• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 Ben Skeggs.
3  *
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining
7  * a copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sublicense, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial
16  * portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21  * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22  * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23  * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24  * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  */
27 
28 /**
29  * \file
30  *
31  * Emit the r300_fragment_program_code that can be understood by the hardware.
32  * Input is a pre-transformed radeon_program.
33  *
34  * \author Ben Skeggs <darktama@iinet.net.au>
35  *
36  * \author Jerome Glisse <j.glisse@gmail.com>
37  */
38 
39 #include "r300_fragprog.h"
40 
41 #include "r300_reg.h"
42 
43 #include "radeon_program_pair.h"
44 #include "r300_fragprog_swizzle.h"
45 
46 #include "util/compiler.h"
47 
48 
49 struct r300_emit_state {
50 	struct r300_fragment_program_compiler * compiler;
51 
52 	unsigned current_node : 2;
53 	unsigned node_first_tex : 8;
54 	unsigned node_first_alu : 8;
55 	uint32_t node_flags;
56 };
57 
58 #define PROG_CODE \
59 	struct r300_fragment_program_compiler *c = emit->compiler; \
60 	struct r300_fragment_program_code *code = &c->code->code.r300
61 
62 #define error(fmt, args...) do {			\
63 		rc_error(&c->Base, "%s::%s(): " fmt "\n",	\
64 			__FILE__, __func__, ##args);	\
65 	} while(0)
66 
get_msbs_alu(unsigned int bits)67 static unsigned int get_msbs_alu(unsigned int bits)
68 {
69 	return (bits >> 6) & 0x7;
70 }
71 
72 /**
73  * @param lsbs The number of least significant bits
74  */
get_msbs_tex(unsigned int bits,unsigned int lsbs)75 static unsigned int get_msbs_tex(unsigned int bits, unsigned int lsbs)
76 {
77 	return (bits >> lsbs) & 0x15;
78 }
79 
80 #define R400_EXT_GET_MSBS(x, lsbs, mask) (((x) >> lsbs) & mask)
81 
82 /**
83  * Mark a temporary register as used.
84  */
use_temporary(struct r300_fragment_program_code * code,unsigned int index)85 static void use_temporary(struct r300_fragment_program_code *code, unsigned int index)
86 {
87 	if (index > code->pixsize)
88 		code->pixsize = index;
89 }
90 
use_source(struct r300_fragment_program_code * code,struct rc_pair_instruction_source src)91 static unsigned int use_source(struct r300_fragment_program_code* code, struct rc_pair_instruction_source src)
92 {
93 	if (!src.Used)
94 		return 0;
95 
96 	if (src.File == RC_FILE_CONSTANT) {
97 		return src.Index | (1 << 5);
98 	} else if (src.File == RC_FILE_TEMPORARY || src.File == RC_FILE_INPUT) {
99 		use_temporary(code, src.Index);
100 		return src.Index & 0x1f;
101 	}
102 
103 	return 0;
104 }
105 
106 
translate_rgb_opcode(struct r300_fragment_program_compiler * c,rc_opcode opcode)107 static unsigned int translate_rgb_opcode(struct r300_fragment_program_compiler * c, rc_opcode opcode)
108 {
109 	switch(opcode) {
110 	case RC_OPCODE_CMP: return R300_ALU_OUTC_CMP;
111 	case RC_OPCODE_CND: return R300_ALU_OUTC_CND;
112 	case RC_OPCODE_DP3: return R300_ALU_OUTC_DP3;
113 	case RC_OPCODE_DP4: return R300_ALU_OUTC_DP4;
114 	case RC_OPCODE_FRC: return R300_ALU_OUTC_FRC;
115 	default:
116 		error("translate_rgb_opcode: Unknown opcode %s", rc_get_opcode_info(opcode)->Name);
117 		FALLTHROUGH;
118 	case RC_OPCODE_NOP:
119 		FALLTHROUGH;
120 	case RC_OPCODE_MAD: return R300_ALU_OUTC_MAD;
121 	case RC_OPCODE_MAX: return R300_ALU_OUTC_MAX;
122 	case RC_OPCODE_MIN: return R300_ALU_OUTC_MIN;
123 	case RC_OPCODE_REPL_ALPHA: return R300_ALU_OUTC_REPL_ALPHA;
124 	}
125 }
126 
translate_alpha_opcode(struct r300_fragment_program_compiler * c,rc_opcode opcode)127 static unsigned int translate_alpha_opcode(struct r300_fragment_program_compiler * c, rc_opcode opcode)
128 {
129 	switch(opcode) {
130 	case RC_OPCODE_CMP: return R300_ALU_OUTA_CMP;
131 	case RC_OPCODE_CND: return R300_ALU_OUTA_CND;
132 	case RC_OPCODE_DP3: return R300_ALU_OUTA_DP4;
133 	case RC_OPCODE_DP4: return R300_ALU_OUTA_DP4;
134 	case RC_OPCODE_EX2: return R300_ALU_OUTA_EX2;
135 	case RC_OPCODE_FRC: return R300_ALU_OUTA_FRC;
136 	case RC_OPCODE_LG2: return R300_ALU_OUTA_LG2;
137 	default:
138 		error("translate_rgb_opcode: Unknown opcode %s", rc_get_opcode_info(opcode)->Name);
139 		FALLTHROUGH;
140 	case RC_OPCODE_NOP:
141 		FALLTHROUGH;
142 	case RC_OPCODE_MAD: return R300_ALU_OUTA_MAD;
143 	case RC_OPCODE_MAX: return R300_ALU_OUTA_MAX;
144 	case RC_OPCODE_MIN: return R300_ALU_OUTA_MIN;
145 	case RC_OPCODE_RCP: return R300_ALU_OUTA_RCP;
146 	case RC_OPCODE_RSQ: return R300_ALU_OUTA_RSQ;
147 	}
148 }
149 
150 /**
151  * Emit one paired ALU instruction.
152  */
emit_alu(struct r300_emit_state * emit,struct rc_pair_instruction * inst)153 static int emit_alu(struct r300_emit_state * emit, struct rc_pair_instruction* inst)
154 {
155 	int ip;
156 	int j;
157 	PROG_CODE;
158 
159 	if (code->alu.length >= c->Base.max_alu_insts) {
160 		/* rc_recompute_ips does not give an exact count, because it counts extra stuff
161 		 * like BEGINTEX, but here it is intended to be only approximative anyway,
162 		 * just to give some idea how close to the limit we are. */
163 		rc_error(&c->Base, "Too many ALU instructions used: %u, max: %u.\n",
164 		         rc_recompute_ips(&c->Base), c->Base.max_alu_insts);
165 		return 0;
166 	}
167 
168 	ip = code->alu.length++;
169 
170 	code->alu.inst[ip].rgb_inst = translate_rgb_opcode(c, inst->RGB.Opcode);
171 	code->alu.inst[ip].alpha_inst = translate_alpha_opcode(c, inst->Alpha.Opcode);
172 
173 	for(j = 0; j < 3; ++j) {
174 		/* Set the RGB address */
175 		unsigned int src = use_source(code, inst->RGB.Src[j]);
176 		unsigned int arg;
177 		if (inst->RGB.Src[j].Index >= R300_PFS_NUM_TEMP_REGS)
178 			code->alu.inst[ip].r400_ext_addr |= R400_ADDR_EXT_RGB_MSB_BIT(j);
179 
180 		code->alu.inst[ip].rgb_addr |= src << (6*j);
181 
182 		/* Set the Alpha address */
183 		src = use_source(code, inst->Alpha.Src[j]);
184 		if (inst->Alpha.Src[j].Index >= R300_PFS_NUM_TEMP_REGS)
185 			code->alu.inst[ip].r400_ext_addr |= R400_ADDR_EXT_A_MSB_BIT(j);
186 
187 		code->alu.inst[ip].alpha_addr |= src << (6*j);
188 
189 		arg = r300FPTranslateRGBSwizzle(inst->RGB.Arg[j].Source, inst->RGB.Arg[j].Swizzle);
190 		arg |= inst->RGB.Arg[j].Abs << 6;
191 		arg |= inst->RGB.Arg[j].Negate << 5;
192 		code->alu.inst[ip].rgb_inst |= arg << (7*j);
193 
194 		arg = r300FPTranslateAlphaSwizzle(inst->Alpha.Arg[j].Source, inst->Alpha.Arg[j].Swizzle);
195 		arg |= inst->Alpha.Arg[j].Abs << 6;
196 		arg |= inst->Alpha.Arg[j].Negate << 5;
197 		code->alu.inst[ip].alpha_inst |= arg << (7*j);
198 	}
199 
200 	/* Presubtract */
201 	if (inst->RGB.Src[RC_PAIR_PRESUB_SRC].Used) {
202 		switch(inst->RGB.Src[RC_PAIR_PRESUB_SRC].Index) {
203 		case RC_PRESUB_BIAS:
204 			code->alu.inst[ip].rgb_inst |=
205 						R300_ALU_SRCP_1_MINUS_2_SRC0;
206 			break;
207 		case RC_PRESUB_ADD:
208 			code->alu.inst[ip].rgb_inst |=
209 						R300_ALU_SRCP_SRC1_PLUS_SRC0;
210 			break;
211 		case RC_PRESUB_SUB:
212 			code->alu.inst[ip].rgb_inst |=
213 						R300_ALU_SRCP_SRC1_MINUS_SRC0;
214 			break;
215 		case RC_PRESUB_INV:
216 			code->alu.inst[ip].rgb_inst |=
217 						R300_ALU_SRCP_1_MINUS_SRC0;
218 			break;
219 		default:
220 			break;
221 		}
222 	}
223 
224 	if (inst->Alpha.Src[RC_PAIR_PRESUB_SRC].Used) {
225 		switch(inst->Alpha.Src[RC_PAIR_PRESUB_SRC].Index) {
226 		case RC_PRESUB_BIAS:
227 			code->alu.inst[ip].alpha_inst |=
228 						R300_ALU_SRCP_1_MINUS_2_SRC0;
229 			break;
230 		case RC_PRESUB_ADD:
231 			code->alu.inst[ip].alpha_inst |=
232 						R300_ALU_SRCP_SRC1_PLUS_SRC0;
233 			break;
234 		case RC_PRESUB_SUB:
235 			code->alu.inst[ip].alpha_inst |=
236 						R300_ALU_SRCP_SRC1_MINUS_SRC0;
237 			break;
238 		case RC_PRESUB_INV:
239 			code->alu.inst[ip].alpha_inst |=
240 						R300_ALU_SRCP_1_MINUS_SRC0;
241 			break;
242 		default:
243 			break;
244 		}
245 	}
246 
247 	if (inst->RGB.Saturate)
248 		code->alu.inst[ip].rgb_inst |= R300_ALU_OUTC_CLAMP;
249 	if (inst->Alpha.Saturate)
250 		code->alu.inst[ip].alpha_inst |= R300_ALU_OUTA_CLAMP;
251 
252 	if (inst->RGB.WriteMask) {
253 		use_temporary(code, inst->RGB.DestIndex);
254 		if (inst->RGB.DestIndex >= R300_PFS_NUM_TEMP_REGS)
255 			code->alu.inst[ip].r400_ext_addr |= R400_ADDRD_EXT_RGB_MSB_BIT;
256 		code->alu.inst[ip].rgb_addr |=
257 			((inst->RGB.DestIndex & 0x1f) << R300_ALU_DSTC_SHIFT) |
258 			(inst->RGB.WriteMask << R300_ALU_DSTC_REG_MASK_SHIFT);
259 	}
260 	if (inst->RGB.OutputWriteMask) {
261 		code->alu.inst[ip].rgb_addr |=
262             (inst->RGB.OutputWriteMask << R300_ALU_DSTC_OUTPUT_MASK_SHIFT) |
263             R300_RGB_TARGET(inst->RGB.Target);
264 		emit->node_flags |= R300_RGBA_OUT;
265 	}
266 
267 	if (inst->Alpha.WriteMask) {
268 		use_temporary(code, inst->Alpha.DestIndex);
269 		if (inst->Alpha.DestIndex >= R300_PFS_NUM_TEMP_REGS)
270 			code->alu.inst[ip].r400_ext_addr |= R400_ADDRD_EXT_A_MSB_BIT;
271 		code->alu.inst[ip].alpha_addr |=
272 			((inst->Alpha.DestIndex & 0x1f) << R300_ALU_DSTA_SHIFT) |
273 			R300_ALU_DSTA_REG;
274 	}
275 	if (inst->Alpha.OutputWriteMask) {
276 		code->alu.inst[ip].alpha_addr |= R300_ALU_DSTA_OUTPUT |
277             R300_ALPHA_TARGET(inst->Alpha.Target);
278 		emit->node_flags |= R300_RGBA_OUT;
279 	}
280 	if (inst->Alpha.DepthWriteMask) {
281 		code->alu.inst[ip].alpha_addr |= R300_ALU_DSTA_DEPTH;
282 		emit->node_flags |= R300_W_OUT;
283 		c->code->writes_depth = 1;
284 	}
285 	if (inst->Nop)
286 		code->alu.inst[ip].rgb_inst |= R300_ALU_INSERT_NOP;
287 
288 	/* Handle Output Modifier
289 	 * According to the r300 docs, there is no RC_OMOD_DISABLE for r300 */
290 	if (inst->RGB.Omod) {
291 		if (inst->RGB.Omod == RC_OMOD_DISABLE) {
292 			rc_error(&c->Base, "RC_OMOD_DISABLE not supported");
293 		}
294 		code->alu.inst[ip].rgb_inst |=
295 			(inst->RGB.Omod << R300_ALU_OUTC_MOD_SHIFT);
296 	}
297 	if (inst->Alpha.Omod) {
298 		if (inst->Alpha.Omod == RC_OMOD_DISABLE) {
299 			rc_error(&c->Base, "RC_OMOD_DISABLE not supported");
300 		}
301 		code->alu.inst[ip].alpha_inst |=
302 			(inst->Alpha.Omod << R300_ALU_OUTC_MOD_SHIFT);
303 	}
304 	return 1;
305 }
306 
307 
308 /**
309  * Finish the current node without advancing to the next one.
310  */
finish_node(struct r300_emit_state * emit)311 static int finish_node(struct r300_emit_state * emit)
312 {
313 	struct r300_fragment_program_compiler * c = emit->compiler;
314 	struct r300_fragment_program_code *code = &emit->compiler->code->code.r300;
315 	unsigned alu_offset;
316 	unsigned alu_end;
317 	unsigned tex_offset;
318 	unsigned tex_end;
319 
320 	unsigned int alu_offset_msbs, alu_end_msbs;
321 
322 	if (code->alu.length == emit->node_first_alu) {
323 		/* Generate a single NOP for this node */
324 		struct rc_pair_instruction inst;
325 		memset(&inst, 0, sizeof(inst));
326 		if (!emit_alu(emit, &inst))
327 			return 0;
328 	}
329 
330 	alu_offset = emit->node_first_alu;
331 	alu_end = code->alu.length - alu_offset - 1;
332 	tex_offset = emit->node_first_tex;
333 	tex_end = code->tex.length - tex_offset - 1;
334 
335 	if (code->tex.length == emit->node_first_tex) {
336 		if (emit->current_node > 0) {
337 			error("Node %i has no TEX instructions", emit->current_node);
338 			return 0;
339 		}
340 
341 		tex_end = 0;
342 	} else {
343 		if (emit->current_node == 0)
344 			code->config |= R300_PFS_CNTL_FIRST_NODE_HAS_TEX;
345 	}
346 
347 	/* Write the config register.
348 	 * Note: The order in which the words for each node are written
349 	 * is not correct here and needs to be fixed up once we're entirely
350 	 * done
351 	 *
352 	 * Also note that the register specification from AMD is slightly
353 	 * incorrect in its description of this register. */
354 	code->code_addr[emit->current_node]  =
355 			((alu_offset << R300_ALU_START_SHIFT)
356 				& R300_ALU_START_MASK)
357 			| ((alu_end << R300_ALU_SIZE_SHIFT)
358 				& R300_ALU_SIZE_MASK)
359 			| ((tex_offset << R300_TEX_START_SHIFT)
360 				& R300_TEX_START_MASK)
361 			| ((tex_end << R300_TEX_SIZE_SHIFT)
362 				& R300_TEX_SIZE_MASK)
363 			| emit->node_flags
364 			| (get_msbs_tex(tex_offset, 5)
365 				<< R400_TEX_START_MSB_SHIFT)
366 			| (get_msbs_tex(tex_end, 5)
367 				<< R400_TEX_SIZE_MSB_SHIFT)
368 			;
369 
370 	/* Write r400 extended instruction fields.  These will be ignored on
371 	 * r300 cards.  */
372 	alu_offset_msbs = get_msbs_alu(alu_offset);
373 	alu_end_msbs = get_msbs_alu(alu_end);
374 	switch(emit->current_node) {
375 	case 0:
376 		code->r400_code_offset_ext |=
377 			alu_offset_msbs << R400_ALU_START3_MSB_SHIFT
378 			| alu_end_msbs << R400_ALU_SIZE3_MSB_SHIFT;
379 		break;
380 	case 1:
381 		code->r400_code_offset_ext |=
382 			alu_offset_msbs << R400_ALU_START2_MSB_SHIFT
383 			| alu_end_msbs << R400_ALU_SIZE2_MSB_SHIFT;
384 		break;
385 	case 2:
386 		code->r400_code_offset_ext |=
387 			alu_offset_msbs << R400_ALU_START1_MSB_SHIFT
388 			| alu_end_msbs << R400_ALU_SIZE1_MSB_SHIFT;
389 		break;
390 	case 3:
391 		code->r400_code_offset_ext |=
392 			alu_offset_msbs << R400_ALU_START0_MSB_SHIFT
393 			| alu_end_msbs << R400_ALU_SIZE0_MSB_SHIFT;
394 		break;
395 	}
396 	return 1;
397 }
398 
399 
400 /**
401  * Begin a block of texture instructions.
402  * Create the necessary indirection.
403  */
begin_tex(struct r300_emit_state * emit)404 static int begin_tex(struct r300_emit_state * emit)
405 {
406 	PROG_CODE;
407 
408 	if (code->alu.length == emit->node_first_alu &&
409 	    code->tex.length == emit->node_first_tex) {
410 		return 1;
411 	}
412 
413 	if (emit->current_node == 3) {
414 		error("Too many texture indirections");
415 		return 0;
416 	}
417 
418 	if (!finish_node(emit))
419 		return 0;
420 
421 	emit->current_node++;
422 	emit->node_first_tex = code->tex.length;
423 	emit->node_first_alu = code->alu.length;
424 	emit->node_flags = 0;
425 	return 1;
426 }
427 
428 
emit_tex(struct r300_emit_state * emit,struct rc_instruction * inst)429 static int emit_tex(struct r300_emit_state * emit, struct rc_instruction * inst)
430 {
431 	unsigned int unit;
432 	unsigned int dest;
433 	unsigned int opcode;
434 	PROG_CODE;
435 
436 	if (code->tex.length >= emit->compiler->Base.max_tex_insts) {
437 		error("Too many TEX instructions");
438 		return 0;
439 	}
440 
441 	unit = inst->U.I.TexSrcUnit;
442 	dest = inst->U.I.DstReg.Index;
443 
444 	switch(inst->U.I.Opcode) {
445 	case RC_OPCODE_KIL: opcode = R300_TEX_OP_KIL; break;
446 	case RC_OPCODE_TEX: opcode = R300_TEX_OP_LD; break;
447 	case RC_OPCODE_TXB: opcode = R300_TEX_OP_TXB; break;
448 	case RC_OPCODE_TXP: opcode = R300_TEX_OP_TXP; break;
449 	default:
450 		error("Unknown texture opcode %s", rc_get_opcode_info(inst->U.I.Opcode)->Name);
451 		return 0;
452 	}
453 
454 	if (inst->U.I.Opcode == RC_OPCODE_KIL) {
455 		unit = 0;
456 		dest = 0;
457 	} else {
458 		use_temporary(code, dest);
459 	}
460 
461 	use_temporary(code, inst->U.I.SrcReg[0].Index);
462 
463 	code->tex.inst[code->tex.length++] =
464 		((inst->U.I.SrcReg[0].Index << R300_SRC_ADDR_SHIFT)
465 			& R300_SRC_ADDR_MASK)
466 		| ((dest << R300_DST_ADDR_SHIFT)
467 			& R300_DST_ADDR_MASK)
468 		| (unit << R300_TEX_ID_SHIFT)
469 		| (opcode << R300_TEX_INST_SHIFT)
470 		| (inst->U.I.SrcReg[0].Index >= R300_PFS_NUM_TEMP_REGS ?
471 			R400_SRC_ADDR_EXT_BIT : 0)
472 		| (dest >= R300_PFS_NUM_TEMP_REGS ?
473 			R400_DST_ADDR_EXT_BIT : 0)
474 		;
475 	return 1;
476 }
477 
478 
479 /**
480  * Final compilation step: Turn the intermediate radeon_program into
481  * machine-readable instructions.
482  */
r300BuildFragmentProgramHwCode(struct radeon_compiler * c,void * user)483 void r300BuildFragmentProgramHwCode(struct radeon_compiler *c, void *user)
484 {
485 	struct r300_fragment_program_compiler *compiler = (struct r300_fragment_program_compiler*)c;
486 	struct r300_emit_state emit;
487 	struct r300_fragment_program_code *code = &compiler->code->code.r300;
488 	unsigned int tex_end;
489 
490 	memset(&emit, 0, sizeof(emit));
491 	emit.compiler = compiler;
492 
493 	memset(code, 0, sizeof(struct r300_fragment_program_code));
494 
495 	for(struct rc_instruction * inst = compiler->Base.Program.Instructions.Next;
496 	    inst != &compiler->Base.Program.Instructions && !compiler->Base.Error;
497 	    inst = inst->Next) {
498 		if (inst->Type == RC_INSTRUCTION_NORMAL) {
499 			if (inst->U.I.Opcode == RC_OPCODE_BEGIN_TEX) {
500 				begin_tex(&emit);
501 				continue;
502 			}
503 
504 			emit_tex(&emit, inst);
505 		} else {
506 			emit_alu(&emit, &inst->U.P);
507 		}
508 	}
509 
510 	if (code->pixsize >= compiler->Base.max_temp_regs)
511 		rc_error(&compiler->Base, "Too many hardware temporaries used.\n");
512 
513 	if (compiler->Base.Error)
514 		return;
515 
516 	/* Finish the program */
517 	finish_node(&emit);
518 
519 	code->config |= emit.current_node; /* FIRST_NODE_HAS_TEX set by finish_node */
520 
521 	/* Set r400 extended instruction fields.  These values will be ignored
522 	 * on r300 cards. */
523 	code->r400_code_offset_ext |=
524 		(get_msbs_alu(0)
525 				<< R400_ALU_OFFSET_MSB_SHIFT)
526 		| (get_msbs_alu(code->alu.length - 1)
527 				<< R400_ALU_SIZE_MSB_SHIFT);
528 
529 	tex_end = code->tex.length ? code->tex.length - 1 : 0;
530 	code->code_offset =
531 		((0 << R300_PFS_CNTL_ALU_OFFSET_SHIFT)
532 			& R300_PFS_CNTL_ALU_OFFSET_MASK)
533 		| (((code->alu.length - 1) << R300_PFS_CNTL_ALU_END_SHIFT)
534 			& R300_PFS_CNTL_ALU_END_MASK)
535 		| ((0 << R300_PFS_CNTL_TEX_OFFSET_SHIFT)
536 			& R300_PFS_CNTL_TEX_OFFSET_MASK)
537 		| ((tex_end << R300_PFS_CNTL_TEX_END_SHIFT)
538 			& R300_PFS_CNTL_TEX_END_MASK)
539 		| (get_msbs_tex(0, 5) << R400_TEX_START_MSB_SHIFT)
540 		| (get_msbs_tex(tex_end, 6) << R400_TEX_SIZE_MSB_SHIFT)
541 		;
542 
543 	if (emit.current_node < 3) {
544 		int shift = 3 - emit.current_node;
545 		int i;
546 		for(i = emit.current_node; i >= 0; --i)
547 			code->code_addr[shift + i] = code->code_addr[i];
548 		for(i = 0; i < shift; ++i)
549 			code->code_addr[i] = 0;
550 	}
551 
552 	if (code->pixsize >= R300_PFS_NUM_TEMP_REGS
553 	    || code->alu.length > R300_PFS_MAX_ALU_INST
554 	    || code->tex.length > R300_PFS_MAX_TEX_INST) {
555 
556 		code->r390_mode = 1;
557 	}
558 }
559