• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2013 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors: Marek Olšák <maraeo@gmail.com>
24  *
25  */
26 
27 #include "r600_pipe_common.h"
28 #include "r600_cs.h"
29 #include "evergreen_compute.h"
30 #include "util/list.h"
31 #include "util/u_draw_quad.h"
32 #include "util/u_memory.h"
33 #include "util/format/u_format_s3tc.h"
34 #include "util/u_upload_mgr.h"
35 #include "util/os_time.h"
36 #include "util/hex.h"
37 #include "vl/vl_decoder.h"
38 #include "vl/vl_video_buffer.h"
39 #include "radeon_video.h"
40 #include "git_sha1.h"
41 
42 #include <inttypes.h>
43 #include <sys/utsname.h>
44 #include <stdlib.h>
45 
46 #if LLVM_AVAILABLE
47 #include <llvm-c/TargetMachine.h>
48 #endif
49 
50 struct r600_multi_fence {
51 	struct pipe_reference reference;
52 	struct pipe_fence_handle *gfx;
53 	struct pipe_fence_handle *sdma;
54 
55 	/* If the context wasn't flushed at fence creation, this is non-NULL. */
56 	struct {
57 		struct r600_common_context *ctx;
58 		unsigned ib_index;
59 	} gfx_unflushed;
60 };
61 
62 /*
63  * pipe_context
64  */
65 
66 /**
67  * Write an EOP event.
68  *
69  * \param event		EVENT_TYPE_*
70  * \param event_flags	Optional cache flush flags (TC)
71  * \param data_sel	1 = fence, 3 = timestamp
72  * \param buf		Buffer
73  * \param va		GPU address
74  * \param old_value	Previous fence value (for a bug workaround)
75  * \param new_value	Fence value to write for this event.
76  */
r600_gfx_write_event_eop(struct r600_common_context * ctx,unsigned event,unsigned event_flags,unsigned data_sel,struct r600_resource * buf,uint64_t va,uint32_t new_fence,unsigned query_type)77 void r600_gfx_write_event_eop(struct r600_common_context *ctx,
78 			      unsigned event, unsigned event_flags,
79 			      unsigned data_sel,
80 			      struct r600_resource *buf, uint64_t va,
81 			      uint32_t new_fence, unsigned query_type)
82 {
83 	struct radeon_cmdbuf *cs = &ctx->gfx.cs;
84 	unsigned op = EVENT_TYPE(event) |
85 		      EVENT_INDEX(5) |
86 		      event_flags;
87 	unsigned sel = EOP_DATA_SEL(data_sel);
88 
89 	radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
90 	radeon_emit(cs, op);
91 	radeon_emit(cs, va);
92 	radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
93 	radeon_emit(cs, new_fence); /* immediate data */
94 	radeon_emit(cs, 0); /* unused */
95 
96 	if (buf)
97 		r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_WRITE |
98 				RADEON_PRIO_QUERY);
99 }
100 
r600_gfx_write_fence_dwords(struct r600_common_screen * screen)101 unsigned r600_gfx_write_fence_dwords(struct r600_common_screen *screen)
102 {
103 	unsigned dwords = 6;
104 
105 	if (!screen->info.r600_has_virtual_memory)
106 		dwords += 2;
107 
108 	return dwords;
109 }
110 
r600_gfx_wait_fence(struct r600_common_context * ctx,struct r600_resource * buf,uint64_t va,uint32_t ref,uint32_t mask)111 void r600_gfx_wait_fence(struct r600_common_context *ctx,
112 			 struct r600_resource *buf,
113 			 uint64_t va, uint32_t ref, uint32_t mask)
114 {
115 	struct radeon_cmdbuf *cs = &ctx->gfx.cs;
116 
117 	radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
118 	radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1));
119 	radeon_emit(cs, va);
120 	radeon_emit(cs, va >> 32);
121 	radeon_emit(cs, ref); /* reference value */
122 	radeon_emit(cs, mask); /* mask */
123 	radeon_emit(cs, 4); /* poll interval */
124 
125 	if (buf)
126 		r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_READ |
127 				RADEON_PRIO_QUERY);
128 }
129 
r600_draw_rectangle(struct blitter_context * blitter,void * vertex_elements_cso,blitter_get_vs_func get_vs,int x1,int y1,int x2,int y2,float depth,unsigned num_instances,enum blitter_attrib_type type,const union blitter_attrib * attrib)130 void r600_draw_rectangle(struct blitter_context *blitter,
131 			 void *vertex_elements_cso,
132 			 blitter_get_vs_func get_vs,
133 			 int x1, int y1, int x2, int y2,
134 			 float depth, unsigned num_instances,
135 			 enum blitter_attrib_type type,
136 			 const union blitter_attrib *attrib)
137 {
138 	struct r600_common_context *rctx =
139 		(struct r600_common_context*)util_blitter_get_pipe(blitter);
140 	struct pipe_viewport_state viewport;
141 	struct pipe_resource *buf = NULL;
142 	unsigned offset = 0;
143 	float *vb;
144 
145 	rctx->b.bind_vertex_elements_state(&rctx->b, vertex_elements_cso);
146 	rctx->b.bind_vs_state(&rctx->b, get_vs(blitter));
147 
148 	/* Some operations (like color resolve on r6xx) don't work
149 	 * with the conventional primitive types.
150 	 * One that works is PT_RECTLIST, which we use here. */
151 
152 	/* setup viewport */
153 	viewport.scale[0] = 1.0f;
154 	viewport.scale[1] = 1.0f;
155 	viewport.scale[2] = 1.0f;
156 	viewport.translate[0] = 0.0f;
157 	viewport.translate[1] = 0.0f;
158 	viewport.translate[2] = 0.0f;
159 	rctx->b.set_viewport_states(&rctx->b, 0, 1, &viewport);
160 
161 	/* Upload vertices. The hw rectangle has only 3 vertices,
162 	 * The 4th one is derived from the first 3.
163 	 * The vertex specification should match u_blitter's vertex element state. */
164 	u_upload_alloc(rctx->b.stream_uploader, 0, sizeof(float) * 24,
165 		       rctx->screen->info.tcc_cache_line_size,
166                        &offset, &buf, (void**)&vb);
167 	if (!buf)
168 		return;
169 
170 	vb[0] = x1;
171 	vb[1] = y1;
172 	vb[2] = depth;
173 	vb[3] = 1;
174 
175 	vb[8] = x1;
176 	vb[9] = y2;
177 	vb[10] = depth;
178 	vb[11] = 1;
179 
180 	vb[16] = x2;
181 	vb[17] = y1;
182 	vb[18] = depth;
183 	vb[19] = 1;
184 
185 	switch (type) {
186 	case UTIL_BLITTER_ATTRIB_COLOR:
187 		memcpy(vb+4, attrib->color, sizeof(float)*4);
188 		memcpy(vb+12, attrib->color, sizeof(float)*4);
189 		memcpy(vb+20, attrib->color, sizeof(float)*4);
190 		break;
191 	case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
192 	case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
193 		vb[6] = vb[14] = vb[22] = attrib->texcoord.z;
194 		vb[7] = vb[15] = vb[23] = attrib->texcoord.w;
195 		/* fall through */
196 		vb[4] = attrib->texcoord.x1;
197 		vb[5] = attrib->texcoord.y1;
198 		vb[12] = attrib->texcoord.x1;
199 		vb[13] = attrib->texcoord.y2;
200 		vb[20] = attrib->texcoord.x2;
201 		vb[21] = attrib->texcoord.y1;
202 		break;
203 	default:; /* Nothing to do. */
204 	}
205 
206 	/* draw */
207 	struct pipe_vertex_buffer vbuffer = {};
208 	vbuffer.buffer.resource = buf;
209 	vbuffer.buffer_offset = offset;
210 
211 	util_set_vertex_buffers(&rctx->b, 1, false, &vbuffer);
212 	util_draw_arrays_instanced(&rctx->b, R600_PRIM_RECTANGLE_LIST, 0, 3,
213 				   0, num_instances);
214 	pipe_resource_reference(&buf, NULL);
215 }
216 
r600_dma_emit_wait_idle(struct r600_common_context * rctx)217 static void r600_dma_emit_wait_idle(struct r600_common_context *rctx)
218 {
219 	struct radeon_cmdbuf *cs = &rctx->dma.cs;
220 
221 	if (rctx->gfx_level >= EVERGREEN)
222 		radeon_emit(cs, 0xf0000000); /* NOP */
223 	else {
224 		/* TODO: R600-R700 should use the FENCE packet.
225 		 * CS checker support is required. */
226 	}
227 }
228 
r600_need_dma_space(struct r600_common_context * ctx,unsigned num_dw,struct r600_resource * dst,struct r600_resource * src)229 void r600_need_dma_space(struct r600_common_context *ctx, unsigned num_dw,
230                          struct r600_resource *dst, struct r600_resource *src)
231 {
232 	uint64_t vram = (uint64_t)ctx->dma.cs.used_vram_kb * 1024;
233 	uint64_t gtt = (uint64_t)ctx->dma.cs.used_gart_kb * 1024;
234 
235 	if (dst) {
236 		vram += dst->vram_usage;
237 		gtt += dst->gart_usage;
238 	}
239 	if (src) {
240 		vram += src->vram_usage;
241 		gtt += src->gart_usage;
242 	}
243 
244 	/* Flush the GFX IB if DMA depends on it. */
245 	if (radeon_emitted(&ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
246 	    ((dst &&
247 	      ctx->ws->cs_is_buffer_referenced(&ctx->gfx.cs, dst->buf,
248 					       RADEON_USAGE_READWRITE)) ||
249 	     (src &&
250 	      ctx->ws->cs_is_buffer_referenced(&ctx->gfx.cs, src->buf,
251 					       RADEON_USAGE_WRITE))))
252 		ctx->gfx.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
253 
254 	/* Flush if there's not enough space, or if the memory usage per IB
255 	 * is too large.
256 	 *
257 	 * IBs using too little memory are limited by the IB submission overhead.
258 	 * IBs using too much memory are limited by the kernel/TTM overhead.
259 	 * Too long IBs create CPU-GPU pipeline bubbles and add latency.
260 	 *
261 	 * This heuristic makes sure that DMA requests are executed
262 	 * very soon after the call is made and lowers memory usage.
263 	 * It improves texture upload performance by keeping the DMA
264 	 * engine busy while uploads are being submitted.
265 	 */
266 	num_dw++; /* for emit_wait_idle below */
267 	if (!ctx->ws->cs_check_space(&ctx->dma.cs, num_dw) ||
268 	    ctx->dma.cs.used_vram_kb + ctx->dma.cs.used_gart_kb > 64 * 1024 ||
269 	    !radeon_cs_memory_below_limit(ctx->screen, &ctx->dma.cs, vram, gtt)) {
270 		ctx->dma.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
271 		assert((num_dw + ctx->dma.cs.current.cdw) <= ctx->dma.cs.current.max_dw);
272 	}
273 
274 	/* Wait for idle if either buffer has been used in the IB before to
275 	 * prevent read-after-write hazards.
276 	 */
277 	if ((dst &&
278 	     ctx->ws->cs_is_buffer_referenced(&ctx->dma.cs, dst->buf,
279 					      RADEON_USAGE_READWRITE)) ||
280 	    (src &&
281 	     ctx->ws->cs_is_buffer_referenced(&ctx->dma.cs, src->buf,
282 					      RADEON_USAGE_WRITE)))
283 		r600_dma_emit_wait_idle(ctx);
284 
285 	/* If GPUVM is not supported, the CS checker needs 2 entries
286 	 * in the buffer list per packet, which has to be done manually.
287 	 */
288 	if (ctx->screen->info.r600_has_virtual_memory) {
289 		if (dst)
290 			radeon_add_to_buffer_list(ctx, &ctx->dma, dst,
291 						  RADEON_USAGE_WRITE);
292 		if (src)
293 			radeon_add_to_buffer_list(ctx, &ctx->dma, src,
294 						  RADEON_USAGE_READ);
295 	}
296 
297 	/* this function is called before all DMA calls, so increment this. */
298 	ctx->num_dma_calls++;
299 }
300 
r600_preflush_suspend_features(struct r600_common_context * ctx)301 void r600_preflush_suspend_features(struct r600_common_context *ctx)
302 {
303 	/* suspend queries */
304 	if (!list_is_empty(&ctx->active_queries))
305 		r600_suspend_queries(ctx);
306 
307 	ctx->streamout.suspended = false;
308 	if (ctx->streamout.begin_emitted) {
309 		r600_emit_streamout_end(ctx);
310 		ctx->streamout.suspended = true;
311 	}
312 }
313 
r600_postflush_resume_features(struct r600_common_context * ctx)314 void r600_postflush_resume_features(struct r600_common_context *ctx)
315 {
316 	if (ctx->streamout.suspended) {
317 		ctx->streamout.append_bitmask = ctx->streamout.enabled_mask;
318 		r600_streamout_buffers_dirty(ctx);
319 	}
320 
321 	/* resume queries */
322 	if (!list_is_empty(&ctx->active_queries))
323 		r600_resume_queries(ctx);
324 }
325 
r600_fence_server_sync(struct pipe_context * ctx,struct pipe_fence_handle * fence)326 static void r600_fence_server_sync(struct pipe_context *ctx,
327 				   struct pipe_fence_handle *fence)
328 {
329 	/* radeon synchronizes all rings by default and will not implement
330 	 * fence imports.
331 	 */
332 }
333 
r600_flush_from_st(struct pipe_context * ctx,struct pipe_fence_handle ** fence,unsigned flags)334 static void r600_flush_from_st(struct pipe_context *ctx,
335 			       struct pipe_fence_handle **fence,
336 			       unsigned flags)
337 {
338 	struct pipe_screen *screen = ctx->screen;
339 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
340 	struct radeon_winsys *ws = rctx->ws;
341 	struct pipe_fence_handle *gfx_fence = NULL;
342 	struct pipe_fence_handle *sdma_fence = NULL;
343 	bool deferred_fence = false;
344 	unsigned rflags = PIPE_FLUSH_ASYNC;
345 
346 	if (flags & PIPE_FLUSH_END_OF_FRAME)
347 		rflags |= PIPE_FLUSH_END_OF_FRAME;
348 
349 	/* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
350 	if (rctx->dma.cs.priv)
351 		rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
352 
353 	if (!radeon_emitted(&rctx->gfx.cs, rctx->initial_gfx_cs_size)) {
354 		if (fence)
355 			ws->fence_reference(ws, &gfx_fence, rctx->last_gfx_fence);
356 		if (!(flags & PIPE_FLUSH_DEFERRED))
357 			ws->cs_sync_flush(&rctx->gfx.cs);
358 	} else {
359 		/* Instead of flushing, create a deferred fence. Constraints:
360 		 * - the gallium frontend must allow a deferred flush.
361 		 * - the gallium frontend must request a fence.
362 		 * Thread safety in fence_finish must be ensured by the gallium frontend.
363 		 */
364 		if (flags & PIPE_FLUSH_DEFERRED && fence) {
365 			gfx_fence = rctx->ws->cs_get_next_fence(&rctx->gfx.cs);
366 			deferred_fence = true;
367 		} else {
368 			rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
369 		}
370 	}
371 
372 	/* Both engines can signal out of order, so we need to keep both fences. */
373 	if (fence) {
374 		struct r600_multi_fence *multi_fence =
375 			CALLOC_STRUCT(r600_multi_fence);
376 		if (!multi_fence) {
377 			ws->fence_reference(ws, &sdma_fence, NULL);
378 			ws->fence_reference(ws, &gfx_fence, NULL);
379 			goto finish;
380 		}
381 
382 		multi_fence->reference.count = 1;
383 		/* If both fences are NULL, fence_finish will always return true. */
384 		multi_fence->gfx = gfx_fence;
385 		multi_fence->sdma = sdma_fence;
386 
387 		if (deferred_fence) {
388 			multi_fence->gfx_unflushed.ctx = rctx;
389 			multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes;
390 		}
391 
392 		screen->fence_reference(screen, fence, NULL);
393 		*fence = (struct pipe_fence_handle*)multi_fence;
394 	}
395 finish:
396 	if (!(flags & PIPE_FLUSH_DEFERRED)) {
397 		if (rctx->dma.cs.priv)
398 			ws->cs_sync_flush(&rctx->dma.cs);
399 		ws->cs_sync_flush(&rctx->gfx.cs);
400 	}
401 }
402 
r600_flush_dma_ring(void * ctx,unsigned flags,struct pipe_fence_handle ** fence)403 static void r600_flush_dma_ring(void *ctx, unsigned flags,
404 				struct pipe_fence_handle **fence)
405 {
406 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
407 	struct radeon_cmdbuf *cs = &rctx->dma.cs;
408 	struct radeon_saved_cs saved;
409 	bool check_vm =
410 		(rctx->screen->debug_flags & DBG_CHECK_VM) &&
411 		rctx->check_vm_faults;
412 
413 	if (!radeon_emitted(cs, 0)) {
414 		if (fence)
415 			rctx->ws->fence_reference(rctx->ws, fence, rctx->last_sdma_fence);
416 		return;
417 	}
418 
419 	if (check_vm)
420 		radeon_save_cs(rctx->ws, cs, &saved, true);
421 
422 	rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence);
423 	if (fence)
424 		rctx->ws->fence_reference(rctx->ws, fence, rctx->last_sdma_fence);
425 
426 	if (check_vm) {
427 		/* Use conservative timeout 800ms, after which we won't wait any
428 		 * longer and assume the GPU is hung.
429 		 */
430 		rctx->ws->fence_wait(rctx->ws, rctx->last_sdma_fence, 800*1000*1000);
431 
432 		rctx->check_vm_faults(rctx, &saved, AMD_IP_SDMA);
433 		radeon_clear_saved_cs(&saved);
434 	}
435 }
436 
437 /**
438  * Store a linearized copy of all chunks of \p cs together with the buffer
439  * list in \p saved.
440  */
radeon_save_cs(struct radeon_winsys * ws,struct radeon_cmdbuf * cs,struct radeon_saved_cs * saved,bool get_buffer_list)441 void radeon_save_cs(struct radeon_winsys *ws, struct radeon_cmdbuf *cs,
442 		    struct radeon_saved_cs *saved, bool get_buffer_list)
443 {
444 	uint32_t *buf;
445 	unsigned i;
446 
447 	/* Save the IB chunks. */
448 	saved->num_dw = cs->prev_dw + cs->current.cdw;
449 	saved->ib = MALLOC(4 * saved->num_dw);
450 	if (!saved->ib)
451 		goto oom;
452 
453 	buf = saved->ib;
454 	for (i = 0; i < cs->num_prev; ++i) {
455 		memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4);
456 		buf += cs->prev[i].cdw;
457 	}
458 	memcpy(buf, cs->current.buf, cs->current.cdw * 4);
459 
460 	if (!get_buffer_list)
461 		return;
462 
463 	/* Save the buffer list. */
464 	saved->bo_count = ws->cs_get_buffer_list(cs, NULL);
465 	saved->bo_list = CALLOC(saved->bo_count,
466 				sizeof(saved->bo_list[0]));
467 	if (!saved->bo_list) {
468 		FREE(saved->ib);
469 		goto oom;
470 	}
471 	ws->cs_get_buffer_list(cs, saved->bo_list);
472 
473 	return;
474 
475 oom:
476 	fprintf(stderr, "%s: out of memory\n", __func__);
477 	memset(saved, 0, sizeof(*saved));
478 }
479 
radeon_clear_saved_cs(struct radeon_saved_cs * saved)480 void radeon_clear_saved_cs(struct radeon_saved_cs *saved)
481 {
482 	FREE(saved->ib);
483 	FREE(saved->bo_list);
484 
485 	memset(saved, 0, sizeof(*saved));
486 }
487 
r600_get_reset_status(struct pipe_context * ctx)488 static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx)
489 {
490 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
491 
492 	return rctx->ws->ctx_query_reset_status(rctx->ctx, false, NULL, NULL);
493 }
494 
r600_set_debug_callback(struct pipe_context * ctx,const struct util_debug_callback * cb)495 static void r600_set_debug_callback(struct pipe_context *ctx,
496 				    const struct util_debug_callback *cb)
497 {
498 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
499 
500 	if (cb)
501 		rctx->debug = *cb;
502 	else
503 		memset(&rctx->debug, 0, sizeof(rctx->debug));
504 }
505 
r600_set_device_reset_callback(struct pipe_context * ctx,const struct pipe_device_reset_callback * cb)506 static void r600_set_device_reset_callback(struct pipe_context *ctx,
507 					   const struct pipe_device_reset_callback *cb)
508 {
509 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
510 
511 	if (cb)
512 		rctx->device_reset_callback = *cb;
513 	else
514 		memset(&rctx->device_reset_callback, 0,
515 		       sizeof(rctx->device_reset_callback));
516 }
517 
r600_check_device_reset(struct r600_common_context * rctx)518 bool r600_check_device_reset(struct r600_common_context *rctx)
519 {
520 	enum pipe_reset_status status;
521 
522 	if (!rctx->device_reset_callback.reset)
523 		return false;
524 
525 	if (!rctx->b.get_device_reset_status)
526 		return false;
527 
528 	status = rctx->b.get_device_reset_status(&rctx->b);
529 	if (status == PIPE_NO_RESET)
530 		return false;
531 
532 	rctx->device_reset_callback.reset(rctx->device_reset_callback.data, status);
533 	return true;
534 }
535 
r600_dma_clear_buffer_fallback(struct pipe_context * ctx,struct pipe_resource * dst,uint64_t offset,uint64_t size,unsigned value)536 static void r600_dma_clear_buffer_fallback(struct pipe_context *ctx,
537 					   struct pipe_resource *dst,
538 					   uint64_t offset, uint64_t size,
539 					   unsigned value)
540 {
541 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
542 
543 	rctx->clear_buffer(ctx, dst, offset, size, value, R600_COHERENCY_NONE);
544 }
545 
r600_resource_commit(struct pipe_context * pctx,struct pipe_resource * resource,unsigned level,struct pipe_box * box,bool commit)546 static bool r600_resource_commit(struct pipe_context *pctx,
547 				 struct pipe_resource *resource,
548 				 unsigned level, struct pipe_box *box,
549 				 bool commit)
550 {
551 	struct r600_common_context *ctx = (struct r600_common_context *)pctx;
552 	struct r600_resource *res = r600_resource(resource);
553 
554 	/*
555 	 * Since buffer commitment changes cannot be pipelined, we need to
556 	 * (a) flush any pending commands that refer to the buffer we're about
557 	 *     to change, and
558 	 * (b) wait for threaded submit to finish, including those that were
559 	 *     triggered by some other, earlier operation.
560 	 */
561 	if (radeon_emitted(&ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
562 	    ctx->ws->cs_is_buffer_referenced(&ctx->gfx.cs,
563 					     res->buf, RADEON_USAGE_READWRITE)) {
564 		ctx->gfx.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
565 	}
566 	if (radeon_emitted(&ctx->dma.cs, 0) &&
567 	    ctx->ws->cs_is_buffer_referenced(&ctx->dma.cs,
568 					     res->buf, RADEON_USAGE_READWRITE)) {
569 		ctx->dma.flush(ctx, PIPE_FLUSH_ASYNC, NULL);
570 	}
571 
572 	ctx->ws->cs_sync_flush(&ctx->dma.cs);
573 	ctx->ws->cs_sync_flush(&ctx->gfx.cs);
574 
575 	assert(resource->target == PIPE_BUFFER);
576 
577 	return ctx->ws->buffer_commit(ctx->ws, res->buf, box->x, box->width, commit);
578 }
579 
r600_common_context_init(struct r600_common_context * rctx,struct r600_common_screen * rscreen,unsigned context_flags)580 bool r600_common_context_init(struct r600_common_context *rctx,
581 			      struct r600_common_screen *rscreen,
582 			      unsigned context_flags)
583 {
584 	slab_create_child(&rctx->pool_transfers, &rscreen->pool_transfers);
585 	slab_create_child(&rctx->pool_transfers_unsync, &rscreen->pool_transfers);
586 
587 	rctx->screen = rscreen;
588 	rctx->ws = rscreen->ws;
589 	rctx->family = rscreen->family;
590 	rctx->gfx_level = rscreen->gfx_level;
591 
592 	rctx->b.clear_buffer = u_default_clear_buffer;
593 	rctx->b.invalidate_resource = r600_invalidate_resource;
594 	rctx->b.resource_commit = r600_resource_commit;
595 	rctx->b.buffer_map = r600_buffer_transfer_map;
596         rctx->b.texture_map = r600_texture_transfer_map;
597 	rctx->b.transfer_flush_region = r600_buffer_flush_region;
598 	rctx->b.buffer_unmap = r600_buffer_transfer_unmap;
599         rctx->b.texture_unmap = r600_texture_transfer_unmap;
600 	rctx->b.texture_subdata = u_default_texture_subdata;
601 	rctx->b.flush = r600_flush_from_st;
602 	rctx->b.set_debug_callback = r600_set_debug_callback;
603 	rctx->b.fence_server_sync = r600_fence_server_sync;
604 	rctx->dma_clear_buffer = r600_dma_clear_buffer_fallback;
605 
606 	/* evergreen_compute.c has a special codepath for global buffers.
607 	 * Everything else can use the direct path.
608 	 */
609 	if ((rscreen->gfx_level == EVERGREEN || rscreen->gfx_level == CAYMAN) &&
610 	    (context_flags & PIPE_CONTEXT_COMPUTE_ONLY))
611 		rctx->b.buffer_subdata = u_default_buffer_subdata;
612 	else
613 		rctx->b.buffer_subdata = r600_buffer_subdata;
614 
615 	rctx->b.get_device_reset_status = r600_get_reset_status;
616 	rctx->b.set_device_reset_callback = r600_set_device_reset_callback;
617 
618 	r600_init_context_texture_functions(rctx);
619 	r600_init_viewport_functions(rctx);
620 	r600_streamout_init(rctx);
621 	r600_query_init(rctx);
622 	cayman_init_msaa(&rctx->b);
623 
624 	u_suballocator_init(&rctx->allocator_zeroed_memory, &rctx->b, rscreen->info.gart_page_size,
625 			    0, PIPE_USAGE_DEFAULT, 0, true);
626 
627 	rctx->b.stream_uploader = u_upload_create(&rctx->b, 1024 * 1024,
628 						  0, PIPE_USAGE_STREAM, 0);
629 	if (!rctx->b.stream_uploader)
630 		return false;
631 
632 	rctx->b.const_uploader = u_upload_create(&rctx->b, 128 * 1024,
633 						 0, PIPE_USAGE_DEFAULT, 0);
634 	if (!rctx->b.const_uploader)
635 		return false;
636 
637 	rctx->ctx = rctx->ws->ctx_create(rctx->ws, RADEON_CTX_PRIORITY_MEDIUM, false);
638 	if (!rctx->ctx)
639 		return false;
640 
641 	if (rscreen->info.ip[AMD_IP_SDMA].num_queues && !(rscreen->debug_flags & DBG_NO_ASYNC_DMA)) {
642 		rctx->ws->cs_create(&rctx->dma.cs, rctx->ctx, AMD_IP_SDMA,
643                                     r600_flush_dma_ring, rctx);
644 		rctx->dma.flush = r600_flush_dma_ring;
645 	}
646 
647 	return true;
648 }
649 
r600_common_context_cleanup(struct r600_common_context * rctx)650 void r600_common_context_cleanup(struct r600_common_context *rctx)
651 {
652 	if (rctx->query_result_shader)
653 		rctx->b.delete_compute_state(&rctx->b, rctx->query_result_shader);
654 
655 	rctx->ws->cs_destroy(&rctx->gfx.cs);
656 	rctx->ws->cs_destroy(&rctx->dma.cs);
657 	if (rctx->ctx)
658 		rctx->ws->ctx_destroy(rctx->ctx);
659 
660 	if (rctx->b.stream_uploader)
661 		u_upload_destroy(rctx->b.stream_uploader);
662 	if (rctx->b.const_uploader)
663 		u_upload_destroy(rctx->b.const_uploader);
664 
665 	slab_destroy_child(&rctx->pool_transfers);
666 	slab_destroy_child(&rctx->pool_transfers_unsync);
667 
668 	u_suballocator_destroy(&rctx->allocator_zeroed_memory);
669 	rctx->ws->fence_reference(rctx->ws, &rctx->last_gfx_fence, NULL);
670 	rctx->ws->fence_reference(rctx->ws, &rctx->last_sdma_fence, NULL);
671 	r600_resource_reference(&rctx->eop_bug_scratch, NULL);
672 }
673 
674 /*
675  * pipe_screen
676  */
677 
678 static const struct debug_named_value common_debug_options[] = {
679 	/* logging */
680 	{ "tex", DBG_TEX, "Print texture info" },
681 	{ "nir", DBG_NIR, "Enable experimental NIR shaders" },
682 	{ "compute", DBG_COMPUTE, "Print compute info" },
683 	{ "vm", DBG_VM, "Print virtual addresses when creating resources" },
684 	{ "info", DBG_INFO, "Print driver information" },
685 
686 	/* shaders */
687 	{ "fs", DBG_FS, "Print fetch shaders" },
688 	{ "vs", DBG_VS, "Print vertex shaders" },
689 	{ "gs", DBG_GS, "Print geometry shaders" },
690 	{ "ps", DBG_PS, "Print pixel shaders" },
691 	{ "cs", DBG_CS, "Print compute shaders" },
692 	{ "tcs", DBG_TCS, "Print tessellation control shaders" },
693 	{ "tes", DBG_TES, "Print tessellation evaluation shaders" },
694 	{ "preoptir", DBG_PREOPT_IR, "Print the LLVM IR before initial optimizations" },
695 	{ "checkir", DBG_CHECK_IR, "Enable additional sanity checks on shader IR" },
696 
697 	{ "testdma", DBG_TEST_DMA, "Invoke SDMA tests and exit." },
698 	{ "testvmfaultcp", DBG_TEST_VMFAULT_CP, "Invoke a CP VM fault test and exit." },
699 	{ "testvmfaultsdma", DBG_TEST_VMFAULT_SDMA, "Invoke a SDMA VM fault test and exit." },
700 	{ "testvmfaultshader", DBG_TEST_VMFAULT_SHADER, "Invoke a shader VM fault test and exit." },
701 
702 	/* features */
703 	{ "nodma", DBG_NO_ASYNC_DMA, "Disable asynchronous DMA" },
704 	{ "nohyperz", DBG_NO_HYPERZ, "Disable Hyper-Z" },
705 	/* GL uses the word INVALIDATE, gallium uses the word DISCARD */
706 	{ "noinvalrange", DBG_NO_DISCARD_RANGE, "Disable handling of INVALIDATE_RANGE map flags" },
707 	{ "no2d", DBG_NO_2D_TILING, "Disable 2D tiling" },
708 	{ "notiling", DBG_NO_TILING, "Disable tiling" },
709 	{ "switch_on_eop", DBG_SWITCH_ON_EOP, "Program WD/IA to switch on end-of-packet." },
710 	{ "forcedma", DBG_FORCE_DMA, "Use asynchronous DMA for all operations when possible." },
711 	{ "nowc", DBG_NO_WC, "Disable GTT write combining" },
712 	{ "check_vm", DBG_CHECK_VM, "Check VM faults and dump debug info." },
713 
714 	DEBUG_NAMED_VALUE_END /* must be last */
715 };
716 
r600_get_vendor(struct pipe_screen * pscreen)717 static const char* r600_get_vendor(struct pipe_screen* pscreen)
718 {
719 	return "Mesa";
720 }
721 
r600_get_device_vendor(struct pipe_screen * pscreen)722 static const char* r600_get_device_vendor(struct pipe_screen* pscreen)
723 {
724 	return "AMD";
725 }
726 
r600_get_family_name(const struct r600_common_screen * rscreen)727 static const char *r600_get_family_name(const struct r600_common_screen *rscreen)
728 {
729 	switch (rscreen->info.family) {
730 	case CHIP_R600: return "AMD R600";
731 	case CHIP_RV610: return "AMD RV610";
732 	case CHIP_RV630: return "AMD RV630";
733 	case CHIP_RV670: return "AMD RV670";
734 	case CHIP_RV620: return "AMD RV620";
735 	case CHIP_RV635: return "AMD RV635";
736 	case CHIP_RS780: return "AMD RS780";
737 	case CHIP_RS880: return "AMD RS880";
738 	case CHIP_RV770: return "AMD RV770";
739 	case CHIP_RV730: return "AMD RV730";
740 	case CHIP_RV710: return "AMD RV710";
741 	case CHIP_RV740: return "AMD RV740";
742 	case CHIP_CEDAR: return "AMD CEDAR";
743 	case CHIP_REDWOOD: return "AMD REDWOOD";
744 	case CHIP_JUNIPER: return "AMD JUNIPER";
745 	case CHIP_CYPRESS: return "AMD CYPRESS";
746 	case CHIP_HEMLOCK: return "AMD HEMLOCK";
747 	case CHIP_PALM: return "AMD PALM";
748 	case CHIP_SUMO: return "AMD SUMO";
749 	case CHIP_SUMO2: return "AMD SUMO2";
750 	case CHIP_BARTS: return "AMD BARTS";
751 	case CHIP_TURKS: return "AMD TURKS";
752 	case CHIP_CAICOS: return "AMD CAICOS";
753 	case CHIP_CAYMAN: return "AMD CAYMAN";
754 	case CHIP_ARUBA: return "AMD ARUBA";
755 	default: return "AMD unknown";
756 	}
757 }
758 
r600_disk_cache_create(struct r600_common_screen * rscreen)759 static void r600_disk_cache_create(struct r600_common_screen *rscreen)
760 {
761 	/* Don't use the cache if shader dumping is enabled. */
762 	if (rscreen->debug_flags & DBG_ALL_SHADERS)
763 		return;
764 
765 	struct mesa_sha1 ctx;
766 	unsigned char sha1[20];
767 	char cache_id[20 * 2 + 1];
768 
769 	_mesa_sha1_init(&ctx);
770 	if (!disk_cache_get_function_identifier(r600_disk_cache_create,
771 						&ctx))
772 		return;
773 
774 	_mesa_sha1_final(&ctx, sha1);
775 	mesa_bytes_to_hex(cache_id, sha1, 20);
776 
777 	/* These flags affect shader compilation. */
778 	rscreen->disk_shader_cache =
779 		disk_cache_create(r600_get_family_name(rscreen),
780 				  cache_id, 0);
781 }
782 
r600_get_disk_shader_cache(struct pipe_screen * pscreen)783 static struct disk_cache *r600_get_disk_shader_cache(struct pipe_screen *pscreen)
784 {
785 	struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
786 	return rscreen->disk_shader_cache;
787 }
788 
r600_get_name(struct pipe_screen * pscreen)789 static const char* r600_get_name(struct pipe_screen* pscreen)
790 {
791 	struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
792 
793 	return rscreen->renderer_string;
794 }
795 
r600_get_paramf(struct pipe_screen * pscreen,enum pipe_capf param)796 static float r600_get_paramf(struct pipe_screen* pscreen,
797 			     enum pipe_capf param)
798 {
799 	switch (param) {
800 	case PIPE_CAPF_MIN_LINE_WIDTH:
801 	case PIPE_CAPF_MIN_LINE_WIDTH_AA:
802 	case PIPE_CAPF_MIN_POINT_SIZE:
803 	case PIPE_CAPF_MIN_POINT_SIZE_AA:
804 		return 1;
805 
806 	case PIPE_CAPF_POINT_SIZE_GRANULARITY:
807 	case PIPE_CAPF_LINE_WIDTH_GRANULARITY:
808 		return 0.1;
809 
810 	case PIPE_CAPF_MAX_LINE_WIDTH:
811 	case PIPE_CAPF_MAX_LINE_WIDTH_AA:
812 	case PIPE_CAPF_MAX_POINT_SIZE:
813 	case PIPE_CAPF_MAX_POINT_SIZE_AA:
814          return 8191.0f;
815 	case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
816 		return 16.0f;
817 	case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
818 		return 16.0f;
819     case PIPE_CAPF_MIN_CONSERVATIVE_RASTER_DILATE:
820     case PIPE_CAPF_MAX_CONSERVATIVE_RASTER_DILATE:
821     case PIPE_CAPF_CONSERVATIVE_RASTER_DILATE_GRANULARITY:
822         return 0.0f;
823 	}
824 	return 0.0f;
825 }
826 
r600_get_video_param(struct pipe_screen * screen,enum pipe_video_profile profile,enum pipe_video_entrypoint entrypoint,enum pipe_video_cap param)827 static int r600_get_video_param(struct pipe_screen *screen,
828 				enum pipe_video_profile profile,
829 				enum pipe_video_entrypoint entrypoint,
830 				enum pipe_video_cap param)
831 {
832 	switch (param) {
833 	case PIPE_VIDEO_CAP_SUPPORTED:
834 		return vl_profile_supported(screen, profile, entrypoint);
835 	case PIPE_VIDEO_CAP_NPOT_TEXTURES:
836 		return 1;
837 	case PIPE_VIDEO_CAP_MAX_WIDTH:
838 	case PIPE_VIDEO_CAP_MAX_HEIGHT:
839 		return vl_video_buffer_max_size(screen);
840 	case PIPE_VIDEO_CAP_PREFERED_FORMAT:
841 		return PIPE_FORMAT_NV12;
842 	case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
843 		return false;
844 	case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
845 		return false;
846 	case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
847 		return true;
848 	case PIPE_VIDEO_CAP_MAX_LEVEL:
849 		return vl_level_supported(screen, profile);
850 	default:
851 		return 0;
852 	}
853 }
854 
r600_get_llvm_processor_name(enum radeon_family family)855 const char *r600_get_llvm_processor_name(enum radeon_family family)
856 {
857 	switch (family) {
858 	case CHIP_R600:
859 	case CHIP_RV630:
860 	case CHIP_RV635:
861 	case CHIP_RV670:
862 		return "r600";
863 	case CHIP_RV610:
864 	case CHIP_RV620:
865 	case CHIP_RS780:
866 	case CHIP_RS880:
867 		return "rs880";
868 	case CHIP_RV710:
869 		return "rv710";
870 	case CHIP_RV730:
871 		return "rv730";
872 	case CHIP_RV740:
873 	case CHIP_RV770:
874 		return "rv770";
875 	case CHIP_PALM:
876 	case CHIP_CEDAR:
877 		return "cedar";
878 	case CHIP_SUMO:
879 	case CHIP_SUMO2:
880 		return "sumo";
881 	case CHIP_REDWOOD:
882 		return "redwood";
883 	case CHIP_JUNIPER:
884 		return "juniper";
885 	case CHIP_HEMLOCK:
886 	case CHIP_CYPRESS:
887 		return "cypress";
888 	case CHIP_BARTS:
889 		return "barts";
890 	case CHIP_TURKS:
891 		return "turks";
892 	case CHIP_CAICOS:
893 		return "caicos";
894 	case CHIP_CAYMAN:
895         case CHIP_ARUBA:
896 		return "cayman";
897 
898 	default:
899 		return "";
900 	}
901 }
902 
get_max_threads_per_block(struct r600_common_screen * screen,enum pipe_shader_ir ir_type)903 static unsigned get_max_threads_per_block(struct r600_common_screen *screen,
904 					  enum pipe_shader_ir ir_type)
905 {
906 	if (ir_type != PIPE_SHADER_IR_TGSI &&
907 	    ir_type != PIPE_SHADER_IR_NIR)
908 		return 256;
909 	if (screen->gfx_level >= EVERGREEN)
910 		return 1024;
911 	return 256;
912 }
913 
r600_get_compute_param(struct pipe_screen * screen,enum pipe_shader_ir ir_type,enum pipe_compute_cap param,void * ret)914 static int r600_get_compute_param(struct pipe_screen *screen,
915         enum pipe_shader_ir ir_type,
916         enum pipe_compute_cap param,
917         void *ret)
918 {
919 	struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
920 
921 	//TODO: select these params by asic
922 	switch (param) {
923 	case PIPE_COMPUTE_CAP_IR_TARGET: {
924 		const char *gpu;
925 		const char *triple = "r600--";
926 		gpu = r600_get_llvm_processor_name(rscreen->family);
927 		if (ret) {
928 			sprintf(ret, "%s-%s", gpu, triple);
929 		}
930 		/* +2 for dash and terminating NIL byte */
931 		return (strlen(triple) + strlen(gpu) + 2) * sizeof(char);
932 	}
933 	case PIPE_COMPUTE_CAP_GRID_DIMENSION:
934 		if (ret) {
935 			uint64_t *grid_dimension = ret;
936 			grid_dimension[0] = 3;
937 		}
938 		return 1 * sizeof(uint64_t);
939 
940 	case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
941 		if (ret) {
942 			uint64_t *grid_size = ret;
943 			grid_size[0] = 65535;
944 			grid_size[1] = 65535;
945 			grid_size[2] = 65535;
946 		}
947 		return 3 * sizeof(uint64_t) ;
948 
949 	case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
950 		if (ret) {
951 			uint64_t *block_size = ret;
952 			unsigned threads_per_block = get_max_threads_per_block(rscreen, ir_type);
953 			block_size[0] = threads_per_block;
954 			block_size[1] = threads_per_block;
955 			block_size[2] = threads_per_block;
956 		}
957 		return 3 * sizeof(uint64_t);
958 
959 	case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
960 		if (ret) {
961 			uint64_t *max_threads_per_block = ret;
962 			*max_threads_per_block = get_max_threads_per_block(rscreen, ir_type);
963 		}
964 		return sizeof(uint64_t);
965 	case PIPE_COMPUTE_CAP_ADDRESS_BITS:
966 		if (ret) {
967 			uint32_t *address_bits = ret;
968 			address_bits[0] = 32;
969 		}
970 		return 1 * sizeof(uint32_t);
971 
972 	case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
973 		if (ret) {
974 			uint64_t *max_global_size = ret;
975 			uint64_t max_mem_alloc_size;
976 
977 			r600_get_compute_param(screen, ir_type,
978 				PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE,
979 				&max_mem_alloc_size);
980 
981 			/* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least
982 			 * 1/4 of the MAX_GLOBAL_SIZE.  Since the
983 			 * MAX_MEM_ALLOC_SIZE is fixed for older kernels,
984 			 * make sure we never report more than
985 			 * 4 * MAX_MEM_ALLOC_SIZE.
986 			 */
987 			*max_global_size = MIN2(4 * max_mem_alloc_size,
988 						rscreen->info.max_heap_size_kb * 1024ull);
989 		}
990 		return sizeof(uint64_t);
991 
992 	case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
993 		if (ret) {
994 			uint64_t *max_local_size = ret;
995 			/* Value reported by the closed source driver. */
996 			*max_local_size = 32768;
997 		}
998 		return sizeof(uint64_t);
999 
1000 	case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
1001 		if (ret) {
1002 			uint64_t *max_input_size = ret;
1003 			/* Value reported by the closed source driver. */
1004 			*max_input_size = 1024;
1005 		}
1006 		return sizeof(uint64_t);
1007 
1008 	case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE:
1009 		if (ret) {
1010 			uint64_t *max_mem_alloc_size = ret;
1011 
1012 			*max_mem_alloc_size = (rscreen->info.max_heap_size_kb / 4) * 1024ull;
1013 		}
1014 		return sizeof(uint64_t);
1015 
1016 	case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
1017 		if (ret) {
1018 			uint32_t *max_clock_frequency = ret;
1019 			*max_clock_frequency = rscreen->info.max_gpu_freq_mhz;
1020 		}
1021 		return sizeof(uint32_t);
1022 
1023 	case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
1024 		if (ret) {
1025 			uint32_t *max_compute_units = ret;
1026 			*max_compute_units = rscreen->info.num_cu;
1027 		}
1028 		return sizeof(uint32_t);
1029 
1030 	case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
1031 		if (ret) {
1032 			uint32_t *images_supported = ret;
1033 			*images_supported = 0;
1034 		}
1035 		return sizeof(uint32_t);
1036 	case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
1037 		break; /* unused */
1038 	case PIPE_COMPUTE_CAP_SUBGROUP_SIZES:
1039 		if (ret) {
1040 			uint32_t *subgroup_size = ret;
1041 			*subgroup_size = r600_wavefront_size(rscreen->family);
1042 		}
1043 		return sizeof(uint32_t);
1044 	case PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK:
1045 		if (ret) {
1046 			uint64_t *max_variable_threads_per_block = ret;
1047 			*max_variable_threads_per_block = 0;
1048 		}
1049 		return sizeof(uint64_t);
1050         case PIPE_COMPUTE_CAP_MAX_SUBGROUPS:
1051            return 0;
1052 	}
1053 
1054         fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param);
1055         return 0;
1056 }
1057 
r600_get_timestamp(struct pipe_screen * screen)1058 static uint64_t r600_get_timestamp(struct pipe_screen *screen)
1059 {
1060 	struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1061 
1062 	return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) /
1063 			rscreen->info.clock_crystal_freq;
1064 }
1065 
r600_fence_reference(struct pipe_screen * screen,struct pipe_fence_handle ** dst,struct pipe_fence_handle * src)1066 static void r600_fence_reference(struct pipe_screen *screen,
1067 				 struct pipe_fence_handle **dst,
1068 				 struct pipe_fence_handle *src)
1069 {
1070 	struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
1071 	struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst;
1072 	struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src;
1073 
1074 	if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
1075 		ws->fence_reference(ws, &(*rdst)->gfx, NULL);
1076 		ws->fence_reference(ws, &(*rdst)->sdma, NULL);
1077 		FREE(*rdst);
1078 	}
1079         *rdst = rsrc;
1080 }
1081 
r600_fence_finish(struct pipe_screen * screen,struct pipe_context * ctx,struct pipe_fence_handle * fence,uint64_t timeout)1082 static bool r600_fence_finish(struct pipe_screen *screen,
1083 			      struct pipe_context *ctx,
1084 			      struct pipe_fence_handle *fence,
1085 			      uint64_t timeout)
1086 {
1087 	struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
1088 	struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence;
1089 	struct r600_common_context *rctx;
1090 	int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
1091 
1092 	ctx = threaded_context_unwrap_sync(ctx);
1093 	rctx = ctx ? (struct r600_common_context*)ctx : NULL;
1094 
1095 	if (rfence->sdma) {
1096 		if (!rws->fence_wait(rws, rfence->sdma, timeout))
1097 			return false;
1098 
1099 		/* Recompute the timeout after waiting. */
1100 		if (timeout && timeout != OS_TIMEOUT_INFINITE) {
1101 			int64_t time = os_time_get_nano();
1102 			timeout = abs_timeout > time ? abs_timeout - time : 0;
1103 		}
1104 	}
1105 
1106 	if (!rfence->gfx)
1107 		return true;
1108 
1109 	/* Flush the gfx IB if it hasn't been flushed yet. */
1110 	if (rctx &&
1111 	    rfence->gfx_unflushed.ctx == rctx &&
1112 	    rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) {
1113 		rctx->gfx.flush(rctx, timeout ? 0 : PIPE_FLUSH_ASYNC, NULL);
1114 		rfence->gfx_unflushed.ctx = NULL;
1115 
1116 		if (!timeout)
1117 			return false;
1118 
1119 		/* Recompute the timeout after all that. */
1120 		if (timeout && timeout != OS_TIMEOUT_INFINITE) {
1121 			int64_t time = os_time_get_nano();
1122 			timeout = abs_timeout > time ? abs_timeout - time : 0;
1123 		}
1124 	}
1125 
1126 	return rws->fence_wait(rws, rfence->gfx, timeout);
1127 }
1128 
r600_query_memory_info(struct pipe_screen * screen,struct pipe_memory_info * info)1129 static void r600_query_memory_info(struct pipe_screen *screen,
1130 				   struct pipe_memory_info *info)
1131 {
1132 	struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
1133 	struct radeon_winsys *ws = rscreen->ws;
1134 	unsigned vram_usage, gtt_usage;
1135 
1136 	info->total_device_memory = rscreen->info.vram_size_kb;
1137 	info->total_staging_memory = rscreen->info.gart_size_kb;
1138 
1139 	/* The real TTM memory usage is somewhat random, because:
1140 	 *
1141 	 * 1) TTM delays freeing memory, because it can only free it after
1142 	 *    fences expire.
1143 	 *
1144 	 * 2) The memory usage can be really low if big VRAM evictions are
1145 	 *    taking place, but the real usage is well above the size of VRAM.
1146 	 *
1147 	 * Instead, return statistics of this process.
1148 	 */
1149 	vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024;
1150 	gtt_usage =  ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024;
1151 
1152 	info->avail_device_memory =
1153 		vram_usage <= info->total_device_memory ?
1154 				info->total_device_memory - vram_usage : 0;
1155 	info->avail_staging_memory =
1156 		gtt_usage <= info->total_staging_memory ?
1157 				info->total_staging_memory - gtt_usage : 0;
1158 
1159 	info->device_memory_evicted =
1160 		ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024;
1161 
1162 	/* Just return the number of evicted 64KB pages. */
1163 	info->nr_device_memory_evictions = info->device_memory_evicted / 64;
1164 }
1165 
r600_resource_create_common(struct pipe_screen * screen,const struct pipe_resource * templ)1166 struct pipe_resource *r600_resource_create_common(struct pipe_screen *screen,
1167 						  const struct pipe_resource *templ)
1168 {
1169 	if (templ->target == PIPE_BUFFER) {
1170 		return r600_buffer_create(screen, templ, 256);
1171 	} else {
1172 		return r600_texture_create(screen, templ);
1173 	}
1174 }
1175 
1176 static const void *
r600_get_compiler_options(struct pipe_screen * screen,enum pipe_shader_ir ir,enum pipe_shader_type shader)1177 r600_get_compiler_options(struct pipe_screen *screen,
1178 			  enum pipe_shader_ir ir,
1179 			  enum pipe_shader_type shader)
1180 {
1181        assert(ir == PIPE_SHADER_IR_NIR);
1182 
1183        struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
1184 
1185        if (shader != PIPE_SHADER_FRAGMENT)
1186           return &rscreen->nir_options;
1187        else
1188           return &rscreen->nir_options_fs;
1189 }
1190 
1191 extern bool r600_lower_to_scalar_instr_filter(const nir_instr *instr, const void *);
1192 
r600_resource_destroy(struct pipe_screen * screen,struct pipe_resource * res)1193 static void r600_resource_destroy(struct pipe_screen *screen,
1194 				  struct pipe_resource *res)
1195 {
1196 	if (res->target == PIPE_BUFFER) {
1197 		if (r600_resource(res)->compute_global_bo)
1198 			r600_compute_global_buffer_destroy(screen, res);
1199 		else
1200 			r600_buffer_destroy(screen, res);
1201 	} else {
1202 		r600_texture_destroy(screen, res);
1203 	}
1204 }
1205 
r600_get_screen_fd(struct pipe_screen * screen)1206 static int r600_get_screen_fd(struct pipe_screen *screen)
1207 {
1208 	struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
1209 
1210 	return ws->get_fd(ws);
1211 }
1212 
r600_get_driver_uuid(UNUSED struct pipe_screen * screen,char * uuid)1213 static void r600_get_driver_uuid(UNUSED struct pipe_screen *screen, char *uuid)
1214 {
1215 	const char *driver_id = PACKAGE_VERSION MESA_GIT_SHA1 "r600";
1216 
1217 	/* The driver UUID is used for determining sharability of images and
1218 	 * memory between two Vulkan instances in separate processes, but also
1219 	 * to determining memory objects and sharability between Vulkan and
1220 	 * OpenGL driver. People who want to share memory need to also check
1221 	 * the device UUID.
1222 	 */
1223 	struct mesa_sha1 sha1_ctx;
1224 	_mesa_sha1_init(&sha1_ctx);
1225 
1226 	_mesa_sha1_update(&sha1_ctx, driver_id, strlen(driver_id));
1227 
1228 	uint8_t sha1[SHA1_DIGEST_LENGTH];
1229 	_mesa_sha1_final(&sha1_ctx, sha1);
1230 
1231 	assert(SHA1_DIGEST_LENGTH >= PIPE_UUID_SIZE);
1232 	memcpy(uuid, sha1, PIPE_UUID_SIZE);
1233 }
1234 
r600_get_device_uuid(struct pipe_screen * screen,char * uuid)1235 static void r600_get_device_uuid(struct pipe_screen *screen, char *uuid)
1236 {
1237 	uint32_t *uint_uuid = (uint32_t *)uuid;
1238 	struct r600_common_screen* rs = (struct r600_common_screen*)screen;
1239 
1240 	assert(PIPE_UUID_SIZE >= sizeof(uint32_t) * 4);
1241 
1242 	/* Copied from ac_device_info
1243 	 * Use the device info directly instead of using a sha1. GL/VK UUIDs
1244 	 * are 16 byte vs 20 byte for sha1, and the truncation that would be
1245 	 * required would get rid of part of the little entropy we have.
1246 	 */
1247 	memset(uuid, 0, PIPE_UUID_SIZE);
1248 	if (!rs->info.pci.valid)
1249 		fprintf(stderr,
1250 		"r600 device_uuid output is based on invalid pci bus info.\n");
1251 	uint_uuid[0] = rs->info.pci.domain;
1252 	uint_uuid[1] = rs->info.pci.bus;
1253 	uint_uuid[2] = rs->info.pci.dev;
1254 	uint_uuid[3] = rs->info.pci.func;
1255 }
1256 
r600_common_screen_init(struct r600_common_screen * rscreen,struct radeon_winsys * ws)1257 bool r600_common_screen_init(struct r600_common_screen *rscreen,
1258 			     struct radeon_winsys *ws)
1259 {
1260 	char family_name[32] = {}, kernel_version[128] = {};
1261 	struct utsname uname_data;
1262 	const char *chip_name;
1263 
1264 	ws->query_info(ws, &rscreen->info);
1265 	rscreen->ws = ws;
1266 
1267 	chip_name = r600_get_family_name(rscreen);
1268 
1269 	if (uname(&uname_data) == 0)
1270 		snprintf(kernel_version, sizeof(kernel_version),
1271 			 " / %s", uname_data.release);
1272 
1273 	snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string),
1274 		 "%s (%sDRM %i.%i.%i%s"
1275 #if LLVM_AVAILABLE
1276 		 ", LLVM " MESA_LLVM_VERSION_STRING
1277 #endif
1278 		 ")",
1279 		 chip_name, family_name, rscreen->info.drm_major,
1280 		 rscreen->info.drm_minor, rscreen->info.drm_patchlevel,
1281 		 kernel_version);
1282 
1283 	rscreen->b.get_name = r600_get_name;
1284 	rscreen->b.get_vendor = r600_get_vendor;
1285 	rscreen->b.get_device_vendor = r600_get_device_vendor;
1286 	rscreen->b.get_disk_shader_cache = r600_get_disk_shader_cache;
1287 	rscreen->b.get_compute_param = r600_get_compute_param;
1288 	rscreen->b.get_screen_fd = r600_get_screen_fd;
1289 	rscreen->b.get_paramf = r600_get_paramf;
1290 	rscreen->b.get_timestamp = r600_get_timestamp;
1291 	rscreen->b.get_compiler_options = r600_get_compiler_options;
1292 	rscreen->b.fence_finish = r600_fence_finish;
1293 	rscreen->b.fence_reference = r600_fence_reference;
1294 	rscreen->b.resource_destroy = r600_resource_destroy;
1295 	rscreen->b.resource_from_user_memory = r600_buffer_from_user_memory;
1296 	rscreen->b.query_memory_info = r600_query_memory_info;
1297 	rscreen->b.get_device_uuid = r600_get_device_uuid;
1298 	rscreen->b.get_driver_uuid = r600_get_driver_uuid;
1299 
1300 	if (rscreen->info.ip[AMD_IP_UVD].num_queues) {
1301 		rscreen->b.get_video_param = rvid_get_video_param;
1302 		rscreen->b.is_video_format_supported = rvid_is_format_supported;
1303 	} else {
1304 		rscreen->b.get_video_param = r600_get_video_param;
1305 		rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported;
1306 	}
1307 
1308 	r600_init_screen_texture_functions(rscreen);
1309 	r600_init_screen_query_functions(rscreen);
1310 
1311 	rscreen->family = rscreen->info.family;
1312 	rscreen->gfx_level = rscreen->info.gfx_level;
1313 	rscreen->debug_flags |= debug_get_flags_option("R600_DEBUG", common_debug_options, 0);
1314 
1315 	r600_disk_cache_create(rscreen);
1316 
1317 	slab_create_parent(&rscreen->pool_transfers, sizeof(struct r600_transfer), 64);
1318 
1319 	rscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1));
1320 	if (rscreen->force_aniso >= 0) {
1321 		printf("radeon: Forcing anisotropy filter to %ix\n",
1322 		       /* round down to a power of two */
1323 		       1 << util_logbase2(rscreen->force_aniso));
1324 	}
1325 
1326 	(void) mtx_init(&rscreen->aux_context_lock, mtx_plain);
1327 	(void) mtx_init(&rscreen->gpu_load_mutex, mtx_plain);
1328 
1329 	if (rscreen->debug_flags & DBG_INFO) {
1330 		printf("pci (domain:bus:dev.func): %04x:%02x:%02x.%x\n",
1331 		       rscreen->info.pci.domain, rscreen->info.pci.bus,
1332 		       rscreen->info.pci.dev, rscreen->info.pci.func);
1333 		printf("pci_id = 0x%x\n", rscreen->info.pci_id);
1334 		printf("family = %i (%s)\n", rscreen->info.family,
1335 		       r600_get_family_name(rscreen));
1336 		printf("gfx_level = %i\n", rscreen->info.gfx_level);
1337 		printf("pte_fragment_size = %u\n", rscreen->info.pte_fragment_size);
1338 		printf("gart_page_size = %u\n", rscreen->info.gart_page_size);
1339 		printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size_kb, 1024));
1340 		printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size_kb, 1024));
1341 		printf("vram_vis_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_vis_size_kb, 1024));
1342 		printf("max_heap_size = %i MB\n",
1343 		       (int)DIV_ROUND_UP(rscreen->info.max_heap_size_kb, 1024));
1344 		printf("min_alloc_size = %u\n", rscreen->info.min_alloc_size);
1345 		printf("has_dedicated_vram = %u\n", rscreen->info.has_dedicated_vram);
1346 		printf("r600_has_virtual_memory = %i\n", rscreen->info.r600_has_virtual_memory);
1347 		printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2);
1348 		printf("ip[AMD_IP_UVD] = %u\n", rscreen->info.ip[AMD_IP_UVD].num_queues);
1349 		printf("ip[AMD_IP_SDMA] = %i\n", rscreen->info.ip[AMD_IP_SDMA].num_queues);
1350 		printf("ip[AMD_IP_COMPUTE] = %u\n", rscreen->info.ip[AMD_IP_COMPUTE].num_queues);
1351 		printf("uvd_fw_version = %u\n", rscreen->info.uvd_fw_version);
1352 		printf("vce_fw_version = %u\n", rscreen->info.vce_fw_version);
1353 		printf("me_fw_version = %i\n", rscreen->info.me_fw_version);
1354 		printf("pfp_fw_version = %i\n", rscreen->info.pfp_fw_version);
1355 		printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config);
1356 		printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq);
1357 		printf("tcc_cache_line_size = %u\n", rscreen->info.tcc_cache_line_size);
1358 		printf("drm = %i.%i.%i\n", rscreen->info.drm_major,
1359 		       rscreen->info.drm_minor, rscreen->info.drm_patchlevel);
1360 		printf("has_userptr = %i\n", rscreen->info.has_userptr);
1361 
1362 		printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes);
1363 		printf("max_gpu_freq_mhz = %i\n", rscreen->info.max_gpu_freq_mhz);
1364 		printf("num_cu = %i\n", rscreen->info.num_cu);
1365 		printf("max_se = %i\n", rscreen->info.max_se);
1366 		printf("max_sh_per_se = %i\n", rscreen->info.max_sa_per_se);
1367 
1368 		printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map);
1369 		printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid);
1370 		printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks);
1371 		printf("num_render_backends = %i\n", rscreen->info.max_render_backends);
1372 		printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes);
1373 		printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes);
1374 		printf("enabled_rb_mask = 0x%" PRIx64 "\n", rscreen->info.enabled_rb_mask);
1375 		printf("max_alignment = %u\n", (unsigned)rscreen->info.max_alignment);
1376 	}
1377 
1378 	const struct nir_shader_compiler_options nir_options = {
1379 		.fuse_ffma16 = true,
1380 		.fuse_ffma32 = true,
1381 		.fuse_ffma64 = true,
1382 		.lower_flrp32 = true,
1383 		.lower_flrp64 = true,
1384 		.lower_fdiv = true,
1385 		.lower_isign = true,
1386 		.lower_fsign = true,
1387 		.lower_fmod = true,
1388 		.lower_uadd_carry = true,
1389 		.lower_usub_borrow = true,
1390 		.lower_bitfield_extract = true,
1391 		.lower_bitfield_insert = true,
1392 		.lower_extract_byte = true,
1393 		.lower_extract_word = true,
1394 		.lower_insert_byte = true,
1395 		.lower_insert_word = true,
1396 		.lower_ldexp = true,
1397 		/* due to a bug in the shader compiler, some loops hang
1398 		 * if they are not unrolled, see:
1399 		 *    https://bugs.freedesktop.org/show_bug.cgi?id=86720
1400 		 */
1401 		.max_unroll_iterations = 255,
1402 		.lower_interpolate_at = true,
1403 		.vectorize_io = true,
1404 		.has_umad24 = true,
1405 		.has_umul24 = true,
1406 		.has_fmulz = true,
1407 		.use_interpolated_input_intrinsics = true,
1408 		.has_fsub = true,
1409 		.has_isub = true,
1410 		.has_find_msb_rev = true,
1411 		.lower_iabs = true,
1412 		.lower_uadd_sat = true,
1413 		.lower_usub_sat = true,
1414 		.has_fused_comp_and_csel = true,
1415 		.lower_ifind_msb = true,
1416 		.lower_ufind_msb = true,
1417 		.lower_to_scalar = true,
1418 		.lower_to_scalar_filter = r600_lower_to_scalar_instr_filter,
1419 		.linker_ignore_precision = true,
1420 		.lower_fpow = true,
1421 		.lower_int64_options = ~0,
1422 		.lower_cs_local_index_to_id = true,
1423 		.lower_uniforms_to_ubo = true,
1424 		.lower_image_offset_to_range_base = 1,
1425 		.vectorize_tess_levels = 1,
1426 	};
1427 
1428 	rscreen->nir_options = nir_options;
1429 
1430 	if (rscreen->info.family < CHIP_CEDAR)
1431 		rscreen->nir_options.force_indirect_unrolling_sampler = true;
1432 
1433 	if (rscreen->info.gfx_level >= EVERGREEN) {
1434 		rscreen->nir_options.has_bfe = true;
1435 		rscreen->nir_options.has_bfm = true;
1436 		rscreen->nir_options.has_bitfield_select = true;
1437 	}
1438 
1439 	if (rscreen->info.gfx_level < EVERGREEN) {
1440 		/* Pre-EG doesn't have these ALU ops */
1441 		rscreen->nir_options.lower_bit_count = true;
1442 		rscreen->nir_options.lower_bitfield_reverse = true;
1443 	}
1444 
1445 	if (rscreen->info.gfx_level < CAYMAN) {
1446 		rscreen->nir_options.lower_doubles_options = nir_lower_fp64_full_software;
1447 		rscreen->nir_options.lower_atomic_offset_to_range_base = true;
1448 	} else {
1449 		rscreen->nir_options.lower_doubles_options =
1450 			nir_lower_ddiv |
1451 			nir_lower_dfloor |
1452 			nir_lower_dceil |
1453 			nir_lower_dmod |
1454 			nir_lower_dsub |
1455 			nir_lower_dtrunc |
1456 			nir_lower_dround_even;
1457 	}
1458 
1459         rscreen->nir_options_fs = rscreen->nir_options;
1460 	rscreen->nir_options_fs.lower_all_io_to_temps = true;
1461 
1462 	return true;
1463 }
1464 
r600_destroy_common_screen(struct r600_common_screen * rscreen)1465 void r600_destroy_common_screen(struct r600_common_screen *rscreen)
1466 {
1467 	r600_perfcounters_destroy(rscreen);
1468 	r600_gpu_load_kill_thread(rscreen);
1469 
1470 	mtx_destroy(&rscreen->gpu_load_mutex);
1471 	mtx_destroy(&rscreen->aux_context_lock);
1472 	rscreen->aux_context->destroy(rscreen->aux_context);
1473 
1474 	slab_destroy_parent(&rscreen->pool_transfers);
1475 
1476 	disk_cache_destroy(rscreen->disk_shader_cache);
1477 	rscreen->ws->destroy(rscreen->ws);
1478 	FREE(rscreen);
1479 }
1480 
r600_can_dump_shader(struct r600_common_screen * rscreen,unsigned processor)1481 bool r600_can_dump_shader(struct r600_common_screen *rscreen,
1482 			  unsigned processor)
1483 {
1484 	return rscreen->debug_flags & (1 << processor);
1485 }
1486 
r600_extra_shader_checks(struct r600_common_screen * rscreen,unsigned processor)1487 bool r600_extra_shader_checks(struct r600_common_screen *rscreen, unsigned processor)
1488 {
1489 	return (rscreen->debug_flags & DBG_CHECK_IR) ||
1490 	       r600_can_dump_shader(rscreen, processor);
1491 }
1492 
r600_screen_clear_buffer(struct r600_common_screen * rscreen,struct pipe_resource * dst,uint64_t offset,uint64_t size,unsigned value)1493 void r600_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst,
1494 			      uint64_t offset, uint64_t size, unsigned value)
1495 {
1496 	struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context;
1497 
1498 	mtx_lock(&rscreen->aux_context_lock);
1499 	rctx->dma_clear_buffer(&rctx->b, dst, offset, size, value);
1500 	rscreen->aux_context->flush(rscreen->aux_context, NULL, 0);
1501 	mtx_unlock(&rscreen->aux_context_lock);
1502 }
1503