 /* wmds.[Backface]StencilReferenceValue are merged later */
1876 #if GFX_VER >= 12
1877 wmds.StencilReferenceValueModifyDisable = true;
1878 #endif
1879 }
1880
1881 #if GFX_VER >= 12
1882 iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) {
1883 depth_bounds.DepthBoundsTestValueModifyDisable = false;
1884 depth_bounds.DepthBoundsTestEnableModifyDisable = false;
1885 depth_bounds.DepthBoundsTestEnable = state->depth_bounds_test;
1886 depth_bounds.DepthBoundsTestMinValue = state->depth_bounds_min;
1887 depth_bounds.DepthBoundsTestMaxValue = state->depth_bounds_max;
1888 }
1889 #endif
1890
1891 return cso;
1892 }
1893
1894 /**
1895 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1896 *
1897 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1898 */
1899 static void
iris_bind_zsa_state(struct pipe_context * ctx,void * state)1900 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1901 {
1902 struct iris_context *ice = (struct iris_context *) ctx;
1903 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1904 struct iris_depth_stencil_alpha_state *new_cso = state;
1905
1906 if (new_cso) {
1907 if (cso_changed(alpha_ref_value))
1908 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1909
1910 if (cso_changed(alpha_enabled))
1911 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1912
1913 if (cso_changed(alpha_func))
1914 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1915
1916 if (cso_changed(depth_writes_enabled) || cso_changed(stencil_writes_enabled))
1917 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1918
1919 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1920 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1921
1922 /* State ds_write_enable changed, need to flag dirty DS. */
1923 if (!old_cso || (ice->state.ds_write_state != new_cso->ds_write_state)) {
1924 ice->state.dirty |= IRIS_DIRTY_DS_WRITE_ENABLE;
1925 ice->state.ds_write_state = new_cso->ds_write_state;
1926 }
1927
1928 #if GFX_VER >= 12
1929 if (cso_changed(depth_bounds))
1930 ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS;
1931 #endif
1932 }
1933
1934 ice->state.cso_zsa = new_cso;
1935 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1936 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1937 ice->state.stage_dirty |=
1938 ice->state.stage_dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1939
1940 if (GFX_VER == 8)
1941 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1942 }
1943
1944 #if GFX_VER == 8
1945 static bool
want_pma_fix(struct iris_context * ice)1946 want_pma_fix(struct iris_context *ice)
1947 {
1948 UNUSED struct iris_screen *screen = (void *) ice->ctx.screen;
1949 UNUSED const struct intel_device_info *devinfo = screen->devinfo;
1950 const struct iris_fs_data *fs_data =
1951 iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
1952 const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
1953 const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
1954 const struct iris_blend_state *cso_blend = ice->state.cso_blend;
1955
1956 /* In very specific combinations of state, we can instruct Gfx8-9 hardware
1957 * to avoid stalling at the pixel mask array. The state equations are
1958 * documented in these places:
1959 *
1960 * - Gfx8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE
1961 * - Gfx9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable
1962 *
1963 * Both equations share some common elements:
1964 *
1965 * no_hiz_op =
1966 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1967 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1968 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1969 * 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
1970 *
1971 * killpixels =
1972 * 3DSTATE_WM::ForceKillPix != ForceOff &&
1973 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1974 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1975 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1976 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1977 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1978 *
1979 * (Technically the stencil PMA treats ForceKillPix differently,
1980 * but I think this is a documentation oversight, and we don't
1981 * ever use it in this way, so it doesn't matter).
1982 *
1983 * common_pma_fix =
1984 * 3DSTATE_WM::ForceThreadDispatch != 1 &&
1985 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 &&
1986 * 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1987 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1988 * 3DSTATE_WM::EDSC_Mode != EDSC_PREPS &&
1989 * 3DSTATE_PS_EXTRA::PixelShaderValid &&
1990 * no_hiz_op
1991 *
1992 * These are always true:
1993 *
1994 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0
1995 * 3DSTATE_PS_EXTRA::PixelShaderValid
1996 *
1997 * Also, we never use the normal drawing path for HiZ ops; these are true:
1998 *
1999 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
2000 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
2001 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
2002 * 3DSTATE_WM_HZ_OP::StencilBufferClear)
2003 *
2004 * This happens sometimes:
2005 *
2006 * 3DSTATE_WM::ForceThreadDispatch != 1
2007 *
2008 * However, we choose to ignore it as it either agrees with the signal
2009 * (dispatch was already enabled, so nothing out of the ordinary), or
2010 * there are no framebuffer attachments (so no depth or HiZ anyway,
2011 * meaning the PMA signal will already be disabled).
2012 */
2013
2014 if (!cso_fb->zsbuf)
2015 return false;
2016
2017 struct iris_resource *zres, *sres;
2018 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture, &zres, &sres);
2019
2020 /* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
2021 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
2022 */
2023 if (!zres ||
2024 !iris_resource_level_has_hiz(devinfo, zres, cso_fb->zsbuf->u.tex.level))
2025 return false;
2026
2027 /* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */
2028 if (fs_data->early_fragment_tests)
2029 return false;
2030
2031 /* 3DSTATE_WM::ForceKillPix != ForceOff &&
2032 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
2033 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
2034 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
2035 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
2036 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
2037 */
2038 bool killpixels = fs_data->uses_kill || fs_data->uses_omask ||
2039 cso_blend->alpha_to_coverage || cso_zsa->alpha_enabled;
2040
2041 /* The Gfx8 depth PMA equation becomes:
2042 *
2043 * depth_writes =
2044 * 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable &&
2045 * 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE
2046 *
2047 * stencil_writes =
2048 * 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
2049 * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&
2050 * 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE
2051 *
2052 * Z_PMA_OPT =
2053 * common_pma_fix &&
2054 * 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
2055 * ((killpixels && (depth_writes || stencil_writes)) ||
2056 * 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF)
2057 *
2058 */
2059 if (!cso_zsa->depth_test_enabled)
2060 return false;
2061
2062 return fs_data->computed_depth_mode != PSCDEPTH_OFF ||
2063 (killpixels && (cso_zsa->depth_writes_enabled ||
2064 (sres && cso_zsa->stencil_writes_enabled)));
2065 }
2066 #endif
2067
2068 void
genX(update_pma_fix)2069 genX(update_pma_fix)(struct iris_context *ice,
2070 struct iris_batch *batch,
2071 bool enable)
2072 {
2073 #if GFX_VER == 8
2074 struct iris_genx_state *genx = ice->state.genx;
2075
2076 if (genx->pma_fix_enabled == enable)
2077 return;
2078
2079 genx->pma_fix_enabled = enable;
2080
2081 /* According to the Broadwell PIPE_CONTROL documentation, software should
2082 * emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
2083 * prior to the LRI. If stencil buffer writes are enabled, then a Render * Cache Flush is also necessary.
2084 *
2085 * The Gfx9 docs say to use a depth stall rather than a command streamer
2086 * stall. However, the hardware seems to violently disagree. A full
2087 * command streamer stall seems to be needed in both cases.
2088 */
2089 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
2090 PIPE_CONTROL_CS_STALL |
2091 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2092 PIPE_CONTROL_RENDER_TARGET_FLUSH);
2093
2094 iris_emit_reg(batch, GENX(CACHE_MODE_1), reg) {
2095 reg.NPPMAFixEnable = enable;
2096 reg.NPEarlyZFailsDisable = enable;
2097 reg.NPPMAFixEnableMask = true;
2098 reg.NPEarlyZFailsDisableMask = true;
2099 }
2100
2101 /* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
2102 * Flush bits is often necessary. We do it regardless because it's easier.
2103 * The render cache flush is also necessary if stencil writes are enabled.
2104 *
2105 * Again, the Gfx9 docs give a different set of flushes but the Broadwell
2106 * flushes seem to work just as well.
2107 */
2108 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
2109 PIPE_CONTROL_DEPTH_STALL |
2110 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2111 PIPE_CONTROL_RENDER_TARGET_FLUSH);
2112 #endif
2113 }
2114
2115 /**
2116 * Gallium CSO for rasterizer state.
2117 */
2118 struct iris_rasterizer_state {
2119 uint32_t sf[GENX(3DSTATE_SF_length)];
2120 uint32_t clip[GENX(3DSTATE_CLIP_length)];
2121 uint32_t raster[GENX(3DSTATE_RASTER_length)];
2122 uint32_t wm[GENX(3DSTATE_WM_length)];
2123 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
2124
2125 uint8_t num_clip_plane_consts;
2126 bool clip_halfz; /* for CC_VIEWPORT */
2127 bool depth_clip_near; /* for CC_VIEWPORT */
2128 bool depth_clip_far; /* for CC_VIEWPORT */
2129 bool flatshade; /* for shader state */
2130 bool flatshade_first; /* for stream output */
2131 bool clamp_fragment_color; /* for shader state */
2132 bool light_twoside; /* for shader state */
2133 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
2134 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
2135 bool line_smooth;
2136 bool line_stipple_enable;
2137 bool poly_stipple_enable;
2138 bool multisample;
2139 bool force_persample_interp;
2140 bool conservative_rasterization;
2141 bool fill_mode_point;
2142 bool fill_mode_line;
2143 bool fill_mode_point_or_line;
2144 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
2145 uint16_t sprite_coord_enable;
2146 };
2147
2148 static float
get_line_width(const struct pipe_rasterizer_state * state)2149 get_line_width(const struct pipe_rasterizer_state *state)
2150 {
2151 float line_width = state->line_width;
2152
2153 /* From the OpenGL 4.4 spec:
2154 *
2155 * "The actual width of non-antialiased lines is determined by rounding
2156 * the supplied width to the nearest integer, then clamping it to the
2157 * implementation-dependent maximum non-antialiased line width."
2158 */
2159 if (!state->multisample && !state->line_smooth)
2160 line_width = roundf(state->line_width);
2161
2162 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
2163 /* For 1 pixel line thickness or less, the general anti-aliasing
2164 * algorithm gives up, and a garbage line is generated. Setting a
2165 * Line Width of 0.0 specifies the rasterization of the "thinnest"
2166 * (one-pixel-wide), non-antialiased lines.
2167 *
2168 * Lines rendered with zero Line Width are rasterized using the
2169 * "Grid Intersection Quantization" rules as specified by the
2170 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
2171 */
2172 line_width = 0.0f;
2173 }
2174
2175 return line_width;
2176 }
2177
2178 /**
2179 * The pipe->create_rasterizer_state() driver hook.
2180 */
2181 static void *
iris_create_rasterizer_state(struct pipe_context * ctx,const struct pipe_rasterizer_state * state)2182 iris_create_rasterizer_state(struct pipe_context *ctx,
2183 const struct pipe_rasterizer_state *state)
2184 {
2185 struct iris_rasterizer_state *cso =
2186 malloc(sizeof(struct iris_rasterizer_state));
2187
2188 cso->multisample = state->multisample;
2189 cso->force_persample_interp = state->force_persample_interp;
2190 cso->clip_halfz = state->clip_halfz;
2191 cso->depth_clip_near = state->depth_clip_near;
2192 cso->depth_clip_far = state->depth_clip_far;
2193 cso->flatshade = state->flatshade;
2194 cso->flatshade_first = state->flatshade_first;
2195 cso->clamp_fragment_color = state->clamp_fragment_color;
2196 cso->light_twoside = state->light_twoside;
2197 cso->rasterizer_discard = state->rasterizer_discard;
2198 cso->half_pixel_center = state->half_pixel_center;
2199 cso->sprite_coord_mode = state->sprite_coord_mode;
2200 cso->sprite_coord_enable = state->sprite_coord_enable;
2201 cso->line_smooth = state->line_smooth;
2202 cso->line_stipple_enable = state->line_stipple_enable;
2203 cso->poly_stipple_enable = state->poly_stipple_enable;
2204 cso->conservative_rasterization =
2205 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
2206
2207 cso->fill_mode_point =
2208 state->fill_front == PIPE_POLYGON_MODE_POINT ||
2209 state->fill_back == PIPE_POLYGON_MODE_POINT;
2210 cso->fill_mode_line =
2211 state->fill_front == PIPE_POLYGON_MODE_LINE ||
2212 state->fill_back == PIPE_POLYGON_MODE_LINE;
2213 cso->fill_mode_point_or_line =
2214 cso->fill_mode_point ||
2215 cso->fill_mode_line;
2216
2217 if (state->clip_plane_enable != 0)
2218 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
2219 else
2220 cso->num_clip_plane_consts = 0;
2221
2222 float line_width = get_line_width(state);
2223
2224 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
2225 sf.StatisticsEnable = true;
2226 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
2227 sf.LineEndCapAntialiasingRegionWidth =
2228 state->line_smooth ? _10pixels : _05pixels;
2229 sf.LastPixelEnable = state->line_last_pixel;
2230 sf.LineWidth = line_width;
2231 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
2232 !state->point_quad_rasterization;
2233 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
2234 sf.PointWidth = CLAMP(state->point_size, 0.125f, 255.875f);
2235
2236 if (state->flatshade_first) {
2237 sf.TriangleFanProvokingVertexSelect = 1;
2238 } else {
2239 sf.TriangleStripListProvokingVertexSelect = 2;
2240 sf.TriangleFanProvokingVertexSelect = 2;
2241 sf.LineStripListProvokingVertexSelect = 1;
2242 }
2243 }
2244
2245 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
2246 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
2247 rr.CullMode = translate_cull_mode(state->cull_face);
2248 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
2249 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
2250 rr.DXMultisampleRasterizationEnable = state->multisample;
2251 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
2252 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
2253 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
2254 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
2255 rr.GlobalDepthOffsetScale = state->offset_scale;
2256 rr.GlobalDepthOffsetClamp = state->offset_clamp;
2257 rr.SmoothPointEnable = state->point_smooth;
2258 rr.ScissorRectangleEnable = state->scissor;
2259 #if GFX_VER >= 9
2260 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
2261 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
2262 rr.ConservativeRasterizationEnable =
2263 cso->conservative_rasterization;
2264 #else
2265 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
2266 #endif
2267 }
2268
2269 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
2270 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
2271 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
2272 */
2273 cl.EarlyCullEnable = true;
2274 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
2275 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
2276 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
2277 cl.GuardbandClipTestEnable = true;
2278 cl.ClipEnable = true;
2279 cl.MinimumPointWidth = 0.125;
2280 cl.MaximumPointWidth = 255.875;
2281
2282 if (state->flatshade_first) {
2283 cl.TriangleFanProvokingVertexSelect = 1;
2284 } else {
2285 cl.TriangleStripListProvokingVertexSelect = 2;
2286 cl.TriangleFanProvokingVertexSelect = 2;
2287 cl.LineStripListProvokingVertexSelect = 1;
2288 }
2289 }
2290
2291 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
2292 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
2293 * filled in at draw time from the FS program.
2294 */
2295 wm.LineAntialiasingRegionWidth = _10pixels;
2296 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
2297 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
2298 wm.LineStippleEnable = state->line_stipple_enable;
2299 wm.PolygonStippleEnable = state->poly_stipple_enable;
2300 }
2301
2302 /* Remap from 0..255 back to 1..256 */
2303 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
2304
2305 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
2306 if (state->line_stipple_enable) {
2307 line.LineStipplePattern = state->line_stipple_pattern;
2308 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
2309 line.LineStippleRepeatCount = line_stipple_factor;
2310 }
2311 }
2312
2313 return cso;
2314 }
2315
2316 /**
2317 * The pipe->bind_rasterizer_state() driver hook.
2318 *
2319 * Bind a rasterizer CSO and flag related dirty bits.
2320 */
2321 static void
iris_bind_rasterizer_state(struct pipe_context * ctx,void * state)2322 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
2323 {
2324 struct iris_context *ice = (struct iris_context *) ctx;
2325 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
2326 struct iris_rasterizer_state *new_cso = state;
2327
2328 if (new_cso) {
2329 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
2330 if (cso_changed_memcmp(line_stipple))
2331 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
2332
2333 if (cso_changed(half_pixel_center))
2334 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2335
2336 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
2337 ice->state.dirty |= IRIS_DIRTY_WM;
2338
2339 if (cso_changed(rasterizer_discard))
2340 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
2341
2342 if (cso_changed(flatshade_first))
2343 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2344
2345 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
2346 cso_changed(clip_halfz))
2347 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2348
2349 if (cso_changed(sprite_coord_enable) ||
2350 cso_changed(sprite_coord_mode) ||
2351 cso_changed(light_twoside))
2352 ice->state.dirty |= IRIS_DIRTY_SBE;
2353
2354 if (cso_changed(conservative_rasterization))
2355 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
2356 }
2357
2358 ice->state.cso_rast = new_cso;
2359 ice->state.dirty |= IRIS_DIRTY_RASTER;
2360 ice->state.dirty |= IRIS_DIRTY_CLIP;
2361 ice->state.stage_dirty |=
2362 ice->state.stage_dirty_for_nos[IRIS_NOS_RASTERIZER];
2363 }
2364
2365 /**
2366 * Return true if the given wrap mode requires the border color to exist.
2367 *
2368 * (We can skip uploading it if the sampler isn't going to use it.)
2369 */
2370 static bool
wrap_mode_needs_border_color(unsigned wrap_mode)2371 wrap_mode_needs_border_color(unsigned wrap_mode)
2372 {
2373 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
2374 }
2375
2376 /**
2377 * Gallium CSO for sampler state.
2378 */
2379 struct iris_sampler_state {
2380 union pipe_color_union border_color;
2381 bool needs_border_color;
2382
2383 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
2384
2385 #if GFX_VERx10 == 125
2386 /* Sampler state structure to use for 3D textures in order to
2387 * implement Wa_14014414195.
2388 */
2389 uint32_t sampler_state_3d[GENX(SAMPLER_STATE_length)];
2390 #endif
2391 };
2392
2393 static void
fill_sampler_state(uint32_t * sampler_state,const struct pipe_sampler_state * state,unsigned max_anisotropy)2394 fill_sampler_state(uint32_t *sampler_state,
2395 const struct pipe_sampler_state *state,
2396 unsigned max_anisotropy)
2397 {
2398 float min_lod = state->min_lod;
2399 unsigned mag_img_filter = state->mag_img_filter;
2400
2401 // XXX: explain this code ported from ilo...I don't get it at all...
2402 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
2403 state->min_lod > 0.0f) {
2404 min_lod = 0.0f;
2405 mag_img_filter = state->min_img_filter;
2406 }
2407
2408 iris_pack_state(GENX(SAMPLER_STATE), sampler_state, samp) {
2409 samp.TCXAddressControlMode = translate_wrap(state->wrap_s);
2410 samp.TCYAddressControlMode = translate_wrap(state->wrap_t);
2411 samp.TCZAddressControlMode = translate_wrap(state->wrap_r);
2412 samp.CubeSurfaceControlMode = state->seamless_cube_map;
2413 samp.NonnormalizedCoordinateEnable = state->unnormalized_coords;
2414 samp.MinModeFilter = state->min_img_filter;
2415 samp.MagModeFilter = mag_img_filter;
2416 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
2417 samp.MaximumAnisotropy = RATIO21;
2418
2419 if (max_anisotropy >= 2) {
2420 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
2421 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
2422 samp.AnisotropicAlgorithm = EWAApproximation;
2423 }
2424
2425 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
2426 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
2427
2428 samp.MaximumAnisotropy =
2429 MIN2((max_anisotropy - 2) / 2, RATIO161);
2430 }
2431
2432 /* Set address rounding bits if not using nearest filtering. */
2433 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
2434 samp.UAddressMinFilterRoundingEnable = true;
2435 samp.VAddressMinFilterRoundingEnable = true;
2436 samp.RAddressMinFilterRoundingEnable = true;
2437 }
2438
2439 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
2440 samp.UAddressMagFilterRoundingEnable = true;
2441 samp.VAddressMagFilterRoundingEnable = true;
2442 samp.RAddressMagFilterRoundingEnable = true;
2443 }
2444
2445 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
2446 samp.ShadowFunction = translate_shadow_func(state->compare_func);
2447
2448 const float hw_max_lod = GFX_VER >= 7 ? 14 : 13;
2449
2450 samp.LODPreClampMode = CLAMP_MODE_OGL;
2451 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
2452 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
2453 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
2454
2455 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
2456 }
2457 }
2458
2459 /**
2460 * The pipe->create_sampler_state() driver hook.
2461 *
2462 * We fill out SAMPLER_STATE (except for the border color pointer), and
2463 * store that on the CPU. It doesn't make sense to upload it to a GPU
2464 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
2465 * all bound sampler states to be in contiguous memor.
2466 */
2467 static void *
iris_create_sampler_state(struct pipe_context * ctx,const struct pipe_sampler_state * state)2468 iris_create_sampler_state(struct pipe_context *ctx,
2469 const struct pipe_sampler_state *state)
2470 {
2471 UNUSED struct iris_screen *screen = (void *)ctx->screen;
2472 UNUSED const struct intel_device_info *devinfo = screen->devinfo;
2473 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
2474
2475 if (!cso)
2476 return NULL;
2477
2478 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
2479 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
2480
2481 unsigned wrap_s = translate_wrap(state->wrap_s);
2482 unsigned wrap_t = translate_wrap(state->wrap_t);
2483 unsigned wrap_r = translate_wrap(state->wrap_r);
2484
2485 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
2486
2487 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
2488 wrap_mode_needs_border_color(wrap_t) ||
2489 wrap_mode_needs_border_color(wrap_r);
2490
2491 fill_sampler_state(cso->sampler_state, state, state->max_anisotropy);
2492
2493 #if GFX_VERx10 == 125
2494 /* Fill an extra sampler state structure with anisotropic filtering
2495 * disabled used to implement Wa_14014414195.
2496 */
2497 if (intel_needs_workaround(screen->devinfo, 14014414195))
2498 fill_sampler_state(cso->sampler_state_3d, state, 0);
2499 #endif
2500
2501 return cso;
2502 }
2503
2504 /**
2505 * The pipe->bind_sampler_states() driver hook.
2506 */
2507 static void
iris_bind_sampler_states(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned start,unsigned count,void ** states)2508 iris_bind_sampler_states(struct pipe_context *ctx,
2509 enum pipe_shader_type p_stage,
2510 unsigned start, unsigned count,
2511 void **states)
2512 {
2513 struct iris_context *ice = (struct iris_context *) ctx;
2514 gl_shader_stage stage = stage_from_pipe(p_stage);
2515 struct iris_shader_state *shs = &ice->state.shaders[stage];
2516
2517 assert(start + count <= IRIS_MAX_SAMPLERS);
2518
2519 bool dirty = false;
2520
2521 for (int i = 0; i < count; i++) {
2522 struct iris_sampler_state *state = states ? states[i] : NULL;
2523 if (shs->samplers[start + i] != state) {
2524 shs->samplers[start + i] = state;
2525 dirty = true;
2526 }
2527 }
2528
2529 if (dirty)
2530 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
2531 }
2532
2533 /**
2534 * Upload the sampler states into a contiguous area of GPU memory, for
2535 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
2536 *
2537 * Also fill out the border color state pointers.
2538 */
2539 static void
iris_upload_sampler_states(struct iris_context * ice,gl_shader_stage stage)2540 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
2541 {
2542 struct iris_screen *screen = (struct iris_screen *) ice->ctx.screen;
2543 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2544 struct iris_shader_state *shs = &ice->state.shaders[stage];
2545 struct iris_border_color_pool *border_color_pool =
2546 iris_bufmgr_get_border_color_pool(screen->bufmgr);
2547
2548 /* We assume gallium frontends will call pipe->bind_sampler_states()
2549 * if the program's number of textures changes.
2550 */
2551 unsigned count = util_last_bit64(shader->bt.samplers_used_mask);
2552
2553 if (!count)
2554 return;
2555
2556 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
2557 * in the dynamic state memory zone, so we can point to it via the
2558 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
2559 */
2560 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
2561 uint32_t *map =
2562 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
2563 if (unlikely(!map))
2564 return;
2565
2566 struct pipe_resource *res = shs->sampler_table.res;
2567 struct iris_bo *bo = iris_resource_bo(res);
2568
2569 iris_record_state_size(ice->state.sizes,
2570 bo->address + shs->sampler_table.offset, size);
2571
2572 shs->sampler_table.offset += iris_bo_offset_from_base_address(bo);
2573
2574 ice->state.need_border_colors &= ~(1 << stage);
2575
2576 for (int i = 0; i < count; i++) {
2577 struct iris_sampler_state *state = shs->samplers[i];
2578 struct iris_sampler_view *tex = shs->textures[i];
2579
2580 if (!state) {
2581 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
2582 } else {
2583 const uint32_t *sampler_state = state->sampler_state;
2584
2585 #if GFX_VERx10 == 125
2586 if (intel_needs_workaround(screen->devinfo, 14014414195) &&
2587 tex && tex->res->base.b.target == PIPE_TEXTURE_3D) {
2588 sampler_state = state->sampler_state_3d;
2589 }
2590 #endif
2591
2592 if (!state->needs_border_color) {
2593 memcpy(map, sampler_state, 4 * GENX(SAMPLER_STATE_length));
2594 } else {
2595 ice->state.need_border_colors |= 1 << stage;
2596
2597 /* We may need to swizzle the border color for format faking.
2598 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
2599 * This means we need to move the border color's A channel into
2600 * the R or G channels so that those read swizzles will move it
2601 * back into A.
2602 */
2603 union pipe_color_union *color = &state->border_color;
2604 union pipe_color_union tmp;
2605 if (tex) {
2606 enum pipe_format internal_format = tex->res->internal_format;
2607
2608 if (util_format_is_alpha(internal_format)) {
2609 unsigned char swz[4] = {
2610 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
2611 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2612 };
2613 util_format_apply_color_swizzle(&tmp, color, swz, true);
2614 color = &tmp;
2615 } else if (util_format_is_luminance_alpha(internal_format) &&
2616 internal_format != PIPE_FORMAT_L8A8_SRGB) {
2617 unsigned char swz[4] = {
2618 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
2619 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2620 };
2621 util_format_apply_color_swizzle(&tmp, color, swz, true);
2622 color = &tmp;
2623 }
2624 }
2625
2626 /* Stream out the border color and merge the pointer. */
2627 uint32_t offset = iris_upload_border_color(border_color_pool,
2628 color);
2629
2630 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
2631 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
2632 dyns.BorderColorPointer = offset;
2633 }
2634
2635 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
2636 map[j] = sampler_state[j] | dynamic[j];
2637 }
2638 }
2639
2640 map += GENX(SAMPLER_STATE_length);
2641 }
2642 }
2643
2644 static enum isl_channel_select
fmt_swizzle(const struct iris_format_info * fmt,enum pipe_swizzle swz)2645 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
2646 {
2647 switch (swz) {
2648 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
2649 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
2650 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
2651 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
2652 case PIPE_SWIZZLE_1: return ISL_CHANNEL_SELECT_ONE;
2653 case PIPE_SWIZZLE_0: return ISL_CHANNEL_SELECT_ZERO;
2654 default: unreachable("invalid swizzle");
2655 }
2656 }
2657
2658 static void
fill_buffer_surface_state(struct isl_device * isl_dev,struct iris_resource * res,void * map,enum isl_format format,struct isl_swizzle swizzle,unsigned offset,unsigned size,isl_surf_usage_flags_t usage)2659 fill_buffer_surface_state(struct isl_device *isl_dev,
2660 struct iris_resource *res,
2661 void *map,
2662 enum isl_format format,
2663 struct isl_swizzle swizzle,
2664 unsigned offset,
2665 unsigned size,
2666 isl_surf_usage_flags_t usage)
2667 {
2668 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2669 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
2670
2671 /* The ARB_texture_buffer_specification says:
2672 *
2673 * "The number of texels in the buffer texture's texel array is given by
2674 *
2675 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
2676 *
2677 * where <buffer_size> is the size of the buffer object, in basic
2678 * machine units and <components> and <base_type> are the element count
2679 * and base data type for elements, as specified in Table X.1. The
2680 * number of texels in the texel array is then clamped to the
2681 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
2682 *
2683 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
2684 * so that when ISL divides by stride to obtain the number of texels, that
2685 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
2686 */
2687 unsigned final_size =
2688 MIN3(size, res->bo->size - res->offset - offset,
2689 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
2690
2691 isl_buffer_fill_state(isl_dev, map,
2692 .address = res->bo->address + res->offset + offset,
2693 .size_B = final_size,
2694 .format = format,
2695 .swizzle = swizzle,
2696 .stride_B = cpp,
2697 .mocs = iris_mocs(res->bo, isl_dev, usage));
2698 }
2699
2700 #define SURFACE_STATE_ALIGNMENT 64
2701
2702 /**
2703 * Allocate several contiguous SURFACE_STATE structures, one for each
2704 * supported auxiliary surface mode. This only allocates the CPU-side
2705 * copy, they will need to be uploaded later after they're filled in.
2706 */
2707 static void
alloc_surface_states(struct iris_surface_state * surf_state,unsigned aux_usages)2708 alloc_surface_states(struct iris_surface_state *surf_state,
2709 unsigned aux_usages)
2710 {
2711 enum { surf_size = 4 * GENX(RENDER_SURFACE_STATE_length) };
2712
2713 /* If this changes, update this to explicitly align pointers */
2714 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
2715
2716 assert(aux_usages != 0);
2717
2718 /* In case we're re-allocating them... */
2719 free(surf_state->cpu);
2720
2721 surf_state->aux_usages = aux_usages;
2722 surf_state->num_states = util_bitcount(aux_usages);
2723 surf_state->cpu = calloc(surf_state->num_states, surf_size);
2724 surf_state->ref.offset = 0;
2725 pipe_resource_reference(&surf_state->ref.res, NULL);
2726
2727 assert(surf_state->cpu);
2728 }
2729
2730 /**
2731 * Upload the CPU side SURFACE_STATEs into a GPU buffer.
2732 */
2733 static void
upload_surface_states(struct u_upload_mgr * mgr,struct iris_surface_state * surf_state)2734 upload_surface_states(struct u_upload_mgr *mgr,
2735 struct iris_surface_state *surf_state)
2736 {
2737 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2738 const unsigned bytes = surf_state->num_states * surf_size;
2739
2740 void *map =
2741 upload_state(mgr, &surf_state->ref, bytes, SURFACE_STATE_ALIGNMENT);
2742
2743 surf_state->ref.offset +=
2744 iris_bo_offset_from_base_address(iris_resource_bo(surf_state->ref.res));
2745
2746 if (map)
2747 memcpy(map, surf_state->cpu, bytes);
2748 }
2749
2750 /**
2751 * Update resource addresses in a set of SURFACE_STATE descriptors,
2752 * and re-upload them if necessary.
2753 */
2754 static bool
update_surface_state_addrs(struct u_upload_mgr * mgr,struct iris_surface_state * surf_state,struct iris_bo * bo)2755 update_surface_state_addrs(struct u_upload_mgr *mgr,
2756 struct iris_surface_state *surf_state,
2757 struct iris_bo *bo)
2758 {
2759 if (surf_state->bo_address == bo->address)
2760 return false;
2761
2762 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) % 64 == 0);
2763 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_bits) == 64);
2764
2765 uint64_t *ss_addr = (uint64_t *) &surf_state->cpu[GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) / 32];
2766
2767 /* First, update the CPU copies. We assume no other fields exist in
2768 * the QWord containing Surface Base Address.
2769 */
2770 for (unsigned i = 0; i < surf_state->num_states; i++) {
2771 *ss_addr = *ss_addr - surf_state->bo_address + bo->address;
2772 ss_addr = ((void *) ss_addr) + SURFACE_STATE_ALIGNMENT;
2773 }
2774
2775 /* Next, upload the updated copies to a GPU buffer. */
2776 upload_surface_states(mgr, surf_state);
2777
2778 surf_state->bo_address = bo->address;
2779
2780 return true;
2781 }
2782
2783 /* We should only use this function when it's needed to fill out
2784 * surf with information provided by the pipe_(image|sampler)_view.
2785 * This is only necessary for CL extension cl_khr_image2d_from_buffer.
2786 * This is the reason why ISL_SURF_DIM_2D is hardcoded on dim field.
2787 */
2788 static void
fill_surf_for_tex2d_from_buffer(struct isl_device * isl_dev,enum isl_format format,unsigned width,unsigned height,unsigned row_stride,isl_surf_usage_flags_t usage,struct isl_surf * surf)2789 fill_surf_for_tex2d_from_buffer(struct isl_device *isl_dev,
2790 enum isl_format format,
2791 unsigned width,
2792 unsigned height,
2793 unsigned row_stride,
2794 isl_surf_usage_flags_t usage,
2795 struct isl_surf *surf)
2796 {
2797 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2798 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
2799
2800 const struct isl_surf_init_info init_info = {
2801 .dim = ISL_SURF_DIM_2D,
2802 .format = format,
2803 .width = width,
2804 .height = height,
2805 .depth = 1,
2806 .levels = 1,
2807 .array_len = 1,
2808 .samples = 1,
2809 .min_alignment_B = 4,
2810 .row_pitch_B = row_stride * cpp,
2811 .usage = usage,
2812 .tiling_flags = ISL_TILING_LINEAR_BIT,
2813 };
2814
2815 const bool isl_surf_created_successfully =
2816 isl_surf_init_s(isl_dev, surf, &init_info);
2817
2818 assert(isl_surf_created_successfully);
2819 }
2820
2821 static void
fill_surface_state(struct isl_device * isl_dev,void * map,struct iris_resource * res,struct isl_surf * surf,struct isl_view * view,unsigned aux_usage,uint32_t extra_main_offset,uint32_t tile_x_sa,uint32_t tile_y_sa)2822 fill_surface_state(struct isl_device *isl_dev,
2823 void *map,
2824 struct iris_resource *res,
2825 struct isl_surf *surf,
2826 struct isl_view *view,
2827 unsigned aux_usage,
2828 uint32_t extra_main_offset,
2829 uint32_t tile_x_sa,
2830 uint32_t tile_y_sa)
2831 {
2832 struct isl_surf_fill_state_info f = {
2833 .surf = surf,
2834 .view = view,
2835 .mocs = iris_mocs(res->bo, isl_dev, view->usage),
2836 .address = res->bo->address + res->offset + extra_main_offset,
2837 .x_offset_sa = tile_x_sa,
2838 .y_offset_sa = tile_y_sa,
2839 };
2840
2841 if (aux_usage != ISL_AUX_USAGE_NONE) {
2842 f.aux_surf = &res->aux.surf;
2843 f.aux_usage = aux_usage;
2844 f.clear_color = res->aux.clear_color;
2845
2846 if (aux_usage == ISL_AUX_USAGE_MC)
2847 f.mc_format = iris_format_for_usage(isl_dev->info,
2848 res->external_format,
2849 surf->usage).fmt;
2850
2851 if (res->aux.bo)
2852 f.aux_address = res->aux.bo->address + res->aux.offset;
2853
2854 if (res->aux.clear_color_bo) {
2855 f.clear_address = res->aux.clear_color_bo->address +
2856 res->aux.clear_color_offset;
2857 f.use_clear_address = isl_dev->info->ver > 9;
2858 }
2859 }
2860
2861 isl_surf_fill_state_s(isl_dev, map, &f);
2862 }
2863
2864 static void
fill_surface_states(struct isl_device * isl_dev,struct iris_surface_state * surf_state,struct iris_resource * res,struct isl_surf * surf,struct isl_view * view,uint64_t extra_main_offset,uint32_t tile_x_sa,uint32_t tile_y_sa)2865 fill_surface_states(struct isl_device *isl_dev,
2866 struct iris_surface_state *surf_state,
2867 struct iris_resource *res,
2868 struct isl_surf *surf,
2869 struct isl_view *view,
2870 uint64_t extra_main_offset,
2871 uint32_t tile_x_sa,
2872 uint32_t tile_y_sa)
2873 {
2874 void *map = surf_state->cpu;
2875 unsigned aux_modes = surf_state->aux_usages;
2876
2877 while (aux_modes) {
2878 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2879
2880 fill_surface_state(isl_dev, map, res, surf, view, aux_usage,
2881 extra_main_offset, tile_x_sa, tile_y_sa);
2882
2883 map += SURFACE_STATE_ALIGNMENT;
2884 }
2885 }
2886
2887 /**
2888 * The pipe->create_sampler_view() driver hook.
2889 */
2890 static struct pipe_sampler_view *
iris_create_sampler_view(struct pipe_context * ctx,struct pipe_resource * tex,const struct pipe_sampler_view * tmpl)2891 iris_create_sampler_view(struct pipe_context *ctx,
2892 struct pipe_resource *tex,
2893 const struct pipe_sampler_view *tmpl)
2894 {
2895 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2896 const struct intel_device_info *devinfo = screen->devinfo;
2897 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
2898
2899 if (!isv)
2900 return NULL;
2901
2902 /* initialize base object */
2903 isv->base = *tmpl;
2904 isv->base.context = ctx;
2905 isv->base.texture = NULL;
2906 pipe_reference_init(&isv->base.reference, 1);
2907 pipe_resource_reference(&isv->base.texture, tex);
2908
2909 if (util_format_is_depth_or_stencil(tmpl->format)) {
2910 struct iris_resource *zres, *sres;
2911 const struct util_format_description *desc =
2912 util_format_description(tmpl->format);
2913
2914 iris_get_depth_stencil_resources(tex, &zres, &sres);
2915
2916 tex = util_format_has_depth(desc) ? &zres->base.b : &sres->base.b;
2917 }
2918
2919 isv->res = (struct iris_resource *) tex;
2920
2921 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
2922
2923 if (isv->base.target == PIPE_TEXTURE_CUBE ||
2924 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
2925 usage |= ISL_SURF_USAGE_CUBE_BIT;
2926
2927 const struct iris_format_info fmt =
2928 iris_format_for_usage(devinfo, tmpl->format, usage);
2929
2930 isv->clear_color = isv->res->aux.clear_color;
2931
2932 isv->view = (struct isl_view) {
2933 .format = fmt.fmt,
2934 .swizzle = (struct isl_swizzle) {
2935 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
2936 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
2937 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
2938 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
2939 },
2940 .usage = usage,
2941 };
2942
2943 unsigned aux_usages = 0;
2944
2945 if ((isv->res->aux.usage == ISL_AUX_USAGE_CCS_D ||
2946 isv->res->aux.usage == ISL_AUX_USAGE_CCS_E ||
2947 isv->res->aux.usage == ISL_AUX_USAGE_FCV_CCS_E) &&
2948 !isl_format_supports_ccs_e(devinfo, isv->view.format)) {
2949 aux_usages = 1 << ISL_AUX_USAGE_NONE;
2950 } else if (isl_aux_usage_has_hiz(isv->res->aux.usage) &&
2951 !iris_sample_with_depth_aux(devinfo, isv->res)) {
2952 aux_usages = 1 << ISL_AUX_USAGE_NONE;
2953 } else {
2954 aux_usages = 1 << ISL_AUX_USAGE_NONE |
2955 1 << isv->res->aux.usage;
2956 }
2957
2958 alloc_surface_states(&isv->surface_state, aux_usages);
2959 isv->surface_state.bo_address = isv->res->bo->address;
2960
2961 /* Fill out SURFACE_STATE for this view. */
2962 if (tmpl->target != PIPE_BUFFER) {
2963 isv->view.base_level = tmpl->u.tex.first_level;
2964 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
2965
2966 if (tmpl->target == PIPE_TEXTURE_3D) {
2967 isv->view.base_array_layer = 0;
2968 isv->view.array_len = 1;
2969 } else {
2970 #if GFX_VER < 9
2971 /* Hardware older than skylake ignores this value */
2972 assert(tex->target != PIPE_TEXTURE_3D || !tmpl->u.tex.first_layer);
2973 #endif
2974 isv->view.base_array_layer = tmpl->u.tex.first_layer;
2975 isv->view.array_len =
2976 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2977 }
2978
2979 fill_surface_states(&screen->isl_dev, &isv->surface_state, isv->res,
2980 &isv->res->surf, &isv->view, 0, 0, 0);
2981 } else if (isv->base.is_tex2d_from_buf) {
2982 /* In case it's a 2d image created from a buffer, we should
2983 * use fill_surface_states function with image parameters provided
2984 * by the CL application
2985 */
2986 isv->view.base_array_layer = 0;
2987 isv->view.array_len = 1;
2988
2989 /* Create temp_surf and fill with values provided by CL application */
2990 struct isl_surf temp_surf;
2991 fill_surf_for_tex2d_from_buffer(&screen->isl_dev, fmt.fmt,
2992 isv->base.u.tex2d_from_buf.width,
2993 isv->base.u.tex2d_from_buf.height,
2994 isv->base.u.tex2d_from_buf.row_stride,
2995 usage,
2996 &temp_surf);
2997
2998 fill_surface_states(&screen->isl_dev, &isv->surface_state, isv->res,
2999 &temp_surf, &isv->view, 0, 0, 0);
3000 } else {
3001 fill_buffer_surface_state(&screen->isl_dev, isv->res,
3002 isv->surface_state.cpu,
3003 isv->view.format, isv->view.swizzle,
3004 tmpl->u.buf.offset, tmpl->u.buf.size,
3005 ISL_SURF_USAGE_TEXTURE_BIT);
3006 }
3007
3008 return &isv->base;
3009 }
3010
3011 static void
iris_sampler_view_destroy(struct pipe_context * ctx,struct pipe_sampler_view * state)3012 iris_sampler_view_destroy(struct pipe_context *ctx,
3013 struct pipe_sampler_view *state)
3014 {
3015 struct iris_sampler_view *isv = (void *) state;
3016 pipe_resource_reference(&state->texture, NULL);
3017 pipe_resource_reference(&isv->surface_state.ref.res, NULL);
3018 free(isv->surface_state.cpu);
3019 free(isv);
3020 }
3021
3022 /**
3023 * The pipe->create_surface() driver hook.
3024 *
3025 * In Gallium nomenclature, "surfaces" are a view of a resource that
3026 * can be bound as a render target or depth/stencil buffer.
3027 */
3028 static struct pipe_surface *
iris_create_surface(struct pipe_context * ctx,struct pipe_resource * tex,const struct pipe_surface * tmpl)3029 iris_create_surface(struct pipe_context *ctx,
3030 struct pipe_resource *tex,
3031 const struct pipe_surface *tmpl)
3032 {
3033 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3034 const struct intel_device_info *devinfo = screen->devinfo;
3035
3036 isl_surf_usage_flags_t usage = 0;
3037 if (tmpl->writable)
3038 usage = ISL_SURF_USAGE_STORAGE_BIT;
3039 else if (util_format_is_depth_or_stencil(tmpl->format))
3040 usage = ISL_SURF_USAGE_DEPTH_BIT;
3041 else
3042 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
3043
3044 const struct iris_format_info fmt =
3045 iris_format_for_usage(devinfo, tmpl->format, usage);
3046
3047 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
3048 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
3049 /* Framebuffer validation will reject this invalid case, but it
3050 * hasn't had the opportunity yet. In the meantime, we need to
3051 * avoid hitting ISL asserts about unsupported formats below.
3052 */
3053 return NULL;
3054 }
3055
3056 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
3057 struct iris_resource *res = (struct iris_resource *) tex;
3058
3059 if (!surf)
3060 return NULL;
3061
3062 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
3063
3064 struct isl_view *view = &surf->view;
3065 *view = (struct isl_view) {
3066 .format = fmt.fmt,
3067 .base_level = tmpl->u.tex.level,
3068 .levels = 1,
3069 .base_array_layer = tmpl->u.tex.first_layer,
3070 .array_len = array_len,
3071 .swizzle = ISL_SWIZZLE_IDENTITY,
3072 .usage = usage,
3073 };
3074
3075 #if GFX_VER == 8
3076 struct isl_view *read_view = &surf->read_view;
3077 *read_view = (struct isl_view) {
3078 .format = fmt.fmt,
3079 .base_level = tmpl->u.tex.level,
3080 .levels = 1,
3081 .base_array_layer = tmpl->u.tex.first_layer,
3082 .array_len = array_len,
3083 .swizzle = ISL_SWIZZLE_IDENTITY,
3084 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
3085 };
3086
3087 struct isl_surf read_surf = res->surf;
3088 uint64_t read_surf_offset_B = 0;
3089 uint32_t read_surf_tile_x_sa = 0, read_surf_tile_y_sa = 0;
3090 if (tex->target == PIPE_TEXTURE_3D && array_len == 1) {
3091 /* The minimum array element field of the surface state structure is
3092 * ignored by the sampler unit for 3D textures on some hardware. If the
3093 * render buffer is a single slice of a 3D texture, create a 2D texture
3094 * covering that slice.
3095 *
3096 * TODO: This only handles the case where we're rendering to a single
3097 * slice of an array texture. If we have layered rendering combined
3098 * with non-coherent FB fetch and a non-zero base_array_layer, then
3099 * we're going to run into problems.
3100 *
3101 * See https://gitlab.freedesktop.org/mesa/mesa/-/issues/4904
3102 */
3103 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
3104 read_view->base_level,
3105 0, read_view->base_array_layer,
3106 &read_surf, &read_surf_offset_B,
3107 &read_surf_tile_x_sa, &read_surf_tile_y_sa);
3108 read_view->base_level = 0;
3109 read_view->base_array_layer = 0;
3110 assert(read_view->array_len == 1);
3111 } else if (tex->target == PIPE_TEXTURE_1D_ARRAY) {
3112 /* Convert 1D array textures to 2D arrays because shaders always provide
3113 * the array index coordinate at the Z component to avoid recompiles
3114 * when changing the texture target of the framebuffer.
3115 */
3116 assert(read_surf.dim_layout == ISL_DIM_LAYOUT_GFX4_2D);
3117 read_surf.dim = ISL_SURF_DIM_2D;
3118 }
3119 #endif
3120
3121 struct isl_surf isl_surf = res->surf;
3122 uint64_t offset_B = 0;
3123 uint32_t tile_x_el = 0, tile_y_el = 0;
3124 if (isl_format_is_compressed(res->surf.format)) {
3125 /* The resource has a compressed format, which is not renderable, but we
3126 * have a renderable view format. We must be attempting to upload
3127 * blocks of compressed data via an uncompressed view.
3128 *
3129 * In this case, we can assume there are no auxiliary buffers, a single
3130 * miplevel, and that the resource is single-sampled. Gallium may try
3131 * and create an uncompressed view with multiple layers, however.
3132 */
3133 assert(res->aux.usage == ISL_AUX_USAGE_NONE);
3134 assert(res->surf.samples == 1);
3135 assert(view->levels == 1);
3136
3137 bool ok = isl_surf_get_uncompressed_surf(&screen->isl_dev,
3138 &res->surf, view,
3139 &isl_surf, view, &offset_B,
3140 &tile_x_el, &tile_y_el);
3141
3142 /* On Broadwell, HALIGN and VALIGN are specified in pixels and are
3143 * hard-coded to align to exactly the block size of the compressed
3144 * texture. This means that, when reinterpreted as a non-compressed
3145 * texture, the tile offsets may be anything.
3146 *
3147 * We need them to be multiples of 4 to be usable in RENDER_SURFACE_STATE,
3148 * so force the state tracker to take fallback paths if they're not.
3149 */
3150 #if GFX_VER == 8
3151 if (tile_x_el % 4 != 0 || tile_y_el % 4 != 0) {
3152 ok = false;
3153 }
3154 #endif
3155
3156 if (!ok) {
3157 free(surf);
3158 return NULL;
3159 }
3160 }
3161
3162 surf->clear_color = res->aux.clear_color;
3163
3164 struct pipe_surface *psurf = &surf->base;
3165 pipe_reference_init(&psurf->reference, 1);
3166 pipe_resource_reference(&psurf->texture, tex);
3167 psurf->context = ctx;
3168 psurf->format = tmpl->format;
3169 psurf->width = isl_surf.logical_level0_px.width;
3170 psurf->height = isl_surf.logical_level0_px.height;
3171 psurf->texture = tex;
3172 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
3173 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
3174 psurf->u.tex.level = tmpl->u.tex.level;
3175
3176 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
3177 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
3178 ISL_SURF_USAGE_STENCIL_BIT))
3179 return psurf;
3180
3181 /* Fill out a SURFACE_STATE for each possible auxiliary surface mode and
3182 * return the pipe_surface.
3183 */
3184 unsigned aux_usages = 0;
3185
3186 if ((res->aux.usage == ISL_AUX_USAGE_CCS_E ||
3187 res->aux.usage == ISL_AUX_USAGE_FCV_CCS_E) &&
3188 !isl_format_supports_ccs_e(devinfo, view->format)) {
3189 aux_usages = 1 << ISL_AUX_USAGE_NONE;
3190 } else {
3191 aux_usages = 1 << ISL_AUX_USAGE_NONE |
3192 1 << res->aux.usage;
3193 }
3194
3195 alloc_surface_states(&surf->surface_state, aux_usages);
3196 surf->surface_state.bo_address = res->bo->address;
3197 fill_surface_states(&screen->isl_dev, &surf->surface_state, res,
3198 &isl_surf, view, offset_B, tile_x_el, tile_y_el);
3199
3200 #if GFX_VER == 8
3201 alloc_surface_states(&surf->surface_state_read, aux_usages);
3202 surf->surface_state_read.bo_address = res->bo->address;
3203 fill_surface_states(&screen->isl_dev, &surf->surface_state_read, res,
3204 &read_surf, read_view, read_surf_offset_B,
3205 read_surf_tile_x_sa, read_surf_tile_y_sa);
3206 #endif
3207
3208 return psurf;
3209 }
3210
3211 #if GFX_VER < 9
3212 static void
fill_default_image_param(struct isl_image_param * param)3213 fill_default_image_param(struct isl_image_param *param)
3214 {
3215 memset(param, 0, sizeof(*param));
3216 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
3217 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
3218 * detailed explanation of these parameters.
3219 */
3220 param->swizzling[0] = 0xff;
3221 param->swizzling[1] = 0xff;
3222 }
3223
3224 static void
fill_buffer_image_param(struct isl_image_param * param,enum pipe_format pfmt,unsigned size)3225 fill_buffer_image_param(struct isl_image_param *param,
3226 enum pipe_format pfmt,
3227 unsigned size)
3228 {
3229 const unsigned cpp = util_format_get_blocksize(pfmt);
3230
3231 fill_default_image_param(param);
3232 param->size[0] = size / cpp;
3233 param->stride[0] = cpp;
3234 }
3235 #else
3236 #define isl_surf_fill_image_param(x, ...)
3237 #define fill_default_image_param(x, ...)
3238 #define fill_buffer_image_param(x, ...)
3239 #endif
3240
3241 /**
3242 * The pipe->set_shader_images() driver hook.
3243 */
3244 static void
iris_set_shader_images(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned start_slot,unsigned count,unsigned unbind_num_trailing_slots,const struct pipe_image_view * p_images)3245 iris_set_shader_images(struct pipe_context *ctx,
3246 enum pipe_shader_type p_stage,
3247 unsigned start_slot, unsigned count,
3248 unsigned unbind_num_trailing_slots,
3249 const struct pipe_image_view *p_images)
3250 {
3251 struct iris_context *ice = (struct iris_context *) ctx;
3252 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3253 gl_shader_stage stage = stage_from_pipe(p_stage);
3254 struct iris_shader_state *shs = &ice->state.shaders[stage];
3255 #if GFX_VER == 8
3256 struct iris_genx_state *genx = ice->state.genx;
3257 struct isl_image_param *image_params = genx->shaders[stage].image_param;
3258 #endif
3259
3260 shs->bound_image_views &=
3261 ~u_bit_consecutive64(start_slot, count + unbind_num_trailing_slots);
3262
3263 for (unsigned i = 0; i < count; i++) {
3264 struct iris_image_view *iv = &shs->image[start_slot + i];
3265
3266 if (p_images && p_images[i].resource) {
3267 const struct pipe_image_view *img = &p_images[i];
3268 struct iris_resource *res = (void *) img->resource;
3269
3270 util_copy_image_view(&iv->base, img);
3271
3272 shs->bound_image_views |= BITFIELD64_BIT(start_slot + i);
3273
3274 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
3275 res->bind_stages |= 1 << stage;
3276
3277 enum isl_format isl_fmt = iris_image_view_get_format(ice, img);
3278
3279 unsigned aux_usages = 1 << ISL_AUX_USAGE_NONE;
3280
3281 /* Gfx12+ supports render compression for images */
3282 if (GFX_VER >= 12 && isl_aux_usage_has_ccs_e(res->aux.usage))
3283 aux_usages |= 1 << ISL_AUX_USAGE_CCS_E;
3284
3285 alloc_surface_states(&iv->surface_state, aux_usages);
3286 iv->surface_state.bo_address = res->bo->address;
3287
3288 if (res->base.b.target != PIPE_BUFFER) {
3289 struct isl_view view = {
3290 .format = isl_fmt,
3291 .base_level = img->u.tex.level,
3292 .levels = 1,
3293 .base_array_layer = img->u.tex.first_layer,
3294 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
3295 .swizzle = ISL_SWIZZLE_IDENTITY,
3296 .usage = ISL_SURF_USAGE_STORAGE_BIT,
3297 };
3298
3299 /* If using untyped fallback. */
3300 if (isl_fmt == ISL_FORMAT_RAW) {
3301 fill_buffer_surface_state(&screen->isl_dev, res,
3302 iv->surface_state.cpu,
3303 isl_fmt, ISL_SWIZZLE_IDENTITY,
3304 0, res->bo->size,
3305 ISL_SURF_USAGE_STORAGE_BIT);
3306 } else {
3307 fill_surface_states(&screen->isl_dev, &iv->surface_state, res,
3308 &res->surf, &view, 0, 0, 0);
3309 }
3310
3311 isl_surf_fill_image_param(&screen->isl_dev,
3312 &image_params[start_slot + i],
3313 &res->surf, &view);
3314 } else if (img->access & PIPE_IMAGE_ACCESS_TEX2D_FROM_BUFFER) {
3315 /* In case it's a 2d image created from a buffer, we should
3316 * use fill_surface_states function with image parameters provided
3317 * by the CL application
3318 */
3319 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
3320 struct isl_view view = {
3321 .format = isl_fmt,
3322 .base_level = 0,
3323 .levels = 1,
3324 .base_array_layer = 0,
3325 .array_len = 1,
3326 .swizzle = ISL_SWIZZLE_IDENTITY,
3327 .usage = usage,
3328 };
3329
3330 /* Create temp_surf and fill with values provided by CL application */
3331 struct isl_surf temp_surf;
3332 enum isl_format fmt = iris_image_view_get_format(ice, img);
3333 fill_surf_for_tex2d_from_buffer(&screen->isl_dev, fmt,
3334 img->u.tex2d_from_buf.width,
3335 img->u.tex2d_from_buf.height,
3336 img->u.tex2d_from_buf.row_stride,
3337 usage,
3338 &temp_surf);
3339
3340 fill_surface_states(&screen->isl_dev, &iv->surface_state, res,
3341 &temp_surf, &view, 0, 0, 0);
3342 isl_surf_fill_image_param(&screen->isl_dev,
3343 &image_params[start_slot + i],
3344 &temp_surf, &view);
3345 } else {
3346 util_range_add(&res->base.b, &res->valid_buffer_range, img->u.buf.offset,
3347 img->u.buf.offset + img->u.buf.size);
3348
3349 fill_buffer_surface_state(&screen->isl_dev, res,
3350 iv->surface_state.cpu,
3351 isl_fmt, ISL_SWIZZLE_IDENTITY,
3352 img->u.buf.offset, img->u.buf.size,
3353 ISL_SURF_USAGE_STORAGE_BIT);
3354 fill_buffer_image_param(&image_params[start_slot + i],
3355 img->format, img->u.buf.size);
3356 }
3357
3358 upload_surface_states(ice->state.surface_uploader, &iv->surface_state);
3359 } else {
3360 pipe_resource_reference(&iv->base.resource, NULL);
3361 pipe_resource_reference(&iv->surface_state.ref.res, NULL);
3362 fill_default_image_param(&image_params[start_slot + i]);
3363 }
3364 }
3365
3366 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
3367 ice->state.dirty |=
3368 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
3369 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
3370
3371 /* Broadwell also needs isl_image_params re-uploaded */
3372 if (GFX_VER < 9) {
3373 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
3374 shs->sysvals_need_upload = true;
3375 }
3376
3377 if (unbind_num_trailing_slots) {
3378 iris_set_shader_images(ctx, p_stage, start_slot + count,
3379 unbind_num_trailing_slots, 0, NULL);
3380 }
3381 }
3382
3383 UNUSED static bool
is_sampler_view_3d(const struct iris_sampler_view * view)3384 is_sampler_view_3d(const struct iris_sampler_view *view)
3385 {
3386 return view && view->res->base.b.target == PIPE_TEXTURE_3D;
3387 }
3388
3389 /**
3390 * The pipe->set_sampler_views() driver hook.
3391 */
3392 static void
iris_set_sampler_views(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned start,unsigned count,unsigned unbind_num_trailing_slots,bool take_ownership,struct pipe_sampler_view ** views)3393 iris_set_sampler_views(struct pipe_context *ctx,
3394 enum pipe_shader_type p_stage,
3395 unsigned start, unsigned count,
3396 unsigned unbind_num_trailing_slots,
3397 bool take_ownership,
3398 struct pipe_sampler_view **views)
3399 {
3400 struct iris_context *ice = (struct iris_context *) ctx;
3401 UNUSED struct iris_screen *screen = (void *) ctx->screen;
3402 UNUSED const struct intel_device_info *devinfo = screen->devinfo;
3403 gl_shader_stage stage = stage_from_pipe(p_stage);
3404 struct iris_shader_state *shs = &ice->state.shaders[stage];
3405 unsigned i;
3406
3407 if (count == 0 && unbind_num_trailing_slots == 0)
3408 return;
3409
3410 BITSET_CLEAR_RANGE(shs->bound_sampler_views, start,
3411 start + count + unbind_num_trailing_slots - 1);
3412
3413 for (i = 0; i < count; i++) {
3414 struct pipe_sampler_view *pview = views ? views[i] : NULL;
3415 struct iris_sampler_view *view = (void *) pview;
3416
3417 #if GFX_VERx10 == 125
3418 if (intel_needs_workaround(screen->devinfo, 14014414195)) {
3419 if (is_sampler_view_3d(shs->textures[start + i]) !=
3420 is_sampler_view_3d(view))
3421 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
3422 }
3423 #endif
3424
3425 if (take_ownership) {
3426 pipe_sampler_view_reference((struct pipe_sampler_view **)
3427 &shs->textures[start + i], NULL);
3428 shs->textures[start + i] = (struct iris_sampler_view *)pview;
3429 } else {
3430 pipe_sampler_view_reference((struct pipe_sampler_view **)
3431 &shs->textures[start + i], pview);
3432 }
3433 if (view) {
3434 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
3435 view->res->bind_stages |= 1 << stage;
3436
3437 BITSET_SET(shs->bound_sampler_views, start + i);
3438
3439 update_surface_state_addrs(ice->state.surface_uploader,
3440 &view->surface_state, view->res->bo);
3441 }
3442 }
3443 for (; i < count + unbind_num_trailing_slots; i++) {
3444 pipe_sampler_view_reference((struct pipe_sampler_view **)
3445 &shs->textures[start + i], NULL);
3446 }
3447
3448 ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_BINDINGS_VS << stage);
3449 ice->state.dirty |=
3450 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
3451 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
3452 }
3453
3454 static void
iris_set_compute_resources(struct pipe_context * ctx,unsigned start,unsigned count,struct pipe_surface ** resources)3455 iris_set_compute_resources(struct pipe_context *ctx,
3456 unsigned start, unsigned count,
3457 struct pipe_surface **resources)
3458 {
3459 assert(count == 0);
3460 }
3461
3462 static void
iris_set_global_binding(struct pipe_context * ctx,unsigned start_slot,unsigned count,struct pipe_resource ** resources,uint32_t ** handles)3463 iris_set_global_binding(struct pipe_context *ctx,
3464 unsigned start_slot, unsigned count,
3465 struct pipe_resource **resources,
3466 uint32_t **handles)
3467 {
3468 struct iris_context *ice = (struct iris_context *) ctx;
3469
3470 assert(start_slot + count <= IRIS_MAX_GLOBAL_BINDINGS);
3471 for (unsigned i = 0; i < count; i++) {
3472 if (resources && resources[i]) {
3473 pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
3474 resources[i]);
3475
3476 struct iris_resource *res = (void *) resources[i];
3477 assert(res->base.b.target == PIPE_BUFFER);
3478 util_range_add(&res->base.b, &res->valid_buffer_range,
3479 0, res->base.b.width0);
3480
3481 uint64_t addr = 0;
3482 memcpy(&addr, handles[i], sizeof(addr));
3483 addr += res->bo->address + res->offset;
3484 memcpy(handles[i], &addr, sizeof(addr));
3485 } else {
3486 pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
3487 NULL);
3488 }
3489 }
3490
3491 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_CS;
3492 }
3493
3494 /**
3495 * The pipe->set_tess_state() driver hook.
3496 */
3497 static void
iris_set_tess_state(struct pipe_context * ctx,const float default_outer_level[4],const float default_inner_level[2])3498 iris_set_tess_state(struct pipe_context *ctx,
3499 const float default_outer_level[4],
3500 const float default_inner_level[2])
3501 {
3502 struct iris_context *ice = (struct iris_context *) ctx;
3503 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
3504
3505 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
3506 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
3507
3508 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_TCS;
3509 shs->sysvals_need_upload = true;
3510 }
3511
3512 static void
iris_set_patch_vertices(struct pipe_context * ctx,uint8_t patch_vertices)3513 iris_set_patch_vertices(struct pipe_context *ctx, uint8_t patch_vertices)
3514 {
3515 struct iris_context *ice = (struct iris_context *) ctx;
3516
3517 ice->state.patch_vertices = patch_vertices;
3518 }
3519
3520 static void
iris_surface_destroy(struct pipe_context * ctx,struct pipe_surface * p_surf)3521 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
3522 {
3523 struct iris_surface *surf = (void *) p_surf;
3524 pipe_resource_reference(&p_surf->texture, NULL);
3525 pipe_resource_reference(&surf->surface_state.ref.res, NULL);
3526 pipe_resource_reference(&surf->surface_state_read.ref.res, NULL);
3527 free(surf->surface_state.cpu);
3528 free(surf->surface_state_read.cpu);
3529 free(surf);
3530 }
3531
3532 static void
iris_set_clip_state(struct pipe_context * ctx,const struct pipe_clip_state * state)3533 iris_set_clip_state(struct pipe_context *ctx,
3534 const struct pipe_clip_state *state)
3535 {
3536 struct iris_context *ice = (struct iris_context *) ctx;
3537 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
3538 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
3539 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
3540
3541 memcpy(&ice->state.clip_planes, state, sizeof(*state));
3542
3543 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS |
3544 IRIS_STAGE_DIRTY_CONSTANTS_GS |
3545 IRIS_STAGE_DIRTY_CONSTANTS_TES;
3546 shs->sysvals_need_upload = true;
3547 gshs->sysvals_need_upload = true;
3548 tshs->sysvals_need_upload = true;
3549 }
3550
3551 /**
3552 * The pipe->set_polygon_stipple() driver hook.
3553 */
3554 static void
iris_set_polygon_stipple(struct pipe_context * ctx,const struct pipe_poly_stipple * state)3555 iris_set_polygon_stipple(struct pipe_context *ctx,
3556 const struct pipe_poly_stipple *state)
3557 {
3558 struct iris_context *ice = (struct iris_context *) ctx;
3559 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
3560 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
3561 }
3562
3563 /**
3564 * The pipe->set_sample_mask() driver hook.
3565 */
3566 static void
iris_set_sample_mask(struct pipe_context * ctx,unsigned sample_mask)3567 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
3568 {
3569 struct iris_context *ice = (struct iris_context *) ctx;
3570
3571 /* We only support 16x MSAA, so we have 16 bits of sample maks.
3572 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
3573 */
3574 ice->state.sample_mask = sample_mask & 0xffff;
3575 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
3576 }
3577
3578 /**
3579 * The pipe->set_scissor_states() driver hook.
3580 *
3581 * This corresponds to our SCISSOR_RECT state structures. It's an
3582 * exact match, so we just store them, and memcpy them out later.
3583 */
3584 static void
iris_set_scissor_states(struct pipe_context * ctx,unsigned start_slot,unsigned num_scissors,const struct pipe_scissor_state * rects)3585 iris_set_scissor_states(struct pipe_context *ctx,
3586 unsigned start_slot,
3587 unsigned num_scissors,
3588 const struct pipe_scissor_state *rects)
3589 {
3590 struct iris_context *ice = (struct iris_context *) ctx;
3591
3592 for (unsigned i = 0; i < num_scissors; i++) {
3593 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
3594 /* If the scissor was out of bounds and got clamped to 0 width/height
3595 * at the bounds, the subtraction of 1 from maximums could produce a
3596 * negative number and thus not clip anything. Instead, just provide
3597 * a min > max scissor inside the bounds, which produces the expected
3598 * no rendering.
3599 */
3600 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
3601 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
3602 };
3603 } else {
3604 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
3605 .minx = rects[i].minx, .miny = rects[i].miny,
3606 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
3607 };
3608 }
3609 }
3610
3611 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
3612 }
3613
3614 /**
3615 * The pipe->set_stencil_ref() driver hook.
3616 *
3617 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
3618 */
3619 static void
iris_set_stencil_ref(struct pipe_context * ctx,const struct pipe_stencil_ref state)3620 iris_set_stencil_ref(struct pipe_context *ctx,
3621 const struct pipe_stencil_ref state)
3622 {
3623 struct iris_context *ice = (struct iris_context *) ctx;
3624 memcpy(&ice->state.stencil_ref, &state, sizeof(state));
3625 if (GFX_VER >= 12)
3626 ice->state.dirty |= IRIS_DIRTY_STENCIL_REF;
3627 else if (GFX_VER >= 9)
3628 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
3629 else
3630 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
3631 }
3632
3633 static float
viewport_extent(const struct pipe_viewport_state * state,int axis,float sign)3634 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
3635 {
3636 return copysignf(state->scale[axis], sign) + state->translate[axis];
3637 }
3638
3639 /**
3640 * The pipe->set_viewport_states() driver hook.
3641 *
3642 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
3643 * the guardband yet, as we need the framebuffer dimensions, but we can
3644 * at least fill out the rest.
3645 */
3646 static void
iris_set_viewport_states(struct pipe_context * ctx,unsigned start_slot,unsigned count,const struct pipe_viewport_state * states)3647 iris_set_viewport_states(struct pipe_context *ctx,
3648 unsigned start_slot,
3649 unsigned count,
3650 const struct pipe_viewport_state *states)
3651 {
3652 struct iris_context *ice = (struct iris_context *) ctx;
3653 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3654
3655 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
3656
3657 /* Fix depth test misrenderings by lowering translated depth range */
3658 if (screen->driconf.lower_depth_range_rate != 1.0f)
3659 ice->state.viewports[start_slot].translate[2] *=
3660 screen->driconf.lower_depth_range_rate;
3661
3662 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
3663
3664 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
3665 !ice->state.cso_rast->depth_clip_far))
3666 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
3667 }
3668
3669 /**
3670 * The pipe->set_framebuffer_state() driver hook.
3671 *
3672 * Sets the current draw FBO, including color render targets, depth,
3673 * and stencil buffers.
3674 */
3675 static void
iris_set_framebuffer_state(struct pipe_context * ctx,const struct pipe_framebuffer_state * state)3676 iris_set_framebuffer_state(struct pipe_context *ctx,
3677 const struct pipe_framebuffer_state *state)
3678 {
3679 struct iris_context *ice = (struct iris_context *) ctx;
3680 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3681 const struct intel_device_info *devinfo = screen->devinfo;
3682 struct isl_device *isl_dev = &screen->isl_dev;
3683 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
3684 struct iris_resource *zres;
3685 struct iris_resource *stencil_res;
3686
3687 unsigned samples = util_framebuffer_get_num_samples(state);
3688 unsigned layers = util_framebuffer_get_num_layers(state);
3689
3690 if (cso->samples != samples) {
3691 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
3692
3693 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
3694 if (GFX_VER >= 9 && (cso->samples == 16 || samples == 16))
3695 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
3696
3697 /* We may need to emit blend state for Wa_14018912822. */
3698 if ((cso->samples > 1) != (samples > 1) &&
3699 intel_needs_workaround(devinfo, 14018912822)) {
3700 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
3701 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
3702 }
3703 }
3704
3705 if (cso->nr_cbufs != state->nr_cbufs) {
3706 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
3707 }
3708
3709 if ((cso->layers == 0) != (layers == 0)) {
3710 ice->state.dirty |= IRIS_DIRTY_CLIP;
3711 }
3712
3713 if (cso->width != state->width || cso->height != state->height) {
3714 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
3715 }
3716
3717 if (cso->zsbuf || state->zsbuf) {
3718 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
3719 }
3720
3721 bool has_integer_rt = false;
3722 for (unsigned i = 0; i < state->nr_cbufs; i++) {
3723 if (state->cbufs[i]) {
3724 enum isl_format ifmt =
3725 isl_format_for_pipe_format(state->cbufs[i]->format);
3726 has_integer_rt |= isl_format_has_int_channel(ifmt);
3727 }
3728 }
3729
3730 /* 3DSTATE_RASTER::AntialiasingEnable */
3731 if (has_integer_rt != ice->state.has_integer_rt ||
3732 cso->samples != samples) {
3733 ice->state.dirty |= IRIS_DIRTY_RASTER;
3734 }
3735
3736 util_copy_framebuffer_state(cso, state);
3737 cso->samples = samples;
3738 cso->layers = layers;
3739
3740 ice->state.has_integer_rt = has_integer_rt;
3741
3742 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
3743
3744 struct isl_view view = {
3745 .base_level = 0,
3746 .levels = 1,
3747 .base_array_layer = 0,
3748 .array_len = 1,
3749 .swizzle = ISL_SWIZZLE_IDENTITY,
3750 };
3751
3752 struct isl_depth_stencil_hiz_emit_info info = {
3753 .view = &view,
3754 .mocs = iris_mocs(NULL, isl_dev, ISL_SURF_USAGE_DEPTH_BIT),
3755 };
3756
3757 if (cso->zsbuf) {
3758 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
3759 &stencil_res);
3760
3761 view.base_level = cso->zsbuf->u.tex.level;
3762 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
3763 view.array_len =
3764 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
3765
3766 if (zres) {
3767 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
3768
3769 info.depth_surf = &zres->surf;
3770 info.depth_address = zres->bo->address + zres->offset;
3771 info.mocs = iris_mocs(zres->bo, isl_dev, view.usage);
3772
3773 view.format = zres->surf.format;
3774
3775 if (iris_resource_level_has_hiz(devinfo, zres, view.base_level)) {
3776 info.hiz_usage = zres->aux.usage;
3777 info.hiz_surf = &zres->aux.surf;
3778 info.hiz_address = zres->aux.bo->address + zres->aux.offset;
3779 }
3780
3781 ice->state.hiz_usage = info.hiz_usage;
3782 }
3783
3784 if (stencil_res) {
3785 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
3786 info.stencil_aux_usage = stencil_res->aux.usage;
3787 info.stencil_surf = &stencil_res->surf;
3788 info.stencil_address = stencil_res->bo->address + stencil_res->offset;
3789 if (!zres) {
3790 view.format = stencil_res->surf.format;
3791 info.mocs = iris_mocs(stencil_res->bo, isl_dev, view.usage);
3792 }
3793 }
3794 }
3795
3796 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
3797
3798 /* Make a null surface for unbound buffers */
3799 void *null_surf_map =
3800 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
3801 4 * GENX(RENDER_SURFACE_STATE_length), 64);
3802 isl_null_fill_state(&screen->isl_dev, null_surf_map,
3803 .size = isl_extent3d(MAX2(cso->width, 1),
3804 MAX2(cso->height, 1),
3805 cso->layers ? cso->layers : 1));
3806 ice->state.null_fb.offset +=
3807 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
3808
3809 /* Render target change */
3810 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_FS;
3811
3812 ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
3813
3814 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
3815
3816 ice->state.stage_dirty |=
3817 ice->state.stage_dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
3818
3819 if (GFX_VER == 8)
3820 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
3821 }
3822
3823 /**
3824 * The pipe->set_constant_buffer() driver hook.
3825 *
3826 * This uploads any constant data in user buffers, and references
3827 * any UBO resources containing constant data.
3828 */
3829 static void
iris_set_constant_buffer(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned index,bool take_ownership,const struct pipe_constant_buffer * input)3830 iris_set_constant_buffer(struct pipe_context *ctx,
3831 enum pipe_shader_type p_stage, unsigned index,
3832 bool take_ownership,
3833 const struct pipe_constant_buffer *input)
3834 {
3835 struct iris_context *ice = (struct iris_context *) ctx;
3836 gl_shader_stage stage = stage_from_pipe(p_stage);
3837 struct iris_shader_state *shs = &ice->state.shaders[stage];
3838 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
3839
3840 /* TODO: Only do this if the buffer changes? */
3841 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
3842
3843 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
3844 shs->bound_cbufs |= 1u << index;
3845
3846 if (input->user_buffer) {
3847 void *map = NULL;
3848 pipe_resource_reference(&cbuf->buffer, NULL);
3849 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
3850 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3851
3852 if (!cbuf->buffer) {
3853 /* Allocation was unsuccessful - just unbind */
3854 iris_set_constant_buffer(ctx, p_stage, index, false, NULL);
3855 return;
3856 }
3857
3858 assert(map);
3859 memcpy(map, input->user_buffer, input->buffer_size);
3860 } else if (input->buffer) {
3861 if (cbuf->buffer != input->buffer) {
3862 ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES |
3863 IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES);
3864 shs->dirty_cbufs |= 1u << index;
3865 }
3866
3867 if (take_ownership) {
3868 pipe_resource_reference(&cbuf->buffer, NULL);
3869 cbuf->buffer = input->buffer;
3870 } else {
3871 pipe_resource_reference(&cbuf->buffer, input->buffer);
3872 }
3873
3874 cbuf->buffer_offset = input->buffer_offset;
3875 }
3876
3877 cbuf->buffer_size =
3878 MIN2(input->buffer_size,
3879 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
3880
3881 struct iris_resource *res = (void *) cbuf->buffer;
3882 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
3883 res->bind_stages |= 1 << stage;
3884 } else {
3885 shs->bound_cbufs &= ~(1u << index);
3886 pipe_resource_reference(&cbuf->buffer, NULL);
3887 }
3888
3889 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
3890 }
3891
3892 static void
upload_sysvals(struct iris_context * ice,gl_shader_stage stage,const struct pipe_grid_info * grid)3893 upload_sysvals(struct iris_context *ice,
3894 gl_shader_stage stage,
3895 const struct pipe_grid_info *grid)
3896 {
3897 UNUSED struct iris_genx_state *genx = ice->state.genx;
3898 struct iris_shader_state *shs = &ice->state.shaders[stage];
3899
3900 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3901 if (!shader || (shader->num_system_values == 0 &&
3902 shader->kernel_input_size == 0))
3903 return;
3904
3905 assert(shader->num_cbufs > 0);
3906
3907 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
3908 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
3909 unsigned system_values_start =
3910 ALIGN(shader->kernel_input_size, sizeof(uint32_t));
3911 unsigned upload_size = system_values_start +
3912 shader->num_system_values * sizeof(uint32_t);
3913 void *map = NULL;
3914
3915 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
3916 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
3917 &cbuf->buffer_offset, &cbuf->buffer, &map);
3918
3919 if (shader->kernel_input_size > 0)
3920 memcpy(map, grid->input, shader->kernel_input_size);
3921
3922 uint32_t *sysval_map = map + system_values_start;
3923 for (int i = 0; i < shader->num_system_values; i++) {
3924 uint32_t sysval = shader->system_values[i];
3925 uint32_t value = 0;
3926
3927 #if GFX_VER >= 9
3928 #define COMPILER(x) BRW_##x
3929 #else
3930 #define COMPILER(x) ELK_##x
3931 #endif
3932
3933 if (ELK_PARAM_DOMAIN(sysval) == ELK_PARAM_DOMAIN_IMAGE) {
3934 #if GFX_VER == 8
3935 unsigned img = ELK_PARAM_IMAGE_IDX(sysval);
3936 unsigned offset = ELK_PARAM_IMAGE_OFFSET(sysval);
3937 struct isl_image_param *param =
3938 &genx->shaders[stage].image_param[img];
3939
3940 assert(offset < sizeof(struct isl_image_param));
3941 value = ((uint32_t *) param)[offset];
3942 #endif
3943 } else if (sysval == COMPILER(PARAM_BUILTIN_ZERO)) {
3944 value = 0;
3945 } else if (COMPILER(PARAM_BUILTIN_IS_CLIP_PLANE(sysval))) {
3946 int plane = COMPILER(PARAM_BUILTIN_CLIP_PLANE_IDX(sysval));
3947 int comp = COMPILER(PARAM_BUILTIN_CLIP_PLANE_COMP(sysval));
3948 value = fui(ice->state.clip_planes.ucp[plane][comp]);
3949 } else if (sysval == COMPILER(PARAM_BUILTIN_PATCH_VERTICES_IN)) {
3950 if (stage == MESA_SHADER_TESS_CTRL) {
3951 value = ice->state.vertices_per_patch;
3952 } else {
3953 assert(stage == MESA_SHADER_TESS_EVAL);
3954 const struct shader_info *tcs_info =
3955 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
3956 if (tcs_info)
3957 value = tcs_info->tess.tcs_vertices_out;
3958 else
3959 value = ice->state.vertices_per_patch;
3960 }
3961 } else if (sysval >= COMPILER(PARAM_BUILTIN_TESS_LEVEL_OUTER_X) &&
3962 sysval <= COMPILER(PARAM_BUILTIN_TESS_LEVEL_OUTER_W)) {
3963 unsigned i = sysval - COMPILER(PARAM_BUILTIN_TESS_LEVEL_OUTER_X);
3964 value = fui(ice->state.default_outer_level[i]);
3965 } else if (sysval == COMPILER(PARAM_BUILTIN_TESS_LEVEL_INNER_X)) {
3966 value = fui(ice->state.default_inner_level[0]);
3967 } else if (sysval == COMPILER(PARAM_BUILTIN_TESS_LEVEL_INNER_Y)) {
3968 value = fui(ice->state.default_inner_level[1]);
3969 } else if (sysval >= COMPILER(PARAM_BUILTIN_WORK_GROUP_SIZE_X) &&
3970 sysval <= COMPILER(PARAM_BUILTIN_WORK_GROUP_SIZE_Z)) {
3971 unsigned i = sysval - COMPILER(PARAM_BUILTIN_WORK_GROUP_SIZE_X);
3972 value = ice->state.last_block[i];
3973 } else if (sysval == COMPILER(PARAM_BUILTIN_WORK_DIM)) {
3974 value = grid->work_dim;
3975 } else {
3976 assert(!"unhandled system value");
3977 }
3978
3979 *sysval_map++ = value;
3980 }
3981
3982 cbuf->buffer_size = upload_size;
3983 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
3984 &shs->constbuf_surf_state[sysval_cbuf_index],
3985 ISL_SURF_USAGE_CONSTANT_BUFFER_BIT);
3986
3987 shs->sysvals_need_upload = false;
3988 }
3989
3990 /**
3991 * The pipe->set_shader_buffers() driver hook.
3992 *
3993 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
3994 * SURFACE_STATE here, as the buffer offset may change each time.
3995 */
3996 static void
iris_set_shader_buffers(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned start_slot,unsigned count,const struct pipe_shader_buffer * buffers,unsigned writable_bitmask)3997 iris_set_shader_buffers(struct pipe_context *ctx,
3998 enum pipe_shader_type p_stage,
3999 unsigned start_slot, unsigned count,
4000 const struct pipe_shader_buffer *buffers,
4001 unsigned writable_bitmask)
4002 {
4003 struct iris_context *ice = (struct iris_context *) ctx;
4004 gl_shader_stage stage = stage_from_pipe(p_stage);
4005 struct iris_shader_state *shs = &ice->state.shaders[stage];
4006
4007 unsigned modified_bits = u_bit_consecutive(start_slot, count);
4008
4009 shs->bound_ssbos &= ~modified_bits;
4010 shs->writable_ssbos &= ~modified_bits;
4011 shs->writable_ssbos |= writable_bitmask << start_slot;
4012
4013 for (unsigned i = 0; i < count; i++) {
4014 if (buffers && buffers[i].buffer) {
4015 struct iris_resource *res = (void *) buffers[i].buffer;
4016 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
4017 struct iris_state_ref *surf_state =
4018 &shs->ssbo_surf_state[start_slot + i];
4019 pipe_resource_reference(&ssbo->buffer, &res->base.b);
4020 ssbo->buffer_offset = buffers[i].buffer_offset;
4021 ssbo->buffer_size =
4022 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
4023
4024 shs->bound_ssbos |= 1 << (start_slot + i);
4025
4026 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
4027
4028 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, usage);
4029
4030 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
4031 res->bind_stages |= 1 << stage;
4032
4033 util_range_add(&res->base.b, &res->valid_buffer_range, ssbo->buffer_offset,
4034 ssbo->buffer_offset + ssbo->buffer_size);
4035 } else {
4036 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
4037 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
4038 NULL);
4039 }
4040 }
4041
4042 ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES |
4043 IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES);
4044 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
4045 }
4046
4047 static void
iris_delete_state(struct pipe_context * ctx,void * state)4048 iris_delete_state(struct pipe_context *ctx, void *state)
4049 {
4050 free(state);
4051 }
4052
4053 /**
4054 * The pipe->set_vertex_buffers() driver hook.
4055 *
4056 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
4057 */
4058 static void
iris_set_vertex_buffers(struct pipe_context * ctx,unsigned count,const struct pipe_vertex_buffer * buffers)4059 iris_set_vertex_buffers(struct pipe_context *ctx,
4060 unsigned count,
4061 const struct pipe_vertex_buffer *buffers)
4062 {
4063 struct iris_context *ice = (struct iris_context *) ctx;
4064 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
4065 struct iris_genx_state *genx = ice->state.genx;
4066
4067 unsigned last_count = util_last_bit64(ice->state.bound_vertex_buffers);
4068 ice->state.bound_vertex_buffers = 0;
4069
4070 for (unsigned i = 0; i < count; i++) {
4071 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
4072 struct iris_vertex_buffer_state *state =
4073 &genx->vertex_buffers[i];
4074
4075 if (!buffer) {
4076 pipe_resource_reference(&state->resource, NULL);
4077 continue;
4078 }
4079
4080 /* We may see user buffers that are NULL bindings. */
4081 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
4082
4083 if (buffer->buffer.resource &&
4084 state->resource != buffer->buffer.resource)
4085 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFER_FLUSHES;
4086
4087 pipe_resource_reference(&state->resource, NULL);
4088 state->resource = buffer->buffer.resource;
4089
4090 struct iris_resource *res = (void *) state->resource;
4091
4092 state->offset = (int) buffer->buffer_offset;
4093
4094 if (res) {
4095 ice->state.bound_vertex_buffers |= 1ull << i;
4096 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
4097 }
4098
4099 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4100 vb.VertexBufferIndex = i;
4101 vb.AddressModifyEnable = true;
4102 /* vb.BufferPitch is merged in dynamically from VE state later */
4103 if (res) {
4104 vb.BufferSize = res->base.b.width0 - (int) buffer->buffer_offset;
4105 vb.BufferStartingAddress =
4106 ro_bo(NULL, res->bo->address + (int) buffer->buffer_offset);
4107 vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
4108 ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
4109 #if GFX_VER >= 12
4110 vb.L3BypassDisable = true;
4111 #endif
4112 } else {
4113 vb.NullVertexBuffer = true;
4114 vb.MOCS = iris_mocs(NULL, &screen->isl_dev,
4115 ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
4116 }
4117 }
4118 }
4119
4120 for (unsigned i = count; i < last_count; i++) {
4121 struct iris_vertex_buffer_state *state =
4122 &genx->vertex_buffers[i];
4123
4124 pipe_resource_reference(&state->resource, NULL);
4125 }
4126
4127 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
4128 }
4129
4130 /**
4131 * Gallium CSO for vertex elements.
4132 */
4133 struct iris_vertex_element_state {
4134 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
4135 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
4136 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
4137 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
4138 uint32_t stride[PIPE_MAX_ATTRIBS];
4139 unsigned vb_count;
4140 unsigned count;
4141 };
4142
4143 /**
4144 * The pipe->create_vertex_elements_state() driver hook.
4145 *
4146 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
4147 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
4148 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
4149 * needed. In these cases we will need information available at draw time.
4150 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
4151 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
4152 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
4153 */
4154 static void *
iris_create_vertex_elements(struct pipe_context * ctx,unsigned count,const struct pipe_vertex_element * state)4155 iris_create_vertex_elements(struct pipe_context *ctx,
4156 unsigned count,
4157 const struct pipe_vertex_element *state)
4158 {
4159 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
4160 const struct intel_device_info *devinfo = screen->devinfo;
4161 struct iris_vertex_element_state *cso =
4162 calloc(1, sizeof(struct iris_vertex_element_state));
4163
4164 cso->count = count;
4165 cso->vb_count = 0;
4166
4167 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
4168 ve.DWordLength =
4169 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
4170 }
4171
4172 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
4173 uint32_t *vfi_pack_dest = cso->vf_instancing;
4174
4175 if (count == 0) {
4176 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4177 ve.Valid = true;
4178 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
4179 ve.Component0Control = VFCOMP_STORE_0;
4180 ve.Component1Control = VFCOMP_STORE_0;
4181 ve.Component2Control = VFCOMP_STORE_0;
4182 ve.Component3Control = VFCOMP_STORE_1_FP;
4183 }
4184
4185 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
4186 }
4187 }
4188
4189 for (int i = 0; i < count; i++) {
4190 const struct iris_format_info fmt =
4191 iris_format_for_usage(devinfo, state[i].src_format, 0);
4192 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
4193 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
4194
4195 switch (isl_format_get_num_channels(fmt.fmt)) {
4196 case 0: comp[0] = VFCOMP_STORE_0; FALLTHROUGH;
4197 case 1: comp[1] = VFCOMP_STORE_0; FALLTHROUGH;
4198 case 2: comp[2] = VFCOMP_STORE_0; FALLTHROUGH;
4199 case 3:
4200 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
4201 : VFCOMP_STORE_1_FP;
4202 break;
4203 }
4204 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4205 ve.EdgeFlagEnable = false;
4206 ve.VertexBufferIndex = state[i].vertex_buffer_index;
4207 ve.Valid = true;
4208 ve.SourceElementOffset = state[i].src_offset;
4209 ve.SourceElementFormat = fmt.fmt;
4210 ve.Component0Control = comp[0];
4211 ve.Component1Control = comp[1];
4212 ve.Component2Control = comp[2];
4213 ve.Component3Control = comp[3];
4214 }
4215
4216 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
4217 vi.VertexElementIndex = i;
4218 vi.InstancingEnable = state[i].instance_divisor > 0;
4219 vi.InstanceDataStepRate = state[i].instance_divisor;
4220 }
4221
4222 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4223 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
4224 cso->stride[state[i].vertex_buffer_index] = state[i].src_stride;
4225 cso->vb_count = MAX2(state[i].vertex_buffer_index + 1, cso->vb_count);
4226 }
4227
4228 /* An alternative version of the last VE and VFI is stored so it
4229 * can be used at draw time in case Vertex Shader uses EdgeFlag
4230 */
4231 if (count) {
4232 const unsigned edgeflag_index = count - 1;
4233 const struct iris_format_info fmt =
4234 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
4235 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
4236 ve.EdgeFlagEnable = true ;
4237 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
4238 ve.Valid = true;
4239 ve.SourceElementOffset = state[edgeflag_index].src_offset;
4240 ve.SourceElementFormat = fmt.fmt;
4241 ve.Component0Control = VFCOMP_STORE_SRC;
4242 ve.Component1Control = VFCOMP_STORE_0;
4243 ve.Component2Control = VFCOMP_STORE_0;
4244 ve.Component3Control = VFCOMP_STORE_0;
4245 }
4246 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
4247 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
4248 * at draw time, as it should change if SGVs are emitted.
4249 */
4250 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
4251 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
4252 }
4253 }
4254
4255 return cso;
4256 }
4257
4258 /**
4259 * The pipe->bind_vertex_elements_state() driver hook.
4260 */
4261 static void
iris_bind_vertex_elements_state(struct pipe_context * ctx,void * state)4262 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
4263 {
4264 struct iris_context *ice = (struct iris_context *) ctx;
4265 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
4266 struct iris_vertex_element_state *new_cso = state;
4267
4268 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
4269 * we need to re-emit it to ensure we're overriding the right one.
4270 */
4271 if (new_cso && cso_changed(count))
4272 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
4273
4274 ice->state.cso_vertex_elements = state;
4275 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
4276 if (new_cso) {
4277 /* re-emit vertex buffer state if stride changes */
4278 if (cso_changed(vb_count) ||
4279 cso_changed_memcmp_elts(stride, new_cso->vb_count))
4280 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
4281 }
4282 }
4283
4284 /**
4285 * The pipe->create_stream_output_target() driver hook.
4286 *
4287 * "Target" here refers to a destination buffer. We translate this into
4288 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
4289 * know which buffer this represents, or whether we ought to zero the
4290 * write-offsets, or append. Those are handled in the set() hook.
4291 */
4292 static struct pipe_stream_output_target *
iris_create_stream_output_target(struct pipe_context * ctx,struct pipe_resource * p_res,unsigned buffer_offset,unsigned buffer_size)4293 iris_create_stream_output_target(struct pipe_context *ctx,
4294 struct pipe_resource *p_res,
4295 unsigned buffer_offset,
4296 unsigned buffer_size)
4297 {
4298 struct iris_resource *res = (void *) p_res;
4299 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
4300 if (!cso)
4301 return NULL;
4302
4303 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
4304
4305 pipe_reference_init(&cso->base.reference, 1);
4306 pipe_resource_reference(&cso->base.buffer, p_res);
4307 cso->base.buffer_offset = buffer_offset;
4308 cso->base.buffer_size = buffer_size;
4309 cso->base.context = ctx;
4310
4311 util_range_add(&res->base.b, &res->valid_buffer_range, buffer_offset,
4312 buffer_offset + buffer_size);
4313
4314 return &cso->base;
4315 }
4316
4317 static void
iris_stream_output_target_destroy(struct pipe_context * ctx,struct pipe_stream_output_target * state)4318 iris_stream_output_target_destroy(struct pipe_context *ctx,
4319 struct pipe_stream_output_target *state)
4320 {
4321 struct iris_stream_output_target *cso = (void *) state;
4322
4323 pipe_resource_reference(&cso->base.buffer, NULL);
4324 pipe_resource_reference(&cso->offset.res, NULL);
4325
4326 free(cso);
4327 }
4328
4329 /**
4330 * The pipe->set_stream_output_targets() driver hook.
4331 *
4332 * At this point, we know which targets are bound to a particular index,
4333 * and also whether we want to append or start over. We can finish the
4334 * 3DSTATE_SO_BUFFER packets we started earlier.
4335 */
4336 static void
iris_set_stream_output_targets(struct pipe_context * ctx,unsigned num_targets,struct pipe_stream_output_target ** targets,const unsigned * offsets)4337 iris_set_stream_output_targets(struct pipe_context *ctx,
4338 unsigned num_targets,
4339 struct pipe_stream_output_target **targets,
4340 const unsigned *offsets)
4341 {
4342 struct iris_context *ice = (struct iris_context *) ctx;
4343 struct iris_genx_state *genx = ice->state.genx;
4344 uint32_t *so_buffers = genx->so_buffers;
4345 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
4346
4347 const bool active = num_targets > 0;
4348 if (ice->state.streamout_active != active) {
4349 ice->state.streamout_active = active;
4350 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
4351
4352 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
4353 * it's a non-pipelined command. If we're switching streamout on, we
4354 * may have missed emitting it earlier, so do so now. (We're already
4355 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
4356 */
4357 if (active) {
4358 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
4359 } else {
4360 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
4361 struct iris_stream_output_target *tgt =
4362 (void *) ice->state.so_target[i];
4363
4364 if (tgt)
4365 iris_dirty_for_history(ice, (void *)tgt->base.buffer);
4366 }
4367 }
4368 }
4369
4370 for (int i = 0; i < 4; i++) {
4371 pipe_so_target_reference(&ice->state.so_target[i],
4372 i < num_targets ? targets[i] : NULL);
4373 }
4374
4375 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
4376 if (!active)
4377 return;
4378
4379 for (unsigned i = 0; i < 4; i++,
4380 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
4381
4382 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
4383 unsigned offset = offsets[i];
4384
4385 if (!tgt) {
4386 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
4387 #if GFX_VER < 12
4388 sob.SOBufferIndex = i;
4389 #else
4390 sob._3DCommandOpcode = 0;
4391 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
4392 #endif
4393 sob.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
4394 }
4395 continue;
4396 }
4397
4398 if (!tgt->offset.res)
4399 upload_state(ctx->const_uploader, &tgt->offset, sizeof(uint32_t), 4);
4400
4401 struct iris_resource *res = (void *) tgt->base.buffer;
4402
4403 /* Note that offsets[i] will either be 0, causing us to zero
4404 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
4405 * "continue appending at the existing offset."
4406 */
4407 assert(offset == 0 || offset == 0xFFFFFFFF);
4408
4409 /* When we're first called with an offset of 0, we want the next
4410 * 3DSTATE_SO_BUFFER packets to reset the offset to the beginning.
4411 * Any further times we emit those packets, we want to use 0xFFFFFFFF
4412 * to continue appending from the current offset.
4413 *
4414 * Note that we might be called by Begin (offset = 0), Pause, then
4415 * Resume (offset = 0xFFFFFFFF) before ever drawing (where these
4416 * commands will actually be sent to the GPU). In this case, we
4417 * don't want to append - we still want to do our initial zeroing.
4418 */
4419 if (offset == 0)
4420 tgt->zero_offset = true;
4421
4422 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
4423 #if GFX_VER < 12
4424 sob.SOBufferIndex = i;
4425 #else
4426 sob._3DCommandOpcode = 0;
4427 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
4428 #endif
4429 sob.SurfaceBaseAddress =
4430 rw_bo(NULL, res->bo->address + tgt->base.buffer_offset,
4431 IRIS_DOMAIN_OTHER_WRITE);
4432 sob.SOBufferEnable = true;
4433 sob.StreamOffsetWriteEnable = true;
4434 sob.StreamOutputBufferOffsetAddressEnable = true;
4435 sob.MOCS = iris_mocs(res->bo, &screen->isl_dev,
4436 ISL_SURF_USAGE_STREAM_OUT_BIT);
4437
4438 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
4439 sob.StreamOutputBufferOffsetAddress =
4440 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->address +
4441 tgt->offset.offset, IRIS_DOMAIN_OTHER_WRITE);
4442 sob.StreamOffset = 0xFFFFFFFF; /* not offset, see above */
4443 }
4444 }
4445
4446 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
4447 }
4448
4449 /**
4450 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
4451 * 3DSTATE_STREAMOUT packets.
4452 *
4453 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
4454 * hardware to record. We can create it entirely based on the shader, with
4455 * no dynamic state dependencies.
4456 *
4457 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
4458 * state-based settings. We capture the shader-related ones here, and merge
4459 * the rest in at draw time.
4460 */
4461 static uint32_t *
iris_create_so_decl_list(const struct pipe_stream_output_info * info,const struct intel_vue_map * vue_map)4462 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
4463 const struct intel_vue_map *vue_map)
4464 {
4465 struct GENX(SO_DECL) so_decl[PIPE_MAX_VERTEX_STREAMS][128];
4466 int buffer_mask[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
4467 int next_offset[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
4468 int decls[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
4469 int max_decls = 0;
4470 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= PIPE_MAX_SO_OUTPUTS);
4471
4472 memset(so_decl, 0, sizeof(so_decl));
4473
4474 /* Construct the list of SO_DECLs to be emitted. The formatting of the
4475 * command feels strange -- each dword pair contains a SO_DECL per stream.
4476 */
4477 for (unsigned i = 0; i < info->num_outputs; i++) {
4478 const struct pipe_stream_output *output = &info->output[i];
4479 const int buffer = output->output_buffer;
4480 const int varying = output->register_index;
4481 const unsigned stream_id = output->stream;
4482 assert(stream_id < PIPE_MAX_VERTEX_STREAMS);
4483
4484 buffer_mask[stream_id] |= 1 << buffer;
4485
4486 assert(vue_map->varying_to_slot[varying] >= 0);
4487
4488 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
4489 * array. Instead, it simply increments DstOffset for the following
4490 * input by the number of components that should be skipped.
4491 *
4492 * Our hardware is unusual in that it requires us to program SO_DECLs
4493 * for fake "hole" components, rather than simply taking the offset
4494 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
4495 * program as many size = 4 holes as we can, then a final hole to
4496 * accommodate the final 1, 2, or 3 remaining.
4497 */
4498 int skip_components = output->dst_offset - next_offset[buffer];
4499
4500 while (skip_components > 0) {
4501 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
4502 .HoleFlag = 1,
4503 .OutputBufferSlot = output->output_buffer,
4504 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
4505 };
4506 skip_components -= 4;
4507 }
4508
4509 next_offset[buffer] = output->dst_offset + output->num_components;
4510
4511 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
4512 .OutputBufferSlot = output->output_buffer,
4513 .RegisterIndex = vue_map->varying_to_slot[varying],
4514 .ComponentMask =
4515 ((1 << output->num_components) - 1) << output->start_component,
4516 };
4517
4518 if (decls[stream_id] > max_decls)
4519 max_decls = decls[stream_id];
4520 }
4521
4522 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
4523 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
4524 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
4525
4526 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
4527 int urb_entry_read_offset = 0;
4528 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
4529 urb_entry_read_offset;
4530
4531 /* We always read the whole vertex. This could be reduced at some
4532 * point by reading less and offsetting the register index in the
4533 * SO_DECLs.
4534 */
4535 sol.Stream0VertexReadOffset = urb_entry_read_offset;
4536 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
4537 sol.Stream1VertexReadOffset = urb_entry_read_offset;
4538 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
4539 sol.Stream2VertexReadOffset = urb_entry_read_offset;
4540 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
4541 sol.Stream3VertexReadOffset = urb_entry_read_offset;
4542 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
4543
4544 /* Set buffer pitches; 0 means unbound. */
4545 sol.Buffer0SurfacePitch = 4 * info->stride[0];
4546 sol.Buffer1SurfacePitch = 4 * info->stride[1];
4547 sol.Buffer2SurfacePitch = 4 * info->stride[2];
4548 sol.Buffer3SurfacePitch = 4 * info->stride[3];
4549 }
4550
4551 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
4552 list.DWordLength = 3 + 2 * max_decls - 2;
4553 list.StreamtoBufferSelects0 = buffer_mask[0];
4554 list.StreamtoBufferSelects1 = buffer_mask[1];
4555 list.StreamtoBufferSelects2 = buffer_mask[2];
4556 list.StreamtoBufferSelects3 = buffer_mask[3];
4557 list.NumEntries0 = decls[0];
4558 list.NumEntries1 = decls[1];
4559 list.NumEntries2 = decls[2];
4560 list.NumEntries3 = decls[3];
4561 }
4562
4563 for (int i = 0; i < max_decls; i++) {
4564 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
4565 entry.Stream0Decl = so_decl[0][i];
4566 entry.Stream1Decl = so_decl[1][i];
4567 entry.Stream2Decl = so_decl[2][i];
4568 entry.Stream3Decl = so_decl[3][i];
4569 }
4570 }
4571
4572 return map;
4573 }
4574
4575 static inline int
iris_compute_first_urb_slot_required(uint64_t inputs_read,const struct intel_vue_map * prev_stage_vue_map)4576 iris_compute_first_urb_slot_required(uint64_t inputs_read,
4577 const struct intel_vue_map *prev_stage_vue_map)
4578 {
4579 #if GFX_VER >= 9
4580 return brw_compute_first_urb_slot_required(inputs_read, prev_stage_vue_map);
4581 #else
4582 return elk_compute_first_urb_slot_required(inputs_read, prev_stage_vue_map);
4583 #endif
4584 }
4585
4586 static void
iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,const struct intel_vue_map * last_vue_map,bool two_sided_color,unsigned * out_offset,unsigned * out_length)4587 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
4588 const struct intel_vue_map *last_vue_map,
4589 bool two_sided_color,
4590 unsigned *out_offset,
4591 unsigned *out_length)
4592 {
4593 /* The compiler computes the first URB slot without considering COL/BFC
4594 * swizzling (because it doesn't know whether it's enabled), so we need
4595 * to do that here too. This may result in a smaller offset, which
4596 * should be safe.
4597 */
4598 const unsigned first_slot =
4599 iris_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
4600
4601 /* This becomes the URB read offset (counted in pairs of slots). */
4602 assert(first_slot % 2 == 0);
4603 *out_offset = first_slot / 2;
4604
4605 /* We need to adjust the inputs read to account for front/back color
4606 * swizzling, as it can make the URB length longer.
4607 */
4608 for (int c = 0; c <= 1; c++) {
4609 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
4610 /* If two sided color is enabled, the fragment shader's gl_Color
4611 * (COL0) input comes from either the gl_FrontColor (COL0) or
4612 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
4613 */
4614 if (two_sided_color)
4615 fs_input_slots |= (VARYING_BIT_BFC0 << c);
4616
4617 /* If front color isn't written, we opt to give them back color
4618 * instead of an undefined value. Switch from COL to BFC.
4619 */
4620 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
4621 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
4622 fs_input_slots |= (VARYING_BIT_BFC0 << c);
4623 }
4624 }
4625 }
4626
4627 /* Compute the minimum URB Read Length necessary for the FS inputs.
4628 *
4629 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
4630 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
4631 *
4632 * "This field should be set to the minimum length required to read the
4633 * maximum source attribute. The maximum source attribute is indicated
4634 * by the maximum value of the enabled Attribute # Source Attribute if
4635 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
4636 * enable is not set.
4637 * read_length = ceiling((max_source_attr + 1) / 2)
4638 *
4639 * [errata] Corruption/Hang possible if length programmed larger than
4640 * recommended"
4641 *
4642 * Similar text exists for Ivy Bridge.
4643 *
4644 * We find the last URB slot that's actually read by the FS.
4645 */
4646 unsigned last_read_slot = last_vue_map->num_slots - 1;
4647 while (last_read_slot > first_slot && !(fs_input_slots &
4648 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
4649 --last_read_slot;
4650
4651 /* The URB read length is the difference of the two, counted in pairs. */
4652 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
4653 }
4654
4655 static void
iris_emit_sbe_swiz(struct iris_batch * batch,const struct iris_context * ice,const struct intel_vue_map * vue_map,unsigned urb_read_offset,unsigned sprite_coord_enables)4656 iris_emit_sbe_swiz(struct iris_batch *batch,
4657 const struct iris_context *ice,
4658 const struct intel_vue_map *vue_map,
4659 unsigned urb_read_offset,
4660 unsigned sprite_coord_enables)
4661 {
4662 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
4663 const struct iris_fs_data *fs_data =
4664 iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
4665 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4666
4667 /* XXX: this should be generated when putting programs in place */
4668
4669 for (uint8_t idx = 0; idx < fs_data->urb_setup_attribs_count; idx++) {
4670 const uint8_t fs_attr = fs_data->urb_setup_attribs[idx];
4671 const int input_index = fs_data->urb_setup[fs_attr];
4672 if (input_index < 0 || input_index >= 16)
4673 continue;
4674
4675 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
4676 &attr_overrides[input_index];
4677 int slot = vue_map->varying_to_slot[fs_attr];
4678
4679 /* Viewport and Layer are stored in the VUE header. We need to override
4680 * them to zero if earlier stages didn't write them, as GL requires that
4681 * they read back as zero when not explicitly set.
4682 */
4683 switch (fs_attr) {
4684 case VARYING_SLOT_VIEWPORT:
4685 case VARYING_SLOT_LAYER:
4686 attr->ComponentOverrideX = true;
4687 attr->ComponentOverrideW = true;
4688 attr->ConstantSource = CONST_0000;
4689
4690 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
4691 attr->ComponentOverrideY = true;
4692 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
4693 attr->ComponentOverrideZ = true;
4694 continue;
4695
4696 default:
4697 break;
4698 }
4699
4700 if (sprite_coord_enables & (1 << input_index))
4701 continue;
4702
4703 /* If there was only a back color written but not front, use back
4704 * as the color instead of undefined.
4705 */
4706 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
4707 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
4708 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
4709 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
4710
4711 /* Not written by the previous stage - undefined. */
4712 if (slot == -1) {
4713 attr->ComponentOverrideX = true;
4714 attr->ComponentOverrideY = true;
4715 attr->ComponentOverrideZ = true;
4716 attr->ComponentOverrideW = true;
4717 attr->ConstantSource = CONST_0001_FLOAT;
4718 continue;
4719 }
4720
4721 /* Compute the location of the attribute relative to the read offset,
4722 * which is counted in 256-bit increments (two 128-bit VUE slots).
4723 */
4724 const int source_attr = slot - 2 * urb_read_offset;
4725 assert(source_attr >= 0 && source_attr <= 32);
4726 attr->SourceAttribute = source_attr;
4727
4728 /* If we are doing two-sided color, and the VUE slot following this one
4729 * represents a back-facing color, then we need to instruct the SF unit
4730 * to do back-facing swizzling.
4731 */
4732 if (cso_rast->light_twoside &&
4733 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
4734 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
4735 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
4736 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
4737 attr->SwizzleSelect = INPUTATTR_FACING;
4738 }
4739
4740 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
4741 for (int i = 0; i < 16; i++)
4742 sbes.Attribute[i] = attr_overrides[i];
4743 }
4744 }
4745
4746 static bool
iris_is_drawing_points(const struct iris_context * ice)4747 iris_is_drawing_points(const struct iris_context *ice)
4748 {
4749 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4750
4751 if (cso_rast->fill_mode_point) {
4752 return true;
4753 }
4754
4755 if (ice->shaders.prog[MESA_SHADER_GEOMETRY]) {
4756 const struct iris_gs_data *gs_data =
4757 iris_gs_data(ice->shaders.prog[MESA_SHADER_GEOMETRY]);
4758 return gs_data->output_topology == _3DPRIM_POINTLIST;
4759 } else if (ice->shaders.prog[MESA_SHADER_TESS_EVAL]) {
4760 const struct iris_tes_data *tes_data =
4761 iris_tes_data(ice->shaders.prog[MESA_SHADER_TESS_EVAL]);
4762 return tes_data->output_topology == INTEL_TESS_OUTPUT_TOPOLOGY_POINT;
4763 } else {
4764 return ice->state.prim_mode == MESA_PRIM_POINTS;
4765 }
4766 }
4767
4768 static unsigned
iris_calculate_point_sprite_overrides(const struct iris_fs_data * fs_data,const struct iris_rasterizer_state * cso)4769 iris_calculate_point_sprite_overrides(const struct iris_fs_data *fs_data,
4770 const struct iris_rasterizer_state *cso)
4771 {
4772 unsigned overrides = 0;
4773
4774 if (fs_data->urb_setup[VARYING_SLOT_PNTC] != -1)
4775 overrides |= 1 << fs_data->urb_setup[VARYING_SLOT_PNTC];
4776
4777 for (int i = 0; i < 8; i++) {
4778 if ((cso->sprite_coord_enable & (1 << i)) &&
4779 fs_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
4780 overrides |= 1 << fs_data->urb_setup[VARYING_SLOT_TEX0 + i];
4781 }
4782
4783 return overrides;
4784 }
4785
4786 static void
iris_emit_sbe(struct iris_batch * batch,const struct iris_context * ice)4787 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
4788 {
4789 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4790 const struct iris_fs_data *fs_data =
4791 iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
4792 const struct intel_vue_map *last_vue_map =
4793 &iris_vue_data(ice->shaders.last_vue_shader)->vue_map;
4794
4795 unsigned urb_read_offset, urb_read_length;
4796 iris_compute_sbe_urb_read_interval(fs_data->inputs,
4797 last_vue_map,
4798 cso_rast->light_twoside,
4799 &urb_read_offset, &urb_read_length);
4800
4801 unsigned sprite_coord_overrides =
4802 iris_is_drawing_points(ice) ?
4803 iris_calculate_point_sprite_overrides(fs_data, cso_rast) : 0;
4804
4805 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
4806 sbe.AttributeSwizzleEnable = true;
4807 sbe.NumberofSFOutputAttributes = fs_data->num_varying_inputs;
4808 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
4809 sbe.VertexURBEntryReadOffset = urb_read_offset;
4810 sbe.VertexURBEntryReadLength = urb_read_length;
4811 sbe.ForceVertexURBEntryReadOffset = true;
4812 sbe.ForceVertexURBEntryReadLength = true;
4813 sbe.ConstantInterpolationEnable = fs_data->flat_inputs;
4814 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
4815 #if GFX_VER >= 9
4816 for (int i = 0; i < 32; i++) {
4817 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
4818 }
4819 #endif
4820
4821 /* Ask the hardware to supply PrimitiveID if the fragment shader
4822 * reads it but a previous stage didn't write one.
4823 */
4824 if ((fs_data->inputs & VARYING_BIT_PRIMITIVE_ID) &&
4825 last_vue_map->varying_to_slot[VARYING_SLOT_PRIMITIVE_ID] == -1) {
4826 sbe.PrimitiveIDOverrideAttributeSelect =
4827 fs_data->urb_setup[VARYING_SLOT_PRIMITIVE_ID];
4828 sbe.PrimitiveIDOverrideComponentX = true;
4829 sbe.PrimitiveIDOverrideComponentY = true;
4830 sbe.PrimitiveIDOverrideComponentZ = true;
4831 sbe.PrimitiveIDOverrideComponentW = true;
4832 }
4833 }
4834
4835 iris_emit_sbe_swiz(batch, ice, last_vue_map, urb_read_offset,
4836 sprite_coord_overrides);
4837 }
4838
4839 /* ------------------------------------------------------------------- */
4840
4841 /**
4842 * Populate VS program key fields based on the current state.
4843 */
4844 static void
iris_populate_vs_key(const struct iris_context * ice,const struct shader_info * info,gl_shader_stage last_stage,struct iris_vs_prog_key * key)4845 iris_populate_vs_key(const struct iris_context *ice,
4846 const struct shader_info *info,
4847 gl_shader_stage last_stage,
4848 struct iris_vs_prog_key *key)
4849 {
4850 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4851
4852 if (info->clip_distance_array_size == 0 &&
4853 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4854 last_stage == MESA_SHADER_VERTEX)
4855 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4856 }
4857
4858 /**
4859 * Populate TCS program key fields based on the current state.
4860 */
4861 static void
iris_populate_tcs_key(const struct iris_context * ice,struct iris_tcs_prog_key * key)4862 iris_populate_tcs_key(const struct iris_context *ice,
4863 struct iris_tcs_prog_key *key)
4864 {
4865 }
4866
4867 /**
4868 * Populate TES program key fields based on the current state.
4869 */
4870 static void
iris_populate_tes_key(const struct iris_context * ice,const struct shader_info * info,gl_shader_stage last_stage,struct iris_tes_prog_key * key)4871 iris_populate_tes_key(const struct iris_context *ice,
4872 const struct shader_info *info,
4873 gl_shader_stage last_stage,
4874 struct iris_tes_prog_key *key)
4875 {
4876 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4877
4878 if (info->clip_distance_array_size == 0 &&
4879 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4880 last_stage == MESA_SHADER_TESS_EVAL)
4881 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4882 }
4883
4884 /**
4885 * Populate GS program key fields based on the current state.
4886 */
4887 static void
iris_populate_gs_key(const struct iris_context * ice,const struct shader_info * info,gl_shader_stage last_stage,struct iris_gs_prog_key * key)4888 iris_populate_gs_key(const struct iris_context *ice,
4889 const struct shader_info *info,
4890 gl_shader_stage last_stage,
4891 struct iris_gs_prog_key *key)
4892 {
4893 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4894
4895 if (info->clip_distance_array_size == 0 &&
4896 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4897 last_stage == MESA_SHADER_GEOMETRY)
4898 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4899 }
4900
4901 /**
4902 * Populate FS program key fields based on the current state.
4903 */
4904 static void
iris_populate_fs_key(const struct iris_context * ice,const struct shader_info * info,struct iris_fs_prog_key * key)4905 iris_populate_fs_key(const struct iris_context *ice,
4906 const struct shader_info *info,
4907 struct iris_fs_prog_key *key)
4908 {
4909 struct iris_screen *screen = (void *) ice->ctx.screen;
4910 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
4911 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
4912 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
4913 const struct iris_blend_state *blend = ice->state.cso_blend;
4914
4915 key->nr_color_regions = fb->nr_cbufs;
4916
4917 key->clamp_fragment_color = rast->clamp_fragment_color;
4918
4919 key->alpha_to_coverage = blend->alpha_to_coverage;
4920
4921 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha_enabled;
4922
4923 key->flat_shade = rast->flatshade &&
4924 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
4925
4926 key->persample_interp = rast->force_persample_interp;
4927 key->multisample_fbo = rast->multisample && fb->samples > 1;
4928
4929 key->coherent_fb_fetch = GFX_VER >= 9;
4930
4931 key->force_dual_color_blend =
4932 screen->driconf.dual_color_blend_by_location &&
4933 (blend->blend_enables & 1) && blend->dual_color_blending;
4934 }
4935
4936 static void
iris_populate_cs_key(const struct iris_context * ice,struct iris_cs_prog_key * key)4937 iris_populate_cs_key(const struct iris_context *ice,
4938 struct iris_cs_prog_key *key)
4939 {
4940 }
4941
4942 static uint32_t
encode_sampler_count(const struct iris_compiled_shader * shader)4943 encode_sampler_count(const struct iris_compiled_shader *shader)
4944 {
4945 uint32_t count = util_last_bit64(shader->bt.samplers_used_mask);
4946 uint32_t count_by_4 = DIV_ROUND_UP(count, 4);
4947
4948 /* We can potentially have way more than 32 samplers and that's ok.
4949 * However, the 3DSTATE_XS packets only have 3 bits to specify how
4950 * many to pre-fetch and all values above 4 are marked reserved.
4951 */
4952 return MIN2(count_by_4, 4);
4953 }
4954
4955 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
4956 pkt.KernelStartPointer = KSP(shader); \
4957 pkt.BindingTableEntryCount = shader->bt.size_bytes / 4; \
4958 pkt.SamplerCount = encode_sampler_count(shader); \
4959 pkt.FloatingPointMode = shader->use_alt_mode; \
4960 \
4961 pkt.DispatchGRFStartRegisterForURBData = \
4962 shader->dispatch_grf_start_reg; \
4963 pkt.prefix##URBEntryReadLength = vue_data->urb_read_length; \
4964 pkt.prefix##URBEntryReadOffset = 0; \
4965 \
4966 pkt.StatisticsEnable = true; \
4967 pkt.Enable = true; \
4968 \
4969 if (shader->total_scratch) { \
4970 INIT_THREAD_SCRATCH_SIZE(pkt) \
4971 }
4972
4973 #if GFX_VERx10 >= 125
4974 #define INIT_THREAD_SCRATCH_SIZE(pkt)
4975 #define MERGE_SCRATCH_ADDR(name) \
4976 { \
4977 uint32_t pkt2[GENX(name##_length)] = {0}; \
4978 _iris_pack_command(batch, GENX(name), pkt2, p) { \
4979 p.ScratchSpaceBuffer = scratch_addr >> 4; \
4980 } \
4981 iris_emit_merge(batch, pkt, pkt2, GENX(name##_length)); \
4982 }
4983 #else
4984 #define INIT_THREAD_SCRATCH_SIZE(pkt) \
4985 pkt.PerThreadScratchSpace = ffs(shader->total_scratch) - 11;
4986 #define MERGE_SCRATCH_ADDR(name) \
4987 { \
4988 uint32_t pkt2[GENX(name##_length)] = {0}; \
4989 _iris_pack_command(batch, GENX(name), pkt2, p) { \
4990 p.ScratchSpaceBasePointer = \
4991 rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE); \
4992 } \
4993 iris_emit_merge(batch, pkt, pkt2, GENX(name##_length)); \
4994 }
4995 #endif
4996
4997
4998 /**
4999 * Encode most of 3DSTATE_VS based on the compiled shader.
5000 */
5001 static void
iris_store_vs_state(const struct intel_device_info * devinfo,struct iris_compiled_shader * shader)5002 iris_store_vs_state(const struct intel_device_info *devinfo,
5003 struct iris_compiled_shader *shader)
5004 {
5005 struct iris_vue_data *vue_data = iris_vue_data(shader);
5006
5007 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
5008 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
5009 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
5010 #if GFX_VER < 20
5011 vs.SIMD8DispatchEnable = true;
5012 #endif
5013 vs.UserClipDistanceCullTestEnableBitmask =
5014 vue_data->cull_distance_mask;
5015 }
5016 }
5017
5018 /**
5019 * Encode most of 3DSTATE_HS based on the compiled shader.
5020 */
5021 static void
iris_store_tcs_state(const struct intel_device_info * devinfo,struct iris_compiled_shader * shader)5022 iris_store_tcs_state(const struct intel_device_info *devinfo,
5023 struct iris_compiled_shader *shader)
5024 {
5025 struct iris_tcs_data *tcs_data = iris_tcs_data(shader);
5026 struct iris_vue_data *vue_data = &tcs_data->base;
5027
5028 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
5029 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
5030
5031 #if GFX_VER >= 12
5032 /* Wa_1604578095:
5033 *
5034 * Hang occurs when the number of max threads is less than 2 times
5035 * the number of instance count. The number of max threads must be
5036 * more than 2 times the number of instance count.
5037 */
5038 assert((devinfo->max_tcs_threads / 2) > tcs_data->instances);
5039 hs.DispatchGRFStartRegisterForURBData = shader->dispatch_grf_start_reg & 0x1f;
5040 hs.DispatchGRFStartRegisterForURBData5 = shader->dispatch_grf_start_reg >> 5;
5041 #endif
5042
5043 hs.InstanceCount = tcs_data->instances - 1;
5044 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
5045 hs.IncludeVertexHandles = true;
5046
5047 #if GFX_VER == 12
5048 /* Patch Count threshold specifies the maximum number of patches that
5049 * will be accumulated before a thread dispatch is forced.
5050 */
5051 hs.PatchCountThreshold = tcs_data->patch_count_threshold;
5052 #endif
5053
5054 #if GFX_VER >= 9
5055 #if GFX_VER < 20
5056 hs.DispatchMode = vue_data->dispatch_mode;
5057 #endif
5058 hs.IncludePrimitiveID = tcs_data->include_primitive_id;
5059 #endif
5060 }
5061 }
5062
5063 /**
5064 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
5065 */
5066 static void
iris_store_tes_state(const struct intel_device_info * devinfo,struct iris_compiled_shader * shader)5067 iris_store_tes_state(const struct intel_device_info *devinfo,
5068 struct iris_compiled_shader *shader)
5069 {
5070 struct iris_tes_data *tes_data = iris_tes_data(shader);
5071 struct iris_vue_data *vue_data = &tes_data->base;
5072
5073 uint32_t *ds_state = (void *) shader->derived_data;
5074 uint32_t *te_state = ds_state + GENX(3DSTATE_DS_length);
5075
5076 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
5077 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
5078
5079 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
5080 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
5081 ds.ComputeWCoordinateEnable =
5082 tes_data->domain == INTEL_TESS_DOMAIN_TRI;
5083
5084 #if GFX_VER >= 12
5085 ds.PrimitiveIDNotRequired = !tes_data->include_primitive_id;
5086 #endif
5087 ds.UserClipDistanceCullTestEnableBitmask =
5088 vue_data->cull_distance_mask;
5089 }
5090
5091 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
5092 te.Partitioning = tes_data->partitioning;
5093 te.OutputTopology = tes_data->output_topology;
5094 te.TEDomain = tes_data->domain;
5095 te.TEEnable = true;
5096 te.MaximumTessellationFactorOdd = 63.0;
5097 te.MaximumTessellationFactorNotOdd = 64.0;
5098 #if GFX_VERx10 >= 125
5099 STATIC_ASSERT(TEDMODE_OFF == 0);
5100 if (intel_needs_workaround(devinfo, 14015055625)) {
5101 te.TessellationDistributionMode = TEDMODE_OFF;
5102 } else if (intel_needs_workaround(devinfo, 22012699309)) {
5103 te.TessellationDistributionMode = TEDMODE_RR_STRICT;
5104 } else {
5105 te.TessellationDistributionMode = TEDMODE_RR_FREE;
5106 }
5107
5108 #if GFX_VER >= 20
5109 te.TessellationDistributionLevel = TEDLEVEL_REGION;
5110 #else
5111 te.TessellationDistributionLevel = TEDLEVEL_PATCH;
5112 #endif
5113 /* 64_TRIANGLES */
5114 te.SmallPatchThreshold = 3;
5115 /* 1K_TRIANGLES */
5116 te.TargetBlockSize = 8;
5117 /* 1K_TRIANGLES */
5118 te.LocalBOPAccumulatorThreshold = 1;
5119 #endif
5120 }
5121 }
5122
5123 /**
5124 * Encode most of 3DSTATE_GS based on the compiled shader.
5125 */
5126 static void
iris_store_gs_state(const struct intel_device_info * devinfo,struct iris_compiled_shader * shader)5127 iris_store_gs_state(const struct intel_device_info *devinfo,
5128 struct iris_compiled_shader *shader)
5129 {
5130 struct iris_gs_data *gs_data = iris_gs_data(shader);
5131 struct iris_vue_data *vue_data = &gs_data->base;
5132
5133 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
5134 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
5135
5136 gs.OutputVertexSize = gs_data->output_vertex_size_hwords * 2 - 1;
5137 gs.OutputTopology = gs_data->output_topology;
5138 gs.ControlDataHeaderSize = gs_data->control_data_header_size_hwords;
5139 gs.InstanceControl = gs_data->invocations - 1;
5140 #if GFX_VER < 20
5141 gs.DispatchMode = DISPATCH_MODE_SIMD8;
5142 #endif
5143 gs.IncludePrimitiveID = gs_data->include_primitive_id;
5144 gs.ControlDataFormat = gs_data->control_data_format;
5145 gs.ReorderMode = TRAILING;
5146 gs.ExpectedVertexCount = gs_data->vertices_in;
5147 gs.MaximumNumberofThreads =
5148 GFX_VER == 8 ? (devinfo->max_gs_threads / 2 - 1)
5149 : (devinfo->max_gs_threads - 1);
5150
5151 if (gs_data->static_vertex_count != -1) {
5152 gs.StaticOutput = true;
5153 gs.StaticOutputVertexCount = gs_data->static_vertex_count;
5154 }
5155 gs.IncludeVertexHandles = vue_data->include_vue_handles;
5156
5157 gs.UserClipDistanceCullTestEnableBitmask = vue_data->cull_distance_mask;
5158
5159 const int urb_entry_write_offset = 1;
5160 const uint32_t urb_entry_output_length =
5161 DIV_ROUND_UP(vue_data->vue_map.num_slots, 2) - urb_entry_write_offset;
5162
5163 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
5164 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
5165 }
5166 }
5167
5168 /**
5169 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
5170 */
5171 static void
iris_store_fs_state(const struct intel_device_info * devinfo,struct iris_compiled_shader * shader)5172 iris_store_fs_state(const struct intel_device_info *devinfo,
5173 struct iris_compiled_shader *shader)
5174 {
5175 struct iris_fs_data *fs_data = iris_fs_data(shader);
5176
5177 uint32_t *ps_state = (void *) shader->derived_data;
5178 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
5179
5180 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
5181 ps.VectorMaskEnable = fs_data->uses_vmask;
5182 ps.BindingTableEntryCount = shader->bt.size_bytes / 4;
5183 ps.SamplerCount = encode_sampler_count(shader);
5184 ps.FloatingPointMode = shader->use_alt_mode;
5185 ps.MaximumNumberofThreadsPerPSD =
5186 devinfo->max_threads_per_psd - (GFX_VER == 8 ? 2 : 1);
5187
5188 #if GFX_VER < 20
5189 ps.PushConstantEnable = shader->ubo_ranges[0].length > 0;
5190 #endif
5191
5192 /* From the documentation for this packet:
5193 * "If the PS kernel does not need the Position XY Offsets to
5194 * compute a Position Value, then this field should be programmed
5195 * to POSOFFSET_NONE."
5196 *
5197 * "SW Recommendation: If the PS kernel needs the Position Offsets
5198 * to compute a Position XY value, this field should match Position
5199 * ZW Interpolation Mode to ensure a consistent position.xyzw
5200 * computation."
5201 *
5202 * We only require XY sample offsets. So, this recommendation doesn't
5203 * look useful at the moment. We might need this in future.
5204 */
5205 ps.PositionXYOffsetSelect =
5206 fs_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
5207
5208 if (shader->total_scratch) {
5209 INIT_THREAD_SCRATCH_SIZE(ps);
5210 }
5211 }
5212
5213 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
5214 psx.PixelShaderValid = true;
5215 psx.PixelShaderComputedDepthMode = fs_data->computed_depth_mode;
5216 psx.PixelShaderKillsPixel = fs_data->uses_kill;
5217 #if GFX_VER < 20
5218 psx.AttributeEnable = fs_data->num_varying_inputs != 0;
5219 #endif
5220 psx.PixelShaderUsesSourceDepth = fs_data->uses_src_depth;
5221 psx.PixelShaderUsesSourceW = fs_data->uses_src_w;
5222 psx.PixelShaderIsPerSample = fs_data->is_per_sample;
5223 psx.oMaskPresenttoRenderTarget = fs_data->uses_omask;
5224
5225 #if GFX_VER >= 9
5226 #if GFX_VER >= 20
5227 assert(!fs_data->pulls_bary);
5228 #else
5229 psx.PixelShaderPullsBary = fs_data->pulls_bary;
5230 #endif
5231 psx.PixelShaderComputesStencil = fs_data->computed_stencil;
5232 #endif
5233 }
5234 }
5235
5236 /**
5237 * Compute the size of the derived data (shader command packets).
5238 *
5239 * This must match the data written by the iris_store_xs_state() functions.
5240 */
5241 static void
iris_store_cs_state(const struct intel_device_info * devinfo,struct iris_compiled_shader * shader)5242 iris_store_cs_state(const struct intel_device_info *devinfo,
5243 struct iris_compiled_shader *shader)
5244 {
5245 struct iris_cs_data *cs_data = iris_cs_data(shader);
5246 void *map = shader->derived_data;
5247
5248 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
5249 #if GFX_VERx10 < 125
5250 desc.ConstantURBEntryReadLength = cs_data->push.per_thread.regs;
5251 desc.CrossThreadConstantDataReadLength =
5252 cs_data->push.cross_thread.regs;
5253 #else
5254 assert(cs_data->push.per_thread.regs == 0);
5255 assert(cs_data->push.cross_thread.regs == 0);
5256 #endif
5257 #if GFX_VERx10 <= 125
5258 desc.BarrierEnable = cs_data->uses_barrier;
5259 #endif
5260 /* Typically set to 0 to avoid prefetching on every thread dispatch. */
5261 desc.BindingTableEntryCount = devinfo->verx10 == 125 ?
5262 0 : MIN2(shader->bt.size_bytes / 4, 31);
5263 desc.SamplerCount = encode_sampler_count(shader);
5264 /* TODO: Check if we are missing workarounds and enable mid-thread
5265 * preemption.
5266 *
5267 * We still have issues with mid-thread preemption (it was already
5268 * disabled by the kernel on gfx11, due to missing workarounds). It's
5269 * possible that we are just missing some workarounds, and could enable
5270 * it later, but for now let's disable it to fix a GPU in compute in Car
5271 * Chase (and possibly more).
5272 */
5273 #if GFX_VER >= 20
5274 desc.ThreadPreemption = false;
5275 #elif GFX_VER >= 12
5276 desc.ThreadPreemptionDisable = true;
5277 #endif
5278 }
5279 }
5280
5281 static unsigned
iris_derived_program_state_size(enum iris_program_cache_id cache_id)5282 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
5283 {
5284 assert(cache_id <= IRIS_CACHE_BLORP);
5285
5286 static const unsigned dwords[] = {
5287 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
5288 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
5289 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
5290 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
5291 [IRIS_CACHE_FS] =
5292 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
5293 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
5294 [IRIS_CACHE_BLORP] = 0,
5295 };
5296
5297 return sizeof(uint32_t) * dwords[cache_id];
5298 }
5299
5300 /**
5301 * Create any state packets corresponding to the given shader stage
5302 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
5303 * This means that we can look up a program in the in-memory cache and
5304 * get most of the state packet without having to reconstruct it.
5305 */
5306 static void
iris_store_derived_program_state(const struct intel_device_info * devinfo,enum iris_program_cache_id cache_id,struct iris_compiled_shader * shader)5307 iris_store_derived_program_state(const struct intel_device_info *devinfo,
5308 enum iris_program_cache_id cache_id,
5309 struct iris_compiled_shader *shader)
5310 {
5311 switch (cache_id) {
5312 case IRIS_CACHE_VS:
5313 iris_store_vs_state(devinfo, shader);
5314 break;
5315 case IRIS_CACHE_TCS:
5316 iris_store_tcs_state(devinfo, shader);
5317 break;
5318 case IRIS_CACHE_TES:
5319 iris_store_tes_state(devinfo, shader);
5320 break;
5321 case IRIS_CACHE_GS:
5322 iris_store_gs_state(devinfo, shader);
5323 break;
5324 case IRIS_CACHE_FS:
5325 iris_store_fs_state(devinfo, shader);
5326 break;
5327 case IRIS_CACHE_CS:
5328 iris_store_cs_state(devinfo, shader);
5329 break;
5330 case IRIS_CACHE_BLORP:
5331 break;
5332 }
5333 }
5334
5335 /* ------------------------------------------------------------------- */
5336
5337 static const uint32_t push_constant_opcodes[] = {
5338 [MESA_SHADER_VERTEX] = 21,
5339 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
5340 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
5341 [MESA_SHADER_GEOMETRY] = 22,
5342 [MESA_SHADER_FRAGMENT] = 23,
5343 [MESA_SHADER_COMPUTE] = 0,
5344 };
5345
5346 static uint32_t
use_null_surface(struct iris_batch * batch,struct iris_context * ice)5347 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
5348 {
5349 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
5350
5351 iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
5352
5353 return ice->state.unbound_tex.offset;
5354 }
5355
5356 static uint32_t
use_null_fb_surface(struct iris_batch * batch,struct iris_context * ice)5357 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
5358 {
5359 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
5360 if (!ice->state.null_fb.res)
5361 return use_null_surface(batch, ice);
5362
5363 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
5364
5365 iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
5366
5367 return ice->state.null_fb.offset;
5368 }
5369
5370 static uint32_t
surf_state_offset_for_aux(unsigned aux_modes,enum isl_aux_usage aux_usage)5371 surf_state_offset_for_aux(unsigned aux_modes,
5372 enum isl_aux_usage aux_usage)
5373 {
5374 assert(aux_modes & (1 << aux_usage));
5375 return SURFACE_STATE_ALIGNMENT *
5376 util_bitcount(aux_modes & ((1 << aux_usage) - 1));
5377 }
5378
5379 #if GFX_VER == 9
5380 static void
surf_state_update_clear_value(struct iris_batch * batch,struct iris_resource * res,struct iris_surface_state * surf_state,enum isl_aux_usage aux_usage)5381 surf_state_update_clear_value(struct iris_batch *batch,
5382 struct iris_resource *res,
5383 struct iris_surface_state *surf_state,
5384 enum isl_aux_usage aux_usage)
5385 {
5386 struct isl_device *isl_dev = &batch->screen->isl_dev;
5387 struct iris_bo *state_bo = iris_resource_bo(surf_state->ref.res);
5388 uint64_t real_offset = surf_state->ref.offset + IRIS_MEMZONE_BINDER_START;
5389 uint32_t offset_into_bo = real_offset - state_bo->address;
5390 uint32_t clear_offset = offset_into_bo +
5391 isl_dev->ss.clear_value_offset +
5392 surf_state_offset_for_aux(surf_state->aux_usages, aux_usage);
5393 uint32_t *color = res->aux.clear_color.u32;
5394
5395 assert(isl_dev->ss.clear_value_size == 16);
5396
5397 if (aux_usage == ISL_AUX_USAGE_HIZ) {
5398 iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
5399 PIPE_CONTROL_WRITE_IMMEDIATE,
5400 state_bo, clear_offset, color[0]);
5401 } else {
5402 iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
5403 PIPE_CONTROL_WRITE_IMMEDIATE,
5404 state_bo, clear_offset,
5405 (uint64_t) color[0] |
5406 (uint64_t) color[1] << 32);
5407 iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
5408 PIPE_CONTROL_WRITE_IMMEDIATE,
5409 state_bo, clear_offset + 8,
5410 (uint64_t) color[2] |
5411 (uint64_t) color[3] << 32);
5412 }
5413
5414 iris_emit_pipe_control_flush(batch,
5415 "update fast clear: state cache invalidate",
5416 PIPE_CONTROL_FLUSH_ENABLE |
5417 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
5418 }
5419 #endif
5420
5421 static void
update_clear_value(struct iris_context * ice,struct iris_batch * batch,struct iris_resource * res,struct iris_surface_state * surf_state,struct isl_view * view)5422 update_clear_value(struct iris_context *ice,
5423 struct iris_batch *batch,
5424 struct iris_resource *res,
5425 struct iris_surface_state *surf_state,
5426 struct isl_view *view)
5427 {
5428 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
5429 UNUSED unsigned aux_modes = surf_state->aux_usages;
5430
5431 /* We only need to update the clear color in the surface state for gfx8 and
5432 * gfx9. Newer gens can read it directly from the clear color state buffer.
5433 */
5434 #if GFX_VER == 9
5435 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
5436 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
5437
5438 while (aux_modes) {
5439 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
5440
5441 surf_state_update_clear_value(batch, res, surf_state, aux_usage);
5442 }
5443 #elif GFX_VER == 8
5444 /* TODO: Could update rather than re-filling */
5445 alloc_surface_states(surf_state, surf_state->aux_usages);
5446
5447 fill_surface_states(isl_dev, surf_state, res, &res->surf, view, 0, 0, 0);
5448
5449 upload_surface_states(ice->state.surface_uploader, surf_state);
5450 #endif
5451 }
5452
5453 static uint32_t
use_surface_state(struct iris_batch * batch,struct iris_surface_state * surf_state,enum isl_aux_usage aux_usage)5454 use_surface_state(struct iris_batch *batch,
5455 struct iris_surface_state *surf_state,
5456 enum isl_aux_usage aux_usage)
5457 {
5458 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->ref.res), false,
5459 IRIS_DOMAIN_NONE);
5460
5461 return surf_state->ref.offset +
5462 surf_state_offset_for_aux(surf_state->aux_usages, aux_usage);
5463 }
5464
5465 /**
5466 * Add a surface to the validation list, as well as the buffer containing
5467 * the corresponding SURFACE_STATE.
5468 *
5469 * Returns the binding table entry (offset to SURFACE_STATE).
5470 */
5471 static uint32_t
use_surface(struct iris_context * ice,struct iris_batch * batch,struct pipe_surface * p_surf,bool writeable,enum isl_aux_usage aux_usage,bool is_read_surface,enum iris_domain access)5472 use_surface(struct iris_context *ice,
5473 struct iris_batch *batch,
5474 struct pipe_surface *p_surf,
5475 bool writeable,
5476 enum isl_aux_usage aux_usage,
5477 bool is_read_surface,
5478 enum iris_domain access)
5479 {
5480 struct iris_surface *surf = (void *) p_surf;
5481 struct iris_resource *res = (void *) p_surf->texture;
5482
5483 if (GFX_VER == 8 && is_read_surface && !surf->surface_state_read.ref.res) {
5484 upload_surface_states(ice->state.surface_uploader,
5485 &surf->surface_state_read);
5486 }
5487
5488 if (!surf->surface_state.ref.res) {
5489 upload_surface_states(ice->state.surface_uploader,
5490 &surf->surface_state);
5491 }
5492
5493 if (memcmp(&res->aux.clear_color, &surf->clear_color,
5494 sizeof(surf->clear_color)) != 0) {
5495 update_clear_value(ice, batch, res, &surf->surface_state, &surf->view);
5496 if (GFX_VER == 8) {
5497 update_clear_value(ice, batch, res, &surf->surface_state_read,
5498 &surf->read_view);
5499 }
5500 surf->clear_color = res->aux.clear_color;
5501 }
5502
5503 if (res->aux.clear_color_bo)
5504 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false, access);
5505
5506 if (res->aux.bo)
5507 iris_use_pinned_bo(batch, res->aux.bo, writeable, access);
5508
5509 iris_use_pinned_bo(batch, res->bo, writeable, access);
5510
5511 if (GFX_VER == 8 && is_read_surface) {
5512 return use_surface_state(batch, &surf->surface_state_read, aux_usage);
5513 } else {
5514 return use_surface_state(batch, &surf->surface_state, aux_usage);
5515 }
5516 }
5517
5518 static uint32_t
use_sampler_view(struct iris_context * ice,struct iris_batch * batch,struct iris_sampler_view * isv)5519 use_sampler_view(struct iris_context *ice,
5520 struct iris_batch *batch,
5521 struct iris_sampler_view *isv)
5522 {
5523 enum isl_aux_usage aux_usage =
5524 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format,
5525 isv->view.base_level, isv->view.levels);
5526
5527 if (!isv->surface_state.ref.res)
5528 upload_surface_states(ice->state.surface_uploader, &isv->surface_state);
5529
5530 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
5531 sizeof(isv->clear_color)) != 0) {
5532 update_clear_value(ice, batch, isv->res, &isv->surface_state,
5533 &isv->view);
5534 isv->clear_color = isv->res->aux.clear_color;
5535 }
5536
5537 if (isv->res->aux.clear_color_bo) {
5538 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo,
5539 false, IRIS_DOMAIN_SAMPLER_READ);
5540 }
5541
5542 if (isv->res->aux.bo) {
5543 iris_use_pinned_bo(batch, isv->res->aux.bo,
5544 false, IRIS_DOMAIN_SAMPLER_READ);
5545 }
5546
5547 iris_use_pinned_bo(batch, isv->res->bo, false, IRIS_DOMAIN_SAMPLER_READ);
5548
5549 return use_surface_state(batch, &isv->surface_state, aux_usage);
5550 }
5551
5552 static uint32_t
use_ubo_ssbo(struct iris_batch * batch,struct iris_context * ice,struct pipe_shader_buffer * buf,struct iris_state_ref * surf_state,bool writable,enum iris_domain access)5553 use_ubo_ssbo(struct iris_batch *batch,
5554 struct iris_context *ice,
5555 struct pipe_shader_buffer *buf,
5556 struct iris_state_ref *surf_state,
5557 bool writable, enum iris_domain access)
5558 {
5559 if (!buf->buffer || !surf_state->res)
5560 return use_null_surface(batch, ice);
5561
5562 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable, access);
5563 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false,
5564 IRIS_DOMAIN_NONE);
5565
5566 return surf_state->offset;
5567 }
5568
5569 static uint32_t
use_image(struct iris_batch * batch,struct iris_context * ice,struct iris_shader_state * shs,const struct shader_info * info,int i)5570 use_image(struct iris_batch *batch, struct iris_context *ice,
5571 struct iris_shader_state *shs, const struct shader_info *info,
5572 int i)
5573 {
5574 struct iris_image_view *iv = &shs->image[i];
5575 struct iris_resource *res = (void *) iv->base.resource;
5576
5577 if (!res)
5578 return use_null_surface(batch, ice);
5579
5580 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
5581
5582 iris_use_pinned_bo(batch, res->bo, write, IRIS_DOMAIN_NONE);
5583
5584 if (res->aux.bo)
5585 iris_use_pinned_bo(batch, res->aux.bo, write, IRIS_DOMAIN_NONE);
5586
5587 if (res->aux.clear_color_bo) {
5588 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false,
5589 IRIS_DOMAIN_NONE);
5590 }
5591
5592 enum isl_aux_usage aux_usage = shs->image_aux_usage[i];
5593
5594 return use_surface_state(batch, &iv->surface_state, aux_usage);
5595 }
5596
5597 #define push_bt_entry(addr) \
5598 assert(addr >= surf_base_offset); \
5599 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
5600 if (!pin_only) bt_map[s++] = (addr) - surf_base_offset;
5601
5602 #define bt_assert(section) \
5603 if (!pin_only && shader->bt.used_mask[section] != 0) \
5604 assert(shader->bt.offsets[section] == s);
5605
5606 /**
5607 * Populate the binding table for a given shader stage.
5608 *
5609 * This fills out the table of pointers to surfaces required by the shader,
5610 * and also adds those buffers to the validation list so the kernel can make
5611 * resident before running our batch.
5612 */
5613 static void
iris_populate_binding_table(struct iris_context * ice,struct iris_batch * batch,gl_shader_stage stage,bool pin_only)5614 iris_populate_binding_table(struct iris_context *ice,
5615 struct iris_batch *batch,
5616 gl_shader_stage stage,
5617 bool pin_only)
5618 {
5619 const struct iris_binder *binder = &ice->state.binder;
5620 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5621 if (!shader)
5622 return;
5623
5624 struct iris_binding_table *bt = &shader->bt;
5625 struct iris_shader_state *shs = &ice->state.shaders[stage];
5626 uint32_t surf_base_offset = GFX_VER < 11 ? binder->bo->address : 0;
5627
5628 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
5629 int s = 0;
5630
5631 const struct shader_info *info = iris_get_shader_info(ice, stage);
5632 if (!info) {
5633 /* TCS passthrough doesn't need a binding table. */
5634 assert(stage == MESA_SHADER_TESS_CTRL);
5635 return;
5636 }
5637
5638 if (stage == MESA_SHADER_COMPUTE &&
5639 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
5640 /* surface for gl_NumWorkGroups */
5641 struct iris_state_ref *grid_data = &ice->state.grid_size;
5642 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
5643 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false,
5644 IRIS_DOMAIN_PULL_CONSTANT_READ);
5645 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false,
5646 IRIS_DOMAIN_NONE);
5647 push_bt_entry(grid_state->offset);
5648 }
5649
5650 if (stage == MESA_SHADER_FRAGMENT) {
5651 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5652 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
5653 if (cso_fb->nr_cbufs) {
5654 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
5655 uint32_t addr;
5656 if (cso_fb->cbufs[i]) {
5657 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
5658 ice->state.draw_aux_usage[i], false,
5659 IRIS_DOMAIN_RENDER_WRITE);
5660 } else {
5661 addr = use_null_fb_surface(batch, ice);
5662 }
5663 push_bt_entry(addr);
5664 }
5665 } else if (GFX_VER < 11) {
5666 uint32_t addr = use_null_fb_surface(batch, ice);
5667 push_bt_entry(addr);
5668 }
5669 }
5670
5671 #define foreach_surface_used(index, group) \
5672 bt_assert(group); \
5673 for (int index = 0; index < bt->sizes[group]; index++) \
5674 if (iris_group_index_to_bti(bt, group, index) != \
5675 IRIS_SURFACE_NOT_USED)
5676
5677 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
5678 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5679 uint32_t addr;
5680 if (cso_fb->cbufs[i]) {
5681 addr = use_surface(ice, batch, cso_fb->cbufs[i],
5682 false, ice->state.draw_aux_usage[i], true,
5683 IRIS_DOMAIN_SAMPLER_READ);
5684 push_bt_entry(addr);
5685 }
5686 }
5687
5688 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE_LOW64) {
5689 struct iris_sampler_view *view = shs->textures[i];
5690 uint32_t addr = view ? use_sampler_view(ice, batch, view)
5691 : use_null_surface(batch, ice);
5692 push_bt_entry(addr);
5693 }
5694
5695 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE_HIGH64) {
5696 struct iris_sampler_view *view = shs->textures[64 + i];
5697 uint32_t addr = view ? use_sampler_view(ice, batch, view)
5698 : use_null_surface(batch, ice);
5699 push_bt_entry(addr);
5700 }
5701
5702 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
5703 uint32_t addr = use_image(batch, ice, shs, info, i);
5704 push_bt_entry(addr);
5705 }
5706
5707 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
5708 uint32_t addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
5709 &shs->constbuf_surf_state[i], false,
5710 IRIS_DOMAIN_PULL_CONSTANT_READ);
5711 push_bt_entry(addr);
5712 }
5713
5714 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
5715 uint32_t addr =
5716 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
5717 shs->writable_ssbos & (1u << i), IRIS_DOMAIN_NONE);
5718 push_bt_entry(addr);
5719 }
5720
5721 #if 0
5722 /* XXX: YUV surfaces not implemented yet */
5723 bt_assert(plane_start[1], ...);
5724 bt_assert(plane_start[2], ...);
5725 #endif
5726 }
5727
5728 static void
iris_use_optional_res(struct iris_batch * batch,struct pipe_resource * res,bool writeable,enum iris_domain access)5729 iris_use_optional_res(struct iris_batch *batch,
5730 struct pipe_resource *res,
5731 bool writeable,
5732 enum iris_domain access)
5733 {
5734 if (res) {
5735 struct iris_bo *bo = iris_resource_bo(res);
5736 iris_use_pinned_bo(batch, bo, writeable, access);
5737 }
5738 }
5739
5740 static void
pin_depth_and_stencil_buffers(struct iris_batch * batch,struct pipe_surface * zsbuf,struct iris_depth_stencil_alpha_state * cso_zsa)5741 pin_depth_and_stencil_buffers(struct iris_batch *batch,
5742 struct pipe_surface *zsbuf,
5743 struct iris_depth_stencil_alpha_state *cso_zsa)
5744 {
5745 if (!zsbuf)
5746 return;
5747
5748 struct iris_resource *zres, *sres;
5749 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
5750
5751 if (zres) {
5752 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled,
5753 IRIS_DOMAIN_DEPTH_WRITE);
5754 if (zres->aux.bo) {
5755 iris_use_pinned_bo(batch, zres->aux.bo,
5756 cso_zsa->depth_writes_enabled,
5757 IRIS_DOMAIN_DEPTH_WRITE);
5758 }
5759 }
5760
5761 if (sres) {
5762 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled,
5763 IRIS_DOMAIN_DEPTH_WRITE);
5764 }
5765 }
5766
5767 static uint32_t
pin_scratch_space(struct iris_context * ice,struct iris_batch * batch,const struct iris_compiled_shader * shader,gl_shader_stage stage)5768 pin_scratch_space(struct iris_context *ice,
5769 struct iris_batch *batch,
5770 const struct iris_compiled_shader *shader,
5771 gl_shader_stage stage)
5772 {
5773 uint32_t scratch_addr = 0;
5774
5775 if (shader->total_scratch > 0) {
5776 struct iris_bo *scratch_bo =
5777 iris_get_scratch_space(ice, shader->total_scratch, stage);
5778 iris_use_pinned_bo(batch, scratch_bo, true, IRIS_DOMAIN_NONE);
5779
5780 #if GFX_VERx10 >= 125
5781 const struct iris_state_ref *ref =
5782 iris_get_scratch_surf(ice, shader->total_scratch);
5783 iris_use_pinned_bo(batch, iris_resource_bo(ref->res),
5784 false, IRIS_DOMAIN_NONE);
5785 scratch_addr = ref->offset +
5786 iris_resource_bo(ref->res)->address -
5787 IRIS_MEMZONE_SCRATCH_START;
5788 assert((scratch_addr & 0x3f) == 0 && scratch_addr < (1 << 26));
5789 #else
5790 scratch_addr = scratch_bo->address;
5791 #endif
5792 }
5793
5794 return scratch_addr;
5795 }
5796
5797 /* ------------------------------------------------------------------- */
5798
5799 /**
5800 * Pin any BOs which were installed by a previous batch, and restored
5801 * via the hardware logical context mechanism.
5802 *
5803 * We don't need to re-emit all state every batch - the hardware context
5804 * mechanism will save and restore it for us. This includes pointers to
5805 * various BOs...which won't exist unless we ask the kernel to pin them
5806 * by adding them to the validation list.
5807 *
5808 * We can skip buffers if we've re-emitted those packets, as we're
5809 * overwriting those stale pointers with new ones, and don't actually
5810 * refer to the old BOs.
5811 */
5812 static void
iris_restore_render_saved_bos(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw)5813 iris_restore_render_saved_bos(struct iris_context *ice,
5814 struct iris_batch *batch,
5815 const struct pipe_draw_info *draw)
5816 {
5817 struct iris_genx_state *genx = ice->state.genx;
5818
5819 const uint64_t clean = ~ice->state.dirty;
5820 const uint64_t stage_clean = ~ice->state.stage_dirty;
5821
5822 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
5823 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false,
5824 IRIS_DOMAIN_NONE);
5825 }
5826
5827 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
5828 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false,
5829 IRIS_DOMAIN_NONE);
5830 }
5831
5832 if (clean & IRIS_DIRTY_BLEND_STATE) {
5833 iris_use_optional_res(batch, ice->state.last_res.blend, false,
5834 IRIS_DOMAIN_NONE);
5835 }
5836
5837 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
5838 iris_use_optional_res(batch, ice->state.last_res.color_calc, false,
5839 IRIS_DOMAIN_NONE);
5840 }
5841
5842 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
5843 iris_use_optional_res(batch, ice->state.last_res.scissor, false,
5844 IRIS_DOMAIN_NONE);
5845 }
5846
5847 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
5848 for (int i = 0; i < 4; i++) {
5849 struct iris_stream_output_target *tgt =
5850 (void *) ice->state.so_target[i];
5851 if (tgt) {
5852 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
5853 true, IRIS_DOMAIN_OTHER_WRITE);
5854 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
5855 true, IRIS_DOMAIN_OTHER_WRITE);
5856 }
5857 }
5858 }
5859
5860 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5861 if (!(stage_clean & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)))
5862 continue;
5863
5864 struct iris_shader_state *shs = &ice->state.shaders[stage];
5865 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5866
5867 if (!shader)
5868 continue;
5869
5870 for (int i = 0; i < 4; i++) {
5871 const struct iris_ubo_range *range = &shader->ubo_ranges[i];
5872
5873 if (range->length == 0)
5874 continue;
5875
5876 /* Range block is a binding table index, map back to UBO index. */
5877 unsigned block_index = iris_bti_to_group_index(
5878 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
5879 assert(block_index != IRIS_SURFACE_NOT_USED);
5880
5881 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
5882 struct iris_resource *res = (void *) cbuf->buffer;
5883
5884 if (res)
5885 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
5886 else
5887 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false,
5888 IRIS_DOMAIN_OTHER_READ);
5889 }
5890 }
5891
5892 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5893 if (stage_clean & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
5894 /* Re-pin any buffers referred to by the binding table. */
5895 iris_populate_binding_table(ice, batch, stage, true);
5896 }
5897 }
5898
5899 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5900 struct iris_shader_state *shs = &ice->state.shaders[stage];
5901 struct pipe_resource *res = shs->sampler_table.res;
5902 if (res)
5903 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
5904 IRIS_DOMAIN_NONE);
5905 }
5906
5907 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5908 if (stage_clean & (IRIS_STAGE_DIRTY_VS << stage)) {
5909 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5910
5911 if (shader) {
5912 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
5913 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
5914
5915 pin_scratch_space(ice, batch, shader, stage);
5916 }
5917 }
5918 }
5919
5920 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
5921 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5922 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5923 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5924 }
5925
5926 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false,
5927 IRIS_DOMAIN_VF_READ);
5928
5929 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
5930 uint64_t bound = ice->state.bound_vertex_buffers;
5931 while (bound) {
5932 const int i = u_bit_scan64(&bound);
5933 struct pipe_resource *res = genx->vertex_buffers[i].resource;
5934 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
5935 IRIS_DOMAIN_VF_READ);
5936 }
5937 }
5938
5939 #if GFX_VERx10 == 125
5940 iris_use_pinned_bo(batch, iris_resource_bo(ice->state.pixel_hashing_tables),
5941 false, IRIS_DOMAIN_NONE);
5942 #else
5943 assert(!ice->state.pixel_hashing_tables);
5944 #endif
5945 }
5946
5947 static void
iris_restore_compute_saved_bos(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)5948 iris_restore_compute_saved_bos(struct iris_context *ice,
5949 struct iris_batch *batch,
5950 const struct pipe_grid_info *grid)
5951 {
5952 const uint64_t stage_clean = ~ice->state.stage_dirty;
5953
5954 const int stage = MESA_SHADER_COMPUTE;
5955 struct iris_shader_state *shs = &ice->state.shaders[stage];
5956
5957 if (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) {
5958 /* Re-pin any buffers referred to by the binding table. */
5959 iris_populate_binding_table(ice, batch, stage, true);
5960 }
5961
5962 struct pipe_resource *sampler_res = shs->sampler_table.res;
5963 if (sampler_res)
5964 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false,
5965 IRIS_DOMAIN_NONE);
5966
5967 if ((stage_clean & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS) &&
5968 (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) &&
5969 (stage_clean & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
5970 (stage_clean & IRIS_STAGE_DIRTY_CS)) {
5971 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false,
5972 IRIS_DOMAIN_NONE);
5973 }
5974
5975 if (stage_clean & IRIS_STAGE_DIRTY_CS) {
5976 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5977
5978 if (shader) {
5979 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
5980 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
5981
5982 if (GFX_VERx10 < 125) {
5983 struct iris_bo *curbe_bo =
5984 iris_resource_bo(ice->state.last_res.cs_thread_ids);
5985 iris_use_pinned_bo(batch, curbe_bo, false, IRIS_DOMAIN_NONE);
5986 }
5987
5988 pin_scratch_space(ice, batch, shader, stage);
5989 }
5990 }
5991 }
5992
5993 /**
5994 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
5995 */
5996 static void
iris_update_binder_address(struct iris_batch * batch,struct iris_binder * binder)5997 iris_update_binder_address(struct iris_batch *batch,
5998 struct iris_binder *binder)
5999 {
6000 if (batch->last_binder_address == binder->bo->address)
6001 return;
6002
6003 struct isl_device *isl_dev = &batch->screen->isl_dev;
6004 uint32_t mocs = isl_mocs(isl_dev, 0, false);
6005
6006 iris_batch_sync_region_start(batch);
6007
6008 #if GFX_VER >= 11
6009 /* Use 3DSTATE_BINDING_TABLE_POOL_ALLOC on Icelake and later */
6010
6011 #if GFX_VERx10 == 120
6012 /* Wa_1607854226:
6013 *
6014 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
6015 * mode by putting the pipeline temporarily in 3D mode..
6016 */
6017 if (batch->name == IRIS_BATCH_COMPUTE)
6018 emit_pipeline_select(batch, _3D);
6019 #endif
6020
6021 iris_emit_pipe_control_flush(batch, "Stall for binder realloc",
6022 PIPE_CONTROL_CS_STALL);
6023
6024 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POOL_ALLOC), btpa) {
6025 btpa.BindingTablePoolBaseAddress = ro_bo(binder->bo, 0);
6026 btpa.BindingTablePoolBufferSize = binder->size / 4096;
6027 #if GFX_VERx10 < 125
6028 btpa.BindingTablePoolEnable = true;
6029 #endif
6030 btpa.MOCS = mocs;
6031 }
6032
6033 #if GFX_VERx10 == 120
6034 /* Wa_1607854226:
6035 *
6036 * Put the pipeline back into compute mode.
6037 */
6038 if (batch->name == IRIS_BATCH_COMPUTE)
6039 emit_pipeline_select(batch, GPGPU);
6040 #endif
6041 #else
6042 /* Use STATE_BASE_ADDRESS on older platforms */
6043 flush_before_state_base_change(batch);
6044
6045 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
6046 sba.SurfaceStateBaseAddressModifyEnable = true;
6047 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
6048
6049 /* The hardware appears to pay attention to the MOCS fields even
6050 * if you don't set the "Address Modify Enable" bit for the base.
6051 */
6052 sba.GeneralStateMOCS = mocs;
6053 sba.StatelessDataPortAccessMOCS = mocs;
6054 sba.DynamicStateMOCS = mocs;
6055 sba.IndirectObjectMOCS = mocs;
6056 sba.InstructionMOCS = mocs;
6057 sba.SurfaceStateMOCS = mocs;
6058 #if GFX_VER >= 9
6059 sba.BindlessSurfaceStateMOCS = mocs;
6060 #endif
6061 #if GFX_VERx10 >= 125
6062 sba.L1CacheControl = L1CC_WB;
6063 #endif
6064 }
6065 #endif
6066
6067 flush_after_state_base_change(batch);
6068 iris_batch_sync_region_end(batch);
6069
6070 batch->last_binder_address = binder->bo->address;
6071 }
6072
6073 static inline void
iris_viewport_zmin_zmax(const struct pipe_viewport_state * vp,bool halfz,bool window_space_position,float * zmin,float * zmax)6074 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
6075 bool window_space_position, float *zmin, float *zmax)
6076 {
6077 if (window_space_position) {
6078 *zmin = 0.f;
6079 *zmax = 1.f;
6080 return;
6081 }
6082 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
6083 }
6084
6085 /* Wa_16018063123 */
6086 static inline void
batch_emit_fast_color_dummy_blit(struct iris_batch * batch)6087 batch_emit_fast_color_dummy_blit(struct iris_batch *batch)
6088 {
6089 #if GFX_VERx10 >= 125
6090 iris_emit_cmd(batch, GENX(XY_FAST_COLOR_BLT), blt) {
6091 blt.DestinationBaseAddress = batch->screen->workaround_address;
6092 blt.DestinationMOCS = batch->screen->isl_dev.mocs.blitter_dst;
6093 blt.DestinationPitch = 63;
6094 blt.DestinationX2 = 1;
6095 blt.DestinationY2 = 4;
6096 blt.DestinationSurfaceWidth = 1;
6097 blt.DestinationSurfaceHeight = 4;
6098 blt.DestinationSurfaceType = XY_SURFTYPE_2D;
6099 blt.DestinationSurfaceQPitch = 4;
6100 blt.DestinationTiling = XY_TILE_LINEAR;
6101 }
6102 #endif
6103 }
6104
6105 #if GFX_VER >= 12
6106 static void
invalidate_aux_map_state_per_engine(struct iris_batch * batch)6107 invalidate_aux_map_state_per_engine(struct iris_batch *batch)
6108 {
6109 uint64_t register_addr = 0;
6110
6111 switch (batch->name) {
6112 case IRIS_BATCH_RENDER: {
6113 /* HSD 1209978178: docs say that before programming the aux table:
6114 *
6115 * "Driver must ensure that the engine is IDLE but ensure it doesn't
6116 * add extra flushes in the case it knows that the engine is already
6117 * IDLE."
6118 *
6119 * An end of pipe sync is needed here, otherwise we see GPU hangs in
6120 * dEQP-GLES31.functional.copy_image.* tests.
6121 *
6122 * HSD 22012751911: SW Programming sequence when issuing aux invalidation:
6123 *
6124 * "Render target Cache Flush + L3 Fabric Flush + State Invalidation + CS Stall"
6125 *
6126 * Notice we don't set the L3 Fabric Flush here, because we have
6127 * PIPE_CONTROL_CS_STALL. The PIPE_CONTROL::L3 Fabric Flush
6128 * documentation says :
6129 *
6130 * "L3 Fabric Flush will ensure all the pending transactions in the
6131 * L3 Fabric are flushed to global observation point. HW does
6132 * implicit L3 Fabric Flush on all stalling flushes (both explicit
6133 * and implicit) and on PIPECONTROL having Post Sync Operation
6134 * enabled."
6135 *
6136 * Therefore setting L3 Fabric Flush here would be redundant.
6137 *
6138 * From Bspec 43904 (Register_CCSAuxiliaryTableInvalidate):
6139 * RCS engine idle sequence:
6140 *
6141 * Gfx125+:
6142 * PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + Render
6143 * Target Cache Flush + Depth Cache + CCS flush
6144 *
6145 */
6146 iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
6147 PIPE_CONTROL_CS_STALL |
6148 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6149 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
6150 (GFX_VERx10 == 125 ?
6151 PIPE_CONTROL_CCS_CACHE_FLUSH : 0));
6152
6153 register_addr = GENX(GFX_CCS_AUX_INV_num);
6154 break;
6155 }
6156 case IRIS_BATCH_COMPUTE: {
6157 /*
6158 * Notice we don't set the L3 Fabric Flush here, because we have
6159 * PIPE_CONTROL_CS_STALL. The PIPE_CONTROL::L3 Fabric Flush
6160 * documentation says :
6161 *
6162 * "L3 Fabric Flush will ensure all the pending transactions in the
6163 * L3 Fabric are flushed to global observation point. HW does
6164 * implicit L3 Fabric Flush on all stalling flushes (both explicit
6165 * and implicit) and on PIPECONTROL having Post Sync Operation
6166 * enabled."
6167 *
6168 * Therefore setting L3 Fabric Flush here would be redundant.
6169 *
6170 * From Bspec 43904 (Register_CCSAuxiliaryTableInvalidate):
6171 * Compute engine idle sequence:
6172 *
6173 * Gfx125+:
6174 * PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + CCS flush
6175 */
6176 iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
6177 PIPE_CONTROL_DATA_CACHE_FLUSH |
6178 PIPE_CONTROL_CS_STALL |
6179 (GFX_VERx10 == 125 ?
6180 PIPE_CONTROL_CCS_CACHE_FLUSH : 0));
6181
6182 register_addr = GENX(COMPCS0_CCS_AUX_INV_num);
6183 break;
6184 }
6185 case IRIS_BATCH_BLITTER: {
6186 #if GFX_VERx10 >= 125
6187 /* Wa_16018063123 - emit fast color dummy blit before MI_FLUSH_DW. */
6188 if (intel_needs_workaround(batch->screen->devinfo, 16018063123))
6189 batch_emit_fast_color_dummy_blit(batch);
6190
6191 /*
6192 * Notice we don't set the L3 Fabric Flush here, because we have
6193 * PIPE_CONTROL_CS_STALL. The PIPE_CONTROL::L3 Fabric Flush
6194 * documentation says :
6195 *
6196 * "L3 Fabric Flush will ensure all the pending transactions in the
6197 * L3 Fabric are flushed to global observation point. HW does
6198 * implicit L3 Fabric Flush on all stalling flushes (both explicit
6199 * and implicit) and on PIPECONTROL having Post Sync Operation
6200 * enabled."
6201 *
6202 * Therefore setting L3 Fabric Flush here would be redundant.
6203 *
6204 * From Bspec 43904 (Register_CCSAuxiliaryTableInvalidate):
6205 * Blitter engine idle sequence:
6206 *
6207 * Gfx125+:
6208 * MI_FLUSH_DW (dw0;b16 – flush CCS)
6209 */
6210 iris_emit_cmd(batch, GENX(MI_FLUSH_DW), fd) {
6211 fd.FlushCCS = true;
6212 }
6213 register_addr = GENX(BCS_CCS_AUX_INV_num);
6214 #endif
6215 break;
6216 }
6217 default:
6218 unreachable("Invalid batch for aux map invalidation");
6219 break;
6220 }
6221
6222 if (register_addr != 0) {
6223 /* If the aux-map state number increased, then we need to rewrite the
6224 * register. Rewriting the register is used to both set the aux-map
6225 * translation table address, and also to invalidate any previously
6226 * cached translations.
6227 */
6228 iris_load_register_imm32(batch, register_addr, 1);
6229
6230 /* HSD 22012751911: SW Programming sequence when issuing aux invalidation:
6231 *
6232 * "Poll Aux Invalidation bit once the invalidation is set (Register
6233 * 4208 bit 0)"
6234 */
6235 iris_emit_cmd(batch, GENX(MI_SEMAPHORE_WAIT), sem) {
6236 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD;
6237 sem.WaitMode = PollingMode;
6238 sem.RegisterPollMode = true;
6239 sem.SemaphoreDataDword = 0x0;
6240 sem.SemaphoreAddress = ro_bo(NULL, register_addr);
6241 }
6242 }
6243 }
6244
6245 void
genX(invalidate_aux_map_state)6246 genX(invalidate_aux_map_state)(struct iris_batch *batch)
6247 {
6248 struct iris_screen *screen = batch->screen;
6249 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
6250 if (!aux_map_ctx)
6251 return;
6252 uint32_t aux_map_state_num = intel_aux_map_get_state_num(aux_map_ctx);
6253 if (batch->last_aux_map_state != aux_map_state_num) {
6254 invalidate_aux_map_state_per_engine(batch);
6255 batch->last_aux_map_state = aux_map_state_num;
6256 }
6257 }
6258
6259 static void
init_aux_map_state(struct iris_batch * batch)6260 init_aux_map_state(struct iris_batch *batch)
6261 {
6262 struct iris_screen *screen = batch->screen;
6263 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
6264 if (!aux_map_ctx)
6265 return;
6266
6267 uint64_t base_addr = intel_aux_map_get_base(aux_map_ctx);
6268 assert(base_addr != 0 && align64(base_addr, 32 * 1024) == base_addr);
6269
6270 uint32_t reg = 0;
6271 switch (batch->name) {
6272 case IRIS_BATCH_COMPUTE:
6273 if (iris_bufmgr_compute_engine_supported(screen->bufmgr)) {
6274 reg = GENX(COMPCS0_AUX_TABLE_BASE_ADDR_num);
6275 break;
6276 }
6277 /* fallthrough */
6278 FALLTHROUGH;
6279 case IRIS_BATCH_RENDER:
6280 reg = GENX(GFX_AUX_TABLE_BASE_ADDR_num);
6281 break;
6282 case IRIS_BATCH_BLITTER:
6283 #if GFX_VERx10 >= 125
6284 reg = GENX(BCS_AUX_TABLE_BASE_ADDR_num);
6285 #endif
6286 break;
6287 default:
6288 unreachable("Invalid batch for aux map init.");
6289 }
6290
6291 if (reg)
6292 iris_load_register_imm64(batch, reg, base_addr);
6293 }
6294 #endif
6295
6296 struct push_bos {
6297 struct {
6298 struct iris_address addr;
6299 uint32_t length;
6300 } buffers[4];
6301 int buffer_count;
6302 uint32_t max_length;
6303 };
6304
6305 static void
setup_constant_buffers(struct iris_context * ice,struct iris_batch * batch,int stage,struct push_bos * push_bos)6306 setup_constant_buffers(struct iris_context *ice,
6307 struct iris_batch *batch,
6308 int stage,
6309 struct push_bos *push_bos)
6310 {
6311 struct iris_shader_state *shs = &ice->state.shaders[stage];
6312 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
6313
6314 uint32_t push_range_sum = 0;
6315
6316 int n = 0;
6317 for (int i = 0; i < 4; i++) {
6318 const struct iris_ubo_range *range = &shader->ubo_ranges[i];
6319
6320 if (range->length == 0)
6321 continue;
6322
6323 push_range_sum += range->length;
6324
6325 if (range->length > push_bos->max_length)
6326 push_bos->max_length = range->length;
6327
6328 /* Range block is a binding table index, map back to UBO index. */
6329 unsigned block_index = iris_bti_to_group_index(
6330 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
6331 assert(block_index != IRIS_SURFACE_NOT_USED);
6332
6333 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
6334 struct iris_resource *res = (void *) cbuf->buffer;
6335
6336 assert(cbuf->buffer_offset % 32 == 0);
6337
6338 if (res)
6339 iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_OTHER_READ);
6340
6341 push_bos->buffers[n].length = range->length;
6342 push_bos->buffers[n].addr =
6343 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
6344 : batch->screen->workaround_address;
6345 n++;
6346 }
6347
6348 /* From the 3DSTATE_CONSTANT_XS and 3DSTATE_CONSTANT_ALL programming notes:
6349 *
6350 * "The sum of all four read length fields must be less than or
6351 * equal to the size of 64."
6352 */
6353 assert(push_range_sum <= 64);
6354
6355 push_bos->buffer_count = n;
6356 }
6357
6358 static void
emit_push_constant_packets(struct iris_context * ice,struct iris_batch * batch,int stage,const struct push_bos * push_bos)6359 emit_push_constant_packets(struct iris_context *ice,
6360 struct iris_batch *batch,
6361 int stage,
6362 const struct push_bos *push_bos)
6363 {
6364 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
6365
6366 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
6367 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
6368
6369 #if GFX_VER >= 9
6370 pkt.MOCS = isl_mocs(isl_dev, 0, false);
6371 #endif
6372
6373 /* The Skylake PRM contains the following restriction:
6374 *
6375 * "The driver must ensure The following case does not occur
6376 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
6377 * buffer 3 read length equal to zero committed followed by a
6378 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
6379 * zero committed."
6380 *
6381 * To avoid this, we program the buffers in the highest slots.
6382 * This way, slot 0 is only used if slot 3 is also used.
6383 */
6384 const int n = push_bos->buffer_count;
6385 assert(n <= 4);
6386 const unsigned shift = 4 - n;
6387 for (int i = 0; i < n; i++) {
6388 pkt.ConstantBody.ReadLength[i + shift] =
6389 push_bos->buffers[i].length;
6390 pkt.ConstantBody.Buffer[i + shift] = push_bos->buffers[i].addr;
6391 }
6392 }
6393 }
6394
6395 #if GFX_VER >= 12
6396 static void
emit_push_constant_packet_all(struct iris_context * ice,struct iris_batch * batch,uint32_t shader_mask,const struct push_bos * push_bos)6397 emit_push_constant_packet_all(struct iris_context *ice,
6398 struct iris_batch *batch,
6399 uint32_t shader_mask,
6400 const struct push_bos *push_bos)
6401 {
6402 struct isl_device *isl_dev = &batch->screen->isl_dev;
6403
6404 if (!push_bos) {
6405 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), pc) {
6406 pc.ShaderUpdateEnable = shader_mask;
6407 pc.MOCS = iris_mocs(NULL, isl_dev, 0);
6408 }
6409 return;
6410 }
6411
6412 const uint32_t n = push_bos->buffer_count;
6413 const uint32_t max_pointers = 4;
6414 const uint32_t num_dwords = 2 + 2 * n;
6415 uint32_t const_all[2 + 2 * max_pointers];
6416 uint32_t *dw = &const_all[0];
6417
6418 assert(n <= max_pointers);
6419 iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) {
6420 all.DWordLength = num_dwords - 2;
6421 all.MOCS = isl_mocs(isl_dev, 0, false);
6422 all.ShaderUpdateEnable = shader_mask;
6423 all.PointerBufferMask = (1 << n) - 1;
6424 }
6425 dw += 2;
6426
6427 for (int i = 0; i < n; i++) {
6428 _iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA),
6429 dw + i * 2, data) {
6430 data.PointerToConstantBuffer = push_bos->buffers[i].addr;
6431 data.ConstantBufferReadLength = push_bos->buffers[i].length;
6432 }
6433 }
6434 iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords);
6435 }
6436 #endif
6437
6438 void
genX(emit_depth_state_workarounds)6439 genX(emit_depth_state_workarounds)(struct iris_context *ice,
6440 struct iris_batch *batch,
6441 const struct isl_surf *surf)
6442 {
6443 #if INTEL_NEEDS_WA_1808121037
6444 const bool is_d16_1x_msaa = surf->format == ISL_FORMAT_R16_UNORM &&
6445 surf->samples == 1;
6446
6447 switch (ice->state.genx->depth_reg_mode) {
6448 case IRIS_DEPTH_REG_MODE_HW_DEFAULT:
6449 if (!is_d16_1x_msaa)
6450 return;
6451 break;
6452 case IRIS_DEPTH_REG_MODE_D16_1X_MSAA:
6453 if (is_d16_1x_msaa)
6454 return;
6455 break;
6456 case IRIS_DEPTH_REG_MODE_UNKNOWN:
6457 break;
6458 }
6459
6460 /* We'll change some CHICKEN registers depending on the depth surface
6461 * format. Do a depth flush and stall so the pipeline is not using these
6462 * settings while we change the registers.
6463 */
6464 iris_emit_end_of_pipe_sync(batch,
6465 "Workaround: Stop pipeline for Wa_1808121037",
6466 PIPE_CONTROL_DEPTH_STALL |
6467 PIPE_CONTROL_DEPTH_CACHE_FLUSH);
6468
6469 /* Wa_1808121037
6470 *
6471 * To avoid sporadic corruptions “Set 0x7010[9] when Depth Buffer
6472 * Surface Format is D16_UNORM , surface type is not NULL & 1X_MSAA”.
6473 */
6474 iris_emit_reg(batch, GENX(COMMON_SLICE_CHICKEN1), reg) {
6475 reg.HIZPlaneOptimizationdisablebit = is_d16_1x_msaa;
6476 reg.HIZPlaneOptimizationdisablebitMask = true;
6477 }
6478
6479 ice->state.genx->depth_reg_mode =
6480 is_d16_1x_msaa ? IRIS_DEPTH_REG_MODE_D16_1X_MSAA :
6481 IRIS_DEPTH_REG_MODE_HW_DEFAULT;
6482 #endif
6483 }
6484
6485 /* Calculate TBIMR tiling parameters adequate for the current pipeline
6486 * setup. Return true if TBIMR should be enabled.
6487 */
6488 UNUSED static bool
calculate_tile_dimensions(struct iris_context * ice,unsigned * tile_width,unsigned * tile_height)6489 calculate_tile_dimensions(struct iris_context *ice,
6490 unsigned *tile_width, unsigned *tile_height)
6491 {
6492 struct iris_screen *screen = (void *)ice->ctx.screen;
6493 const struct intel_device_info *devinfo = screen->devinfo;
6494
6495 /* Perform a rough calculation of the tile cache footprint of the
6496 * pixel pipeline, approximating it as the sum of the amount of
6497 * memory used per pixel by every render target, depth, stencil and
6498 * auxiliary surfaces bound to the pipeline.
6499 */
6500 unsigned pixel_size = 0;
6501
6502 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
6503
6504 if (cso->width == 0 || cso->height == 0)
6505 return false;
6506
6507 for (unsigned i = 0; i < cso->nr_cbufs; i++) {
6508 const struct iris_surface *surf = (void *)cso->cbufs[i];
6509
6510 if (surf) {
6511 const struct iris_resource *res = (void *)surf->base.texture;
6512
6513 pixel_size += intel_calculate_surface_pixel_size(&res->surf);
6514
6515 /* XXX - Pessimistic, in some cases it might be helpful to neglect
6516 * aux surface traffic.
6517 */
6518 if (ice->state.draw_aux_usage[i]) {
6519 pixel_size += intel_calculate_surface_pixel_size(&res->aux.surf);
6520 pixel_size += intel_calculate_surface_pixel_size(&res->aux.extra_aux.surf);
6521 }
6522 }
6523 }
6524
6525 if (cso->zsbuf) {
6526 struct iris_resource *zres;
6527 struct iris_resource *sres;
6528 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres, &sres);
6529
6530 if (zres) {
6531 pixel_size += intel_calculate_surface_pixel_size(&zres->surf);
6532
6533 /* XXX - Pessimistic, in some cases it might be helpful to neglect
6534 * aux surface traffic.
6535 */
6536 if (iris_resource_level_has_hiz(devinfo, zres, cso->zsbuf->u.tex.level)) {
6537 pixel_size += intel_calculate_surface_pixel_size(&zres->aux.surf);
6538 pixel_size += intel_calculate_surface_pixel_size(&zres->aux.extra_aux.surf);
6539 }
6540 }
6541
6542 if (sres) {
6543 pixel_size += intel_calculate_surface_pixel_size(&sres->surf);
6544 }
6545 }
6546
6547 /* Compute a tile layout that allows reasonable utilization of the
6548 * tile cache based on the per-pixel cache footprint estimated
6549 * above.
6550 */
6551 intel_calculate_tile_dimensions(devinfo, screen->l3_config_3d,
6552 32, 32, cso->width, cso->height, pixel_size,
6553 tile_width, tile_height);
6554
6555 /* Perform TBIMR tile passes only if the framebuffer covers more
6556 * than a single tile.
6557 */
6558 return *tile_width < cso->width || *tile_height < cso->height;
6559 }
6560
6561 static void
iris_preemption_streamout_wa(struct iris_context * ice,struct iris_batch * batch,bool enable)6562 iris_preemption_streamout_wa(struct iris_context *ice,
6563 struct iris_batch *batch,
6564 bool enable)
6565 {
6566 #if GFX_VERx10 >= 120
6567 if (!intel_needs_workaround(batch->screen->devinfo, 16013994831))
6568 return;
6569
6570 iris_emit_reg(batch, GENX(CS_CHICKEN1), reg) {
6571 reg.DisablePreemptionandHighPriorityPausingdueto3DPRIMITIVECommand = !enable;
6572 reg.DisablePreemptionandHighPriorityPausingdueto3DPRIMITIVECommandMask = true;
6573 }
6574
6575 /* Emit CS_STALL and 250 noops. */
6576 iris_emit_pipe_control_flush(batch, "workaround: Wa_16013994831",
6577 PIPE_CONTROL_CS_STALL);
6578 for (unsigned i = 0; i < 250; i++)
6579 iris_emit_cmd(batch, GENX(MI_NOOP), noop);
6580
6581 ice->state.genx->object_preemption = enable;
6582 #endif
6583 }
6584
6585 static void
shader_program_needs_wa_14015055625(struct iris_context * ice,struct iris_batch * batch,struct iris_compiled_shader * shader,gl_shader_stage stage,bool * program_needs_wa_14015055625)6586 shader_program_needs_wa_14015055625(struct iris_context *ice,
6587 struct iris_batch *batch,
6588 struct iris_compiled_shader *shader,
6589 gl_shader_stage stage,
6590 bool *program_needs_wa_14015055625)
6591 {
6592 if (!intel_needs_workaround(batch->screen->devinfo, 14015055625))
6593 return;
6594
6595 switch (stage) {
6596 case MESA_SHADER_TESS_CTRL: {
6597 struct iris_tcs_data *tcs_data = iris_tcs_data(shader);
6598 *program_needs_wa_14015055625 |= tcs_data->include_primitive_id;
6599 break;
6600 }
6601 case MESA_SHADER_TESS_EVAL: {
6602 struct iris_tes_data *tes_data = iris_tes_data(shader);
6603 *program_needs_wa_14015055625 |= tes_data->include_primitive_id;
6604 break;
6605 }
6606 default:
6607 break;
6608 }
6609
6610 struct iris_compiled_shader *gs_shader =
6611 ice->shaders.prog[MESA_SHADER_GEOMETRY];
6612 const struct iris_gs_data *gs_data =
6613 gs_shader ? iris_gs_data(gs_shader) : NULL;
6614
6615 *program_needs_wa_14015055625 |= gs_data && gs_data->include_primitive_id;
6616 }
6617
6618 static void
emit_wa_18020335297_dummy_draw(struct iris_batch * batch)6619 emit_wa_18020335297_dummy_draw(struct iris_batch *batch)
6620 {
6621 #if GFX_VERx10 >= 125
6622 iris_emit_cmd(batch, GENX(3DSTATE_VFG), vfg) {
6623 vfg.DistributionMode = RR_STRICT;
6624 }
6625 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
6626 vf.GeometryDistributionEnable = true;
6627 }
6628 #endif
6629
6630 #if GFX_VER >= 12
6631 iris_emit_cmd(batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr) {
6632 pr.ReplicaMask = 1;
6633 }
6634 #endif
6635
6636 iris_emit_cmd(batch, GENX(3DSTATE_RASTER), rr) {
6637 rr.CullMode = CULLMODE_NONE;
6638 rr.FrontFaceFillMode = FILL_MODE_SOLID;
6639 rr.BackFaceFillMode = FILL_MODE_SOLID;
6640 }
6641
6642 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) { }
6643 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgvs) { }
6644
6645 #if GFX_VER >= 11
6646 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS_2), sgvs2) { }
6647 #endif
6648
6649 iris_emit_cmd(batch, GENX(3DSTATE_CLIP), clip) {
6650 clip.ClipEnable = true;
6651 clip.ClipMode = CLIPMODE_REJECT_ALL;
6652 }
6653
6654 iris_emit_cmd(batch, GENX(3DSTATE_VS), vs) { }
6655 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs) { }
6656 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs) { }
6657 iris_emit_cmd(batch, GENX(3DSTATE_TE), te) { }
6658 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds) { }
6659 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), so) { }
6660
6661 uint32_t vertex_elements[1 + 2 * GENX(VERTEX_ELEMENT_STATE_length)];
6662 uint32_t *ve_pack_dest = &vertex_elements[1];
6663
6664 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), vertex_elements, ve) {
6665 ve.DWordLength = 1 + GENX(VERTEX_ELEMENT_STATE_length) * 2 -
6666 GENX(3DSTATE_VERTEX_ELEMENTS_length_bias);
6667 }
6668
6669 for (int i = 0; i < 2; i++) {
6670 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
6671 ve.Valid = true;
6672 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
6673 ve.Component0Control = VFCOMP_STORE_0;
6674 ve.Component1Control = VFCOMP_STORE_0;
6675 ve.Component2Control = i == 0 ? VFCOMP_STORE_0 : VFCOMP_STORE_1_FP;
6676 ve.Component3Control = i == 0 ? VFCOMP_STORE_0 : VFCOMP_STORE_1_FP;
6677 }
6678 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
6679 }
6680
6681 iris_batch_emit(batch, vertex_elements, sizeof(uint32_t) *
6682 (1 + 2 * GENX(VERTEX_ELEMENT_STATE_length)));
6683
6684 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
6685 topo.PrimitiveTopologyType = _3DPRIM_TRILIST;
6686 }
6687
6688 /* Emit dummy draw per slice. */
6689 for (unsigned i = 0; i < batch->screen->devinfo->num_slices; i++) {
6690 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
6691 prim.VertexCountPerInstance = 3;
6692 prim.PrimitiveTopologyType = _3DPRIM_TRILIST;
6693 prim.InstanceCount = 1;
6694 prim.VertexAccessType = SEQUENTIAL;
6695 }
6696 }
6697 }
6698
6699 static void
iris_upload_dirty_render_state(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw,bool skip_vb_params)6700 iris_upload_dirty_render_state(struct iris_context *ice,
6701 struct iris_batch *batch,
6702 const struct pipe_draw_info *draw,
6703 bool skip_vb_params)
6704 {
6705 struct iris_screen *screen = batch->screen;
6706 struct iris_border_color_pool *border_color_pool =
6707 iris_bufmgr_get_border_color_pool(screen->bufmgr);
6708
6709 /* Re-emit 3DSTATE_DS before any 3DPRIMITIVE when tessellation is on */
6710 if (intel_needs_workaround(batch->screen->devinfo, 22018402687) &&
6711 ice->shaders.prog[MESA_SHADER_TESS_EVAL])
6712 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TES;
6713
6714 uint64_t dirty = ice->state.dirty;
6715 uint64_t stage_dirty = ice->state.stage_dirty;
6716
6717 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER) &&
6718 !(stage_dirty & IRIS_ALL_STAGE_DIRTY_FOR_RENDER))
6719 return;
6720
6721 struct iris_genx_state *genx = ice->state.genx;
6722 struct iris_binder *binder = &ice->state.binder;
6723 struct iris_fs_data *fs_data =
6724 iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
6725
6726 /* When MSAA is enabled, instead of using BLENDFACTOR_ZERO use
6727 * CONST_COLOR, CONST_ALPHA and supply zero by using blend constants.
6728 */
6729 bool needs_wa_14018912822 =
6730 screen->driconf.intel_enable_wa_14018912822 &&
6731 intel_needs_workaround(batch->screen->devinfo, 14018912822) &&
6732 util_framebuffer_get_num_samples(&ice->state.framebuffer) > 1;
6733
6734 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
6735 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
6736 uint32_t cc_vp_address;
6737 bool wa_18020335297_applied = false;
6738
6739 /* Wa_18020335297 - Apply the WA when viewport ptr is reprogrammed. */
6740 if (intel_needs_workaround(screen->devinfo, 18020335297) &&
6741 batch->name == IRIS_BATCH_RENDER &&
6742 ice->state.viewport_ptr_set) {
6743 emit_wa_18020335297_dummy_draw(batch);
6744 wa_18020335297_applied = true;
6745 }
6746
6747 /* XXX: could avoid streaming for depth_clip [0,1] case. */
6748 uint32_t *cc_vp_map =
6749 stream_state(batch, ice->state.dynamic_uploader,
6750 &ice->state.last_res.cc_vp,
6751 4 * ice->state.num_viewports *
6752 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
6753 for (int i = 0; i < ice->state.num_viewports; i++) {
6754 float zmin, zmax;
6755 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
6756 ice->state.window_space_position,
6757 &zmin, &zmax);
6758 if (cso_rast->depth_clip_near)
6759 zmin = 0.0;
6760 if (cso_rast->depth_clip_far)
6761 zmax = 1.0;
6762
6763 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
6764 ccv.MinimumDepth = zmin;
6765 ccv.MaximumDepth = zmax;
6766 }
6767
6768 cc_vp_map += GENX(CC_VIEWPORT_length);
6769 }
6770
6771 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
6772 ptr.CCViewportPointer = cc_vp_address;
6773 }
6774
6775 if (wa_18020335297_applied) {
6776 #if GFX_VER >= 12
6777 iris_emit_cmd(batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr) { }
6778 #endif
6779 /* Dirty all emitted WA state to make sure that current real
6780 * state is restored.
6781 */
6782 dirty |= IRIS_DIRTY_VFG |
6783 IRIS_DIRTY_VF |
6784 IRIS_DIRTY_RASTER |
6785 IRIS_DIRTY_VF_STATISTICS |
6786 IRIS_DIRTY_VF_SGVS |
6787 IRIS_DIRTY_CLIP |
6788 IRIS_DIRTY_STREAMOUT |
6789 IRIS_DIRTY_VERTEX_ELEMENTS |
6790 IRIS_DIRTY_VF_TOPOLOGY;
6791
6792 for (int stage = 0; stage < MESA_SHADER_FRAGMENT; stage++) {
6793 if (ice->shaders.prog[stage])
6794 stage_dirty |= (IRIS_STAGE_DIRTY_VS << stage);
6795 }
6796 }
6797 ice->state.viewport_ptr_set = true;
6798 }
6799
6800 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
6801 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
6802 uint32_t sf_cl_vp_address;
6803 uint32_t *vp_map =
6804 stream_state(batch, ice->state.dynamic_uploader,
6805 &ice->state.last_res.sf_cl_vp,
6806 4 * ice->state.num_viewports *
6807 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
6808
6809 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
6810 const struct pipe_viewport_state *state = &ice->state.viewports[i];
6811 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
6812
6813 float vp_xmin = viewport_extent(state, 0, -1.0f);
6814 float vp_xmax = viewport_extent(state, 0, 1.0f);
6815 float vp_ymin = viewport_extent(state, 1, -1.0f);
6816 float vp_ymax = viewport_extent(state, 1, 1.0f);
6817
6818 intel_calculate_guardband_size(0, cso_fb->width, 0, cso_fb->height,
6819 state->scale[0], state->scale[1],
6820 state->translate[0], state->translate[1],
6821 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
6822
6823 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
6824 vp.ViewportMatrixElementm00 = state->scale[0];
6825 vp.ViewportMatrixElementm11 = state->scale[1];
6826 vp.ViewportMatrixElementm22 = state->scale[2];
6827 vp.ViewportMatrixElementm30 = state->translate[0];
6828 vp.ViewportMatrixElementm31 = state->translate[1];
6829 vp.ViewportMatrixElementm32 = state->translate[2];
6830 vp.XMinClipGuardband = gb_xmin;
6831 vp.XMaxClipGuardband = gb_xmax;
6832 vp.YMinClipGuardband = gb_ymin;
6833 vp.YMaxClipGuardband = gb_ymax;
6834 vp.XMinViewPort = MAX2(vp_xmin, 0);
6835 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
6836 vp.YMinViewPort = MAX2(vp_ymin, 0);
6837 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
6838 }
6839
6840 vp_map += GENX(SF_CLIP_VIEWPORT_length);
6841 }
6842
6843 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
6844 ptr.SFClipViewportPointer = sf_cl_vp_address;
6845 }
6846 }
6847
6848 if (dirty & IRIS_DIRTY_URB) {
6849 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6850 if (!ice->shaders.prog[i]) {
6851 ice->shaders.urb.cfg.size[i] = 1;
6852 } else {
6853 struct iris_vue_data *vue_data =
6854 iris_vue_data(ice->shaders.prog[i]);
6855 ice->shaders.urb.cfg.size[i] = vue_data->urb_entry_size;
6856 }
6857 assert(ice->shaders.urb.cfg.size[i] != 0);
6858 }
6859
6860 genX(emit_urb_config)(batch,
6861 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
6862 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
6863 }
6864
6865 if (dirty & IRIS_DIRTY_BLEND_STATE) {
6866 struct iris_blend_state *cso_blend = ice->state.cso_blend;
6867 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
6868 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
6869 const int header_dwords = GENX(BLEND_STATE_length);
6870
6871 bool color_blend_zero = false;
6872 bool alpha_blend_zero = false;
6873
6874 /* Always write at least one BLEND_STATE - the final RT message will
6875 * reference BLEND_STATE[0] even if there aren't color writes. There
6876 * may still be alpha testing, computed depth, and so on.
6877 */
6878 const int rt_dwords =
6879 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
6880
6881 uint32_t blend_offset;
6882 uint32_t *blend_map =
6883 stream_state(batch, ice->state.dynamic_uploader,
6884 &ice->state.last_res.blend,
6885 4 * (header_dwords + rt_dwords), 64, &blend_offset);
6886
6887 /* Copy of blend entries for merging dynamic changes. */
6888 uint32_t blend_entries[4 * rt_dwords];
6889 memcpy(blend_entries, &cso_blend->blend_state[1], sizeof(blend_entries));
6890
6891 unsigned cbufs = MAX2(cso_fb->nr_cbufs, 1);
6892
6893 uint32_t *blend_entry = blend_entries;
6894 for (unsigned i = 0; i < cbufs; i++) {
6895 int dst_blend_factor = cso_blend->ps_dst_blend_factor[i];
6896 int dst_alpha_blend_factor = cso_blend->ps_dst_alpha_blend_factor[i];
6897 uint32_t entry[GENX(BLEND_STATE_ENTRY_length)];
6898 iris_pack_state(GENX(BLEND_STATE_ENTRY), entry, be) {
6899 if (needs_wa_14018912822) {
6900 if (dst_blend_factor == BLENDFACTOR_ZERO) {
6901 dst_blend_factor = BLENDFACTOR_CONST_COLOR;
6902 color_blend_zero = true;
6903 }
6904 if (dst_alpha_blend_factor == BLENDFACTOR_ZERO) {
6905 dst_alpha_blend_factor = BLENDFACTOR_CONST_ALPHA;
6906 alpha_blend_zero = true;
6907 }
6908 }
6909 be.DestinationBlendFactor = dst_blend_factor;
6910 be.DestinationAlphaBlendFactor = dst_alpha_blend_factor;
6911 }
6912
6913 /* Merge entry. */
6914 uint32_t *dst = blend_entry;
6915 uint32_t *src = entry;
6916 for (unsigned j = 0; j < GENX(BLEND_STATE_ENTRY_length); j++)
6917 *dst |= *src;
6918
6919 blend_entry += GENX(BLEND_STATE_ENTRY_length);
6920 }
6921
6922 /* Blend constants modified for Wa_14018912822. */
6923 if (ice->state.color_blend_zero != color_blend_zero) {
6924 ice->state.color_blend_zero = color_blend_zero;
6925 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
6926 }
6927 if (ice->state.alpha_blend_zero != alpha_blend_zero) {
6928 ice->state.alpha_blend_zero = alpha_blend_zero;
6929 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
6930 }
6931
6932 uint32_t blend_state_header;
6933 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
6934 bs.AlphaTestEnable = cso_zsa->alpha_enabled;
6935 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha_func);
6936 }
6937
6938 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
6939 memcpy(&blend_map[1], blend_entries, 4 * rt_dwords);
6940
6941 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
6942 ptr.BlendStatePointer = blend_offset;
6943 ptr.BlendStatePointerValid = true;
6944 }
6945 }
6946
6947 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
6948 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
6949 #if GFX_VER == 8
6950 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
6951 #endif
6952 uint32_t cc_offset;
6953 void *cc_map =
6954 stream_state(batch, ice->state.dynamic_uploader,
6955 &ice->state.last_res.color_calc,
6956 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
6957 64, &cc_offset);
6958 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
6959 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
6960 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha_ref_value;
6961 cc.BlendConstantColorRed = ice->state.color_blend_zero ?
6962 0.0 : ice->state.blend_color.color[0];
6963 cc.BlendConstantColorGreen = ice->state.color_blend_zero ?
6964 0.0 : ice->state.blend_color.color[1];
6965 cc.BlendConstantColorBlue = ice->state.color_blend_zero ?
6966 0.0 : ice->state.blend_color.color[2];
6967 cc.BlendConstantColorAlpha = ice->state.alpha_blend_zero ?
6968 0.0 : ice->state.blend_color.color[3];
6969 #if GFX_VER == 8
6970 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
6971 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
6972 #endif
6973 }
6974 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
6975 ptr.ColorCalcStatePointer = cc_offset;
6976 ptr.ColorCalcStatePointerValid = true;
6977 }
6978 }
6979
6980 #if GFX_VERx10 == 125
6981 if (dirty & (IRIS_DIRTY_RENDER_BUFFER | IRIS_DIRTY_DEPTH_BUFFER)) {
6982 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
6983 unsigned tile_width, tile_height;
6984
6985 ice->state.use_tbimr = batch->screen->driconf.enable_tbimr &&
6986 calculate_tile_dimensions(ice, &tile_width, &tile_height);
6987
6988 if (ice->state.use_tbimr) {
6989 /* Use a batch size of 128 polygons per slice as recommended
6990 * by BSpec 68436 "TBIMR Programming".
6991 */
6992 const unsigned num_slices = screen->devinfo->num_slices;
6993 const unsigned batch_size = DIV_ROUND_UP(num_slices, 2) * 256;
6994
6995 iris_emit_cmd(batch, GENX(3DSTATE_TBIMR_TILE_PASS_INFO), tbimr) {
6996 tbimr.TileRectangleHeight = tile_height;
6997 tbimr.TileRectangleWidth = tile_width;
6998 tbimr.VerticalTileCount = DIV_ROUND_UP(cso_fb->height, tile_height);
6999 tbimr.HorizontalTileCount = DIV_ROUND_UP(cso_fb->width, tile_width);
7000 tbimr.TBIMRBatchSize = util_logbase2(batch_size) - 5;
7001 tbimr.TileBoxCheck = true;
7002 }
7003 }
7004 }
7005 #endif
7006
7007 /* Wa_1604061319
7008 *
7009 * 3DSTATE_CONSTANT_* needs to be programmed before BTP_*
7010 *
7011 * Testing shows that all the 3DSTATE_CONSTANT_XS need to be emitted if
7012 * any stage has a dirty binding table.
7013 */
7014 const bool emit_const_wa = GFX_VER >= 11 &&
7015 ((dirty & IRIS_DIRTY_RENDER_BUFFER) ||
7016 (stage_dirty & IRIS_ALL_STAGE_DIRTY_BINDINGS_FOR_RENDER));
7017
7018 #if GFX_VER >= 12
7019 uint32_t nobuffer_stages = 0;
7020 #endif
7021
7022 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
7023 if (!(stage_dirty & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)) &&
7024 !emit_const_wa)
7025 continue;
7026
7027 struct iris_shader_state *shs = &ice->state.shaders[stage];
7028 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
7029
7030 if (!shader)
7031 continue;
7032
7033 if (shs->sysvals_need_upload)
7034 upload_sysvals(ice, stage, NULL);
7035
7036 struct push_bos push_bos = {};
7037 setup_constant_buffers(ice, batch, stage, &push_bos);
7038
7039 #if GFX_VER >= 12
7040 /* If this stage doesn't have any push constants, emit it later in a
7041 * single CONSTANT_ALL packet with all the other stages.
7042 */
7043 if (push_bos.buffer_count == 0) {
7044 nobuffer_stages |= 1 << stage;
7045 continue;
7046 }
7047
7048 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
7049 * contains only 5 bits, so we can only use it for buffers smaller than
7050 * 32.
7051 *
7052 * According to Wa_16011448509, Gfx12.0 misinterprets some address bits
7053 * in 3DSTATE_CONSTANT_ALL. It should still be safe to use the command
7054 * for disabling stages, where all address bits are zero. However, we
7055 * can't safely use it for general buffers with arbitrary addresses.
7056 * Just fall back to the individual 3DSTATE_CONSTANT_XS commands in that
7057 * case.
7058 */
7059 if (push_bos.max_length < 32 && GFX_VERx10 > 120) {
7060 emit_push_constant_packet_all(ice, batch, 1 << stage, &push_bos);
7061 continue;
7062 }
7063 #endif
7064 emit_push_constant_packets(ice, batch, stage, &push_bos);
7065 }
7066
7067 #if GFX_VER >= 12
7068 if (nobuffer_stages)
7069 /* Wa_16011448509: all address bits are zero */
7070 emit_push_constant_packet_all(ice, batch, nobuffer_stages, NULL);
7071 #endif
7072
7073 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
7074 /* Gfx9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
7075 * in order to commit constants. TODO: Investigate "Disable Gather
7076 * at Set Shader" to go back to legacy mode...
7077 */
7078 if (stage_dirty & ((IRIS_STAGE_DIRTY_BINDINGS_VS |
7079 (GFX_VER == 9 ? IRIS_STAGE_DIRTY_CONSTANTS_VS : 0))
7080 << stage)) {
7081 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
7082 ptr._3DCommandSubOpcode = 38 + stage;
7083 ptr.PointertoVSBindingTable =
7084 binder->bt_offset[stage] >> IRIS_BT_OFFSET_SHIFT;
7085 }
7086 }
7087 }
7088
7089 if (GFX_VER >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) {
7090 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
7091 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
7092
7093 /* The PIPE_CONTROL command description says:
7094 *
7095 * "Whenever a Binding Table Index (BTI) used by a Render Target
7096 * Message points to a different RENDER_SURFACE_STATE, SW must issue a
7097 * Render Target Cache Flush by enabling this bit. When render target
7098 * flush is set due to new association of BTI, PS Scoreboard Stall bit
7099 * must be set in this packet."
7100 */
7101 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
7102 iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]",
7103 PIPE_CONTROL_RENDER_TARGET_FLUSH |
7104 PIPE_CONTROL_STALL_AT_SCOREBOARD);
7105 }
7106
7107 if (dirty & IRIS_DIRTY_RENDER_BUFFER)
7108 trace_framebuffer_state(&batch->trace, NULL, &ice->state.framebuffer);
7109
7110 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
7111 if (stage_dirty & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
7112 iris_populate_binding_table(ice, batch, stage, false);
7113 }
7114 }
7115
7116 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
7117 if (!(stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage)) ||
7118 !ice->shaders.prog[stage])
7119 continue;
7120
7121 iris_upload_sampler_states(ice, stage);
7122
7123 struct iris_shader_state *shs = &ice->state.shaders[stage];
7124 struct pipe_resource *res = shs->sampler_table.res;
7125 if (res)
7126 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
7127 IRIS_DOMAIN_NONE);
7128
7129 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
7130 ptr._3DCommandSubOpcode = 43 + stage;
7131 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
7132 }
7133 }
7134
7135 if (ice->state.need_border_colors)
7136 iris_use_pinned_bo(batch, border_color_pool->bo, false, IRIS_DOMAIN_NONE);
7137
7138 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
7139 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
7140 ms.PixelLocation =
7141 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
7142 if (ice->state.framebuffer.samples > 0)
7143 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
7144 }
7145 }
7146
7147 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
7148 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
7149 ms.SampleMask = ice->state.sample_mask;
7150 }
7151 }
7152
7153 #if GFX_VERx10 >= 125
7154 /* This is only used on >= gfx125 for dynamic 3DSTATE_TE emission
7155 * related workarounds.
7156 */
7157 bool program_needs_wa_14015055625 = false;
7158 #endif
7159
7160 #if INTEL_WA_14015055625_GFX_VER
7161 /* Check if FS stage will use primitive ID overrides for Wa_14015055625. */
7162 const struct intel_vue_map *last_vue_map =
7163 &iris_vue_data(ice->shaders.last_vue_shader)->vue_map;
7164 if ((fs_data->inputs & VARYING_BIT_PRIMITIVE_ID) &&
7165 last_vue_map->varying_to_slot[VARYING_SLOT_PRIMITIVE_ID] == -1 &&
7166 intel_needs_workaround(batch->screen->devinfo, 14015055625)) {
7167 program_needs_wa_14015055625 = true;
7168 }
7169 #endif
7170
7171 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
7172 if (!(stage_dirty & (IRIS_STAGE_DIRTY_VS << stage)))
7173 continue;
7174
7175 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
7176
7177 if (shader) {
7178 struct iris_resource *cache = (void *) shader->assembly.res;
7179 iris_use_pinned_bo(batch, cache->bo, false, IRIS_DOMAIN_NONE);
7180
7181 uint32_t scratch_addr =
7182 pin_scratch_space(ice, batch, shader, stage);
7183
7184 #if INTEL_WA_14015055625_GFX_VER
7185 shader_program_needs_wa_14015055625(ice, batch, shader, stage,
7186 &program_needs_wa_14015055625);
7187 #endif
7188
7189 if (stage == MESA_SHADER_FRAGMENT) {
7190 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
7191 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
7192
7193 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
7194 _iris_pack_command(batch, GENX(3DSTATE_PS), ps_state, ps) {
7195 #if GFX_VER >= 9
7196 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(shader->brw_prog_data);
7197 #else
7198 struct elk_wm_prog_data *wm_prog_data = elk_wm_prog_data(shader->elk_prog_data);
7199 #endif
7200 intel_set_ps_dispatch_state(&ps, batch->screen->devinfo,
7201 wm_prog_data, util_framebuffer_get_num_samples(cso_fb),
7202 0 /* msaa_flags */);
7203
7204 #if GFX_VER == 12
7205 assert(fs_data->dispatch_multi == 0 ||
7206 (fs_data->dispatch_multi == 16 && fs_data->max_polygons == 2));
7207 ps.DualSIMD8DispatchEnable = fs_data->dispatch_multi;
7208 /* XXX - No major improvement observed from enabling
7209 * overlapping subspans, but it could be helpful
7210 * in theory when the requirements listed on the
7211 * BSpec page for 3DSTATE_PS_BODY are met.
7212 */
7213 ps.OverlappingSubspansEnable = false;
7214 #endif
7215
7216 #if GFX_VER >= 9
7217 ps.DispatchGRFStartRegisterForConstantSetupData0 =
7218 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
7219 ps.DispatchGRFStartRegisterForConstantSetupData1 =
7220 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
7221 #if GFX_VER < 20
7222 ps.DispatchGRFStartRegisterForConstantSetupData2 =
7223 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
7224 #endif
7225
7226 ps.KernelStartPointer0 = KSP(shader) +
7227 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
7228 ps.KernelStartPointer1 = KSP(shader) +
7229 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
7230 #if GFX_VER < 20
7231 ps.KernelStartPointer2 = KSP(shader) +
7232 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
7233 #endif
7234 #else
7235 ps.DispatchGRFStartRegisterForConstantSetupData0 =
7236 elk_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
7237 ps.DispatchGRFStartRegisterForConstantSetupData1 =
7238 elk_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
7239 ps.DispatchGRFStartRegisterForConstantSetupData2 =
7240 elk_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
7241
7242 ps.KernelStartPointer0 = KSP(shader) +
7243 elk_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
7244 ps.KernelStartPointer1 = KSP(shader) +
7245 elk_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
7246 ps.KernelStartPointer2 = KSP(shader) +
7247 elk_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
7248 #endif
7249
7250 #if GFX_VERx10 >= 125
7251 ps.ScratchSpaceBuffer = scratch_addr >> 4;
7252 #else
7253 ps.ScratchSpaceBasePointer =
7254 rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE);
7255 #endif
7256 }
7257
7258 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
7259 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
7260 #if GFX_VER >= 9
7261 if (!fs_data->uses_sample_mask)
7262 psx.InputCoverageMaskState = ICMS_NONE;
7263 else if (fs_data->post_depth_coverage)
7264 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
7265 else if (fs_data->inner_coverage &&
7266 cso->conservative_rasterization)
7267 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
7268 else
7269 psx.InputCoverageMaskState = ICMS_NORMAL;
7270 #else
7271 psx.PixelShaderUsesInputCoverageMask =
7272 fs_data->uses_sample_mask;
7273 #endif
7274 }
7275
7276 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
7277 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
7278 iris_emit_merge(batch, shader_ps, ps_state,
7279 GENX(3DSTATE_PS_length));
7280 iris_emit_merge(batch, shader_psx, psx_state,
7281 GENX(3DSTATE_PS_EXTRA_length));
7282 #if GFX_VERx10 >= 125
7283 } else if (stage == MESA_SHADER_TESS_EVAL) {
7284 uint32_t te_state[GENX(3DSTATE_TE_length)] = { 0 };
7285 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
7286 if (intel_needs_workaround(screen->devinfo, 14015055625) &&
7287 program_needs_wa_14015055625)
7288 te.TessellationDistributionMode = TEDMODE_OFF;
7289 else if (intel_needs_workaround(screen->devinfo, 22012699309))
7290 te.TessellationDistributionMode = TEDMODE_RR_STRICT;
7291 else
7292 te.TessellationDistributionMode = TEDMODE_RR_FREE;
7293 }
7294
7295 uint32_t ds_state[GENX(3DSTATE_DS_length)] = { 0 };
7296 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
7297 if (scratch_addr)
7298 ds.ScratchSpaceBuffer = scratch_addr >> 4;
7299 }
7300
7301 uint32_t *shader_ds = (uint32_t *) shader->derived_data;
7302 uint32_t *shader_te = shader_ds + GENX(3DSTATE_DS_length);
7303
7304 iris_emit_merge(batch, shader_ds, ds_state,
7305 GENX(3DSTATE_DS_length));
7306 iris_emit_merge(batch, shader_te, te_state,
7307 GENX(3DSTATE_TE_length));
7308 #endif
7309 } else if (scratch_addr) {
7310 uint32_t *pkt = (uint32_t *) shader->derived_data;
7311 switch (stage) {
7312 case MESA_SHADER_VERTEX: MERGE_SCRATCH_ADDR(3DSTATE_VS); break;
7313 case MESA_SHADER_TESS_CTRL: MERGE_SCRATCH_ADDR(3DSTATE_HS); break;
7314 case MESA_SHADER_TESS_EVAL: MERGE_SCRATCH_ADDR(3DSTATE_DS); break;
7315 case MESA_SHADER_GEOMETRY: MERGE_SCRATCH_ADDR(3DSTATE_GS); break;
7316 }
7317 } else {
7318 iris_batch_emit(batch, shader->derived_data,
7319 iris_derived_program_state_size(stage));
7320 }
7321 } else {
7322 if (stage == MESA_SHADER_TESS_EVAL) {
7323 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
7324 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
7325 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
7326 } else if (stage == MESA_SHADER_GEOMETRY) {
7327 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
7328 }
7329 }
7330 }
7331
7332 if (ice->state.streamout_active) {
7333 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
7334 /* Wa_16011411144
7335 * SW must insert a PIPE_CONTROL cmd before and after the
7336 * 3dstate_so_buffer_index_0/1/2/3 states to ensure so_buffer_index_* state is
7337 * not combined with other state changes.
7338 */
7339 if (intel_device_info_is_dg2(batch->screen->devinfo)) {
7340 iris_emit_pipe_control_flush(batch,
7341 "SO pre change stall WA",
7342 PIPE_CONTROL_CS_STALL);
7343 }
7344
7345 for (int i = 0; i < 4; i++) {
7346 struct iris_stream_output_target *tgt =
7347 (void *) ice->state.so_target[i];
7348 enum { dwords = GENX(3DSTATE_SO_BUFFER_length) };
7349 uint32_t *so_buffers = genx->so_buffers + i * dwords;
7350 bool zero_offset = false;
7351
7352 if (tgt) {
7353 zero_offset = tgt->zero_offset;
7354 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
7355 true, IRIS_DOMAIN_OTHER_WRITE);
7356 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
7357 true, IRIS_DOMAIN_OTHER_WRITE);
7358 }
7359
7360 if (zero_offset) {
7361 /* Skip the last DWord which contains "Stream Offset" of
7362 * 0xFFFFFFFF and instead emit a dword of zero directly.
7363 */
7364 STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_StreamOffset_start) ==
7365 32 * (dwords - 1));
7366 const uint32_t zero = 0;
7367 iris_batch_emit(batch, so_buffers, 4 * (dwords - 1));
7368 iris_batch_emit(batch, &zero, sizeof(zero));
7369 tgt->zero_offset = false;
7370 } else {
7371 iris_batch_emit(batch, so_buffers, 4 * dwords);
7372 }
7373 }
7374
7375 /* Wa_16011411144 */
7376 if (intel_device_info_is_dg2(batch->screen->devinfo)) {
7377 iris_emit_pipe_control_flush(batch,
7378 "SO post change stall WA",
7379 PIPE_CONTROL_CS_STALL);
7380 }
7381 }
7382
7383 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
7384 /* Wa_16011773973:
7385 * If SOL is enabled and SO_DECL state has to be programmed,
7386 * 1. Send 3D State SOL state with SOL disabled
7387 * 2. Send SO_DECL NP state
7388 * 3. Send 3D State SOL with SOL Enabled
7389 */
7390 if (intel_device_info_is_dg2(batch->screen->devinfo))
7391 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
7392
7393 uint32_t *decl_list =
7394 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
7395 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
7396
7397 #if GFX_VER >= 11
7398 /* ICL PRMs, Volume 2a - Command Reference: Instructions,
7399 * 3DSTATE_SO_DECL_LIST:
7400 *
7401 * "Workaround: This command must be followed by a PIPE_CONTROL
7402 * with CS Stall bit set."
7403 *
7404 * On DG2+ also known as Wa_1509820217.
7405 */
7406 iris_emit_pipe_control_flush(batch,
7407 "workaround: cs stall after so_decl",
7408 PIPE_CONTROL_CS_STALL);
7409 #endif
7410 }
7411
7412 if (dirty & IRIS_DIRTY_STREAMOUT) {
7413 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
7414
7415 #if GFX_VERx10 >= 120
7416 /* Wa_16013994831 - Disable preemption. */
7417 if (intel_needs_workaround(batch->screen->devinfo, 16013994831))
7418 iris_preemption_streamout_wa(ice, batch, false);
7419 #endif
7420
7421 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
7422 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
7423 sol.SOFunctionEnable = true;
7424 sol.SOStatisticsEnable = true;
7425
7426 sol.RenderingDisable = cso_rast->rasterizer_discard &&
7427 !ice->state.prims_generated_query_active;
7428 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
7429
7430
7431 #if INTEL_NEEDS_WA_18022508906
7432 /* Wa_14017076903 :
7433 *
7434 * SKL PRMs, Volume 7: 3D-Media-GPGPU, Stream Output Logic (SOL) Stage:
7435 *
7436 * SOL_INT::Render_Enable =
7437 * (3DSTATE_STREAMOUT::Force_Rending == Force_On) ||
7438 * (
7439 * (3DSTATE_STREAMOUT::Force_Rending != Force_Off) &&
7440 * !(3DSTATE_GS::Enable && 3DSTATE_GS::Output Vertex Size == 0) &&
7441 * !3DSTATE_STREAMOUT::API_Render_Disable &&
7442 * (
7443 * 3DSTATE_DEPTH_STENCIL_STATE::Stencil_TestEnable ||
7444 * 3DSTATE_DEPTH_STENCIL_STATE::Depth_TestEnable ||
7445 * 3DSTATE_DEPTH_STENCIL_STATE::Depth_WriteEnable ||
7446 * 3DSTATE_PS_EXTRA::PS_Valid ||
7447 * 3DSTATE_WM::Legacy Depth_Buffer_Clear ||
7448 * 3DSTATE_WM::Legacy Depth_Buffer_Resolve_Enable ||
7449 * 3DSTATE_WM::Legacy Hierarchical_Depth_Buffer_Resolve_Enable
7450 * )
7451 * )
7452 *
7453 * If SOL_INT::Render_Enable is false, the SO stage will not forward any
7454 * topologies down the pipeline. Which is not what we want for occlusion
7455 * queries.
7456 *
7457 * Here we force rendering to get SOL_INT::Render_Enable when occlusion
7458 * queries are active.
7459 */
7460 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
7461 if (!cso_rast->rasterizer_discard && ice->state.occlusion_query_active)
7462 sol.ForceRendering = Force_on;
7463 #endif
7464 }
7465
7466 assert(ice->state.streamout);
7467
7468 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
7469 GENX(3DSTATE_STREAMOUT_length));
7470 }
7471 } else {
7472 if (dirty & IRIS_DIRTY_STREAMOUT) {
7473
7474 #if GFX_VERx10 >= 120
7475 /* Wa_16013994831 - Enable preemption. */
7476 if (!ice->state.genx->object_preemption)
7477 iris_preemption_streamout_wa(ice, batch, true);
7478 #endif
7479
7480 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
7481 }
7482 }
7483
7484 if (dirty & IRIS_DIRTY_CLIP) {
7485 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
7486 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
7487
7488 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
7489 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
7490 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
7491 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
7492 : ice->state.prim_is_points_or_lines);
7493
7494 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
7495 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
7496 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
7497 if (cso_rast->rasterizer_discard)
7498 cl.ClipMode = CLIPMODE_REJECT_ALL;
7499 else if (ice->state.window_space_position)
7500 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
7501 else
7502 cl.ClipMode = CLIPMODE_NORMAL;
7503
7504 cl.PerspectiveDivideDisable = ice->state.window_space_position;
7505 cl.ViewportXYClipTestEnable = !points_or_lines;
7506
7507 cl.NonPerspectiveBarycentricEnable = fs_data->uses_nonperspective_interp_modes;
7508
7509 cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1;
7510 cl.MaximumVPIndex = ice->state.num_viewports - 1;
7511 }
7512 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
7513 ARRAY_SIZE(cso_rast->clip));
7514 }
7515
7516 if (dirty & (IRIS_DIRTY_RASTER | IRIS_DIRTY_URB)) {
7517 /* From the Browadwell PRM, Volume 2, documentation for
7518 * 3DSTATE_RASTER, "Antialiasing Enable":
7519 *
7520 * "This field must be disabled if any of the render targets
7521 * have integer (UINT or SINT) surface format."
7522 *
7523 * Additionally internal documentation for Gfx12+ states:
7524 *
7525 * "This bit MUST not be set when NUM_MULTISAMPLES > 1 OR
7526 * FORCED_SAMPLE_COUNT > 1."
7527 */
7528 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
7529 unsigned samples = util_framebuffer_get_num_samples(cso_fb);
7530 struct iris_rasterizer_state *cso = ice->state.cso_rast;
7531
7532 bool aa_enable = cso->line_smooth &&
7533 !ice->state.has_integer_rt &&
7534 !(batch->screen->devinfo->ver >= 12 && samples > 1);
7535
7536 uint32_t dynamic_raster[GENX(3DSTATE_RASTER_length)];
7537 iris_pack_command(GENX(3DSTATE_RASTER), &dynamic_raster, raster) {
7538 raster.AntialiasingEnable = aa_enable;
7539 }
7540 iris_emit_merge(batch, cso->raster, dynamic_raster,
7541 ARRAY_SIZE(cso->raster));
7542
7543 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
7544 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
7545 sf.ViewportTransformEnable = !ice->state.window_space_position;
7546
7547 #if GFX_VER >= 12
7548 sf.DerefBlockSize = ice->state.urb_deref_block_size;
7549 #endif
7550 }
7551 iris_emit_merge(batch, cso->sf, dynamic_sf,
7552 ARRAY_SIZE(dynamic_sf));
7553 }
7554
7555 if (dirty & IRIS_DIRTY_WM) {
7556 struct iris_rasterizer_state *cso = ice->state.cso_rast;
7557 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
7558
7559 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
7560 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
7561
7562 wm.BarycentricInterpolationMode =
7563 iris_fs_barycentric_modes(ice->shaders.prog[MESA_SHADER_FRAGMENT], 0);
7564
7565 if (fs_data->early_fragment_tests)
7566 wm.EarlyDepthStencilControl = EDSC_PREPS;
7567 else if (fs_data->has_side_effects)
7568 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
7569 else
7570 wm.EarlyDepthStencilControl = EDSC_NORMAL;
7571
7572 /* We could skip this bit if color writes are enabled. */
7573 if (fs_data->has_side_effects || fs_data->uses_kill)
7574 wm.ForceThreadDispatchEnable = ForceON;
7575 }
7576 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
7577 }
7578
7579 if (dirty & IRIS_DIRTY_SBE) {
7580 iris_emit_sbe(batch, ice);
7581 }
7582
7583 if (dirty & IRIS_DIRTY_PS_BLEND) {
7584 struct iris_blend_state *cso_blend = ice->state.cso_blend;
7585 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
7586 const struct shader_info *fs_info =
7587 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
7588
7589 int dst_blend_factor = cso_blend->ps_dst_blend_factor[0];
7590 int dst_alpha_blend_factor = cso_blend->ps_dst_alpha_blend_factor[0];
7591
7592 /* When MSAA is enabled, instead of using BLENDFACTOR_ZERO use
7593 * CONST_COLOR, CONST_ALPHA and supply zero by using blend constants.
7594 */
7595 if (needs_wa_14018912822) {
7596 if (ice->state.color_blend_zero)
7597 dst_blend_factor = BLENDFACTOR_CONST_COLOR;
7598 if (ice->state.alpha_blend_zero)
7599 dst_alpha_blend_factor = BLENDFACTOR_CONST_ALPHA;
7600 }
7601
7602 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
7603 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
7604 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
7605 pb.AlphaTestEnable = cso_zsa->alpha_enabled;
7606
7607 pb.DestinationBlendFactor = dst_blend_factor;
7608 pb.DestinationAlphaBlendFactor = dst_alpha_blend_factor;
7609
7610 /* The dual source blending docs caution against using SRC1 factors
7611 * when the shader doesn't use a dual source render target write.
7612 * Empirically, this can lead to GPU hangs, and the results are
7613 * undefined anyway, so simply disable blending to avoid the hang.
7614 */
7615 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
7616 (!cso_blend->dual_color_blending || fs_data->dual_src_blend);
7617 }
7618
7619 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
7620 ARRAY_SIZE(cso_blend->ps_blend));
7621 }
7622
7623 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
7624 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
7625 #if GFX_VER >= 9 && GFX_VER < 12
7626 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
7627 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
7628 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
7629 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
7630 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
7631 }
7632 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
7633 #else
7634 /* Use modify disable fields which allow us to emit packets
7635 * directly instead of merging them later.
7636 */
7637 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
7638 #endif
7639
7640 /* Depth or stencil write changed in cso. */
7641 if (intel_needs_workaround(batch->screen->devinfo, 18019816803) &&
7642 (dirty & IRIS_DIRTY_DS_WRITE_ENABLE)) {
7643 iris_emit_pipe_control_flush(
7644 batch, "workaround: PSS stall after DS write enable change",
7645 PIPE_CONTROL_PSS_STALL_SYNC);
7646 }
7647
7648 #if GFX_VER >= 12
7649 iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds));
7650 #endif
7651 }
7652
7653 if (dirty & IRIS_DIRTY_STENCIL_REF) {
7654 #if GFX_VER >= 12
7655 /* Use modify disable fields which allow us to emit packets
7656 * directly instead of merging them later.
7657 */
7658 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
7659 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
7660 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
7661 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
7662 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
7663 wmds.StencilTestMaskModifyDisable = true;
7664 wmds.StencilWriteMaskModifyDisable = true;
7665 wmds.StencilStateModifyDisable = true;
7666 wmds.DepthStateModifyDisable = true;
7667 }
7668 iris_batch_emit(batch, stencil_refs, sizeof(stencil_refs));
7669 #endif
7670 }
7671
7672 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
7673 /* Wa_1409725701:
7674 * "The viewport-specific state used by the SF unit (SCISSOR_RECT) is
7675 * stored as an array of up to 16 elements. The location of first
7676 * element of the array, as specified by Pointer to SCISSOR_RECT,
7677 * should be aligned to a 64-byte boundary.
7678 */
7679 uint32_t alignment = 64;
7680 uint32_t scissor_offset =
7681 emit_state(batch, ice->state.dynamic_uploader,
7682 &ice->state.last_res.scissor,
7683 ice->state.scissors,
7684 sizeof(struct pipe_scissor_state) *
7685 ice->state.num_viewports, alignment);
7686
7687 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
7688 ptr.ScissorRectPointer = scissor_offset;
7689 }
7690 }
7691
7692 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
7693 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
7694
7695 /* Do not emit the cso yet. We may need to update clear params first. */
7696 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
7697 struct iris_resource *zres = NULL, *sres = NULL;
7698 if (cso_fb->zsbuf) {
7699 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
7700 &zres, &sres);
7701 }
7702
7703 if (zres && ice->state.hiz_usage != ISL_AUX_USAGE_NONE) {
7704 #if GFX_VER < 20
7705 uint32_t *clear_params =
7706 cso_z->packets + ARRAY_SIZE(cso_z->packets) -
7707 GENX(3DSTATE_CLEAR_PARAMS_length);
7708
7709 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
7710 clear.DepthClearValueValid = true;
7711 clear.DepthClearValue = zres->aux.clear_color.f32[0];
7712 }
7713 #endif
7714 }
7715
7716 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
7717
7718 /* Wa_14016712196:
7719 * Emit depth flush after state that sends implicit depth flush.
7720 */
7721 if (intel_needs_workaround(batch->screen->devinfo, 14016712196)) {
7722 iris_emit_pipe_control_flush(batch, "Wa_14016712196",
7723 PIPE_CONTROL_DEPTH_CACHE_FLUSH);
7724 }
7725
7726 if (zres)
7727 genX(emit_depth_state_workarounds)(ice, batch, &zres->surf);
7728
7729 if (intel_needs_workaround(batch->screen->devinfo, 1408224581) ||
7730 intel_needs_workaround(batch->screen->devinfo, 14014097488)) {
7731 /* Wa_1408224581
7732 *
7733 * Workaround: Gfx12LP Astep only An additional pipe control with
7734 * post-sync = store dword operation would be required.( w/a is to
7735 * have an additional pipe control after the stencil state whenever
7736 * the surface state bits of this state is changing).
7737 *
7738 * This also seems sufficient to handle Wa_14014097488.
7739 */
7740 iris_emit_pipe_control_write(batch, "WA for stencil state",
7741 PIPE_CONTROL_WRITE_IMMEDIATE,
7742 screen->workaround_address.bo,
7743 screen->workaround_address.offset, 0);
7744 }
7745 }
7746
7747 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
7748 /* Listen for buffer changes, and also write enable changes. */
7749 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
7750 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
7751 }
7752
7753 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
7754 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
7755 for (int i = 0; i < 32; i++) {
7756 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
7757 }
7758 }
7759 }
7760
7761 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
7762 struct iris_rasterizer_state *cso = ice->state.cso_rast;
7763 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
7764 #if GFX_VER >= 11
7765 /* ICL PRMs, Volume 2a - Command Reference: Instructions,
7766 * 3DSTATE_LINE_STIPPLE:
7767 *
7768 * "Workaround: This command must be followed by a PIPE_CONTROL with
7769 * CS Stall bit set."
7770 */
7771 iris_emit_pipe_control_flush(batch,
7772 "workaround: post 3DSTATE_LINE_STIPPLE",
7773 PIPE_CONTROL_CS_STALL);
7774 #endif
7775 }
7776
7777 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
7778 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
7779 topo.PrimitiveTopologyType =
7780 translate_prim_type(draw->mode, ice->state.vertices_per_patch);
7781 }
7782 }
7783
7784 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
7785 int count = util_bitcount64(ice->state.bound_vertex_buffers);
7786 uint64_t dynamic_bound = ice->state.bound_vertex_buffers;
7787
7788 if (ice->state.vs_uses_draw_params && !skip_vb_params) {
7789 assert(ice->draw.draw_params.res);
7790
7791 struct iris_vertex_buffer_state *state =
7792 &(ice->state.genx->vertex_buffers[count]);
7793 pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
7794 struct iris_resource *res = (void *) state->resource;
7795
7796 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
7797 vb.VertexBufferIndex = count;
7798 vb.AddressModifyEnable = true;
7799 vb.BufferPitch = 0;
7800 vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
7801 vb.BufferStartingAddress =
7802 ro_bo(NULL, res->bo->address +
7803 (int) ice->draw.draw_params.offset);
7804 vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
7805 ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
7806 #if GFX_VER >= 12
7807 vb.L3BypassDisable = true;
7808 #endif
7809 }
7810 dynamic_bound |= 1ull << count;
7811 count++;
7812 }
7813
7814 if (ice->state.vs_uses_derived_draw_params && !skip_vb_params) {
7815 struct iris_vertex_buffer_state *state =
7816 &(ice->state.genx->vertex_buffers[count]);
7817 pipe_resource_reference(&state->resource,
7818 ice->draw.derived_draw_params.res);
7819 struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
7820
7821 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
7822 vb.VertexBufferIndex = count;
7823 vb.AddressModifyEnable = true;
7824 vb.BufferPitch = 0;
7825 vb.BufferSize =
7826 res->bo->size - ice->draw.derived_draw_params.offset;
7827 vb.BufferStartingAddress =
7828 ro_bo(NULL, res->bo->address +
7829 (int) ice->draw.derived_draw_params.offset);
7830 vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
7831 ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
7832 #if GFX_VER >= 12
7833 vb.L3BypassDisable = true;
7834 #endif
7835 }
7836 dynamic_bound |= 1ull << count;
7837 count++;
7838 }
7839
7840 if (count) {
7841 #if GFX_VER >= 11
7842 /* Gfx11+ doesn't need the cache workaround below */
7843 uint64_t bound = dynamic_bound;
7844 while (bound) {
7845 const int i = u_bit_scan64(&bound);
7846 iris_use_optional_res(batch, genx->vertex_buffers[i].resource,
7847 false, IRIS_DOMAIN_VF_READ);
7848 }
7849 #else
7850 /* The VF cache designers cut corners, and made the cache key's
7851 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
7852 * 32 bits of the address. If you have two vertex buffers which get
7853 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
7854 * you can get collisions (even within a single batch).
7855 *
7856 * So, we need to do a VF cache invalidate if the buffer for a VB
7857 * slot slot changes [48:32] address bits from the previous time.
7858 */
7859 unsigned flush_flags = 0;
7860
7861 uint64_t bound = dynamic_bound;
7862 while (bound) {
7863 const int i = u_bit_scan64(&bound);
7864 uint16_t high_bits = 0;
7865
7866 struct iris_resource *res =
7867 (void *) genx->vertex_buffers[i].resource;
7868 if (res) {
7869 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_VF_READ);
7870
7871 high_bits = res->bo->address >> 32ull;
7872 if (high_bits != ice->state.last_vbo_high_bits[i]) {
7873 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
7874 PIPE_CONTROL_CS_STALL;
7875 ice->state.last_vbo_high_bits[i] = high_bits;
7876 }
7877 }
7878 }
7879
7880 if (flush_flags) {
7881 iris_emit_pipe_control_flush(batch,
7882 "workaround: VF cache 32-bit key [VB]",
7883 flush_flags);
7884 }
7885 #endif
7886
7887 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
7888
7889 uint32_t *map =
7890 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
7891 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
7892 vb.DWordLength = (vb_dwords * count + 1) - 2;
7893 }
7894 map += 1;
7895
7896 const struct iris_vertex_element_state *cso_ve =
7897 ice->state.cso_vertex_elements;
7898
7899 bound = dynamic_bound;
7900 while (bound) {
7901 const int i = u_bit_scan64(&bound);
7902
7903 uint32_t vb_stride[GENX(VERTEX_BUFFER_STATE_length)];
7904 struct iris_bo *bo =
7905 iris_resource_bo(genx->vertex_buffers[i].resource);
7906 iris_pack_state(GENX(VERTEX_BUFFER_STATE), &vb_stride, vbs) {
7907 vbs.BufferPitch = cso_ve->stride[i];
7908 /* Unnecessary except to defeat the genxml nonzero checker */
7909 vbs.MOCS = iris_mocs(bo, &screen->isl_dev,
7910 ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
7911 }
7912 for (unsigned d = 0; d < vb_dwords; d++)
7913 map[d] = genx->vertex_buffers[i].state[d] | vb_stride[d];
7914
7915 map += vb_dwords;
7916 }
7917 }
7918 }
7919
7920 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
7921 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
7922 const unsigned entries = MAX2(cso->count, 1);
7923 if (!(ice->state.vs_needs_sgvs_element ||
7924 ice->state.vs_uses_derived_draw_params ||
7925 ice->state.vs_needs_edge_flag)) {
7926 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
7927 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
7928 } else {
7929 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
7930 const unsigned dyn_count = cso->count +
7931 ice->state.vs_needs_sgvs_element +
7932 ice->state.vs_uses_derived_draw_params;
7933
7934 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
7935 &dynamic_ves, ve) {
7936 ve.DWordLength =
7937 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
7938 }
7939 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
7940 (cso->count - ice->state.vs_needs_edge_flag) *
7941 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
7942 uint32_t *ve_pack_dest =
7943 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
7944 GENX(VERTEX_ELEMENT_STATE_length)];
7945
7946 if (ice->state.vs_needs_sgvs_element) {
7947 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
7948 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
7949 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
7950 ve.Valid = true;
7951 ve.VertexBufferIndex =
7952 util_bitcount64(ice->state.bound_vertex_buffers);
7953 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
7954 ve.Component0Control = base_ctrl;
7955 ve.Component1Control = base_ctrl;
7956 ve.Component2Control = VFCOMP_STORE_0;
7957 ve.Component3Control = VFCOMP_STORE_0;
7958 }
7959 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
7960 }
7961 if (ice->state.vs_uses_derived_draw_params) {
7962 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
7963 ve.Valid = true;
7964 ve.VertexBufferIndex =
7965 util_bitcount64(ice->state.bound_vertex_buffers) +
7966 ice->state.vs_uses_draw_params;
7967 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
7968 ve.Component0Control = VFCOMP_STORE_SRC;
7969 ve.Component1Control = VFCOMP_STORE_SRC;
7970 ve.Component2Control = VFCOMP_STORE_0;
7971 ve.Component3Control = VFCOMP_STORE_0;
7972 }
7973 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
7974 }
7975 if (ice->state.vs_needs_edge_flag) {
7976 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
7977 ve_pack_dest[i] = cso->edgeflag_ve[i];
7978 }
7979
7980 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
7981 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
7982 }
7983
7984 if (!ice->state.vs_needs_edge_flag) {
7985 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
7986 entries * GENX(3DSTATE_VF_INSTANCING_length));
7987 } else {
7988 assert(cso->count > 0);
7989 const unsigned edgeflag_index = cso->count - 1;
7990 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
7991 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
7992 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
7993
7994 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
7995 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
7996 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
7997 vi.VertexElementIndex = edgeflag_index +
7998 ice->state.vs_needs_sgvs_element +
7999 ice->state.vs_uses_derived_draw_params;
8000 }
8001 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
8002 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
8003
8004 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
8005 entries * GENX(3DSTATE_VF_INSTANCING_length));
8006 }
8007 }
8008
8009 if (dirty & IRIS_DIRTY_VF_SGVS) {
8010 const struct iris_vs_data *vs_data =
8011 iris_vs_data(ice->shaders.prog[MESA_SHADER_VERTEX]);
8012 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
8013
8014 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
8015 if (vs_data->uses_vertexid) {
8016 sgv.VertexIDEnable = true;
8017 sgv.VertexIDComponentNumber = 2;
8018 sgv.VertexIDElementOffset =
8019 cso->count - ice->state.vs_needs_edge_flag;
8020 }
8021
8022 if (vs_data->uses_instanceid) {
8023 sgv.InstanceIDEnable = true;
8024 sgv.InstanceIDComponentNumber = 3;
8025 sgv.InstanceIDElementOffset =
8026 cso->count - ice->state.vs_needs_edge_flag;
8027 }
8028 }
8029 }
8030
8031 if (dirty & IRIS_DIRTY_VF) {
8032 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
8033 #if GFX_VERx10 >= 125
8034 vf.GeometryDistributionEnable = true;
8035 #endif
8036 if (draw->primitive_restart) {
8037 vf.IndexedDrawCutIndexEnable = true;
8038 vf.CutIndex = draw->restart_index;
8039 }
8040 }
8041 }
8042
8043 #if GFX_VERx10 >= 125
8044 if (dirty & IRIS_DIRTY_VFG) {
8045 iris_emit_cmd(batch, GENX(3DSTATE_VFG), vfg) {
8046 /* If 3DSTATE_TE: TE Enable == 1 then RR_STRICT else RR_FREE*/
8047 vfg.DistributionMode =
8048 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL ? RR_STRICT :
8049 RR_FREE;
8050 vfg.DistributionGranularity = BatchLevelGranularity;
8051 #if INTEL_WA_14014851047_GFX_VER
8052 vfg.GranularityThresholdDisable =
8053 intel_needs_workaround(batch->screen->devinfo, 14014851047);
8054 #endif
8055 vfg.ListCutIndexEnable = draw->primitive_restart;
8056 /* 192 vertices for TRILIST_ADJ */
8057 vfg.ListNBatchSizeScale = 0;
8058 /* Batch size of 384 vertices */
8059 vfg.List3BatchSizeScale = 2;
8060 /* Batch size of 128 vertices */
8061 vfg.List2BatchSizeScale = 1;
8062 /* Batch size of 128 vertices */
8063 vfg.List1BatchSizeScale = 2;
8064 /* Batch size of 256 vertices for STRIP topologies */
8065 vfg.StripBatchSizeScale = 3;
8066 /* 192 control points for PATCHLIST_3 */
8067 vfg.PatchBatchSizeScale = 1;
8068 /* 192 control points for PATCHLIST_3 */
8069 vfg.PatchBatchSizeMultiplier = 31;
8070 }
8071 }
8072 #endif
8073
8074 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
8075 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
8076 vf.StatisticsEnable = true;
8077 }
8078 }
8079
8080 #if GFX_VER == 8
8081 if (dirty & IRIS_DIRTY_PMA_FIX) {
8082 bool enable = want_pma_fix(ice);
8083 genX(update_pma_fix)(ice, batch, enable);
8084 }
8085 #endif
8086
8087 if (ice->state.current_hash_scale != 1)
8088 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
8089
8090 #if GFX_VER >= 12
8091 genX(invalidate_aux_map_state)(batch);
8092 #endif
8093 }
8094
8095 static void
flush_vbos(struct iris_context * ice,struct iris_batch * batch)8096 flush_vbos(struct iris_context *ice, struct iris_batch *batch)
8097 {
8098 struct iris_genx_state *genx = ice->state.genx;
8099 uint64_t bound = ice->state.bound_vertex_buffers;
8100 while (bound) {
8101 const int i = u_bit_scan64(&bound);
8102 struct iris_bo *bo = iris_resource_bo(genx->vertex_buffers[i].resource);
8103 iris_emit_buffer_barrier_for(batch, bo, IRIS_DOMAIN_VF_READ);
8104 }
8105 }
8106
8107 static bool
point_or_line_list(enum mesa_prim prim_type)8108 point_or_line_list(enum mesa_prim prim_type)
8109 {
8110 switch (prim_type) {
8111 case MESA_PRIM_POINTS:
8112 case MESA_PRIM_LINES:
8113 case MESA_PRIM_LINE_STRIP:
8114 case MESA_PRIM_LINES_ADJACENCY:
8115 case MESA_PRIM_LINE_STRIP_ADJACENCY:
8116 case MESA_PRIM_LINE_LOOP:
8117 return true;
8118 default:
8119 return false;
8120 }
8121 return false;
8122 }
8123
8124 void
genX(emit_breakpoint)8125 genX(emit_breakpoint)(struct iris_batch *batch, bool emit_before_draw)
8126 {
8127 struct iris_context *ice = batch->ice;
8128 uint32_t draw_count = emit_before_draw ?
8129 p_atomic_inc_return(&ice->draw_call_count) :
8130 p_atomic_read(&ice->draw_call_count);
8131
8132 if (((draw_count == intel_debug_bkp_before_draw_count &&
8133 emit_before_draw) ||
8134 (draw_count == intel_debug_bkp_after_draw_count &&
8135 !emit_before_draw))) {
8136 iris_emit_cmd(batch, GENX(MI_SEMAPHORE_WAIT), sem) {
8137 sem.WaitMode = PollingMode;
8138 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD;
8139 sem.SemaphoreDataDword = 0x1;
8140 sem.SemaphoreAddress = rw_bo(batch->screen->breakpoint_bo, 0,
8141 IRIS_DOMAIN_OTHER_WRITE);
8142 };
8143 }
8144 }
8145
8146 void
genX(emit_3dprimitive_was)8147 genX(emit_3dprimitive_was)(struct iris_batch *batch,
8148 const struct pipe_draw_indirect_info *indirect,
8149 uint32_t primitive_type,
8150 uint32_t vertex_count)
8151 {
8152 UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
8153 UNUSED const struct iris_context *ice = batch->ice;
8154
8155 #if INTEL_WA_22014412737_GFX_VER || INTEL_WA_16014538804_GFX_VER
8156 if (intel_needs_workaround(devinfo, 22014412737) &&
8157 (point_or_line_list(primitive_type) || indirect ||
8158 (vertex_count == 1 || vertex_count == 2))) {
8159 iris_emit_pipe_control_write(batch, "Wa_22014412737",
8160 PIPE_CONTROL_WRITE_IMMEDIATE,
8161 batch->screen->workaround_bo,
8162 batch->screen->workaround_address.offset,
8163 0ull);
8164 batch->num_3d_primitives_emitted = 0;
8165 } else if (intel_needs_workaround(devinfo, 16014538804)) {
8166 batch->num_3d_primitives_emitted++;
8167
8168 /* Wa_16014538804 - Send empty/dummy pipe control after 3 3DPRIMITIVE. */
8169 if (batch->num_3d_primitives_emitted == 3) {
8170 iris_emit_pipe_control_flush(batch, "Wa_16014538804", 0);
8171 batch->num_3d_primitives_emitted = 0;
8172 }
8173 }
8174 #endif
8175 }
8176
8177 void
genX(urb_workaround)8178 genX(urb_workaround)(struct iris_batch *batch,
8179 const struct intel_urb_config *urb_cfg)
8180 {
8181 #if INTEL_NEEDS_WA_16014912113
8182 if (intel_urb_setup_changed(urb_cfg, &batch->ice->shaders.last_urb,
8183 MESA_SHADER_TESS_EVAL) &&
8184 batch->ice->shaders.last_urb.size[0] != 0) {
8185 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
8186 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
8187 urb._3DCommandSubOpcode += i;
8188 urb.VSURBStartingAddress =
8189 batch->ice->shaders.last_urb.start[i];
8190 urb.VSURBEntryAllocationSize =
8191 batch->ice->shaders.last_urb.size[i] - 1;
8192 urb.VSNumberofURBEntries = i == 0 ? 256 : 0;
8193 }
8194 }
8195 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
8196 pc.HDCPipelineFlushEnable = true;
8197 }
8198 }
8199 #endif
8200
8201 /* Update current urb config. */
8202 memcpy(&batch->ice->shaders.last_urb, &batch->ice->shaders.urb.cfg,
8203 sizeof(struct intel_urb_config));
8204 }
8205
8206 static void
iris_emit_index_buffer(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw,const struct pipe_draw_start_count_bias * sc)8207 iris_emit_index_buffer(struct iris_context *ice,
8208 struct iris_batch *batch,
8209 const struct pipe_draw_info *draw,
8210 const struct pipe_draw_start_count_bias *sc)
8211 {
8212 unsigned offset;
8213
8214 if (draw->has_user_indices) {
8215 unsigned start_offset = draw->index_size * sc->start;
8216
8217 u_upload_data(ice->ctx.const_uploader, start_offset,
8218 sc->count * draw->index_size, 4,
8219 (char*)draw->index.user + start_offset,
8220 &offset, &ice->state.last_res.index_buffer);
8221 offset -= start_offset;
8222 } else {
8223 struct iris_resource *res = (void *) draw->index.resource;
8224 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
8225
8226 pipe_resource_reference(&ice->state.last_res.index_buffer,
8227 draw->index.resource);
8228 offset = 0;
8229
8230 iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_VF_READ);
8231 }
8232
8233 struct iris_genx_state *genx = ice->state.genx;
8234 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
8235
8236 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
8237 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
8238 ib.IndexFormat = draw->index_size >> 1;
8239 ib.MOCS = iris_mocs(bo, &batch->screen->isl_dev,
8240 ISL_SURF_USAGE_INDEX_BUFFER_BIT);
8241 ib.BufferSize = bo->size - offset;
8242 ib.BufferStartingAddress = ro_bo(NULL, bo->address + offset);
8243 #if GFX_VER >= 12
8244 ib.L3BypassDisable = true;
8245 #endif
8246 }
8247
8248 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
8249 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
8250 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
8251 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_VF_READ);
8252 }
8253
8254 #if GFX_VER < 11
8255 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
8256 uint16_t high_bits = bo->address >> 32ull;
8257 if (high_bits != ice->state.last_index_bo_high_bits) {
8258 iris_emit_pipe_control_flush(batch,
8259 "workaround: VF cache 32-bit key [IB]",
8260 PIPE_CONTROL_VF_CACHE_INVALIDATE |
8261 PIPE_CONTROL_CS_STALL);
8262 ice->state.last_index_bo_high_bits = high_bits;
8263 }
8264 #endif
8265 }
8266
8267
8268 static void
iris_upload_render_state(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw,unsigned drawid_offset,const struct pipe_draw_indirect_info * indirect,const struct pipe_draw_start_count_bias * sc)8269 iris_upload_render_state(struct iris_context *ice,
8270 struct iris_batch *batch,
8271 const struct pipe_draw_info *draw,
8272 unsigned drawid_offset,
8273 const struct pipe_draw_indirect_info *indirect,
8274 const struct pipe_draw_start_count_bias *sc)
8275 {
8276 UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
8277 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
8278
8279 trace_intel_begin_draw(&batch->trace);
8280
8281 if (ice->state.dirty & IRIS_DIRTY_VERTEX_BUFFER_FLUSHES)
8282 flush_vbos(ice, batch);
8283
8284 iris_batch_sync_region_start(batch);
8285
8286 /* Always pin the binder. If we're emitting new binding table pointers,
8287 * we need it. If not, we're probably inheriting old tables via the
8288 * context, and need it anyway. Since true zero-bindings cases are
8289 * practically non-existent, just pin it and avoid last_res tracking.
8290 */
8291 iris_use_pinned_bo(batch, ice->state.binder.bo, false,
8292 IRIS_DOMAIN_NONE);
8293
8294 if (!batch->contains_draw) {
8295 if (GFX_VER == 12) {
8296 /* Re-emit constants when starting a new batch buffer in order to
8297 * work around push constant corruption on context switch.
8298 *
8299 * XXX - Provide hardware spec quotation when available.
8300 */
8301 ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_CONSTANTS_VS |
8302 IRIS_STAGE_DIRTY_CONSTANTS_TCS |
8303 IRIS_STAGE_DIRTY_CONSTANTS_TES |
8304 IRIS_STAGE_DIRTY_CONSTANTS_GS |
8305 IRIS_STAGE_DIRTY_CONSTANTS_FS);
8306 }
8307 batch->contains_draw = true;
8308 }
8309
8310 if (!batch->contains_draw_with_next_seqno) {
8311 iris_restore_render_saved_bos(ice, batch, draw);
8312 batch->contains_draw_with_next_seqno = true;
8313 }
8314
8315 /* Wa_1306463417 - Send HS state for every primitive on gfx11.
8316 * Wa_16011107343 (same for gfx12)
8317 * We implement this by setting TCS dirty on each draw.
8318 */
8319 if ((INTEL_NEEDS_WA_1306463417 || INTEL_NEEDS_WA_16011107343) &&
8320 ice->shaders.prog[MESA_SHADER_TESS_CTRL]) {
8321 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TCS;
8322 }
8323
8324 iris_upload_dirty_render_state(ice, batch, draw, false);
8325
8326 if (draw->index_size > 0)
8327 iris_emit_index_buffer(ice, batch, draw, sc);
8328
8329 if (indirect) {
8330 struct mi_builder b;
8331 uint32_t mocs;
8332 mi_builder_init(&b, batch->screen->devinfo, batch);
8333
8334 #define _3DPRIM_END_OFFSET 0x2420
8335 #define _3DPRIM_START_VERTEX 0x2430
8336 #define _3DPRIM_VERTEX_COUNT 0x2434
8337 #define _3DPRIM_INSTANCE_COUNT 0x2438
8338 #define _3DPRIM_START_INSTANCE 0x243C
8339 #define _3DPRIM_BASE_VERTEX 0x2440
8340
8341 if (!indirect->count_from_stream_output) {
8342 if (indirect->indirect_draw_count) {
8343 use_predicate = true;
8344
8345 struct iris_bo *draw_count_bo =
8346 iris_resource_bo(indirect->indirect_draw_count);
8347 unsigned draw_count_offset =
8348 indirect->indirect_draw_count_offset;
8349 mocs = iris_mocs(draw_count_bo, &batch->screen->isl_dev, 0);
8350 mi_builder_set_mocs(&b, mocs);
8351
8352 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
8353 /* comparison = draw id < draw count */
8354 struct mi_value comparison =
8355 mi_ult(&b, mi_imm(drawid_offset),
8356 mi_mem32(ro_bo(draw_count_bo, draw_count_offset)));
8357
8358 /* predicate = comparison & conditional rendering predicate */
8359 mi_store(&b, mi_reg32(MI_PREDICATE_RESULT),
8360 mi_iand(&b, comparison, mi_reg32(CS_GPR(15))));
8361 } else {
8362 uint32_t mi_predicate;
8363
8364 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
8365 mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(drawid_offset));
8366 /* Upload the current draw count from the draw parameters buffer
8367 * to MI_PREDICATE_SRC0. Zero the top 32-bits of
8368 * MI_PREDICATE_SRC0.
8369 */
8370 mi_store(&b, mi_reg64(MI_PREDICATE_SRC0),
8371 mi_mem32(ro_bo(draw_count_bo, draw_count_offset)));
8372
8373 if (drawid_offset == 0) {
8374 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
8375 MI_PREDICATE_COMBINEOP_SET |
8376 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
8377 } else {
8378 /* While draw_index < draw_count the predicate's result will be
8379 * (draw_index == draw_count) ^ TRUE = TRUE
8380 * When draw_index == draw_count the result is
8381 * (TRUE) ^ TRUE = FALSE
8382 * After this all results will be:
8383 * (FALSE) ^ FALSE = FALSE
8384 */
8385 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
8386 MI_PREDICATE_COMBINEOP_XOR |
8387 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
8388 }
8389 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
8390 }
8391 }
8392 struct iris_bo *bo = iris_resource_bo(indirect->buffer);
8393 assert(bo);
8394
8395 mocs = iris_mocs(bo, &batch->screen->isl_dev, 0);
8396 mi_builder_set_mocs(&b, mocs);
8397
8398 mi_store(&b, mi_reg32(_3DPRIM_VERTEX_COUNT),
8399 mi_mem32(ro_bo(bo, indirect->offset + 0)));
8400 mi_store(&b, mi_reg32(_3DPRIM_INSTANCE_COUNT),
8401 mi_mem32(ro_bo(bo, indirect->offset + 4)));
8402 mi_store(&b, mi_reg32(_3DPRIM_START_VERTEX),
8403 mi_mem32(ro_bo(bo, indirect->offset + 8)));
8404 if (draw->index_size) {
8405 mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX),
8406 mi_mem32(ro_bo(bo, indirect->offset + 12)));
8407 mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE),
8408 mi_mem32(ro_bo(bo, indirect->offset + 16)));
8409 } else {
8410 mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE),
8411 mi_mem32(ro_bo(bo, indirect->offset + 12)));
8412 mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX), mi_imm(0));
8413 }
8414 } else if (indirect->count_from_stream_output) {
8415 struct iris_stream_output_target *so =
8416 (void *) indirect->count_from_stream_output;
8417 struct iris_bo *so_bo = iris_resource_bo(so->offset.res);
8418
8419 mocs = iris_mocs(so_bo, &batch->screen->isl_dev, 0);
8420 mi_builder_set_mocs(&b, mocs);
8421
8422 iris_emit_buffer_barrier_for(batch, so_bo, IRIS_DOMAIN_OTHER_READ);
8423
8424 struct iris_address addr = ro_bo(so_bo, so->offset.offset);
8425 struct mi_value offset =
8426 mi_iadd_imm(&b, mi_mem32(addr), -so->base.buffer_offset);
8427 mi_store(&b, mi_reg32(_3DPRIM_VERTEX_COUNT),
8428 mi_udiv32_imm(&b, offset, so->stride));
8429 mi_store(&b, mi_reg32(_3DPRIM_START_VERTEX), mi_imm(0));
8430 mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX), mi_imm(0));
8431 mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE), mi_imm(0));
8432 mi_store(&b, mi_reg32(_3DPRIM_INSTANCE_COUNT),
8433 mi_imm(draw->instance_count));
8434 }
8435 }
8436
8437 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc);
8438
8439 genX(maybe_emit_breakpoint)(batch, true);
8440
8441 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
8442 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
8443 prim.PredicateEnable = use_predicate;
8444 #if GFX_VERx10 >= 125
8445 prim.TBIMREnable = ice->state.use_tbimr;
8446 #endif
8447 if (indirect) {
8448 prim.IndirectParameterEnable = true;
8449 } else {
8450 prim.StartInstanceLocation = draw->start_instance;
8451 prim.InstanceCount = draw->instance_count;
8452 prim.VertexCountPerInstance = sc->count;
8453
8454 prim.StartVertexLocation = sc->start;
8455
8456 if (draw->index_size) {
8457 prim.BaseVertexLocation += sc->index_bias;
8458 }
8459 }
8460 }
8461
8462 genX(emit_3dprimitive_was)(batch, indirect, ice->state.prim_mode, sc->count);
8463 genX(maybe_emit_breakpoint)(batch, false);
8464
8465 iris_batch_sync_region_end(batch);
8466
8467 uint32_t count = (sc) ? sc->count : 0;
8468 count *= draw->instance_count ? draw->instance_count : 1;
8469 trace_intel_end_draw(&batch->trace, count);
8470 }
8471
8472 static void
iris_upload_indirect_render_state(struct iris_context * ice,const struct pipe_draw_info * draw,const struct pipe_draw_indirect_info * indirect,const struct pipe_draw_start_count_bias * sc)8473 iris_upload_indirect_render_state(struct iris_context *ice,
8474 const struct pipe_draw_info *draw,
8475 const struct pipe_draw_indirect_info *indirect,
8476 const struct pipe_draw_start_count_bias *sc)
8477 {
8478 #if GFX_VERx10 >= 125
8479 assert(indirect);
8480
8481 struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
8482 UNUSED struct iris_screen *screen = batch->screen;
8483 UNUSED const struct intel_device_info *devinfo = screen->devinfo;
8484 const bool use_predicate =
8485 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
8486
8487 trace_intel_begin_draw(&batch->trace);
8488
8489 if (ice->state.dirty & IRIS_DIRTY_VERTEX_BUFFER_FLUSHES)
8490 flush_vbos(ice, batch);
8491
8492 iris_batch_sync_region_start(batch);
8493
8494 /* Always pin the binder. If we're emitting new binding table pointers,
8495 * we need it. If not, we're probably inheriting old tables via the
8496 * context, and need it anyway. Since true zero-bindings cases are
8497 * practically non-existent, just pin it and avoid last_res tracking.
8498 */
8499 iris_use_pinned_bo(batch, ice->state.binder.bo, false,
8500 IRIS_DOMAIN_NONE);
8501
8502 if (!batch->contains_draw) {
8503 /* Re-emit constants when starting a new batch buffer in order to
8504 * work around push constant corruption on context switch.
8505 *
8506 * XXX - Provide hardware spec quotation when available.
8507 */
8508 ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_CONSTANTS_VS |
8509 IRIS_STAGE_DIRTY_CONSTANTS_TCS |
8510 IRIS_STAGE_DIRTY_CONSTANTS_TES |
8511 IRIS_STAGE_DIRTY_CONSTANTS_GS |
8512 IRIS_STAGE_DIRTY_CONSTANTS_FS);
8513 batch->contains_draw = true;
8514 }
8515
8516 if (!batch->contains_draw_with_next_seqno) {
8517 iris_restore_render_saved_bos(ice, batch, draw);
8518 batch->contains_draw_with_next_seqno = true;
8519 }
8520
8521 /* Wa_1306463417 - Send HS state for every primitive on gfx11.
8522 * Wa_16011107343 (same for gfx12)
8523 * We implement this by setting TCS dirty on each draw.
8524 */
8525 if ((INTEL_NEEDS_WA_1306463417 || INTEL_NEEDS_WA_16011107343) &&
8526 ice->shaders.prog[MESA_SHADER_TESS_CTRL]) {
8527 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TCS;
8528 }
8529
8530 iris_upload_dirty_render_state(ice, batch, draw, false);
8531
8532 if (draw->index_size > 0)
8533 iris_emit_index_buffer(ice, batch, draw, sc);
8534
8535 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc);
8536
8537 genX(maybe_emit_breakpoint)(batch, true);
8538
8539 iris_emit_cmd(batch, GENX(EXECUTE_INDIRECT_DRAW), ind) {
8540 ind.ArgumentFormat =
8541 draw->index_size > 0 ? DRAWINDEXED : DRAW;
8542 ind.PredicateEnable = use_predicate;
8543 ind.TBIMREnabled = ice->state.use_tbimr;
8544 ind.MaxCount = indirect->draw_count;
8545
8546 if (indirect->buffer) {
8547 struct iris_bo *bo = iris_resource_bo(indirect->buffer);
8548 ind.ArgumentBufferStartAddress = ro_bo(bo, indirect->offset);
8549 ind.MOCS = iris_mocs(bo, &screen->isl_dev, 0);
8550 } else {
8551 ind.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
8552 }
8553
8554 if (indirect->indirect_draw_count) {
8555 struct iris_bo *draw_count_bo =
8556 iris_resource_bo(indirect->indirect_draw_count);
8557 ind.CountBufferIndirectEnable = true;
8558 ind.CountBufferAddress =
8559 ro_bo(draw_count_bo, indirect->indirect_draw_count_offset);
8560 }
8561 }
8562
8563 genX(emit_3dprimitive_was)(batch, indirect, ice->state.prim_mode, sc->count);
8564 genX(maybe_emit_breakpoint)(batch, false);
8565
8566 iris_batch_sync_region_end(batch);
8567
8568 uint32_t count = (sc) ? sc->count : 0;
8569 count *= draw->instance_count ? draw->instance_count : 1;
8570 trace_intel_end_draw(&batch->trace, count);
8571 #else
8572 unreachable("Unsupported path");
8573 #endif /* GFX_VERx10 >= 125 */
8574 }
8575
8576 static void
iris_upload_indirect_shader_render_state(struct iris_context * ice,const struct pipe_draw_info * draw,const struct pipe_draw_indirect_info * indirect,const struct pipe_draw_start_count_bias * sc)8577 iris_upload_indirect_shader_render_state(struct iris_context *ice,
8578 const struct pipe_draw_info *draw,
8579 const struct pipe_draw_indirect_info *indirect,
8580 const struct pipe_draw_start_count_bias *sc)
8581 {
8582 assert(indirect);
8583
8584 struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
8585 UNUSED struct iris_screen *screen = batch->screen;
8586 UNUSED const struct intel_device_info *devinfo = screen->devinfo;
8587
8588 if (ice->state.dirty & IRIS_DIRTY_VERTEX_BUFFER_FLUSHES)
8589 flush_vbos(ice, batch);
8590
8591 iris_batch_sync_region_start(batch);
8592
8593 /* Always pin the binder. If we're emitting new binding table pointers,
8594 * we need it. If not, we're probably inheriting old tables via the
8595 * context, and need it anyway. Since true zero-bindings cases are
8596 * practically non-existent, just pin it and avoid last_res tracking.
8597 */
8598 iris_use_pinned_bo(batch, ice->state.binder.bo, false,
8599 IRIS_DOMAIN_NONE);
8600
8601 if (!batch->contains_draw) {
8602 if (GFX_VER == 12) {
8603 /* Re-emit constants when starting a new batch buffer in order to
8604 * work around push constant corruption on context switch.
8605 *
8606 * XXX - Provide hardware spec quotation when available.
8607 */
8608 ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_CONSTANTS_VS |
8609 IRIS_STAGE_DIRTY_CONSTANTS_TCS |
8610 IRIS_STAGE_DIRTY_CONSTANTS_TES |
8611 IRIS_STAGE_DIRTY_CONSTANTS_GS |
8612 IRIS_STAGE_DIRTY_CONSTANTS_FS);
8613 }
8614 batch->contains_draw = true;
8615 }
8616
8617 if (!batch->contains_draw_with_next_seqno) {
8618 iris_restore_render_saved_bos(ice, batch, draw);
8619 batch->contains_draw_with_next_seqno = true;
8620 }
8621
8622 if (draw->index_size > 0)
8623 iris_emit_index_buffer(ice, batch, draw, sc);
8624
8625 /* Make sure we have enough space to keep all the commands in the single BO
8626 * (because of the jumps)
8627 */
8628 iris_require_command_space(batch, 2000);
8629
8630 #ifndef NDEBUG
8631 struct iris_bo *command_bo = batch->bo;
8632 #endif
8633
8634 /* Jump point to generate more draw if we run out of space in the ring
8635 * buffer.
8636 */
8637 uint64_t gen_addr = iris_batch_current_address_u64(batch);
8638
8639 iris_handle_always_flush_cache(batch);
8640
8641 #if GFX_VER == 9
8642 iris_emit_pipe_control_flush(batch, "before generation",
8643 PIPE_CONTROL_VF_CACHE_INVALIDATE);
8644 #endif
8645
8646 struct iris_address params_addr;
8647 struct iris_gen_indirect_params *params =
8648 genX(emit_indirect_generate)(batch, draw, indirect, sc,
8649 ¶ms_addr);
8650
8651 iris_emit_pipe_control_flush(batch, "after generation flush",
8652 ((ice->state.vs_uses_draw_params ||
8653 ice->state.vs_uses_derived_draw_params) ?
8654 PIPE_CONTROL_VF_CACHE_INVALIDATE : 0) |
8655 PIPE_CONTROL_STALL_AT_SCOREBOARD |
8656 PIPE_CONTROL_DATA_CACHE_FLUSH |
8657 PIPE_CONTROL_CS_STALL);
8658
8659 trace_intel_begin_draw(&batch->trace);
8660
8661 /* Always pin the binder. If we're emitting new binding table pointers,
8662 * we need it. If not, we're probably inheriting old tables via the
8663 * context, and need it anyway. Since true zero-bindings cases are
8664 * practically non-existent, just pin it and avoid last_res tracking.
8665 */
8666 iris_use_pinned_bo(batch, ice->state.binder.bo, false,
8667 IRIS_DOMAIN_NONE);
8668
8669 /* Wa_1306463417 - Send HS state for every primitive on gfx11.
8670 * Wa_16011107343 (same for gfx12)
8671 * We implement this by setting TCS dirty on each draw.
8672 */
8673 if ((INTEL_NEEDS_WA_1306463417 || INTEL_NEEDS_WA_16011107343) &&
8674 ice->shaders.prog[MESA_SHADER_TESS_CTRL]) {
8675 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TCS;
8676 }
8677
8678 iris_upload_dirty_render_state(ice, batch, draw, true);
8679
8680 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc);
8681
8682 genX(maybe_emit_breakpoint)(batch, true);
8683
8684 #if GFX_VER >= 12
8685 iris_emit_cmd(batch, GENX(MI_ARB_CHECK), arb) {
8686 arb.PreParserDisableMask = true;
8687 arb.PreParserDisable = true;
8688 }
8689 #endif
8690
8691 iris_emit_cmd(batch, GENX(MI_BATCH_BUFFER_START), bbs) {
8692 bbs.AddressSpaceIndicator = ASI_PPGTT;
8693 bbs.BatchBufferStartAddress = (struct iris_address) {
8694 .bo = ice->draw.generation.ring_bo,
8695 };
8696 }
8697
8698 /* Run the ring buffer one more time with the next set of commands */
8699 uint64_t inc_addr = iris_batch_current_address_u64(batch);
8700 {
8701 iris_emit_pipe_control_flush(batch,
8702 "post generated draws wait",
8703 PIPE_CONTROL_STALL_AT_SCOREBOARD |
8704 PIPE_CONTROL_CS_STALL);
8705
8706 struct mi_builder b;
8707 mi_builder_init(&b, batch->screen->devinfo, batch);
8708
8709 struct iris_address draw_base_addr = iris_address_add(
8710 params_addr,
8711 offsetof(struct iris_gen_indirect_params, draw_base));
8712
8713 const uint32_t mocs =
8714 iris_mocs(draw_base_addr.bo, &screen->isl_dev, 0);
8715 mi_builder_set_mocs(&b, mocs);
8716
8717 mi_store(&b, mi_mem32(draw_base_addr),
8718 mi_iadd(&b, mi_mem32(draw_base_addr),
8719 mi_imm(params->ring_count)));
8720
8721 iris_emit_pipe_control_flush(batch,
8722 "post generation base increment",
8723 PIPE_CONTROL_CS_STALL |
8724 PIPE_CONTROL_CONST_CACHE_INVALIDATE);
8725
8726 iris_emit_cmd(batch, GENX(MI_BATCH_BUFFER_START), bbs) {
8727 bbs.AddressSpaceIndicator = ASI_PPGTT;
8728 bbs.BatchBufferStartAddress = (struct iris_address) {
8729 .offset = gen_addr,
8730 };
8731 }
8732 }
8733
8734 /* Exit of the ring buffer */
8735 uint64_t end_addr = iris_batch_current_address_u64(batch);
8736
8737 #ifndef NDEBUG
8738 assert(command_bo == batch->bo);
8739 #endif
8740
8741 genX(emit_3dprimitive_was)(batch, indirect, ice->state.prim_mode, sc->count);
8742 genX(maybe_emit_breakpoint)(batch, false);
8743
8744 iris_emit_pipe_control_flush(batch,
8745 "post generated draws wait",
8746 PIPE_CONTROL_STALL_AT_SCOREBOARD |
8747 PIPE_CONTROL_CS_STALL);
8748
8749 params->gen_addr = inc_addr;
8750 params->end_addr = end_addr;
8751
8752 iris_batch_sync_region_end(batch);
8753
8754 uint32_t count = (sc) ? sc->count : 0;
8755 count *= draw->instance_count ? draw->instance_count : 1;
8756 trace_intel_end_draw(&batch->trace, count);
8757 }
8758
8759 static void
iris_load_indirect_location(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)8760 iris_load_indirect_location(struct iris_context *ice,
8761 struct iris_batch *batch,
8762 const struct pipe_grid_info *grid)
8763 {
8764 #define GPGPU_DISPATCHDIMX 0x2500
8765 #define GPGPU_DISPATCHDIMY 0x2504
8766 #define GPGPU_DISPATCHDIMZ 0x2508
8767
8768 assert(grid->indirect);
8769
8770 struct iris_state_ref *grid_size = &ice->state.grid_size;
8771 struct iris_bo *bo = iris_resource_bo(grid_size->res);
8772 struct mi_builder b;
8773 mi_builder_init(&b, batch->screen->devinfo, batch);
8774 struct mi_value size_x = mi_mem32(ro_bo(bo, grid_size->offset + 0));
8775 struct mi_value size_y = mi_mem32(ro_bo(bo, grid_size->offset + 4));
8776 struct mi_value size_z = mi_mem32(ro_bo(bo, grid_size->offset + 8));
8777 mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), size_x);
8778 mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), size_y);
8779 mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
8780 }
8781
iris_emit_indirect_dispatch_supported(const struct intel_device_info * devinfo)8782 static bool iris_emit_indirect_dispatch_supported(const struct intel_device_info *devinfo)
8783 {
8784 // TODO: Swizzling X and Y workgroup sizes is not supported in execute indirect dispatch
8785 return devinfo->has_indirect_unroll;
8786 }
8787
8788 #if GFX_VERx10 >= 125
8789
iris_emit_execute_indirect_dispatch(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid,const struct GENX (INTERFACE_DESCRIPTOR_DATA)idd)8790 static void iris_emit_execute_indirect_dispatch(struct iris_context *ice,
8791 struct iris_batch *batch,
8792 const struct pipe_grid_info *grid,
8793 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd)
8794 {
8795 const struct iris_screen *screen = batch->screen;
8796 struct iris_compiled_shader *shader =
8797 ice->shaders.prog[MESA_SHADER_COMPUTE];
8798 const struct intel_cs_dispatch_info dispatch =
8799 iris_get_cs_dispatch_info(screen->devinfo, shader, grid->block);
8800 struct iris_bo *indirect = iris_resource_bo(grid->indirect);
8801 const int dispatch_size = dispatch.simd_size / 16;
8802
8803 struct GENX(COMPUTE_WALKER_BODY) body = {};
8804 body.SIMDSize = dispatch_size;
8805 body.MessageSIMD = dispatch_size;
8806 body.LocalXMaximum = grid->block[0] - 1;
8807 body.LocalYMaximum = grid->block[1] - 1;
8808 body.LocalZMaximum = grid->block[2] - 1;
8809 body.ExecutionMask = dispatch.right_mask;
8810 body.PostSync.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
8811 body.InterfaceDescriptor = idd;
8812
8813 struct iris_address indirect_bo = ro_bo(indirect, grid->indirect_offset);
8814 iris_emit_cmd(batch, GENX(EXECUTE_INDIRECT_DISPATCH), ind) {
8815 ind.PredicateEnable =
8816 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
8817 ind.MaxCount = 1;
8818 ind.COMPUTE_WALKER_BODY = body;
8819 ind.ArgumentBufferStartAddress = indirect_bo;
8820 ind.MOCS =
8821 iris_mocs(indirect_bo.bo, &screen->isl_dev, 0);
8822 }
8823 }
8824
8825 static void
iris_upload_compute_walker(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)8826 iris_upload_compute_walker(struct iris_context *ice,
8827 struct iris_batch *batch,
8828 const struct pipe_grid_info *grid)
8829 {
8830 const uint64_t stage_dirty = ice->state.stage_dirty;
8831 struct iris_screen *screen = batch->screen;
8832 const struct intel_device_info *devinfo = screen->devinfo;
8833 struct iris_binder *binder = &ice->state.binder;
8834 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
8835 struct iris_compiled_shader *shader =
8836 ice->shaders.prog[MESA_SHADER_COMPUTE];
8837 const struct iris_cs_data *cs_data = iris_cs_data(shader);
8838 const struct intel_cs_dispatch_info dispatch =
8839 iris_get_cs_dispatch_info(devinfo, shader, grid->block);
8840
8841 trace_intel_begin_compute(&batch->trace);
8842
8843 if (stage_dirty & IRIS_STAGE_DIRTY_CS) {
8844 iris_emit_cmd(batch, GENX(CFE_STATE), cfe) {
8845 cfe.MaximumNumberofThreads =
8846 devinfo->max_cs_threads * devinfo->subslice_total;
8847 uint32_t scratch_addr = pin_scratch_space(ice, batch, shader,
8848 MESA_SHADER_COMPUTE);
8849 cfe.ScratchSpaceBuffer = scratch_addr >> 4;
8850 }
8851 }
8852
8853 struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {};
8854 idd.KernelStartPointer = KSP(shader);
8855 idd.NumberofThreadsinGPGPUThreadGroup = dispatch.threads;
8856 idd.SharedLocalMemorySize =
8857 iris_encode_slm_size(GFX_VER, shader->total_shared);
8858 idd.SamplerStatePointer = shs->sampler_table.offset;
8859 idd.SamplerCount = encode_sampler_count(shader),
8860 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
8861 /* Typically set to 0 to avoid prefetching on every thread dispatch. */
8862 idd.BindingTableEntryCount = devinfo->verx10 == 125 ?
8863 0 : MIN2(shader->bt.size_bytes / 4, 31);
8864 idd.PreferredSLMAllocationSize = preferred_slm_allocation_size(devinfo);
8865 idd.NumberOfBarriers = cs_data->uses_barrier;
8866
8867 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL);
8868
8869 if (iris_emit_indirect_dispatch_supported(devinfo) && grid->indirect) {
8870 iris_emit_execute_indirect_dispatch(ice, batch, grid, idd);
8871 } else {
8872 if (grid->indirect)
8873 iris_load_indirect_location(ice, batch, grid);
8874
8875 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL);
8876
8877 ice->utrace.last_compute_walker =
8878 iris_emit_dwords(batch, GENX(COMPUTE_WALKER_length));
8879 _iris_pack_command(batch, GENX(COMPUTE_WALKER),
8880 ice->utrace.last_compute_walker, cw) {
8881 cw.IndirectParameterEnable = grid->indirect;
8882 cw.SIMDSize = dispatch.simd_size / 16;
8883 cw.MessageSIMD = dispatch.simd_size / 16;
8884 cw.LocalXMaximum = grid->block[0] - 1;
8885 cw.LocalYMaximum = grid->block[1] - 1;
8886 cw.LocalZMaximum = grid->block[2] - 1;
8887 cw.ThreadGroupIDXDimension = grid->grid[0];
8888 cw.ThreadGroupIDYDimension = grid->grid[1];
8889 cw.ThreadGroupIDZDimension = grid->grid[2];
8890 cw.ExecutionMask = dispatch.right_mask;
8891 cw.PostSync.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
8892 cw.InterfaceDescriptor = idd;
8893
8894 #if GFX_VERx10 >= 125
8895 cw.GenerateLocalID = cs_data->generate_local_id != 0;
8896 cw.EmitLocal = cs_data->generate_local_id;
8897 cw.WalkOrder = cs_data->walk_order;
8898 cw.TileLayout = cs_data->walk_order == INTEL_WALK_ORDER_YXZ ?
8899 TileY32bpe : Linear;
8900 #endif
8901
8902 assert(iris_cs_push_const_total_size(shader, dispatch.threads) == 0);
8903 }
8904 }
8905
8906 trace_intel_end_compute(&batch->trace, grid->grid[0], grid->grid[1], grid->grid[2]);
8907 }
8908
8909 #else /* #if GFX_VERx10 >= 125 */
8910
8911 static void
iris_upload_gpgpu_walker(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)8912 iris_upload_gpgpu_walker(struct iris_context *ice,
8913 struct iris_batch *batch,
8914 const struct pipe_grid_info *grid)
8915 {
8916 const uint64_t stage_dirty = ice->state.stage_dirty;
8917 struct iris_screen *screen = batch->screen;
8918 const struct intel_device_info *devinfo = screen->devinfo;
8919 struct iris_binder *binder = &ice->state.binder;
8920 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
8921 struct iris_uncompiled_shader *ish =
8922 ice->shaders.uncompiled[MESA_SHADER_COMPUTE];
8923 struct iris_compiled_shader *shader =
8924 ice->shaders.prog[MESA_SHADER_COMPUTE];
8925 struct iris_cs_data *cs_data = iris_cs_data(shader);
8926 const struct intel_cs_dispatch_info dispatch =
8927 iris_get_cs_dispatch_info(screen->devinfo, shader, grid->block);
8928
8929 trace_intel_begin_compute(&batch->trace);
8930
8931 if ((stage_dirty & IRIS_STAGE_DIRTY_CS) ||
8932 cs_data->local_size[0] == 0 /* Variable local group size */) {
8933 /* The MEDIA_VFE_STATE documentation for Gfx8+ says:
8934 *
8935 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
8936 * the only bits that are changed are scoreboard related: Scoreboard
8937 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
8938 * these scoreboard related states, a MEDIA_STATE_FLUSH is
8939 * sufficient."
8940 */
8941 iris_emit_pipe_control_flush(batch,
8942 "workaround: stall before MEDIA_VFE_STATE",
8943 PIPE_CONTROL_CS_STALL);
8944
8945 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
8946 if (shader->total_scratch) {
8947 uint32_t scratch_addr =
8948 pin_scratch_space(ice, batch, shader, MESA_SHADER_COMPUTE);
8949
8950 vfe.PerThreadScratchSpace = ffs(shader->total_scratch) - 11;
8951 vfe.ScratchSpaceBasePointer =
8952 rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE);
8953 }
8954
8955 vfe.MaximumNumberofThreads =
8956 devinfo->max_cs_threads * devinfo->subslice_total - 1;
8957 #if GFX_VER < 11
8958 vfe.ResetGatewayTimer =
8959 Resettingrelativetimerandlatchingtheglobaltimestamp;
8960 #endif
8961 #if GFX_VER == 8
8962 vfe.BypassGatewayControl = true;
8963 #endif
8964 vfe.NumberofURBEntries = 2;
8965 vfe.URBEntryAllocationSize = 2;
8966
8967 vfe.CURBEAllocationSize =
8968 ALIGN(cs_data->push.per_thread.regs * dispatch.threads +
8969 cs_data->push.cross_thread.regs, 2);
8970 }
8971 }
8972
8973 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
8974 if ((stage_dirty & IRIS_STAGE_DIRTY_CS) ||
8975 cs_data->local_size[0] == 0 /* Variable local group size */) {
8976 uint32_t curbe_data_offset = 0;
8977 assert(cs_data->push.cross_thread.dwords == 0 &&
8978 cs_data->push.per_thread.dwords == 1 &&
8979 cs_data->first_param_is_builtin_subgroup_id);
8980 const unsigned push_const_size =
8981 iris_cs_push_const_total_size(shader, dispatch.threads);
8982 uint32_t *curbe_data_map =
8983 stream_state(batch, ice->state.dynamic_uploader,
8984 &ice->state.last_res.cs_thread_ids,
8985 ALIGN(push_const_size, 64), 64,
8986 &curbe_data_offset);
8987 assert(curbe_data_map);
8988 memset(curbe_data_map, 0x5a, ALIGN(push_const_size, 64));
8989 iris_fill_cs_push_const_buffer(screen, shader, dispatch.threads,
8990 curbe_data_map);
8991
8992 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
8993 curbe.CURBETotalDataLength = ALIGN(push_const_size, 64);
8994 curbe.CURBEDataStartAddress = curbe_data_offset;
8995 }
8996 }
8997
8998 for (unsigned i = 0; i < IRIS_MAX_GLOBAL_BINDINGS; i++) {
8999 struct pipe_resource *res = ice->state.global_bindings[i];
9000 if (!res)
9001 break;
9002
9003 iris_use_pinned_bo(batch, iris_resource_bo(res),
9004 true, IRIS_DOMAIN_NONE);
9005 }
9006
9007 if (stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_CS |
9008 IRIS_STAGE_DIRTY_BINDINGS_CS |
9009 IRIS_STAGE_DIRTY_CONSTANTS_CS |
9010 IRIS_STAGE_DIRTY_CS)) {
9011 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
9012
9013 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
9014 idd.SharedLocalMemorySize =
9015 iris_encode_slm_size(GFX_VER, ish->kernel_shared_size + grid->variable_shared_mem);
9016 idd.KernelStartPointer =
9017 KSP(shader) + iris_cs_data_prog_offset(cs_data, dispatch.simd_size);
9018 idd.SamplerStatePointer = shs->sampler_table.offset;
9019 idd.BindingTablePointer =
9020 binder->bt_offset[MESA_SHADER_COMPUTE] >> IRIS_BT_OFFSET_SHIFT;
9021 idd.NumberofThreadsinGPGPUThreadGroup = dispatch.threads;
9022 }
9023
9024 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
9025 desc[i] |= ((uint32_t *) shader->derived_data)[i];
9026
9027 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
9028 load.InterfaceDescriptorTotalLength =
9029 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
9030 load.InterfaceDescriptorDataStartAddress =
9031 emit_state(batch, ice->state.dynamic_uploader,
9032 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
9033 }
9034 }
9035
9036 if (grid->indirect)
9037 iris_load_indirect_location(ice, batch, grid);
9038
9039 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL);
9040
9041 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
9042 ggw.IndirectParameterEnable = grid->indirect != NULL;
9043 ggw.SIMDSize = dispatch.simd_size / 16;
9044 ggw.ThreadDepthCounterMaximum = 0;
9045 ggw.ThreadHeightCounterMaximum = 0;
9046 ggw.ThreadWidthCounterMaximum = dispatch.threads - 1;
9047 ggw.ThreadGroupIDXDimension = grid->grid[0];
9048 ggw.ThreadGroupIDYDimension = grid->grid[1];
9049 ggw.ThreadGroupIDZDimension = grid->grid[2];
9050 ggw.RightExecutionMask = dispatch.right_mask;
9051 ggw.BottomExecutionMask = 0xffffffff;
9052 }
9053
9054 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
9055
9056 trace_intel_end_compute(&batch->trace, grid->grid[0], grid->grid[1], grid->grid[2]);
9057 }
9058
9059 #endif /* #if GFX_VERx10 >= 125 */
9060
9061 static void
iris_upload_compute_state(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)9062 iris_upload_compute_state(struct iris_context *ice,
9063 struct iris_batch *batch,
9064 const struct pipe_grid_info *grid)
9065 {
9066 struct iris_screen *screen = batch->screen;
9067 const uint64_t stage_dirty = ice->state.stage_dirty;
9068 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
9069 struct iris_compiled_shader *shader =
9070 ice->shaders.prog[MESA_SHADER_COMPUTE];
9071 struct iris_border_color_pool *border_color_pool =
9072 iris_bufmgr_get_border_color_pool(screen->bufmgr);
9073
9074 iris_batch_sync_region_start(batch);
9075
9076 /* Always pin the binder. If we're emitting new binding table pointers,
9077 * we need it. If not, we're probably inheriting old tables via the
9078 * context, and need it anyway. Since true zero-bindings cases are
9079 * practically non-existent, just pin it and avoid last_res tracking.
9080 */
9081 iris_use_pinned_bo(batch, ice->state.binder.bo, false, IRIS_DOMAIN_NONE);
9082
9083 if (((stage_dirty & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
9084 shs->sysvals_need_upload) ||
9085 shader->kernel_input_size > 0)
9086 upload_sysvals(ice, MESA_SHADER_COMPUTE, grid);
9087
9088 if (stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_CS)
9089 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
9090
9091 if (stage_dirty & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS)
9092 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
9093
9094 iris_use_optional_res(batch, shs->sampler_table.res, false,
9095 IRIS_DOMAIN_NONE);
9096 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false,
9097 IRIS_DOMAIN_NONE);
9098
9099 if (ice->state.need_border_colors)
9100 iris_use_pinned_bo(batch, border_color_pool->bo, false,
9101 IRIS_DOMAIN_NONE);
9102
9103 #if GFX_VER >= 12
9104 genX(invalidate_aux_map_state)(batch);
9105 #endif
9106
9107 #if GFX_VERx10 >= 125
9108 iris_upload_compute_walker(ice, batch, grid);
9109 #else
9110 iris_upload_gpgpu_walker(ice, batch, grid);
9111 #endif
9112
9113 if (!batch->contains_draw_with_next_seqno) {
9114 iris_restore_compute_saved_bos(ice, batch, grid);
9115 batch->contains_draw_with_next_seqno = batch->contains_draw = true;
9116 }
9117
9118 iris_batch_sync_region_end(batch);
9119 }
9120
9121 /**
9122 * State module teardown.
9123 */
9124 static void
iris_destroy_state(struct iris_context * ice)9125 iris_destroy_state(struct iris_context *ice)
9126 {
9127 struct iris_genx_state *genx = ice->state.genx;
9128
9129 pipe_resource_reference(&ice->state.pixel_hashing_tables, NULL);
9130
9131 pipe_resource_reference(&ice->draw.draw_params.res, NULL);
9132 pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
9133 pipe_resource_reference(&ice->draw.generation.params.res, NULL);
9134 pipe_resource_reference(&ice->draw.generation.vertices.res, NULL);
9135
9136 /* Loop over all VBOs, including ones for draw parameters */
9137 for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) {
9138 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
9139 }
9140
9141 free(ice->state.genx);
9142
9143 for (int i = 0; i < 4; i++) {
9144 pipe_so_target_reference(&ice->state.so_target[i], NULL);
9145 }
9146
9147 util_unreference_framebuffer_state(&ice->state.framebuffer);
9148
9149 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
9150 struct iris_shader_state *shs = &ice->state.shaders[stage];
9151 pipe_resource_reference(&shs->sampler_table.res, NULL);
9152 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
9153 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
9154 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
9155 }
9156 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
9157 pipe_resource_reference(&shs->image[i].base.resource, NULL);
9158 pipe_resource_reference(&shs->image[i].surface_state.ref.res, NULL);
9159 free(shs->image[i].surface_state.cpu);
9160 }
9161 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
9162 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
9163 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
9164 }
9165 for (int i = 0; i < IRIS_MAX_TEXTURES; i++) {
9166 pipe_sampler_view_reference((struct pipe_sampler_view **)
9167 &shs->textures[i], NULL);
9168 }
9169 }
9170
9171 pipe_resource_reference(&ice->state.grid_size.res, NULL);
9172 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
9173
9174 pipe_resource_reference(&ice->state.null_fb.res, NULL);
9175 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
9176
9177 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
9178 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
9179 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
9180 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
9181 pipe_resource_reference(&ice->state.last_res.blend, NULL);
9182 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
9183 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
9184 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
9185 }
9186
9187 /* ------------------------------------------------------------------- */
9188
9189 static void
iris_rebind_buffer(struct iris_context * ice,struct iris_resource * res)9190 iris_rebind_buffer(struct iris_context *ice,
9191 struct iris_resource *res)
9192 {
9193 struct pipe_context *ctx = &ice->ctx;
9194 struct iris_genx_state *genx = ice->state.genx;
9195
9196 assert(res->base.b.target == PIPE_BUFFER);
9197
9198 /* Buffers can't be framebuffer attachments, nor display related,
9199 * and we don't have upstream Clover support.
9200 */
9201 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
9202 PIPE_BIND_RENDER_TARGET |
9203 PIPE_BIND_BLENDABLE |
9204 PIPE_BIND_DISPLAY_TARGET |
9205 PIPE_BIND_CURSOR |
9206 PIPE_BIND_COMPUTE_RESOURCE |
9207 PIPE_BIND_GLOBAL)));
9208
9209 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
9210 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
9211 while (bound_vbs) {
9212 const int i = u_bit_scan64(&bound_vbs);
9213 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
9214
9215 /* Update the CPU struct */
9216 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
9217 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
9218 uint64_t *addr = (uint64_t *) &state->state[1];
9219 struct iris_bo *bo = iris_resource_bo(state->resource);
9220
9221 if (*addr != bo->address + state->offset) {
9222 *addr = bo->address + state->offset;
9223 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS |
9224 IRIS_DIRTY_VERTEX_BUFFER_FLUSHES;
9225 }
9226 }
9227 }
9228
9229 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
9230 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
9231 *
9232 * There is also no need to handle these:
9233 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
9234 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
9235 */
9236
9237 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
9238 uint32_t *so_buffers = genx->so_buffers;
9239 for (unsigned i = 0; i < 4; i++,
9240 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
9241
9242 /* There are no other fields in bits 127:64 */
9243 uint64_t *addr = (uint64_t *) &so_buffers[2];
9244 STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_SurfaceBaseAddress_start) == 66);
9245 STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_SurfaceBaseAddress_bits) == 46);
9246
9247 struct pipe_stream_output_target *tgt = ice->state.so_target[i];
9248 if (tgt) {
9249 struct iris_bo *bo = iris_resource_bo(tgt->buffer);
9250 if (*addr != bo->address + tgt->buffer_offset) {
9251 *addr = bo->address + tgt->buffer_offset;
9252 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
9253 }
9254 }
9255 }
9256 }
9257
9258 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
9259 struct iris_shader_state *shs = &ice->state.shaders[s];
9260 enum pipe_shader_type p_stage = stage_to_pipe(s);
9261
9262 if (!(res->bind_stages & (1 << s)))
9263 continue;
9264
9265 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
9266 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
9267 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
9268 while (bound_cbufs) {
9269 const int i = u_bit_scan(&bound_cbufs);
9270 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
9271 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
9272
9273 if (res->bo == iris_resource_bo(cbuf->buffer)) {
9274 pipe_resource_reference(&surf_state->res, NULL);
9275 shs->dirty_cbufs |= 1u << i;
9276 ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES |
9277 IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES);
9278 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << s;
9279 }
9280 }
9281 }
9282
9283 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
9284 uint32_t bound_ssbos = shs->bound_ssbos;
9285 while (bound_ssbos) {
9286 const int i = u_bit_scan(&bound_ssbos);
9287 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
9288
9289 if (res->bo == iris_resource_bo(ssbo->buffer)) {
9290 struct pipe_shader_buffer buf = {
9291 .buffer = &res->base.b,
9292 .buffer_offset = ssbo->buffer_offset,
9293 .buffer_size = ssbo->buffer_size,
9294 };
9295 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
9296 (shs->writable_ssbos >> i) & 1);
9297 }
9298 }
9299 }
9300
9301 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
9302 int i;
9303 BITSET_FOREACH_SET(i, shs->bound_sampler_views, IRIS_MAX_TEXTURES) {
9304 struct iris_sampler_view *isv = shs->textures[i];
9305 struct iris_bo *bo = isv->res->bo;
9306
9307 if (update_surface_state_addrs(ice->state.surface_uploader,
9308 &isv->surface_state, bo)) {
9309 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
9310 }
9311 }
9312 }
9313
9314 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
9315 uint64_t bound_image_views = shs->bound_image_views;
9316 while (bound_image_views) {
9317 const int i = u_bit_scan64(&bound_image_views);
9318 struct iris_image_view *iv = &shs->image[i];
9319 struct iris_bo *bo = iris_resource_bo(iv->base.resource);
9320
9321 if (update_surface_state_addrs(ice->state.surface_uploader,
9322 &iv->surface_state, bo)) {
9323 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
9324 }
9325 }
9326 }
9327 }
9328 }
9329
9330 /* ------------------------------------------------------------------- */
9331
9332 /**
9333 * Introduce a batch synchronization boundary, and update its cache coherency
9334 * status to reflect the execution of a PIPE_CONTROL command with the
9335 * specified flags.
9336 */
9337 static void
batch_mark_sync_for_pipe_control(struct iris_batch * batch,uint32_t flags)9338 batch_mark_sync_for_pipe_control(struct iris_batch *batch, uint32_t flags)
9339 {
9340 const struct intel_device_info *devinfo = batch->screen->devinfo;
9341
9342 iris_batch_sync_boundary(batch);
9343
9344 if ((flags & PIPE_CONTROL_CS_STALL)) {
9345 if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
9346 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
9347
9348 if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
9349 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
9350
9351 if ((flags & PIPE_CONTROL_TILE_CACHE_FLUSH)) {
9352 /* A tile cache flush makes any C/Z data in L3 visible to memory. */
9353 const unsigned c = IRIS_DOMAIN_RENDER_WRITE;
9354 const unsigned z = IRIS_DOMAIN_DEPTH_WRITE;
9355 batch->coherent_seqnos[c][c] = batch->l3_coherent_seqnos[c];
9356 batch->coherent_seqnos[z][z] = batch->l3_coherent_seqnos[z];
9357 }
9358
9359 if (flags & (PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_DATA_CACHE_FLUSH)) {
9360 /* HDC and DC flushes both flush the data cache out to L3 */
9361 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DATA_WRITE);
9362 }
9363
9364 if ((flags & PIPE_CONTROL_DATA_CACHE_FLUSH)) {
9365 /* A DC flush also flushes L3 data cache lines out to memory. */
9366 const unsigned i = IRIS_DOMAIN_DATA_WRITE;
9367 batch->coherent_seqnos[i][i] = batch->l3_coherent_seqnos[i];
9368 }
9369
9370 if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
9371 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
9372
9373 if ((flags & (PIPE_CONTROL_CACHE_FLUSH_BITS |
9374 PIPE_CONTROL_STALL_AT_SCOREBOARD))) {
9375 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_VF_READ);
9376 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_SAMPLER_READ);
9377 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_PULL_CONSTANT_READ);
9378 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_READ);
9379 }
9380 }
9381
9382 if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
9383 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
9384
9385 if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
9386 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
9387
9388 if (flags & (PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_DATA_CACHE_FLUSH))
9389 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DATA_WRITE);
9390
9391 if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
9392 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
9393
9394 if ((flags & PIPE_CONTROL_VF_CACHE_INVALIDATE))
9395 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_VF_READ);
9396
9397 if ((flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE))
9398 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_SAMPLER_READ);
9399
9400 /* Technically, to invalidate IRIS_DOMAIN_PULL_CONSTANT_READ, we need
9401 * both "Constant Cache Invalidate" and either "Texture Cache Invalidate"
9402 * or "Data Cache Flush" set, depending on the setting of
9403 * iris_indirect_ubos_use_sampler().
9404 *
9405 * However, "Data Cache Flush" and "Constant Cache Invalidate" will never
9406 * appear in the same PIPE_CONTROL command, because one is bottom-of-pipe
9407 * while the other is top-of-pipe. Because we only look at one flush at
9408 * a time, we won't see both together.
9409 *
9410 * To deal with this, we mark it as invalidated when the constant cache
9411 * is invalidated, and trust the callers to also flush the other related
9412 * cache correctly at the same time.
9413 */
9414 if ((flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE))
9415 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_PULL_CONSTANT_READ);
9416
9417 /* IRIS_DOMAIN_OTHER_READ no longer uses any caches. */
9418
9419 if ((flags & PIPE_CONTROL_L3_RO_INVALIDATE_BITS) == PIPE_CONTROL_L3_RO_INVALIDATE_BITS) {
9420 /* If we just invalidated the read-only lines of L3, then writes from non-L3-coherent
9421 * domains will now be visible to those L3 clients.
9422 */
9423 for (unsigned i = 0; i < NUM_IRIS_DOMAINS; i++) {
9424 if (!iris_domain_is_l3_coherent(devinfo, i))
9425 batch->l3_coherent_seqnos[i] = batch->coherent_seqnos[i][i];
9426 }
9427 }
9428 }
9429
9430 static unsigned
flags_to_post_sync_op(uint32_t flags)9431 flags_to_post_sync_op(uint32_t flags)
9432 {
9433 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
9434 return WriteImmediateData;
9435
9436 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
9437 return WritePSDepthCount;
9438
9439 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
9440 return WriteTimestamp;
9441
9442 return 0;
9443 }
9444
9445 /**
9446 * Do the given flags have a Post Sync or LRI Post Sync operation?
9447 */
9448 static enum pipe_control_flags
get_post_sync_flags(enum pipe_control_flags flags)9449 get_post_sync_flags(enum pipe_control_flags flags)
9450 {
9451 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
9452 PIPE_CONTROL_WRITE_DEPTH_COUNT |
9453 PIPE_CONTROL_WRITE_TIMESTAMP |
9454 PIPE_CONTROL_LRI_POST_SYNC_OP;
9455
9456 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
9457 * "LRI Post Sync Operation". So more than one bit set would be illegal.
9458 */
9459 assert(util_bitcount(flags) <= 1);
9460
9461 return flags;
9462 }
9463
9464 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
9465
9466 /**
9467 * Emit a series of PIPE_CONTROL commands, taking into account any
9468 * workarounds necessary to actually accomplish the caller's request.
9469 *
9470 * Unless otherwise noted, spec quotations in this function come from:
9471 *
9472 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
9473 * Restrictions for PIPE_CONTROL.
9474 *
9475 * You should not use this function directly. Use the helpers in
9476 * iris_pipe_control.c instead, which may split the pipe control further.
9477 */
9478 static void
iris_emit_raw_pipe_control(struct iris_batch * batch,const char * reason,uint32_t flags,struct iris_bo * bo,uint32_t offset,uint64_t imm)9479 iris_emit_raw_pipe_control(struct iris_batch *batch,
9480 const char *reason,
9481 uint32_t flags,
9482 struct iris_bo *bo,
9483 uint32_t offset,
9484 uint64_t imm)
9485 {
9486 UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
9487 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
9488 enum pipe_control_flags non_lri_post_sync_flags =
9489 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
9490
9491 #if GFX_VER >= 12
9492 if (batch->name == IRIS_BATCH_BLITTER) {
9493 batch_mark_sync_for_pipe_control(batch, flags);
9494 iris_batch_sync_region_start(batch);
9495
9496 assert(!(flags & PIPE_CONTROL_WRITE_DEPTH_COUNT));
9497
9498 /* Wa_16018063123 - emit fast color dummy blit before MI_FLUSH_DW. */
9499 if (intel_needs_workaround(batch->screen->devinfo, 16018063123))
9500 batch_emit_fast_color_dummy_blit(batch);
9501
9502 /* The blitter doesn't actually use PIPE_CONTROL; rather it uses the
9503 * MI_FLUSH_DW command. However, all of our code is set up to flush
9504 * via emitting a pipe control, so we just translate it at this point,
9505 * even if it is a bit hacky.
9506 */
9507 iris_emit_cmd(batch, GENX(MI_FLUSH_DW), fd) {
9508 fd.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
9509 fd.ImmediateData = imm;
9510 fd.PostSyncOperation = flags_to_post_sync_op(flags);
9511 #if GFX_VERx10 >= 125
9512 /* TODO: This may not always be necessary */
9513 fd.FlushCCS = true;
9514 #endif
9515 }
9516 iris_batch_sync_region_end(batch);
9517 return;
9518 }
9519 #endif
9520
9521 /* The "L3 Read Only Cache Invalidation Bit" docs say it "controls the
9522 * invalidation of the Geometry streams cached in L3 cache at the top
9523 * of the pipe". In other words, index & vertex data that gets cached
9524 * in L3 when VERTEX_BUFFER_STATE::L3BypassDisable is set.
9525 *
9526 * Normally, invalidating L1/L2 read-only caches also invalidate their
9527 * related L3 cachelines, but this isn't the case for the VF cache.
9528 * Emulate it by setting the L3 Read Only bit when doing a VF invalidate.
9529 */
9530 if (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)
9531 flags |= PIPE_CONTROL_L3_READ_ONLY_CACHE_INVALIDATE;
9532
9533 /* Recursive PIPE_CONTROL workarounds --------------------------------
9534 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
9535 *
9536 * We do these first because we want to look at the original operation,
9537 * rather than any workarounds we set.
9538 */
9539 if (GFX_VER == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
9540 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
9541 * lists several workarounds:
9542 *
9543 * "Project: SKL, KBL, BXT
9544 *
9545 * If the VF Cache Invalidation Enable is set to a 1 in a
9546 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
9547 * sets to 0, with the VF Cache Invalidation Enable set to 0
9548 * needs to be sent prior to the PIPE_CONTROL with VF Cache
9549 * Invalidation Enable set to a 1."
9550 */
9551 iris_emit_raw_pipe_control(batch,
9552 "workaround: recursive VF cache invalidate",
9553 0, NULL, 0, 0);
9554 }
9555
9556 if (GFX_VER == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
9557 /* Project: SKL / Argument: LRI Post Sync Operation [23]
9558 *
9559 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
9560 * programmed prior to programming a PIPECONTROL command with "LRI
9561 * Post Sync Operation" in GPGPU mode of operation (i.e when
9562 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
9563 *
9564 * The same text exists a few rows below for Post Sync Op.
9565 */
9566 iris_emit_raw_pipe_control(batch,
9567 "workaround: CS stall before gpgpu post-sync",
9568 PIPE_CONTROL_CS_STALL, bo, offset, imm);
9569 }
9570
9571 /* "Flush Types" workarounds ---------------------------------------------
9572 * We do these now because they may add post-sync operations or CS stalls.
9573 */
9574
9575 if (GFX_VER < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
9576 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
9577 *
9578 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
9579 * 'Write PS Depth Count' or 'Write Timestamp'."
9580 */
9581 if (!bo) {
9582 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
9583 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
9584 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
9585 bo = batch->screen->workaround_address.bo;
9586 offset = batch->screen->workaround_address.offset;
9587 }
9588 }
9589
9590 if (flags & PIPE_CONTROL_DEPTH_STALL) {
9591 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
9592 *
9593 * "This bit must be DISABLED for operations other than writing
9594 * PS_DEPTH_COUNT."
9595 *
9596 * This seems like nonsense. An Ivybridge workaround requires us to
9597 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
9598 * operation. Gfx8+ requires us to emit depth stalls and depth cache
9599 * flushes together. So, it's hard to imagine this means anything other
9600 * than "we originally intended this to be used for PS_DEPTH_COUNT".
9601 *
9602 * We ignore the supposed restriction and do nothing.
9603 */
9604 }
9605
9606 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
9607 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
9608 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
9609 *
9610 * "This bit must be DISABLED for End-of-pipe (Read) fences,
9611 * PS_DEPTH_COUNT or TIMESTAMP queries."
9612 *
9613 * TODO: Implement end-of-pipe checking.
9614 */
9615 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
9616 PIPE_CONTROL_WRITE_TIMESTAMP)));
9617 }
9618
9619 if (GFX_VER < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
9620 /* From the PIPE_CONTROL instruction table, bit 1:
9621 *
9622 * "This bit is ignored if Depth Stall Enable is set.
9623 * Further, the render cache is not flushed even if Write Cache
9624 * Flush Enable bit is set."
9625 *
9626 * We assert that the caller doesn't do this combination, to try and
9627 * prevent mistakes. It shouldn't hurt the GPU, though.
9628 *
9629 * We skip this check on Gfx11+ as the "Stall at Pixel Scoreboard"
9630 * and "Render Target Flush" combo is explicitly required for BTI
9631 * update workarounds.
9632 */
9633 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
9634 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
9635 }
9636
9637 /* PIPE_CONTROL page workarounds ------------------------------------- */
9638
9639 if (GFX_VER <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
9640 /* From the PIPE_CONTROL page itself:
9641 *
9642 * "IVB, HSW, BDW
9643 * Restriction: Pipe_control with CS-stall bit set must be issued
9644 * before a pipe-control command that has the State Cache
9645 * Invalidate bit set."
9646 */
9647 flags |= PIPE_CONTROL_CS_STALL;
9648 }
9649
9650 if (flags & PIPE_CONTROL_FLUSH_LLC) {
9651 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
9652 *
9653 * "Project: ALL
9654 * SW must always program Post-Sync Operation to "Write Immediate
9655 * Data" when Flush LLC is set."
9656 *
9657 * For now, we just require the caller to do it.
9658 */
9659 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
9660 }
9661
9662 /* Emulate a HDC flush with a full Data Cache Flush on older hardware which
9663 * doesn't support the new lightweight flush.
9664 */
9665 #if GFX_VER < 12
9666 if (flags & PIPE_CONTROL_FLUSH_HDC)
9667 flags |= PIPE_CONTROL_DATA_CACHE_FLUSH;
9668 #endif
9669
9670 /* "Post-Sync Operation" workarounds -------------------------------- */
9671
9672 /* Project: All / Argument: Global Snapshot Count Reset [19]
9673 *
9674 * "This bit must not be exercised on any product.
9675 * Requires stall bit ([20] of DW1) set."
9676 *
9677 * We don't use this, so we just assert that it isn't used. The
9678 * PIPE_CONTROL instruction page indicates that they intended this
9679 * as a debug feature and don't think it is useful in production,
9680 * but it may actually be usable, should we ever want to.
9681 */
9682 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
9683
9684 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
9685 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
9686 /* Project: All / Arguments:
9687 *
9688 * - Generic Media State Clear [16]
9689 * - Indirect State Pointers Disable [16]
9690 *
9691 * "Requires stall bit ([20] of DW1) set."
9692 *
9693 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
9694 * State Clear) says:
9695 *
9696 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
9697 * programmed prior to programming a PIPECONTROL command with "Media
9698 * State Clear" set in GPGPU mode of operation"
9699 *
9700 * This is a subset of the earlier rule, so there's nothing to do.
9701 */
9702 flags |= PIPE_CONTROL_CS_STALL;
9703 }
9704
9705 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
9706 /* Project: All / Argument: Store Data Index
9707 *
9708 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
9709 * than '0'."
9710 *
9711 * For now, we just assert that the caller does this. We might want to
9712 * automatically add a write to the workaround BO...
9713 */
9714 assert(non_lri_post_sync_flags != 0);
9715 }
9716
9717 if (flags & PIPE_CONTROL_SYNC_GFDT) {
9718 /* Project: All / Argument: Sync GFDT
9719 *
9720 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
9721 * than '0' or 0x2520[13] must be set."
9722 *
9723 * For now, we just assert that the caller does this.
9724 */
9725 assert(non_lri_post_sync_flags != 0);
9726 }
9727
9728 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
9729 /* Project: IVB+ / Argument: TLB inv
9730 *
9731 * "Requires stall bit ([20] of DW1) set."
9732 *
9733 * Also, from the PIPE_CONTROL instruction table:
9734 *
9735 * "Project: SKL+
9736 * Post Sync Operation or CS stall must be set to ensure a TLB
9737 * invalidation occurs. Otherwise no cycle will occur to the TLB
9738 * cache to invalidate."
9739 *
9740 * This is not a subset of the earlier rule, so there's nothing to do.
9741 */
9742 flags |= PIPE_CONTROL_CS_STALL;
9743 }
9744
9745 if (GFX_VER == 9 && devinfo->gt == 4) {
9746 /* TODO: The big Skylake GT4 post sync op workaround */
9747 }
9748
9749 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
9750
9751 if (IS_COMPUTE_PIPELINE(batch)) {
9752 if ((GFX_VER == 9 || GFX_VER == 11) &&
9753 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
9754 /* Project: SKL, ICL / Argument: Tex Invalidate
9755 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
9756 */
9757 flags |= PIPE_CONTROL_CS_STALL;
9758 }
9759
9760 if (GFX_VER == 8 && (post_sync_flags ||
9761 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
9762 PIPE_CONTROL_DEPTH_STALL |
9763 PIPE_CONTROL_RENDER_TARGET_FLUSH |
9764 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
9765 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
9766 /* Project: BDW / Arguments:
9767 *
9768 * - LRI Post Sync Operation [23]
9769 * - Post Sync Op [15:14]
9770 * - Notify En [8]
9771 * - Depth Stall [13]
9772 * - Render Target Cache Flush [12]
9773 * - Depth Cache Flush [0]
9774 * - DC Flush Enable [5]
9775 *
9776 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
9777 * Workloads."
9778 */
9779 flags |= PIPE_CONTROL_CS_STALL;
9780
9781 /* Also, from the PIPE_CONTROL instruction table, bit 20:
9782 *
9783 * "Project: BDW
9784 * This bit must be always set when PIPE_CONTROL command is
9785 * programmed by GPGPU and MEDIA workloads, except for the cases
9786 * when only Read Only Cache Invalidation bits are set (State
9787 * Cache Invalidation Enable, Instruction cache Invalidation
9788 * Enable, Texture Cache Invalidation Enable, Constant Cache
9789 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
9790 * need not implemented when FF_DOP_CG is disable via "Fixed
9791 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
9792 *
9793 * It sounds like we could avoid CS stalls in some cases, but we
9794 * don't currently bother. This list isn't exactly the list above,
9795 * either...
9796 */
9797 }
9798 }
9799
9800 /* "Stall" workarounds ----------------------------------------------
9801 * These have to come after the earlier ones because we may have added
9802 * some additional CS stalls above.
9803 */
9804
9805 if (GFX_VER < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
9806 /* Project: PRE-SKL, VLV, CHV
9807 *
9808 * "[All Stepping][All SKUs]:
9809 *
9810 * One of the following must also be set:
9811 *
9812 * - Render Target Cache Flush Enable ([12] of DW1)
9813 * - Depth Cache Flush Enable ([0] of DW1)
9814 * - Stall at Pixel Scoreboard ([1] of DW1)
9815 * - Depth Stall ([13] of DW1)
9816 * - Post-Sync Operation ([13] of DW1)
9817 * - DC Flush Enable ([5] of DW1)"
9818 *
9819 * If we don't already have one of those bits set, we choose to add
9820 * "Stall at Pixel Scoreboard". Some of the other bits require a
9821 * CS stall as a workaround (see above), which would send us into
9822 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
9823 * appears to be safe, so we choose that.
9824 */
9825 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
9826 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
9827 PIPE_CONTROL_WRITE_IMMEDIATE |
9828 PIPE_CONTROL_WRITE_DEPTH_COUNT |
9829 PIPE_CONTROL_WRITE_TIMESTAMP |
9830 PIPE_CONTROL_STALL_AT_SCOREBOARD |
9831 PIPE_CONTROL_DEPTH_STALL |
9832 PIPE_CONTROL_DATA_CACHE_FLUSH;
9833 if (!(flags & wa_bits))
9834 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
9835 }
9836
9837 if (INTEL_NEEDS_WA_1409600907 && (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH)) {
9838 /* Wa_1409600907:
9839 *
9840 * "PIPE_CONTROL with Depth Stall Enable bit must be set
9841 * with any PIPE_CONTROL with Depth Flush Enable bit set.
9842 */
9843 flags |= PIPE_CONTROL_DEPTH_STALL;
9844 }
9845
9846 /* Wa_14014966230: For COMPUTE Workload - Any PIPE_CONTROL command with
9847 * POST_SYNC Operation Enabled MUST be preceded by a PIPE_CONTROL
9848 * with CS_STALL Bit set (with No POST_SYNC ENABLED)
9849 */
9850 if (intel_device_info_is_adln(devinfo) &&
9851 IS_COMPUTE_PIPELINE(batch) &&
9852 flags_to_post_sync_op(flags) != NoWrite) {
9853 iris_emit_raw_pipe_control(batch, "Wa_14014966230",
9854 PIPE_CONTROL_CS_STALL, NULL, 0, 0);
9855 }
9856
9857 batch_mark_sync_for_pipe_control(batch, flags);
9858
9859 #if INTEL_NEEDS_WA_14010840176
9860 /* "If the intention of “constant cache invalidate” is
9861 * to invalidate the L1 cache (which can cache constants), use “HDC
9862 * pipeline flush” instead of Constant Cache invalidate command."
9863 *
9864 * "If L3 invalidate is needed, the w/a should be to set state invalidate
9865 * in the pipe control command, in addition to the HDC pipeline flush."
9866 */
9867 if (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) {
9868 flags &= ~PIPE_CONTROL_CONST_CACHE_INVALIDATE;
9869 flags |= PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_STATE_CACHE_INVALIDATE;
9870 }
9871 #endif
9872
9873 /* Emit --------------------------------------------------------------- */
9874
9875 if (INTEL_DEBUG(DEBUG_PIPE_CONTROL)) {
9876 fprintf(stderr,
9877 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
9878 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
9879 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
9880 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
9881 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
9882 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
9883 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
9884 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
9885 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
9886 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
9887 (flags & PIPE_CONTROL_TILE_CACHE_FLUSH) ? "Tile " : "",
9888 (flags & PIPE_CONTROL_CCS_CACHE_FLUSH) ? "CCS " : "",
9889 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
9890 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
9891 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
9892 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
9893 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
9894 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
9895 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
9896 "SnapRes" : "",
9897 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
9898 "ISPDis" : "",
9899 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
9900 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
9901 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
9902 (flags & PIPE_CONTROL_FLUSH_HDC) ? "HDC " : "",
9903 (flags & PIPE_CONTROL_PSS_STALL_SYNC) ? "PSS " : "",
9904 (flags & PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH) ? "UntypedDataPortCache " : "",
9905 imm, reason);
9906 }
9907
9908 iris_batch_sync_region_start(batch);
9909
9910 const bool trace_pc =
9911 (flags & (PIPE_CONTROL_CACHE_FLUSH_BITS | PIPE_CONTROL_CACHE_INVALIDATE_BITS)) != 0;
9912
9913 if (trace_pc)
9914 trace_intel_begin_stall(&batch->trace);
9915
9916 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
9917 #if GFX_VERx10 >= 125
9918 pc.PSSStallSyncEnable = flags & PIPE_CONTROL_PSS_STALL_SYNC;
9919 #endif
9920 #if GFX_VER == 12
9921 pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH;
9922 #endif
9923 #if GFX_VER > 11
9924 pc.HDCPipelineFlushEnable = flags & PIPE_CONTROL_FLUSH_HDC;
9925 #endif
9926 #if GFX_VERx10 >= 125
9927 pc.UntypedDataPortCacheFlushEnable =
9928 (flags & (PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
9929 PIPE_CONTROL_FLUSH_HDC |
9930 PIPE_CONTROL_DATA_CACHE_FLUSH)) &&
9931 IS_COMPUTE_PIPELINE(batch);
9932 pc.HDCPipelineFlushEnable |= pc.UntypedDataPortCacheFlushEnable;
9933 pc.CCSFlushEnable |= flags & PIPE_CONTROL_CCS_CACHE_FLUSH;
9934 #endif
9935 pc.LRIPostSyncOperation = NoLRIOperation;
9936 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
9937 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
9938 pc.StoreDataIndex = 0;
9939 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
9940 #if GFX_VERx10 < 125
9941 pc.GlobalSnapshotCountReset =
9942 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
9943 #endif
9944 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
9945 #if GFX_VERx10 < 200
9946 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
9947 #endif
9948 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
9949 pc.RenderTargetCacheFlushEnable =
9950 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
9951 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
9952 pc.StateCacheInvalidationEnable =
9953 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
9954 #if GFX_VER >= 12
9955 pc.L3ReadOnlyCacheInvalidationEnable =
9956 flags & PIPE_CONTROL_L3_READ_ONLY_CACHE_INVALIDATE;
9957 #endif
9958 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
9959 pc.ConstantCacheInvalidationEnable =
9960 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
9961 pc.PostSyncOperation = flags_to_post_sync_op(flags);
9962 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
9963 pc.InstructionCacheInvalidateEnable =
9964 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
9965 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
9966 pc.IndirectStatePointersDisable =
9967 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
9968 pc.TextureCacheInvalidationEnable =
9969 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
9970 pc.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
9971 pc.ImmediateData = imm;
9972 }
9973
9974 if (trace_pc) {
9975 trace_intel_end_stall(&batch->trace, flags,
9976 iris_utrace_pipe_flush_bit_to_ds_stall_flag,
9977 reason);
9978 }
9979
9980 iris_batch_sync_region_end(batch);
9981 }
9982
9983 #if GFX_VER == 9
9984 /**
9985 * Preemption on Gfx9 has to be enabled or disabled in various cases.
9986 *
9987 * See these workarounds for preemption:
9988 * - WaDisableMidObjectPreemptionForGSLineStripAdj
9989 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
9990 * - WaDisableMidObjectPreemptionForLineLoop
9991 * - WA#0798
9992 *
9993 * We don't put this in the vtable because it's only used on Gfx9.
9994 */
9995 void
gfx9_toggle_preemption(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw)9996 gfx9_toggle_preemption(struct iris_context *ice,
9997 struct iris_batch *batch,
9998 const struct pipe_draw_info *draw)
9999 {
10000 struct iris_genx_state *genx = ice->state.genx;
10001 bool object_preemption = true;
10002
10003 /* WaDisableMidObjectPreemptionForGSLineStripAdj
10004 *
10005 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
10006 * and GS is enabled."
10007 */
10008 if (draw->mode == MESA_PRIM_LINE_STRIP_ADJACENCY &&
10009 ice->shaders.prog[MESA_SHADER_GEOMETRY])
10010 object_preemption = false;
10011
10012 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
10013 *
10014 * "TriFan miscompare in Execlist Preemption test. Cut index that is
10015 * on a previous context. End the previous, the resume another context
10016 * with a tri-fan or polygon, and the vertex count is corrupted. If we
10017 * prempt again we will cause corruption.
10018 *
10019 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
10020 */
10021 if (draw->mode == MESA_PRIM_TRIANGLE_FAN)
10022 object_preemption = false;
10023
10024 /* WaDisableMidObjectPreemptionForLineLoop
10025 *
10026 * "VF Stats Counters Missing a vertex when preemption enabled.
10027 *
10028 * WA: Disable mid-draw preemption when the draw uses a lineloop
10029 * topology."
10030 */
10031 if (draw->mode == MESA_PRIM_LINE_LOOP)
10032 object_preemption = false;
10033
10034 /* WA#0798
10035 *
10036 * "VF is corrupting GAFS data when preempted on an instance boundary
10037 * and replayed with instancing enabled.
10038 *
10039 * WA: Disable preemption when using instanceing."
10040 */
10041 if (draw->instance_count > 1)
10042 object_preemption = false;
10043
10044 if (genx->object_preemption != object_preemption) {
10045 iris_enable_obj_preemption(batch, object_preemption);
10046 genx->object_preemption = object_preemption;
10047 }
10048 }
10049 #endif
10050
10051 static void
iris_lost_genx_state(struct iris_context * ice,struct iris_batch * batch)10052 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
10053 {
10054 struct iris_genx_state *genx = ice->state.genx;
10055
10056 #if INTEL_NEEDS_WA_1808121037
10057 genx->depth_reg_mode = IRIS_DEPTH_REG_MODE_UNKNOWN;
10058 #endif
10059
10060 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
10061 }
10062
10063 static void
iris_emit_mi_report_perf_count(struct iris_batch * batch,struct iris_bo * bo,uint32_t offset_in_bytes,uint32_t report_id)10064 iris_emit_mi_report_perf_count(struct iris_batch *batch,
10065 struct iris_bo *bo,
10066 uint32_t offset_in_bytes,
10067 uint32_t report_id)
10068 {
10069 iris_batch_sync_region_start(batch);
10070 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
10071 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes,
10072 IRIS_DOMAIN_OTHER_WRITE);
10073 mi_rpc.ReportID = report_id;
10074 }
10075 iris_batch_sync_region_end(batch);
10076 }
10077
10078 /**
10079 * Update the pixel hashing modes that determine the balancing of PS threads
10080 * across subslices and slices.
10081 *
10082 * \param width Width bound of the rendering area (already scaled down if \p
10083 * scale is greater than 1).
10084 * \param height Height bound of the rendering area (already scaled down if \p
10085 * scale is greater than 1).
10086 * \param scale The number of framebuffer samples that could potentially be
10087 * affected by an individual channel of the PS thread. This is
10088 * typically one for single-sampled rendering, but for operations
10089 * like CCS resolves and fast clears a single PS invocation may
10090 * update a huge number of pixels, in which case a finer
10091 * balancing is desirable in order to maximally utilize the
10092 * bandwidth available. UINT_MAX can be used as shorthand for
10093 * "finest hashing mode available".
10094 */
10095 void
genX(emit_hashing_mode)10096 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
10097 unsigned width, unsigned height, unsigned scale)
10098 {
10099 #if GFX_VER == 9
10100 const struct intel_device_info *devinfo = batch->screen->devinfo;
10101 const unsigned slice_hashing[] = {
10102 /* Because all Gfx9 platforms with more than one slice require
10103 * three-way subslice hashing, a single "normal" 16x16 slice hashing
10104 * block is guaranteed to suffer from substantial imbalance, with one
10105 * subslice receiving twice as much work as the other two in the
10106 * slice.
10107 *
10108 * The performance impact of that would be particularly severe when
10109 * three-way hashing is also in use for slice balancing (which is the
10110 * case for all Gfx9 GT4 platforms), because one of the slices
10111 * receives one every three 16x16 blocks in either direction, which
10112 * is roughly the periodicity of the underlying subslice imbalance
10113 * pattern ("roughly" because in reality the hardware's
10114 * implementation of three-way hashing doesn't do exact modulo 3
10115 * arithmetic, which somewhat decreases the magnitude of this effect
10116 * in practice). This leads to a systematic subslice imbalance
10117 * within that slice regardless of the size of the primitive. The
10118 * 32x32 hashing mode guarantees that the subslice imbalance within a
10119 * single slice hashing block is minimal, largely eliminating this
10120 * effect.
10121 */
10122 _32x32,
10123 /* Finest slice hashing mode available. */
10124 NORMAL
10125 };
10126 const unsigned subslice_hashing[] = {
10127 /* 16x16 would provide a slight cache locality benefit especially
10128 * visible in the sampler L1 cache efficiency of low-bandwidth
10129 * non-LLC platforms, but it comes at the cost of greater subslice
10130 * imbalance for primitives of dimensions approximately intermediate
10131 * between 16x4 and 16x16.
10132 */
10133 _16x4,
10134 /* Finest subslice hashing mode available. */
10135 _8x4
10136 };
10137 /* Dimensions of the smallest hashing block of a given hashing mode. If
10138 * the rendering area is smaller than this there can't possibly be any
10139 * benefit from switching to this mode, so we optimize out the
10140 * transition.
10141 */
10142 const unsigned min_size[][2] = {
10143 { 16, 4 },
10144 { 8, 4 }
10145 };
10146 const unsigned idx = scale > 1;
10147
10148 if (width > min_size[idx][0] || height > min_size[idx][1]) {
10149 iris_emit_raw_pipe_control(batch,
10150 "workaround: CS stall before GT_MODE LRI",
10151 PIPE_CONTROL_STALL_AT_SCOREBOARD |
10152 PIPE_CONTROL_CS_STALL,
10153 NULL, 0, 0);
10154
10155 iris_emit_reg(batch, GENX(GT_MODE), reg) {
10156 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
10157 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
10158 reg.SubsliceHashing = subslice_hashing[idx];
10159 reg.SubsliceHashingMask = -1;
10160 };
10161
10162 ice->state.current_hash_scale = scale;
10163 }
10164 #endif
10165 }
10166
10167 static void
iris_set_frontend_noop(struct pipe_context * ctx,bool enable)10168 iris_set_frontend_noop(struct pipe_context *ctx, bool enable)
10169 {
10170 struct iris_context *ice = (struct iris_context *) ctx;
10171
10172 if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_RENDER], enable)) {
10173 ice->state.dirty |= IRIS_ALL_DIRTY_FOR_RENDER;
10174 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_RENDER;
10175 }
10176
10177 if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_COMPUTE], enable)) {
10178 ice->state.dirty |= IRIS_ALL_DIRTY_FOR_COMPUTE;
10179 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_COMPUTE;
10180 }
10181 }
10182
10183 void
genX(init_screen_state)10184 genX(init_screen_state)(struct iris_screen *screen)
10185 {
10186 assert(screen->devinfo->verx10 == GFX_VERx10);
10187 screen->vtbl.destroy_state = iris_destroy_state;
10188 screen->vtbl.init_render_context = iris_init_render_context;
10189 screen->vtbl.init_compute_context = iris_init_compute_context;
10190 screen->vtbl.init_copy_context = iris_init_copy_context;
10191 screen->vtbl.upload_render_state = iris_upload_render_state;
10192 screen->vtbl.upload_indirect_render_state = iris_upload_indirect_render_state;
10193 screen->vtbl.upload_indirect_shader_render_state = iris_upload_indirect_shader_render_state;
10194 screen->vtbl.update_binder_address = iris_update_binder_address;
10195 screen->vtbl.upload_compute_state = iris_upload_compute_state;
10196 screen->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
10197 screen->vtbl.rewrite_compute_walker_pc = iris_rewrite_compute_walker_pc;
10198 screen->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
10199 screen->vtbl.rebind_buffer = iris_rebind_buffer;
10200 screen->vtbl.load_register_reg32 = iris_load_register_reg32;
10201 screen->vtbl.load_register_reg64 = iris_load_register_reg64;
10202 screen->vtbl.load_register_imm32 = iris_load_register_imm32;
10203 screen->vtbl.load_register_imm64 = iris_load_register_imm64;
10204 screen->vtbl.load_register_mem32 = iris_load_register_mem32;
10205 screen->vtbl.load_register_mem64 = iris_load_register_mem64;
10206 screen->vtbl.store_register_mem32 = iris_store_register_mem32;
10207 screen->vtbl.store_register_mem64 = iris_store_register_mem64;
10208 screen->vtbl.store_data_imm32 = iris_store_data_imm32;
10209 screen->vtbl.store_data_imm64 = iris_store_data_imm64;
10210 screen->vtbl.copy_mem_mem = iris_copy_mem_mem;
10211 screen->vtbl.derived_program_state_size = iris_derived_program_state_size;
10212 screen->vtbl.store_derived_program_state = iris_store_derived_program_state;
10213 screen->vtbl.create_so_decl_list = iris_create_so_decl_list;
10214 screen->vtbl.populate_vs_key = iris_populate_vs_key;
10215 screen->vtbl.populate_tcs_key = iris_populate_tcs_key;
10216 screen->vtbl.populate_tes_key = iris_populate_tes_key;
10217 screen->vtbl.populate_gs_key = iris_populate_gs_key;
10218 screen->vtbl.populate_fs_key = iris_populate_fs_key;
10219 screen->vtbl.populate_cs_key = iris_populate_cs_key;
10220 screen->vtbl.lost_genx_state = iris_lost_genx_state;
10221 screen->vtbl.disable_rhwo_optimization = iris_disable_rhwo_optimization;
10222 }
10223
10224 void
genX(init_state)10225 genX(init_state)(struct iris_context *ice)
10226 {
10227 struct pipe_context *ctx = &ice->ctx;
10228 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
10229
10230 ctx->create_blend_state = iris_create_blend_state;
10231 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
10232 ctx->create_rasterizer_state = iris_create_rasterizer_state;
10233 ctx->create_sampler_state = iris_create_sampler_state;
10234 ctx->create_sampler_view = iris_create_sampler_view;
10235 ctx->create_surface = iris_create_surface;
10236 ctx->create_vertex_elements_state = iris_create_vertex_elements;
10237 ctx->bind_blend_state = iris_bind_blend_state;
10238 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
10239 ctx->bind_sampler_states = iris_bind_sampler_states;
10240 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
10241 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
10242 ctx->delete_blend_state = iris_delete_state;
10243 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
10244 ctx->delete_rasterizer_state = iris_delete_state;
10245 ctx->delete_sampler_state = iris_delete_state;
10246 ctx->delete_vertex_elements_state = iris_delete_state;
10247 ctx->set_blend_color = iris_set_blend_color;
10248 ctx->set_clip_state = iris_set_clip_state;
10249 ctx->set_constant_buffer = iris_set_constant_buffer;
10250 ctx->set_shader_buffers = iris_set_shader_buffers;
10251 ctx->set_shader_images = iris_set_shader_images;
10252 ctx->set_sampler_views = iris_set_sampler_views;
10253 ctx->set_compute_resources = iris_set_compute_resources;
10254 ctx->set_global_binding = iris_set_global_binding;
10255 ctx->set_tess_state = iris_set_tess_state;
10256 ctx->set_patch_vertices = iris_set_patch_vertices;
10257 ctx->set_framebuffer_state = iris_set_framebuffer_state;
10258 ctx->set_polygon_stipple = iris_set_polygon_stipple;
10259 ctx->set_sample_mask = iris_set_sample_mask;
10260 ctx->set_scissor_states = iris_set_scissor_states;
10261 ctx->set_stencil_ref = iris_set_stencil_ref;
10262 ctx->set_vertex_buffers = iris_set_vertex_buffers;
10263 ctx->set_viewport_states = iris_set_viewport_states;
10264 ctx->sampler_view_destroy = iris_sampler_view_destroy;
10265 ctx->surface_destroy = iris_surface_destroy;
10266 ctx->draw_vbo = iris_draw_vbo;
10267 ctx->launch_grid = iris_launch_grid;
10268 ctx->create_stream_output_target = iris_create_stream_output_target;
10269 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
10270 ctx->set_stream_output_targets = iris_set_stream_output_targets;
10271 ctx->set_frontend_noop = iris_set_frontend_noop;
10272
10273 ice->state.dirty = ~0ull;
10274 ice->state.stage_dirty = ~0ull;
10275
10276 ice->state.statistics_counters_enabled = true;
10277
10278 ice->state.sample_mask = 0xffff;
10279 ice->state.num_viewports = 1;
10280 ice->state.prim_mode = MESA_PRIM_COUNT;
10281 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
10282 ice->draw.derived_params.drawid = -1;
10283
10284 #if GFX_VERx10 >= 120
10285 ice->state.genx->object_preemption = true;
10286 #endif
10287
10288 /* Make a 1x1x1 null surface for unbound textures */
10289 void *null_surf_map =
10290 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
10291 4 * GENX(RENDER_SURFACE_STATE_length), 64);
10292 isl_null_fill_state(&screen->isl_dev, null_surf_map,
10293 .size = isl_extent3d(1, 1, 1));
10294 ice->state.unbound_tex.offset +=
10295 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
10296
10297 /* Default all scissor rectangles to be empty regions. */
10298 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
10299 ice->state.scissors[i] = (struct pipe_scissor_state) {
10300 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
10301 };
10302 }
10303 }
10304